Chapter 4.
Testing.

This chapter consists of two main parts. The first reviews the main existing testing
methods and discusses to what extent they achieve the ultimate goal of testing (i.e.
to find all faults). The second part presents our testing method based on the stream
X-machine model.

4.1. Background.

The two major objects used in System devel opment activities are specification and
implementation. Most of these activities concern the conversion of the
specification into an implementation. But others are concerned with evaluating
how well the implementation satisfies the specification. If the specification S and
the implementation | are assumed to be (partial) functions S, I: D - R, then we
say that the implementation is correct w.r.t. the specification if S(x) = 1(x), 00 x O
D. Conversely, afailure occurs in the implementation if, for an input x, the output
produced by the implementation does not correspond to that produced by the
specification. Any part of the implementation that could lead to afailureis a fault.
Then, the implementation is correct w.r.t. the specification iff it is fault-free.

Testing attempts to achieve correctness by detecting all the faults that are present
in the implementation so they can be removed. A finite set of inputs X 00 D is
designed and the result produced by each element of | (i.e. I(x)) is compared with
the expected result (i.e. S(x)). The set of inputs X will be called the test set. The
elements of the test set are chosen subject to a particular criterion. Many
techniques for carrying out testing, and in particular for the generation of test sets
exist and some of them are supported by automatic tools. There are aso many
ways of classifying these techniques according to the particular criterion used. The
most common classification is into program based techniques and functional
techniques. There are aso random methods which generate test sets randomly and
some statistical methods that combine random generation with one of the other
techniques (e.g. Waesdlynck [57]) Analysis methods have also been developed
that estimate the probability of an implementation being correct after the testing
has been successfully completed. There are a number of different types of
statistical models used (Miller et a. [43], Hamlet & Taylor [23], Weiss &
Weyuker [58]) and they lead to conflicting claims as to the benefits of different
types of testing.
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4.1.1. Program based testing

These techniques are also known as structural and white-box testing. Program
based testing methods base their test selection criterion on the structure of the
finished code. There is a well defined hierarchy of criteria (see Myers [47] or
Ntafos [49]) the most common ones being described here in ascending order of
strength.

Satement (or segment) coverage: If the test causes every statement of the
code to be executed at least once, then statement coverage is achieved.

A segment is an indivisible piece of code, no part can be executed without all of it
being executed.

Branch coverage: If the test causes every branch to be executed at least
once, then branch coverage is achieved. In other words, for every branch
statement, each of the possibilities must be performed on at least one occasion.

Path coverage: If the test set causes every distinct execution path to be
taken at some point, then path coverage is achieved. E.g., in the case of a loop,
there are paths for each number of iterations of the loop. Even for quite short and
simple programs, this level of coverage can be infeasible.

Limitations of program based testing

None of these program based methods use the requirements of the system in their
test selection criterion. Instead they al make the assumption that the
implementation matches the requirements in its broad structure. This can be a
severe limitation if you consider that the ultimate goal of testing isto compare the
implementation with its requirements.

Errors corresponding to missing paths in the code will not generally be detected.

Another drawback is that you have to wait until there is some of the actual code
before you can begin to construct tests. This corresponds to a software life-cyclein
which testing it carried out after the design and the implementation of the system
has been completed. This is very expensive as it only uncovers faults long after
they are introduced, especialy faults in requirements. Testing requirements is an
important issue and one in which a testing method based on a formal specification
could be valuable.

Nevertheless, program based testing methods are still in widespread use (see
Gelperin & Hetzel [17] or atesting standard such as[2]) and undoubtedly reveal a
great many errors that might otherwise escape. Also, several tools that support
these techniques exist (see CAST Report [4]).
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4.1.2. Functional testing.
These methods are knownhack-box testing .

Functional testing methods base their test case selection criteria largely on the
intended functionality of the implementation, i.e. on the specification or
requirements. This fits in well with the goa of comparing implementations with
their requirements.

4.1.2.1. The category-partition method.

The most widely used functiona technique is the category-partition method. The
method was presented by Ostrand & Balcer, [51], and it involves several steps, the
main ones being described below.

A. Analysis of the specification.

First, functiona units that can be individually tested are identified; either top level
user commands or functions that are called by them, or lower level functions are
defined. Several stages of decomposition may be required.

For all the functions identified, find the parameters (i.e. explicit inputs or outputs
to the functional unit, either by the program or by the user) that affect the
function’s behaviour.

Example. Consider the specification of a sorting program. The program is to
accept an array of integers of variable length and is to display a permutation of the
array, but with the values correctly ordered with respect to the normal order on
integers. Then, the only parameters are the unsorted array as input and the sorted
array as output.

B. Categorise the parameters.

For each parameter, identify properties and characteristics that have particular
effects on the function’s behaviour. Classify the characteristics of the parameters
into categories that characterise the behaviour of the function.

Example. For the sorting program, the categories are the array’s size and the order
of the unsorted array.

C. Partition the categories into choices.

Determine the different significant cases that can occur within each parameter
condition category. These cases are choices. Each choice consists of a subset of
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the category’s values, which will al lead to the same behaviour. The choices must
be mutually exclusive.

Example. Using the "array size" partition from above, the choices might be 0, 1, or
> 1.

D. Generate the test set.

A test set is generated such that each choice of each category is satisfied by at least
one input. This can be done automatically (see Ostrand & Balcer [51]).

There are some clear advantages of this method. Firstly, unlike the program based
techniques, the test cases are derived from the specification. Hence, there is a
better chance of detecting if some functionality is missing from the
implementation (e.g. a missing path in a program). Also, the test phase can be
started early in the development process and the test set can be easily modified as
the system evolves.

The process of working through all of the details of the method may well reveal
limitations of the design specification. If so, these should of course be addressed
and then the implications considered for the parts of the testing process already
carried out.

Limitations of the category-partition method.

It is difficult to describe formally the concepts of category and choice, so it is hard
to assess how adequate the criteria used for choosing these are. As a result, the
method relies heavily on the experience of the tester.

The method does not offer any guidance on combining the tests of individual
functionsinto higher level tests that ensure that these functional units are correctly
integrated.

Conclusions.

Severa other functional testing methods exist (see Goodenough & Gerhart [21],
Gerrard et a. [18], Myers [47, 48] or Hayes [25]), many of them being broadly
similar to the category-partition method. All of them (and indeed the program
based ones) share the same drawback in the sense that they do not enable us to
make any statement about the number and the type of faults that remain
undetected after testing is completed. In practice all we can usualy say is that we
have uncovered a number of faults over a period of testing effort and the graph of
the number of faults against the period or amount of testing, measured suitably,
indicates that the growth rate is reducing.
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Figure4.l.

The trouble is that we do not know that no further faults exist in the system at a
particular time. A genera formulafor this curve is not known; if one existed for a
certain testing method it would probably depend on the type of the system and on
those doing and managing the testing as well as wider issues relating to the
management of the design project, the implementation vehicle, the design methods
and so on. It is therefore fair to say that making sure that systems are fault free is
quite beyond current testing methods. "All they can tell is that a system has failed.
They cannot tell us that the system is correct” (statement attributed to Dijkstra).

4.1.3. Theoretical testing.

The testing techniques discussed so far (and indeed most techniques used in
practice) have been based on the experience of software developers rather than on
a well founded theory.

Very few attempts have been made to address the issues of testing from a
theoretical point of view. An outline theory of testing is introduced by
Goodenough & Gerhart, [21], and developed further by Weyuker and Ostrand,
[59]. They treat a software system as a (partial) function from an input set to an
output set and the testing process consists of constructing "revealing sub-domains”
that expose faults in this function (i.e. a sub-domain B of the function is revealing
for afault F if, whenever F affects any element of B it affects all the elements of
B). This is a very general and abstract approach that provides an useful set of
simple concepts and terminology for the discussion of some aspects of testing
without giving too many clues of how to construct an effective testing strategy.

The paucity of attempts to address the theoretical issues of testing is not
surprising. Indeed, recall that the (idealised) goal of testing is to find all the faults
in the implementation. Let S: D - R and I: D - R the specification and the
implementation of a system respectively and X [0 D the (finite) test set. Then X
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finds all the faultsif and only if S(x) = I(x), O xO X O S(x) =I(x), dx OD. In
this case we say that the test set X is adequate. Then, it is clear that if Sand | are
partial functions computed by arbitrary computer systems (i.e. Turing machines),
such atest set does not exist (i.e. if it did, the halting problem for Turing machines
would be solvable). Hence, in this case the goal of testing is not attainable.

How can we get around this problem? A solution would be to develop testing
methods based on more restrictive computational methods (e.g. finite state
machines).

4.1.4. Finite state machine testing.

Some finite state machine testing methods exist. Most of them are quite
restrictive; some require that the specification and the implementation are finite
state machines with the same number of states (see Sidhu et al. [54]); others
assume that the specification is a finite state machine with special properties (see
Bhattacharrya [3]).

A more general testing theory for finite state machines was developed by Chow,
[6]. It assumes that the specification and the implementation can both be
expressed as finite state machines and shows how atest set that finds al the faults
in the implementation can be generated.

4.1.4.1. Preliminary concepts.

Before we describe the method in more detail we introduce some concepts that we
shall be needing later. The following definitions are largely from Chow, [6].

Definition 4.1.4.1.1.

Let 4 = (%, I, Q, F, G, qp) be a finite state machine, S 0 ¥* a set of input
sequences and g, g’ O Q two states. Then we say that S distinguishes between q
and g’ ifds0 S such that gq, s)# Gg(d', S).

In other words, s produces different outputs when applied to q and g’ respectively.

Definition 4.1.4.1.2.

Letd = (%, T, Q, F G, qg) beaminimal finite state machine. Then a set of input
sequences W [0 3* is called a characterisation set of 4 if W can distinguish
between any two pairs of states!{of

Definition 4.1.4.1.3.
Letd = (%, T, Q, F G, qg) beaminima finite state machine. Then a set of input

sequences S [0 3* is caled a state cover if 0 g O Q, s O S such that
g = F(qp, s) (i.e. s forces the machinénto g from the initial stateg).
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Definition 4.1.4.1.4.

Let 4 = (%, T, Q, F, G, qg) amnima finite state machine. Then a set of input
sequences T 0 2* is called a transition cover if 0 q O Q, Ot O Z* with
g=Feldg, t) suchthat t O Tandto O T, J o O Z (i.e t forces the machine into g
fromgandtd Tando O T,0o O%).

Notice that, since 4 is minimal, a characterisation set, a state cover and a transition
cover ofd exist.

It isclear that if Sisastate cover of 4, then T =S [0 S® isatransition cover of .
Also, for any transition cover T of 4, there exists a state cover S such that
SOSPOT.

Example 4.1.4.1.5.
Let 4 be the (minimal) finite state machine with £ = {a b} and I' = {x, y}
represented in figure 4.2.

alx

aly
Note: g O ¥ - g denotes that F(ga) = g, and G(¢ a) = x.
Figure4.2.
Then:

W = {a, b} is a characterisation set{of
S ={1, b, ba, bab} is a state coverpf
T={1, a, b, ba, bb, baa, bab, baba, babb} is a transition cover of
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The following theorem is from Chow, [6], and it represents the theoretical basis of
his testing method.

Theorem 4.1.4.1.6.

Letd=(ZT,QFGgo)andd' =(Z,T,Q, F, G, qy) betwo minimal finite state
machines. Let T and W, respectively, be a transition cover and a characterisation
set of 4 and Z = skw 0 sk-Iw O ... O W. If card(Q)) - card(Q) < k and g and qg’
are TZ-equivalent, thehand{’ are isomorphic.

The idea is that the transition cover T ensures that all the states and all the
transitions of 4 are also present in 4’ and Z ensures that {’ is in the same state as A
after each transition is used. Notice that Z contains W and also all sets Ziw,
i =1, ..., k Thisensures that 4’ does not contain extra states. If there were up to k

extra states, then each of them would be reached by some input sequence of up to
lengthk from the existing states.

