University of Sheffield

Department of Computer Science

Automated testing of
Harel’s statecharts

Kirill Bogdanov

Submitted towards the degree of
Doctor of Philosophy
January 2000

Contents

1 Introduction
1.1 Software testing L.

1.1.1
1.1.2
1.1.3
1.14
1.1.5
1.1.6
1.1.7

Poor quality software
Testing means different things to different people . . .
Testing as a part of a process
Types of testing L.
Problems with testing and quality assurance
Achievements of the work to be described
Formal verification and testing

1.2 Introduction to the notation used in the thesis
1.3 An introduction to X-machines
1.4 An introduction to statecharts and uSZ

1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7
1.4.8
1.4.9
1.4.10
1.4.11

Ataperecorder Lo
Transitions 0o
The notation for labels of transitions
Connectors e
State hierarchy
Concurrency v v v vt i e e e
Broadcast communication
Static Reactions
History connectors
Step semantics L.,
An introduction to uSZ oL

1.5 Summary of the notation used

Test cases for simple statecharts

2.1 Introduction.o
2.2 Test Case Generation
2.3 Related testing methods

2.3.1
2.3.2
2.3.3
234

Finite-state machine testing methods
Disjunctive Normal Form Approach
Testing of process-algebraic specifications
Dataflow-oriented testing for X-machines

CONTENTS

24

2.5

3.1
3.2

3.3

3.4
3.5
3.6
3.7
3.8

4.1

4.2

4.3
4.4

2.3.5 CFTTapproach
Reduction of a test caseset size
2.4.1 Minimisationof C
2.4.2 The size of a characterisation set
Verification and validation of statecharts

Test cases for complex statecharts

Testing of statecharts with connectors
Hierarchy — OR-states
3.2.1 General Approach.
3.2.2 Interlevel transitions
3.2.3 OR-state refinement
Concurrency — AND-states
3.3.1 State multiplication. 0L L.
3.3.2 Communication of statecharts
3.3.3 Weak AND-state refinement
3.3.4 Strong AND-state refinement
Static reactions Lo
History connectors,
Generic statecharts L.
Off-page statecharts and diagram connectors
Aspects of statecharts which are not considered
3.8.1 Syntactic elements of statecharts
3.8.2 Non-Statemate semantics of statecharts

Test data generation

Design for Test
4.1.1 Introduction
4.1.2 Selection of externally accessible inputs and outputs .
4.1.3 T_completeness and output-distinguishability for stat-
echarts.o
4.1.4 Other design for test requirements
Generation of a test set
4.2.1 Simulation
4.2.2 Simple optimisations
4.2.3 Loops and growth of a test set wrt. m—mn
4.2.4 Reduction of the number of inputs to trigger transi-
tions reduces the test set oL
Test set execution and monitoring
Test result analysis

42
42
42
42
44

46
46
47
47
ol
52
54
54
o7
o7
99
60
60
61
62
62
62
62

65
65
65
67

CONTENTS 3

5 Requirements for the test method 79
5.1 Summary of the requirements 79
5.2 Explanation of requirements for statecharts 82

5.2.1 Minimality of the design (Req.1a) 82
5.2.2 Nondeterministic designs (Req.1b) 83
5.2.3 Excluding some transitions from the test (Req.1d) . . 85
5.2.4 Problems related to shared transitions (Req. 1le) . .. 86
5.2.5 Empty transition triggers (Req.1f) 90

5.2.6 Racing between transitions is not allowed (Req.3b) . . 92
5.2.7 TUnexpected chains of transitions may not occur (Req. 3c) 93
5.2.8 Correct implementation of transition labels and step

semantics (Req.4a) 97

5.2.9 Correct implementation of full compound transitions
(Req.4b) 98

5.2.10 A transition cannot enter a default connector explic-
itly (Req.4€) o 101

5.2.11 Transitions from default connectors cannot leave the
state within which they begin (Req.4f) 101

5.2.12 Transitions also cannot go from or terminate at im-
mediate substates of an AND-state (Req.4g) 102
5.3 Transitions which could be treated the same 102
5.3.1 isame transitions. L. 102
5.3.2 Consideration of parts of compound transitions 103

5.4 A summary of solutions to problems with shared transitions
and non-minimality 0oL 104
6 Proofs for the testing method 106
6.1 Formalisation of the state transition system of a statechart . 108
6.1.1 State hierarchy 108
6.1.2 Transitions — basic definitions and properties. 118
6.1.3 Full compound transitions 138
6.1.4 Transition priorities and structural determinism . . . 153
6.1.5 Paths 154
6.1.6 Multiplication types 155
6.2 Flattening of a statechart 157
6.2.1 Flattening of state hierarchy 157
6.2.2 Flatteningofpaths 162
6.2.3 Restrictions on an implementation by Req.4b 167
6.3 Behaviour of statecharts and X-machines 168
6.3.1 Simple statecharts 168
6.3.2 X-machines L o Lo 169
6.3.3 Behaviour of statecharts 173
6.4 Proofs of the merging rules without refinement 178

6.4.1 TCB for a substate of an OR state 178

CONTENTS 4

6.4.2 TCB for a flattened statechart 181
6.4.3 Mergingrules Lo 182
6.4.4 Proofs for the merging rules 187

6.5 Refinement of statecharts 195
6.5.1 Refinement of OR-states 195
6.5.2 Weak refinement of AND-states 198
6.5.3 Strong refinement of AND-states 201

6.6 Test data generation L. 201
6.7 Testing theorem 203
6.8 Future work — OR- and AND-connectors 206
7 Tool support 208
7.1 upSZ tool support 208
7.2 TestGentool 208
7.2.1 Requirements for thetool 209
7.2.2 TestGen graphical interface 209
723 Design 220
7.2.4 TImplementation 226
7.2.5 Future improvements of the tool 227

8 Case studies 229
8.1 Speed 230
8.1.1 Imntroduction, 230
8.1.2 Test set generation 230
813 Conclusion 231

8.2 Air 232
8.2.1 Imntroduction, 232
8.2.2 Design and implementation 232
8.2.3 Testing requirements and test data generation. 233
824 Conclusion 0., 236

8.3 The model of the hi-fistereo. 236
8.3.1 Imntroduction 237
8.3.2 Testing requirements 253
8.3.3 Test case generation, 256
83.4 Conclusion L 259
8.3.5 Tools developed to facilitate the work 260

9 Conclusion and future work 261
9.1 The summary of the workdone 261
9.2 Main problems solved in the course of the research 262
9.3 Advantages and disadvantages of the method developed . . . 263
9.4 Futureworko 264

9.5 Work in progress, not included in the thesis 265

CONTENTS

A Communication of a tester and a system under test

B Augmentation for t_compl. and out.-dist.

B.1

B.2
B3

C.1
C.2
C.3
C4

The tree approach for transitions
B.1.1 Disjunctive approach,
B.1.2 Syntax tree approach
B.1.3 Estimation of ‘difficulty’
B.1.4 Output-distinguishability
Augmentation of transitions which use real numbers
Delays as triggers for transitions
B.3.1 Generation ofdelays
B.3.2 Augmentation of the ¢tm function

method

Basic definitions oL
Merging rules for Wp method
Description of the Wp method
Usage of status information

267

269
269
269
270
271
272
273
273
274
275

List of Figures

1.1

1.2

1.3

1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

2.1
2.2

2.3
2.4
2.5

2.6

3.1
3.2
3.3
3.4

3.5
3.6

FSM which detects a b pairs in its input sequence by produc-

ing an output of 1 upon detection
A finite-state machine which counts the number of a b pairs

in its input sequenceo Lo oo
An X-machine which counts the number of a b pairs in its

input sequenceo oo
A tape recorder modelled as a statechart
The tape recorder with a C connector
The tape recorder with a substate statechart
The tape recorder with the flattened statechart
An illustration of OR-connectors
Compound and full compound transitions of Fig.1.8
The tape recorder with the search function
Fork connectors and their expansion
The tape recorder with a counter using static reactions
The TAPE_RECORDER state of the tape recorder with a

substate statechart oL oL

Faulty implementation of the tape recorder
An example of a statechart with its W containing sequences

oflabels
A possible implementation of the sample tape recorder
The faulty implementation with extra states
The sample machine to compare Z and X-machine testing

methods
Testing individual transitions

An illustration for the description of function defaultComplete
The tape recorder with an interlevel transition
Parallel development of a design and an implementation . . .
The faulty implementation which cannot happen if we keep

an implementation consistent with every change in a design .
Testing AND-states via state multiplication
Testing a non-deep history connector

11

11

12
13
15
16
17
18
18
19
21
22

27

29

31
32
32

39
40

49
92
53

LIST OF FIGURES 7

4.1

4.2

4.3

4.4
4.5
4.6

4.7

4.8
4.9
4.10
4.11

5.1
5.2
5.3
5.4

9.5
5.6
5.7

5.8
5.9
5.10

5.11

5.12

5.13
5.14
5.15

5.16
5.17
5.18
5.19
5.20
5.21

The case when we need to keep internal data in mind when
triggering transitions oL 66
An example of augmentation where the same testing input is

used for two transitionso L. 68
Connector-to-connector transitions and the corresponding com-
poundone Lo e e e e 70
A result of augmentation of a compound transition 70
A result of augmentation of a connector-to-connector transition 71

Transitions rendered not output-distinguishable as a result of

augmentation Lo Lo L oo 71
Independent augmentation of transition does not lead to output-
distinguishability L 0. 72
A tree-like simple statechart 75
A simple statechart with a singleloop 75
A simple statechart with two loops 75
A finite-state machine with outputs 76
The case when we have to look inside an OR state 82
The case when we have to consider static reactions 83
A substate statechart with nonexistent test case basis 84
Non-deterministic simple statechart producing deterministic
outputo 84
A statechart which is always nondeterministic 85
Another case when we have to look inside an OR state 86
A disconnected statechart resulting from removal of shared
transitions from that in Fig.5.6 86
An illustration why every statechart may have to be augmented 87
An example of an interlevel transition 87
The problem with incrementally testing AND-states via state
multiplication oL Lo o 88
The problem with incrementally testing AND-states with each

state tested separately oo 0L, 89
An example of the two full compound transitions with one of
them without a trigger 91
Full compound transitions without triggers 91
Anexampleofracing 92
The tester which is not embedded in a statechart but com-
municates with it throughaport 93
An augmentation to tell a sequence of transitions from outputs 94
An illustration of masking between two transitions 94
The tester embedded in the statechart under test 95
An example of a statechart with deeply nested states 99
An example of a problem with default connectors 100
A transition cannot explicitly enter a default connector . . . 101

LIST OF FIGURES 8

5.22
5.23

5.24

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

6.12
6.13
6.14
6.15
6.16

6.17
6.18
6.19

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

8.1
8.2

The prohibited default transition 102
An example of transitions which could implemented by the
same code e e e e e e e e e e e 103

Parts of compound transitions which could be treated i_same 103

The diagram which is to be shown to commute 107
The state tree for the tape recorder 109
The state tree for the tape recorder with an AND-state . . . 109
An illustration of the Prop.6.1.5 112
An illustration of the proof of Prop.6.1.9 114

An illustration of the proof of Prop.6.1.10 and Prop.6.1.11 . 115
An illustration of lcoa returning a higher-level state than lca 132

An illustration of the proof of Th.6.1.31 132
Transitions from concurrent states entering concurrent states 136
Transitions from concurrent states entering a single state . . 136
Transitions from concurrent states entering an OR-state and

itssubstates 137
An illustration for the proof of Prop.6.1.52 146
An example of scope(fct) € p(scope(initial)) 147
The tape recorder with aclock 155
An example of path flattening 162
A commutative diagram for the proof that different paths

map to differentones L. 166
Behaviour of statecharts expressed using X-machines 174
An illustration of the Composition function 180
The tape recorder FSM with a sink state 204
The main screen of the TestGen tool 210
The expanded REW FF state 211
Expanded transition 0 0L 211
The “Test’ menu 212
Selection of ‘Test Inputs’ from the popup menu 213
Sample sequences of test inputs oL L. 214
Sampletest cases, 215
Refinement of an OR-state 216
Refinement of an AND-state 217
An annotation of a transition0 217
‘some states are equivalent’ error message 218
Selection of a trigger and an action for a transition 219
Selection of parameters for testing 220
The simplified class structure of the TestGen tool 222
The Speed case study 230

The design of the autopilot 233

LIST OF FIGURES 9

8.3
8.4
8.5
8.6
8.7
8.8
8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

B.1
B.2
B.3

The implementation of the autopilot 234
The control panel of the hi-fi 238
The data-flow diagram of the model 239
The statechart of the tape deck (CIRCUIT.TAPE). 241
An auxiliary input Lo oo 242
The main statechart of the model (STEREO_MAIN) 243

The statechart describing operations on a tape which could
be done concurrently with listening to radio, CD or auxiliary

input 245
Themixer i e 246
An auxiliary input part of the stereo 246
The timer e 247
The statechart allowing to display and modify the current time248
The generic statechart which displays time. 249
The STEREO_TAPE statechart 250
The PLAYING_TAPES statechart 251
The music sensor o 252
An augmentation graph L 0oL 270
An example of a syntax tree 271

A test data derivation graph composed using syntax trees . . 271

Abstract

The work described below attempts to provide a flexible method to improve
the quality of software development, by improvement in testing. It shows
how a formal testing method can be applied to the statechart notation widely
used in industry. The method focuses on testing implementations against
statechart designs and, subject to certain specific requirements, allows us to
prove that the implementation is behaviourally equivalent to the design, by
testing. The described testing method is based on the X-machine testing
method and utilises the ‘divide and conquer’ strategy to testing different
features of statecharts.

A design of a software system can be built top-down in a sequence of
refinements, i.e. constrained additions of some detail. If the implementation
is developed in parallel, certain faults become impossible. This allows us to
reduce the size of a test set dramatically.

The prototype implementation of the testing method has been built and
case studies evaluating its applicability to parts of real systems were suc-
cessful.

Acknowledgement

I would like to thank my supervisor, Prof. M. Holcombe, for his guidance
throughout the three and a half years. Many thanks to members of the
Verification and Testing Research Group in the Department of Computer
Science, the University of Sheffield and everyone in FT3/SM group in the
DaimlerChrysler, whom I met. Special thanks to H. Dorr, M. Fairtlough,
J. Hiemer, C. Jordan, B. Norton, S. Sadeghipour and H. Singh for useful
discussions, to R. Biissow and W. Grieskamp for help with 4SZ and to
R. Hierons for help with his testing methods.

This project is sponsored by the DaimlerChrysler.

Chapter 1

Introduction

1.1 Software testing

In this section we introduce the reader to the field of software testing and
related problems, outline approaches to testing and show where the work
described in the thesis can help to improve software quality. Much of the
background material is from the swtest-discuss mailing list [Fau99] which
is in the opinion of the author the best main list for discussions on the quality
assurance at present.

1.1.1 Poor quality software

Much of the software available today is of rather poor quality. Crashing
with possible data loss seems to be as normal as rain and despite seemingly
many complaints, things are not getting better. The main reason for poor
quality of mass-marketed software seems to be that the number of features
and time to market outweighs benefits of quality. Even more, companies
include explicit disclaimers that they are not liable for whatever happens to
the person using their software and sometimes a prohibition for a customer
to publish benchmarks of their products without their consent. Presently
they seek almost complete protection from a customer with a law proposal
in the USA [Kan99].

Industry involved in building safety-critical systems, appears to be quite
different to the one described above. Not only do they seem to care more
about quality, they are required by law to comply with certain standards.
Unfortunately, these requirements concern the process they follow and com-
panies seem to be able to get certification on the basis of process documents
rather than the product itself.

CHAPTER 1. INTRODUCTION 4

1.1.2 Testing means different things to different people

The term ‘testing’ is heavily overloaded. It could mean anything from ad-
hoc ‘breaking’ the system to generation of test sets using a formal design;
load or stress testing is also referred to as a form of testing. The same holds
outside computing too: the author has seen a tobacco advertisement banner
ending with words ‘test it’; whether it meant to evaluate the taste of the
smoke!, assess the quality of packing, properties of the filter, the number of
milligrams of tobacco packed, or whether it causes fatal diseases or not, it
did not say.

1.1.3 Testing as a part of a process

Testing has been traditionally viewed as a way to find faults in software,
by exposing it to inputs deliberately chosen to cause a malfunction [Mye79,
Pre94]. This rather destructive activity generally caused relations between
testers and developers to be poor and thus testers were advised to acquire
people skills to communicate problems without fighting the ego of develop-
ers. Thus, testing cannot in general be viewed on its own, but as a part of
a process.

Other parts of the process include bug/feature reporting, inspections of
different kind, configuration management and other activities. One can talk
endlessly about how these can be organised, but every such management ap-
proach has to be unique to an organisation using it since it is dependent on
the in-company culture, background of employees and other hard-to-capture
aspects. How well companies do in this respect, can be assessed with Capa-
bility Maturity Model [PCCW93] but universally-applicable recommenda-
tions are hard to make; one can only expect that the lower a company is,
the easier it is for it to climb up, but whether it would improve the quality
of the product they build is uncertain. In the thesis we do not cover process-
related aspects of quality assurance; instead, we look at the one very specific
part of it: testing.

1.1.4 Types of testing
Here we briefly describe different types of testing and their place in the
software lifecycle.

Software lifecycle

In this section we provide an overview of the waterfall software development
model.

lthe author must admit he is a non-smoker thus some of the statements could be
slightly inaccurate.

CHAPTER 1. INTRODUCTION 5

1. Initially, developers of a software product talk to their customers and
derive a set of requirements. They state what functionality is needed
and what additional properties such as reliability the software to be
developed has to achieve. Compliance of these requirements to what is
needed could be assured by prototyping, for example by construction
of an interface part of the system to be built and observation of a few
customers using it. This activity of making sure developers know they
are building the right product is called validation.

2. In consultation with the requirements, a design is built which is a high-
level description of the functionality the system is supposed to have.
Verification is the process of making sure that this design is compliant
with the requirements. It can be done by model-checking which is
essentially an enumeration of all possible behaviours of the system and
comparison of them to requirements, or theorem-proving, during which
a formal proof is made that the design satisfies requirements. The
former could be difficult to apply due to big size of the application’s
data space; the latter is generally hard to automate.

3. Coding, or implementing is the process of translation of a design into
code in some programming language. Errors introduced at this stage
can be discovered by testing. Testing of an implementation to assure
its correct behaviour w.r.t its design is the subject of this thesis.

Different types of testing

Testing is a process of supplying a system under test with some values and
making conclusions on the basis of its behaviour. In order to prepare those
values, test cases are usually derived and then populated with test data.
Test cases correspond to groups of data values which could be used; during
selection of test data we derive specific values. For example, a test case
could be z > 0 and we might choose 1 as test data.

Testing might be used to investigate whether a system under test satisfies
some properties. As well as many others, these could be stability under
load, ease of use (usability testing) or the one we consider further, correct
implementation of a design. Similar to the CMM model, there is one for
maturity of testing in an organisation [KP98].

It is possible to distinguish white- and black-box testing. White box test
methods include different ways of code coverage where test cases are sup-
posed to cover paths through the code without consideration of the design.
Black-box testing derives test cases and data from specification and as such
is better at uncovering differences between intended and implemented be-
haviour. This is the type of testing the author’s research has been focusing
upon.

CHAPTER 1. INTRODUCTION 6

While most testing methods are informal [Mye79, DN84, WTF94, RR93],
those making formal claims on the basis of testing not revealing faults have
been developed for finite-state machines [Cho78, FvBK'91], X-machines
[HI98, TH98b, TH98a, THI7] and CSP specifications [PS96a]. Such testing
methods make specific assumptions which together with results of testing
allow one to show correct behaviour of implementations. Unlike informal
methods, where one could also try to state such assumptions, formal meth-
ods make them precise and easy to verify. Not all methods strictly fall in
either of these two groups: [DB94] features a unique combination of formal
and informal approaches.

1.1.5 Problems with testing and quality assurance

Many problems with the type of testing considered are mainly due to the
following two causes:

1. Lack of effective methods and tools to do testing.

(a) For testing based on a design, we need to construct tests which
could demonstrate the presence of the specified behaviour and
absence of undesirable behaviour. A variety of testing methods
developed for this purpose exist. Although authors might claim
great results, they may only be valid in a particular area. For
this reason, there is an approach to have some kind of ‘maturity’
for such empirical studies [HHH'99].

Additionally, many methods are hindered by an absence of a com-
plete specification and supported by tools which are no more than
prototypes and are not ready for general use. Finally, some spec-
ification languages used by tool authors while nice on their own,
are not likely to be widely acceptable due to limited scope of their
application or complex notation.

(b) Generating test cases could be difficult by hand even for mod-
erately sized systems; some automation is often necessary. A
classical example of a snake oil includes capture-playback tools
for testing graphical interfaces. The main problem with them is
that when the layout of a screen changes, such as when a button
is moved to another screen, much of the test set of it has to be
captured once again. This type of problems can be solved by
using a system where testers specify test cases in some generic
way and the system derives test data for it. For example, we
could specify the test case for the button considered by clicking
it rather than an area on some screen and then testing the dialog
which appeared. In this case, it is applicable regardless which
screen the button is used on.

CHAPTER 1. INTRODUCTION 7

Scalable tool support is often difficult to achieve since at the early
stages of automation simple tools (such as capture-playback) are
easy to deploy while more complex ones (tools involving pro-
gramming) require considerably more effort to start with. As a
project grows, simple tools may become a burden such that all
time would be spent maintaining an existing test suite while the
second class of tools could then provide ease of maintainability.

2. Absence of a proper process of software development.

(a) In general, the waterfall model, while perhaps useful for contract
development, appears to be too restrictive in many cases. The
process could be significantly improved by, for example, replacing
the waterfall model with the spiral one [Pre94]. Nevertheless, in
many cases companies are unwilling to change the way they do
things in order to improve quality and instead try to obtain ‘magic
bullet’ test tools which are supposed to solve their problems.

(b) Testing has to be aimed: we could wish to find problems with the
system [Mye79] (such as security holes), ensure correct operation
under use from a typical user [HT90] (who is not expected, for
instance, to press more than 10 keys at the same time), or make
certain that the system does not catastrophically malfunction
(includes incorrect data as well as load testing).

1.1.6 Achievements of the work to be described

In this thesis we focus on testing as a way to ensure correct implementation
of a system, refer to item 1 above. The method has been developed for
automated testing of implementation of systems specified with statecharts;
reference tool support has been built. The author hopes that this work
would be useful to overcome the stated problems as described below.

e Statecharts is a widely-used language for the specification and design
of reactive systems [LHHR94, FJW97, BGK98]. Its graphical nature
making it easy to understand, and the support of the Statemate tool
contributed to its success.

e Statecharts are easier to test than many conventional languages. This
is a result of having a state transitions system and transitions defined
separately, making separate testing of them possible.

e The testing method provides provable correctness. Based on the as-
sumptions taken during test set generation, and testing not revealing
faults in an implementation, we can show behavioural equivalence of
the implementation to the design. The possibility of this for the devel-
oped testing method, compared to many others, is its great advantage.

