
110

Chapter 4.

Testing.

This chapter consists of two main parts. The first reviews the main existing testing
methods and discusses to what extent they achieve the ultimate goal of testing (i.e.
to find all faults). The second part presents our testing method based on the stream
X-machine model.

4.1. Background.

The two major objects used in System development activities are specification and
implementation. Most of these activities concern the conversion of the
specification into an implementation. But others are concerned with evaluating
how well the implementation satisfies the specification. If the specification S and
the implementation I are assumed to be (partial) functions S, I: D → R, then we
say that the implementation is correct w.r.t. the specification if S(x) = I(x), ∀ x ∈
D. Conversely, a failure occurs in the implementation if, for an input x, the output
produced by the implementation does not correspond to that produced by the
specification. Any part of the implementation that could lead to a failure is a fault.
Then, the implementation is correct w.r.t. the specification iff it is fault-free.

Testing attempts to achieve correctness by detecting all the faults that are present
in the implementation so they can be removed. A finite set of inputs X ⊆ D is
designed and the result produced by each element of I (i.e. I(x)) is compared with
the expected result (i.e. S(x)). The set of inputs X will be called the test set. The
elements of the test set are chosen subject to a particular criterion. Many
techniques for carrying out testing, and in particular for the generation of test sets
exist and some of them are supported by automatic tools. There are also many
ways of classifying these techniques according to the particular criterion used. The
most common classification is into program based techniques and functional
techniques. There are also random methods which generate test sets randomly and
some statistical methods that combine random generation with one of the other
techniques (e.g. Waeselynck [57]) Analysis methods have also been developed
that estimate the probability of an implementation being correct after the testing
has been successfully completed. There are a number of different types of
statistical models used (Miller et al. [43], Hamlet & Taylor [23], Weiss &
Weyuker [58]) and they lead to conflicting claims as to the benefits of different
types of testing.

Chapter 4. Testing.

111

4.1.1. Program based testing

These techniques are also known as structural and white-box testing. Program
based testing methods base their test selection criterion on the structure of the
finished code. There is a well defined hierarchy of criteria (see Myers [47] or
Ntafos [49]) the most common ones being described here in ascending order of
strength.

Statement (or segment) coverage: If the test causes every statement of the
code to be executed at least once, then statement coverage is achieved.

A segment is an indivisible piece of code, no part can be executed without all of it
being executed.

Branch coverage: If the test causes every branch to be executed at least
once, then branch coverage is achieved. In other words, for every branch
statement, each of the possibilities must be performed on at least one occasion.

Path coverage: If the test set causes every distinct execution path to be
taken at some point, then path coverage is achieved. E.g., in the case of a loop,
there are paths for each number of iterations of the loop. Even for quite short and
simple programs, this level of coverage can be infeasible.

Limitations of program based testing

None of these program based methods use the requirements of the system in their
test selection criterion. Instead they all make the assumption that the
implementation matches the requirements in its broad structure. This can be a
severe limitation if you consider that the ultimate goal of testing is to compare the
implementation with its requirements.

Errors corresponding to missing paths in the code will not generally be detected.

Another drawback is that you have to wait until there is some of the actual code
before you can begin to construct tests. This corresponds to a software life-cycle in
which testing it carried out after the design and the implementation of the system
has been completed. This is very expensive as it only uncovers faults long after
they are introduced, especially faults in requirements. Testing requirements is an
important issue and one in which a testing method based on a formal specification
could be valuable.

Nevertheless, program based testing methods are still in widespread use (see
Gelperin & Hetzel [17] or a testing standard such as [2]) and undoubtedly reveal a
great many errors that might otherwise escape. Also, several tools that support
these techniques exist (see CAST Report [4]).

Chapter 4. Testing.

112

4.1.2. Functional testing.

These methods are known as black-box testing .

Functional testing methods base their test case selection criteria largely on the
intended functionality of the implementation, i.e. on the specification or
requirements. This fits in well with the goal of comparing implementations with
their requirements.

4.1.2.1. The category-partition method.

The most widely used functional technique is the category-partition method. The
method was presented by Ostrand & Balcer, [51], and it involves several steps, the
main ones being described below.

A. Analysis of the specification.

First, functional units that can be individually tested are identified; either top level
user commands or functions that are called by them, or lower level functions are
defined. Several stages of decomposition may be required.

For all the functions identified, find the parameters (i.e. explicit inputs or outputs
to the functional unit, either by the program or by the user) that affect the
function’s behaviour.

Example. Consider the specification of a sorting program. The program is to
accept an array of integers of variable length and is to display a permutation of the
array, but with the values correctly ordered with respect to the normal order on
integers. Then, the only parameters are the unsorted array as input and the sorted
array as output.

B. Categorise the parameters.

For each parameter, identify properties and characteristics that have particular
effects on the function’s behaviour. Classify the characteristics of the parameters
into categories that characterise the behaviour of the function.

Example. For the sorting program, the categories are the array’s size and the order
of the unsorted array.

C. Partition the categories into choices.

Determine the different significant cases that can occur within each parameter
condition category. These cases are choices. Each choice consists of a subset of

Chapter 4. Testing.

113

the category’s values, which will all lead to the same behaviour. The choices must
be mutually exclusive.

Example. Using the "array size" partition from above, the choices might be 0, 1, or
> 1.

D. Generate the test set.

A test set is generated such that each choice of each category is satisfied by at least
one input. This can be done automatically (see Ostrand & Balcer [51]).

There are some clear advantages of this method. Firstly, unlike the program based
techniques, the test cases are derived from the specification. Hence, there is a
better chance of detecting if some functionality is missing from the
implementation (e.g. a missing path in a program). Also, the test phase can be
started early in the development process and the test set can be easily modified as
the system evolves.

The process of working through all of the details of the method may well reveal
limitations of the design specification. If so, these should of course be addressed
and then the implications considered for the parts of the testing process already
carried out.

Limitations of the category-partition method.

It is difficult to describe formally the concepts of category and choice, so it is hard
to assess how adequate the criteria used for choosing these are. As a result, the
method relies heavily on the experience of the tester.

The method does not offer any guidance on combining the tests of individual
functions into higher level tests that ensure that these functional units are correctly
integrated.

Conclusions.

Several other functional testing methods exist (see Goodenough & Gerhart [21],
Gerrard et al. [18], Myers [47, 48] or Hayes [25]), many of them being broadly
similar to the category-partition method. All of them (and indeed the program
based ones) share the same drawback in the sense that they do not enable us to
make any statement about the number and the type of faults that remain
undetected after testing is completed. In practice all we can usually say is that we
have uncovered a number of faults over a period of testing effort and the graph of
the number of faults against the period or amount of testing, measured suitably,
indicates that the growth rate is reducing.

Chapter 4. Testing.

114

test period

no. of
faults

test time

undetected
faultsX

Figure 4.1.

The trouble is that we do not know that no further faults exist in the system at a
particular time. A general formula for this curve is not known; if one existed for a
certain testing method it would probably depend on the type of the system and on
those doing and managing the testing as well as wider issues relating to the
management of the design project, the implementation vehicle, the design methods
and so on. It is therefore fair to say that making sure that systems are fault free is
quite beyond current testing methods. "All they can tell is that a system has failed.
They cannot tell us that the system is correct" (statement attributed to Dijkstra).

4.1.3. Theoretical testing.

The testing techniques discussed so far (and indeed most techniques used in
practice) have been based on the experience of software developers rather than on
a well founded theory.

Very few attempts have been made to address the issues of testing from a
theoretical point of view. An outline theory of testing is introduced by
Goodenough & Gerhart, [21], and developed further by Weyuker and Ostrand,
[59]. They treat a software system as a (partial) function from an input set to an
output set and the testing process consists of constructing "revealing sub-domains"
that expose faults in this function (i.e. a sub-domain B of the function is revealing
for a fault F if, whenever F affects any element of B it affects all the elements of
B). This is a very general and abstract approach that provides an useful set of
simple concepts and terminology for the discussion of some aspects of testing
without giving too many clues of how to construct an effective testing strategy.

The paucity of attempts to address the theoretical issues of testing is not
surprising. Indeed, recall that the (idealised) goal of testing is to find all the faults
in the implementation. Let S: D → R and I: D → R the specification and the
implementation of a system respectively and X ⊆ D the (finite) test set. Then X

Chapter 4. Testing.

115

finds all the faults if and only if S(x) = I(x), ∀ x∈ X ⇒ S(x) = I(x), ∀ x ∈ D. In
this case we say that the test set X is adequate. Then, it is clear that if S and I are
partial functions computed by arbitrary computer systems (i.e. Turing machines),
such a test set does not exist (i.e. if it did, the halting problem for Turing machines
would be solvable). Hence, in this case the goal of testing is not attainable.

How can we get around this problem? A solution would be to develop testing
methods based on more restrictive computational methods (e.g. finite state
machines).

4.1.4. Finite state machine testing.

Some finite state machine testing methods exist. Most of them are quite
restrictive; some require that the specification and the implementation are finite
state machines with the same number of states (see Sidhu et al. [54]); others
assume that the specification is a finite state machine with special properties (see
Bhattacharrya [3]).

A more general testing theory for finite state machines was developed by Chow,
[6]. It assumes that the specification and the implementation can both be
expressed as finite state machines and shows how a test set that finds all the faults
in the implementation can be generated.

4.1.4.1. Preliminary concepts.

Before we describe the method in more detail we introduce some concepts that we
shall be needing later. The following definitions are largely from Chow, [6].

Definition 4.1.4.1.1.
Let = (Σ, Γ, Q, F, G, qo) be a finite state machine, S ⊆ Σ* a set of input
sequences and q, q’ ∈ Q two states. Then we say that S distinguishes between q
and q’ if ∃ s ∈ S such that Ge(q, s) ≠ Ge(q’, s).

In other words, s produces different outputs when applied to q and q’ respectively.

Definition 4.1.4.1.2.
Let = (Σ, Γ, Q, F, G, qo) be a minimal finite state machine. Then a set of input
sequences W ⊆ Σ* is called a characterisation set of if W can distinguish
between any two pairs of states of .

Definition 4.1.4.1.3.
Let = (Σ, Γ, Q, F, G, qo) be a minimal finite state machine. Then a set of input
sequences S ⊆ Σ* is called a state cover if ∀ q ∈ Q, ∃ s ∈ S such that
q = Fe(qo, s) (i.e. s forces the machine into q from the initial state qo).

Chapter 4. Testing.

116

Definition 4.1.4.1.4.
Let = (Σ, Γ, Q, F, G, qo) a minimal finite state machine. Then a set of input
sequences T ⊆ Σ* is called a transition cover if ∀ q ∈ Q, ∃ t ∈ Σ* with
q = Fe(qo, t) such that t ∈ T and tσ ∈ T, ∀ σ ∈ Σ (i.e. t forces the machine into q
from qo and t ∈ T and tσ ∈ T, ∀ σ ∈ Σ).

Notice that, since is minimal, a characterisation set, a state cover and a transition
cover of exist.

It is clear that if S is a state cover of , then T = S ∪ SΦ is a transition cover of .
Also, for any transition cover T of , there exists a state cover S such that
S ∪ SΦ ⊆ T.

Example 4.1.4.1.5.
Let be the (minimal) finite state machine with Σ = { a, b} and Γ = { x, y}
represented in figure 4.2.

q1q0

q2q3

b/y

a/y

b/x

a/x

a/xa/y b/y

Note: q qi
a x

j
/ → denotes that F(qi, a) = qj, and G(qi, a) = x.

Figure 4.2.

Then:
 W = {a, b} is a characterisation set of ;
 S = {1, b, ba, bab} is a state cover of ;

 T = {1, a, b, ba, bb, baa, bab, baba, babb} is a transition cover of .

Chapter 4. Testing.

117

The following theorem is from Chow, [6], and it represents the theoretical basis of
his testing method.

Theorem 4.1.4.1.6.
Let = (Σ, Γ, Q, F, G, qo) and ’ = (Σ, Γ, Q’, F’, G’, qo’) be two minimal finite state
machines. Let T and W, respectively, be a transition cover and a characterisation
set of and Z = ΣkW ∪ Σk-1W ∪ ... ∪ W. If card(Q’) - card(Q) ≤ k and qo and qo’
are TZ-equivalent, then and ’ are isomorphic.

The idea is that the transition cover T ensures that all the states and all the
transitions of are also present in ’ and Z ensures that ’ is in the same state as
after each transition is used. Notice that Z contains W and also all sets ΣiW,
i = 1, ..., k. This ensures that ’ does not contain extra states. If there were up to k
extra states, then each of them would be reached by some input sequence of up to
length k from the existing states.

4.1.4.2. The state machine testing method.

The method relies on the following assumptions.

 1. The specification is a minimal finite state machine .
 2. The implementation can be modelled as a finite state machine ’ with the
same input and output alphabets as .
 3. The number of states in ’ is bounded by a certain number n’.

Under these circumstances X = TZ is a test set that finds all faults, where T and W
are a transition cover and a characterisation set of respectively,

Z = ΣkW ∪ Σk-1W ∪ ... ∪ W
and k = n’ - n, where n is the number of states of and n’ is the (estimated) upper
bound of the number of state of ’.