4.1.4.2. The state machine testing method.
The method relies on the following assumptions.

1. The specification is a minimal finite state machine

2. The implementation can be modelled as a finite state machine 4’ with the
same input and output alphabets.as

3. The number of statesdins bounded by a certain numipér

Under these circumstances X = TZ is atest set that finds all faults, where T and W
are a transition cover and a characterisation setaspectively,

z=skwosklwo..Ow
and k = n’ - n, where n is the number of states of 4 and n’ is the (estimated) upper
bound of the number of state ©f

Notice that 4’ need not be minimal. Indeed if 4’ is not minimal then we can apply
theorem 4.1.4.1.6 for the minimal machine of ', Min({). Then 4 and Min({") will
be isomorphic, henceand{” will compute the same function.

4.1.4.3. Construction of thetest set and complexity.

Since the concepts of characterisation set and transition cover will be used later on
in our testing theory, we shall describe their construction in detail. In what follows
we shall be referring to a finite state machingth n states ang input symbols.

4.1.4.3.1. Transition cover.
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One way to construct atransition cover is by building atesting tree. The procedure
for constructing a testing tree given in what follows is largely from Chow, [6].

1) Label the root of the tree with the initial state of 4, gg. Thisis the first level
of the tree.

2) Suppose we have already built the tree up to alevel m. Then the (m +1) level
is built by examining nodes in the mth level from left to right. A node at the mth
level istermind if itslabel is"Undefined” or is the same as a nontermina at some
level ¢, ¢ < m. Otherwise let gj denote its label. If on an input o, the machine {
goes from the state gj to the state gj, we attach a branch and the successor node to
the node labelled with ¢ and q, respectively. Otherwise (i.e. if there is no
transition defined for o from ), then we also attach a branch labelled o, but in
this case the successor node will be labelled "Undefined".

For the finite state machine from example 4.1.4.1.5, atesting tree is represented in
figure 4.3.

Figure4.3.

Obvioudly, the procedure above terminates since there are only a finite number of
statesin 4. In fact, the tree has at most n+1 levels. Also, depending on the order in
which we place the successor nodes, a different tree may result. A transition cover
results by enumerating all the partial paths in the tree and adding the empty
sequence to the set obtained in this way. The number of sequences of the resulting
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transition cover is nlp+1, where p = card(). It is also clear that this is the
minimum possible number of elements of any transition cover.

4.1.4.3.2. Characterisation set.

There are many ways of constructing characterisation sets. We shall describe a
procedure that gives the best possible result in the worst case scenario. This issue
is not analysed in detail in Chow, [6]. First, let us make the following remark.

Let V, V' [0 2* be two sets of input sequences and ~\y and ~\/’ respectively the
equivalence relations on Q determined by them. Then we saythkaty if:
NUaq,g0Qifg~,qthengyq.
i) Jg, g'0 Q such that gy g' and =(q v q').
If 0qg,q'lQ, q~q iff g~y g, we say thaty = ~.
Also, if V=] 5, i0N, then  will be denoted by i~

j=1

Then, for a minimal finite state machine 4 with n states, there exists j < n-1 such
that ~1 <~2<.. ~j=~j+1=~j+2=...... Thisisawell known result, a proof can
be found in Eilenberg, [12]. Since 4 is minimal, it follows that =) will distinguish
any pair of states in

Let us now give the following algorithm that finds a characterisation set W.

Algorithm 4.1.4.3.2.1.

Stepl. Initialise V £1 and i = 1.

Step2. (@) If ~y < ~j then find s O 51 such that s disti nguishes between two
states g and g’ that are not V-distinguishable (i.e. the partition determined by ~j on
Q can be determined using the so called P tables (see Gill [19]); also, s can be
determined from these tables (see Gill [19], agorithm 4.1)). Then V will become
V [0 {s} and step2 is repeated.

(b). Otherwise, go to step3.

Step3. (@) If V does not distinguish between any pair of states of 4, then
increment .

(b) Otherwise W =V is the characterisation set required.

Using a simple induction and the above remark it is easy to prove that the
characterisation set W constructed by the algorithm will satisfy:

i) card(W) n-1;

i) di0{1, ..., n1}, Oat mostn-i elements of W of length at least i.

Hence, it follows that in the worst case the above agorithm will generate a
characterisation set W = {s1,..., Sp-1} such that |sj| =1, 1 =1, .., n-1. Thisis the
best result in the worst case scenario, since for any n and p there exists a minimal
finite state machine { (see figure 4.4) with n states and p inputs such that if W'isa
characterisation set of 4, then there exists W" OO W', W" = {s1,..., Sn-1}» such that
I§|=1i,i=1, ..,n-1.
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X2, X3, ..., Xpl Y

1, X2, ..., Xp-1/ Y

l, X2, ..., Xp-1/ Yl, X2, .., Xp-1/Y X1, X2, ..., Xp-1/ Y

X1, X2, sy xp_ll y denotes that the machine produces the output y on each of the
inputs X, X, ..., ¥y-1.

Figure4.4.

4.1.4.3.3. Complexity.

For a minima machine with n states and p inputs the effort required in
constructing T and W is roughly proportional to n®[p. This can be seen as
follows: T is obtained by first constructing a testing tree and then enumerating the
partial paths in the tree. Since for each state q and each input symbol o the
transition from g on o appears exactly once in the transition tree, the complexity
of the former is proportiona to nl(p. The complexity of the latter is also
proportional ton[p since there are[p+1 partial paths in the tree (see Chow [6]).

The transition set is obtained by first constructing the Py and then applying
agorithm 4.1.4.3.2.1. The amount of work required to construct a Py table is
proportional to n[p, the number of entriesin the table. Since there are at most n -1
such tables, the effort required to construct them is proportiona to n*[p. The
input sequences required by algorithm 4.1.4.3.2.1 step2 (a) will be obtained using
[19, agorithm 4.1]. The amount of work required to construct a sequence s using
this algorithm will be proportional to pll§ (i.e. each symbol in s is obtained by

comparing the values of two columns in a Py table (each column has p elements)).

n(n-1)

Since the total length of W is no more then , the total amount of work

required to construct W is proportionalrdp.

4.1.4.4. Upper boundsfor thetest set size.

Since
card X) = card T) tard =" O =*0...0{8) ard W),
the maximum number of test sequences required will be:
k+l _
max(card(X)) Xnp+1) (1 + p+...+ p*)(n - 1) = (n(p+1) -1

p-1

(n-1.

Hence
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k+2
card(X)< n? .
p-1

For largep,
max(card(X)F n? op***

An upper bound for the total length of the set test, [X| = z ||, can be determined

stX
by observing that
IXI =N + N2 + N3,
where
Np = card(T)tardgk O sk-1 0 ...0 {1}) Ow],
No = card(MOEK O k10 .0 {1})| Crard(w),
Ng = |T| Ccardgk O sk-10 .0 {1}) Crard(W).

Since

Tl p+2m+...+nm:w,

k+1

Icko k10 .. .0{1))| = p+20p°...+kP* < kgpl,

|W|SM,
we have

_ k+1

|X|s(pm+1)p du+(pﬁh+l) Ep - (- 1)+pDhEgn 1)D§ (n-1)

Hence

k+2 k+2

|X|< th Qn+Kk) = —— M’ .
p- p 1
For largep, the upper bound for the total length of the test set is approximately
n1 2 Dpk+1.
4.1.4.5. Improvement in thetest set size.

Fujiwara et al., [16], prove that the test set can be reduced to
X' = X1 0O X9, where X and X% are obtained as follows.

Construct W, T, S, R, W aql Q, such that:

« W is a characterisation set.ofi.e. is the specification).

T is a transition cover af

» S is a state cover @fsuch that $1 T,

*R=T-S

* Wy is a set of sequences that distinguishes g from any other sta g’

Then X1 and X are defined by:
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e X1 =SEkw nsk-Iwn..0ow),
« Xo=J REKO K10 .01} O W,

g9
where
REKO sk10 .01 Owg=  (H{SWa
sOR(S* 0..{1})
Fe(d0.9)=q

(i.e. the union is over al s O R(Zk O sklg .. O {1}) such that s takes the
machine from the initial statg,do Q).

Hence % =] [ J{gWa.

qlQ sCR(S‘0..{1)
Fe(do,s)=q

Intuitively, X1 checks that al the states defined by the specification are
identifiable in the implementation. At the same time, the transitions leading from
theinitial state to these states are checked for correct output and state transfer. Xo
checks the implementation for all the transitions that are not checkegl by X

If the sets Wq are al chosen to be W, the characterisation set, then X’ = X = TZ,
the test set obtained by Chow. Also, since WqWw,0q0Q, it follows that X’ [J
X. Therefore the method presented by Fujiwaraet al., [16], can yield a smaller test
set. Obvioudly, this is done at the expense of a more complex algorithm to
generate the test set.

4.1.4.6. Limitations of the finite state machine testing.

The method enables effective test cases to be generated in a straightforward
manner. But the finite state machine is too restrictive for many common
applications.

The solution suggested by Chow was to separate the control structure of a program
from the data structure and to represent the former as a finite state machine. In this
way the method could be used to test the control structure of a program. However,
the assumption that the control structure of the system can be modelled separately
from the data variables is not realistic in many cases. This would mean that the
next state depends solely on the current state and the input. Thisis not usually the
case. The variables that affect the program control could be replaced by a number
of additional states, but in many cases this number will be large and then the
method would become impractical.

A more attractive solution is to develop testing methods for more complex models
than finite state machines.
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4.2. Stream X-machinetesting.

In Chapter 2 we remarked that stream X-machines possess a property that make
them an attractive basis for testing, i.e. the fact that if the basic transition functions
are computable by some agorithms (i.e. by finite procedures) than the function
computed by the machine can be obtained algorithmically. This is important for
two reasons. Firstly, it avoids the unsolvable Halting problem for Turing
machines. Secondly, if our specification is a stream X-machine with the
processing functions computable by some agorithms, then we are able to
determine the output produced for each input sequence. Furthermore, if we know
that the implementation can also be modelled by a stream X-machine with the
same property, then this implementation is guaranteed to produce an output for
any input sequence we apply to it.

However, a testing method for stream X-machines is not straightforward. Indeed,
since the machine memory can be infinite, it is fairly clear that there is no way of
finding a finite set of input sequences that would guarantee that two arbitrary
stream X-machines compute the same function.

The approach we shall use to get around this problem will be a reductionist one.
This entails the reduction of a problem to the solution of simpler ones. In such a
reductionist approach we would consider a system and produce a testing regime
that results in the complete reduction of the test problem for the system to one of
looking at the test problem for the components or reduced parts. However, this
approach will work only if we are able to make the following statement:

"the system S is composed of the pafis B Ry;
as a result of carrying out a testing process on S we can deduce that S is fault-
free if each of ..., R, are fault-free".

If the system is a stream X-machine 7, then the basic components of the system
are the ¢'s. Then, what we are looking for is a testing method that ensures that )
is fault-free provided thab is fault-free.

4.2.1. Theoretical basisfor stream X-machinetesting.

The strategy we employ is to reduce testing that the two machines (i.e. one
representing the specification, the other the implementation) compute the same
function to testing that their associated automata accept the same language. For
this idea to work we require that @ is complete and output-distinguishable. We
call these "design for test" conditions.

The fact that we require @ to be output-distinguishable is not surprising since we
want to be able to distinguish between @'s according to the outputs they produce.
On the other hand the output-distinguishability condition is not sufficient. Indeed,
in Chapter 3 we gave two examples of a stream X-machine with @ output-
distinguishable but not complete in which one of the arcs could be removed
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without affecting the computation of the machine (see example 3.4.2.7 and
example 3.4.2.8).

As we have seen, testing that the two associated automata accept the same
language can be done by constructing a set of sequences of elements from ®*.
However, this is not really very convenient in our case, we really want a set of
input sequences from Z*. We thus need to convert sequences from ®* into
sequences from >*. We do this by using a fundamental test function as discussed
next.

