Chapter 6.

Conclusions.

6.1. X-machines - a computational model framework.

The Chomsky hierarchy of languages and associated computational models have
been a cornerstone in the theory of computation for many years. The X-machine
generalises these computational models and provides us with an unified
framework for discussing the whole issue of classifying computable functions or
languages. We can look to X-machines to provide us with a richer hierarchy of
languages and functions then the traditional one. In particular, the stream X-
machine model could be used for classifying context-sensitive (or possibly
recursive) languages as suggested in Chapter 2. Obviously, this issue requires
much further investigation, as does the use of the X-machine model for classifying
non-Turing computable functions.

6.2. X-machines- a basisfor a specification language.

A number of formal specification languages and methods have been proposed in
recent years. They range from model based languages such as Z or VDM to
executable algebraic approaches like OBJ and process algebra approaches,
principally CCS and CSP.

X-machines combine the ability to model data structures, functions and relations
of languages such as Z or VDM with the graphical advantages of finite state
machines. The state diagram of the machine represents the control structure of the
machine and this is separated from the data set and the definitions of processing
functions. This control structure gives an overal view of the system and
communicates its main features.

This view will be enriched by specifying the processing functions. These can be
expressed using Z or a functional language such as ML or using traditional
mathematical notation. Alternatively, these could be X-machines themselves, so
the X-machine model can be used at more then one level in the specification.

This combination of state diagrams (the control structure), data structures and
processing functions makes the X-machine a convenient and intuitive

213



Chapter 6. Conclusions.

specification method in which different features of the system will be
communicated at the appropriate level in an intuitive way.

The notion of state exists in CCS. CCS (see Milner [44]) was devised to give a
general theoretical account of concurrent, asynchronous, non-deterministic
computation and is most useful for analysing the communication structure of a
system. There is a highly automated tool (the Concurrency Workbench) for doing
this for finite-state models. However, the emphasis is on modelling systems with
many parallel components and data flow is difficult to represent in pure CCS.
More complex data structures can be represented in value-passing CCS. However,
tools which support the full value-passing version are only now being devel oped
and still face theoretical problems. On the other hand, the potential of X-machines
in areas such as concurrency and distributed systems has yet to be considered.

A comparison between the use of X-machines and OBJ as specification methods
has been carried out on a case study (i.e. Gordon’s Computer, see Howe [35]). The
conclusions were that X-machines were easier to understand and use, require less
prior knowledge and produce specifications closer to what our intuition is of what
the system is supposed to do.

Recently, The X-machine model has been used in several case studies, ranging
from modelling interactive systems (see Laycock [41]) and user interfaces
(Holcombe & Duan [30]) to fairly complicated hardware devices (see Chiu [5] and
Howe [35]). We believe that the simplicity and the power of the method can make
it popular with industry.

6.3. Stream X-machines.

Stream X-machines are a natural class of X-machines in which the inputs and
outputs are sequences of characters and an input/output pair is read/produced
whenever a transition is performed. Clearly, they are very well suited for
modelling interactive systems. However, severa case studies have shown that the
model can be used to model a much wider range of systems (in fact, al the case
studies mentioned in the previous section use the stream X-machine model). Also,
the stream X-machine appears to handle time-dependent systems quite easily, as
illustrated by Fairtlough et a., [15], by a case study.

In Chapter 2 we showed that, by using an hierarchical approach (i.e. the

processing functions are themselves modelled using stream X-machines), the
model can cope with increasing computational problems.

6.4. Minimality and equivalence.
Minimality is not straightforward with (stream) X-machines. For an arbitrary X-

machine 7, there is an X-machine 1’ with only one state and one processing
function that exhibits the same behaviour in terms of the overall input/output

214



Chapter 6. Conclusions.

function it performs. However, the single processing function is not (necessarily)
of the same type (i.e. from the same set ®) as the processing functions of 7, and it
would almost certainly be a far more complicated function. Minimisation of this
extreme kind is not of much practical use. The resulting model would be difficult
to understand and it would be very unlikely to correspond to any intuitive model
of the system it was intended to describe.

Instead, we introduce the idea of minimality within a particular type, i.e. finding a
stream X-machine 71’ with the same type ® as a certain machine 7 that behaves
'similarly’ in terms of the input/output function it performs. The concepts of ®-
minimality and minimal covering w.r.t. ® were introduced. The first indicates that
1’ behaves identically to 7. The second is used when 71’ does everything that 7.
does and possesses, in addition, some extra functionality. These are concepts that
could be useful in practice, since they correspond to the 'smallest’ (i.e. as far as the
state set is concerned) specifications that behave identically or cover a given
specification.