CHAPTER 1. INTRODUCTION 8

Had the method been developed a few years ago, a situation [Fel98]
where a collision-avoidance system, described in [LHHR94, HL96, CAB* 98],
nearly caused two crashes in one day, could probably be avoided.

e The testing method developed lacks complete automation. This is
inevitable since many problems of test derivation are computationally
very difficult. In addition, complete testing means infinite testing and
consequently some assumptions have to be made by a human tester to
reduce the size of a test set to a manageable size.

In the context of safety-critical systems reliability is paramount and
thus complete automation is not necessary.

In non-safety critical software industry, provable correctness is not al-
ways necessary. In such cases, many conditions could be relaxed. We
still gain benefits from its properties such that after relaxing some as-
sumptions, we can derive the type of faults which does not get detected
by the modified method, thus helping a tester to make decisions.

e Refinement is a process of incremental addition of new functionality
to a system without significant changes to the present one. In terms
of testing, constrained changes of a system allow unchanged parts of
it not to be re-tested again. Testing of refined systems is described in
[Ipa95, TH98a| for X-machines and in [SCW98, DB98, HHS86, Spi92]
for the Z notation [Toy98, Spi92, WD96).

e The TestGen tool supporting the method is not ready for industrial
use yet, although work on it continues in the followup project and
TestGen will be improved to allow Daimler-Chrysler AG to try it on
its projects. If this proves to be useful, a company will be contracted
to build a commercial version of the tool and it will be used to improve
the quality of software in the products of Daimler-Chrysler AG.

1.1.7 Formal verification and testing

Formal methods are used in industry mostly for verification of properties
of a design by model-checking and/or theorem-proving where they were of
benefit to a number of projects [CW96]. A lot of the work is focused at
verifying whether a design has some required properties [Cor96, BCM 92,
BCCZ98, CGH94, CJ95]. As for ascertaining that the code is correct with
respect to a design, most of the time either a compiler is proven correct or the
code generated by it is proven to be correct [BKN, Sac98, PSS98, Shi95].
Unfortunately, this does not shed much light on what will happen when
that code is actually run since when proving correctness we assume that
an operating system and hardware are behaving in an expected way. In
practice, such assumptions may be wrong but defects are hard to detect;

CHAPTER 1. INTRODUCTION 9

they may nevertheless cause a system to fail. For example, the author’s
P233MMX processor behaves well at the clock speed of 233MHz but when
overclocked to 266MHz, certain programs fail unexpectedly while others
behave properly. Testing of a program in the context of a target system
could help us to reduce a risk of developing a system which is unreliable.

In the area of statecharts, a great amount of effort was invested in model-
checking [CAB198, Day93, CK96, PS97b, BW98, WVF95], most of which
is based on Binary Decision Diagrams (BDD) [And94]. Relatively informal
approaches can also be used [HL96]; usage of verification techniques to gen-
erate test cases is provided in [FJJV96, GH99]. Unfortunately, very little has
been done on formal testing for designs done in statecharts. Apart from the
testing method described in this thesis which is based on X-machine testing
method, alternative approaches exists. [Bur98] focuses on the conversion of
statecharts into Z and using a Disjunctive Normal Form (DNF) approach to
test them; a later work [Bur99] described testing of behaviour of transitions
with DNF, illustrated by a case study. [OA99] performs different forms of
design coverage while [KHC'99] additionally applies dataflow testing; none
of the two are formal. The method described here was presented at con-
ferences and workshops [Bog98, BHS98a, BHS98b|, described in a report
[BH98] and published in conference proceedings [BHS99]. Earlier work on
it was provided in [Bog97, HB97, BH97, Bog96].

1.2 Introduction to the notation used in the thesis

We will work with either detailed specifications or high-level designs, to

which the method developed is most applicable. For this reason, an imple-

mentation is tested to conform with its design or, in other words, model.
Further, a number of notations will be used:

e X-machines, introduced in Sect. 1.3 on p.10. This is a very powerful
extension of finite-state machines without a considerable increase in
the complexity of testing.

e Harel’s statecharts, introduced in Sect. 1.4 on p. 12. Statecharts intro-
duce many constructs to finite-state machines and thus are difficult
to test. This kind of statecharts has been implemented with some
additions in the Statemate(tm) tool by Ilogix.

o uSZ, introduced in Sect. 1.4.11 on p. 24. This notation combines stat-
echarts with Z and temporal logic, replacing some of the constructs
and adding new ones.

e 7, described in [Spi92, Toy98, WD96]. We expect the reader to be
familiar with it and do not provide an introduction.

CHAPTER 1. INTRODUCTION 10

Due to the complexity of the notation and, in parts, some confusing seman-
tics, not all constructs of Statemate and uSZ statecharts are covered. The
testing method considers main features of syntax and semantics, present
in the same form in both Statemate statecharts and uSZ without changes.
These elements are what we call Harel’s statecharts. Other features are
covered briefly. For this reason, the term statechart generally refers to this
subset considered and features specific to one of the notations are marked
as such. Due to the author’s greater familiarity with Statemate rather than
uSZ statecharts, specific features are almost always Statemate ones. Usage
of the Z notation in the thesis essentially follows the uSZ notation [BGGK97]
with slight changes to facilitate presentation.

We write ‘refer to Sect.1.2.3 on p.45’ to mean a reference to something
within the subsection 3 of the section 2 of chapter 1. The page number
gives the location of an element referred to. For references to theorems,
propositions, testing requirements, definitions, chapters and appendices, we
use the following abbreviations:

‘ element ‘ abbreviation ‘ example ‘
theorem Th. Th.1
proposition Prop. Prop.1
requirement Req. Req. 1
definition Def. Def. 1
chapter Chap. Chap.1
appendix App. App.1

All requirements for the test method are described in Chap.5 on p.79.

1.3 An introduction to X-machines

Finite-state machines (F'SM) are widely used to teach people programming
as this form of graphical notation is easy to understand. Non-trivial systems
cannot be modelled in this way due to lack of data representation, because an
approach to model data with states leads to an unmanageable expansion in
the number of them, referred to as state explosion. X-machines are similar to
finite-state machines and have an explicit mechanism for operations on data.
As a result, they are vastly more powerful and at the same time resemble
finite-state machines such that testing methods developed for them can be
applied to X-machines. In this section we provide an introduction to X-
machines; statecharts and uSZ will be covered in those that follow and the
testing method — in Chap. 2.

Consider a finite-state machine given in Fig. 1.1. Transitions have a trig-
gering input (before /) and an output (after /), such that a/0 is triggered
by a and produces 0 as well as changing a state. When this machine is sup-
plied with an input sequence, every element of it triggers a single transition

CHAPTER 1. INTRODUCTION 11

a/0

EOWRO=t

b/1

Figure 1.1: FSM which detects a b pairs in its input sequence by producing
an output of 1 upon detection

in the machine and the output of it can be observed by a user (we assume
that all states are final), but not the next state. For instance, a sequence
a a bb generates output 0010 and traverses states

Consider a more complex example where we try to count the number
of times a b occurred in the input sequence. In this case, we have states
corresponding to Oth count, 1, 2 and so on, resulting in almost twice as
many states as the maximal count we allow. This is depicted in Fig.1.2. X-

Figure 1.2: A finite-state machine which counts the number of g b pairs in
its input sequence

machines avoid this state explosion by using explicit data and functions on
transitions. It means that instead of an input/output pair on a transition, we
could have something more complicated, which modifies an internal memory
of a machine. A transition diagram for the X-machine is depicted in Fig. 1.3.
Functions get,, b_ignore and b_count are defined as follows:

get_a(counter,a) = (0, counter)
b_ignore(counter,b) = (0, counter)

b_count(counter,b) = (counter + 1, counter + 1)

CHAPTER 1. INTRODUCTION 12

get_a

b_ignore (| ‘e get_a

b_count

Figure 1.3: An X-machine which counts the number of a b pairs in its input
sequence

where o is the current element of the input sequence, and counter is the
memory variable representing the counter. The result of every function
consists of an output and the new counter value. Formally X-machines are
defined in [HI98, Ipa95, Lay92] and Sect. 6.3.2 on p. 169.

Usage of an X-machine allows us to avoid the great increase in the num-
ber of states and provide a seemingly easy to understand and test example.
Other nice properties of X-machines relate to languages and computability
[BGGI8, THI6, Ipags].

1.4 An introduction to statecharts and uSZ

Statecharts is a specification language derived from finite-state machines.
The language is rather rich in features including state hierarchy and concur-
rency. Transitions can perform nontrivial computations unlike finite-state
machines where they contain at most input/output pairs. In this section
we describe Statemate statecharts [Har87, HPSS87, HN96, NH95, HLN 90,
MLPS97, Har97, HG96, I1095b]. Specific constructs, the testing of them and
some alternative semantics are given in Chap. 3 on p. 46.

1.4.1 A tape recorder

Consider a simple tape recorder model capable of doing all the standard
functions like play, rewind, fast forward, stop and record as well as changing
a side of a tape when the button play is pressed during the playback or when
a tape ends. The statechart is shown in Fig.1.4. STOP is the initial state,
indicated by the transition from the blob (described in Sect.1.4.5 on p. 16).
Transition names are selected to reflect user actions, i.e., play occurs when
the user presses the play button, rew_or_ff occurs if either rew or ff buttons.
The direction transition is triggered by the play button to change the side
of a tape or by the tape_end event when the current side has ended.

In the following, the typewriter font is used for TestGen implementation-
related details such as class names; underline font — to denote input and
output events and variables. Transition names are given in italics and state
names are CAPITALISED.

CHAPTER 1. INTRODUCTION 13

play
@ PLAY REW_FF

direction

button_stop play
rew_or_ff

K} rec
STOP RECORD

stop

Figure 1.4: A tape recorder modelled as a statechart

The tape recorder communicates with a keyboard and a tape drive. It
serves as a controller which interprets user’s button presses and sends ap-
propriate commands to a tape drive. Input variables are events play, stop,
rec, rew, ff and tape_end. Output variables are ffdirection and ‘operation.
They are the commands which tell a tape drive what to do. The operation
output can have one of the following values: stop, play, record, move. The
boolean variable ff direction specifies the direction of a tape, with ¢rue mean-
ing forward tape movement. During playback or recording it also implies
the side, with side A being played or recorded forward and B — backward.
The communication to a tape drive is bidirectional: the controller is notified
when a tape has stopped using the event tape_end.

1.4.2 Transitions

It is possible to specify functions on transitions of our tape recorder as

stop : df stop V df tape_end/df operation’ A vl operation’ = stop

button_stop : df stop/df operation’ A vl operation’ = stop

direction : df play Vv df tape_end/ff direction’ = = ff direction

play : df play/df operation’ A vl operation’ = play

rec : df rec/df operation’ A vl operation’ = record

rew_or_ff : df rew Vv df ff/df operation’ A vl operation’ = move

The part before the ¢/’ sign means the trigger, i.e. the precondition which is
required to become true for a transition to occur. The stop transition will
occur if event stop is generated; the predicate that an event is generated is
expressed via df event-name. When a transition executes (we also use the
term fires), operation carried out is called an action. It is specified after
the ‘/’ sign. For the stop transitions above, actions set operation to stop
in order to stop the tape; the predicate specifying the value of an event is
given by vl event-name’ = value; ff direction is assigned directly since it is

CHAPTER 1. INTRODUCTION 14

an ordinary variable rather than an event. The difference between the two
is such that after events are generated, they hold their value for a short
time and then revert to being undefined; ordinary variables do not lose their
value. We thus call events (such as operation or stop) event variables and
ordinary variables (such as direction) — persistent variables. df, vl and
events holding values are defined in uSZ.

Following the Z notation, the prime sign after variable names means val-
ues of variables after completion of an operation. For instance, ff direction’ =
= ff.direction means that the new value of ff direction is an inverse of the old
one.

With respect to event generation, we consider Statemate semantics where
transitions may only generate events, but cannot remove those already gen-
erated?. In principle, removal of events is not necessary since if a transition
does not generate one, it will become undefined on its own.

Transition functions whose precondition is satisfied are further referred
to as triggered. In order to make some functions triggered, we have to gen-
erate events and change memory; this operation is referred to as triggering.
A transition with triggered label may only occur when a statechart is in
its source state; such transitions are referred to as enabled. For example, if
we are in the STOP state and press play, then both the play and direction
transitions will be triggered, but only play will be enabled.

Transitions could be triggered by time. Considering tapes no longer than
C120 we could stop a tape after 1.2hr of playback since it would mean a
malfunction in the tape mechanism. This could be written as

stop : stop V tape_end V tm(play, 4320)/

df operation’ A vl operation’ = stop

The tm(play, 4320) expresses an event occurring 4320 seconds after play. We
use the notation of Statemate for tm.

1.4.3 The notation for labels of transitions

In the rest of the thesis, except for the hi-fi case study, we use the abbre-
viation for notation such that an event name on its own means df event if
used on the left of / and event generation (df event’) — on the right. For
instance, a A b/c A d stands for df a A df b/df ¢/ A df d’. Events with
values are not abbreviated.

Predicate or event expressions such as aa A bb can also be used on
transitions. This shortcut can be confusing since aa in aa/ could mean
either an event or a predicate named aa. We assume usage of / to mean
the former.

2This is necessary for Def. 6.3.9 on p. 175.

CHAPTER 1. INTRODUCTION 15

This notation for labels of transitions is used throughout the thesis since
it is seemingly easier to understand for very simple labels than the X-machi-
ne one. Complex ones are given in the notation of uSZ as it is thought by the
author to be more clear for the representation of the examples considered.

Often, we used the term ‘label’ to express both the name of a transition
and its functionality. Which of the two is meant will be clear from the
context.

1.4.4 Connectors

Statecharts may contain transitions with much functionality in common.
Special graphical connectors can be used to make a statechart more un-
derstandable; using C, S and junction connectors it is possible to separate
common parts. In the example, shown in Fig. 1.5, the C connector is used in
state REW_FF to enter an appropriate state when requested by a user. To

la la
D PLAY piay REW_FF D PLAY Pay REW_FF
direction direction stop
play playA button
rew_or_ff
button_stop
C rec button_stop rew_or_ff A button
button
’g stop |RECORD ‘g rec/\ button
STOP STOP RECORD
Sop stop

Figure 1.5: The tape recorder with a C connector

avoid drawing all that is shown on the right, including event expressions on
transitions, we can use the connector shown on the left. This can make the
statechart easier to understand and modify. If, for example, we decided to
change the trigger of button, only one transition would have to be modified
for the statechart on the left of Fig. 1.5, compared to three for the right part
of the figure.

The choice connector C allows us to enter it with a transition and con-
tinue from it using any of outgoing transitions, depending on labels on them.
In our example, we enter the connector when a user presses a button and
then follow the transition corresponding to the button pressed. The S one
is similar to the choice connector. The junction connector can be viewed as
the reverse of the above two; we can have a number of transitions entering
a junction and one leaving.

Transitions can be assembled from parts separated by connectors as
shown in Fig.1.5; they are called compound transitions (abbreviated CT).
For example, the effective transition entering the REW_FF state from the

CHAPTER 1. INTRODUCTION 16

STOP one on the left of Fig.1.5 is shown on the right of the same figure
between those states, with label rew_or_ff A button.

Since the considered three connectors are such that we can only enter
them with one and only one transition, and proceed by taking another one
and only one transition, they are referred to as OR connectors.

In addition to C, S and junction connectors, forks and joints can be used
to structure parts of transitions entering concurrent states. These connectors
are described in Sect. 1.4.6 on p.19.

History connectors allow the system to remember a state (or a number
of states) in a statechart within some state upon an exit of that state and af-
terwards be able to return to it. These connectors are considered in Sect. 3.5
on p. 60.

Diagram connectors are provided in Sect. 3.7 on p. 62.

1.4.5 State hierarchy

An example of a state hierarchy is shown in Fig. 1.6. There is a statechart in

D play REW_FF
PLAY
rew
direction F_ADVANCE REWIND
ff
button_stop play stop WN
rew_or_ff
. rec
STOP RECORD
stop

Figure 1.6: The tape recorder with a substate statechart

the state REW_FF which describes a behaviour of the tape recorder when it
is in that state. When we enter REW_F'F by taking the rew_or_ff transition,
the transition terminates at the border of REW_FF and does not lead to any
of the states inside. The blob indicates the beginning of a default transition
which is taken in this case. Usually it just points at some state to be entered.
Our case is more complicated as the default transition enters a C connector
such that the state eventually entered depends on the button pressed by a
user. A state containing a statechart is referred to as an OR state while that
without any — a basic one. The transition to the REWIND state consists
of two parts: the one entering REW_FF and the one entering REWIND.
The first one is a compound transition but it is not split using C, S and
junction connectors. Compound transitions going from states are called
initial compound transitions and those going from default connectors —
continuation compound transitions because when taken, they must follow
initial compound transitions.

CHAPTER 1. INTRODUCTION 17

play
PLAY
o play rew A—(play \Vstop) REWIND
direction \ F_ADVANCE
ff A=(play \/stop)
la stop
button_stop play rew_or_ff A rew
rew_or_ff A ff stop
.k rec
STOP RECORD
stop

Figure 1.7: The tape recorder with the flattened statechart

A statechart within a state (we call it a substate statechart) is left when
a transition from a state it is in, is taken. For example, if we take the play
transition, the REW_FF state is left regardless of the state, F ADVANCE or
REWIND, we were in. The equivalent statechart to that in Fig. 1.6 is shown
in Fig. 1.7 where the hierarchy and connectors of Fig. 1.6 are removed. To do
that, the state REW_FF has to be replaced by its contents. The two outgoing
transitions play and stop and the incoming rew_or_ff one need to be replaced
by the four corresponding transitions. Hierarchy of states imposes priorities
on transitions; to retain these priorities, transitions between F_ADVANCE
and REWIND have been appropriately modified in Fig. 1.7. Furthermore,
all transitions of the statechart are free of connectors.

Transitions in Fig. 1.7 represent those which are taken during steps in
the original statechart in Fig.1.6 because, according to the semantics of
statecharts [NH95], while taking transitions, we expect to enter basic states.
Such transitions are called full compound (abbreviated FCT) and consist of
an initial compound transition followed by a number of continuation CTs.
In the case where a statechart has no connectors, like the one in Fig. 1.7,
all its transitions are full compound. At any moment, we can take only
one full compound transition in every concurrent part of a statechart design
(described further in Sect.1.4.6 on p.19).

Fig. 1.8 shows a statechart with a number of transitions, on the left of
Fig.1.9 compound transitions of it are shown and on the right of Fig.1.9 —
full compound ones. The blob above the choice connector in Fig.1.8 is a
junction one.

Informally, sets of states which are left and entered by full compound
transitions are called configurations. It is formally defined in Def. 6.1.3 on
p.111. Sequences of transitions (not necessarily full compound or even those
which could be taken) are called paths and given in Def. 6.1.65 on p. 155.

Realistic designs may involve constructions of statecharts with many

CHAPTER 1. INTRODUCTION 18

Figure 1.8: An illustration of OR-connectors

Figure 1.9: Compound and full compound transitions of Fig. 1.8

CHAPTER 1. INTRODUCTION 19

states and transitions. These could be split into a number of statecharts,
by drawing the contents of an OR-state separately. Diagram connectors
are syntactical elements which allow us to have transitions between such
separately drawn statecharts which are parts of the same big one.

Restating what was said above, full compound transitions are considered
to consist of compound transitions, which terminate at or go from default
connectors. Compound transitions, in turn, consist of transitions separated
by C, S, junction, fork and joint connectors. This notation is slightly dif-
ferent from [NH95] where compound transitions are considered to consist of
transition segments; the described notation is used because it seems to be
more appropriate to the author. In the test case generation we consider only
compound and full compound transitions; connectors listed above are ex-
pected to be removed. For this reason, in subsequent chapters we can also
refer to a compound transition as ‘transition’; transitions which comprise
a CT are then (infrequently) referred to as ‘individual transitions’. When
mainly focusing on FCTs, compound transitions they consist of are referred
to as ‘individual CTs’.

1.4.6 Concurrency

Statecharts have constructs to express concurrency. For example, consider
an extension of the tape recorder which provides a search facility. A user can
get the tape to advance forward or backward not only when the tape recorder
is idle but also when it is playing or recording. The statechart is depicted
in Fig. 1.10. States containing concurrently executing statecharts are called
AND states. In this statechart we can have more than one full compound

CONTROL | SEARCH
|
|
D PLAY | REW_FF
direction |
| stop_rew] ff
play ‘
bUttOﬂ_StOp : rew or ff
| /_or_|
l
\\ rec | IDLE
STOP RECORD |
stop | 0/

Figure 1.10: The tape recorder with the search function

transition execute concurrently, provided they reside in concurrent states;
for example, we can take button_stop and stop_rew_ff.

Fork and joint connectors, referred to as AND connectors, can be used
similarly to C, S and junction connectors in order to structure transitions

CHAPTER 1. INTRODUCTION 20

entering or exiting a number of concurrent states. The joint connector is
used for exiting such a state, fork — for entering one. An example of usage
of a fork connector is shown in Fig. 1.11. The upper part is an enhancement
of our tape recorder where a user can press button_play from a standby mode
to make the device play. In the case the timer has not been set up, it will
also enter the set_time state where a user would be able to set the time.
At the bottom of the figure the equivalent statechart is presented. Dashed
forked lines in the bottom statechart represent the full compound transition
button_play A — time_set while solid lines — button_play A time_set. If we
enter a fork connector, we must take all outgoing transitions; for a joint
one, we have to take all incoming ones to enter it. Note that the usage of
AND connectors as described relies on the fact that we consider compound
transitions to go from or enter multiple states.

1.4.7 Broadcast communication

Statecharts feature broadcast communication, meaning that an event gen-
erated by some transition is accessible to labels in the whole statechart. For
example, changes in the direction could trigger transitions in order to change
‘A’ to ‘B’ on the status display of the tape recorder as well as, possibly, a stop
transition if recording was in progress but the new side is write-protected.

1.4.8 Static Reactions

Statecharts considered are always complete, i.e. their behaviour is defined
for every input. If there is no transition enabled from a given state, a static
reaction in that state may be executed. An explicit static reaction can be
defined for a state using a trigger/action pair similar to that of transitions.
The difference between the two is that a static reaction does not leave or
enter any state and thus its execution involves no continuation CTs.

If no transition or static reaction is enabled, nothing happens. In this
case we can assume that there is an implicit static reaction which does not
do anything. We call such a static reaction a ‘do nothing’ one. In the
case of the tape recorder, ‘do nothing’ static reactions are in all the states
since the controller is essentially idle until an event combination triggering
a transition occurs.

In a more complicated model of a tape recorder we could have a counter.
It can be incremented/decremented in static reactions of states PLAY,
RECORD and REW_FF (the direction of tape movement is given by the
[fdirection variable) and zeroed when tape is removed in the STOP state.
The trigger for them has to involve a timeout, implying that these static
reactions are executed periodically while we remain in appropriate states.
The reason for this is that a tape is expected to be moving all the time
when the system is not in the STOP state. Such explicit static reactions are

CHAPTER 1.