Definition. 4.2.1.1.
Let M =(Z, T, Q, M, &, F, g9, mg) be adeterministic stream X-machine with ®
complete and let g O Q, m [0 M. We define recursively a function tgm: ®* - Z*
as follows:

1. §,m(1) = 1, where 1 is the empty string.

2. For n 2 0, the recursion step that defines tq m(@1...¢n¢Pn+1) as afunction of
tg,m(®1.-.¢n) depends on the following two cases:

a. if Da pathq I - g O - gz...gn -1 OF - gn in 7 starting from g, then

g,m(@1.-- Pn+1) = Ig,m(@1-- ) On+1,
wher@p41 is chosen such that

(&(a, M, f,m(@1--- ®n)), On+1) U dom@n 1.

Note: Since® is complete, there exists Sush+1.
In other words, if mp, is the final value computed by the machine along the above

path on the input sequengeH(@1... ¢n), then (M, on+1) will exercisedn+ 1.

b. otherwise,
d,m((Pl--- nPn+1) = tq,m(‘Pl--- ®n)-

Then  mis called aest function of 7, w.r.t. g and m.

If g =0doand m = mg, tgm is denoted by t and is called a fundamental test
function of 7.

In other words if

gf - quOF - qz...qn-1 07 > O
is a path in, then

s= fm@L o)
will be an input string which, when applied in g and m, will cause the computation
of the machine to follow this path (i.e. s= 01 ... o such that 01 exercises @y, ...,
Op exercisesp).
If there is no arc labelleg,+1 from ¢, then

tg,m(@1.-- $Ph+1 = On+1,
where op+1 is an input which would have caused the machine to exercise such an
arc if it had existed (i.e. therefore making sure that it does not exist).
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Also, O ¢n+2,..., Pn+k [ P,

tg,m(@1.- PPn+1:-Ph+k) = tg,m(@L--- hPn+1)
(i.e. therefore only the first non-existing arc in the path is exercised by the value of
the test function).

Note that a test function is not uniquely determined, many different possible test
functions exist and it is up to the designer to construct it.

Example 4.2.1.2.
Let 7 be a deterministic stream X-machine defined by:

1.2 ={x, vy}
2. ={a, b}

3. Q ={q, a1, }; qp is the initial state.
4. M = {0, 1}. The initial memory value isgr O.

5 @ ={o1, ¢, @3, ¢4}, where @1, ¢, @3, @4 M x X - [ x M are partia
functions as follows:

dom@ = M x {y}; ¢1(m,y) = (&, DI mOM;

dom@p = M x {x}, @(m, x) = (a, 0)I mO M;

dompz=Mx{y}k  @am,y)=(b, )OI mOM;

donipg = M x {x}; @4(m, X) = (b, 0),d m1 M.
6. F is represented in figure 4.5.

04

01 93
ql q2

92 @3

Figure4.5.

Then we can construct a fundamental test function which satisfies
e =,
t(@192) = yx,
t(@19201) = yxX,
t(@1P2P4P1) = yXX.
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The scope of a test function is to test whether a certain path exists or not in 7

using appropriate input symbols (hence the name). This idea is formalised in the
following lemma.

Lemma4.2.1.3.

Leem=(T,Q M, P F gg mgand M =(Z,T,Q,M, ®F, gy, mg) betwo
deterministic stream X-machines with @ output-distinguishable and complete, Ag
and Ag their extended output functions and 4 and «’ their associated automata. Let
gUQ,qgUIQ, mOM, X Oo*, and let tg,m: ®* - Z* be atest function of 7
w.rt gand m. If Ag(g, m, s) =Ag(@, m, ), OsO tq,m(X), then q and q are
X-equivalent as states inand4{’ respectively.

Note: For X O ®*, t(X) = {t(x)| x O X}

Proof:
Let @1... gy O X and s= tq,m((pl... ¢®n). We prove that Ag(g, m, S) = Ag(q, m, S)
implies:

there existsapath in 1 starting from q labelled @1... @, iff there exists apath in
' starting from g’ labellegh ... ¢n.

Let us assume that there exists a path
q* - quOF - qu..qn-1F > on
in 7. In this case
tg,m(@1..- ¢n) =01...opwith o1, ...,.on 0 2.
Thus there existy, Y2, ...yn O T and m, ..., np O M such that
@1(M, 07) = (y1, M) andgi(mi.1, 0j) = (i, M), i =2, ..., n.
Also, we have
Ae(@, M,07...0n) Y1 Y2 - Vn-
SinceAg(q, m,01...0p) =Ag(Q’, M,o1... Op), it follows that there exists a path
qO0% g 0f - qg2...00-7 O = g
in 71" and there exist M, ..., My’ such that
¢1'(m, 09) = (v, M) andgy’(mi-1', 6) = (i, M), 1 =2, ..., n.
Using a simple induction, it follows that
G=@¢ andm=m’,i=1,..n.
Indeed, @1 = @1’ follows since @ is output-distinguishable. Hence m1 = myq’.
Similarly, if m; = my’, it follows that ¢j+1 = @+1’ and mj+1 = mj+1". Therefore,
there exists a path i’ starting from g’ labellegl... ¢n.

Let us assume there is no path in 7 starting from q labelled @q... ¢n. Let
k 0{0, ..., n-1} be the maximum number such that there exists a path in 7 starting
from q labelledp;... ¢x. Let

gf - qu O - qz...0k-1[1F > ok
this path. Then

tg,m(@1..- ¢n) =071... o+ With 07, ..., OK+1 O .
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Thus there exisfq, Y2, ....Yk+1 U I and m, ..., mk+1 O M such that

@1 (m, 07) = (Y1, mp) and@(mj-1, oj) = (vj, mj), i =2, ..., k+1.
Now, we prove that there is no path 7’ starting from q' labelled @q... gk+1. Let us
assume otherwise. Then there exists a path

qgf-og O%F- q2...0 O ge+1
in7’. Hence

Ae(d's M,01... Ok+1) =VY1Y2 - Yk+1:
Since Ag(g, M, 07... Ok+1) = Ag(d, M, 01... Ok+1), it follows that there exists @
k+1 O P, gk+1 0 Q and ng+1’ 00 M such that

ok O - ge+1is an arc inf and@k+1'(Mk, Ok+1) = (Yk+1, Mk+1)-
Since @ is output-distinguishable, it follows that @+1 = @+1'- This contradicts
our initial assumption. Hence, there is no path 71’ starting from q' labelled

PL- k41

Therefore, we have proved that Ag(g, m, s) = Ag(q, m, s) implies g and g’ are
{®@1... ¢n}-equivaent as states in {4 and { respectively. Hence (see definition
3.4.1.2.3 and observation 3.4.1.2.4) q and q’ are X-equiv@lent.

We can now assemble our fundamental result which is the basis for the testing
method.

Theorem 4.2.1.4.

Letm=(T,Q M, P F gg mgand M =(Z,T,Q,M, ®F, gy, mg) betwo
deterministic stream X-machines with @ output-distinguishable and complete
which compute f and f' respectively, 4 and {' their associated automata and
t. ®* - >* a fundamental test function of 7. We assume that 4 and " are
minimal. Then let T and W, respectively, be a transition cover and a
characterisation set of { and Z = ®kw O ok-1w O ... O W, where k is a positive
integer. If card(Q) - card(Q) < k and f(s) = f'(s), D s O t(TZ), then
and{’ are isomorphic.

Proof:
From lemma 4.2.1.3 it follows that g and qg’ are TZ-equivalent. The rest follows
from theorem 4.1.4.1.6 (Chow®

If our aim is to ensure that the two machines compute the same function the
minimality of 4’ is not really necessary. Then we have the following corollary.

Corollary 4.2.1.5.

Leem=(T,Q M, P F gg mg)and M =(Z, T, Q,M, ®F, gy, mg) betwo
deterministic stream X-machines with @ output-distinguishable and complete,
4 and 4’ the associated automata of 7 and 71’ respectively and t, T and W as above.
Let {" = (P, Q", F', qg") be the minimal automaton of (. If 4 is minimal,
card(Q") - card(Q¥ k and f(s) = f'(s)ld s t(TZ), then f(s) = f'(s) 0 s Z*.
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Proof:

Letm" =(Z, T, Q", M, ®, F', dg", mp) the stream X-machine whose associated
automaton 4" is the minimal automaton of 4’ (i.e. A" = Min({’)). Then M" and 7’
compute the same function (see lemma 3.4.2.2). From theorem 4.2.1.4, it follows
that the associated automat@nd{" are isomorphic. Hence f = &

Notice that since 4 is a finite state machine with empty output aphabet, a
characterisation set of 4 will beaset W O ®* suchthat 0 g, ' 0 Q, two statesin
such that & q’, there exist®;... ¢ O W such that either:

there exists a path labelled @1... @ from g and thereis no path labelled @... @

from g’
or

there exists apath labelled @1... @ from g’ and there is no path labelled @1... @
from q.
In other words, when constructing W what matters is only whether there is an arc
labelled with a certain symbol ¢ from a certain state q (since the output alphabet is
empty). Obvioudly, all the statements made in section 4.1.4.3 about the
construction of a characterisation set and its cardinality remain valid.

4.2.2. The stream X-machinetesting method.

Our stream X-machine testing method is based on the results from theorem 4.2.1.4
and corollary 4.2.1.5.

It assumes that the following conditions are met:
1. The specification is a deterministic stream X-machine

2. The set of basic functiofbsof 7 is output-distinguishable and complete.

3. The associated automatoof 7 is minimal.

4. The implementation can be modelled as a deterministic stream X-machine
M’ with the same set of basic functions ®; also 7 and 7' have the same initia

memory value g
5. the number of states of (", the finite state machine obtained by minimising

the associated automaton of "’ (the stream X-machine modd of the
implementation) is bounded by a certain numbernpsay

Then, under these circumstances Y = t(TZ) is a test set thatfirfdslts, where:

* tis a fundamental test function 1of

* T is a transition cover af

* W is a characterisation setand

«Z=dkwooklwo...Oow,

ek=n"-n

* nis the number of states of the stream X-machine specificdation
* ' is the (estimated) maximum number of states'.of
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First, we remark that in practice the type @ is aways finite. Recall that ® was
defined as the set of (partial) functions that the machine can use (i.e. these may or
may not appear in the transition diagram). However, in practice it is natural to
restrict @ to those processing functions that the machine actually uses (i.e. these
appear in the transition diagram). Therefore ® isfiniteand thetest set Y =t(TZ) is
also finite.

Obvioudly, the method relies on the specification being a deterministic stream X-
machine. Conditions 2 and 3 lie within the capability of the designer. It is fairly
clear that a stream X-machine can be transformed into one with ® complete and
output-distinguishable by adding new inputs and outputs that can be removed after
the testing is completed (i.e. these extra inputs and outputs are only used for
testing purposes). This issue will be discussed later on together with the possible
automation of the process. It is also clear that the designer can arrange for the
associated automata of the specification X-machine to be minimal; standard
techniques from finite state machine theory are available.

The 4'th condition is the most problematical. Establishing that the set of basic
functions, ®, for the implementation is the same as the specification machine's has
to be resolved. In practice this will be done using a separate testing process,
depending on the nature of the @s. The method explained above can be applied to
test the basic processing functions if they are expressible as the computations of
other, simpler X-machines. Alternatively, other testing approaches (e.g. the
category partition method or a variant) can be used, if the @'s are functions that
carry out simple tasks on data structures (i.e. inserting and removing items from
registers, stacks, files, i.e.). If the basic processing functions are tried and tested
with along history of successful use (i.e. standard procedures, modules or objects
from a library) then their correctness may be accepted.