Notice that ’ need not be minimal. Indeed if ’ is not minimal then we can apply
theorem 4.1.4.1.6 for the minimal machine of ’, Min(’). Then and Min(’) will
be isomorphic, hence and ’ will compute the same function.

4.1.4.3. Construction of the test set and complexity.

Since the concepts of characterisation set and transition cover will be used later on
in our testing theory, we shall describe their construction in detail. In what follows
we shall be referring to a finite state machine with n states and p input symbols.

4.1.4.3.1. Transition cover.

Chapter 4. Testing.

118

One way to construct a transition cover is by building a testing tree. The procedure
for constructing a testing tree given in what follows is largely from Chow, [6].

 1) Label the root of the tree with the initial state of , qo. This is the first level
of the tree.
 2) Suppose we have already built the tree up to a level m. Then the (m +1) level
is built by examining nodes in the m’th level from left to right. A node at the m’th
level is terminal if its label is "Undefined" or is the same as a nonterminal at some
level

�
, � ≤ m. Otherwise let qi denote its label. If on an input σ, the machine

goes from the state qi to the state qj, we attach a branch and the successor node to
the node labelled with σ and qj, respectively. Otherwise (i.e. if there is no
transition defined for σ from qi), then we also attach a branch labelled σ, but in
this case the successor node will be labelled "Undefined".

For the finite state machine from example 4.1.4.1.5, a testing tree is represented in
figure 4.3.

q0

q0 q1

q2

q2 q3

q0

Undefined

a b

a

a

a

b

b

b

q1

Figure 4.3.

Obviously, the procedure above terminates since there are only a finite number of
states in . In fact, the tree has at most n+1 levels. Also, depending on the order in
which we place the successor nodes, a different tree may result. A transition cover
results by enumerating all the partial paths in the tree and adding the empty
sequence to the set obtained in this way. The number of sequences of the resulting

Chapter 4. Testing.

119

transition cover is n⋅p+1, where p = card(Σ). It is also clear that this is the
minimum possible number of elements of any transition cover.

4.1.4.3.2. Characterisation set.

There are many ways of constructing characterisation sets. We shall describe a
procedure that gives the best possible result in the worst case scenario. This issue
is not analysed in detail in Chow, [6]. First, let us make the following remark.

Let V, V’ ⊆ Σ* be two sets of input sequences and ~V and ~V’ respectively the
equivalence relations on Q determined by them. Then we say that ~V < ~V’ if:
 i) ∀ q, q’ ∈ Q if q ~V’ q’ then q ~V q’.
 ii) ∃ q, q’ ∈ Q such that q ~V q' and ¬(q ~V' q').
If ∀ q, q' ∈ Q, q ~V' q' iff q ~V' q', we say that ~V = ~V'.

Also, if V =
j

i

=1

�
Σj , i ∈ N, then ~V will be denoted by ~i.

Then, for a minimal finite state machine with n states, there exists j ≤ n-1 such
that ~1 < ~2 < ... ~j = ~j+1 = ~j+2 = This is a well known result, a proof can
be found in Eilenberg, [12]. Since is minimal, it follows that Σj will distinguish
any pair of states in .

Let us now give the following algorithm that finds a characterisation set W.

Algorithm 4.1.4.3.2.1.
 Step1. Initialise V = ∅ and i = 1.
 Step2. (a) If ~V < ~i then find s ∈ Σi such that s distinguishes between two
states q and q' that are not V-distinguishable (i.e. the partition determined by ~i on
Q can be determined using the so called Pk tables (see Gill [19]); also, s can be
determined from these tables (see Gill [19], algorithm 4.1)). Then V will become
V ∪ { s} and step2 is repeated.
 (b). Otherwise, go to step3.
 Step3. (a) If V does not distinguish between any pair of states of , then
increment i.
 (b) Otherwise W = V is the characterisation set required.

Using a simple induction and the above remark it is easy to prove that the
characterisation set W constructed by the algorithm will satisfy:
 i) card(W) ≤ n-1;
 ii) ∀ i ∈ {1, ..., n-1}, ∃ at most n-i elements of W of length at least i.

Hence, it follows that in the worst case the above algorithm will generate a
characterisation set W = { s1,..., sn-1} such that |si| = i, i = 1, .., n-1. This is the
best result in the worst case scenario, since for any n and p there exists a minimal
finite state machine (see figure 4.4) with n states and p inputs such that if W' is a
characterisation set of , then there exists W" ⊆ W', W" = { s1,..., sn-1} , such that
|si| ≥ i, i = 1, .., n-1.

Chapter 4. Testing.

120

q q q q
0 1 n-2 n-1

X1, X2, ..., Xp-1/ Y X1, X2, ..., Xp-1/ Y

.

X1, X2, ..., Xp-1/ Y X1, X2, ..., Xp-1/ Y

X2, X3, ..., Xp/ Y

x1, x2, ..., xp-1/ y denotes that the machine produces the output y on each of the
inputs x1, x2, ..., xp-1.

Figure 4.4.

4.1.4.3.3. Complexity.

For a minimal machine with n states and p inputs the effort required in
constructing T and W is roughly proportional to n p2 ⋅ . This can be seen as
follows: T is obtained by first constructing a testing tree and then enumerating the
partial paths in the tree. Since for each state q and each input symbol σ the
transition from q on σ appears exactly once in the transition tree, the complexity
of the former is proportional to n p⋅ . The complexity of the latter is also
proportional to n p⋅ since there are n p⋅ +1 partial paths in the tree (see Chow [6]).

The transition set is obtained by first constructing the Pk and then applying
algorithm 4.1.4.3.2.1. The amount of work required to construct a Pk table is
proportional to n p⋅ , the number of entries in the table. Since there are at most n -1
such tables, the effort required to construct them is proportional to n p2 ⋅ . The
input sequences required by algorithm 4.1.4.3.2.1 step2 (a) will be obtained using
[19, algorithm 4.1]. The amount of work required to construct a sequence s using
this algorithm will be proportional to p s⋅| | (i.e. each symbol in s is obtained by
comparing the values of two columns in a Pk table (each column has p elements)).

Since the total length of W is no more then
n n()−1

2
, the total amount of work

required to construct W is proportional to n p2 ⋅ .

4.1.4.4. Upper bounds for the test set size.

Since
 card(X) card(T) card(... {1}) card(W)k k= ⋅ ∪ ∪ ∪ ⋅Σ Σ ,
the maximum number of test sequences required will be:

 max(card(X)) = (+) (+ +...+)(-) = (+)
-

-
(-)

+

n p p p n n p
p

p
nk

k

⋅ ⋅1 1 1 1
1

1
1

1

.

Hence

Chapter 4. Testing.

121

 card(X) ≤ n
p

p

k
2

2

1
⋅

+

-
.

For large p,
 max(card(X)) ≈ n pk2 1

⋅
+ .

An upper bound for the total length of the set test, |X| = | |s
s X∈
∑ , can be determined

by observing that
 |X| = N1 + N2 + N3,
where
 N1 = card(T) ⋅ card(Σk ∪ Σk-1 ∪ ... ∪ {1}) ⋅ |W|,
 N2 = card(T) ⋅ |(Σk ∪ Σk-1 ∪ ... ∪ {1})| ⋅ card(W),
 N3 = |T| ⋅ card(Σk ∪ Σk-1 ∪ ... ∪ {1}) ⋅ card(W).

Since

 |T| ≤ p p n p
p n n+ ⋅ + + ⋅ = ⋅ +

2
1

2
...

()
,

 |(Σk ∪ Σk-1 ∪ ... ∪ {1})| = p p k p
k p

p
k

k

+ ⋅ + ⋅ ≤ ⋅ +

2
1

2
1

...
-

,

 |W| ≤
n n()−1

2
,

we have

 |X|≤ ()
()

() ()
()

()p n
p

p

n n
p n

k p

p
n

p n n p

p
n

k k k

⋅ +
−

⋅ − + ⋅ + ⋅
−

− + ⋅ ⋅ + ⋅
−

−
+ + +

1
1

1

2
1

1
1

1

2 1
1

1 1 1

Hence

 |X| ≤
p

p
n n k

p

p
n n

k k+ +

−
⋅ ⋅ + =

−
⋅ ⋅

2
2

2
2

1 1
() ’ .

For large p, the upper bound for the total length of the test set is approximately
 n n pk’ +⋅ ⋅

2 1.

4.1.4.5. Improvement in the test set size.

Fujiwara et al., [16], prove that the test set can be reduced to
X’ = X1 ∪ X2, where X1 and X2 are obtained as follows.

Construct W, T, S, R, Wq, q ∈ Q, such that:

 • W is a characterisation set of (i.e. is the specification).
 • T is a transition cover of ,
 • S is a state cover of such that S ⊆ T,
 • R = T - S
 • Wq is a set of sequences that distinguishes q from any other state q’ ∈ Q.

Then X1 and X2 are defined by:

Chapter 4. Testing.

122

 • X1 = S(Σk W ∪ Σk-1 W ∪ ...∪ W),
 • X2 =

q Q∈

�
R(Σk ∪ Σk-1∪ ... ∪ {1}) ⊗ Wq,

where

 R(Σk ∪ Σk-1∪ ... ∪ {1}) ⊗ Wq = {s}Wq

s R(S ...{1})
Fe(q ,s) q

k

0
∈ ∪

=

(i.e. the union is over all s ∈ R(Σk ∪ Σk-1∪ ... ∪ { 1}) such that s takes the
machine from the initial state qo to q).

Hence X2 =
q Q

q

s R(S ...{1})
Fe(q ,s) q

{s}W
k

0

∈ ∈ ∪
=

� �
.

Intuitively, X1 checks that all the states defined by the specification are
identifiable in the implementation. At the same time, the transitions leading from
the initial state to these states are checked for correct output and state transfer. X2
checks the implementation for all the transitions that are not checked by X1.

If the sets Wq are all chosen to be W, the characterisation set, then X’ = X = TZ,
the test set obtained by Chow. Also, since Wq ⊆ W, ∀ q ∈ Q, it follows that X’ ⊆
X. Therefore the method presented by Fujiwara et al., [16], can yield a smaller test
set. Obviously, this is done at the expense of a more complex algorithm to
generate the test set.

4.1.4.6. Limitations of the finite state machine testing.

The method enables effective test cases to be generated in a straightforward
manner. But the finite state machine is too restrictive for many common
applications.

The solution suggested by Chow was to separate the control structure of a program
from the data structure and to represent the former as a finite state machine. In this
way the method could be used to test the control structure of a program. However,
the assumption that the control structure of the system can be modelled separately
from the data variables is not realistic in many cases. This would mean that the
next state depends solely on the current state and the input. This is not usually the
case. The variables that affect the program control could be replaced by a number
of additional states, but in many cases this number will be large and then the
method would become impractical.

A more attractive solution is to develop testing methods for more complex models
than finite state machines.

Chapter 4. Testing.

123

4.2. Stream X-machine testing.

In Chapter 2 we remarked that stream X-machines possess a property that make
them an attractive basis for testing, i.e. the fact that if the basic transition functions
are computable by some algorithms (i.e. by finite procedures) than the function
computed by the machine can be obtained algorithmically. This is important for
two reasons. Firstly, it avoids the unsolvable Halting problem for Turing
machines. Secondly, if our specification is a stream X-machine with the
processing functions computable by some algorithms, then we are able to
determine the output produced for each input sequence. Furthermore, if we know
that the implementation can also be modelled by a stream X-machine with the
same property, then this implementation is guaranteed to produce an output for
any input sequence we apply to it.

However, a testing method for stream X-machines is not straightforward. Indeed,
since the machine memory can be infinite, it is fairly clear that there is no way of
finding a finite set of input sequences that would guarantee that two arbitrary
stream X-machines compute the same function.

The approach we shall use to get around this problem will be a reductionist one.
This entails the reduction of a problem to the solution of simpler ones. In such a
reductionist approach we would consider a system and produce a testing regime
that results in the complete reduction of the test problem for the system to one of
looking at the test problem for the components or reduced parts. However, this
approach will work only if we are able to make the following statement:

 "the system S is composed of the parts P1, ..., Pn;
 as a result of carrying out a testing process on S we can deduce that S is fault-
 free if each of P1, ..., Pn are fault-free".

If the system is a stream X-machine , then the basic components of the system
are the φ’s. Then, what we are looking for is a testing method that ensures that
is fault-free provided that Φ is fault-free.

4.2.1. Theoretical basis for stream X-machine testing.

The strategy we employ is to reduce testing that the two machines (i.e. one
representing the specification, the other the implementation) compute the same
function to testing that their associated automata accept the same language. For
this idea to work we require that Φ is complete and output-distinguishable. We
call these "design for test" conditions.

The fact that we require Φ to be output-distinguishable is not surprising since we
want to be able to distinguish between φ’s according to the outputs they produce.
On the other hand the output-distinguishability condition is not sufficient. Indeed,
in Chapter 3 we gave two examples of a stream X-machine with Φ output-
distinguishable but not complete in which one of the arcs could be removed

Chapter 4. Testing.

124

without affecting the computation of the machine (see example 3.4.2.7 and
example 3.4.2.8).