INTRODUCTION

OFF

PowerON

Power OFF

on]

button_play

21

not_time set

PowerON

Power OFF

T
|
|
!
I
D PLAY Pay REW_FF|
- |
direction |
stop ‘ time_set
|
button_stop| | play } SET TIME
rew_or_ff | -
|
L sty
|
! rec | ’ TIMER_OPERATING
STOP RECORD \
stop |
OFF

button_play N time_set _

button_play A — time_set —— —

=

play

direction

button_stop

play

A

rec

REW_FF

STOP

stop

RECORD

SET_TIME
=t
’ TIMER OPERATING

Figure 1.11:

Fork connectors and their expansion

CHAPTER 1. INTRODUCTION 22

depicted in Fig.1.12. The static reaction named counter can be defined as

D PLAY play REW_FF
counter counter

direction

stop

button_stop play o or ff
’g sToP RECORD
counter

stop

Figure 1.12: The tape recorder with a counter using static reactions

counter : df tm(counter_event, delay)/
tape_counter’ = tape_counter + tonum TapeDirc ff.direction A

df counter_event'

Here we use the counter_event event to cause counter to be executed peri-
odically. tonumTapeDirc converts the direction of tape movement to 1 or
—1.

1.4.9 History connectors

For a substate statechart, history connectors allow us to remember which
state we were in when we exited the statechart. Later, when we return back,
we enter this last state. For example, we could remember the state in the
REW_FF statechart and return to the correct tape movement state after a
pause. Deep history connectors are a variation of those described which deal
with the whole hierarchy under a given state including substate statecharts,
substate statecharts of substate statecharts etc. Instead of a single state,
they record a configuration.

1.4.10 Step semantics

In this section we describe the Statemate step semantics given in [NH95].
Observed difference between that provided and implemented in Statemate
is noted in Sect. 1.4.10 on p. 23.

Harel’s (Statemate) statecharts follow one of the two types of semantics:
asynchronous and synchronous. We consider them in turn.

CHAPTER 1. INTRODUCTION 23

Asynchronous step semantics

Assume that an environment the statechart is running in generates some
events or changes variables which enable transitions, for example, a user
could press the ‘play’ button. We then essentially take all enabled full
compound transitions and static reactions we can. Such execution of enabled
transitions is called a step. These transitions may in turn generate events
and make changes to variables. During the step we collect all changes and
apply them after the step has ended; all events active in the step which were
not generated again such as play are discarded. Consider play in Fig.1.10
to make changes which trigger stop_rew_ff. According to step semantics,
stop_rew_ff will become enabled in the next step. Additionally, since the
play event was removed, transition direction will not occur in the next step.
The same procedure is applied for the following step.

After a number of steps, no transitions or static reactions will be enabled
and a superstep is considered to be finished. A superstep is a reaction of
a statechart to an external stimulus; in asynchronous step semantics it is
assumed to complete instantaneously to an environment the statechart is
operating in, i.e. much faster than an environment may notice. In principle,
infinite supersteps are possible but are not useful. This may happen, for
instance, if a static reaction is always enabled, but will not occur in Fig. 1.12
since counter refers to time which does not advance during a superstep.

Transitions taken in a step are those which are enabled and do not con-
flict®. For example in Fig. 1.6, if rew and stop transitions are both enabled,
we take stop because it goes on a higher level in a state hierarchy. We say
that stop has a higher priority than rew. Also, stop_rew_ff and button_stop
can be taken at the same time in Fig. 1.10 because they reside in concur-
rent states. Conflicting transitions are those which are enabled and have
the same priority such as rec and play from the STOP state; this implies
nondeterminism which we prohibit (Req. 1b on p.79).

Specifics of Statemate step semantics

Implementation of statecharts in the Statemate tool has a minor difference
from the semantics described here, specifically, it makes an empty step when
no transition or static reaction occurs at the end of a superstep. This,
however, does not change the observed behaviour and thus can be ignored.

Synchronous step semantics

In this step semantics a system’s reaction to the environment is a single
step rather than a complete sequence of them. Events at every step are

3Refer to Def.6.1.30 on page 131 for the formal definition.

CHAPTER 1. INTRODUCTION 24

those which were generated at the previous step and those generated by the
environment.

This semantics does not involve a possibility of a statechart entering
an infinite sequence of steps within the same time moment. Since a rather
limited number of transitions occur in response to stimuli by environment,
it makes statecharts easier to manipulate and observe. For this reason,
statecharts are required to exhibit this semantics during testing (refer to
Sect. 5.2.7 on p. 95 and Sect. 6.6 on p. 201 for details).

The two types of semantics of statecharts

Unlike many other types of semantics based on instantaneous feedback
[PS91], Statemate semantics can be considered to exhibit both conjunc-
tional and compositional parts while [PS91] only has a conjunctional one.
Here conjunctional semantics means that we consider all transitions taken as
a conjunction. As such, conflicting assignments to variables are disallowed
which also eliminates possibilities for an effect of a transition execution to
be contradictory to its cause (as in a/- a, [vdB94]). Statemate semantics
is conjunctional within a step which means that an order of execution of
parts of full compound transitions in the same step does not matter since
all those parts are expected not to overwrite each other’s changes. On the
superstep level, semantics is compositional: the behaviour of a statechart is
a composition of steps it consists of. With appropriate restrictions on transi-
tions, they will exhibit the same behaviour in both semantics. Generalising
on this, a new semantics of statecharts can be developed which could then
be restricted to comply with a least two semantics, Statemate and [Per95].
Here we omit the description of this generalisation, called ‘Independence
Theory’ (the title reflects that transitions that produce the same behaviour
in both conjunctional and compositional semantics, are called independent).
It is expected to be completed and published in the future.

1.4.11 An introduction to uSZ

uSZ notation has been developed in order to combine formal and informal
approaches [BG98, GHD98, Web96, BGGK97] in the design of safety-critical
reactive systems. uSZ uses Statemate semantics of statecharts but data
transformations are specified in Z unlike Statemate which uses a combination
of a special notation with a Pascal-like programming language.
uSZ considers software systems to consist of interconnected process classes.

Data flow and aggregation between them is specified in the structural view,
which corresponds to activity-charts in Statemate. Behaviour of every pro-
cess class is given by a statechart; Z is used to express data and its trans-
formations. The former aspect of behaviour is given by the dynamic view
and the latter — the data view.

CHAPTER 1. INTRODUCTION 25

Consider the tape recorder provided above in Sect.1.4.1 on p.12. The
communication with users and the tape controller is handled through inter-
faces called ports, which can be described as follows:

taperecorder
PORT Keyboard INPUT play, stop, rew, ff, rec
@ay, stop, rew, ff, rec : signal

The port definition is placed inside the process class taperecorder it is a

part of. INPUT declares the above events as inputs to the tape recorder.
The mechanism handling tapes can be given the following commands:

taperecorder
’70PERATIONTYPE ::= stop | play | move | record

The boolean type, used by the ffdirection variable, does not exist as
such in Z; for this reason, we define a free type provided below:

B ::= TRUE | FALSE

Then we can write

— taperecorder
PORT Controller
Hdirection : B
operation : event OPERATIONTYPE
tape_end : signal

INPUT tape_end

signal above is a uSZ boolean event type, i.e. tape_end is an event variable
which does not have a value when defined. Unlike it, operation does; its
value in this case is a command to a tape drive.

With the provided definition of ff direction, we have to express assign-
ments and negations of it explicitly, for instance ff direction’ = — ff.direction
from Sect.1.4.2 on p. 13 has to be rewritten as

fdirection = TRUE = [f.direction’ = FALSE
ff.direction = FALSE = ffdirection' = TRUE

We can specify transitions using Z schemas as follows:

CHAPTER 1. INTRODUCTION 26

— taperecorder

— Stop
=ZKeyboard
A(operation) Controller

(df stop V df tape_end) A df operation’ A vl operation’ = stop

= above means that the stop transition is using keyboard events but is not
generating any (and it cannot anyway due to the INPUT declaration above).
A(operation) Controller means that only operation event is modified, i.e.
generated by the stop transition and everything else in the Controller port
is unaffected. Other transitions could be specified similarly.

Data of the tape recorder, such as a counter, can be defined as

taperecorder
DATA counterDATA —————— — INIT counterDATA

counter : N counterDATA

counter =0

Counter is defined in the schema counterDATA which is marked to be a part
of a data space of a class taperecorder using the DATA keyword. The initial
value of data is described in the schema marked with INIT.

USZ contains many other elements, most of which we shall not consider
in this thesis. Understanding the differences between puSZ and Z is not
important for understanting the rest of the thesis.

1.5 Summary of the notation used

When talking about a statechart, ‘main statechart’ means an enclosing stat-
echart. Consider the TAPE_RECORDER state in Fig.1.13; when talking
about Fig. 1.6, we would refer to it as the main statechart*.

The term ‘substate statechart’ is used to denote a statechart consist-
ing of immediate substates of a given state. Which state is meant will
be clear from the context. For example, REW_FF is a substate statechart
of TAPE_RECORDER in Fig.1.13 and of the mainstatechart in Fig. 1.6.
For substate statechart F_ADVANCE, REW_FF can be considered as the
main statechart.

1t is essentially a synonym to the root state of the state hierarchy as described in
Sect.6.1 on p.108 but when we talk about merging rules, mainstatechart refers to a
parent of some state which would not generally be the root one.

CHAPTER 1. INTRODUCTION 27

TAPE_RECORDER
play REW_FF
PLAY
rew
direction ‘F_ADVANCEt:‘ REWIND ‘
ff
button_stop play stop w
rew_or_ff
rec
STOP RECORD
stop

Figure 1.13: The TAPE_RECORDER state of the tape recorder with a
substate statechart

In the thesis, we use terms automaton and finite automaton as a synonym
to a finite-state machine. An acceptor is used to refer to an automaton
without outputs.

‘X-machine’ can be used to refer to simple statecharts (this is made
possible by Prop.6.3.4 and Th.6.3.10) and eztended finite-state machines
(EFSM) , mentioned in [TS95, LFHH].

URLs of the form http://(espress/...) refer to the private area of
the BSCW server used by some members of the ESPRESS project.

In predicates we assume intuitive priorities of operations, such that A
taking precedence over V; < and =- having one of the lowest priorities.
For set operators U, N and \ we assume equal priority of them and left-
associativity. Most of the time, brackets are used to remove ambiguity and
end-of-line conjunctions separate unrelated predicates. The number of Z
constructs utilised is kept to a minimum, for instance, A, 4 and schema
expressions were generally avoided.

Definitions end with the horizonal rule (—), proofs of theorems
and propositions — the box (O) symbol.

Other notational details are given in:

Sect.1.2 on p.9 — overview of formal notations and abbreviations of
references to different parts of the thesis,

Sect.1.4.1 on p.12 — usage of underlining, italics, capitalisation and the
typewriter font to refer to input/output variables, transitions, states
and TestGen implementation - related details respectively,

Sect.1.4.2 on p.14 — usage of Statemate notation for the timeout func-
tion,
Sect.1.4.3 on p.14 — abbreviations of transition labels,

Sect.1.4.5 on p.19 — usage of the ‘individual’ term.

Chapter 2

Test case generation for
simple statecharts

In this chapter we describe the testing method and how it can be ap-
plied to simple statecharts which do not contain state hierarchy and con-
currency. Such statecharts (Def.6.3.1) are behaviourally-equivalent to X-
machines (follows from Prop.6.3.4 and Th.6.3.10). For this reason, the
testing method for X-machines can be used for simple statecharts without
changes. Test data generation is described in Chap. 4.

2.1 Introduction

The testing method for X-machines [TH97] has Chow’s W method [Cho78]
as a foundation. The testing method is based on a separation of function
and transition diagram testing. It concentrates on testing of the transition
diagram; transitions of an X-machine are assumed to be tested before, which
can be done, for example, using the disjunctive normal form (DNF) approach
(Sect.2.3.2 on p.38). As a result of the testing not revealing faults, the
implementation' is proven to be behaviourally-equivalent to the designed
one. In this chapter we describe the testing method for simple statecharts
which is the same as that for X-machines.

According to the method, we test every transition by visiting every state
and generating events to trigger it from that state. Then we should check
the state that that transition has led us to, against the designed one. For
example, to test the play transition from the state REW_FF to PLAY in
Fig. 1.4, we should:

e Starting from the initial state STOP, enter REW_FF by generating
rew. The operation should change to move, assuming that it means a
command to a tape drive to begin tape movement.

'We assume it can be modeled as an EFSM.

28

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 29

e Trigger play by generating play and observe the operation changing to
play.

o Test that we entered the PLAY state. This can be done by generating
the tape_end event to trigger direction as transition direction exists

only from the PLAY state. After triggering it we should observe the
modification in the ff direction variable.

Note that for every executed transition we need to observe certain output
changes which make us confident that we executed the right transition.

@ PLAY REW_FF @ play

direction

button_stop play few or ff

k rec
sToP RECORD

stop

Figure 2.1: Faulty implementation of the tape recorder

For example, if the implementation is faulty as shown in Fig. 2.1, the play
transition does not change a state from REW_FF to PLAY. Thus when
trying to trigger direction with the tape_end event after invoking play, we
invoke the stop transition. It will produce an output which is different from
the output of direction (ff.direction will not change) and we shall be able to
report the fault.

In addition to testing play between those two states, we need to test its
existence between STOP and PLAY as well as to make sure that it does
not emanate from any other state. The latter test is needed because in a
faulty implementation the transition play could exist from some state other
than REW_FF and STOP. To perform this test, we need to visit PLAY
and RECORD states and generate the play event. This should invoke the
direction transition in PLAY and a ‘don—othing’ type of static reaction in
RECORD.

2.2 Test Case Generation

During test case generation for statecharts, we treat them as finite state
acceptors with inputs being transitions labels. The result of the test case
generation is a set of sequences of transition names such as rew_or_ffplay.
In order to construct it, we shall need to build auxiliary sets. There are
three of them:

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 30

Set of transitions (denoted by ®) is the set of transition labels of a stat-
echart. We need to know it since the test method tests an equivalence
between transition structures of the design and an implementation.
For our example,

& = {stop, play, rec, rew_or_ff, direction, button_stop}.

State cover (denoted by C'). To perform testing, we need to visit all states.
A state cover C is a set of sequences of transition labels, such that we
can find an element from this set to reach any desired state starting
from the initial one. For our example this will be

C = {1, play, rew_or_ff, rec}.

Here we use 1 to denote an empty sequence of transitions. In the
Tab. 2.1 the list of states is shown together with the corresponding el-
ements of C. If the state RECORD is reachable only by going through

State Sequence
STOP —the initial state | 1

PLAY play
REW_FF rew_or_ff
RECORD rec

Table 2.1: The state cover for the tape recorder example
the state PLAY, C would be

Crp = {1, play, rew_or_ff, play rec}.

Characterisation set (denoted by W). A characterisation set allows us
to check the state arrived at when triggering some transition, i.e. if it
is the one expected. Above, in Sect.2.1 on p.28, we had to check if
we arrived at the PLAY state or not. We did that by trying to follow
a path (a sequence of transitions) which exists from PLAY and not
from any other state. For every pair of states, we can construct a path
which exists from one of them and not from the other. For example,
for states STOP and REW_FF we may select stop as it exists from
REW_FF and not from STOP. Note that the play transition exists
from both STOP and REW_FF and thus cannot distinguish them.
Such sequences for every pair of states comprise a characterisation
set. In our case,

W = {stop, play}.

Each element of this W is a sequence consisting of a single transition.

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 31

A more complex W has to be constructed for a statechart depicted in
Fig.2.2. In order to distinguish between B and C, we have to try b b.
Thus W = {a, bb}.

Figure 2.2: An example of a statechart with its W containing sequences of
labels

With sets ®, C' and W, we can construct a set of test cases to be
T = (CUC*®)+({1JUdUD’>U...Ud™ ") x W (2.1)
where
n is the number of states in a design (4 in our example),

m is the maximum expected number of states in the implementation,
to be described later in this section,

C U C * @ is referred to as a transition cover,

The set multiplication operation A * B for sets of sequences A, B is
defined tobe AxB ={ab|a € A,b€ B}, ab means a concatenation
of sequences a and b.

For testing we further assume that the design of a system does not con-
tain redundant states (having the same behaviour as some others), or those
with no transitions leading to them. We call this property minimality. m
above refers to the maximal number of states in a minimal implementation.
We do not require the implementation to possess this property. It is still
possible to estimate the number of states in a behaviourally-equivalent one
which does satisfy it.

If we consider testing a faulty implementation which may have one or
more missing states, it is possible to assume that the maximal number of
states in such an implementation is at most n. With m = n,

T=(CuCx*x®)x W.

This test set deals with visiting every state (the C' part of the transition
cover) and verifying it (by applying W). We are then trying every transition
from it (C * ® part of the transition cover) and checking the expected state
(by applying W).

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 32

la
D PLAY Pay REW_FF

direction tape_end_or_stop

rew_or_ff

stop play

ANOTHER_STOP

play
rew_or_ff

’g rec
STOP e stop
RECORD

‘ YET_ANOTHER_STATE ‘

stop

Figure 2.3: A possible implementation of the sample tape recorder

The way of testing implementations which may contain more states than
the appropriate design, m > n is illustrated below. An implementation in
Fig.2.3, has 6 states but m is 4 as the state yet_another_state is unreach-
able and another_stop is behaviourally equivalent to stop. Note that this
statechart cannot be used as a design for our method.

Consider the faulty statechart as shown in Fig. 2.4. The transition from

play
D PLAY REW_FF
direction
stop rew_or_ff
button_stop play ANOTHER_STOP
rew_or_ff rec
k RECORD stop
STOP rec

Figure 2.4: The faulty implementation with extra states

ANOTHER_STOP to PLAY is missing. The extra state ANOTHER_STOP
is reachable only from the RECORD one. When testing transitions of this
statechart using (C U C % ®) * W, we try them all from all states we can
reach using the state cover. Consequently, we do not try all transitions
from ANOTHER_STOP. In order to cope with extra states we have to try
sequences of more than one transition, such as all pairs of transitions, from
every state. From the state RECORD one of the pairs of transitions to be
tried will be stop rew_or_ff which will not bring us to the REW_FF state as
expected. Thus a fault will get revealed. The part of the set of test cases
where we try all pairs of transitions can be expressed as C x ®x ® x W. In
the case where we assume more than one extra state, we need to make these
sequences of transitions longer. For the possibility of (m — n) extra states

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 33

we arrive at Eqn. 2.1 for generating sets of test cases which can be rewritten
as

T = Cx({1}udud’u...ud™ "hsw (2.2)

The size of the set of test cases can be computed (following [Ipa95]) as a
function of n, assuming? | ® |> 1, as follows:

Sizep = | Cx({1}UdU...Uud™ " s W |

= |C|*|({1}udU...Uud™ ") | x| W |
|q)|m—n+2 -1

= | C] M I | W

< [Clx[@™ 2 x| W (2.3)
< x| @ ™2 4 (n —1)

< nPx | @ |mont2 (2.4)

The size of C has to be n since we visit every state with it; the maximal
size of W is n — 1 (Sect.2.4.2 on p.42).

In practice, however, | ® | would be much greater than 1 and thus Sizer is
more likely to be at the order of

’/L2* | P |mfn—|—1

For m = n in practice,
Sizer < n’x | ® |

For our tape recorder, we get Sizer = 4 % (1 4+ 6) * 2 = 56 (here and
further, numbers for sizes of sets of test cases are computed using precise
formulas) under the assumption that m = n. The actual set of test cases
generated by the TestGen tool uses W = {play, rew_or_ff, direction} and
contains 4% (14 6) *3 = 84 sequences; after removal of those, which coincide
with beginnings of others, 63 remained. Tab. 2.2 provides these sequences.

2.3 Related testing methods

2.3.1 Finite-state machine testing methods

Here some of the known testing methods for deterministic finite-state ma-
chines will be outlined. They could potentially be extended for statecharts
in order to make a set of test cases smaller. An application of the Wp testing
method is described in App. C on p. 276.

References to publications in descriptions of methods refer to papers in
which a considered method is provided and not necessarily the one where it
was first published.

*For a set S, we use | S | to mean card(S), i.e. the number of elements in §.

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS

R R S S N R N S N S S S N S N N N

rec play play

rec rew_or_ff play

rec direction play

play play play

play rew_or_ff play

play direction play
rew_or_ff play play
rew_or_ff rew_or_ff play
rew_or_ff direction play
direction play

rec rec play

rec rec rew-or_ff

rec rec direction

rec play rew_or_ff

rec play direction

rec stop play

rec stop rew_or_ff

rec stop direction

rec button_stop play

rec button_stop rew_or_ff
rec button_stop direction
rec direction rew_or_ff
rec direction direction
rec rew_or—ff rew_or_ff
rec rew_or_ff direction
play rec play

play rec rew_or_ff

play rec direction

play play rew_or_ff

play play direction

play stop play

play stop rew_or_ff

play stop direction

play button_stop play
play button_stop rew_or_ff
play button_stop direction
play direction rew_or_ff
play direction direction
play rew_or_ff rew_or_ff
play rew_or_ff direction
rew_or_ff rec play
rew_or_ff rec rew_or_ff
rew_or_ff rec direction
rew_or_ff play rew_or_ff
rew_or_ff play direction
rew_or_ff stop play
rew_or_ff stop rew_or_ff
rew_or_ff stop direction
rew_or_ff button_stop play
rew_or_ff button_stop rew_or_ff
rew_or_ff button_stop direction
rew_or_ff direction rew_or_ff
rew_or_ff direction direction
rew_or_ff rew_or_ff rew_or_ff
rew_or_ff rew_or_ff direction
stop play

stop rew_or_ff

stop direction

button_stop play
button_stop rew_or_ff
button_stop direction
direction rew_or_ff
direction direction

Table 2.2: The set of test cases for the simple tape recorder in Fig. 1.4

34

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 35

Most of considered testing methods are based on the assumption that
an implementation cannot have more states than specification. Although it
is quite restrictive in general, those methods have been successfully used in
testing of network protocols [SL89, SLD90, Ber94, RDT95b].

It is questioned in [FvBK191] if it is good to limit the number of possible
extra states in an implementation. Although all existing methods assume
that, combining multiple test sequences into one is recommended as often
faults are detected only by relatively long sequences of inputs. It means
that instead of resetting the system after application of a test sequence to
it, we take a transition to the expected initial state or to the one in which
inputs should be applied. Usage of this technique requires a machine to be
strongly connected. Minimisation of the length of such a path is described
in [SLD90, Ura92, Hie97b)].

It is suggested in [FvBK191] for an implementation to contain methods
of state identification and /or special transitions to bring the implementation
into the required state. The identification could be implemented in a form
of ‘loopback’ transitions leaving and entering the same state and having
a unique output for every state. This is similar to the approach of using
status information for state identification (App. C.4 on p. 282). In principle,
sequences of transitions used for state identification have also to be verified.
This is done in [Ura92] for the UIOv method and in [FvBK*91] for the Wp
one.