Once the implementations of the processing functions have been tested, the
implementation of the system will consist of:

[thecorrect implementations of the's;

[(Tread’ operations; these will be used to read the inputs that will be processed
by theg's.
In this case, the implementation will satisfy the 4'th condition if we do not alow
two or more @'s or two or more read operations to be executed consecutively.
However, this technical problem can be overcome easily (e.g. a flag variable can
be used to prevent the execution of consecutive @'s or read operations; this
variable will indicate whether the last piece of code executed was the
implementation of & or a read operations).

Finally, the maximum number of states of the implementation has to be estimated.
Thisiswell within the capability of the software developer. In practice k is usually
not large (unless there is a considerable degree of misunderstanding on the part of
the developer). For critical applications one can make very pessimistic
assumptions about k at the expense of alarge set. For example, condition 5 could
be relaxed to:
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5'. The number of states of the stream X-machine model of the implementation
is bounded by a number n’.
Then, if the program uses s state variablgs.y &, then
card(Q’)x card(\p) U.. Ceard(\),
where V is the range ofjyi =1, ..., n.

A hidden assumption of our method is that a reset operation (i.e. an extra input
which causes the machine to change back to the initial state g and memory value
mo) is implemented correctly, so that the next test input sequence can be applied
from gg and ng. In the worst case, this corresponds to restarting the system.

The benefits that accrue if the method is applied is that the entire control structure
of the system is tested and all faults detected modulo the correct implementation
of the basic processing functions.

4.2.3. Test set construction

The stream X-machine testing method involves generating the values of a
fundamental test function t for all of the sequencesin TZ. If the number of inputs
is finite (this is aways the case in practice) and each transition function @ is
computable by some algorithm, then the test set Y = t(TZ) can be computed
algorithmically. Let us call the algorithms that compute the @'s basic algorithms.
Then, an algorithm that generates Y will have at most [TZ| steps (i.e. [TZ| denotes
the total length of TZ) and each step consists of less then card(Z) basic algorithms
(this is because for ¢ [0® and m O M the algorithm looks for o [0 X such that
(m, 0) O dom @). If card(X) = p and card(®) = r, then the upper bound for the

number of basic algorithms applied will be
k+2

pd—lmz M = p@*' M (see section 4.1.4.4),
r—

wheren, n" andk are as defined in the previous section.

However, a more efficient algorithm can be designed if we take advantage of the
recursive nature of the test function, i.e. if for a sequence of functions @;...@¢@+1.
t(@q... @) could be reused in the definition of t(@q...@@+1). This can be done (at
least partially) in the procedure shown below.

Letm=(Z,T,Q,M, &, F, g, mp) be adeterministic stream X-machine and 4 the
associated automaton bfwith

Q={do dL.---» th-1}
and

@ ={@1..... o},
where @ is complete. In section 4.1.4.3.1 it is shown that a transition cover T of 4
can be constructed using a transition tree. Let

To=T-{1}.
Then, by a possible renumbering of Q, T can be obtained recursively from the
following equalities:
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Tk=o0 (J {®lTi.k=0,..n-1, (1)
I[Nk
F(ax, g)=0
where
n-1
ki 041, ..., 1} i O N
k=0

and the sets psatisfy the following:

Ni O {k+1, ..., n-1}, k=0, ..., n-1, (1.1)
n-1
UN«={1, ..., n-1}, (1.2)
k=0
NinNj=00i,j=0,..n1#j. (1.3)

In other words, the set { gj| i U Nk} isthe set of states that can be reached from the
state gk and have not been reached before in the construction of the transition tree;
@i will take the machine from the statg q (i.e. F(, ;) = G)-

The equalities above can be rewritten as:

Tkzq’k’Dq’k"D_U {oi} Ti (2
I LNk
where
oK’ ={p0 D[ F(k, @) # 0}
and

K" ={e0 @] F(g, ¢) =0}
(i.e. |’ is the set of labels of all the arcs frognagd®y" = ® - dy).

Thus, if we denote X = TZ andi& Tk Z, k=0, ..., n-1, we have:
X =270 Xg (3)
and
Xk=20® zOd" 20 |J {@} Xj, k=0,...,n-1. (4)
I\

Now let mg, mq, ..., mp-1 O M, n memory values be defined recursively as
follows:

). mp is the initial memory value 6f.

ii). Forj=1, ..., n-1, ﬁris chosen as follows.
Let k O {O, ..., j-1} the (unique) number such that ] O Nk (i.e. k is the unique
number such that Tj appears on the right hand side of the equality (1)). The
existence and uniqueness of k is ensured by relations (1.2) and (1.3). Since
Nk O {k+1, ..., n-1}, it also follows that k < .
Hence F(ak, @) = qj- Since @ is complete we can choose oz such that
(Mg, 0j ) U dom@y;. Then we choose jnsuch that

(Mg, 6j ) =, mj), withy OO T

Therefore mj = w(ak, Mk, oj) (i.e m; is the next memory value after Oj isapplied
in gk and n).
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Also, let b, t1, ..., }-1 be n test functions that satisfy the following:
). Forj=0, ..., n-1; is a test function W.r.t.jqand nj.
ii). Forj=1, ..., n-1,
k(@) = 0j,
wherek O {0, ..., j-1} isthe (unique) number such that j [I Nk (i.e. thisis possible
since (ng, Oj ) U domay;).

From the way in which mg, mq, ..., mp-1 and tq, tg, ..., th-1 have been chosen it
follows that for k = 0, ..., n-1 andj Nk we have that

tk{ ki3V) = {t k(@}tj(V) OV O o,

Therefore, by applyingtto (3) and (4) we obtain:
ta(X) = to(Xo) U to(2) (5)
and
k(XK = k(PK 2) O (PK" 2) D_EJN {tk(@} ti(Xj) , k=0,.,n-1. (6)
i Nk

Since F(g, @) is not definedd @ O ®y", it follows that
tk(PK" Z) = K&(PK").
Hence (6) becomes:

k(XK = &(PK’ 2) O t(PK") D_EJN {tk(@} ti(Xj) , k=0, ..., n-1. (7)
| k

Since (@) = gj, we obtain:

t(XK) = (P’ Z) O ty(Pk™) D'E'IJ\I {oi}tj(Xj), k=0, ..., n-1. (8)
i Nk
Therefore, a test set Y g(K) can be written as

Y =16(Xo) O to(2),
where (X ) can be obtained recursively from (8).

Example 4.2.3.1.
For the stream X-machine presented in example 4.2.1.2, a transition cover T can
be written as

T={1} O To, where

To={e1} U {2 @3, @4} U{@}T1,

T1={e2 @3} U {1, 4} O{@3}T>,

T2={93 @4} U {o1, 92}

The values g, m and np are chosen as follows:

mp = 0 is the initial memory value;

m1q = 1 (y takes the machine from g and mg to g1 and mq following the arc
labelledgy);

mo = 1 (y takes the machine from g1 and m1 to g2 and my following the arc
labelledqg).

Then:
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{p is a test function w.r.tgand ng with to(@q) =y;
t is a test function w.r.tyggand m with t1(@3) = y;
b is a test function w.r.togand np.

Then, a test set Y 5{(TZ) can be written as
Y =to(2) U to(Xo),

where
to(Xo) = to{ e}2) U to({ @2, 93, 94}) U {to(@p)} t1(X2),
t1(X1) = 1{ 92, ¢32) U ta{ o1, @a}) U {t1(@3)} t2(X2),
t2(X2) = o({e3, 4}2) O t2({ @1, 92}).

For W = {1, ¢} andn’ = n, we have

Z={q1, 2}
Hence, by choosing appropriate values for the test functions (i.e. obviously we
require thatdg(qq) =y and {(@3) = y), the test set Y is:

Y ={y, x} O tg(Xp), where

to(Xo) ={yy, yx} U {x,y, x} O {y}t1(X9),
t1(X1) = {xy, xx, yy, yx} O {y, x} O {y} t2(X2),
t2o(X2) = {yy, yx, xy, xx} O {y, x}.

4.2.4. Complexity.

For a stream X-machine with card(Q) = n and card(®) = r, the amount of work
required to construct W and T is proportionat i (see section 4.1.4.3.3).

If we generate the test set Y = t(TZ) using the algorithm presented in section 4.2.3,
then we have to compute the values of the test function tg for adomain included in
Z [0 ®©Z and the values of the test functions ty, ..., tn-1 for domains included in
dZ.

Then, an agorithm that computes tg will have at most |Z| + |®Z| steps and an
algorithm that computes tj, 1 < i < n-1, will have a most |®PZ| steps, each step
consisting of the following:
Capplying the next state function F at most once to obtain the next state;
Capplying at most p = card(X) basic algorithms to find an appropriate input;
also, the next memory value is computed for this input.

Then an upper bound for the total number of basic algorithms applied by the
algorithm that generates the test set will be

p L |Z] +nCjeZ]) = p ThL]®Z]).

The total length ofbZ, [®Z| can be determined from the following relation:
pZ| = cardpktlg ok O ...0 @) Ow| + k10 ok O ... O o] Tard(W).
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Since

k+2
cardpktl o ok .0 @) =r +r2.. +rk? sr—l,

r'-
card(Wgn-1,

k+2
lem¢kDuium:r+mwm+m+nm“sﬂﬁiglﬂ
r' -

WK n(n-1)

it follows that

_ k+2 k+2
Pz < n(n2 1)d +(k+1)Dj (n-1 = r
r-1 r-1 r-1

k+2

n
(n- D(k +1+§) .

Therefore, an upper bound for the total number of basic algorithms used in the
construction of the test set is approximately

pl]k+1 mz mk+2) — pl]k+1 mZ ﬁm;_n
(this is clearly better then the initial figure we gave in section 4.2.3; in fact, if
n' = n the upper bound of the number of basic algorithms is reduced by half).

If the complexity of a basic algorithm is C, then the complexity of the algorithm
that generates the test set will be proportional to

Cpa * m? 20 —n).
The only problem with this figure is that it depends on p, the number of input
symbols, which can be large. However, in practice only some of the inputs will be
used in the definition of a particul@ri.e. will have the form:

Oy(m, o), ifo O Zo
¢o(m,o0) =0
00, ifo0X-Zg
WhereZ(p is a subset af andy is a (partial) functiom: M x Zp - [ xM.
Hence, for m [0 M, the maximum number of basic algorithms applied for finding
o such that (mg) O dome@is cardE(p) which may be much lower then caxjl(

If ® is complete and output-distinguishable, then the process of generating the test
set can be automated.

Similar to the calculations from section 4.1.4.4, the maximum number of test

sequences required is less then
k+2

nZd =~ n2 mkﬂ
r-1

and the total length of the test set is less then
k+2

nﬁwizzn%mW?

r-

In practice, the tota length can be much lower since, in many cases,
t(@1...¢)] < < i. Thus test sets generated by the method appear to be of

manageable size as is the test application process. If card(®) < < card(X) (thisis
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usually the case in practice) then the number of test sequences is considerably
lower compared with Chow’s method.

4.2.5. An improvement in thetest set size.

Using the finite state machine theory developed by Fujiwara et a. (see [16] and
section 4.1.4.5), it can be shown easily that the test set can be reduced to
Y =1(X),
with
X' =X10 X2
where X and X% are obtained as follows.

LetW, T, S, R, W, qU Q, such that:

W is a characterisation set of 4 ({ is the associated automaton of the
specification),

T is a transition cover af

» S is a state cover ofsuch that &1 T,

*R=T-5S,

* Wq is a set of sequences that distinguishes q from any other sta@ g’

Then X1 and X are defined by:
« X1=S@kw Ooklwo..ow),

«Xo=J R@KDOKID .O) Owg=J (HoW

i) qQ  vOR(®*O..{1})
Fe(qo,v)=q

(i.e. theunionisover adl g0 Qand v [ R(CDk O oklg .. O {1}) such that v
takesd from the initial state g|to q).