As we have seen, testing that the two associated automata accept the same
language can be done by constructing a set of sequences of elements from Φ* .
However, this is not really very convenient in our case, we really want a set of
input sequences from Σ* . We thus need to convert sequences from Φ* into
sequences from Σ* . We do this by using a fundamental test function as discussed
next.

Definition. 4.2.1.1.
Let = (Σ, Γ, Q, M, Φ, F, qo, mo) be a deterministic stream X-machine with Φ
complete and let q ∈ Q, m ∈ M. We define recursively a function tq,m: Φ* → Σ*
as follows:
 1. tq,m (1) = 1, where 1 is the empty string.

 2. For n ≥ 0, the recursion step that defines tq,m(φ1...φnφn+1) as a function of
tq,m(φ1...φn) depends on the following two cases:

 a. if ∃ a path q q q q qn n
nφ φ φ1 2

1 2 1 →  →  →−... in starting from q, then
 tq,m(φ1... φnφn+1) = tq,m(φ1... φn) σn+1,

 where σn+1 is chosen such that
 (we(q, m, tq,m(φ1... φn)), σn+1) ∈ dom φn+1.

Note: Since Φ is complete, there exists such σn+1.
In other words, if mn is the final value computed by the machine along the above
path on the input sequence tq,m(φ1... φn), then (mn, σn+1) will exercise φn+1.

 b. otherwise,
 tq,m(φ1... φnφn+1) = tq,m(φ1... φn).

Then tq,m is called a test function of w.r.t. q and m.
If q = qo and m = mo, tq,m is denoted by t and is called a fundamental test
function of .

In other words if
q q q q qn n

nφ φ φ1 2
1 2 1 →  →  →−...

is a path in , then
s = tq,m(φ1... φn)

will be an input string which, when applied in q and m, will cause the computation
of the machine to follow this path (i.e. s = σ1 ... σn such that σ1 exercises φ1, ...,
σn exercises φn).
If there is no arc labelled φn+1 from qn, then

tq,m(φ1... φnφn+1) = sσn+1,
where σn+1 is an input which would have caused the machine to exercise such an
arc if it had existed (i.e. therefore making sure that it does not exist).

Chapter 4. Testing.

125

Also, ∀ φn+2 ,..., φn+k ∈ Φ,
tq,m(φ1...φnφn+1...φn+k) = tq,m(φ1... φnφn+1)

(i.e. therefore only the first non-existing arc in the path is exercised by the value of
the test function).

Note that a test function is not uniquely determined, many different possible test
functions exist and it is up to the designer to construct it.

Example 4.2.1.2.
Let be a deterministic stream X-machine defined by:
 1. Σ = {x, y}
 2. Γ = {a, b}
 3. Q = {qo, q1, q2}; qo is the initial state.
 4. M = {0, 1}. The initial memory value is mo = 0.
 5. Φ = { φ1, φ2, φ3, φ4} , where φ1, φ2, φ3, φ4: M × Σ → Γ × M are partial
functions as follows:

dom φ1 = M × {y}; φ1(m, y) = (a, 1), ∀ m ∈ M;
dom φ2 = M × {x}; φ2(m, x) = (a, 0), ∀ m ∈ M;

 dom φ3 = M × {y}; φ3(m, y) = (b, 1), ∀ m ∈ M;
 dom φ4 = M × {x}; φ4(m, x) = (b, 0), ∀ m ∈ M.

6. F is represented in figure 4.5.

qo q1 q2
φ1

φ2

φ3

φ4

φ3
Figure 4.5.

Then we can construct a fundamental test function which satisfies
t(φ1) = y,
t(φ1φ2) = yx,
t(φ1φ2φ4) = yxx,
t(φ1φ2φ4φ1) = yxx.

Chapter 4. Testing.

126

The scope of a test function is to test whether a certain path exists or not in
using appropriate input symbols (hence the name). This idea is formalised in the
following lemma.

Lemma 4.2.1.3.
Let = (Σ, Γ, Q, M, Φ, F, qo, mo) and ’ = (Σ, Γ, Q’, M, Φ, F’, qo’, mo) be two
deterministic stream X-machines with Φ output-distinguishable and complete, λe
and λe’ their extended output functions and and ’ their associated automata. Let
q ∈ Q, q’ ∈ Q’, m ∈ M, X ⊆ Φ+, and let tq,m: Φ* → Σ* be a test function of
w.r.t q and m. If λe(q, m, s) = λe’(q’, m, s), ∀ s ∈ tq,m(X), then q and q’ are
X-equivalent as states in and ’ respectively.

Note: For X ⊆ Φ*, t(X) = {t(x)| x ∈ X}

Proof:
Let φ1... φn ∈ X and s = tq,m(φ1... φn). We prove that λe(q, m, s) = λe’(q’, m, s)
implies:
 there exists a path in starting from q labelled φ1... φn iff there exists a path in

’ starting from q’ labelled φ1... φn.

Let us assume that there exists a path
q q q q qn n

nφ φ φ1 2
1 1 1 →  →  →−...

 in . In this case
tq,m(φ1... φn) = σ1... σn with σ1, ..., σn ∈ Σ.

Thus there exist γ1, γ2, ... γn ∈ Γ and m1, ..., mn ∈ M such that
φ1(m, σ1) = (γ1, m1) and φi(mi-1, σi) = (γi, mi), i = 2, ..., n.

Also, we have
λe(q, m, σ1... σn) = γ1 γ2 ... γn.

Since λe(q, m, σ1... σn) = λe’(q’, m, σ1... σn), it follows that there exists a path
q q q q qn n

n’ ’ ’ ... ’ ’’ ’ ’φ φ φ1 2
1 2 1 →  →  →−

in ’ and there exist m1’, ..., mn’ such that
φ1’(m, σ1) = (γ1, m1’) and φi’(mi-1’, σi) = (γi, mi’), i = 2, ..., n.

Using a simple induction, it follows that
φi = φi’ and mi = mi’, i = 1, ..., n.

Indeed, φ1 = φ1’ follows since Φ is output-distinguishable. Hence m1 = m1’.
Similarly, if mi = mi’, it follows that φi+1 = φi+1’ and mi+1 = mi+1’. Therefore,
there exists a path in ’ starting from q’ labelled φ1... φn.

Let us assume there is no path in starting from q labelled φ1... φn. Let
k ∈ { 0, ..., n-1} be the maximum number such that there exists a path in starting
from q labelled φ1... φk. Let

q q q q qk k
kφ φ φ1 2

1 2 1 →  →  →−...
this path. Then

tq,m(φ1... φn) = σ1... σk+1 with σ1, ..., σk+1 ∈ Σ.

Chapter 4. Testing.

127

Thus there exist γ1, γ2, ..., γk+1 ∈ Γ and m1, ..., mk+1 ∈ M such that
φ1(m, σ1) = (γ1, m1) and φi(mi-1, σi) = (γi, mi), i = 2, ..., k+1.

Now, we prove that there is no path ’ starting from q’ labelled φ1... φk+1. Let us
assume otherwise. Then there exists a path

 q q q q qk k
k’ ’ ’ ... ’ ’φ φ φ1 2 1

1 2 1 →  →  → +
+

 in ’. Hence
λe’(q’, m, σ1... σk+1) = γ1 γ2 ... γk+1.

Since λe(q, m, σ1... σk+1) = λe’(q’, m, σ1... σk+1), it follows that there exists φ
k+1’ ∈ Φ, qk+1 ∈ Q and mk+1’ ∈ M such that

q qk k
kφ ’ → + 1 is an arc in and φk+1’(mk, σk+1) = (γk+1, mk+1’).

Since Φ is output-distinguishable, it follows that φk+1 = φk+1’. This contradicts
our initial assumption. Hence, there is no path ’ starting from q’ labelled
φ1... φk+1.

Therefore, we have proved that λe(q, m, s) = λe’(q’, m, s) implies q and q’ are
{ φ1... φn} -equivalent as states in and ’ respectively. Hence (see definition
3.4.1.2.3 and observation 3.4.1.2.4) q and q’ are X-equivalent. �

We can now assemble our fundamental result which is the basis for the testing
method.

Theorem 4.2.1.4.
Let = (Σ, Γ, Q, M, Φ, F, qo, mo) and ’ = (Σ, Γ, Q’, M, Φ, F’, qo’, mo) be two
deterministic stream X-machines with Φ output-distinguishable and complete
which compute f and f’ respectively, and ’ their associated automata and
t: Φ* → Σ* a fundamental test function of . We assume that and ’ are
minimal. Then let T and W, respectively, be a transition cover and a
characterisation set of and Z = ΦkW ∪ Φk-1W ∪ ... ∪ W, where k is a positive
integer. If card(Q’) - card(Q) ≤ k and f(s) = f’(s), ∀ s ∈ t(TZ), then
and ’ are isomorphic.

Proof:
From lemma 4.2.1.3 it follows that qo and qo’ are TZ-equivalent. The rest follows
from theorem 4.1.4.1.6 (Chow). �

If our aim is to ensure that the two machines compute the same function the
minimality of ’ is not really necessary. Then we have the following corollary.

Corollary 4.2.1.5.
Let = (Σ, Γ, Q, M, Φ, F, qo, mo) and ’ = (Σ, Γ, Q’, M, Φ, F’, qo’, mo) be two
deterministic stream X-machines with Φ output-distinguishable and complete,
 and ’ the associated automata of and ’ respectively and t, T and W as above.

Let " = (Φ, Q", F", qo") be the minimal automaton of ’. If is minimal,
card(Q") - card(Q) ≤ k and f(s) = f’(s), ∀ s ∈ t(TZ), then f(s) = f’(s) ∀ s ∈ Σ*.

Chapter 4. Testing.

128

Proof:
Let " = (Σ, Γ, Q", M, Φ, F", qo", mo) the stream X-machine whose associated
automaton " is the minimal automaton of ’ (i.e. " = Min(’)). Then " and ’
compute the same function (see lemma 3.4.2.2). From theorem 4.2.1.4, it follows
that the associated automata and " are isomorphic. Hence f = f’. �

Notice that since is a finite state machine with empty output alphabet, a
characterisation set of will be a set W ⊆ Φ* such that ∀ q, q’ ∈ Q, two states in
such that q ≠ q’, there exists φ1... φk ∈ W such that either:
 there exists a path labelled φ1... φk from q and there is no path labelled φ1... φk
from q’
or
 there exists a path labelled φ1... φk from q’ and there is no path labelled φ1... φk
from q.
In other words, when constructing W what matters is only whether there is an arc
labelled with a certain symbol φ from a certain state q (since the output alphabet is
empty). Obviously, all the statements made in section 4.1.4.3 about the
construction of a characterisation set and its cardinality remain valid.

4.2.2. The stream X-machine testing method.

Our stream X-machine testing method is based on the results from theorem 4.2.1.4
and corollary 4.2.1.5.

It assumes that the following conditions are met:
 1. The specification is a deterministic stream X-machine .
 2. The set of basic functions Φ of is output-distinguishable and complete.
 3. The associated automaton of is minimal.
 4. The implementation can be modelled as a deterministic stream X-machine

’ with the same set of basic functions Φ; also and ’ have the same initial
memory value mo.
 5. the number of states of ", the finite state machine obtained by minimising
the associated automaton of ’ (the stream X-machine model of the
implementation) is bounded by a certain number, say n’.

Then, under these circumstances Y = t(TZ) is a test set that finds all faults, where:

 • t is a fundamental test function of ,
 • T is a transition cover of ,
 • W is a characterisation set of and
 • Z = ΦkW ∪ Φk-1W ∪ ... ∪ W,
 • k = n’ - n
 • n is the number of states of the stream X-machine specification .
 • n’ is the (estimated) maximum number of states of ".

Chapter 4. Testing.

129

First, we remark that in practice the type Φ is always finite. Recall that Φ was
defined as the set of (partial) functions that the machine can use (i.e. these may or
may not appear in the transition diagram). However, in practice it is natural to
restrict Φ to those processing functions that the machine actually uses (i.e. these
appear in the transition diagram). Therefore Φ is finite and the test set Y = t(TZ) is
also finite.
 Obviously, the method relies on the specification being a deterministic stream X-
machine. Conditions 2 and 3 lie within the capability of the designer. It is fairly
clear that a stream X-machine can be transformed into one with Φ complete and
output-distinguishable by adding new inputs and outputs that can be removed after
the testing is completed (i.e. these extra inputs and outputs are only used for
testing purposes). This issue will be discussed later on together with the possible
automation of the process. It is also clear that the designer can arrange for the
associated automata of the specification X-machine to be minimal; standard
techniques from finite state machine theory are available.

The 4’th condition is the most problematical. Establishing that the set of basic
functions, Φ, for the implementation is the same as the specification machine’s has
to be resolved. In practice this will be done using a separate testing process,
depending on the nature of the φ’s. The method explained above can be applied to
test the basic processing functions if they are expressible as the computations of
other, simpler X-machines. Alternatively, other testing approaches (e.g. the
category partition method or a variant) can be used, if the φ’s are functions that
carry out simple tasks on data structures (i.e. inserting and removing items from
registers, stacks, files, i.e.). If the basic processing functions are tried and tested
with a long history of successful use (i.e. standard procedures, modules or objects
from a library) then their correctness may be accepted.