Usually, W and Wp methods are described regarding an implementation
potentially having more states than specification and others — having the
same or less. It is claimed [RDT95b] that they could probably be easily
extended for that.

Unlike the rest of the thesis, in this section we use terms ‘specification’
and ‘implementation’.

Transition tour method

The transition tour method (TT) [SL89] method is the most simple among
those to be described and provides the shortest test sequences and the least
coverage. Using this method, one just traverses all transitions in the speci-
fication without trying to identify target states. An efficient algorithm has
been proposed to generate a minimum-length sequence in [Ura92].

Distinguishing sequence method (DS)
We begin with the following definition:

Definition 2.3.1 (distinguishing sequence). An input string = is said
to be a distinguishing sequence of a finite-state machine M if the output
sequence produced by M in response to x is different for each state.

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 36

Using the distinguishing sequence (DS) method [SL89, Ura92], we tra-
verse states applying all possible inputs and checking the resulting states
via DS, for every state. We could use reset transitions to bring a machine
into the initial state after applying DS. Alternatively, it is possible find the
minimal length tour to cover the required sequences of transitions.

Unique input output sequence method

UIO method [SL89] involves deriving a unique input-output (UIO) sequence
for each state of a machine to be tested. It is a sequence of inputs and
expected outputs which reflects the behaviour of only that state. Conse-
quently, states reached can be checked by application of the UIO for the
expected state. The testing method involves construction of test sequences
such that every transition in an automaton is followed by a UIO for the
expected entered state.

The size of a test set generated by this method can be reduced by con-
struction of a minimal-length tour containing all necessary sequences [Ura92,
SUIO method].

An approach of using adaptive distinguishing sequences was proposed
[LY94]. Such sequences can be much shorter than UIO ones, applicable to a
wider range of them and there is a more memory-eflicient way of constructing
adaptive distinguishing sequences than that for UIO ones [LY94].

UIOv method

This is an improvement of the UIO one. As in a faulty implementation
UIO derived for a design may loose its state identification properties, an
improvement, called UIOv, is presented in [Ura92]. The method consists of
the following steps:

1. Application of the UIO for a state after the machine has been brought
to that state. This verifies that the implementation contains all states
of its specification.

2. For every state, the UIO for a different state is applied. This helps
to ensure state identification capability of UIO sequences for the im-
plementation machine (for those states where respective UIOs have
different input parts).

3. Transitions not checked in the state identification part above, are
checked as given in the description of the UTO method.
MUIO method

In the UIO method (Sect.2.3.1 on p.36), we have a single UIO sequence
to verify a state; instead, we could be able to construct a number of them.

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 37

During construction of a tour, these sequences can be used to reduce the
overall length of the resulting test sequence [SLD90].

A significant improvement of this method using invertible sequences of
transitions has been described in [Hie96, Hie97b]. A path ending at some
state is called invertible if it is the only one with the specific sequence of
input/output pairs on it, to enter that state. This property of invertibil-
ity helps us verify states as well as merge test sequences. Consequently,
the length of the test set can be reduced in comparison to testing without
consideration of invertibility.

DD method

The brief description of this method is from [RDT95b]. We consider im-
plementations with at most one fault and satisfying the so-called TULD
property. The method is claimed to find all faults.

The DD method uses UIO sequences to identify states and a state cover
C to reach all of them. During testing, we need to verify applicability of
both C and UlOs to an implementation. This is hindered by transitions
shared between C' and UIO sets, since in order to verify transitions in one
of them, we need to use another one. FSMs satisfying the TULD property
are such that no transitions are shared between them. The authors claim
most network protocols satisfy it.

The main advantage of the considered method is that its ability to locate
a fault, i.e. the one 1-fault resolution capability (Def.4.4.1 on p.78) is the
best of all finite-state machine methods considered.

SW method

This method, outlined in [FvBK'91], is a modification of the original W
one. After an application of a test sequence, SW-method avoids using resets,
instead taking a sequence of transitions to enter the desired state. No proof
of its ability to detect all faults is given.

C method

The characterising sequence method [RDT95a] is a modification of the DS
one (Sect.2.3.1 on p.35), introducing a set of sequences to identify a state.
This set is similar to a W; one of the Wp method (App. C.3 on p.281) but
unlike it no extra states are considered and the state identification capabil-
ities W; are not verified.

Comparison between the methods described

It is possible to express coverage of the implementation w.r.t design achieved
by every of described methods [RDT95b]. The results are as follows (denot-

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 38

ing by ‘<’ sign the weakness relation between methods and ‘=" — equivalent
fault detection capability of them),

TT<UIO<C<DS=W=Wp

UIO = SUIO = MUIO < UIOv < W

It is clear that T'T is the weakest method. The UIO method uses a sequence
of transitions to enter a source state of a transition to be tested without
verifying elements of this sequence, while the C method does [RDT95a].
From construction of UIOv, it is better than UIO but still below the W
method (Chap.2 on p. 28).

2.3.2 Disjunctive Normal Form Approach

A set of input data supplied to a program is not often uniformly treated by
it. For this reason, it is commonplace to split the domain of the system under
test into a number of non-intersecting parts and generate a test case for each
of them [Mye79, Rop94]. This approach to testing is often called category
partition testing. This is a rather informal method assuming that behaviour
of the program in every partition of its domain is such that either its response
to every element of it is correctly implemented or it is not to all of them.
This allows us to reason about the correctness of an implementation based
on a single test case for every partition. Since in practice this assumption is
seldom true, a number of test cases can be generated.

When used for the Z notation, partition testing is referred to as Disjunc-
tive Normal Form (DNF) testing method [HNS, Meu98]. [DF93, Hie97c]
consider constructing an automaton from partitions and generating test se-
quences from it.

Comparison between X-machine and DNF testing methods

A simple example Consider an X-machine in Fig. 2.5.
We introduce variables s and s’ to designate old and new states for a
transition, e;... e4 for input events and ee]. . . eej for output ones. Transition

functions fi. .. fy can be written as follows:

fi ﬂ/\e_e{/\s:1/\s':2
fo Q/\e_eé/\s:2/\s':2
Bt e ANeyANs=2N5 =3
S+ e NeyANs=3Ns =3
fi o %/\e_efl/\s:3/\s':1

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 39

Ja
L 1 fi 5 Ji! 5

f f

Figure 2.5: The sample machine to compare Z and X-machine testing meth-

ods

Combining the above, the machine can be expressed as:

eiNeef ANs=1As"'=2VeNeyANs=2As =2V
esNees Ns=2ANs'"=3VesNees As=3Ns' =3V
esNeey As=3Ns =1

the

When applying the DNF approach, we pick all the disjuncts. Consider

second of them, es A ee5 A s =2 A s’ = 2. In order to take this one, we

have to enter state 2, generate ey and verify the s'. Note that we have to
have some way to make s become 2 initially and an approach to verification
of it at the end. This is the purpose of C' and W sets in the W method.
Due to its data-orientation, the DNF approach lacks explicit mechanisms to
achieve this.

are

The main differences between the DNF and X-machine-based approaches
summarised below:

1. DNF does not try all the transitions from all states, i.e., disjuncts like

ez N e_eé A s=1As" =1. Also, extra states are not checked for.

2. DNF does not verify if transitions occurred or not, i.e. eg A s =2 A

s’ = 2 can potentially be selected for a test with the DNF method
even though this transition does not produce any output and thus we
cannot tell it apart from the ‘do nothing’ static reaction. As a result,
we cannot always be sure whether the expected transition occurred or
not.

In order to enter a state, we cannot always set a variable because a
state of a system is generally a product of a subset of its data space
and a subset of a set of control states. In order to force the control
into some state, something like C has to be applied. This problem
is not the case with DNF since all variables are believed to be in the
data subset.

As a result, we can see that while useful for testing data transformations,

DNF falls short of specialised methods for testing transition structures.

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 40

.\N eafeer

AL F---e - A2

Figure 2.6: Testing individual transitions

A more complicated example In the example above, transitions did
not perform any data transformations. Consider a more complex example,
where

fi={(eaVe)Neef Ve)) ANs=1N5s" =2

Here DNF would be

ﬂ/\@_@{/\&zl/\S'zQV
ﬂ/\@_@{/\&zl/\s':2v
@/\s:l/\s':2

This type of testing could be accomplished by an extension of our testing
method where we DNF-partition the operation of a transition. We could
then enter a state from which this transition emanates and try all disjuncts.
The approach has similarity to the CFTT testing method (Sect.2.3.5 on
p.-42).

With this approach we could:

1. apply the test method described in the thesis, to the most of the
transition structure, using inputs/outputs, selected or introduced for
testing, which exercise ‘trusted’ disjuncts of every transition.

2. test the rest of the disjuncts by

e entering a state from which they are going (and since the previous
stage completed, expected transitions actually do go from that
state),

e try disjuncts and check outputs,

e verify the entered state (since they could lead to different states).

The described approach is depicted in Fig. 2.6. Dashed transition represents
the part of the transition which is exercised by the test method for the most
of the transition structure. Disjuncts on the top and bottom are tested after
that. A problem with the approach is that it could be difficult to ensure

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 41

that non-dashed transitions are not triggered during testing of the dashed
ones.

The implementation of the statechart testing method supports marking
some transitions to be ignored for testing and thus could be utilised to
support the first part of the method, where after splitting every transition
into a number of disjuncts, only trusted ones are allowed to participate in
testing.

The described approach may also be applicable to testing of systems
where implementation does not comply with testing requirements, for in-
stance,

e transitions may get split into a number of them. With the knowledge
of possible splitting (this may follow from definitions of transitions)
and which of the resulting transitions can be assumed to be correctly
implemented, we can apply the described method reasonably directly.

e a state may get split into a number of states (described in Sect. 8.2 on
p-232. In this case, usage of the approach leads to unreachable states
in the first stage of testing. Derivation of appropriate constraints to
prevent this is left for future work (p.235).

2.3.3 Testing of process-algebraic specifications

Traditionally, concurrent systems were specified using process-algebraic lan-
guages [SVG, Mil89] and appropriate testing methods were developed for
them [Pel96, PS96a, PS96b, PF90, Wez90] (potentially, these methods can
be applied to testing FSMs). It is also possible to convert LOTOS specifica-
tions to extended finite-state machines [KP92] and communicating machines
[Kar92]. In the former case, the X-machine testing method can be applied;
for the latter, the testing methods developed for communicating automata
[Hie97d] as well as the one described in the thesis (Sect. 3.3 on p. 54), could
be usable. Similar work is described in [TPvB97].

An interesting model for communicating X-machines has been developed
[BGGT99] and the X-machine testing method was applied to it.

2.3.4 Dataflow-oriented testing for X-machines

An EFSM can be tested using a dataflow-oriented approach [BDARI7], in
contrast to the X-machine one [HI98].

For every variable in a program, we have statements which assign values
to it and those which use it but not modify it. A path in the considered
EFSM, in the beginning of which a variable is assigned to and not modified
until the end of the path, is called du-path (this stands for definition-usage
path). With a specific coverage criterion for du-paths, we can construct a

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 42

set of test cases. To complete it, tests for transitions not covered by the
described paths are added.

Dataflow testing methods can also be applied to LOTOS [TS95, vdSU95].
Being informal, dataflow testing does not allow provable correctness as a
result of testing.

2.3.5 CFTT approach

In [Sad98, SS98], an approach combining DNF testing with a transition tour
method is presented.

The method considers automata with transitions specified in Z. They
are partitioned using a DNF approach and these partitions are used to split
states. After that, an automaton is constructed in which split states are
connected by partitions of original transitions (this is similar to [Hie97c]).
For such an automaton, a transition tour testing method is applied. While
providing a small test set, the method seems to be difficult to extend to
handle hierarchy and concurrency of statecharts; correct behaviour of an
implementation also cannot be assured by testing.

2.4 Reduction of a test case set size

Here we give the minimal and maximal sizes of sets C and W. After that,
a summary of approaches to reduce the size of the set of test cases without
sacrificing the conclusions which could be made if the test set does not reveal
faults, is provided. The growth of the number of test sequences could be a
lot slower than that of test cases, refer to Sect.4.2.3 on p. 74 for details.

2.4.1 Minimisation of C

It is possible to construct C' in order to minimise the length of sequences
in it. The minimal length of every sequence is 1; the maximal is n — 1.
Everything depends here on how closely states are linked together. If every
state is connected to every other, we get the minimal length. For a statechart
which is a sequence of states, n — 1.

2.4.2 The size of a characterisation set

The characterisation set has its minimal and maximal size depend on the
number of states. The minimal size is given by the log, n and maximal
by n — 1 where n is the number of states in the statechart considered. We
describe them and also provide a way to construct a distinguishing sequence;
the actual size of W and existence of a distinguishing sequence depend on a
given statechart, such that considered lower bounds are purely theoretical.

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 43

The smallest W

For every pair of states, we can have to have a transition which exists from
one of them and not from the other. Thus, at best we have a transition which
exists from half of the states of a statechart and does not from another half.
If this transition exists from more or less than a half of states, it would not
be able to separate states of a statechart in two equal groups which is our
intention, to make each such group as small as possible. After separating
states into the two groups, we could use another transition to split those
groups into two and so on. Thus we arrive at the lower bound for W being
logy n. Such division by two approach could be adopted in the method for
W generation but is not currently implemented in the TestGen tool.
Consider, for example, a statechart in Fig.1.4. Here transition stop can
be considered to separate states into groups { PLAY, STOP} and
{REW _FF,RECORD}. After that, play can be used to split every of these
two groups of states into { PLAY'}, {STOP} and {REW _FF}, {RECORD}.
Thus, the smallest W for the tape recorder is {play, stop}, which is of the
same size as the theoretical minimum described.

The biggest W

The upper bound is where the groups of states considered above are of
significantly different size, meaning that one state contains only one state
and the other one contains the rest of them. Consequently, every additional
transition reduces the size of the big group by 1 which makes the biggest
size of the W set to be n — 1. This is also the case when we try to use the
union of sequences distinguishing individual states of a statechart from all
other states, as a W.

Distinguishable sequence

Since an associated automaton is an acceptor, we can only find out whether
some sequence exists or not. After test data generation, however, the se-
quence of test inputs will terminate after the first transition which does not
exist and we would be able to see how ‘much’ of our sequence exists. Con-
sequently, the length of it could be used to distinguish states. From one
state the first element of it would not exist, from the second one — the first
would but the second would not and so on. Such a W is easy to construct
by a simple extension of the method described above. After we find a se-
quence which exists from one group of states and not from another, we could
then extend the existing sequence such that it would split states of the first
group. This sequence could then be extended further. The approach for the
construction of optimal sequences can be considered for future work.

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 44

Summary

In addition to C and W minimisation methods above, optimisations to
reduce the size of a test set are given in Sect.4.2.2 on p. 73; an application
of the Wp method [FvBK*91] is outlined in App.C.3 on p.281. Here we
provide a summary of additional approaches to the reduction of test set size
and/or improvement of the speed of test set generation and application:

e Instead of resetting a machine each time a sequence from a W set
has been applied in order to apply another one, we could use transfer
transitions from the arrived state, which seems to be very similar to
the SW method? (Sect.2.3.1 on p. 37).

e Usage of invertible transitions and sequences of them [Hie96, Hie97b].

e Removing unreachable states in the case of testing concurrent state-
charts using state multiplication (Chap. 3.3 on p. 54). Such a removal is
quite a complicated operation, involving the determination of whether
some path can be followed and in general is undecidable.

2.5 Verification and validation of statecharts

Usually, verification of a design should involve checking for the required
properties such as those needed by the testing method (Chap.5 on p.79).
Such checking could be done using a variety of model-checking methods
developed for statecharts (Sect.1.1.7 on p.8) and/or by theorem proving.
Validation can be done by running a simulation of the design and making
sure it does what is expected from it. The validation necessity was the
reason why the hi-fi model (Sect. 8.3 on p.236) was built in pure Statemate
and then translated into uSZ.

The Statemate Analyser tool [[lo95a] provides an automated approach
to verification of certain properties of statecharts. This is accomplished by
exhaustive search by supplying the statecharts with all possible sequences of
inputs and checking its behaviour. A panel presenting the test complexity
is displayed when such a test is executed. The complexity is described in
terms of a function (such as a logarithm) of a number of possible system
configurations to be evaluated. Users can set the maximum one as well
as predefined values of external variables, which are not changed by the
analyser during analysis. A part of a statechart model can be analysed
separately too.

There are two possible (interchangeable) approaches to usage of Statem-
ate Analyser: filling a form where all conditions to look for are specified, and
using a watchdog statechart. A watchdog statechart is a statechart executed

3The paper describing it is written in Japanese which the author is not familiar with;
and instead followed a single paragraph in [FvBK191].

CHAPTER 2. TEST CASES FOR SIMPLE STATECHARTS 45

in parallel with a design under test to monitor and drive it as well as access
internal elements of it. There could be several watchdogs. As an example
of its usage, it is possible to have an error state included in a watchdog
statechart which will be entered when the system has arrived in an unsafe
state.

Although the test method for statecharts described in this chapter was
developed to test an implementation against its design, it can potentially
be applied at any level of abstraction. We could even try to test a design to
correspond to a specification or try to validate the design. In this case, test
sequences would be applied to a model and its behaviour would be checked
for compliance with requirements or user needs. In some sense this is useful
since designers would likely to build the system under the assumption of
‘sane’ usage and an application of a test set could reveal undesired behaviour.
Additionally, this approach could be easier to apply than formal verification;
on the other hand, we would have to do a hard job finding legitimate inputs
to follow transitions we desire instead of relying on design for test. This
follows from the fact that we are trying to verify/validate behaviour of the
system here rather than assessing a transition diagram.

Chapter 3

Test case generation for
complex statecharts

In the previous chapter we have described testing of simple statecharts. Here
we consider more complicated ones. Every feature of statecharts will have
a section devoted to it.

The most simple approach to testing state hierarchy and concurrency
deals with flattening a statechart, i.e. turning it into a behaviourally-equivalent
one without substate statecharts and AND states. For example, Fig. 1.7 de-
picts a result of flattening of the statechart in Fig.1.6. Default connectors
are also removed after flattening, leaving a simple (Def. 6.3.3 on p. 168) but,
in practice, huge statechart. Generation of a set of test cases for it is an
easy operation as described in Chap.2 on p. 28.

As an alternative to the above, we propose an approach of incremental
test case development. It has the advantage of following the design process
and thus providing a possibility of updating the set of test cases to reflect
design changes made.

In order to test state hierarchy and concurrency, we begin with the gen-
eration of a tuple (@, C, W,DE) with the first three members described in
Chap. 2 on p. 28 and the last one, DE, helping to handle default transitions,
described later in Sect. 3.2.1 on p.48. (@, C, W,DE), called test case basis
(abbreviated TCB), is generated for the main statechart and every non-basic
state considering all its substates as basic ones. Afterwards, we combine (we
say ‘merge’) the tuples in a way described below. From the resulting tuple
(®,C, W,DE), a set of test cases can be constructed following the Eqn. 2.2
in Sect. 2.2 on p. 29 or a slightly modified one (Eqn. 3.6), to follow.

3.1 Testing of statecharts with connectors

In order to test an implementation of the tape recorder shown in Fig. 1.5, left,
we can remove all C, S, junction, fork and joint connectors and construct

46

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 47

compound transitions as shown in Fig. 1.5, right. It essentially means that
we wish to eliminate all connectors for testing and treat all transitions as
‘simple’. Such removal of connectors described is possible due to Req. 4a on
p- 81. The testing methods described further rely on only default connectors
present in the design. The process of connector removal is rather mechanical
and can be easily automated; for this reason absence of all connectors apart
from default ones is not listed in the requirements for the testing method
(Chap.5 on p.79).

3.2 Hierarchy — OR-states

3.2.1 General Approach.

Here the case when no interlevel transitions exist, is considered. Element
DE of a test case basis will be covered later. The tape recorder example is
used to illustrate the approach.

Merging rules

We start traversing states in both REW_FF and the main statechart from
the default connector; with that, the elements of the test case basis for
REW_FF are given by:

Prewrr = {.ﬁ; rew},
Crewrr = {rew, ff},
WREW_FF = {ﬁ }

The elements of the test case basis for the main statechart of the tape
recorder (considering the state REW_FF to be a basic one) are as follows:

D yavsrarscaarr = {play, stop, direction, rec, rew_or_ff, button _stop},
Cuainsrarsonarr = {1,1play,1rec,1rew_or_ff},
Wuamwsrarscuarr = {5t0pa play}.

To get the elements of the resulting tuple (®, C, W), we propose the follow-
ing merging rules for the above elements with explanation to follow:

@ = QMAINSTATECHART U @REW_FF’ (3'1)
C - CMAINSTATECHART U
{path in Cyaysrarscarr to enter REW_FF} %1 Crpw rr
\{path in Cyawsrarecuarr to enter REW_FF'}, (3.2)
W — WMAINSTATECHART U WREW_FF' (3'3)

Above, multiplication 1 is similar to concatenation %, but the last element
of the first sequence and the first element of the second one are united such

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 48

that, for example, {1 rew_or_ff} 1 {rewff} = {1 rew_or_ff-rew ff}; refer to
Sect. 6.1.6 on p. 155 for details. Proofs are given in Chap. 6.
Merging sets ® we obtain:

merged __
® v = q’MAINSTATECHART U (I)REW_FF

= {play, stop, direction, rec, rew_or_ff, button_stop} U {ff, rew}

= {play, stop, direction, rec, rew_or_ff, button_stop, f, rew}

The path in Cyunvsrarecaarr to enter REW_FF is the one to the default
connector of REW_FF i.e. 1rew_or_ff. With this, merging sets for C' gives
us:

merged
o CMAINSTATECHART U

{Path in Cyamvsrarecnarr to enter REW—FF} *1 Crew_rr
\{path in Cyanvsrarzcuarr to enter REW_FF'}
= {1,1play,1rec,1rew_or_ff} U {1 rew_or_ff} 1 {rew, [f}

\{1 rew_or_ff}
= {1,1play,1rec,1rew_or_ff} U {1 rew_or_ff-rew, 1 rew_or_ff-ff }

\{1 rew_or_ff}
= {1,1play,1rec,1rew_or_ff-rew,1 rew_or_ff-ff}.

In the set C' above, transitions which have to be taken in the same step,
such as rew_or_ff~rew to enter the REW_FF state, are separated by dashes.
The path to the default connector of REW_FF is removed since its presence
in Cyamwstarscrarr 18 irrelevant because REW_FF is no longer considered a
basic state.

The generation of W involves simply uniting the sets,

merged — __
w g = WMAINSTATEC’HART u WREW_FF

= {stop,play} U {ff}
= {stop,play, [f} (3.4)

Note that transitions of ®™¢9¢ are not all FCTs, for example, rew_or_ff
is included in it. Expansion of ®, C' and W to make their transitions full
compound by addition of default continuations, is explained in the following.

Consideration of default transitions

After merging, sets ®, C and W may contain some non-full compound
transitions which we have to expand to full compound ones. This is necessary
for the test set we later generate to be applicable to an implementation. The
element DE (stands for ‘default entrances’) of a TCB is the set of sets of
labels which correspond to all possible default completions for a transition

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 49

entering the state. For our tape recorder, DE gy pr = {{rew}, {ff}}. Usage
of this set helps us to resolve the stated difficulty.