4.2.6. Expected outputs

If Y isthe set of input sequences generated using our method, the specification is
correct iff f(s) = f'(s), D s Y, wheref and f’ are the (partial) functions computed
by 7 and " respectively. For many systems f will be atotal function, i.e. 0s X
* the behaviour of the system when it receives the input sequence s is well
defined. In this case, the process of comparing the two output sequences is
straightforward. However, the method does not rely on f being a total function as
long as it is clear what we mean by "f(s) is undefined”, i.e. what the system is
supposed to do when it receives an input sequence s for which f(s) is undefined.
For example, if 7 is the specification of a software program "f(s) is undefined”
would usually mean that the sequence s causes the program to exit.
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4.2.7. Imposing " design for test properties’ on a system

The stream X-machine testing method we have presented relies on ® being
complete and output-distinguishable. However, if the specification we are dealing
with fails to satisfy these requirements, we can augment dslightly the basic
processing functions using some extra inputs and outputs, such that the resulting
specification will satisfy the completeness and output-distinguishability
conditions. Obvioudly, there are many ways in which this can be done. A possible
procedure is presented below.

Letm= (T, Q M, ®,F, qg M) adeterministic stream X-machine with al the
states terminal. Then the procedure consists of two steps; the first ensures the
completeness and the second the output-distinguishability of thétype

i). Let= [0 @ be the set of processing functions that are not complete, i.e.
= ={e 0P| @is not complete}.

Let P = {R}j| be a partition oE with the following properties:
(Fz20,0001
(Mo @2 0= @1 #@p leti,j0lsuchthat ¢ O Pjand @ 0P If Og 0 Q
such that F(q, ¢1) # O and F(q, @p) # U (i.e. ¢ and @y label arcs emerging from
the same state), the# .
Let also p be the equivalence relation induced by =on

Let N1 = card(P) be the number of elements of the partition P. Let S be a set of

new inputs (i.e. $ Z =[) with card(S) = N andyg be an output. Let also
(.= - 'S

be a function that satisfies:

e =) iff @1 ~p 2.

ThenO @ O @, we construct a (partial) function
we:MxZOS)-TxM
such that:
Of O @ - =, then
domw(p) = dom@ and
®(@)(m, 0) = @m, 0), 0 (m,0) 0 dom,
Of e O =, then
domw(p) = domed (M x {{(p)}) and
Og(m, o), if (m, 0) O dome
w(@)(m, o) =0
O(yg, M), if o ={(¢) and md M

It is fairly clear that (@) = w(@p) iff @1 = @ and the type {w(@)| @ O P} is
complete,
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ii). LetR = {Rj}jDJ be a partition ofp with the following properties:
R#00j0;
(D@1, 20D, ¢ # @, leti, j O Isuchthat @1 U Rj and gp U Rj. If w(gy) and
w(@p) are not output-distinguishable, theaji

Let No = card(R) and let G be a set of outputs with card(G)»~LKt also
uVed -G

be a function that satisfies:
L() = (@) iff @1 R @,

where R is the equivalence relation induced by Rdan

ThenO @ O ®, we construct a (partial) function
p(:Mx(ZOS)- (TxG)xM
with
dom p(¢) = domw(g) and
g@)(m, o) = (v, v(@), m’) T (m, o) O domu(q),
where ¢, m’) =w(g@)(m, 0).

It is clear that the type

@' = {p(Q) o0 }
is complete and output-distinguishable Also® — @’ is a bijective function.

Then we construct a stream X-macHitie= &', I, Q, M, @', F', ¢y, mg), where

2 =308,

= xG),

@’ is defined as above and

F:Qx @ - Qis defined by:

F(a.9) = F@.p @), 0q0Q,¢0 @

(i.e. in other words the state transition diagrarfi’as identical to that of).
The way in whicl is defined ensures thiét is deterministic.

The number of extra inputs and outputs required is usualy smal and the
construction of the augmented machine (i.e. 7’) from the initial one (i.e. M) is

straightforward. In particular, it does not affect the transition diagram, so a
transition cover or a characterisation set of the initial machine will still be valid for
the augmented one. The initial machine can be obtained from the augmented one
by removing the extra inputs and outputs.

Example 4.2.7.1.
Let" be the following stream X-machine:

1.2 ={x, vy}
2. ={a, b}

3. Q ={q, a1, }; qp is the initial state.
4. M = {0, 1}. The initial memory value isgr O.
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5 @ ={o1, ¢, @3, ¢4}, where @1, ¢, @3, @4 M x X - [ x M are partia
function as follows:

dom@ =M x %,
@®(m, x) = (a, 0), M M,
®1(m, y) = (a, 1), nil M;

dom@p = M x {x},
@®(0, x) = (a, 0).
@2(1, x) = (b, 0);

domgg = {1} x{y},
@3(1,y) = (b, 1);

domay = {1} x {x},
@4(1, x) = (b, 0).

6. F is represented in figure 4.6.

04

ol /@3

qo ql 02

¢2 ¢3
Figure 4.6.

Then
= = {3 94},
P = {3} { 4}}-
We choose S = {u, vlyg = a and we definé = - S by:

{eg)=u, {(@g)=V.

Then R can be chosen

R={o o4} { @2 @a}}-
We also choose G = {c, d} and we defued - G by:

V(P =V(9g) = ¢; V(P2 =v(pg) = d.

Then, the augmented machinewill have
the input alphabét = {x, y, z, u},
the output alphabégt = {a, b} x {c, d} and
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D' ={0Q1, 92, 93, 94}, where@q’, @', @3, @4 are partial functions defined by:

dom@r’ = M x {x, y},
¢'(m, x) =((a, ¢), 0), Ml M,
¢'(m,y) =((a c), 1), I M;

domap’ = M x {x},
¢2'(0, x) = ((a, d), 0),
@2'(1, x) = ((b, d), 0);

domeg' = ({1} x {y}) O (M x{u}),
e3'(1,y) = ((b, d), 1),
¢3'(m, u) = ((a, d), m), I M;

domaeyg = ({1} x{x}) O (M x{v}),
®4'(1, x) = ((b, ), 0),
@4'(m, v) = ((a, c), m), m] M.

If the procedure above is to be applied successfully then we should be able to
determine:

Owhether any processing function is complete or not

Owhether any two processing functions are output-distinguishable or not.
Usualy, this can be done by hand. However, checking these conditions
automatically is very difficult since the memory set can be infinite in theory and is
usually very large in practice.

However, the above procedure can be relaxed so it can be automated. Before we
explain how this can be done, we point out that, if the augmented machine and the
test set are constructed by hand, then the number of extra outputs required by the
augmented machine could be smaller then that given by the above procedure.
First, let us give the following definition.

Definition 4.2.7.2.
Let ® be acomplete type. Then @ is called relatively output-distinguishable if
OeO®, mOM, Do O Z such that:

1. (m,o) O domg; let (y1, ™) =@(m, o) withy O, m O M.

209 0D, ¢ 2@, if @(m,0) = (yo, mp) withyp O T, mo O M, thenyp Z yo.
We also say that the pair (o), distinguishes @in @.

Now, let 7 a stream X-machine with ® complete and relatively output-
distinguishable. Then we can restrict the construction of the test function (see
definition 4.2.1.1) in the sense that if tg m(¢1... ¢h+1) = tqm(@1L-. ®n) On+1, We
require that (Mp, Op+1) distinguishes gn+1 in @, where mp = w(g, M, tg m(@1... @
n)- It is easy to see that lemma 4.2.1.3 and theorem 4.2.1.4 remain valid in this
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case. Therefore, the condition "® is complete and output-distinguishable” required
by our testing method can be replaced with "® is complete and relatively output-
distinguishable", provided that the fundamental test function required for the
construction of the test set is restricted as shown above. This could lead to a
reduction in the number of extra outputs required by the augmented machine.
However, in this case, it is very difficult to generate the test set automatically.

Let us now return to the procedure presented at the beginning of this section. This
can be transformed into a form suitable for automation by removing the
calculations required for checking the completeness and output-distinguishability
of the processing functions. Of course, this is done at the expense of a larger
number of extra inputs and outputs. The modifications that we make are the
following:

i). We take= = @.
il). We require that the partition R = fRDJ satisfies:

[Rz00j0J;

1, @ 0P, @1 # @, leti,j UJsuchthat @1 O Rjand @ URj. If -0q 0 Q
such that F(qpq) # O and F(qgp) # U, then i#j.

The rest remains unchanged. The type of the augmented machine will be complete
and output-distinguishable (i.e. this is because if @1 and @) are labels of two arcs
emerging from the same state, then (1) and w(gy) are output-distinguishable
since they have disjoint domains).

If we choose P and R to be the partitions with the minima number of elements,
then the upper bounds for the number of inputs and outputs required will be:
card(Sxk |,
card(G)< min(n, r - (i - 1)),
where
n = card(Q)s = card),
i= TE%xCard{(p O ®| F(q,9) # O},

j= %%XCard{(p' 0 @|Og O Q such that F(gp) # O and F(q@ ) #0}.

(i.e. it can be shown easily that i < card(P) < j; aso, since card(P) < i, it follows
that card(Rxr - (i - 1))

In most cases j < < cad); hence the number of extra inputs is usually small.
The modified procedure can be automated since it only uses the state transition

diagram of the machine to construct the augmenteddype

Example 4.2.7.3.

For the stream X-machine from example 4.2.7.1, we can choose:
P={eo1 ez} {@2 943}, S={u, v}, Yo = a.
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We define(: = - S by:
(@) =q(@3) = u; (@) =C(@pg) = V.

We also choose

R={o}), {2}, {03 @}, G={c, d, €}
and we defin@: ® - Gp by:

V(@) = c;u(9p) = d;u(z) = u(yy) = e.

Theng', @', @3', @4’ will be as follows:

dom (pl’ =M x {x, Y, u},
@1'(m, x) = ((a, c), 0), il M,

¢1'(m,y) =((a c), 1), ml M,
¢'(m, u) = ((a, ), m), il M;

dom@p’ = ({0, 1} x {x}) T (M x {v}),
®'(0, x) = ((a, d), 0),

®'(1, x) = ((b, d), 0),

@'(m, v) = ((a, d), m), nal M:

domeg' = ({1} x {y}) O (M x{u}),
@3'(1,y) = ((b, e), 1),
@3'(m, u) = ((a, ), m), M M.

domay” ({1} x {x}) O M x {u},

@4’ (1, x) = ((b, €), 0),
@4’ (m, v) = ((b, €), m) nil M.

4.2.8. Case study.

We create a stream X-machine specification of a simplified cash machine. The
assumptions we have made are:

» The customer is allowed to enter his persona identification number twice. If
both attempts fail, the card is retained.

* Only two fixed sums of money (say £10, £20) can be withdrawn and only one
attempt at withdrawing money can be made. If the amount required exceeds the
balance of the account, the machine gives an appropriate warning.

» The balance of the account is also available.

* The system does not update the account balance after a transaction has been
made. Instead, the new transactions are recorded in a separate data structure and
the main data structure is updated at certain time intervals by another system.

4.2.8.1. Stream X-machine specification.
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1. The input alphabet is
> = CARDSO STRINGSO {m 1, m 2, b} O {yes, no},
where:

[ICARDS represents the set of all the valid cash cards,
(i.,e. CARDS ={cargli=1 ... N}).

[OSTRINGS represents a set of strings of numerals. Each such string is
transformed by the machine into a natural number. In practice, only strings of a
certain length are allowed.

[{m 1, m 2, b, yes, no} are distinct inputs that correspond to the options
available to the customer; m 1 and m 2 correspond to the two amounts of money
available and b to the balance of the account. yes will be used by the customer to
request a second service, aradto quit the system.

2. The output alphabet is
= MESSAGES x (MONEY [ {null _n}) x (BALANCES 0O
{null _b}) x{card_out,card_retained,card _unch},
where:
[MESSAGES = {nsg91,..., 16910, nul | _nmsg}, where nsg1,..., "8g1p ae
messages or sequences of messages displayed by the machine as follows:

nmsg1 = 'Enter your personal identification number, please.’

nmsgo = 'Would you like: £10, £20, Balance'

nsg3 = "You have entered a wrong personal identification number. Try again,
please.’

neg4 = 'The card has been retainednsert your card, please.'

nmsgs = 'Would you like another service? yes, no'

mege = 'The amount requested is not available in your accoWdbuld you like
another service?'

nsgy = Take your card. Insert your card, please.'

megg = 'The amount requested is not available in your accodrke your card.