Once the implementations of the processing functions have been tested, the
implementation of the system will consist of:
 ⋅ the correct implementations of the φ’s;
 ⋅ ’read’ operations; these will be used to read the inputs that will be processed
by the φ’s.
In this case, the implementation will satisfy the 4’th condition if we do not allow
two or more φ’s or two or more read operations to be executed consecutively.
However, this technical problem can be overcome easily (e.g. a flag variable can
be used to prevent the execution of consecutive φ’s or read operations; this
variable will indicate whether the last piece of code executed was the
implementation of a φ or a read operations).

Finally, the maximum number of states of the implementation has to be estimated.
This is well within the capability of the software developer. In practice k is usually
not large (unless there is a considerable degree of misunderstanding on the part of
the developer). For critical applications one can make very pessimistic
assumptions about k at the expense of a large set. For example, condition 5 could
be relaxed to:

Chapter 4. Testing.

130

 5’. The number of states of the stream X-machine model of the implementation
is bounded by a number n’.
Then, if the program uses s state variables v1, ..., vs, then

card(Q’) ≤ card(V1) ⋅ ... ⋅ card(Vs),
where Vi is the range of vi, i = 1, ..., n.

A hidden assumption of our method is that a reset operation (i.e. an extra input
which causes the machine to change back to the initial state qo and memory value
mo) is implemented correctly, so that the next test input sequence can be applied
from qo and mo. In the worst case, this corresponds to restarting the system.

The benefits that accrue if the method is applied is that the entire control structure
of the system is tested and all faults detected modulo the correct implementation
of the basic processing functions.

4.2.3. Test set construction

The stream X-machine testing method involves generating the values of a
fundamental test function t for all of the sequences in TZ. If the number of inputs
is finite (this is always the case in practice) and each transition function φ is
computable by some algorithm, then the test set Y = t(TZ) can be computed
algorithmically. Let us call the algorithms that compute the φ’s basic algorithms.
Then, an algorithm that generates Y will have at most |TZ| steps (i.e. |TZ| denotes
the total length of TZ) and each step consists of less then card(Σ) basic algorithms
(this is because for φ ∈ Φ and m ∈ M the algorithm looks for σ ∈ Σ such that
(m, σ) ∈ dom φ). If card(Σ) = p and card(Φ) = r, then the upper bound for the
number of basic algorithms applied will be

p
r

r
n n

k

⋅
−

⋅ ⋅
+2

2

1
’ ≈ p r n nk⋅ ⋅ ⋅+ ’1 2 (see section 4.1.4.4),

where n, n’ and k are as defined in the previous section.
However, a more efficient algorithm can be designed if we take advantage of the
recursive nature of the test function, i.e. if for a sequence of functions φ1...φiφi+1,
t(φ1... φi) could be reused in the definition of t(φ1...φiφi+1). This can be done (at
least partially) in the procedure shown below.

Let = (Σ, Γ, Q, M, Φ, F, qo, mo) be a deterministic stream X-machine and the
associated automaton of with

Q = {qo, q1,..., qn-1}
and

Φ = {φ1,..., φr},
where Φ is complete. In section 4.1.4.3.1 it is shown that a transition cover T of
can be constructed using a transition tree. Let

To = T - {1}.
Then, by a possible renumbering of Q, To can be obtained recursively from the
following equalities:

Chapter 4. Testing.

131

Tk = Φ ∪
i N

F(q ,) q
k

k k ii

∈
=φ

�
{ φki}T i , k = 0, ..., n-1, (1)

where

ki ∈ {1, ..., r}, i ∈ Nk

k 0

n-1

=

	

and the sets Nk satisfy the following:
Nk ⊆ {k+1, ..., n-1}, k = 0, ..., n-1, (1.1)

Nk

k 0

n-1

=

 = {1, ..., n-1}, (1.2)

Ni ∩ Nj = ∅ ∀ i, j = 0, ..., n-1, i ≠ j. (1.3)

In other words, the set { qi| i ∈ Nk} is the set of states that can be reached from the
state qk and have not been reached before in the construction of the transition tree;
φki will take the machine from the state qk to qi (i.e. F(qk, φki) = qi).

The equalities above can be rewritten as:
Tk = Φk’ ∪ Φk" ∪

i Nk∈

�
{ φki} T i , (2)

where
Φk’ = {φ ∈ Φ| F(qk, φ) ≠ ∅ }

and
Φk" = {φ ∈ Φ| F(qk, φ) = ∅ }

(i.e. Φk’ is the set of labels of all the arcs from qk and Φk" = Φ - Φk’).

Thus, if we denote X = TZ and Xk = Tk Z, k = 0, ..., n-1, we have:
X = Z ∪ Xo (3)

and
Xk = Z ∪ Φk’ Z ∪ Φk" Z ∪

i Nk∈

�
{ φki} X i , k = 0 ,..., n-1. (4)

Now let mo, m1, ..., mn-1 ∈ M, n memory values be defined recursively as
follows:
 i). mo is the initial memory value of .
 ii). For j = 1, ..., n-1, mj is chosen as follows.
 Let k ∈ { 0, ..., j-1} the (unique) number such that j ∈ Nk (i.e. k is the unique
number such that Tj appears on the right hand side of the equality (1)). The
existence and uniqueness of k is ensured by relations (1.2) and (1.3). Since
Nk ⊆ {k+1, ..., n-1}, it also follows that k < j.
Hence F(qk, φkj) = qj. Since Φ is complete we can choose σj ∈ Σ such that
(mk, σj) ∈ dom φkj. Then we choose mj such that

φkj(mk, σj) = (γ, mj), with γ ∈ Γ.
Therefore mj = w(qk, mk, σj) (i.e. mj is the next memory value after σj is applied
in qk and mk).

Chapter 4. Testing.

132

Also, let to, t1, ..., tn-1 be n test functions that satisfy the following:
 i). For j = 0, ..., n-1, tj is a test function w.r.t. qj and mj.
 ii). For j = 1, ..., n-1,

tk(φkj) = σj,
where k ∈ { 0, ..., j-1} is the (unique) number such that j ∈ Nk (i.e. this is possible
since (mk, σj) ∈ dom φkj).

From the way in which mo, m1, ..., mn-1 and to, t1, ..., tn-1 have been chosen it
follows that for k = 0, ..., n-1 and j ∈ Nk we have that

tk({ φkj}V) = {t k(φkj)}t j(V) ∀ V ⊆ Φ*.

Therefore, by applying to to (3) and (4) we obtain:
to(X) = to(Xo) ∪ to(Z) (5)

and
tk(Xk) = tk(Φk’ Z) ∪ tk(Φk" Z) ∪

i Nk∈

{t k(φki)} t i(Xi) , k = 0, .., n-1. (6)

Since F(qk, φ) is not defined ∀ φ ∈ Φk", it follows that
tk(Φk" Z) = tk(Φk").

Hence (6) becomes:
tk(Xk) = tk(Φk’ Z) ∪ tk(Φk") ∪

i Nk∈

�
{t k(φki)} t i(Xi) , k = 0, ..., n-1. (7)

Since tk(φki) = σi, we obtain:
tk(Xk) = tk(Φk’ Z) ∪ tk(Φk") ∪

i Nk∈

�
{ σi} t i(Xi) , k = 0, ..., n-1. (8)

Therefore, a test set Y = to(X) can be written as
Y = to(Xo) ∪ to(Z),

where to(Xo) can be obtained recursively from (8).

Example 4.2.3.1.
For the stream X-machine presented in example 4.2.1.2, a transition cover T can
be written as

T = {1} ∪ To, where
To = {φ1} ∪ {φ2, φ3, φ4} ∪ {φ1}T 1,
T1 = {φ2, φ3} ∪ {φ1, φ4} ∪ {φ3}T 2,
T2 = {φ3, φ4} ∪ {φ1, φ2}

The values mo, m1 and m2 are chosen as follows:
 mo = 0 is the initial memory value;
 m1 = 1 (y takes the machine from qo and mo to q1 and m1 following the arc
labelled φ1);
 m2 = 1 (y takes the machine from q1 and m1 to q2 and m2 following the arc
labelled φ3).

Then:

Chapter 4. Testing.

133

 to is a test function w.r.t qo and mo with to(φ1) = y;
 t1 is a test function w.r.t q1 and m1 with t1(φ3) = y;
 t2 is a test function w.r.t q2 and m2.

Then, a test set Y = to (TZ) can be written as
Y = to(Z) ∪ to(Xo),

where
to(Xo) = to({ φ1}Z) ∪ to({ φ2, φ3, φ4}) ∪ {to(φ1)} t1(X1),
t1(X1) = t1({ φ2, φ3}Z) ∪ t1({ φ1, φ4}) ∪ {t1(φ3)} t2(X2),
t2(X2) = t2({ φ3, φ4}Z) ∪ t2({ φ1, φ2}).

For W = {φ1, φ2} and n’ = n, we have
Z = {φ1, φ2}.

Hence, by choosing appropriate values for the test functions (i.e. obviously we
require that to(φ1) = y and t1(φ3) = y), the test set Y is:

Y = {y, x} ∪ to(Xo), where
to(Xo) = {yy, yx} ∪ {x, y, x} ∪ {y} t 1(X1),
t1(X1) = {xy, xx, yy, yx} ∪ {y, x} ∪ {y} t 2(X2),
t2(X2) = {yy, yx, xy, xx} ∪ {y, x}.

4.2.4. Complexity.

For a stream X-machine with card(Q) = n and card(Φ) = r, the amount of work
required to construct W and T is proportional to r⋅n2 (see section 4.1.4.3.3).

If we generate the test set Y = t(TZ) using the algorithm presented in section 4.2.3,
then we have to compute the values of the test function to for a domain included in
Z ∪ ΦZ and the values of the test functions t1, ..., tn-1 for domains included in
ΦZ.

Then, an algorithm that computes to will have at most |Z| + |ΦZ| steps and an
algorithm that computes ti, 1 ≤ i ≤ n-1, will have at most |ΦZ| steps, each step
consisting of the following:
 ⋅ applying the next state function F at most once to obtain the next state;
 ⋅ applying at most p = card(Σ) basic algorithms to find an appropriate input;
also, the next memory value is computed for this input.

Then an upper bound for the total number of basic algorithms applied by the
algorithm that generates the test set will be

p ⋅ (|Z| + n⋅ |ΦZ|) ≈ p ⋅ n⋅ |ΦZ|).

The total length of ΦZ, |ΦZ| can be determined from the following relation:
 |ΦZ| = card(Φk+1 ∪ Φk ∪ ... ∪ Φ) ⋅ |W| + |Φk+1 ∪ Φk ∪ ... ∪ Φ| ⋅ card(W).

Chapter 4. Testing.

134

Since

 card(Φk+1 ∪ Φk ∪ ... ∪ Φ) = r r r
r

r
k

k

+ + ≤
+

2 1
2

1
...

-
+ ,

 card(W) ≤ n - 1,

 |Φk+1 ∪ Φk ∪ ... ∪ Φ| = r r k r
k r

r
k

k

+ ⋅ + ⋅ ≤ ⋅+
+

2 1
1

1
2 1

2

... +)
(+)

-
(,

 |W| ≤
n n()−1

2
it follows that

 |ΦZ| ≤
n n r

r

k r

r
n

r

r
n k

nk k k() (+)
() = -)(+ +)

− ⋅
−

+ ⋅
−

−
−

+ + +1

2 1

1

1
1

1
1 1

2

2 2 2

(.

Therefore, an upper bound for the total number of basic algorithms used in the
construction of the test set is approximately

p r n k
nk⋅ ⋅ ⋅ ++1 2

2
() = p r n

n nk⋅ ⋅ ⋅ ⋅+1 2 2

2

’ -

(this is clearly better then the initial figure we gave in section 4.2.3; in fact, if
n’ = n, the upper bound of the number of basic algorithms is reduced by half).

If the complexity of a basic algorithm is C, then the complexity of the algorithm
that generates the test set will be proportional to

C p r n n nk⋅ ⋅ ⋅ ⋅ ⋅ −+1 2 2(’).
The only problem with this figure is that it depends on p, the number of input
symbols, which can be large. However, in practice only some of the inputs will be
used in the definition of a particular φ, i.e. φ will have the form:

  ψ(m, σ), if σ ∈ Σφ
φ(m, σ) = 

 î ∅ , if σ ∈ Σ - Σφ
where Σφ is a subset of Σ and ψ is a (partial) function ψ: M × Σφ → Γ × M.
Hence, for m ∈ M, the maximum number of basic algorithms applied for finding
σ such that (m, σ) ∈ dom φ is card(Σφ) which may be much lower then card(Σ).

If Φ is complete and output-distinguishable, then the process of generating the test
set can be automated.

Similar to the calculations from section 4.1.4.4, the maximum number of test
sequences required is less then

-

+

n
r

r

k
2

2

1
⋅ ≈ +n r k2 1⋅

and the total length of the test set is less then

 ’
-

+

n n
r

r

k
2

2

1
⋅ ⋅ ≈ ’ +n n r k2 1⋅ ⋅ .

In practice, the total length can be much lower since, in many cases,
|t(φ1...φi)| < < i. Thus test sets generated by the method appear to be of
manageable size as is the test application process. If card(Φ) < < card(Σ) (this is

Chapter 4. Testing.