For our tape recorder, the requirement (Req.4b on p.81) means that an
implementation may contain transitions rew_or_ff-rew, rew_or_ff-ff, but not
play-rew because play does not enter REW_FF state in the correct imple-
mentation. Consequently, when expanding labels in ® and W into those
corresponding to full compound transitions, only those which label transi-
tions leading to states with default connectors in the designed statechart
have to have them added. For the tape recorder, we would expand tran-
sitions entering rew_or_ff but not play. If an erroneous transition goes to
an unexpected state, such as play to REW_FF, it would have a number of
default continuation transitions implicitly with no triggers on them, due to
the stated requirement.

Since default transitions cannot be present on their own, but only as
part of full compound transitions and we assume correct implementation of
those transitions (Req.4b), we do not have to include them separately in
®. Labels of default transitions are present in @z »» of the tape recorder
because these labels are also used on non-default transitions.

In general, we cannot simply replace transitions in ® and W with their
full compound equivalents. The reason for this is that the continuation
transition taken depends on the state and there is no state information in
TCB. The necessity of expansion of transitions follows from the statechart
in Fig.3.1. In order to distinguish states A and B, we can use sequence

Figure 3.1: An illustration for the description of function defaultComplete

¢ d. Unfortunately, ¢ cannot be applied in both A4 and B since we also have
to trigger default completions. Consequently, we replace ¢ in W with two
transitions c-a, c-b and get c-a d, c-b d as an expansion of cd.

Similar problems occur in ® since in the test set, we try to invoke tran-
sitions starting with those in ®; the solution provided for W is possible in
this case too.

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 50

The state cover set (' is different because there we know which state
we are entering and could make an appropriate entering transition full com-
pound; for all other transitions of it we can take any possible default con-
tinuation contained in DE of a state entered by it. In the case of our tape
recorder, only one sequence of Cyuvsrarscrarr €nters a non-basic state and
it is REW_FF where it terminates. For this reason, nothing is needed to
be done for it. A sequence rew_or_ffplay would have been expanded to
rew_or_ff-rew play. The formal definition of merging for C' (Def. 6.4.11) takes
this into account.

In making transitions of ® and W full compound, we can use the fol-
lowing rule:

expand (Ibl) = {Ibl} %1 DEgyp, U {Ibl} %1 DEgyp, U ... U{lbl} %1 DEgy,

for all states suby, subs...subr which any transition with label /bl enters.
Thus,

rew_or_ffeppanded = {rew-or_ff} x1 DEgpy pp = {rew_or_ff-rew, rew_or_ff-ff }

since it enters REW_FF. All other transitions are unaffected by expansion;
for instance, playegpanded = play *1 DEpy 4y = {play} since the PLAY is a
basic one and thus DE;,,, = {1}.

With this, we can write the set of test cases as

@Jrﬁ”’f;lged = expand (D)

= {play, stop, direction, rec, rew_or_ff-ff, rew_or_ff-rew,
button_stop, ff, rew},
Wﬁﬁzged = ezpand(W) = {stop, play, ' }

where ezpand when applied to a set of sequences means that every element of
every sequence is expanded. The described approach to making transitions
in ®merged and Wmerged fyll compound is formalised in Def. 6.4.16.

Statecharts with default transitions having no label

The type of statecharts where default transitions have no trigger or action,
is a considerable simplification of what was described above. Since such
statecharts are believed to be rather common and most of those considered
in the case studies (Chap.8 on p.229) satisfy this condition, we provide
merging rules for statecharts whose default transitions have empty labels.

First of all, we note that due to the requirement of determinism, every
OR state will contain only one default transition. As none of them will have
a label, the DE set introduced above will contain a single set @ and this
allows us not to consider expansion of transitions. It means that merging
rules introduced in Sect. 3.2.1 on p. 47 will already generate full compound
transitions.

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS ol

Results

We apply merging rules in the bottom-up fashion until TCB for the root
state is constructed. The resulting tuple (@, C, W,DE) can be used to
generate the set of test cases for the whole system. For example, if the
state F_ZADVANCE had a substate statechart, we would have to ‘merge’ its
test case basis with sets constructed for REW_FF before merging TCB of
REW_FF with that for the main statechart.

It can be observed that the generation process above resulted in the sets
possible for the flattened statechart in Fig. 1.7, i.e. C allows us to visit every
state, W-to distinguish every pair of them and ® has the beginnings of all
full compound transitions. Only transitions to be triggered are included in
the set of test cases; those not to be, corresponding to negated transitions in
Fig. 1.7, are expected not to be triggered by the t_completeness requirement
(Req. 2).

The size of the set of test cases can be calculated using Eqn. 2.4 as follows:

. 2
SW@T < (nMAINSTATECHART+nREW_FF) *

@ @ MMAIN STATECHART + MREW_FF —
MAIN STATECHART + REW_FF

NMAIN STATECHART —NREW_FF+2

2
< (nMAINSTATECHART + nREW_FF) *
2x(m —n in)+2
| @ yaivsrarecrarr + Prew rr | (Manr oz —=Tmr min)
2 2*(mm7‘ maxz — T 3)+2
< 4« Ny mazq)mr maz e (3'5)
where

Nmr maz = max(nMAINSTATECHARTa nREW_FF);

Mmr maz = max(mMAINSTATECHART, mREW_FF)a

Nmrmin = TN\TNyAIN STATECHART ”REW_FF)a
Prrmazr = ma$(| D yrarvsTaTECHART |,| Drpw rr |)

For our tape recorder, we get Sizey = 5 (1+9)*3 = 150 under assumption
of m = n for both mainstatechart and substate statechart.

3.2.2 Interlevel transitions

Above, an approach for statecharts with no interlevel transitions has been
presented. Here we describe how to deal with interlevel transitions.

When constructing sets C' and W of the test case basis, our requirements
allow us to ignore all interlevel transitions but include them in & for the
statechart being the lowest common OR-state ancestor of the initial and final
states of the interlevel transition concerned, i.e. the scope (Def. 6.1.24). The
merging procedure is the same as the one for statecharts without interlevel
transitions.

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 92

For example, consider the statechart in Fig. 3.2 which is equivalent to the
one in Fig. 1.6. The test case basis for the whole statechart will be as follows:

REW_FF
rew
F_ADVANCE REWIND
play 7 ff 7

direction stop

play “or_ff A
button_stop ohg rew_or_ff A rew

¥ rec
STOP RECORD

stop

Figure 3.2: The tape recorder with an interlevel transition

Cyamnstarsonarr = {1,1play,1rec, 1 rew_or_ff A ff},
Wuainstarecuarr = {stop, play},
D yavsrarecaarr = {play, stop, direction, rec, rew_or_ff A ff,

rew_or_ff A\ rew, button _stop}.

In the above, the transition to enter REW_FF is rew_or_ff A ff and the inter-
level transition is rew_or_ff A rew. The latter is included in @ 4y s7arEcHART
but not in Ciyarvsrarecaarr O Wiyavsrarecrart-

Note that due to our treatment of interlevel transitions, we cannot re-
move all connectors from statecharts under test (Sect.3.1 on p.46) as this
would replace transitions entering states with interlevel ones. Since those
transitions would be the only way to enter states and we ignore them, states
of a substatestatechart would become unreachable, rendering our method
not directly applicable.

3.2.3 OR-state refinement

A design is usually constructed gradually. Initially we may have only a
skeleton, then step-by-step fill it with details as shown in Fig. 3.3. The way
we handle consistency between a design and implementation makes a big
difference. We could either develop a design in a stepwise manner and having
finished it, generate code, or we could have both design and implementation
developed in parallel. The latter means that each change in a design is
accompanied by an appropriate change in the implementation. In the case of
parallel development, we can avoid leaving all testing to the final pre-release
stage. Additionally, we can make certain kinds of implementation faults

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 93

tesi
initial design initial implementation initial design esting initial implementation
step 1 step A step 1 step A
) : .) ' ' : testing)) !
more detailed design more implementation detail more detailed design more implementation detail
step 2 step B step 2 step B
- . testing L)
detailed design final implementation detailed design final implementation

Figure 3.3: Parallel development of a design and an implementation

impossible, like the one depicted in Fig. 3.4. Its faults are that transitions
play and stop are not present from the REWIND state and rew_or_ff cannot
enter the REWIND state. These faults become impossible if initially the
design in Fig. 1.4 is built and implemented and then the statechart ‘placed’
in the REW_FF state (Fig. 1.6). This is due to the play and stop transitions
being on the higher level of hierarchy than transitions inside the statechart
within REW_FF and thus they would always take precedence over those in
REW_FF.

Similar types of refinement (master-slave in [TH98a, Ipa95] and X-ma-
chine-let one [Lay92]) additionally assume that the substate statechart does
not change the internal variables other than its own. If it is not so, the sub-
state statechart could generate the play event and thus interfere with user’s
intention for rewinding or fast forwarding. For our type of testing where
we test the transition diagram, assuming transition labels to be correctly
implemented, the assumption of non-interference is not required.

rew A
= (play V stop)
PLAY Py | ADVANCE
direction A REWIND
= (play V stop)

button_stop play

rew-or_ff A ff

K\ STOP RECORD

rec

stop

Figure 3.4: The faulty implementation which cannot happen if we keep an
implementation consistent with every change in a design

With the described restrictions, the test set for such a refinement can

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 54

be greatly reduced even for our simple example compared to the case when
we consider the statechart in the REW_F'F state to be ‘just’ a geometrical
hierarchy. Faults related to not entering or exiting the state REW_FF are
not possible; we need to consider only the set of transitions defined inside
REW_FF when testing it. This influences the rules we use to construct the
set of test cases using Eqn. 2.2 for a statechart with a refined state. The set
of test cases is given below:

- mi1—n1+1
T - CMAINSTATECHART * ({1} U QMAINSTATECHART U s U QMA[NSTATECHART) *

WMAINSTATECHART
U (3.6)
{1 Tew_OT‘_ﬂ} *1 CREW_FF * ({1} U ¢REW_FF U P U @RmEZVT/_gZF—i—l) * WREW_FF

The first part of the union tests the main statechart treating the state
REW_FF as a basic one. The second — enters the substate statechart (via
rew_or_ff) and tests it separately from the main one. Numbers m;, n; corre-
spond to the expected number of states in the implementation of the main
statechart and the number of states in the design of it (4 in our example);
meo, no are the corresponding numbers for the statechart in the REW_FF
state.

The size of the above set of test cases can be estimated using Eqn. 2.3
to be

Sizer = SmeTMAINSTATECHART + SlzeTREW_FF
< n2 * | o MMAIN STATECHART —MMAIN STATECHART +2 +
= MAIN STATECHART MAIN STATECHART
2 MREW_FF—NREW_FF +2
Npepw_rr* | Qrew.Fr |
2 Mmr maz —Nmr min +2
< 2% e maz * q)mr maz (3-7)

We have Sizer = 4% (14+6) %2+ 2% (1 +2) %1 = 62 (computed without
approximation), which is less than a half of that computed using Eqn. 2.2
from the test case basis for our example when we do not treat a hierarchy
as a refinement and do not expect extra states in the implementation (5 *
(1+9)*3 = 150). If we do, i.e. all m are greater compared to corresponding
n, the difference can be much bigger.

3.3 Concurrency — AND-states

There are three methods of testing concurrent statecharts: via state mul-
tiplication and that with two different refinements. We consider these ap-
proaches in turn.

3.3.1 State multiplication.

Using the state multiplication approach results in an exponential state growth
w.r.t a number of concurrent statecharts which could be potentially elim-

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 95

inated by a requirement for developers to construct models with a small
number of concurrent states.

Merging rules provided below do not consider default transitions. For
this reason, one has to construct the DE set and turn transitions into full
compound as described in Sect. 3.2.1 on p. 48.

] direction N\
R PLAY rew_ff i] - stop_rew _ff

rew.or ffA bufton_stop A — stop_rew _ff
dz‘rectz n play A — stop_rew _[f

reworffA /. /.

= button:stop N[rec A\ — stop_rew _ff

- ..dZT‘ECt'@On R : STOPraN_ff RECORD reN_ff

stop_rew_ff(\: | / — stop A\ — stop_rew_ff —

direction : S U
stop_rew_ff:An \ " /\ [- button _stop stop_rew _ff
= button_stop A ’ Co .- rec A'rew_or_ff
- diréction N\ . button_stop A rewor_ff .- 'stop A stop_rew_ff

' V ‘ rew_or_ff \ —|stop

L ‘ direction As:”
rew_or_ff \ PLAY idie i) —rew orff - stop-rew{f A\~ stop
- (play v ec) a a .. -l stop A rew_or ff

stop_rew_ff A bufton_stop A5 rew:or_ff

— (play V. ‘7'30)-‘ play A = rew_or_ff 7‘66/\ §top_rew_ﬁ
Tu;),lziz;,ﬁ - " rec A - rew_or_ff 3 -
- STOPjq RECORD ;
stop_rew_ff A= iale idle
button _stop N‘ stop A = rew_or_ff

Figure 3.5: Testing AND-states via state multiplication

We begin with the generation of a test case basis for each component of
the AND state in Fig.1.10. The elements of the test case basis for the left
concurrent component (CONTROL) are:

Doonrror = {direction, stop, button_stop, play, rec},
Coontror. = {1,1play,1rec},
Weoontror = {direction, rec}.

The corresponding elements for the right concurrent component (SEARCH)
are:

Doparon = {rew_or_ff, stop_rew_ff},
Csparcn = {1,1rew_or_ff},
Wsgaren = {stop-rew_ff}.

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS o6

To build a test case basis for the whole statechart, we need to ‘merge’ TCBs
of individual components. In order to visit all states and consider all tran-
sitions, sets C' and ® have to be multiplied; W sets get united,

& = ({1} UPconrror)*({1} U @Psparcn) \ {1} = {1, direction, stop,
button _stop, play, rec}x{1, rew_or_ff, stop_rew_ff} \ {1} =
{direction, stop, button_stop, play, rec, rew_or_ff, stop_rew_ff,
direction-rew_or_ff, stop-rew_or_ff, button_stop-rew_or_ff,
play-rew_or_ff, rec-rew_or_ff, direction-stop_rew_ff, play-stop_rew_f7,

stop-stop_rew_ff, button_stop-stop_rew_ff, rec-stop_rew_ff },

C = Coonrror*Csparcr = {1; 1 play, 1 Tec}i{l, 1 7‘6111_07‘_]_7'} =
{1,1 play, 1 rec, 1 rew_or_ff, play-rew_or_ff, rec-rew_or_ff },
W = Weonrror U Wsgaren = {direction, rec} U {stop_rew_ff} =

{direction, rec, stop_rew_ff}.

One can observe that the sets constructed are appropriate for the statechart
in Fig. 3.5 (which is the flattening of Fig. 1.10 on p. 19). C allows us to visit
every state, W-to distinguish every pair of them and ® contains all initial
compound transitions.

Multiplication % is used for AND-multiplication in order to produce a
shortest possible sequence of transitions. We could in principle use a sequen-
tial multiplication * or OR-multiplication x; instead of the concurrent one
* but then the resulting sequence would be the sum of their lengths rather
than the longest of them.

Sizes of elements of the merged test case basis are

Sizes = | (1+ Poonrror) * (1 + Psparcn) — 1|
= (14| @cownrror |) * (1+ | Psparcn |) — 1

| QCONTROL | * | QSEARCH | + | QCONTROL | + | ¢SEARCH

Sizec = |CCONTROLiCSEARCH|

= | Ceonrror | * ‘ Csgarcn |

Sizew = | Weonrror U Wsparen ‘
= | WCONTROL | + | WSEARCH |

In practice we expect | ®oonrror | * | Psparcn | to be much greater than
| ®conrror | + | Psparcs | and thus in the following calculations we shall
approximate Sizeg by | ®conrror | * | Pszarcu |-

From Eqn. 2.3 it follows that the size of a set of test cases can be estimated
be

. . ..m —-n +2 .
Sizer < Sizeo % Sizey ottencd” Mattened T Gire
T = c P w

Q

NconTrOL * NsEARCH *

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS o7

(| QCONTROL | * | q)SEARCH |)mCONTROL*m.SE‘ARCH_nCONTROL*nSEARCH+2 *

(nCONTROL + nSEARCH)

IN

2
max(nCONTROLa nSEARCH) *

(maﬂ}(| QCONTROL |’| QSEARCH |))2*(mam(mCONTROL’mSEARCH)2_

min(ncoNTROL,NSEARCH)2 +2) % 2 % maz (Noonrron, Msparcn) *

2%(m2

—n2 41
2 % Ny mag * Prmag ") (3.8)

IN

where

Ncs maz NeonTroL T MSEARCH >

D5 mas = ma$(| @ contrOL |;| Psparcn |)7
Mesmaz = max(mCONTROLa mSEARCH)7

Nesmin = mm(n(JONTROL, nSEARCH)-

For state multiplication, Size grows significantly faster than that in Eqn. 2.4.
For our tape recorder under assumption of an implementation containing no
more states than the design, we get Sizer = 6 % (1 4 17) * 3 = 324.

In the following we cover the AND-states being a result of refinement
and how such refinement can reduce the size of a set of test cases.

3.3.2 Communication of statecharts

Different statecharts may communicate with each other by triggering tran-
sitions in each other. It is most often used between concurrent states. Al-
though we can test every concurrent component individually and apply some
approach to their communication, interaction is expected to be tested at the
level of transitions. Communication faults are that some transitions do not
trigger expected ones or trigger those they should not. It could mean that
an output of some label is wrong, an input of another one or the relation
between shared data in concurrent components is not a bijection.

Our approach essentially requires communication to be disabled during
testing since it could cause sequences of transitions to occur, contradicting
Req. 3c. For some statecharts, it could be possible to test the core transi-
tion structure with transitions which do not communicate and then test the
remaining ones, following the approach described in [Hie97d).

3.3.3 Weak AND-state refinement

Description

The development process where we design and implement concurrent states
and then place appropriate statecharts in them (refinement), allows us to
eliminate faults where the state entered (or behaviour exhibited) by some

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS o8

transition is different if we take a transition in the different concurrent com-
ponent in the same step. For example, such a fault could involve transition
rec erroneously entering the PLAY state when executed at the same time
as rew_or_ff, and the correct state RECORD otherwise. For the case of re-
finement, we test rec and rew_or_ff but not both of them at the same time.
Consequently, it is possible to merge sets @ as

d = ¢CONTROL U (bSEARCH

and thus we get the following:
® = PeonrroL YU Psparcn =

irection, stop, button_stop, play, rec rew_or-ff, stop_rew_ff } =
directi top, butt t l U 1f, st i

irection, stop, button_stop, play, rec, rew_or_ff, stop_rew_ff },
directi top, butt t l t

C = Coonvrror*Csparcn = {1,1play,1rec} * {1,1 rew_or_ff} =
{1,1 play, 1 rec, 1 rew_or_ff, play-rew_or_ff, rec-rew_or_ff },

W = Weonrror U Wegaren = {direction, rec} U {stop_rew_ff} =
{direction, rec, stop_rew_ff }. (3.9)

The size of the set of test cases can be estimated to be (using the derivation
of Eqn. 3.8):

. 3 m2 —n2 . 42
Sizer < 2% Nes maz * ((DCONTROL + q)SEARCH) comar. Tesmin
3 m?2 —n2 2
S 2 * ncs max * (2 * @cs maz) cs mazx cs min
2 2
3 (m _nCS m1n+2)*(1+10g¢‘cs mazxr 2)
= 2% N3 an * Pesman”) (3.10)

For absence of extra states in the implementation, we get Sizer = (3%2)*(1+
5+2)%(241) = 144 which is 2 times less than that for multiplication of sets
of transition labels (Eqn. 3.8). The transitions on the flattened statechart
which we do not take, are given in dotted lines in Fig. 3.5.

Rationale

States can be considered to be implemented using variables, such as internal
CPU registers like PC or CS:EIP. State refinement of a state into a number
of concurrent states means that each newly created concurrent component is
given a unique state space and a possibly non-unique data space. It changes
state by modifying data responsible for the state space and communicates
with other components via shared variables in the data space.

Consider the case when a number of transitions produce a different re-
sult when taken at the same time rather than when taken one-after-one (in
different steps). For correct implementation of transitions and transition
diagram, this implies racing which is not possible for variables which are

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 99

not shared and for shared ones is prohibited by Req.3b. For this reason,
states entered by some transitions cannot depend on whatever transitions
in concurrent statecharts are taken in the same step (note that only one
full compound transition from every concurrent component can be taken
in a step). Consequently, we do not have to trigger groups of full com-
pound transitions from concurrent components; triggering individual ones
is enough.

Consider a system which is specified as a concurrent one but implemented
via state multiplication. Incorrect implementation transitions could make
our refinement assumptions to be not satisfied, meaning that transitions
corresponding to multiple orthogonal transitions taken in the same step
may produce totally unexpected result.

This type of refinement is not the same as testing concurrent compo-
nents separately (Sect.3.3.4 on p.59) in that it does not preclude missing
transitions. In a system designed as concurrent and implemented using state
multiplication, we could have missing transitions since an implementor could
simply ‘forget’ to add some transitions to some states. For example, some
implementations of multiple concurrent transitions taken in the same step,
could be left out.

3.3.4 Strong AND-state refinement

In truly concurrent implementations, concurrent components are placed into
units which either run in parallel on different processors or utilise an operat-
ing system to provide the same effect. Consequently, no concurrent compo-
nent may cause missing transitions in some other one (the case considered
above) or misdirected transitions (if no refinement has taken place). Also,
if some event is generated by some action, both concurrent components
should ‘see’ it. Absence of racing eliminates a possibility for a transition to
behave differently when taken in the same step as some other (concurrent)
transition.

We assume that only one transition from a concurrent component occurs
in a step during testing. If it is not so, the outputs from them could super-
impose and hide each other; any two transitions have also to have mutually
exclusive outputs (i.e. satisfy the output-distinguishability requirement).
This problem is solved by the ‘no racing’ requirement, Req. 3b.

For this type of refinement, the test case set is a union of the test case sets
of concurrent parts, similar to the one described in the OR-state refinement,
Sect.3.2.3 on p.52. The similarity is not coincidental — the two types of
refinement are essentially the same. For the statechart in Fig. 3.5, we get

_ m —-n +2
T = Coonrror* (1 U ®@conrror U ... U BLGINTROLTRCONTROL) * Weonrror U

CSE‘ARCH * (1) QSEARCH u...u @%ﬂEﬁggH_RSEARCH‘FQ) * WSEARCH (311)

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 60

where we test the left component forgetting about the right one, and vice-
versa. Meonrrows Moonrror A0 Msparcw, Nsparcu correspond to numbers of
states in an implementation and design of the first and second concurrent
statechart.