"I Insert your card, please.'

nmsgg = 'Would you like: Balance'

msg10 = 'Would you like: £10, £20'.

[MONEY is a set representing the amounts of money that can be output by the
machine; nul | _m denotes that the machine does not output any amount of
money;

[BALANCES represent the set of balances, nul | _b denotes that the machine
does not output the balance.

Ocar d_out denotes that the machine returns the card to the customer;
card_r et ai ned denotes that the card has been retained; car d_unch denotes
that the card state remains unchanged.

3. The memory is

M = ACCOUNT _INFOx NEW_INFOx CARD_NOS,
where:
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Oacc O ACCOUNT_INFO represents a data structure which contains
information concerning each account.

On_info O NEW_INFO contains information about the transactions that have
been made since the last update.

[OCARD_NOS is the set of all possible card numbers. This will include all the
valid card numbers and possibly non valid numbers.

4. The initial memory value is

mo=( n_acc,i n_n_i nfo,i n_c_no),
where in_acc, in_n_info and in_c_no are the initiad vaues of
ACCOUNT_INFO, NEW_INFO and CARD_NOS.

5. The set of states is:
Q = {Await_card, Await_pin_1, Await_pin_2, Choose_money&balance,
Choose_money, Choose_balance, Choose_yes/no_1, Choose_yes/no_2}.

The stream X-machine specification will be a high level one, in the sense that we
ignore the way in which ACCOUNT_INFO, NEW_INFO, CARDS, CARD_NOS,
MONEY and BALANCES will be represented in the software modelling the
system. Instead, we assume that they are manipulated using the following (partial)
functions.

Note: B is the set of Booleans; N is the set of positive integers.

Camount : {m 1, m 2} -~ MONEY (injective function)
Retrieves the appropriate amount of money for each of the two options.

[f ound: ACCOUNT_INFOx CARD_NOS- B (function)
Checks whether a certain card number is valid (i.e. whether there is an account
that corresponds to this card number).

[theck_account : ACCOUNT_INFOx NEW_INFOx CARD_NOSx
{m1,m2} - B (partial function)
Checks whether the amount required is less then the current balance of the
account.

[Updat e_account : ACCOUNT_INFOx CARD_NOSx{m 1,m 2} -
NEW_INFO (partial function)
Records the amount of money withdrawn.

[get _bal ance: ACCOUNT_INFOx CARD_NOS- BALANCES

(partial function)
Retrieves the balance of the account.

[get _card_no: CARDS - CARD_NOS (injective function)
Retrieves the card number

[get _pi n: ACCOUNT_INFOx CARD_NOS- N (partial function)
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Retrieves the persona identification number corresponding to a certain card
number.

We also assume that the above functions satisfy:

(11 accd ACCOUNT_INFO ¢c_ndlImget _card_no,found(acc, c_no);

0 dom check _account = ACCOUNT_INFO x NEW_INFO x
Imget _card_nox{m 1, m 2}

[Jdom updat e_account = ACCOUNT_INFO x Im get card_no x
{m1,m2}

[domget bal ance = ACCOUNT_INFOx Imget card_no.

[domget pi n = ACCOUNT_INFOx Imget card_no.

Note: Im f denotes the image of the (partial) function f.

What these conditions say isthat for each card there is an account that corresponds
to the number of the card and vice versa.

Also, we assume that the function
[convert _string: STRINGS- N
converts a string of numerals into a natural number.

6. The type of the machine is:
®={insert_card,enter_good _pin,enter_w ong_pinl,
enter_w ong_pi n2,enter_noneyl,enter_bal ancel,
enter _noney2,enter _bal ance2, another_servicel,
anot her _service2,no_further_service,ignore_card,
i gnore_pin,ignore_noney,ignore_bal ance,i gnore_options}.

6. The 'next state’ function is described in figure 4.7.
7. The basic processing functions are defined as follows.

Note In what follows acc O ACCOUNT_INFO, n info O NEW_INFO,
c_nold CARD_NOS, card] CARDS, x[0 STRINGS, y{f1{m_1, m 2}.

(domi nsert _card: M x CARDS
i nsert _card((acc, n_info, c_no), card) =
((msgl, null _m null _b, card_unch), (acc, n_info,

get _car d_no(card)))

i.e. when the card is inserted, the system reads the card number and the customer
is asked to enter his/her personal identification number.

fdoment er _good_pi n ={((acc, n_info, c_no), x)] M x STRINGS]
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f ound(acc, c_no) andyet _pi n(acc, c_no) Tonvert string(x)}

ent er _good_pi n((acc, n_info, ¢c_no), x) =
(6sg2,nul I _mnul | _b,card_unch), (acc, n_info, c_no))

i.e. if the personal identification number is correct, then the customer is allowed to
choose one of the following options: two amounts of money and balance.

enter balance?

no_further_service

ignore_card

ignore_card
ignore_money
ignore_balance
ignore_options

D

enter_good_pin

ignore_pin
ignore_money
ignore_balance

Choose_ \ another_servicel/ Choose_

balance

yes/no_1

enter_wpong_pin2 enter_money1 @gnore_cgrd .
entgr_wrong_pinl B Ignore_pin !gnore_cgrd
= - gnore_options  ignore_pin
’ ignore_money
Await_card i o enter_good_pi Choose_ ignore_options
Await_pin_ money
&balance
ignore_card
ignore_pin . enter_palancel \gnore_pin
ignore_card

ignore_money
ignore_balance
ignore_options

ignore_money
ignore_balance
ignore_options

no_further_service

ignore_balance
ignore_options

another_servicg?
- Choose_

money

ignore_card
ignore_pin

enter money?2

ignore_money
ignore_balance

Figure4.7.
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Cdoment er _wr ong_pi n1 ={((acc, n_info, c_no), X M x STRINGS]|
f ound(acc, c_no) and get _pi n(acc, c_no) Tonvert _string(x))}

ent er _wr ong_pi nl((acc, n_info, c_no), x) =
(6sg3,nul I _mnul | _b,card_unch), (acc, n_info, c_no))

i.e. if the personal identification number is incorrect, then the customer is asked to
enter this again.

Cdoment er _wr ong_pi n2 = {((acc, n_info, c_no), x)] M x STRINGS]
f ound(acc, c_no) and gét _pi n(acc, c_no) £onvert _stri ng(x))}

ent er _w ong_pi n2((acc, n_info, ¢c_no), x) =
(sg4,nul | _mnul | _b,card_retai ned), (acc, n_info, c_no)).

i.e. if the customer enters an incorrect persona identification number for the
second time, then the card is retained.

(Odom enter _noneyl = {(acc, n_info, c no) O M| f ound(acc, c_no)} x
{m1,m2}

ent er _noney1((acc, n_info, c_no), y) =
((ms g5, anmount (y), nul | _b, card_unch), (acc,
updat e_account (acc, ¢c_no, y), C_no)),
if check_account (acc, n_info, ¢c_no, y) = true
(sg6,nul I _mnul | _b,card_unch), (acc, n_infoj n_c_no)),
iEheck _account (acc, n_info, c_no, y) = false

i.e. the system outputs the required amount of money if this is available in the

customer's account and gives a warning message otherwise. The customer is asked
whether he/she wants another option.

(Odom ent er _noney2 = {(acc, n_info, c no) O M| f ound(acc, c_no)} x
{m1,m2}

ent er _noney2((acc, n_info, ¢c_no), y) =
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((msQ7, anount (y), nul | _b, card_out), (acc,
updat e_account (acc, ¢c_no, y), n_c_no)),
if check_account (acc, n_info, ¢c_no, y) = true
(sg8,nul | _mnul | _b,card_out), (acc, n_infoj n_c_no)),
iEheck _account (acc, n_info, c_no, y) = false

i.e. the system outputs the required amount of money if this is available in the
customer’s account and gives a warning message otherwise. The customer’s card is
released, the system returns to the initial state and displays the message 'Insert
your card, please’.
[doment er _bal ancel = {(acc, n_info, c_no)d M| f ound(acc, ¢c_no)}x {b}
ent er _bal ancel((acc, n_info, c_no)R) =

((msg5, null _m get bal ance(acc, ¢ no), card_unch), (acc,
n_info, c_no))
i.e. the system outputs the balance of the account. The customer is asked whether
he/she wants another option.
[doment er _bal ance2 = {(acc, n_info, c_no)d M| f ound(acc, ¢c_no)}x {b}
ent er _bal ance2((acc, n_info, c_no)) =

((msg7,nul | _mget bal ance(acc, ¢ no), card_out ), (acc, n_info,
i n_c_no))
i.e. the system outputs the balance of the account. The customer’s card is released,
the system returns to the initial state and displays the message ’Insert your card,
please’.

[domanot her _servi cel =M x {yes}

anot her _servi cel((acc, n_info, c_noyes) =
(tsg9,nul I _mnul | _b,card_unch), (acc, n_info, c_no))

i.e. if the "yes" option is chosen, then the "balance" option is displayed.

[domanot her _servi ce2 =M x {yes}

anot her _servi ce2((acc, n_info, c_noyes) =
(sg10,nul I _mnul I _b, card_unch), (acc, n_info, ¢c_no))

i.e. if the "yes" option is chosen, then the two "money" options are displayed.
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fdomno_further_service =Mx{no}

no_further _service((acc, n_info, c_nono) =
sg7,nul | _mnull _b,card_out), (acc, n_infoj n_c_no))

i.e. if the "no" option is chosen, then the system returns to the initial state and the
customer’s card is released. The message ’'Insert your card, please’ is then
displayed.
The following functions basically "ignore" a certain input (or number of inputs).
Cdomi gnore_card =M x CARDS
i gnor e_car d(((acc, n_info, ¢_no), card) =
(Gul'l _msg,nul | _mnul | _b,card_unch), (acc, n_info, c_no))
Cdomi gnor e_pi n =M x STRINGS
i gnor e_pi n(((acc, n_info, c_no), x) =
(Gul' I _nmsg,nul Il _mnul | _b,card_unch), (acc, n_info, c_no))
Cdomi gnore_noney =M x{m 1, m 2}
i gnor e_noney(((acc, n_info, c_no), y) =
(Gul | _msg,null _mnull _b,card_unch), (acc, n_info, c_no))
[domi gnor e_bal ance =M x {b}
i gnor e_bal ance(((acc, n_info, c_no)) =
(ul'l _msg,nul | _mnul | _b,card_unch), (acc, n_info, c_no))
[domi gnore_opti ons =M x {yes, no}

i gnor e_opt i ons(((acc, n_info, c_no), x) =
@@ul I _msg,nul Il _mnul | _b,card_unch), (acc, n_info, c_no))

4.2.8.2. Imposing the 'design for test’ conditions.
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The type @ is output-distinguishable. However, if CARD_NOS includesinvalid as
well as valid card numbers, then ent er _good_pi n, enter _w ong_pi nl,
ent er _wrong_pi n2,ent er _noneyl, enter_noney2,
ent er _bal ancel, ent er _bal ance?2 are not complete. Let

=z ={enter_good_pin,enter_wong_pi nl,
ent er _wrong_pi n2,ent er _noneyl, enter_noney2,
ent er _bal ancel, ent er _bal ance?2}.

Then, we augment the above stream X-machine specification in a similar way
(although not an identical way) to the procedure described in section 4.2.7.

Letnew_i n1 andnew_i n2 be two new inputs (i.e.
{new_i n1,new_i n2} n Z=0).

Let dsonew _nsgl, ..., new_nsg7 be seven new messages (i.e. {new_nsqgl, ...,
new _nsg7} n MESSAGES ={1) and let
MESSAGES’ = MESSAGES {new _nsgl, ...,new_nsg7}.