135

usually the case in practice) then the number of test sequences is considerably
lower compared with Chow’s method.

4.2.5. An improvement in the test set size.

Using the finite state machine theory developed by Fujiwara et al. (see [16] and
section 4.1.4.5), it can be shown easily that the test set can be reduced to

Y’ = t(X’),
with

X’ = X1 ∪ X2
where X1 and X2 are obtained as follows.

Let W, T, S, R, Wq, q ∈ Q, such that:

 • W is a characterisation set of (is the associated automaton of the
specification),
 • T is a transition cover of ,
 • S is a state cover of such that S ⊆ T,
 • R = T - S,
 • Wq is a set of sequences that distinguishes q from any other state q’ ∈ Q.

Then X1 and X2 are defined by:
• X1 = S(Φk W ∪ Φk-1 W ∪ ...∪ W),
• X2 =

q Q∈

�
R(Φk ∪ Φk-1∪ ... ∪ {1}) ⊗ Wq =

q Q∈ ∈ ∪
=

� �
{ }

(...{ })
(,)

υ
υ

υ

Wq

R
Fe q q

kΦ 1
0

(i.e. the union is over all q ∈ Q and υ ∈ R(Φk ∪ Φk-1∪ ... ∪ { 1}) such that υ
takes from the initial state qo to q).

4.2.6. Expected outputs

If Y is the set of input sequences generated using our method, the specification is
correct iff f(s) = f’(s), ∀ s ∈ Y, where f and f’ are the (partial) functions computed
by and ’ respectively. For many systems f will be a total function, i.e. ∀ s ∈ Σ
* , the behaviour of the system when it receives the input sequence s is well
defined. In this case, the process of comparing the two output sequences is
straightforward. However, the method does not rely on f being a total function as
long as it is clear what we mean by "f(s) is undefined", i.e. what the system is
supposed to do when it receives an input sequence s for which f(s) is undefined.
For example, if is the specification of a software program "f(s) is undefined"
would usually mean that the sequence s causes the program to exit.

Chapter 4. Testing.

136

4.2.7. Imposing "design for test properties" on a system

The stream X-machine testing method we have presented relies on Φ being
complete and output-distinguishable. However, if the specification we are dealing
with fails to satisfy these requirements, we can augment slightly the basic
processing functions using some extra inputs and outputs, such that the resulting
specification will satisfy the completeness and output-distinguishability
conditions. Obviously, there are many ways in which this can be done. A possible
procedure is presented below.

Let = (Σ, Γ, Q, M, Φ, F, qo, mo) a deterministic stream X-machine with all the
states terminal. Then the procedure consists of two steps; the first ensures the
completeness and the second the output-distinguishability of the type Φ.

i). Let Ξ ⊆ Φ be the set of processing functions that are not complete, i.e.
Ξ = {φ ∈ Φ| φ is not complete}.

Let P = {Pi} i∈ I be a partition of Ξ with the following properties:
 ⋅ Pi ≠ ∅ , ∀ i ∈ I;
 ⋅ ∀ φ1, φ2 ∈ Ξ, φ1 ≠ φ2, let i, j ∈ I such that φ1 ∈ Pi and φ2 ∈ Pj. If ∃ q ∈ Q
such that F(q, φ1) ≠ ∅ and F(q, φ2) ≠ ∅ (i.e. φ1 and φ2 label arcs emerging from
the same state), then i ≠ j.
Let also ~P be the equivalence relation induced by P on Ξ.

Let N1 = card(P) be the number of elements of the partition P. Let S be a set of
new inputs (i.e. S ∩ Σ = ∅) with card(S) = N1 and γo be an output. Let also

ζ: Ξ → S
be a function that satisfies:

ζ(φ1) = ζ(φ2) iff φ1 ~P φ2.

Then ∀ φ ∈ Φ, we construct a (partial) function
ϖ(φ): M × (Σ ∪ S) → Γ × M

such that:
 ⋅ if φ ∈ Φ - Ξ, then

dom ϖ(φ) = dom φ and
ϖ(φ)(m, σ) = φ(m, σ), ∀ (m, σ) ∈ dom φ;

 ⋅ if φ ∈ Ξ, then
dom ϖ(φ) = dom φ ∪ (M × {ζ(φ)}) and

  φ(m, σ), if (m, σ) ∈ dom φ
ϖ(φ)(m, σ) = 

 î (γo, m), if σ = ζ(φ) and m ∈ M

It is fairly clear that ϖ(φ1) = ϖ(φ2) iff φ1 = φ2 and the type { ϖ(φ)| φ ∈ Φ} is
complete,

Chapter 4. Testing.

137

ii). Let R = {Rj} j∈ J be a partition of Φ with the following properties:
 ⋅ Rj ≠ ∅ ∀ j ∈ J;
 ⋅ ∀ φ1, φ2 ∈ Φ, φ1 ≠ φ2, let i, j ∈ J such that φ1 ∈ Ri and φ2 ∈ Rj. If ϖ(φ1) and
ϖ(φ2) are not output-distinguishable, then i ≠ j.

Let N2 = card(R) and let G be a set of outputs with card(G) = N2. Let also
υ: Φ → G

be a function that satisfies:
υ(φ1) = υ(φ2) iff φ1 ~R φ2,

where ~R is the equivalence relation induced by R on Φ.

Then ∀ φ ∈ Φ, we construct a (partial) function
ρ(φ): M × (Σ ∪ S) → (Γ × G) × M

with
dom ρ(φ) = dom ϖ(φ) and

 ρ(φ)(m, σ) = ((γ, υ(φ)), m’) ∀ (m, σ) ∈ dom ϖ(φ),
where (γ, m’) = ϖ(φ)(m, σ).

It is clear that the type
Φ’ = {ρ(φ)| φ ∈ Φ}

is complete and output-distinguishable Also, ρ: Φ → Φ’ is a bijective function.

Then we construct a stream X-machine ’ = (Σ’, Γ’, Q, M, Φ’, F’, qo, mo), where
 Σ’ = Σ ∪ S,
 Γ’ = (Γ × G),
 Φ’ is defined as above and
 F’: Q × Φ’ → Q is defined by:

F’(q, φ’) = F(q, ρ-1(φ’)), ∀ q ∈ Q, φ’∈ Φ’
(i.e. in other words the state transition diagram of ’ is identical to that of).
The way in which ζ is defined ensures that ’ is deterministic.

The number of extra inputs and outputs required is usually small and the
construction of the augmented machine (i.e. ’) from the initial one (i.e.) is
straightforward. In particular, it does not affect the transition diagram, so a
transition cover or a characterisation set of the initial machine will still be valid for
the augmented one. The initial machine can be obtained from the augmented one
by removing the extra inputs and outputs.

Example 4.2.7.1.
 Let be the following stream X-machine:
 1. Σ = {x, y}
 2. Γ = {a, b}
 3. Q = {qo, q1, q2}; qo is the initial state.
 4. M = {0, 1}. The initial memory value is mo = 0.

Chapter 4. Testing.

138

 5. Φ = { φ1, φ2, φ3, φ4} , where φ1, φ2, φ3, φ4: M × Σ → Γ × M are partial
function as follows:

dom φ1 = M × Σ,
φ1(m, x) = (a, 0), m ∈ M,
φ1(m, y) = (a, 1), m ∈ M;

dom φ2 = M × {x},
φ2(0, x) = (a, 0).
φ2(1, x) = (b, 0);

dom φ3 = {1} × {y},
φ3(1, y) = (b, 1);

dom φ4 = {1} × {x},
φ4(1, x) = (b, 0).

6. F is represented in figure 4.6.

qo q1 q2
φ1

φ2

φ3

φ4

φ3
Figure 4.6.

Then
Ξ = {φ3, φ4},
P = {{φ3}, { φ4}}.

We choose S = {u, v}, γo = a and we define ζ: Ξ → S by:
 ζ(φ3) = u, ζ(φ4) = v.

Then R can be chosen
R = {{ φ1, φ4}, { φ2, φ3}}.

We also choose G = {c, d} and we define υ: Φ → G2 by:
υ(φ1) = υ(φ4) = c; υ(φ2) = υ(φ3) = d.

Then, the augmented machine ’ will have
 the input alphabet Σ’ = {x, y, z, u},
 the output alphabet Γ’ = {a, b} × {c, d} and

Chapter 4. Testing.

139

 Φ’ = {φ1’, φ2’, φ3’, φ4’}, where φ1’, φ2’, φ3’, φ4’ are partial functions defined by:

dom φ1’ = M × {x, y},
φ1’(m, x) = ((a, c), 0), m ∈ M,
φ1’(m, y) = ((a, c), 1), m ∈ M;

dom φ2’ = M × {x},
φ2’(0, x) = ((a, d), 0),
φ2’(1, x) = ((b, d), 0);

dom φ3’ = ({1} × {y}) ∪ (M × {u}),
φ3’(1, y) = ((b, d), 1),
φ3’(m, u) = ((a, d), m), m ∈ M;

dom φ4’ = ({1} × {x}) ∪ (M × {v}),
φ4’(1, x) = ((b, c), 0),
φ4’(m, v) = ((a, c), m), m ∈ M.

If the procedure above is to be applied successfully then we should be able to
determine:
 ⋅ whether any processing function is complete or not
 ⋅ whether any two processing functions are output-distinguishable or not.
Usually, this can be done by hand. However, checking these conditions
automatically is very difficult since the memory set can be infinite in theory and is
usually very large in practice.

However, the above procedure can be relaxed so it can be automated. Before we
explain how this can be done, we point out that, if the augmented machine and the
test set are constructed by hand, then the number of extra outputs required by the
augmented machine could be smaller then that given by the above procedure.
First, let us give the following definition.

Definition 4.2.7.2.
Let Φ be a complete type. Then Φ is called relatively output-distinguishable if
∀ φ ∈ Φ, m ∈ M, ∃ σ ∈ Σ such that:
 1. (m, σ) ∈ dom φ; let (γ1, m1) = φ(m, σ) with γ1 ∈ Γ, m1 ∈ M.
 2. ∀ φ’ ∈ Φ, φ’ ≠ φ, if φ’(m, σ) = (γ2, m2) with γ2 ∈ Γ, m2 ∈ M, then γ1 ≠ γ2.
We also say that the pair (m, σ) distinguishes φ in Φ.

Now, let a stream X-machine with Φ complete and relatively output-
distinguishable. Then we can restrict the construction of the test function (see
definition 4.2.1.1) in the sense that if tq,m(φ1... φn+1) = tq,m(φ1... φn) σn+1, we
require that (mn, σn+1) distinguishes φn+1 in Φ, where mn = w(q, m, tq,m(φ1... φ
n)). It is easy to see that lemma 4.2.1.3 and theorem 4.2.1.4 remain valid in this

Chapter 4. Testing.

140

case. Therefore, the condition "Φ is complete and output-distinguishable" required
by our testing method can be replaced with "Φ is complete and relatively output-
distinguishable", provided that the fundamental test function required for the
construction of the test set is restricted as shown above. This could lead to a
reduction in the number of extra outputs required by the augmented machine.
However, in this case, it is very difficult to generate the test set automatically.

Let us now return to the procedure presented at the beginning of this section. This
can be transformed into a form suitable for automation by removing the
calculations required for checking the completeness and output-distinguishability
of the processing functions. Of course, this is done at the expense of a larger
number of extra inputs and outputs. The modifications that we make are the
following:

i). We take Ξ = Φ.
ii). We require that the partition R = {Rj} j∈ J satisfies:
 ⋅ Rj ≠ ∅ ∀ j ∈ J;
 ⋅ ∀ φ1, φ2 ∈ Φ, φ1 ≠ φ2, let i, j ∈ J such that φ1 ∈ Ri and φ2 ∈ Rj. If ¬∃ q ∈ Q
such that F(q, φ1) ≠ ∅ and F(q, φ2) ≠ ∅ , then i ≠ j.

The rest remains unchanged. The type of the augmented machine will be complete
and output-distinguishable (i.e. this is because if φ1 and φ2 are labels of two arcs
emerging from the same state, then ϖ(φ1) and ϖ(φ2) are output-distinguishable
since they have disjoint domains).

If we choose P and R to be the partitions with the minimal number of elements,
then the upper bounds for the number of inputs and outputs required will be:

card(S) ≤ j,
card(G) ≤ min(n, r - (i - 1)),

where
n = card(Q), r = card(Φ),
i = max

q Q∈
Card{φ ∈ Φ| F(q, φ) ≠ ∅ },

j = max
φ∈ Φ

Card{φ' ∈ Φ| ∃ q ∈ Q such that F(q, φ) ≠ ∅ and F(q, φ') ≠∅ }.

(i.e. it can be shown easily that i ≤ card(P) ≤ j; also, since card(P) ≤ i, it follows
that card(R) ≤ r - (i - 1))

In most cases j < < card(Φ); hence the number of extra inputs is usually small.

The modified procedure can be automated since it only uses the state transition
diagram of the machine to construct the augmented type Φ'.

Example 4.2.7.3.

For the stream X-machine from example 4.2.7.1, we can choose:
P = {{φ1, φ3}, { φ2, φ4}}, S = {u, v}, γo = a.