The advantage of this method is a much smaller set of test cases com-
pared with testing via state and transition multiplication. It can be esti-
mated (using the Eqn.2.4), to be

] 2 m —n 2
Sizer < Nionrror* | Poontror |MCONTROLTMOONTROLTE |
2 MSEARCH —NSEARCH 12
Niparon* | Psparce |
2 Mes maz—N i +2
S 2 * nCS maxr * QCS mar s (312)

For moonrror = Ncontror @A Msparcr = Nsparcr, We get Sizer = 3+ (1 +
5) %242 % (14 2) %2 =42 which is 8 times less than that for multiplication
of sets of transition labels (Eqn. 3.8).

3.4 Static reactions

Static reactions which do have some functionality and consequently are ex-
plicitly added to the system design, have to be treated as transitions con-
current to the functionality of the states they are defined in.

In the example of the tape recorder with a counter (Sect.1.4.8), we
allow merging rules and include counter-updating static reactions in the
set ®. Testing of them is necessary as an incorrectly implemented tape
recorder may decide to traverse from RECORD to the PLAY state upon
invocation of a static reaction. We also have to make static reactions satisfy
the design for test condition. They also could be used to distinguish states
as described in App.C.4 on p.282 and Sect.5.2.1 on p.83. Since testing
of explicitly added static reactions is similar to testing transitions, static
reactions were not elaborated on in proofs.

Implicit ‘do nothing’ static reactions, which occur when no specified
transitions or explicit static reactions are enabled (Sect. 1.4.8 on p.20), do
not correspond to any code and thus their inclusion in the set of test cases
would be artificial. In our testing method we assume them to be correctly
implemented (follows from Req. 4a).

3.5 History connectors

In the simplest case of non-deep history connectors, we could treat them
as a number of transitions. This is shown in Fig. 3.6, where we can treat a
history connector as a C connector.

In order to do testing of statecharts with history connectors, we need to:

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 61

Cé A A

OW
‘ Q1 }ﬂ# q2 }% q3 ‘ ‘ Q1 }g q2 }g a3 ‘

Figure 3.6: Testing a non-deep history connector

e Apply the testing method, avoiding usage of the history connector.
This can be accomplished either via an appropriate design for test or
with the approach described in [Hie97d).

e Test the history connector itself. For every state in a statechart with
a history connector we could do the following:

— enter the state,
— exit the statechart,
— re-enter it using the history connector,

— verify the entered state.

For example, we could try the sequence {ev ev; ezit ev} x Wy, to test
if the history connector works for the state ¢a. ev ev; enters it, exit ev
exits and re-enters through the history connector. We then need to
apply a characterisation set to make sure we are in ¢» again.

For testing of deep history connectors, we need to visit every config-
uration rather than single states. Further research into testing of history
connectors could be done in the future.

3.6 Generic statecharts

Some statecharts could be used as templates; they are created with place-
holder variables and during instantiation (construction of a statechart follow-
ing the template), these variables are replaced with real ones. The concept
behind template statecharts is similar to template classes in C++4. We test
such statecharts separately using state refinement described in Sect. 3.2.3 on
p. 52; refer to [Ove94| for description of informal approaches to testing of
generic classes.

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 62

3.7 Off-page statecharts and diagram connectors

Statecharts for complex designs may get very large. In order to split them
into manageable parts, off-page statecharts were introduced. An off-page
statechart is the substatestatechart for some state which is drawn sepa-
rately rather than being placed inside that state. Semantically these two
statecharts are parts of the same one.

Diagram connectors are syntactical elements which allow us to have tran-
sitions between statecharts and the off-page ones which they contain. Tran-
sitions go from the source state to the diagram connector and then from the
corresponding diagram connector in the off-page chart to the target state,
or the other way. They are used in the hi-fi case study, described in Sect. 8.3
on p. 236.

Such transitions can be treated as interlevel ones and are easy to handle
using the given testing method.

3.8 Aspects of statecharts which are not consid-
ered

3.8.1 Syntactic elements of statecharts

Statecharts contain some other elements such as scheduling of actions and
events which occur when variables are accessed and/or modified. These
constructs are not considered in the thesis since they are used in transition
labels while the testing method primarily focuses on testing of transition
diagram assuming labels to be correctly implemented. Generating test data
for transitions with such constructs could be difficult; triggers may be added
explicitly as described in Sect. 4.1 on p. 65.

Events generated as a result of a statechart entring or exiting states,
the condition, allowing to test if a statechart is in a specific state, and time
are not generally considered since these elements are only used in labels.
Augmentation of labels using timeouts is described in App.B.3 on p. 273.

3.8.2 Non-Statemate semantics of statecharts

Statecharts as proposed originally by Harel [Har87] did not have a clearly
defined semantics. Many people interpreted what he said slightly differently
and added their own improvements which gave rise to a variety of semantics
[Il095b, HG94, HCBY2, KP92, LC96, LHHR94, MSP96, MST97, NRS96,
Per95, PM94, Sch96, Shi95, US94, JM94, vdB93, BGK98, HRAR92, MLS97].
An excellent summary of many of them can be found in [vdB94]. Each of
the semantics has its advantages and disadvantages. Here we provide an
overview of the most often used Pnueli and Shalev’s type of semantics [PS91]
and the UML one, presently gaining popularity in industry [Rat97]. Syntax

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 63

of statecharts is the similar in all of them to the one described above but
for most of them is seriously restricted.

Semantics with instantaneous feedback

This type of semantics has a completely different view of what a step is. Un-
like Statemate, where events generated by transitions can trigger transitions
in the next step only, here they can do that in the same step under restric-
tion that only one transition from every concurrent component may occur
in a step. As a result, transitions fired may cause other transitions; those
transitions — yet more. The whole chain reaction occurs in the same step.
This type of feedback of generated events is referred to as ‘instantaneous’
[NRS96]; in Statemate it is ‘delayed’ according to [NRS96]. It is claimed
[PS97a] that this semantics is better for a high-level specification of reactive
systems rather than for the detailed one or a design.

While rather intuitive, instantaneous feedback possesses a number of
problems. Consider, for example, a transition a/a. It can be thought to
trigger itself; in Statemate semantics it will occur only if a was generated
and will generate a itself. Another problem involves transitions of the form
= a/a. This transition is self-contradictory in the considered semantics since
it requires a to be not triggered to occur and then generates it after being
taken. We could say that then it should have not been taken at all.

The chain reaction of transitions triggering others can be expressed using
a fixed point. In semantics of [PS91], transition triggers are required to
consist of conjunctions and negations only. This guarantees the concavity of
triggers w.r.t. a set of events generated. With this assumption, a theorem
is proven which relates denotational and operational semantics. It says that
a sequence of transitions is a step if and only if the set of them cannot
be separated into two parts such that transitions in one of them do not
trigger those in another one. Transitions violating the condition, i.e. those
containing disjunctions, could be decomposed into a number of transitions
satisfying the property.

In terms of transition structure, this group of semantics considers a sim-
plification of Statemate’s one where any connectors are not used and default
transitions are replaced by default states [PS91].

Hybrid statecharts derived from semantics with instantaneous feedback
[LCY96, KP92] contain two types of transitions: instantaneous and those
taking time.

Usage of our statechart testing method for Pnueli and Shalev’s state-
charts does not meet significant problems due to Req. 3c and Req. 3b, ef-
fectively eliminating instantaneous feedback. The necessary modification to
the method and proofs could be done in the future.

CHAPTER 3. TEST CASES FOR COMPLEX STATECHARTS 64

UML

UML [Rat97] stands for the Unified Modeling Language and represents a
notation created by putting a number of notations together. We restrict
our consideration of UML to statecharts in it. UML imposes severe limita-
tions on them compared to Statemate statecharts. For instance, triggers on
default transitions are not allowed; only one transition may go from a de-
fault connector; full compound transitions consisting of multiple compound
transitions cannot have more than one of them containing a trigger/action
pair.

Priorities of transitions in UML statecharts are reversed: transitions with
their scope lower in the state hierarchy have priority over higher-level ones.
It is argued that this provides a way to use substate statecharts as sub-
routines. Unlike Statemate semantics, UML does not have step semantics.
While a transition is executing, multiple transitions in concurrent states
can be taken and complete before it finishes; such semantics attempts to
capture the behaviour of real systems where assumptions of step seman-
tics cannot be used. Overall, the behaviour of UML statecharts is similar
to asynchronous semantics, i.e. the response of a statechart to an external
stimuli is instantaneous but takes a number of transitions to complete.

The testing method developed for Statemate statecharts in this thesis
could be applicable to UML provided we can guarantee synchronous be-
haviour under test (Req.3c) and ‘reverse’ the concept of refinement. The
first can be guaranteed by making sure only expected transitions are going
to fire. Refinement could be considered to be bottom-up rather than top-
down one (Sect.3.2.3 on p.52). More work on this could be done in the
future.

Chapter 4

Test data generation

4.1 Design for Test

When applying our test method, we assume that all transitions are im-
plemented correctly. It means that a design may be implemented with a
different number of states, transitions could traverse them in possibly ran-
dom ways, but triggers and actions (Sect. 1.4.2) of transitions are correctly
implemented (Req. 4a). Moreover, we assume that we can trigger (i.e. satisfy
the precondition of) every transition label by supplying an appropriate in-
put, which involves making changes to externally accessible variables of the
system. The pair of a triggering input and an output from a transition has
to uniquely identify it. This is needed because, having triggered a transition,
we need to be sure which one occurred. The requirement of being able to
trigger is called ¢_completeness (Req. 2) and the one of the input-output pair
to identify a transition — output-distinguishability (Req.3a). When these
two (and some others we shall talk about later in Sect.4.1.4 on p.72) are
satisfied, we can say that design satisfies the design for test condition. This
definition is different from that described in [HI98, TH98b, TH97, Ipa95] in
that it considers a number of additional conditions, specific to statecharts.
The idea of making a design testable is also mentioned in [FS97]; design for
test seems to solve the problem of easily testable software failing more often
[BS96] than the one which is hard to test.

Note that ‘design for test’ term is used for both a part of design process
and a requirement (Chap.5 on p.79).

4.1.1 Introduction

Here we shall describe how t_completeness and output-distinguishability
conditions apply to our sample tape recorder and possible problems where
transitions have to be augmented in order to make them compliant with it.

65

CHAPTER 4. TEST DATA GENERATION 66

Triggering transitions

For our tape recorder to be t_complete, we need an ability to generate
tape_end and events generated by buttons. Additionally, having triggered a
transition, we should be able to ensure that we did that with the expected
one (see the note about direction, play and Fig.2.1 on p.29). In our example
this requirement is satisfied, however for more complicated designs we may
have to explicitly add some inputs and outputs for testing.

As an example of the triggering problem, consider the transition

TapeCounter = 1035/ operation’ = stop

which occurs only when an externally inaccessible variable is set to some
value. Consequently, we have to artificially modify! the label associated
with the transition by adding an extra input as follows:

trigger V TapeCounter = 1035/0pemtz'on' = stop

where event trigger is selected such that it does not belong to the original set
of events. In some cases a transition may be triggered by different inputs
depending on the internal variables of the process. We will have then to
track values of that internal data while generating sequences of inputs. For

B a/z' =1

C 4

aNz <dHV
bAz>5

AN

Figure 4.1: The case when we need to keep internal data in mind when
triggering transitions

example, consider a statechart depicted in Fig.4.1. Depending on whether
we enter the state D from B or from C, we need to choose a different input
to reach E. In simple cases like the one depicted it is not difficult but
with complex transition preconditions and operations it could be. We can
eliminate this problem by adding triggers to labels which could be otherwise
difficult to trigger, at the design stage.

When testing is finished we can forget that we have extra variables in-
troduced for testing and the behaviour of the system will remain the same
as before any testing.

!This process can be described by the word augment. It is used to designate a change
to a design by adding new inputs and/or outputs which does not affect the behaviour
restricted to the original sets of possible inputs and outputs.

CHAPTER 4. TEST DATA GENERATION 67

Outputs from transitions

One might also have to introduce an extra output if the pair trigger,
operation = stop does not uniquely identify a transition. This is the case for
rew_or_ff and rew. If we use rew to trigger rew_or_ff, we cannot distinguish
between it and rew, thus we could add an output rew_or_ff to rew_or_ff.
Since we would prefer not to make any changes to an implementation in
order to do testing, the design for test condition is best considered at the
design time.

4.1.2 Selection of externally accessible inputs and outputs

Inputs and outputs used for testing have to be externally accessible. To
achieve this in uSZ, we have to declare them in some exported ports. Ad-
ditionally, a special port TESTPORT can be created with testing purpose.

PORT TESTPORT
TEST_IN_PROGRESS : B
triggery, triggera, . . . : signal
outputy, outputs, . .. : signal

Variables which are internal to a process class could be made accessi-
ble to the testing process by listing them in this port. New inputs and
outputs introduced for testing can also be added there. When testing
is finished we can either eliminate this port or connect it to a stub such
that TEST_IN_PROGRESS = FALSE (the boolean type is introduced in
Sect.1.4.11 on p. 24).

4.1.3 T _completeness and output-distinguishability for stat-
echarts

Now we describe how statecharts can be made {_complete and
output-distinguishable by augmentation. Further, the term transition will
often be used to mean a label of a transition.

General approach to augmentation

It is possible to use the same input as a trigger for more than a single tran-
sition as shown in Fig.4.2. On the top, we have the original design where
all transitions are dependent on inaccessible data. They thus have to be
augmented. We can assign the same testing input ¢rigger; to more than one
transition, as shown in the middle, provided in the correct machine they do
not both emanate from the same state. In a faulty one, this will also work
because we expect the implementation to implement the augmented design
and be deterministic (Req. 1b, 4a). The testing output output; is assigned

CHAPTER 4. TEST DATA GENERATION 68

R m =3/ c m =4/ b
m =4/
B
triggery/ triggery/
A outputy c outputsy D
triggers/
output; B
trigger; / triggers/
A output; c output; D
trim
outputy B

Figure 4.2: An example of augmentation where the same testing input is
used for two transitions

to two transitions too. This is possible because any of the transitions can
be identified by its trigger/output pair. In some cases we might introduce a
unique testing input to every transition as shown at the bottom of Fig. 4.2.
This would make the testing method more robust in cases when the im-
plementation of one or more transitions is faulty. For example, transition
trigger1 / output; could erroneously generate outputy and thus we would fail
to distinguish between states A and C'. We are saying ‘more robust’ because
no guarantees can be made in this case but a wider variety of faults will get
detected, at the expense of a bigger set of test inputs. Unique test outputs
may also be assigned to cope with faulty transitions.

If we are not using augmentation, there could be transitions which are
in practice difficult to trigger independently, such as those with timeout
triggers (App.B.3 on p.273). At the same time, we could decide not to
distinguish between them in which case an approach described in Sect. 5.3
on p. 102 is appropriate.

The determination of whether a design complies with the requirements of
the testing method is undecidable, due to the undecidability of the predicate
calculus. In the App.B.1 on p.269 a heuristic algorithm is proposed in an
attempt to get close to the optimal solution.

CHAPTER 4. TEST DATA GENERATION 69

Design and implementation should remain deterministic after aug-
mentation (a part of Req. 1b)

When augmenting transition labels to satisfy conditions considered, no non-
determinism has to be introduced. For example, consider triggering the
transition play using some newly-introduced testing input button;es;. If this
input is also used to trigger rec transition, then we obtain a nondeterminis-
tic statechart in which we cannot selectively choose to follow a desired path
from the STOP state.

Transitions with empty triggers (Sect. 5.2.5 on p.90) may also cause this
requirement to be not satisfied.

Augmentation of full compound transitions

Augmentation of transition labels, i.e., an addition of a testing input/output
is proposed to be done in essentially the same way as before (Sect.4.1 on
p. 65), meaning that all parts (i.e. compound transitions) of full compound
transitions get augmented. For example, to trigger a transition to the
REWIND state from the STOP one (Fig.1.6), we need to supply it with
events to trigger both rew_or_ff and rew transitions and observe outputs from
both of them. Full compound transitions constructed from augmented parts
generally satisfy the t_completeness and output-distinguishability conditions
too. Additional requirements are to have these parts triggerable at the same
time and not mask each other’s outputs (Req. 3b). For example, if rew_or_ff
is triggerable by rew_new then in order to trigger rew_or_ff-rew both events
rew_new and button_rew have to be generated. For transitions with multiple
parts, test set construction remains the same as for single-part transitions,
but instead of a single event or variable we used to trigger a transition in
Chap.2 on p.28, we may have to use a number of them. In addition, we
must be able to confirm that all triggered parts occurred. More details are
given below in the subsubsection on augmentation of individual transitions.

Using the augmentation approach in general, we need to make sure
that it does not cause requirements for a statechart (Chap.5 on p.79) to
fail. Possible problems are described above and in Sect.4.1.3 on p.70. We
also may have to augment transitions to satisfy other requirements than
t_completeness and output-distinguishability. This is described in Chap.5
on p.79 and in Sect. 8.3 on p.236.

Note that we would be able to talk about full compound transitions
rather than compound transitions being augmented as a whole only if the
requirement Req. 4b were stating that full compound transitions are assumed
to be implemented consisting of all the expected parts rather having a subset
of them implemented. Since it does not, we have to focus at CTs rather than
FCTs.

CHAPTER 4. TEST DATA GENERATION 70

Augmentation of individual transitions of compound transitions

For compound transitions, we may wish to ensure that all its transitions have
been executed. Consequently, we could work with individual connector-to-
connector transitions rather than with a higher-level compound ones and en-
sure the output-distinguishability condition for such individual transitions.
Note that here we are talking about C and other connectors which are not
considered by the testing method and assumed to be absent at the stage of
test case generation; in future we could extend the testing method to such
lower-level transitions (Sect.6.8 on p.206). Alternatively, we can assume
that connector-related part of the statechart is implemented correctly and
make sure that compound transitions are output-distinguishable as a whole,
as described above. Problems with CT's related to augmentation of individ-
ual transitions are very similar to those with FCTs caused by augmentation
of CTs, since in both cases transitions occur in the same step. Parts of
compound transitions are given with C connector between them (and in
some figures here, such as Fig. 4.3, the corresponding CT is drawn); for full
compound transitions, we would have CTs separated by a state boundary.
Due to the noted similarity, we describe both types of problems here.

The two concepts, augmentation of compound transitions as a whole and
on a connector-to-connector basis, are illustrated by an example. Fig.4.3
depicts transitions and a connector and the equivalent compound one.

Augmentation results are shown in Fig.4.4 for modification of the com-

a/ @ b/

aNb/

Figure 4.3: Connector-to-connector transitions and the corresponding com-
pound one

pound transition in Fig.4.3; connector-to-connector transitions shown at
the top of the Fig. 4.3 are augmented in Fig. 4.5 with equivalent compound
transitions given at the bottom of it.

a A b/outa

Figure 4.4: A result of augmentation of a compound transition

Both types of augmentation can be accomodated by the proposed ap-
proach with augmentation of parts of individual compound transitions being

CHAPTER 4. TEST DATA GENERATION 71

a/outa @ b/ outb

a A b/outa A outb

Figure 4.5: A result of augmentation of a connector-to-connector transition

probably simpler. Since it is not clear which of the two is best in general,
both were described.

Individual augmentation of transitions may also lead to our inability to
trigger groups of them. For example, if we have transitions where negation
is used in triggers, in concurrent components of a statechart, the result
of augmentation may fail to be t_complete. For instance, for a V b/qi,
a V = b/ gy we should select a rather than decide to trigger b for the former
and not for the latter, which is not possible if we would like to take them
at the same time, (i.e. in the same step). The same problem may occur
between independently augmented compound transitions.

A problem where augmenting individual transitions caused CTs to be
not output-distinguishable is depicted in Fig. 4.6, which shows the result of
augmentation. If we take the compound transition from state A to B, the

(CD a/bAc

B C

Figure 4.6: Transitions rendered not output-distinguishable as a result of
augmentation

output produced will be the same as that of the transition from A to C' and
thus we would not be able to tell which one occurred.

Another example where augmentation of a transition individually has
lead to our inability to reason whether both of them occurred or not, is

CHAPTER 4. TEST DATA GENERATION 72

given in Fig.4.7. If we trigger the depicted transitions on their own, we

.—\\

A

b/pVala_roye/pVa/e
&/

Figure 4.7: Independent augmentation of transition does not lead to output-
distinguishability

could select the b event to be a trigger of the first one and p — the expected
output as well as ¢ and p for the second one. When we execute them, the
two p events do not allow us to reason if both transitions fired or only one
of them. Note that selection of event a would eliminate the problem and
allow for a smaller set of events to be generated for triggering, specifically
{a} instead of {b, c}.

Additional problems possible with augmenting individual transitions are
described in Sect. 5.2.6 on p.92.

4.1.4 Other design for test requirements

T_completeness (Req. 2) and output-distinguishability (Req. 3a) are not the
only requirements that a statechart has to comply with. The whole group
of requirements is called design for test because a statechart can be made
compliant with it by proper augmentation which has been described above
for the two conditions.

Synchronicity of behaviour (Req. 3c) can be enforced not only by appro-
priate augmentation which is not described here but also by embedding a
tester statechart into the one under test. Both approaches are provided in
Sect. 5.2.7 on p. 93.

Structural requirements (Req. le, 4b, 4e, 4f, 4g) are not considered in
detail; they are believed to be relatively easily diagnosed and appropriate
statecharts augmented. This will be illustrated by the hi-fi case study in
Sect. 8.3 on p. 236.

4.2 (Generation of a test set

Having constructed a set of test cases as described above in Chap.3 on
p- 46, we need to generate concrete test data for each of them. The idea is to
generate a sequence of test data for each sequence of transitions where every
element of this sequence serves as an input for triggering the corresponding
transition in the test case under consideration. For a statechart satisfying
the design for test condition (Sect.4.1 on p.65), the task is relatively easy.
Often, we can replace each transition name with an input corresponding to

CHAPTER 4. TEST DATA GENERATION 73

that transition. For example, a possible input sequence corresponding to
rew_or_ff-play play in Fig.1.10 is {rew, play} {play}. We could also use ff
instead of rew there. - B

Triggering and observation of the effect of transitions is done using
changes to variables. Such changes include a modification of a persistent
variable or an event generation. Details are in Sect. 6.1.2 on p.118. The test
set consists of sets of sequences of sets of changes to persistent and event
variables to be applied to a system under test. The above illustration is one
such sequence. Every element of it is expected to be executed in a separate
step.

For a sequence of sets of transition labels Ipath, function t(Ilpath) can
be defined to return the sequence of sets of inputs to follow the considered
path, with optimisations considered in Sect.4.2.2 on p.73. This ¢ is called
fundamental test function. It is an extension of the one given in [Ipa95] for
sequences of sets of labels rather than just sequences of labels.

4.2.1 Simulation

To construct expected outputs, we compute (i.e. simulate) the reaction of
the design to the input data sequence. In the case where no transition
or explicit static reaction gets triggered by some input, we expect a ‘do
nothing’ static reaction to occur and the implementation to produce an
empty output, corresponding to changes to no variables. For example, a test
sequence rew play applied in the initial STOP state corresponds to operation
changing to move and then to play.