The augmented stream X-machine will have the input set

>’ =X 0{new_i nl,new i n2}
and the output set

" = MESSAGES x (MONEY 0O {null_n}) x (BALANCES 0
{nul | _b}) x {card_out,card_retained,card_unch}.

Then O @O & - =, the domain and the definition of @ will remain unchanged. For

¢ O =, @ will be augmented to @a using the new inputs and messages. The
augmented functions are as follows.

[doment er _good_pi np =doment er _good_pin O (M x{new_i n1})

ent er _good_pi npa((acc, n_info, ¢_no), x) =
ent er _good_pi n((acc, n_info, c_no), x),
if x 0 STRINGS
(eew_nsgl,nul | _mnull _b, card_unch), (acc, n_info, c_no)),
if x=new_inl

[doment er _wrong_pi n1la =doment er _w ong_pi n1 (M
x{new_i n2})

ent er _wr ong_pi nla((acc, n_info, c_no), x) =
ent er _w ong_pi n1((acc, n_info, c_no), x),
if x 0 STRINGS
(pew_nsg2,nul | _mnul | _b, card_unch), (acc, n_info, c_no)),
if Xx=new_i n2
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0 dom enter_wrong_pin2a = dom enter_w ong_pin2 H
(M x{new_i n2})

ent er _wr ong_pi n2a((acc, n_info, c_no), x) =
ent er _w ong_pi n2((acc, n_info, c_no), x),
if x 0 STRINGS
(pew_nsg3,nul | _mnul | _b, card_unch), (acc, n_info, c_no)),
if Xx=new_i n2
[Cdoment er _noneylp =doment er _noneyl [0 (M x {new_i n1})

ent er _noneyla((acc, n_info, c_no), y) =
ent er _noneyl((acc, n_info, c_no), y),
ify0{m1,m2}
(pew_nsg4,nul | _mnul | _b, card_unch), (acc, n_info, c_no)),
ify=new_i nl

[doment er _noney2a = doment er _noney2 [0 (M x {new_i n1})

ent er _noney2p((acc, n_info, c_no), y) =
ent er _noney2((acc, n_info, c_no), y),
ify 0{m1,m2}
(pew_nsg5,nul | _mnul | _b, card_unch), (acc, n_info, c_no)),
ify=new_i nl

[doment er _bal ancelp = doment er _bal ancel OO (M x {new_i n2})

ent er _bal ancelp((acc, n_info, c_no), z) =
ent er _bal ancel((acc, n_info, c_no), z),
ifz=b
(bew_nsg6,nul | _mnul | _b, card_unch), (acc, n_info, c_no)),
if z=new_i n2

[doment er _bal ance2p = doment er _bal ance2 O (M x {new_i n2})
ent er _bal ance2p((acc, n_info, ¢_no), z) =
ent er _bal ance2((acc, n_info, c_no), z),
ifz=Db
(eew_nsg7,nul | _mnul | _b, card_unch), (acc, n_info, c_no)),

if z=new_i n2

In what follows we shall refer to the augmented versions of these functions.
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4.2.8.3. Thetest set

We generate a test set Y = t(TZ) for the case n" - n = 0, using the procedure
presented in section 4.2.3. First, we construct recursively a transition cover T.

T={1}0To

To={i nsert_card,ignore_pin,ignore_noney,
i gnore_bal ance,i gnore_options} O (®-{i nsert_card,
i gnore_pi n,i gnore_noney,i gnore_bal ance,i gnore_opti ons})
O{i nsert_card}Tq

T1 ={ent er _good_pi n,enter _w ong_pi nl,ignore_card,
i gnor e_noney, i gnore_bal ance,i gnore_options} O (P -
{enter _good_pi n,enter_wong_pinl,ignore_card,
i gnor e_noney, i gnore_bal ance,i gnore_opti ons}) O
{enter_wong_pi n1}To 0 {ent er _good_pi n}T3

Tp ={ent er _good_pi n,ent er _wr ong_pi n2,i gnore_card,
i gnor e_noney, i gnore_bal ance,i gnore_options} O (P -
{enter _good_pi n,enter_w ong_pin2,i gnore_card,
i gnor e_noney, i gnore_bal ance,i gnore_opti ons})

T3 = {enter_noneyl, ent er _bal ancel,i gnore_card,
ignore_pin,ignore_options} O (®-{enter_noneyl,
ent er _bal ancel,i gnore_card,i gnore_pin,ignore_options}) O
{enter_noneyl} T4 0O {enter_bal ancel} Ty

T4 ={anot her _servicel,i gnore_card,i gnore_pin,
i gnor e_noney, i gnore_bal ance} O (® - {anot her _servi cel,
i gnore_card,ignore_pin,ignore_noney,ignore_bal ance}) O
{anot her _servicel}Tg

T5 = {anot her _servi ce2,i gnore_card,i gnore_pin,
i gnor e_noney, i gnore_bal ance} O (® - {anot her _servi ce2,
i gnore_card,ignore_pin,ignore_noney,ignore_bal ance}) O
{anot her _service2} Ty

Te ={ent er _bal ance2 ,i gnore_card,i gnore_pin,
i gnore_noney,ignore_options} O (P -{enter_bal ance2,
i gnore_card,ignore_pin,ignore_noney,ignore_options})

T7={enter_noney2 ,ignore_card,i gnore_pin,

i gnore_bal ance,i gnore_options} O (®-{enter_noney2,
i gnore_card,ignore_pin,ignore_bal ance,i gnore_options})
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A characterisation set is

W ={insert _card,enter_wong_pinl,enter_wong_pin2,
enter _noneyl,enter_noney2,anot her _servicel,
anot her _servi ce2}.

Then, for n’ - n = 0, we have
Z={insert_card,enter_wong_pinl,enter_w ong_pin2,

enter _noneyl, enter_noney2,anot her _servicel,

anot her _servi ce2}

Let test_cardl CARDS be such that
test no get _card_no(test_card),
and let test_strl, test strPSTRINGS be such that
get _pin(i n_acc, test_ no) Tonvert _stri ng(test_strl) and
get _pin(i n_acc, test nog convert _stri ng(test_str2).
Let mp, m, m'0 M be three memory values as follows:
g = (i n_acc, i n_n_i nf o,i n_c_no) is the initial memory value;
[n = (¢ n_acc,i n_n_i nf o, test_no);

[{i n_acc,updat e_account (i n_acc, m 1, test_no), test_no),

O ifcheck_account (i n_acc, n_info, test_ nom 1) = true
' = [

O @ n_acc,in_n_info,test _no)),

O ifcheck_account (i n_acc, n_info, test_nom 1) = false.

Let also §, t1, ..., t7 be eight test functions as follows:

[y is a test function w.r.t. Await_card angthat satisfies
to(i nsert _card) = test_card;
[14 is a test function w.r.t. Await_pin_1 and m that satisfies
t1(ent er _good_pi n) = test_strl,
t1(ent er _wr ong_pi nl) = test_str2;
(17 is a test function w.r.t. Await_pin_2 and m;
(13 is a test function w.r.t. Choose_money&balance and m that satisfies
t3(ent er _noneyl)=m 1,
t3(ent er _bal ancel) =b;
[14 is a test function w.r.t. Choose_yes/no_1 and m’ that satisfies
tg(anot her _servi cel) =yes;
(5 is a test function w.r.t. Choose_yes/no_2 and m that satisfies
ts(anot her _servi ce2) =yes;
[(ig is a test function w.r.t. Choose_balance and m'.
[17 is a test function w.r.t. Choose_money and m.

Then, a test septX), X = TZ, can be written as (see section 4.2.3):
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to(X) = t5(2) U to(Xo),
where

o(Xo) =to({i nsert _card, i gnore_pin,i gnore_noney,
i gnor e_bal ance, i gnore_options}Z) O tg({ent er _good_pi n,
enter _wrong_pinl,enter_w ong_pin2,enter_noneyl,
enter _noney2,ent er _bal ancel, enter _bal ance2,
anot her _servi cel,anot her _servi ce2,no_further_service,
i gnore_card}) O{t(i nsert _card)}tq(Xq)

t1(X1) = t1({ent er _good_pi n,ent er _w ong_pi nl,i gnore_card,
i gnor e_noney, i gnore_bal ance,i gnore_options}Z) O
t1({i nsert _card, enter _w ong_pi n2, ent er _noney1,
enter _noney2,ent er _bal ancel, ent er _bal ance2,
anot her _servi cel,anot her _servi ce2,no_further_service,
i gnore_pin}) O{t1(ent er _w ong_pi nl)} to(X2) O
{t1(ent er _good_pi n)} t3 (X3)

t(X2) = tr({ent er _good_pi n,ent er _w ong_pi n2,i gnore_card,
i gnor e_noney, i gnore_bal ance,i gnore_options}Z) [
to({i nsert _card, enter_w ong_pi nl,enter_noneyl,
enter _noney2,ent er _bal ancel, enter _bal ance2,
anot her _servi cel,anot her _service2,no_further_service,
i gnor e_pi n})

3(X3) =t3({ent er _noneyl, ent er _bal ancel,i gnore_card,
i gnore_pin,ignore_options}Z) Otz(i nsert_card_card,
ent er _good_pi n,enter_wong_pi nl,enter_w ong pin2,
ent er _noney2,ent er _bal ance2, anot her _servi cel,
anot her _service2,no_further_service,i gnore_noney,
i gnor e_bal ance) O {tz(ent er _nmoney1)} tg (Xg) O
{tz(ent er _bal ancel)} t5(Xs)

u(X4) = y({anot her _servi cel,no_further_service,
i gnore_card,ignore_pin,ignore_noney,ignore_bal ance} Z) O
t4({i nsert _card, enter_good_pi n,enter_w ong_pi nl,
ent er _wrong_pi n2,ent er _noneyl, enter_noney2,
ent er _bal ancel, enter _bal ance2, anot her _servi ce2,
i gnore_options}) O {tg(anot her _servi cel)} tg(Xp)

t5(X5) = t5({anot her _servi ce2,no_f urt her_service,
i gnore_card,ignore_pin,ignore_noney,ignore_bal ance} Z) O
t5({i nsert _card, ent er _good_pi n,enter_w ong_pi ni,
enter _wrong_pi n2,ent er _noneyl, enter_noney2,
ent er _bal ancel, enter _bal ance2, anot her _servi cel,
i gnore_options}) O {tg(anot her _servi ce2)} t7(X7)
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i5(Xp) = ts{ent er _bal ance2,i gnore_card,i gnore_pin,
i gnor e_noney, i gnore_options}Z) Otg{i nsert_card,
ent er _good_pi n,enter_wong_pi nl,enter_w ong _pin2,
enter _noneyl,enter_noney2,ent er _bal ancel,
anot her _servi cel,anot her _servi ce2,no_further_service,
i gnor e_bal ance})

t7(T7) = t7({ent er _noney2,i gnore_card,i gnore_pin,
i gnor e_bal ance,i gnore_options}Z) Oty{i nsert_card,
enter _good_pi n,enter_wong_pinl,enter_w ong pin2,
enter _noneyl,enter_bal ancel, enter _bal ance2,
anot her _servi cel,anot her _service2,no_further_service,
i gnor e_noney})