Chapter 4. Testing.

141

We define ζ: Ξ → S by:
ζ(φ1) = ζ(φ3) = u; ζ(φ2) = ζ(φ4) = v.

We also choose
R = {{ φ1}, { φ2}, { φ3, φ4}}, G = {c, d, e}

and we define υ: Φ → G2 by:
υ(φ1) = c; υ(φ2) = d; υ(φ3) = υ(φ4) = e.

Then φ1’, φ2’, φ3’, φ4’ will be as follows:

 dom φ1’ = M × {x, y, u},
 φ1’(m, x) = ((a, c), 0), m ∈ M,
 φ1’(m, y) = ((a, c), 1), m ∈ M,
 φ1’(m, u) = ((a, c), m), m ∈ M;

 dom φ2’ = ({0, 1} × {x}) ∪ (M × {v}),
 φ2’(0, x) = ((a, d), 0),
 φ2’(1, x) = ((b, d), 0),
 φ2’(m, v) = ((a, d), m), m ∈ M:

 dom φ3’ = ({1} × {y}) ∪ (M × {u}),
 φ3’(1, y) = ((b, e), 1),
 φ3’(m, u) = ((a, e), m), m ∈ M.

 dom φ4’: ({1} × {x}) ∪ M × {u},
 φ4’(1, x) = ((b, e), 0),
 φ4’(m, v) = ((b, e), m) m ∈ M.

4.2.8. Case study.

We create a stream X-machine specification of a simplified cash machine. The
assumptions we have made are:
 • The customer is allowed to enter his personal identification number twice. If
both attempts fail, the card is retained.
 • Only two fixed sums of money (say £10, £20) can be withdrawn and only one
attempt at withdrawing money can be made. If the amount required exceeds the
balance of the account, the machine gives an appropriate warning.
 • The balance of the account is also available.
 • The system does not update the account balance after a transaction has been
made. Instead, the new transactions are recorded in a separate data structure and
the main data structure is updated at certain time intervals by another system.

4.2.8.1. Stream X-machine specification.

Chapter 4. Testing.

142

1. The input alphabet is
Σ = CARDS ∪ STRINGS ∪ {m_1, m_2, b} ∪ {yes, no},

where:
 ⋅ CARDS represents the set of all the valid cash cards,
(i.e. CARDS = {cardi| i = 1 ... N}).
 ⋅ STRINGS represents a set of strings of numerals. Each such string is
transformed by the machine into a natural number. In practice, only strings of a
certain length are allowed.
 ⋅ {m_1, m_2, b, yes, no} are distinct inputs that correspond to the options
available to the customer; m_1 and m_2 correspond to the two amounts of money
available and b to the balance of the account. yes will be used by the customer to
request a second service, and no to quit the system.

2. The output alphabet is
Γ = MESSAGES × (MONEY ∪ {null_m}) × (BALANCES ∪

{null_b}) × {card_out, card_retained, card_unch},
where:
 ⋅ MESSAGES = {msg1,..., msg10, null_msg} , where msg1,..., msg10 are
messages or sequences of messages displayed by the machine as follows:

msg1 = ’Enter your personal identification number, please.’
msg2 = 'Would you like: £10, £20, Balance'
msg3 = 'You have entered a wrong personal identification number. Try again,

please.'
msg4 = 'The card has been retained. � Insert your card, please.'
msg5 = 'Would you like another service? yes, no'
msg6 = 'The amount requested is not available in your account. � Would you like

another service?'
msg7 = 'Take your card. � Insert your card, please.'
msg8 = 'The amount requested is not available in your account. � Take your card. �
 Insert your card, please.'
msg9 = 'Would you like: Balance'
msg10 = 'Would you like: £10, £20'.

 ⋅ MONEY is a set representing the amounts of money that can be output by the
machine; null_m denotes that the machine does not output any amount of
money;
 ⋅ BALANCES represent the set of balances; null_b denotes that the machine
does not output the balance.
 ⋅ card_out denotes that the machine returns the card to the customer;
card_retained denotes that the card has been retained; card_unch denotes
that the card state remains unchanged.

3. The memory is
M = ACCOUNT_INFO × NEW_INFO × CARD_NOS,

where:

Chapter 4. Testing.

143

 ⋅ acc ∈ ACCOUNT_INFO represents a data structure which contains
information concerning each account.
 ⋅ n_info ∈ NEW_INFO contains information about the transactions that have
been made since the last update.
 ⋅ CARD_NOS is the set of all possible card numbers. This will include all the
valid card numbers and possibly non valid numbers.

4. The initial memory value is
mo = (in_acc, in_n_info, in_c_no),

where in_acc, in_n_info and in_c_no are the initial values of
ACCOUNT_INFO, NEW_INFO and CARD_NOS.

5. The set of states is:
Q = {Await_card, Await_pin_1, Await_pin_2, Choose_money&balance,
Choose_money, Choose_balance, Choose_yes/no_1, Choose_yes/no_2}.

The stream X-machine specification will be a high level one, in the sense that we
ignore the way in which ACCOUNT_INFO, NEW_INFO, CARDS, CARD_NOS,
MONEY and BALANCES will be represented in the software modelling the
system. Instead, we assume that they are manipulated using the following (partial)
functions.

Note: B is the set of Booleans; N is the set of positive integers.

 ⋅ amount: {m_1, m_2} → MONEY (injective function)
Retrieves the appropriate amount of money for each of the two options.

 ⋅ found: ACCOUNT_INFO × CARD_NOS → B (function)
Checks whether a certain card number is valid (i.e. whether there is an account
that corresponds to this card number).

 ⋅ check_account: ACCOUNT_INFO × NEW_INFO × CARD_NOS ×
{m_1, m_2} → B (partial function)
Checks whether the amount required is less then the current balance of the
account.

 ⋅ update_account: ACCOUNT_INFO × CARD_NOS × {m_1, m_2} →
NEW_INFO (partial function)
Records the amount of money withdrawn.

 ⋅ get_balance: ACCOUNT_INFO × CARD_NOS → BALANCES
 (partial function)
Retrieves the balance of the account.

 ⋅ get_card_no: CARDS → CARD_NOS (injective function)
Retrieves the card number

 ⋅ get_pin: ACCOUNT_INFO × CARD_NOS → N (partial function)

Chapter 4. Testing.

144

Retrieves the personal identification number corresponding to a certain card
number.

We also assume that the above functions satisfy:
 ⋅ ∀ acc ∈ ACCOUNT_INFO c_no ∈ Im get_card_no, found(acc, c_no);
 ⋅ dom check_account = ACCOUNT_INFO × NEW_INFO ×
Im get_card_no × {m_1, m_2};
 ⋅ dom update_account = ACCOUNT_INFO × Im get_card_no ×
{m_1, m_2};
 ⋅ dom get_balance = ACCOUNT_INFO × Im get_card_no.
 ⋅ dom get_pin = ACCOUNT_INFO × Im get_card_no.

Note: Im f denotes the image of the (partial) function f.

What these conditions say is that for each card there is an account that corresponds
to the number of the card and vice versa.

Also, we assume that the function
 ⋅ convert_string: STRINGS → N
converts a string of numerals into a natural number.

6. The type of the machine is:
Φ = {insert_card, enter_good_pin, enter_wrong_pin1,

enter_wrong_pin2, enter_money1, enter_balance1,
enter_money2, enter_balance2, another_service1,
another_service2, no_further_service, ignore_card,
ignore_pin, ignore_money, ignore_balance, ignore_options}.

6. The ’next state’ function is described in figure 4.7.

7. The basic processing functions are defined as follows.

Note: In what follows acc ∈ ACCOUNT_INFO, n_info ∈ NEW_INFO,
c_no ∈ CARD_NOS, card ∈ CARDS, x ∈ STRINGS, y ∈ {m_1, m_2}.

⋅ dom insert_card: M × CARDS

insert_card((acc, n_info, c_no), card) =
 ((msg1, null_m, null_b, card_unch), (acc, n_info,
get_card_no(card)))

i.e. when the card is inserted, the system reads the card number and the customer
is asked to enter his/her personal identification number.

⋅ dom enter_good_pin = {((acc, n_info, c_no), x) ∈ M × STRINGS|

Chapter 4. Testing.

145

found(acc, c_no) and get_pin(acc, c_no) = convert_string(x)}

enter_good_pin((acc, n_info, c_no), x) =
 ((msg2, null_m, null_b, card_unch), (acc, n_info, c_no))

i.e. if the personal identification number is correct, then the customer is allowed to
choose one of the following options: two amounts of money and balance.

Await_card

&balance

enter_money1

another_service1

enter_balance2

another_service2

enter_money2

enter_balance1

enter_wrong_pin1

enter_wrong_pin2

enter_good_pin

enter_good_pin

insert_card

no_further_service

no_further_service

ignore_pin
ignore_money
ignore_balance

ignore_card
ignore_money

ignore_money
ignore_card

ignore_card
ignore_card

ignore_card

ignore_card

ignore_pin

ignore_pin

ignore_pin

ignore_pin

ignore_card
ignore_pin

ignore_money

ignore_money

ignore_money

ignore_balance
ignore_balance

ignore_balance

ignore_balance

ignore_balance
ignore_options

ignore_options

ignore_options

ignore_options

ignore_options

ignore_optionsChoose_
money

Choose_
money

Choose_
balance

Await_pin_1

Await_pin_2
Choose_

Choose_

yes/no_1

yes/no_2

Figure 4.7.

Chapter 4. Testing.

146

⋅ dom enter_wrong_pin1 = {((acc, n_info, c_no), x) ∈ M × STRINGS|
found(acc, c_no) and ¬(get_pin(acc, c_no) = convert_string(x))}

enter_wrong_pin1((acc, n_info, c_no), x) =
 ((msg3, null_m, null_b, card_unch), (acc, n_info, c_no))

i.e. if the personal identification number is incorrect, then the customer is asked to
enter this again.

⋅ dom enter_wrong_pin2 = {((acc, n_info, c_no), x) ∈ M × STRINGS|
found(acc, c_no) and ¬(get_pin(acc, c_no) = convert_string(x))}

enter_wrong_pin2((acc, n_info, c_no), x) =
 ((msg4, null_m, null_b, card_retained), (acc, n_info, c_no)).

i.e. if the customer enters an incorrect personal identification number for the
second time, then the card is retained.

⋅ dom enter_money1 = { (acc, n_info, c_no) ∈ M| found(acc, c_no)} ×
{m_1, m_2}

enter_money1((acc, n_info, c_no), y) =
 ((msg5, amount(y), null_b, card_unch), (acc,
update_account(acc, c_no, y), c_no)),

if check_account(acc, n_info, c_no, y) = true
 ((msg6, null_m, null_b, card_unch), (acc, n_info, in_c_no)),
 if check_account(acc, n_info, c_no, y) = false

i.e. the system outputs the required amount of money if this is available in the
customer's account and gives a warning message otherwise. The customer is asked
whether he/she wants another option.

⋅ dom enter_money2 = { (acc, n_info, c_no) ∈ M| found(acc, c_no)} ×
{m_1, m_2}

enter_money2((acc, n_info, c_no), y) =

Chapter 4. Testing.

147

 ((msg7, amount(y), null_b, card_out), (acc,
update_account(acc, c_no, y), in_c_no)),

if check_account(acc, n_info, c_no, y) = true
 ((msg8, null_m, null_b, card_out), (acc, n_info, in_c_no)),
 if check_account(acc, n_info, c_no, y) = false

i.e. the system outputs the required amount of money if this is available in the
customer’s account and gives a warning message otherwise. The customer’s card is
released, the system returns to the initial state and displays the message ’Insert
your card, please’.

⋅ dom enter_balance1 = {(acc, n_info, c_no) ∈ M| found(acc, c_no)} × {b}

enter_balance1((acc, n_info, c_no), b) =
 ((msg5, null_m, get_balance(acc, c_no), card_unch), (acc,
n_info, c_no))

i.e. the system outputs the balance of the account. The customer is asked whether
he/she wants another option.

⋅ dom enter_balance2 = {(acc, n_info, c_no) ∈ M| found(acc, c_no)} × {b}

enter_balance2((acc, n_info, c_no), b) =
 ((msg7, null_m, get_balance(acc, c_no), card_out), (acc, n_info,
in_c_no))

i.e. the system outputs the balance of the account. The customer’s card is released,
the system returns to the initial state and displays the message ’Insert your card,
please’.

⋅ dom another_service1 = M × {yes}

another_service1((acc, n_info, c_no), yes) =
 ((msg9, null_m, null_b, card_unch), (acc, n_info, c_no))

i.e. if the "yes" option is chosen, then the "balance" option is displayed.

⋅ dom another_service2 = M × {yes}

another_service2((acc, n_info, c_no), yes) =
 ((msg10, null_m, null_b, card_unch), (acc, n_info, c_no))

i.e. if the "yes" option is chosen, then the two "money" options are displayed.

Chapter 4. Testing.

148

⋅ dom no_further_service = M × {no}

no_further_service((acc, n_info, c_no), no) =
 ((msg7, null_m, null_b, card_out), (acc, n_info, in_c_no))

i.e. if the "no" option is chosen, then the system returns to the initial state and the
customer’s card is released. The message ’Insert your card, please’ is then
displayed.