Determination of transition outputs by simulation can be achieved using
the language called SCP. It is a Pascal-like language built into Statemate
supporting complete control over its execution environment. It means that
it is possible to write a program which will read a sequence of test inputs
from a file, apply it and write outputs to another file.

In uSZ, 7 schemas are converted into C programming language and
interfaced to Statemate via a C or a JAVA library. This provides an alter-
native way to apply testing inputs to the statechart considered and extract
outputs.

4.2.2 Simple optimisations

Due to cutting of test sequences after inputs corresponding to transitions
which should not exist and prefix removal, both described below, the result-
ing test set can be much smaller than the set of test cases. In the worst
case, however, they are of the same size. Optimisations are performed after
test data generation since we could use the same input for more that one
transition, thereby possibly ‘collapsing’ a number of test cases into a single
sequence of inputs.

CHAPTER 4. TEST DATA GENERATION 74

Prefix removal

Some simple optimisation of the constructed test set can be performed. If
we have sequences of inputs like rew play and rew play stop, we can eliminate
the former as it is the same as the beginning of the latter (a prefiz). It can
be defined formally following [Spi92]:

—1A44]

_prefiz _:seq AA <> seq AA

Vf,seq:seqAA o f prefix seq < (Fc:seqAA o f 7 ¢ = seq)

Note that this kind of optimisation may also be applied to the W set,
which is made possible by its usage as the last element in the multiplication
during test case generation (Eqn.2.2).

Cutting test sequences

Consider an invocation of the play transition in the RECORD state. If it
exists, it is a fault in the implementation regardless of the entered state;
otherwise the implementation passes this test case. Consequently, when
making sure that some transition is not implemented in some state, the test
case sequence may be cut after an input corresponding to that transition.
For transitions which have to exist in the implementation, such as the stop
transition from the RECORD state, we need to test not only their existence
but also whether they terminate at the expected state. As the W set is
constructed using existence or nonexistence of some sequence of transitions,
we can also terminate test sequences after an input corresponding to the
first transition which should not exist.

4.2.3 Loops and growth of a test set w.r.t. m —n

The size of a test set is often estimated for m — n without regard to the
set of labels. Taking it into account reveals that the test set may be much
smaller. Here we try to estimate its expected size.

Consider a simple statechart which looks like a tree, i.e., with the limited
path length. It is depicted in Fig. 4.8. For this statechart, the test set does
not grow when m increases.

What makes the test set grow is loops, as if we can traverse more states
than there are in a statechart in the same sequence then we have to visit
one of them more than once. Consider a statechart in Fig.4.9 which con-
tains a single loop. The resulting test set growth is directly proportional to
m — n. ‘directly’ follows from that we can only repeat a single transition
many times. In the statechart in Fig.4.10, we have two loops and the test
set size is expected to be 2™~ ™. It could be possible to state the following:

CHAPTER 4. TEST DATA GENERATION 75

Figure 4.8: A tree-like simple statechart

Jas

Figure 4.9: A simple statechart with a single loop

Jas

=

Figure 4.10: A simple statechart with two loops

CHAPTER 4. TEST DATA GENERATION 76

Conjecture. The growth of the test set for an X-machine w.r.t. m —n is
min(| ® |, number of loops). It means that the test set size is of an order
of min(| ® |, number of loops)™~™ (or it could be just a number of loops
without min).

No research was done in this area such that the formula presented above
could actually be reduced to (number of loops)™ ". It is also unclear how
to estimate the number of loops and whether their length matters. We could
try to obtain the number of loops and then try to tackle the task of obtaining
it from the transition graph. Looking into relations between a number of
loops and growth of a set of test cases depending on m — n is a possible
direction for future work.

4.2.4 Reduction of the number of inputs to trigger transi-
tions reduces the test set

Consider a finite-state machine shown in Fig.4.11. We can construct a test

b/1

a1 al2
qO ql q2
b2 b/ a1

Figure 4.11: A finite-state machine with outputs

set for it using the original Chow’s W method [Cho78|. Treating it as an
X-machine, it is possible to generate another test set. Test case bases for
these are shown in Tab.4.1. From the table it can be observed that the set

X-machine finite-state machine
C | 1,a/1,a/1b/2 1,a,aa
W | b/2,a/2,b/1b/2 b/2,a/2,bb/12
®={a/1,a/2,b/1,b/2} | ¥ = {a,b}

Table 4.1: Comparison of the test case bases for the same machine considered
to be an X-machine and a finite-state machine

of test cases for an X-machine will be much bigger, compared to the test set
for the FSM. The situation changes when we generate a test set, because we
use input a to trigger labels a/1 and a/2 and similar for b. Consequently,
the two test sets have the same size.

CHAPTER 4. TEST DATA GENERATION 7

This is the reason of the difference between the size of the set of test
cases and that of the test set in the example. The test set can be reduced
further if we group labels and use one input for each group. Consider a
partition P = {®1,®9,...} of ® such that

Voi,0j: P ei#j=Ne¢,€oi,¢p€op o testinput(g,) # test_input(ep)
Vo:P eV¢i,¢j:0 e test_input(p;) = test_input(¢;)

Partitioning presented is similar to that of [Ipa95] where Ipate was con-
structing a set of test outputs for augmentation. It is possible to have an
associated automaton with inputs being inputs to trigger any label in a par-
tition and outputs — outputs from the expected label. It means that instead
of trying to trigger every label ¢;1 ... ¢;,, € 0;, we use their common input.
The output will allow us to reason which of the labels has been actually
triggered, based on the assumption of the correct implementation of ®.

Although finite-state acceptors may seem to be simpler than machines
with outputs, usage of outputs in an associated automaton does not lead to
an apparent reduction of a test set size. This is evident from looking at our
example where the only difference between TCB for an FSM and that for
an X-machine is that of the set of ® v.s. ¥ which gets reduced to zero once
we consider inputs.

The time to construct a test set can be considerably reduced if we con-
struct a set of inputs, capable of triggering all transitions. In a simple
case where this set is state-independent, it can be used in the construction
of a set of test cases instead of ® (with inputs being clearly distinguished
from labels). For Fig.4.11, it will be {a™P® p¥"Put} for the set of labels
{a/1,a/2,b/1,b/2}.

Theoretically, we could test X-machines by supplying them with all pos-
sible inputs, i.e. by using 3 instead of ®. This will in most cases make a
test set much bigger. With finite-state machines treated as X-machines, as
we have observed, this is not always true.

In practice it may be useful to balance the two, i.e. use inputs generated
from labels as in X-machine testing method as well as try a subset of a
set of inputs. This would allow us to weaken our assumptions of correct
implementation of labels.

4.3 Test set execution and monitoring

In order to supply a test statechart with inputs and observe outputs, the
tester has to communicate to the statechart. We can either test it with a
separate statechart connected to the process under test via ports or have it
embedded in a statechart being tested (App. A on p. 267). Problems related
to Req. 3¢ being not satisfied are described in Sect. 5.2.7 on p. 93.

CHAPTER 4. TEST DATA GENERATION 78

4.4 Test result analysis

Test result analysis is not a trivial task in case a test reveals a fault by
producing a different output from the expected one. In order to locate a
fault, we shall have to perform extensive further testing, work has been done
on that [Hie97a, RDT95b].

The ability of testing methods to detect a single fault can be defined as
follows [RDT95b]:

Definition 4.4.1 (¢-fault resolution capability of level k). A test se-
quence selection method has t-fault resolution capability of level k if for any
implementation with at most t faulty transitions, a test sequence selected by
the method can localise at least one faulty transition to within a set of k
transitions provided the implementation is faulty.

In the area of fault diagnosis for different testing methods, we can con-
sider implementations having only one fault, i.e. 1-fault resolution capability.
Wp method (App. C.3 on p. 281) is shown by [RDT95b] to be one of the best
but inferior to the DD one (Sect. 2.3.1 on p. 37).

In the case where a test does not discover a fault, we may have to esti-
mate the reliability achieved. The latter has to be done from a probabilistic
model of failures. For example, if we estimate m to be 6 for our example, it
is possible to compute a probability for it to be 7 or more. There could also
be some distant chances for the reset transition to fail in the implementa-
tion or some other requirement be not satisfied. The method for statistical
evaluation of the quality of a tested product might be developed in future.

Chapter 5

Requirements for the test
method

In order to generate the test set and draw conclusions from this test set not
revealing faults, a number of conditions have to be satisfied. We group them
according to the phase of testing where they apply.

5.1 Summary of the requirements

Here we provide all the requirements a statechart has to satisfy in order for
the developed testing method to be useful for testing its implementation. In
practice, some of these requirements may be not satisfied. In such cases the
method might have to be slightly modified in order to be applicable and/or
it could lose some of its fault detection ability. A description of why the
following requirements are needed and what could be done if a system does
not comply with them is given in Sect. 5.2 on p. 82.

1. Test cases can be generated if the following conditions can be asserted:

(a) minimality of the design: the statechart in every OR-state is
minimal, i.e. all states are reachable from its default connector,
restricted to non-interlevel transitions; no two of them have equiv-
alent behaviour (again restricting the statechart to non-interlevel
transitions only). This is formalised in Def. 6.4.6. As shown in
Prop. 6.4.25, with this requirement we can also claim minimal-
ity of an X-machine, behaviourally equivalent to the statechart
considered (Prop.6.3.4 and Th.6.3.10).

Consideration of implementations with states being split is pro-
vided in Sect. 8.2 on p.232 and Sect. 2.3.2 on p.41.

(b) design and implementation are deterministic (explained in
Sect. 5.2.2 on p. 83 and in Sect.6.1.4 on p. 153).

79

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 80

(c) existence of an upper bound on the number of extra states in an
implementation (explained in Sect. 2.2 on p. 31); this uses Req. 4.

(d) a decision was made whether or not we consider all labels to be
candidates for usage in C, W, @, or we exclude some. For exam-
ple, ‘do nothing’ static reactions can be ignored. The description
is provided in Sect. 5.2.3 on p. 85.

(e) no shared labels exist between transitions in statecharts in dif-
ferent states, except that default transitions are allowed to have
empty triggers (which implies that they are shared). This is de-
scribed in Sect. 5.2.4 on p. 86 and formalised in Def. 6.1.35.

(f) non-default transitions cannot have empty triggers. This is de-
scribed in Sect. 5.2.5 on p. 90 and described formally in Def. 6.6.1.

(g) there should be a unique initial configuration in the statechart
design. A default transition entering this configuration should
have no trigger. This is used in Sect. 6.3.3 on p.173.

2. For a set of labels, we have to make certain that:

(a) labels we wish to trigger can be triggered regardless of memory
value and

(b) those we do not wish to trigger, will not be triggered.

This requirement, referred to as t_completeness, is formalised in Def. 6.6.2.
A description of the importance of the second clause of it is provided
in Sect. 5.2.7 on p. 95.

3. Test outputs can be generated if:

(a) every transition label is identifiable by its input/output pair (output-
distinguishability), described in Chap. 4.

(b) transitions taken in the same step should not assign values to
the same variable. It also means that outputs from transitions
occurring in the same step do not mask each other. This require-
ment, called ‘racing’ [NH95] is described in Sect.5.2.6 on p.92
and Sect.4.1.3 on p. 70.

(c) synchronous behaviour under test, implying that no unexpected
chains of transitions may occur, due to Req. 2. This requirement
is described in Sect. 5.2.7 on p. 93.

These requirements are formally defined in Def. 6.6.2.

4. In order to draw conclusions from the results of testing, we have to
ensure the following (requirements 4e-4g are formally defined as a part

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 81

of definition for the transition structure of a statechart and Req.4h —
in Def. 6.1.26):

(a) an implementation can be modelled as a statechart with the same
sets of labels on compound transitions as those in the original
statechart. The design has been built with Statemate statechart
semantics in mind; the step semantics is correctly implemented,

(b) areasonably correct implementation of full compound transitions.
This means that subsets of sets of labels comprising full com-
pound transitions are implemented as single transitions with ini-
tial compound transitions never left out. Naturally, if a proper
subset of any FCT is implemented, such an implementation is to
be declared faulty during testing. This is described in Sect. 5.2.9
on p. 98.

(c) refinements assumed took place.

(d) both design and implementation have a reset transition, which
we assume to end all our test sequences with.

(e) a transition cannot enter a default connector explicitly. This is
described in Sect. 5.2.10 on p. 101.

(f) transitions from default connectors cannot leave the state within
which they begin. This is explained in Sect.5.2.11 on p. 101.

(g) There should not be any transitions from an OR-state being an
immediate substate of an AND-state. This is described in Sect. 5.2.12
on p.102.

(h) Default transitions are non-interlevel. This is believed to be un-
necessary but was assumed in order to simplify proofs of merging
rules given in Sect. 6.4 on p. 178. Note that even if we allow inter-
level default transitions, in every OR state there would have to be
at least one non-interlevel default transition or otherwise states
within that state would be unreachable during construction of C'.

When t_completeness, (Req. 2), output-distinguishability (Req. 3a), syn-
chronous behaviour (Req. 3c) as well as structural requirements Req. le, 4b,
4e-4g are satisfied, we say that the design for test condition holds. The
name follows from a possibility to make a statechart comply with these
conditions by an appropriate augmentation (p.66). From the above require-
ments comprising design for test, Req. 2 and Req. 3a are to do with labels
and the rest — with structure of statecharts. Requirements which are not a
part of the design for test are considered by the author to be necessary for
well-behaved statecharts.

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 82

5.2 Explanation of requirements for statecharts

Here we describe the need for the requirements provided above and what
can be done if they are not satisfied.

5.2.1 Minimality of the design (Regq. 1a)

Applying minimality of an X-machine [HI98, p. 171] to simple statecharts,
we get that a statechart has to have all its states accessible by a sequence
of transitions and none of them be behaviourally-equivalent. Here we treat
statecharts as finite-state acceptors with inputs being transition labels. Min-
imality makes it possible to construct a state cover C' and a characterisa-
tion set W. If all simple statecharts of a complex statechart are mini-
mal, a flattened statechart corresponding to the complex one is minimal too
(Prop. 6.4.25). Here we shall discuss problems occurring with non-minimal
statecharts.

Statecharts without interlevel transitions

The set W cannot always be constructed using our incremental approach. In
such cases we might either look inside OR states or introduce static reactions
in order to distinguish states. We consider these two in turn.

An approach of looking inside OR states is illustrated in Fig. 5.1 where we
might have to consider transitions b and c of the statechart in the state B to
distinguish it from C. Since every two statecharts have non-intersecting sets

A

ep a €c

B Bs C

Figure 5.1: The case when we have to look inside an OR state

of transitions, we could in principle use any transition inside B to identify
it in the mainstatechart even when it is possible to distinguish it using
transitions of the main statechart. This approach allows one to reduce the
usage of transitions defined on higher levels in the state hierarchy, compared
to those at the lower level. Unfortunately, distinguishing states in such a
way leads to a considerable increase in the size of the set of test cases. This
is caused by the fact that while testing the main statechart we do not know

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 83

which state of B we are in. Consequently, we need to try transitions specific
to B until one occurs and this would potentially require the whole ® g to be
included in W. In the example in Fig. 5.1, both b and ¢ have to be included.
This problem can be eliminated, if for every state in the substate statechart
there is a transition in Wsypsraresrarecuarr Which exists from it. For the
statechart in Fig. 5.1, it means that for every state in B, i.e. By, Bs, there
is a transition in W from them, {b, ¢} C W. This could be the case if B
had more than two substates and b, ¢ were used to distinguish them. The
proof of the described modification of W is similar to that of Prop. C.2.5 on
page 280.

Static reactions can be introduced in order to distinguish states. Con-
sider Fig. 5.2.

€B a €c

STrp sro

Figure 5.2: The case when we have to consider static reactions

We have states B and C behaviourally equivalent and thus indistinguish-
able unless we add static reactions srp and sr¢ to them. Usage of static
reactions can lead to a reduction of a test set size as described in App.C.4
on p.282.

Statecharts with interlevel transitions

Construction of a test case basis for a substate statechart is not always
possible as a substate statechart might be very closely related to the parent
one via interlevel transitions. It is illustrated in Fig. 5.3 where C and W for
the statechart in the F' state have to include interlevel transitions and we
prohibit them from appearing there. In practice we shall consider flattening
such states.

5.2.2 Nondeterministic designs (Req. 1b)

In this subsection we consider nondeterministic statecharts. Cases when
nondeterminism is introduced as a result of augmentation are described in
Sect. 5.2.2 on p. 83; racing as a cause of nondeterminism is given in Sect. 5.2.6
on p.92.

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 84

\ /

N

Figure 5.3: A substate statechart with nonexistent test case basis

Structural and functional determinism

The concept of determinism in the thesis means structural determinism. In
the following we give an example of a simple statechart which is structurally
nondeterministic but exhibits deterministic behaviour. The diagram is given
in Fig. 5.4; labels are defined as

init: /m' =0
a: /m'=m+1
b: /m'=m+2
c: /df output’ A vl output’ = m

This simple statechart is structurally nondeterministic, but produces a de-
terministic result (output=3).

A Py B SN
init \ {/

b

Figure 5.4: Non-deterministic simple statechart producing deterministic
output

Testing of nondeterministic statecharts

The testing method allows us to test the transition diagram but in general
requires deterministic behaviour during test execution. Note that as a result
of testing of nondeterministic statecharts we would only be able to show the
equivalence of relations computed by them rather than of functions as is the
case for deterministic systems.

In order to apply the testing method we could augment transitions with
nondeterminism, such that during testing the implementation will behave

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 85

deterministically. In some cases, however, this could be impossible; an ex-
ample is given in Fig.5.5. The reason is that both trans transitions are

%

Figure 5.5: A statechart which is always nondeterministic

always either enabled or not and nondeterminism is always present unless
these transitions can be augmented independently, refer to Sect. 5.3 on p. 102
for details on that. In such cases of nondeterminism, we could have difficulty
constructing sets C' and W for a model.

An alternative approach is similar to [LvBP94, IH99] where a complete-
testing assumption is used. This assumption states that nondeterminism is
“fair’, i.e. if from some state a number of transitions can be nondeterministi-
cally chosen, then by taking a test which triggers them eventually all choices
would be used.

Testing nondeterministic statecharts could be considered in future.

5.2.3 Excluding some transitions from the test (Req. 1d)

Some transitions may be assumed correct and excluded from testing. For
instance, this could be done with implicit ‘do nothing’ static reactions as
augmentation of them may be considered difficult because it affects a large
number of states. Transitions excluded from testing should not be added to
any set of TCB.

Some transition labels possess properties, preventing them from being
used in C' and W, although they can be included in ®. This is the case for
interlevel transitions or those which are shared between different statecharts.
Although the latter contradicts Req. le, the testing method could still be
applied if we do not use such transitions in ¢ and W.

Assume that F is the set of transitions of the considered statechart which
should not be included in C' and W. Construction of appropriate C and W
sets can be accomplished by building an auxiliary statechart, with transi-
tions of the original statechart excluding those in E. For such a statechart,
we can try to compute C and W sets. In the case it is possible, the result
will satisfy the condition of not using shared and interlevel transitions.

Unfortunately, in some cases it is not possible as shown in Fig. 5.6 be-
cause after removal of ‘bad’ transitions the statechart becomes disconnected

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 86

as shown in Fig. 5.7.

G\

A B D E F

Figure 5.6: Another case when we have to look inside an OR state

0\

A B D E F

Figure 5.7: A disconnected statechart resulting from removal of shared tran-
sitions from that in Fig. 5.6

5.2.4 Problems related to shared transitions (Req. le)

Here we describe problems which occur when we consider statecharts with
shared transitions, for statecharts with and without interlevel transitions.

Note that transitions with empty triggers in different states are inher-
ently shared; this is not a problem in our case since non-default transitions
cannot have empty triggers by Req. 1f and default transitions with them are
excluded from consideration.

Statecharts without interlevel transitions

The construction of a set of test cases as proposed in Chap. 3 on p. 46 may en-
counter a problem depicted in Fig. 5.8 where rew_or_ff in Fig. 1.6 is replaced
by ff. With both the main statechart and the one in the state REW_FF
complying with ‘design for test’ condition, transitions with the same la-
bel will bear the same test input and output (more on it in Sect.5.3 on
p.102). If we used rew_or_ff in W to tell STOP and REW_FF apart in
the mainstatechart, we shall now fail to distinguish between STOP and
F_ADVANCE. This follows from the input event button_ff being used to dis-
tinguish STOP from states PLAY, REC, REW_FF in the mainstatechart
and REWIND from F_ADVANCE within the REW_FF state. Note that
the problem exists only because transitions to distinguish states in REW_FF
contain transitions from the main statechart. In other words,

TRANSITIONS(WRE‘W_FF') ﬂ TRANSITIONS(WMAINSTATE'CHART) # (%)

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 87

play
PLAY REW_FF
direction rew
F_ADVANCE REWIND
button_stop play stop / ff
ff
K} rec
STOP RECORD
stop

Figure 5.8: An illustration why every statechart may have to be augmented

as ff belongs to both of them. TRANSITIONS (W) (Def. 6.1.18 on page 125)
means the set of transitions participating in the set W. Above, the set
of transitions in Wggy #p essentially coincides with Wipy pr. It will not
necessarily be the case if W contains sequences of transitions. For the
statechart in Fig. 2.2, W = {a,¢,ba,bc}, TRANSITIONS(W) = {a, b, c}.
To cope with the problem, we can use a different Wy, 4,nsrarecuarr which
would use rec to distinguish between STOP and REW_FF.

Statecharts with interlevel transitions

Consider the design of the tape recorder which contains an additional rec
transition from the rewind state in Fig.5.9. The set of test cases for such

| REW_FF
a
D PLAY ey rew

. - F_ADVANCE REWIND
direction i

la ff rew
button_stop e W
stop
P rew_or_ff /rec
.g rec
STOP RECORD

stop
Figure 5.9: An example of an interlevel transition

a statechart coincides with that constructed for the statechart in Fig.1.6.
According to the rules for the construction of a test case basis of the main
statechart, we might like to use the rec transition to distinguish REW_FF
from the STOP state. For this reason, during testing we would trigger rec
while in REW_FF. In the case we were in the REWIND state, the interlevel
transition would occur and we might confuse the STOP and REW_FF states.
Even with the knowledge of the behaviour of the rec transition it cannot be
used in test case basis construction for the main statechart because it may
occur only when REW_FF'is in the REWIND state and not in F_ ADVANCE.

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 88

The most simple solution to this problem is either to flatten REW_FF or
not use rec in Cyavsrarscuart and Wiy starecuart-
AND-states — testing by multiplication of states and transitions

We can apply our incremental test case construction approach only as long as
concurrent parts do not have transitions with the same trigger. An example

Figure 5.10: The problem with incrementally testing AND-states via state
multiplication

of a problem if this does not hold is shown in Fig.5.10, where we have the
following sets for the second concurrent component:

02 = {17 a’ a b}’
Wy = {a'7 b}a
®y = {a,b,c}.