Let us assume thah_c_no is not a valid card number (i.e.
in_c_noOlImget card_no). Then, by choosing suitable values for the test
functions §, ..., t7 the test set becomes:

to(X) = {test_cardnew_i n2, new_i n2, new_i n1,new_i nl1,yes, yes}
U to(Xo)

to(Xg) = {test_card test_card, test_card test_str2, test_card test_str2, test_card
m_1, test_cardn 1, test_carges, test_carges, test_strl test_card, test_strl
new_ i n2, test_strlnew i n2, test_strlnew _i n1, test_strlnew _i n1, test_strl
yes, test striyes, m 1test cardm 1 new in2, mlnew in2,m1l
new inl,milnew.inl,mlyes,m1lyes,btest cardbnew in2,b
new i n2,bnew inl,bnew inl,byes,byes,yes test cardyes
new_ i n2,yes new_i n2,yes new_i nl,yes new_i nl,yes yes,yes
yes} O{new_i nl,new_i n2,new_i n2,new_i n1,new_i nl,new_i n2,
new_i n2,yes, yes, no, test_card} {test_card} §(X1)

t1(X1) = {test_strl test_card, test_strl test_str2, test_strl test_str2, test_strl
m 1, test_strim 2, test_strlyes, test_strlyes, test_str2 test_card, test_str2
test_str2, test_str2 test_str2, test_str2, test_stran 1, test_str3/es, test_str2
yes, test_card test_card, test_card test_str2, test_card test_str2, tast Icard
test_cardn 1, test_carges, test_cardyes, m 1 test _cardm 1 test str2m 1
test st2zm1i1mil,miml, mlyes,m1lyes,b test cardb test str2p
test str2bm 1,bm 1,byes,byes,yes test cardyes test str2yes
test_str2yes m 1,yes m 1,yes yes,yes yes} [J {test_card, test_str?n 1,
m 1,b, b,yes,yes, no, test_strl}l] {test_str2} p(To) I {test_strl} §(T3)

(X o) = {test_strl test_card, test_strl test_str2, test_strl test_str2, test_strl
m 1, test_strdm 1, test_strlyes, test_strlyes, test_str2 test_card, test_str2
test_str2, test_str2 test_str2, test_str2, test_stran 1, test_str3/es, test_str2
yes, test_card test_card, test_card test_str2, test_card test_str2, tast Icard
test_cardn 1, test_carges, test_cardyes, m 1 test _cardm 1 test str2m 1
test str2zm1iImil,miml, mlyes,m1lyes,b test cardb test str2p
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test str2zbm 1,bm 1,byes,byes,yes test cardyes test str2yes
test_str2yes m 1,yes m 1,yes yes,yes yes} [J {test_card, test_str2n 1,
m 1,b,b,yes,yes, no, test_strl}

3(X3) ={m_1 test_cardm 1 test_str2m 1 test_str2m1iml, mim1,
m 1yes,m 1yes,b test cardb test_str2p test_str2bm 1,bm 1,byes,
b yes, test_card test_card, test_card test_str2, test_card test_str2, tast Icard
test_cardn 1, test_carges, test_carges, test_strl test_card, test_strl
test_str2, test_strl test_str2, test_strl, test_strim 1, test_strlyes, test_strl
yes, yes test_cardyes test_str2yes_test str2yes m 1,yes m 1,yes
yes,yes yes} U {test_card, test_strl, test_str2, test_suw2l, b, yes, yes,
no,m 1, b} O {m 1} t4(Xy) O {b} t5(Xs5)

tu(X4) = {yes test_cardyes test_str2yes test_str2yes m 1,yes m 1,
yes yes,yes yes, no test_cardno new_i n2,no new_i n2,no new_i nl,
no new_i nl,noyes, noyes, test_card test_card, test_card test_str2, test_card
test_str2, test_cam 1, test_caran 1, test_cardes, test_carges, test_strl
test_card, test_strl test_str2, test_strl test _str2, tegh dirlest strim 1,
test_strlyes, test_striyes, m 1 test cardm 1 test_str2m 1 test_str2m 1
mlmlmil m1lyes,m1lyes,btest cardbtest str2p test str2b m 1,
bm1,byes,byes} O {test _card, test_strl, test_str2, test swi2l, m 1, b,

b,yes,yes} [0 {yes} tg(Xep)

t5(X5) = {yes test_cardyes test_str2yes test_str2zyes m 1,yes m 1,
yes yes,yes yes, no test_cardno new_i n2,no new_i n2,no new_i n1,
no new_i nl,noyes,noyes, test _card test_card, test_card test_str2, test_card
test_str2, test_cam 1, test_cardan 1, test_cardges, test_carges, test_strl
test_card, test_strl test_str2, test_strl test_str2, tegh dirlest strim 1,
test_strlyes, test _strlyes, m 1 test _cardm 1 test str2m 1 test str2m 1
mlmlmil m1lyes,m1lyes,btest cardp test str2p test str2pbm 1,
bm1,byes,byes} O {test_card, test_strl, test_str2, test sww2l, m 1, b,

b,yes,yes} O {yes} t7(X7)

t6(Xg) = {b test_cardb new_i n2, b new_i n2,b new_i n1, b new_i n1,
b yes, byes, test_card test_card, test_card test_str2, test_card test_str2,
test_cardn 1, test _cardn 1, test_carges, test_carges, test_strl test_card,
test_strl test_str2, test_strl test_str2, testnsti] test_strim 1, test_strlyes,
test_strlyes, m 1 test cardm 1 test str2m 1test str2m 1m 1, m1m 1,
m 1yes,m 1yes,yes test_cardyes test_str2yes test str2yes m 1,yes
m 1,yes yes,yes yes} [ {test_card, test_strl, test_str2, test_ sw2l, m 1,
b,yes,yes, no, b}

t7(X7) ={m_1 test_cardm 1 new_i n2,m 1 new_i n2,m 1 new_i n1,
m 1lnew inl, m1lyes,m1lyes,test cardtest card, test card test str2,
test_card test_str2, test_candl, test_caran 1, test_cardes, test_carges,
test_strl test_card, test_strl test_str2, test_strl test_str2, taest Isttést strl
m 1, test_strlyes, test_strlyes, b test_cardb test_str2p test_ str2p m 1,b
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m 1,byes,byes,yes test cardyes test_str2yes test_str2yes m 1,yes
m 1,yes yes,yes yes} [J {test_card, test_strl, test_str2, test su2l, b, b,
yes,yes,no,m1}

4.2.8.4. Discussion.

The success of our testing procedure relies on the basic funbtiogiag

correctly implemented. So, before we apply our testing methods we have to ensure
that this is the case. Therefore, the testing process can be viewed as a process
consisting of three stages:

1. Testing the functions that manipulate the inputs and the data structure of the
system (i.econvert string,check account,update_account,
get _card_no, etc.). A prerequisite is that these functions have to be clearly
specified (preferably a formal specification). In practice these functions perform
fairly standard operations on common data structures (i.e. add an item to a file,
retrieve an item from a file, convert a string into a positive integer, etc.). Usually,
these are standard routines and can be assumed to be fault-free. If this is not the
case, then category-partition testing can be used.

2. Testing the's. These are very simple functions obtained in a straightforward
manner from the functions above and a simple category partition testing can be
successfully used.

3. Testing the control structure of the system. We use the test set generated
above.

4.2.9. Generalised stream X-machine testing.

We now consider how our method can be applied to generalised stream X-
machines. Obvioudly, the definitions of completeness, output-distinguishability
and that of a test function can be extended in a straightforward manner to
generalised stream X-machines. There is however a problem in the sense that the
proof of lemma 4.2.1.3 - and hence the proof of theorem 4.2.1.4 - relies on the
following property of stream functions:

If f, f: Z* — I'* are (partial) stream functions theénx, y [J Z*, if
f(xy) = f(xy)# 0,

then
f(x) = f(x).

This is not true for generalised stream functions.

We shall now discuss how this problem can be addressed. First, let us give the
following definitions.

Definition 4.2.9.1.
Let Z an dphabet and x 0 3*. Theny [0 Z* iscalled aprefix of x if 0z 0 >* such
that x = yz. We also define

Pref(x) = {y O 2*| y is a prefix of x}

156



Chapter 4. Testing.

the set of all prefixes of x.

Definition 4.2.9.2.
LetX an alphabet and X *. Then we define the séref(X) by:
Pref(X) = J Pref(x).
x[OX

Now, if replace the test set t(TZ) with Y = Pref(t(TZ)) theorem 4.2.1.4 is also true
for generalised stream X-machines. Therefore, if our specification is a generalised
stream X-machine, then Y = Pref(t(TZ2)) is atest set that finds all the faults in the
implementation, provided that the conditions from section 4.2.2 are met.

At first sight, it appears that generalised stream X-machines require much larger
test sets. However, this is not really the case since, if a system receives an input
sequence s, it also receives all the prefixes of that sequence. Therefore, the test set
t(TZ) can be also used for generalised stream X-machines provided that results are
recorded in away that allows the outputs produced by al prefixes of the sequences
in t(TZ) to be determined. For example, these results can have the form
{o1/91 ..0jlgjloq...0j O (TZ)},
where 9 j <1, is the output sequence correspondingjto

4. 2.10. (Generalised) stream X-module testing.

Our testing method does not depend on the initial memory of the machine. What
we are really testing is that the associated automata of the two machines, one
representing the specification and the other the implementation, accept the same
language. Therefore, if we change the initial memory of both the specification and
the implementation, they will still compute the same function (of course, as long
as the initid memory of the specification coincides with that of the
implementation). This idea is formalised in what follows.

A (generalised) stream X-machine with unspecified initial memory will be caled a
(generalised) stream X-module.

Definition 4.2.10.1.
A (generalised) stream X-moduleisatuple = (Z, I, Q, M, ®, F, qg, T), where Z,
r,Q, M, ®, F, o T have the same meanings as for stream X-machines.

A stream X-module can be regarded as the set of all the stream X-machines
Mmo = (&, T, Q' M, ®, F, go, T, mg) with mg taking all the values in M. As for
deterministic stream X-machines, a deterministic (generalised) stream X-module
isoneinwhich ® isaset of partial functions, Fisapartial function F- Qx ® - Q
and any two @'s that are used as labels of arcs emerging from the same state have
disjoint domains.
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Similar to (generalised) stream X-machine, we can define the transition function u,
the output function A, the extended transition function ug and the extended output
function Ag for (generalised) stream X-modules. Also, the definition of the
associated automaton of a module is identical to that of a machine.

Definition 4.2.10.2.
Lete m=(%T,Q M, ® F qg T) be a(generadised) stream X-module and let
f: M xZ* - I'* be a (partial) function. Then we say tiiatomputes f iff:

Omg O M, sO%*, f(mg, S) = o),
where fpo IS the (partia) function computed by the machine
Mmo=&, I Q, M, ®,F, o T, mp) (i.e. the initial memory is g).

As for X-machines, we shall assume that the modules we shall be referring to are
modules with all the states terminal. Then, our testing method can be extended to
(generalised) stream X-modules. In this case, a fundamental test function will be a
function w.r.t. @, the initial state of the module, and any memory valué vh

4.2.11. Discussion and conclusions.

The main benefit of the stream X-machine testing method is that if the
implementation passes all of the tests in the test set then it is known to be free of
faults, providing that the ¢'s have been implemented in a fault-free fashion. That
is, we can replace the problem of testing for all faults in a stream X-machine to
one of detecting faults in something simpler - namely the processing functions.
Theseg's usually fall into one of the following categories.

1). A processing function is a (ssimpler) stream X-machine itself (an example
that illustrates thisideais given in section 5.4.5). For very complex systems, the ¢
's can be stream X-machines whose processing functions are stream X-machines
themselves. In this way, the reduction process has more than one level and the
stream X-machine testing method is applied to each of these levels.

2). In many cases the processing functions are very straightforward functions
that carry out simple operations on common data structures (i.e. files, stacks, etc.)
or are ssmple arithmetic operations, or process character strings, etc. Usually, these
are standard routines from a library and they can be assumed to be fault-free. In
the worst case, a category-partition like method can be successfully used to test
this type of function.

3). A @is obtained using a composition of functions of the type described in
1) and 2) and possibly some other ssmple functions (e.g. an 'if - else’ statement
containing functions of the type 1) and 2)) In this case, a category-partition method
will usually be sufficient, provided that the lower-level functions (i.e. those of type
1) and 2)) have already been tested.

The test set produced by the stream X-machine method is of manageable size (it

depends polynomialy on the number of states and the number of processing
functions of the machine). The process of generating the test set can be automated,
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the complexity of the agorithm being proportional to the complexity of the
algorithms that compute thgs .
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