However, even when the minimality problem is restricted to machines having the
same type @, the problem of finding these minimal machinesis difficult to address
unless @ satisfies some specia properties. We solved this problem for machines
whose @’s are complete and output-distinguishable (these are exactly the 'design
for testing conditions' required by our testing method). We have proved that in this
case the ®-minima machine is unique up to an isomorphism of the associated
automata and that the problem of finding this machine can be reduced to finite
state machine minimisation. We have aso given a procedure for constructing all
the minimal coverings of a particular stream X-machine.

6.5. Animation of executable (stream) X-machines.

It is straightforward to represent a finite state machine in a functiona language
such as ML. Also, if we make the reasonable assumption that the processing
functions are computable, then the processing functions can be represented as ML
functions. So, ML would be a suitable choice of programming language for
writing and animating (stream) X-machines. Such a tool would be able to check
easily for properties involving the associated automaton of the machine (e.g.
minimality) or to convert thisinto a minimal form.

A prototype generic stream X-machine animator has been constructed and tested
on severa cases and has worked satisfactorily. Work is in progress to construct a
graphical design tool for the design and simulation of stream X-machines.
However, a more genera tool that allows the processing functions to be specified
in terms of stream X-machines and also carries out refinements would be needed.

215



Chapter 6. Conclusions.

6.6. Testing and stream X-machines.

Stream X-machines are the basis for our theoretical testing method. Clearly, if the
implementation is not restricted in some way (i.e. it can be any stream X-
machine), then the problem of constructing a finite test set that finds all faults is
unsolvable (thisis because an infinite memory cannot be tested using afinite set of
inputs). The way to get around this problem is to use a reductionist approach. The
stream X-machine method is neither ’'black box’ nor ‘white box’. The
implementation is considered to be a 'black box’ containing known elements.
Therefore, we assume that the basic processing functions are implemented
correctly and we test whether the control structure of the system (i.e. the state
transition diagram) is correct or not. We also assume that some 'design for testing’
conditions are met.

So, how do we address the problem of testing an infinite memory with a finite test
set ?

OFirstly, the completeness of the type ® ensures that each state that is
accessible via a path in the associated automaton of the machine will be reached
using an input sequence that follows that path. Therefore, each state in the
implementation can be checked against the corresponding state in the
specification.

[Secondly, the set M x X is divided into the domains of the ¢'s and at |east one
pair (m, o) for each one of these domainsis checked. Thisisin principle similar to
the underlying idea of the category-partition method (although the domains of the
@'s are not necessarily a partition of M x ). Unlike the category-partition though,
the criterion by which the values to be tested are chosen is clearly defined by the
method. It is based on the system specification and does not depend on the ability
or experience of the person that carries out the testing.

OFinaly, since @ is output-distinguishable and correctly implemented, it
follows that, if the machines (one representing the specification, the other the
implementation) give the same output on the same input sequence s, then their
computations will follow the same sequence of @s (i.e. s will cause the two
machines to follow two paths identically labelled). Hence, the problem of testing a
stream X-machine will be reduced to one of testing a finite state machine (i.e. its
associated automaton).

The advantage of the method is that it guarantees that the system is fault-free
provided that the basic components are fault-free.

The reductionist approach can be continued further and the @'s can be tested using
our approach if they are represented as stream X-machines. At the bottom level of
the reduction, we shall have simpler functions that the developer is confident are
fault-free or can be tested using alternative methods (e.g. category-partition). This
hierarchical approach suits the increasing modularisation we see in the
development of software and provides a potential way of dealing with large scale
systems. On the other hand, a hierarchical approach increases the computational
capability of the stream X-machine model.

216



Chapter 6. Conclusions.

The test sets generated by the method are of manageable size as is the application
process. If the processing functions are computable by some agorithms, then the
process of generating the test set can be automated. Clearly, the method has to be
supported by automated systems and suitabl e tool s that need to be provided.

6.7. Refinement.

If (stream) X-machines are to be useful as atool for specification, there needs to
be some way of developing existing machines into more complex and more
detailed versions without starting anew with each modification.

The refinement we have introduced alows (generalised) stream X-machine
specifications to be developed gradually. An unrefined machine specification 71 is
produced first. This will be the 'control’ machine of the refinement. The refined
machine 7’ will be obtained from 7 by mapping sequences of characters from the
refined input alphabet X into inputs to the control machine 7. This mapping will
depend on the current state and memory value of the control machine 7. This will
also result in an expansion of the output alphabet. This mapping (in fact a set of
mappings) will be specified using refinement modules and the link between these
and the control machine is achieved via some transfer functions. Each state in 71
will be refined by a module and a refinement function will determine which
module refines which state. This entire transformation will result in an expansion
in the state set and the memory of the initial machine.