The following functions basically "ignore" a certain input (or number of inputs).

⋅ dom ignore_card = M × CARDS

ignore_card(((acc, n_info, c_no), card) =
 ((null_msg, null_m, null_b, card_unch), (acc, n_info, c_no))

⋅ dom ignore_pin = M × STRINGS

ignore_pin(((acc, n_info, c_no), x) =
 ((null_msg, null_m, null_b, card_unch), (acc, n_info, c_no))

⋅ dom ignore_money = M × {m_1, m_2}

ignore_money(((acc, n_info, c_no), y) =
 ((null_msg, null_m, null_b, card_unch), (acc, n_info, c_no))

⋅ dom ignore_balance = M × {b}

ignore_balance(((acc, n_info, c_no), b) =
 ((null_msg, null_m, null_b, card_unch), (acc, n_info, c_no))

⋅ dom ignore_options = M × {yes, no}

ignore_options(((acc, n_info, c_no), x) =
 ((null_msg, null_m, null_b, card_unch), (acc, n_info, c_no))

4.2.8.2. Imposing the ’design for test’ conditions.

Chapter 4. Testing.

149

The type Φ is output-distinguishable. However, if CARD_NOS includes invalid as
well as valid card numbers, then enter_good_pin, enter_wrong_pin1,
enter_wrong_pin2, enter_money1, enter_money2,
enter_balance1, enter_balance2 are not complete. Let

Ξ = {enter_good_pin, enter_wrong_pin1,
enter_wrong_pin2, enter_money1, enter_money2,
enter_balance1, enter_balance2}.

Then, we augment the above stream X-machine specification in a similar way
(although not an identical way) to the procedure described in section 4.2.7.

Let new_in1 and new_in2 be two new inputs (i.e.
{new_in1, new_in2} ∩ Σ = ∅).

Let also new_msg1, ..., new_msg7 be seven new messages (i.e. {new_msg1, ...,
new_msg7} ∩ MESSAGES = ∅) and let

MESSAGES’ = MESSAGES ∪ {new_msg1, ..., new_msg7}.

The augmented stream X-machine will have the input set
 Σ’ = Σ ∪ {new_in1, new_in2}
and the output set
 Γ’ = MESSAGES’ × (MONEY ∪ {null_m}) × (BALANCES ∪
{null_b}) × {card_out, card_retained, card_unch}.

Then ∀ φ ∈ Φ - Ξ, the domain and the definition of φ will remain unchanged. For
φ ∈ Ξ, φ will be augmented to φA using the new inputs and messages. The
augmented functions are as follows.

⋅ dom enter_good_pinA = dom enter_good_pin ∪ (M × {new_in1})

enter_good_pinA((acc, n_info, c_no), x) =
 enter_good_pin((acc, n_info, c_no), x),

if x ∈ STRINGS
 ((new_msg1, null_m, null_b, card_unch), (acc, n_info, c_no)),

if x = new_in1

⋅ dom enter_wrong_pin1A = dom enter_wrong_pin1 ∪ (M
× {new_in2})

enter_wrong_pin1A((acc, n_info, c_no), x) =
 enter_wrong_pin1((acc, n_info, c_no), x),

if x ∈ STRINGS
 ((new_msg2, null_m, null_b, card_unch), (acc, n_info, c_no)),

if x = new_in2

Chapter 4. Testing.

150

⋅ dom enter_wrong_pin2A = dom enter_wrong_pin2 ∪
(M × {new_in2})

enter_wrong_pin2A((acc, n_info, c_no), x) =
 enter_wrong_pin2((acc, n_info, c_no), x),

if x ∈ STRINGS
 ((new_msg3, null_m, null_b, card_unch), (acc, n_info, c_no)),

if x = new_in2
⋅ dom enter_money1A = dom enter_money1 ∪ (M × {new_in1})

enter_money1A((acc, n_info, c_no), y) =
 enter_money1((acc, n_info, c_no), y),

if y ∈ {m_1, m_2}
 ((new_msg4, null_m, null_b, card_unch), (acc, n_info, c_no)),

if y = new_in1

⋅ dom enter_money2A = dom enter_money2 ∪ (M × {new_in1})

enter_money2A((acc, n_info, c_no), y) =
 enter_money2((acc, n_info, c_no), y),

if y ∈ {m_1, m_2}
 ((new_msg5, null_m, null_b, card_unch), (acc, n_info, c_no)),

if y = new_in1

⋅ dom enter_balance1A = dom enter_balance1 ∪ (M × {new_in2})

enter_balance1A((acc, n_info, c_no), z) =
 enter_balance1((acc, n_info, c_no), z),

if z = b
 ((new_msg6, null_m, null_b, card_unch), (acc, n_info, c_no)),

if z = new_in2

⋅ dom enter_balance2A = dom enter_balance2 ∪ (M × {new_in2})

enter_balance2A((acc, n_info, c_no), z) =
 enter_balance2((acc, n_info, c_no), z),

if z = b
 ((new_msg7, null_m, null_b, card_unch), (acc, n_info, c_no)),

if z = new_in2

In what follows we shall refer to the augmented versions of these functions.

Chapter 4. Testing.

151

4.2.8.3. The test set

We generate a test set Y = t(TZ) for the case n’ - n = 0, using the procedure
presented in section 4.2.3. First, we construct recursively a transition cover T.

 T = {1} ∪ To

 To = {insert_card, ignore_pin, ignore_money,
ignore_balance, ignore_options} ∪ (Φ - {insert_card,
ignore_pin, ignore_money, ignore_balance, ignore_options})
∪ {insert_card}T 1

 T1 = {enter_good_pin, enter_wrong_pin1, ignore_card,
ignore_money, ignore_balance, ignore_options} ∪ (Φ -
{enter_good_pin, enter_wrong_pin1, ignore_card,
ignore_money, ignore_balance, ignore_options}) ∪
{enter_wrong_pin1}T 2 ∪ {enter_good_pin}T 3

 T2 = {enter_good_pin, enter_wrong_pin2, ignore_card,
ignore_money, ignore_balance, ignore_options} ∪ (Φ -
{enter_good_pin, enter_wrong_pin2, ignore_card,
ignore_money, ignore_balance, ignore_options})

 T3 = {enter_money1, enter_balance1, ignore_card,
ignore_pin, ignore_options} ∪ (Φ - {enter_money1,
enter_balance1, ignore_card, ignore_pin, ignore_options}) ∪
{enter_money1} T4 ∪ {enter_balance1} T5

 T4 = {another_service1, ignore_card, ignore_pin,
ignore_money, ignore_balance} ∪ (Φ - {another_service1,
ignore_card, ignore_pin, ignore_money, ignore_balance}) ∪
{another_service1} T6

 T5 = {another_service2, ignore_card, ignore_pin,
ignore_money, ignore_balance} ∪ (Φ - {another_service2,
ignore_card, ignore_pin, ignore_money, ignore_balance}) ∪
{another_service2} T7

 T6 = {enter_balance2 , ignore_card, ignore_pin,
ignore_money, ignore_options} ∪ (Φ - {enter_balance2 ,
ignore_card, ignore_pin, ignore_money, ignore_options})

 T7 = {enter_money2 , ignore_card, ignore_pin,
ignore_balance, ignore_options} ∪ (Φ - {enter_money2 ,
ignore_card, ignore_pin, ignore_balance, ignore_options})

Chapter 4. Testing.

152

A characterisation set is
W = {insert_card, enter_wrong_pin1, enter_wrong_pin2,

enter_money1, enter_money2, another_service1,
another_service2}.

Then, for n’ - n = 0, we have
Z = {insert_card, enter_wrong_pin1, enter_wrong_pin2,

enter_money1, enter_money2, another_service1,
another_service2}

Let test_card ∈ CARDS be such that
test_no = get_card_no(test_card),

and let test_str1, test_str2 ∈ STRINGS be such that
get_pin(in_acc, test_no) = convert_string(test_str1) and
get_pin(in_acc, test_no) ≠ convert_string(test_str2).

Let mo, m, m’ ∈ M be three memory values as follows:
 ⋅ mo = (in_acc, in_n_info, in_c_no) is the initial memory value;
 ⋅ m = (in_acc, in_n_info, test_no);

  (in_acc, update_account(in_acc, m_1, test_no), test_no),
  if check_account(in_acc, n_info, test_no, m_1) = true
 ⋅ m’ = 
  (in_acc, in_n_info, test_no)),
 î if check_account(in_acc, n_info, test_no, m_1) = false.

Let also to, t1, ..., t7 be eight test functions as follows:

 ⋅ to is a test function w.r.t. Await_card and mo that satisfies
to(insert_card) = test_card;

 ⋅ t1 is a test function w.r.t. Await_pin_1 and m that satisfies
t1(enter_good_pin) = test_str1,
t1(enter_wrong_pin1) = test_str2;

 ⋅ t2 is a test function w.r.t. Await_pin_2 and m;
 ⋅ t3 is a test function w.r.t. Choose_money&balance and m that satisfies

t3(enter_money1) = m_1,
t3(enter_balance1) = b;

 ⋅ t4 is a test function w.r.t. Choose_yes/no_1 and m’ that satisfies
t4(another_service1) = yes;

⋅ t5 is a test function w.r.t. Choose_yes/no_2 and m that satisfies
t5(another_service2) = yes;

⋅ t6 is a test function w.r.t. Choose_balance and m’.
⋅ t7 is a test function w.r.t. Choose_money and m.

Then, a test set to(X), X = TZ, can be written as (see section 4.2.3):

Chapter 4. Testing.

153

to(X) = to(Z) ∪ to(Xo),
where

 to(Xo) = to({insert_card, ignore_pin, ignore_money,
ignore_balance, ignore_options} Z) ∪ to({enter_good_pin,
enter_wrong_pin1, enter_wrong_pin2, enter_money1,
enter_money2, enter_balance1, enter_balance2,
another_service1, another_service2, no_further_service,
ignore_card}) ∪ {t(insert_card)} t1(X1)

 t1(X1) = t1({enter_good_pin, enter_wrong_pin1, ignore_card,
ignore_money, ignore_balance, ignore_options} Z) ∪
t1({insert_card, enter_wrong_pin2, enter_money1,
enter_money2, enter_balance1, enter_balance2,
another_service1, another_service2, no_further_service,
ignore_pin}) ∪ {t1(enter_wrong_pin1)} t2(X2) ∪
{t 1(enter_good_pin)} t3 (X3)

 t2(X2) = t2({enter_good_pin, enter_wrong_pin2, ignore_card,
ignore_money, ignore_balance, ignore_options} Z) ∪
t2({insert_card, enter_wrong_pin1, enter_money1,
enter_money2, enter_balance1, enter_balance2,
another_service1, another_service2, no_further_service,
ignore_pin})

 t3(X3) = t3 ({enter_money1, enter_balance1, ignore_card,
ignore_pin, ignore_options} Z) ∪ t3 (insert_card_card,
enter_good_pin, enter_wrong_pin1, enter_wrong_pin2,
enter_money2, enter_balance2, another_service1,
another_service2, no_further_service, ignore_money,
ignore_balance) ∪ {t3 (enter_money1)} t4 (X4) ∪
{t 3(enter_balance1)} t5(X5)

 t4(X4) = t4({another_service1, no_further_service,
ignore_card, ignore_pin, ignore_money, ignore_balance} Z) ∪
t4({insert_card, enter_good_pin, enter_wrong_pin1,
enter_wrong_pin2, enter_money1, enter_money2,
enter_balance1, enter_balance2, another_service2,
ignore_options}) ∪ {t4(another_service1)} t6(X6)

 t5(X5) = t5({another_service2, no_further_service,
ignore_card, ignore_pin, ignore_money, ignore_balance} Z) ∪
t5({insert_card, enter_good_pin, enter_wrong_pin1,
enter_wrong_pin2, enter_money1, enter_money2,
enter_balance1, enter_balance2, another_service1,
ignore_options}) ∪ {t5(another_service2)} t7(X7)

Chapter 4. Testing.