The method can be used for separating the user interface from the core
functionality of the system. It can also be used when some components of the
system are to some extent self-contained and it will be natural to attempt to
gpecify them separately. One advantage of the method is that it fits the
construction of aprogram in terms of a control program and several sub-programs.
Therefore, the refinement modules can be implemented separately and then used
in the main implementation.

Clearly, other refinements could be defined. In Fairtlough et al., [15], a case study
illustrates the process of expanding the functionality to a stream X-machine via
some transformations such as.

[Enlarging the state set and the input/output al phabets.

[Enlarging the state set, the memory and the input/output aphabets. This can
be seen as a process of linking two machines via some extra inputs.

[Enlarging the memory set.
The whole refinement/expansion process appears to be intuitive and easy to
manage.

Clearly, other types of refinement/expansion have to be considered and testing
issues have to be addressed.

217



Chapter 6. Conclusions.

6.7.1. Refinement testing.

There are two ways of testing a machine specification using a refinement of the
type presented in Chapter 5. The first is to construct the refined machine explicitly
and use the stream X-machine testing method. This is feasible when the number of
states of the refined machine is not too large (e.g. the word processor in section
5.4).

An dternative approach is to implement the refinement modules and the basic
functions separately and to test the integrated system. This approach is suitable
when the number of states of the refined machine is quite large or when the basic
refinement modules can be implemented quite easily (i.e. they are standard
procedures or objects from alibrary or can be obtained from these very easily, e.g.
example 5.1.6). A prerequisite of this approach is that the implementations of
refinement modules and the basic functions of the control machines must be fault-
free. Therefore, these have to be tested separately before the integration testing is
carried out. The stream X-machine testing method can be used to test the
refinement modules and also the processing functions, if these are expressed in
terms of some (lower level) machines. Again, some 'design for test’ conditions
have to be met.

The method requires careful testing management to deal with the augmentations
required by the 'design for testing’ conditions. However, the clear benefit of the
method is that it guarantees that the system is fault-free provided that its basic
components have been correctly implemented.

Very few existing functiona testing methods attempt to deal with the integration
issue. Many work on the assumption that if a system contains several components
(modules, procedures, etc.) and each of these are correct, then somehow the whole
system will also be correct. For example, let us see how a category-partition
method can be used to test an implementation of a stream X-machine refinement.
The method will require the following steps:

OTesting the basic functions of the control machine and the refinement
modules.

[Testing the refinement modules.

[Testing the control machine.

However, there is no guarantee that, if all these are correct, the whole system will
also be correct. Furthermore, the test set of the control machine will be a set of
sequences of inputs for this machine (i.e. aset in I*), without any indication being
given of how these can be obtained from the real inputs (i.e. sequences from %*)
by the refinement modules. Thisis another important drawback of the method.

6.8. Formal verification.

218



Chapter 6. Conclusions.

The X-machine model can be used formally to verify properties of algorithms.
This may be done by examining paths through the X-machine and comparing the
corresponding input/output function with a higher level description of the
algorithm.

However, proofs by hand are time consuming and error prone, so some methods
and tools that permit an automatic verification of the system requirements would
be desirable. From this point of view we consider that two directions are worth
pursuing.

Firstly, if X-machines could be trandated into models for which the theory
required for such automatic verification exist (e.g. CCS, the vaue passing
version), then these could be used to develop automatic verification tools based on
the X-machine model.

Secondly, we could consider a combined verification and testing strategy based on
X-machines in which the @'s are formally verified using some sort of automatic
tool and the whole system is then tested using the stream X-machine testing
method. In this case, the test set generated by this method could be used to test the
machine specification against its implementation and aso to verify that the
specification satisfies the system requirements.

One could argue that our stream X-machine testing method has certain similarities
to a verification method in the sense that, unlike traditional testing methods, we
are able to prove that if the implementation passes all the tests in the test set, then
it matches the specification. Also, some restrictions are imposed on the way in
which the implementation is constructed. However, the difference is that we do
not attempt to prove the equivalence of the two models (one representing the
implementation and the other the specification) starting from the lowest level of
the system. Instead, we assume that the @'s are implemented correctly and we
prove the equivalence of these models at a higher level. So, it appears that a
combination of formal verification and testing in which the lower level @s are
verified and then the integration of these @'s is tested will provide us with an
effective way of building fault-free systems.

Thereis clearly acase for hoping that formal verification and testing could be used
together to provide a scientifically based engineering approach to software
devel opment.

Obvioudly, this area requires much further investigation. The aim is to develop an

integrated specification, verification and testing methodology based on the X-
machine model. We hope to have made a start in this direction.

219