154

 t6(X6) = t6{enter_balance2, ignore_card, ignore_pin,
ignore_money, ignore_options} Z) ∪ t6({insert_card,
enter_good_pin, enter_wrong_pin1, enter_wrong_pin2,
enter_money1, enter_money2, enter_balance1,
another_service1, another_service2, no_further_service,
ignore_balance})

 t7(T7) = t7({enter_money2, ignore_card, ignore_pin,
ignore_balance, ignore_options} Z) ∪ t7({insert_card,
enter_good_pin, enter_wrong_pin1, enter_wrong_pin2,
enter_money1, enter_balance1, enter_balance2,
another_service1, another_service2, no_further_service,
ignore_money})

Let us assume that in_c_no is not a valid card number (i.e.
in_c_no ∉ Im get_card_no). Then, by choosing suitable values for the test
functions to, ..., t7 the test set becomes:

 to(X) = {test_card, new_in2, new_in2, new_in1, new_in1, yes, yes}
∪ to(Xo)

 to(Xo) = {test_card test_card, test_card test_str2, test_card test_str2, test_card
m_1, test_card m_1, test_card yes, test_card yes, test_str1 test_card, test_str1
new_in2, test_str1 new_in2, test_str1 new_in1, test_str1 new_in1, test_str1
yes, test_str1 yes, m_1 test_card, m_1 new_in2, m_1 new_in2, m_1
new_in1, m_1 new_in1, m_1 yes, m_1 yes, b test_card, b new_in2, b
new_in2, b new_in1, b new_in1, b yes, b yes, yes test_card, yes
new_in2, yes new_in2, yes new_in1, yes new_in1, yes yes, yes
yes} ∪ {new_in1, new_in2, new_in2, new_in1, new_in1, new_in2,
new_in2, yes, yes, no, test_card} ∪ {test_card} t1(X1)

 t1(X1) = {test_str1 test_card, test_str1 test_str2, test_str1 test_str2, test_str1
m_1, test_str1 m_2, test_str1 yes, test_str1 yes, test_str2 test_card, test_str2
test_str2, test_str2 test_str2, test_str2 m_1, test_str2 m_1, test_str2 yes, test_str2
yes, test_card test_card, test_card test_str2, test_card test_str2, test_card m_1,
test_card m_1, test_card yes, test_card_yes, m_1 test_card, m_1 test_str2, m_1
test_str2, m_1 m_1, m_1 m_1, m_1 yes, m_1 yes, b test_card, b test_str2, b
test_str2, b m_1, b m_1, b yes, b yes, yes test_card, yes test_str2, yes
test_str2, yes m_1, yes m_1, yes yes, yes yes} ∪ {test_card, test_str2, m_1,
m_1, b, b, yes, yes, no, test_str1} ∪ {test_str2} t2(T2) ∪ {test_str1} t3(T3)

 t2(X2) = {test_str1 test_card, test_str1 test_str2, test_str1 test_str2, test_str1
m_1, test_str1 m_1, test_str1 yes, test_str1 yes, test_str2 test_card, test_str2
test_str2, test_str2 test_str2, test_str2 m_1, test_str2 m_1, test_str2 yes, test_str2
yes, test_card test_card, test_card test_str2, test_card test_str2, test_card m_1,
test_card m_1, test_card yes, test_card_yes, m_1 test_card, m_1 test_str2, m_1
test_str2, m_1 m_1, m_1 m_1, m_1 yes, m_1 yes, b test_card, b test_str2, b

Chapter 4. Testing.

155

test_str2, b m_1, b m_1, b yes, b yes, yes test_card, yes test_str2, yes
test_str2, yes m_1, yes m_1, yes yes, yes yes} ∪ {test_card, test_str2, m_1,
m_1, b, b, yes, yes, no, test_str1}

 t3(X3) = {m_1 test_card, m_1 test_str2, m_1 test_str2, m_1 m_1, m_1 m_1,
m_1 yes, m_1 yes, b test_card, b test_str2, b test_str2, b m_1, b m_1, b yes,
b yes, test_card test_card, test_card test_str2, test_card test_str2, test_card m_1,
test_card m_1, test_card yes, test_card yes, test_str1 test_card, test_str1
test_str2, test_str1 test_str2, test_str1 m_1, test_str1 m_1, test_str1 yes, test_str1
yes, yes test_card, yes test_str2, yes_test_str2, yes m_1, yes m_1, yes
yes, yes yes} ∪ {test_card, test_str1, test_str2, test_str2, m_1, b, yes, yes,
no, m_1, b} ∪ {m_1} t4(X4) ∪ {b} t5(X5)

 t4(X4) = {yes test_card, yes test_str2, yes test_str2, yes m_1, yes m_1,
yes yes, yes yes, no test_card, no new_in2, no new_in2, no new_in1,
no new_in1, no yes, no yes, test_card test_card, test_card test_str2, test_card
test_str2, test_card m_1, test_card m_1, test_card yes, test_card yes, test_str1
test_card, test_str1 test_str2, test_str1 test_str2, test_str1 m_1, test_str1 m_1,
test_str1 yes, test_str1 yes, m_1 test_card, m_1 test_str2, m_1 test_str2, m_1
m_1, m_1 m_1, m_1 yes, m_1 yes, b test_card, b test_str2, b test_str2, b m_1,
b m_1, b yes, b yes} ∪ {test_card, test_str1, test_str2, test_str2, m_1, m_1, b,
b, yes, yes} ∪ {yes} t6(X6)

 t5(X5) = {yes test_card, yes test_str2, yes test_str2, yes m_1, yes m_1,
yes yes, yes yes, no test_card, no new_in2, no new_in2, no new_in1,
no new_in1, no yes, no yes, test_card test_card, test_card test_str2, test_card
test_str2, test_card m_1, test_card m_1, test_card yes, test_card yes, test_str1
test_card, test_str1 test_str2, test_str1 test_str2, test_str1 m_1, test_str1 m_1,
test_str1 yes, test_str1 yes, m_1 test_card, m_1 test_str2, m_1 test_str2, m_1
m_1, m_1 m_1, m_1 yes, m_1 yes, b test_card, b test_str2, b test_str2, b m_1,
b m_1, b yes, b yes} ∪ {test_card, test_str1, test_str2, test_str2, m_1, m_1, b,
b, yes, yes} ∪ {yes} t7(X7)

 t6(X6) = {b test_card, b new_in2, b new_in2, b new_in1, b new_in1,
b yes, b yes, test_card test_card, test_card test_str2, test_card test_str2,
test_card m_1, test_card m_1, test_card yes, test_card yes, test_str1 test_card,
test_str1 test_str2, test_str1 test_str2, test_str1 m_1, test_str1 m_1, test_str1 yes,
test_str1 yes, m_1 test_card, m_1 test_str2, m_1 test_str2, m_1 m_1, m_1 m_1,
m_1 yes, m_1 yes, yes test_card, yes test_str2, yes test_str2, yes m_1, yes
m_1, yes yes, yes yes} ∪ {test_card, test_str1, test_str2, test_str2, m_1, m_1,
b, yes, yes, no, b}

 t7(X7) = {m_1 test_card, m_1 new_in2, m_1 new_in2, m_1 new_in1,
m_1 new_in1, m_1 yes, m_1 yes, test_card test_card, test_card test_str2,
test_card test_str2, test_card m_1, test_card m_1, test_card yes, test_card yes,
test_str1 test_card, test_str1 test_str2, test_str1 test_str2, test_str1 m_1, test_str1
m_1, test_str1 yes, test_str1 yes, b test_card, b test_str2, b test_str2, b m_1, b

Chapter 4. Testing.

156

m_1, b yes, b yes, yes test_card, yes test_str2, yes test_str2, yes m_1, yes
m_1, yes yes, yes yes} ∪ {test_card, test_str1, test_str2, test_str2, m_1, b, b,
yes, yes, no, m_1}

4.2.8.4. Discussion.

The success of our testing procedure relies on the basic functions Φ being
correctly implemented. So, before we apply our testing methods we have to ensure
that this is the case. Therefore, the testing process can be viewed as a process
consisting of three stages:
 1. Testing the functions that manipulate the inputs and the data structure of the
system (i.e. convert_string, check_account, update_account,
get_card_no, etc.). A prerequisite is that these functions have to be clearly
specified (preferably a formal specification). In practice these functions perform
fairly standard operations on common data structures (i.e. add an item to a file,
retrieve an item from a file, convert a string into a positive integer, etc.). Usually,
these are standard routines and can be assumed to be fault-free. If this is not the
case, then category-partition testing can be used.
 2. Testing the φ’s. These are very simple functions obtained in a straightforward
manner from the functions above and a simple category partition testing can be
successfully used.
 3. Testing the control structure of the system. We use the test set generated
above.

4.2.9. Generalised stream X-machine testing.

We now consider how our method can be applied to generalised stream X-
machines. Obviously, the definitions of completeness, output-distinguishability
and that of a test function can be extended in a straightforward manner to
generalised stream X-machines. There is however a problem in the sense that the
proof of lemma 4.2.1.3 - and hence the proof of theorem 4.2.1.4 - relies on the
following property of stream functions:

 If f, f’: Σ* → Γ* are (partial) stream functions then: ∀ x, y ∈ Σ*, if
f(xy) = f’(xy) ≠ ∅ ,

then
f(x) = f’(x).

This is not true for generalised stream functions.

We shall now discuss how this problem can be addressed. First, let us give the
following definitions.

Definition 4.2.9.1.
Let Σ an alphabet and x ∈ Σ* . Then y ∈ Σ* is called a prefix of x if ∃ z ∈ Σ* such
that x = yz. We also define

Pref(x) = {y ∈ Σ*| y is a prefix of x}

Chapter 4. Testing.

157

the set of all prefixes of x.

Definition 4.2.9.2.
Let Σ an alphabet and X ⊆ Σ*. Then we define the set Pref(X) by:

Pref(X) =
x X∈

�
Pref(x).

Now, if replace the test set t(TZ) with Y = Pref(t(TZ)) theorem 4.2.1.4 is also true
for generalised stream X-machines. Therefore, if our specification is a generalised
stream X-machine, then Y = Pref(t(TZ)) is a test set that finds all the faults in the
implementation, provided that the conditions from section 4.2.2 are met.

At first sight, it appears that generalised stream X-machines require much larger
test sets. However, this is not really the case since, if a system receives an input
sequence s, it also receives all the prefixes of that sequence. Therefore, the test set
t(TZ) can be also used for generalised stream X-machines provided that results are
recorded in a way that allows the outputs produced by all prefixes of the sequences
in t(TZ) to be determined. For example, these results can have the form
 {σ1/g1 ..σi/gi|σ1...σi ∈ t(TZ)},
where gj, j ≤ i, is the output sequence corresponding to σj.

4. 2.10. (Generalised) stream X-module testing.

Our testing method does not depend on the initial memory of the machine. What
we are really testing is that the associated automata of the two machines, one
representing the specification and the other the implementation, accept the same
language. Therefore, if we change the initial memory of both the specification and
the implementation, they will still compute the same function (of course, as long
as the initial memory of the specification coincides with that of the
implementation). This idea is formalised in what follows.

A (generalised) stream X-machine with unspecified initial memory will be called a
(generalised) stream X-module.

Definition 4.2.10.1.
A (generalised) stream X-module is a tuple = (Σ, Γ, Q, M, Φ, F, qo, T), where Σ,
Γ, Q, M, Φ, F, qo, T have the same meanings as for stream X-machines.

A stream X-module can be regarded as the set of all the stream X-machines

mo = (Σ, Γ, Q, M, Φ, F, qo, T, mo) with mo taking all the values in M. As for
deterministic stream X-machines, a deterministic (generalised) stream X-module
is one in which Φ is a set of partial functions, F is a partial function F: Q × Φ → Q
and any two φ’s that are used as labels of arcs emerging from the same state have
disjoint domains.

Chapter 4. Testing.

158

Similar to (generalised) stream X-machine, we can define the transition function u,
the output function λ, the extended transition function ue and the extended output
function λe for (generalised) stream X-modules. Also, the definition of the
associated automaton of a module is identical to that of a machine.

Definition 4.2.10.2.
Let = (Σ, Γ, Q, M, Φ, F, qo, T) be a (generalised) stream X-module and let
f: M × Σ* → Γ* be a (partial) function. Then we say that computes f iff:
 ∀ mo ∈ M, s ∈ Σ*, f(mo, s) = fmo(s),
where fmo is the (partial) function computed by the machine

mo = (Σ, Γ, Q, M, Φ, F, qo, T, mo) (i.e. the initial memory is mo).

As for X-machines, we shall assume that the modules we shall be referring to are
modules with all the states terminal. Then, our testing method can be extended to
(generalised) stream X-modules. In this case, a fundamental test function will be a
function w.r.t. qo, the initial state of the module, and any memory value m ∈ M.

4.2.11. Discussion and conclusions.

The main benefit of the stream X-machine testing method is that if the
implementation passes all of the tests in the test set then it is known to be free of
faults, providing that the φ’s have been implemented in a fault-free fashion. That
is, we can replace the problem of testing for all faults in a stream X-machine to
one of detecting faults in something simpler - namely the processing functions.
These φ’s usually fall into one of the following categories.
 1). A processing function is a (simpler) stream X-machine itself (an example
that illustrates this idea is given in section 5.4.5). For very complex systems, the φ
’s can be stream X-machines whose processing functions are stream X-machines
themselves. In this way, the reduction process has more than one level and the
stream X-machine testing method is applied to each of these levels.
 2). In many cases the processing functions are very straightforward functions
that carry out simple operations on common data structures (i.e. files, stacks, etc.)
or are simple arithmetic operations, or process character strings, etc. Usually, these
are standard routines from a library and they can be assumed to be fault-free. In
the worst case, a category-partition like method can be successfully used to test
this type of function.
 3). A φ is obtained using a composition of functions of the type described in
1) and 2) and possibly some other simple functions (e.g. an ’if - else’ statement
containing functions of the type 1) and 2)) In this case, a category-partition method
will usually be sufficient, provided that the lower-level functions (i.e. those of type
1) and 2)) have already been tested.

The test set produced by the stream X-machine method is of manageable size (it
depends polynomially on the number of states and the number of processing
functions of the machine). The process of generating the test set can be automated,

Chapter 4. Testing.

159

the complexity of the algorithm being proportional to the complexity of the
algorithms that compute the φ’s .