Further,
C=CxCy ={1,a}x{1,a,a b} ={1,a,aa,ab,aab}

This is not quite what we would like, just observe that a a is the same
as a (by cutting sequences, Sect.4.2.2 on p.74), making C = {1,a,b}. It
definitely cannot allow us to visit six states. The right part of Fig.5.10
depicts the flattened statechart equivalent to the one on the left. When
event a is generated, both transitions A — B and C' — D take place making
state AD unreachable. In order to get from C to D we have to invoke a
transition triggered by a, but this will move us out of the state A. In fact, to
remain in the state C of the second concurrent component after triggering

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 89

a, we have to take path b ¢c. We could thus search for paths which allow us
to return to a state which was left ‘accidentally’, which is not easy.

AND-states — separate testing

The method meets the same difficulty as above when there are transitions
in concurrent components with the same trigger. Consider testing of the
faulty implementation on the right of Fig.5.11, against the design on the
left. When we trigger a in state C, the transition from A may occur. As

1 2 1 2
LAl i [e "¢] la] e =" E]
| |
a 3 a b a 3 b
| |
(5] i [o (e] i [o
specification faulty implementation

Figure 5.11: The problem with incrementally testing AND-states with each
state tested separately

we cannot tell whether a occurred from A or from C, such a fault will
be undetected. This problem can be solved by the augmentation making
transitions in different states behave differently under test, the description
to follow.

Augmentation of shared transitions in different statecharts

The proposed set multiplication above works if we replace ¢ with some
transition having a different trigger in each concurrent component. We
could easily enforce this behaviour by an appropriate augmentation. This
kind of modification may involve adding a test input and a variable as shown
below:

— LABEL_q
=TestPort

TEST_IN _PROGRESS A
(df a A 1€ INSTATE V df d A 2 € INSTATE) v
(df a A ~TEST_IN_PROGRESS)

Above, INSTATE is the set of states the statechart is in, i.e. a configuration;
INSTATE is a set defined in uSZ.

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 90

Under test, this transition behaves differently in each concurrent compo-
nent. The augmentation shown can be done automatically. The disadvan-
tage of this approach is a bigger set of extra inputs/outputs and the same
transitions having different triggers if they happen to be in different state-
charts. Proposed augmentation of transitions can be done for shared tran-
sitions in OR-states too. If we are trying to reuse schemas from transitions
in the main statechart within the REW_FF state, this approach becomes
difficult to apply. More details are given in Sect. 5.3 on p. 102.

In some cases, we might also wish to augment outputs of shared transi-
tions to provide information on the concurrent state they occurred in. This
could be done similarly to the described input augmentation.

5.2.5 Empty transition triggers (Req. 1f)

In statecharts, transitions may have an empty trigger. It means that they
are always enabled (with domains of their labels being the whole of DATA,
refer to Sect.6.1.2 on p.118 for details) as long as a statechart is in the
source state of such a transition. These transitions may cause complications
to test set generation since

e in states with such transitions we cannot trigger any other non-interlevel
transitions without causing nondeterminism (Req. 1b is not satisfied),

e chains of transitions may occur (Req. 3c may be not satisfied).

This problem could be solved by augmenting transitions containing empty
triggers to make them ‘well-behaved’ (i.e. not constantly triggered). Here
we try to look at the problem and identify cases when such augmentation is
not needed. What we say also applies to transitions which have their trigger
enabled nearly always.

In the following we describe problems outlined above and then provide an
approach to the augmentation of transitions to eliminate those with empty
triggers.

No other transition can be triggered without causing nondeter-
minism

Consider a statechart in Fig.5.12. Since transitions taken in a step are full
compound, the described problem only occurs if all parts of them other than
default transitions are empty-triggered. This is the case with the transition
from state A to C.

According to the testing method (Sect.2.2 on p.29), we trigger every
transition of a statechart from every state. Since the transition from A to C
is always enabled, triggering any other transition, such as the A — B one,
from A causes nondeterminism contradicting Req.1b (nondeterminism is
described in Sect. 5.2.2 on p. 83). Note that we can still ‘trigger’ transitions

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 91

MAIN_STATECHART

ev/

0\

Figure 5.12: An example of the two full compound transitions with one of
them without a trigger

with empty triggers by supplying a statechart with inputs which cause no
transition with nonempty triggers to become enabled.

Unexpected chains of transitions are possible

Figure 5.13: Full compound transitions without triggers

If we have a full compound transition which has no trigger (Fig.5.13),
the first transition is immediately followed by another one and thus the stat-
echart takes two transitions instead of one. As a consequence, states B and
C essentially ‘squash’ into one and we can neither apply other transitions
from B nor identify with W or visit it with state cover. Such behaviour
contradicts Req.3c. A possible solution is described in Sect. 5.2.7 on p. 93
(a description of Reg. 3c).

Augmentation to remove empty triggers

Non-default transitions of full compound transitions with empty triggers can
be augmented to make empty-triggered transitions well-behaved. Default
connectors cannot be augmented since we try to apply every non-default
transition from all states (Sect. 2.2 on p.29). The transition between A and
C will be applied from states B and C and thus would still have an empty
trigger. In addition, default transitions with triggers may cause problems
(Req.4b) and would generally lead to a larger test set (Sect.3.2.1 on p. 48).

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 92

5.2.6 Racing between transitions is not allowed (Req. 3b)

Racing [NH95, p. 24] is an erroneous condition during execution of a stat-
echart model when two or more transitions taken in the same step change
the same variable!. An example is provided in Fig.5.14 where variable a
is assigned contradictory values by two transitions (¢’ means the value of
a after execution of the transition, refer to Sect.1.4.3 on p. 14 for details).
Such changes are considered to be in a contradiction since transitions taken

— —

evia=1 evia'=2

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 5.14: An example of racing

in a step do not have a specific order of execution. For this reason, such
a statechart can be viewed as nondeterministic. Apart from FCTs, racing
may also occur between parts of the same FCT or parts of a compound
transition.

Cases of racing cause the following problems:

e outputs from transitions may mask each other, be it full compound
transitions in concurrent statecharts or parts of a full compound transi-
tion; they can also do so if statecharts behave asynchronously, violating
Req. 3c.

e racing between concurrent transitions may cause nondeterminism, be-
cause an order in which racing transitions are taken would affect the
result. In some sense, this is the type of nondeterminism which we
could allow as long as events or variables which are used during test-
ing are not affected by racing. Note that the behaviour exhibited by
a statechart when not under test could contain no racing since paths
which are taken under test could be infeasible in normal operation.
Despite this, we prohibit this phenomenon.

Although in general assignment of the same value to a variable by more than
one transition taken in a step does not introduce the described problem, such
a case is also prohibited; this is the behaviour of the Statemate tool.

!The case when a transition uses a variable modified by another one in the same step,
is not considered erroneous.

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 93

The requirement for no racing is such that for every path in a statechart,
transitions taken in the same step should exhibit no racing. In principle, it is
possible to test for this kind of behaviour by taking complex full compound
and concurrent transitions. If there is racing then the behaviour would be
nondeterministic which could be detected assuming the fairness assumption
described in Sect. 5.2.2 on p. 83 is satisfied. Statemate Analyzer can be used
too.

5.2.7 Unexpected chains of transitions may not occur (Regq. 3c)

We begin with the description of different approaches to test set application.
Synchronicity requirement, as a possible approach to eliminate the problems
encountered, is then described. Some alternatives to it are also provided,
even though they were discarded.

Communication between a tester and a system under test

Consider the statechart in Fig. 5.15. The top statechart is the one under test
and the bottom one — the statechart applying test sequences and monitoring
changes. The big circle is the communication port between them and the
double lines show system boundaries.

statechart under test

.\

a/z=2—25 /2 =z

2

tester statechart

Figure 5.15: The tester which is not embedded in a statechart but commu-
nicates with it through a port

If we supply the statechart under test with some input, both transitions
will take place and the output will be a combination of them. We cannot
tell the sequence of transitions taken from outputs unless we introduce the
step variable and augment every transition as shown in Fig. 5.16.

In general, statecharts may be allowed to exhibit some sequences of tran-
sitions, provided they do not mask changes made by each other. Racing
covers transitions taken in the same step as depicted in Fig.5.17% and is
considered erroneous (Req. 3b); here we are talking about transitions taken

*Fig. 5.17 differs from Fig. 5.15 by having a C connector instead of a state in the middle
of it.

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 94

statechart under test

a/z =z — 25; /z = \/z;
.’\ out; = step; step = step + 1 outy = step; step = step + 1
outi; = outy, =

tester statechart

Figure 5.16: An augmentation to tell a sequence of transitions from outputs

in separate steps. If this holds, then provided we can enter every state and
then try every transition from it, such statecharts can be tested. An exten-
sion of the testing method in this case may follow [Hie97d] and can be done
in future.

.\

statechart under test

a/z=1—25 \@ /z =z

0

tester statechart

Figure 5.17: An illustration of masking between two transitions

For test application shown in Fig.5.15, it rather difficult to tell a se-
quence of transitions occurred from outputs as well as to force a statechart
through a desired path. The task becomes significantly easier if we embed
the tester into the statechart under test as shown in Fig.5.18 and have a
static reaction in the tester statechart generate and sense variables at every
step®. Such embedding allows the tester to observe changes and generate
inputs on a step-by-step basis rather than a superstep one. Such embed-
ding would require considerations of specifics of statemate semantics, refer

3When talking about testing in general, we suppose a tester to interact with a statechart
under test via externally available variables. Embedding it in the statechart under test
does not contradict it. First of all, an interface allows us to reason which variables may
be affected by the tester and possibly set them to some values when testing is finished.
Second, embedding is only supposed to allow the tester to sense the ports it has access to
on the step rather than superstep basis.

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 95

statechart under test

.\

a/t =1z —25 /T =T

tester statechart

-

Figure 5.18: The tester embedded in the statechart under test

to Sect.1.4.10 on p.23 for details. The primary disadvantage of the ap-
proach of embedding is that it is rather intrusive. We expect to be able to
interact with the implementation at the very low level. Above, the chain of
transitions is shown. Applying the approach of embedding, we can cause a
different path to occur which is the prime advantage of embedding. On the
other hand, it can make a statechart behave contrary to the step semantics.

In this work we introduce a requirement of a synchronous operation of
a statechart under test and apply the test set without embedding. The
summary of the different approaches to embedding a tester in a statechart
under test is given in App. A on p. 267.

The requirement of a synchronous behaviour under test

When we apply an element of a test sequence, the necessary labels get
triggered and we observe the output. These labels may generate events
and change variables, triggering other labels. In asynchronous semantics,
chains of transitions occur while in synchronous we are given a chance to
influence the execution. The problem of chains of transitions is solved by
an introduction of a requirement of a synchronous behaviour of a statechart
under test. This requirement does not prevent labels of transitions we do
not wish to take from being triggered; t_completeness is responsible for that.

When deciding how to trigger a set of labels corresponding to the next
element of a test sequence, we have to consider modifications made by la-
bels executed when we triggered those of the previous element of the test
sequence. This is necessary to ensure that no labels other than those we
expect to take, are triggered (note that here we talk about triggerability
rather than enableness since in a faulty implementation any transition may
go from any state). In the examples given above, such as the one in Fig. 5.15,
it is not possible without an appropriate design for test.

Making triggered labels not triggered is included in the t_completeness
requirement (Req. 2); indeed, it says ‘those we do not wish to trigger, will
not be triggered’. For this reason, having a set of labels to trigger and
those already triggered, we can find a set of events to generate and vari-
ables to change such that the desired set of labels and only this set will be
triggered. In order to make this possible, we could augment labels with neg-

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 96

ative events, such as — not_triggered A label. In this case, we can generate
the not_triggered event to prevent this label from being triggered even if the
precondition of label is satisfied. An alternative approach involves providing
the tester with an ability to make events undefined and thus influence which
labels are triggered. This approach violates the semantics of statecharts in
addition to being a rather intrusive one.

Note that when deciding which variables (persistent and volatile) to
change in order to trigger a given set of labels, we have to consider all labels
® of the considered statechart, irrespective of state transition diagram. This
follows again from a need to accommodate a faulty implementation where
any transition may go from any state (subject to refinement).

Alternative approaches to eliminate chains of transitions

The t_completeness requirement is significantly more strict than the one
for X-machines, where the clause about not triggering other transitions is
absent. It was unnecessary to have it for X-machines since their behaviour
is strictly synchronous on input symbols, i.e. an X-machine cannot trigger a
transition without an input being supplied while a statechart can, regardless
whether we consider synchronous or asynchronous step semantics.

In order to tackle the problem of chain reactions without usage of the
power of t_completeness to stop transitions from being triggered, we can
introduce a notion of a supersynchronous semantics where transitions taken
in a step do not trigger any others and thus in some sense we are free to
trigger those we would like to. We say ‘in some sense’ because, although no
labels are triggered, we cannot say anything about undesired labels when
we trigger those we would like to. Consider, for instance, labels ¢ A b V
¢/ and b/. We could decide to use ¢ and b respectively to trigger them.
Unfortunately, if event a was generated in the previous step, then, although
no label is triggered, the first one will be when we generate event b. For this
reason, even in this case we have to consider already generated events when
deciding how to trigger labels.

A further restriction of semantics of statecharts can require statecharts
under test not to make any changes to variables which we would have to
take into consideration when triggering labels to be taken in the next step.
This may be accomplished by the tester being able to remove changes to
variables which may cause a dependency, prior to applying those necessary
to trigger the desired labels. For example, for the above two labels the tester
would stop the a event from being generated (provided it is not necessary
for triggering the desired label) because it introduces the possibility of the
described problem. Consider a model with not only the above two labels
but also the third one, a A d/, which we would like to trigger, but none of
the former two. In this case, both ¢ and d events have to be generated and
thus a does not have to stopped from being generated.

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 97

Even in the case where we can make the above assumption, it is not
possible to eliminate the second clause of t_completeness requirement since
statecharts may have transitions with labels having intersecting precondi-
tions on different levels in state hierarchy. When triggering one of them we
would also have to ensure that another label is not triggered.

From the description of the two alternative approaches to handling the
problem of undesired chains of transitions, we can observe that neither allows
us to reduce the number of requirements for testing or relax existing ones.
For this reason, they are not considered in the rest of the thesis.

5.2.8 Correct implementation of transition labels and step
semantics (Req. 4a)

Correctness of the implementation of individual labels

The testing method requires the correct implementation of labels of transi-
tions. If it is not so, the method might fail. Consider the following faulty
implementation of the play transition:

— Faulty play
=2 UserButtons
A(ff-direction, operation) CommunicationToMechanics

df button_play A — df button_stop

operation’ = play

TapeCounter < 2000 = ffdirection’ = ff.direction
TapeCounter > 2000 = ff.direction’ = FALSE

An implementation with such a play transition is likely to pass testing
while being faulty. We can, however, test all Z labels separately before using
the proposed testing method. It could reveal this fault.

Some implementations may split transitions and errors may lead to dif-
ferent parts of the same transition entering different states. With that, the
possible two-stage approach is described in Sect.2.3.2 on p.41.

A few groups of third year students were asked to choose a simple sys-
tem, design it with X-machines, implement and evaluate the ability of the
testing method to find seeded faults. Results have shown [CT98] that se-
lection of test inputs which may occur during the operation of the system,
rather than artificially added ones, allows us to find many faults even in the
implementation of transition labels. It also appeared [KE98] to be better to
combine test sequences together rather than reset an implementation after
application of every of them which is very similar to what is said on that in
[FvBK™91]. For instance, it is harder to find a fault of an alarm clock not
going to 0:0 after 23:59 if we do not run it long enough.

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 98

Correct implementation of compound transitions

As the method is developed under assumption that C, S, junction, fork
and joint connectors are absent (Sect. 3.1 on p.46), we have to assume that
compound transitions are implemented correctly. In future, this restriction
can be removed; the outline of work is given in Sect. 6.8 on p. 206.

Transitions implemented with wider domains

Some transitions may be implemented to occur on a wider set of inputs (i.e.
have wider domains) than stated on an original design. Let us denote some
label in a design as f and in an implementation as f’. Then this can be put
down as

Vm :domf e m € domf’' A f'(m) = f(m)
dom f C dom f'

Although statecharts are completely specified, completeness is implicit via
‘do nothing’ static reactions. If all static reactions are made explicit we can
show that wider domains cannot occur in an implementation. Indeed, from
every state with an outgoing transition labeled by f, there is a transition g
in a design such that dom gN(dom f'\dom f) # & leading to nondeterminism
because ¢ is expected to be implemented without narrowing of its domain.
Note once again that such a conclusion is only the case when all static
reactions are made explicit, i.e. there are no ‘do nothing’ ones.

Correct implementation of step semantics

In addition to correct implementation of transition labels, the testing method
requires correct implementation of step semantics. This could be tested to a
certain extent by triggering multiple conflicting transitions in the same step
and verifying that the one with the higher priority is taken. Testing of step
semantics could be considered as a subject for further research.

5.2.9 Correct implementation of full compound transitions
(Req. 4b)

In this section we shall illustrate certain problems related to default connec-
tors and different approaches for handling them.

The test method described uses an assumption that an implementation
may have subsets of full compound transitions implemented but initial com-
pound transitions are always included. Consider the statechart in Fig. 5.19.
We assume that the full compound transition

rew_or_ff- rew- init_mechanism

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 99

REW_FF

REWIND

-

init_mechanism

stop

.g A_/:)r_ﬁ
STOP

Figure 5.19: An example of a statechart with deeply nested states

rew

can be implemented as any of

rew_or_ff- rew- init_mechanism
rew_or_ff- rew

rew_or_ff
or even
rew_or_ff- init_mechanism
but not either of

stop- rew

rew - init_mechanism

since in our statechart rew cannot be a part of any full compound transition
beginning from STOP and an implementation of a full compound transition
has to contain an original initial transition; rew, init_mechanism are both
continuation CTs.

The considered requirement means that if there is a default transition in
some state, it is not implemented on its own but only as a part of transitions
which are supposed to enter the considered state. The following example
demonstrates a possible problem when this assumption is not true.

In the Fig. 5.20, there is an incorrect implementation on the right which
does not get detected by the test method under our assumptions, because
even though we trigger the rec transition from the RECORD state, the
REW_FF state does not get entered because the default transition is not
triggered.

From the considered requirement it follows that, for example, if there is
an interlevel transition entering the REW_FF state in a faulty implemen-
tation, it would enter some state within it and not go through any default

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 100

STOP

REW_FF REW_FF
REWIND REWIND
® rew rew
rew_or_ff rew_or_ff
rec
rec .g rec
RECORD STOP RECORD
correct faUlty

Figure 5.20: An example of a problem with default connectors

transition. This implies that triggering it, but none of the default transi-

tions,

would allow us to take such a transition. For this reason, stop-rew was

considered to be absent from an implementation of the design in Fig. 5.19.

If

we wish to remove this assumption (Req.4b) and assume that any

combinations of ordinary transitions with default ones are possible, we have

to do

either of the following:

make it possible for test sequences to enter every state we would like,
since as shown it is not sufficient just to be able to trigger an appropri-
ate full compound transition (happily, we can always leave any state
we are in). This can be done by making default transitions enabled
as a part of the design for test, but may lead to nondeterminism. For
instance, if we do that for our tape recorder, both rew and ff labels
would have to be always triggered since they label default transitions.
Unfortunately, we then get a chain reaction in the REW_FF state
where the considered labels are also used on ordinary transitions.

keep default transitions in mind when making a set of test cases. This
means we essentially ‘multiply’ all labels with non-empty labels of
default transitions, denoted deflt = {default;, defaults, ..., default,}.
More formally, let TST(®) = {t : & o ({¢t})}. Then

D, = (TST(®) U TST(defit))« TST (defit)* ... x TST(deflt)

where we have to assume some number of elements in the multiplica-
tion, related to the depth of the state hierarchy tree of a statechart
under test. In most cases, the size of the product will render this ap-
proach infeasible (the above is the same as testing many concurrent
states without refinement!).

use a combination of the two approaches above, i.e. design for test
some labels and multiply the remaining ones.

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 101

e use an assumption that if we trigger a transition which enters a state
with no default transition triggered, an error is reported. For instance,
if we trigger rew_or_ff in our example of the tape recorder, it would
enter the REW_FF state and terminate with an error if none of rew
or ff is enabled.

The code generator of Statemate tool works the described way. The
author also expects triggers on default transitions to be used to express
preconditions? and their actions to initialise a substate statechart. This
provides some justification for such an assumption.

Removal of the requirement 4b could be considered in future work.

5.2.10 A transition cannot enter a default connector explic-
itly (Req.4e)

Consider the statechart in Fig.5.21. It does not make much sense since a
transition can be drawn to the border of the REW_FF state. If we wish to
express that a precondition of an operation performed by a default transition
should be made explicit, this can be accomplished as given on the right of
Fig.5.21. This requirement is also stated by Harel [NH95, p.9].

REW_FF REW_FF
REWIND o REWIND
//rew M
.g rew_or_ff .g rew_or_ff
STOP STOP
transition entering an aternative way
adefault connector to express the same

Figure 5.21: A transition cannot explicitly enter a default connector

Potentially, it is possible to allow such transitions entering default con-
nectors explicitly. They will then be considered interlevel by the testing
method; alternatively, we could consider the entering transition to termi-
nate at the state border and test it as a non-interlevel one.

5.2.11 Transitions from default connectors cannot leave the
state within which they begin (Req. 4f)

This restriction is not documented explicitly in [NH95, MLPS97]. Without
it we would be able to enter and exit a state in the same step as shown in

“similar to the assert statement in programming languages C and C++.

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 102

Fig.5.22 and such behaviour is not allowed in general [NH95, p.30]. The
restriction is also the behaviour of the Statemate tool.

/

./A

Figure 5.22: The prohibited default transition

5.2.12 Transitions also cannot go from or terminate at im-
mediate substates of an AND-state (Req. 4g)

This requirement is not described in [MLPS97] but is seemingly obvious

since we cannot even draw transitions which go from a specific concurrent
component such as CONTROL or SEARCH and not the whole AND-state
(Fig. 1.10).

5.3 Transitions which could be treated the same

In this section we shall describe the special case of statecharts which causes
violation of a number of testing requirements and a possible solution to it.

5.3.1 i_same transitions

Usually, transitions which have the same label are assumed to be imple-
mented by the same code (which could be accomplished with generic state-
charts or using template classes in C++) and thus have identical behaviour.
Changes to one of them by augmentation will affect another one, e.g. if we
add a trigger to one of them, the other one will become triggerable by it
too. Here we call such transitions i_same (implementation-same). Note that
transitions which have the same functionality do not have to be i_same since
one of them could be represented by a replica of another transition rather
than by shared code. Consequently, we have to decide which transitions
can be considered to be implemented by the same code. This is shown in
Fig.5.23. Transitions a b between states A, B and C, D could be considered
to be i_same. A user can help a tool here since treating different transitions
as i_same or those which are i_same as different ones can be disadvantageous:

e if we erroneously decide a pair of transitions to be i_same, we assume
that we cannot distinguish between them and they will have the same

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 103

a b
/ A —@—= B R
i
INITIAL E
i2 a b %
c —@—= D

Figure 5.23: An example of transitions which could implemented by the
same code

trigger and output. Thus in a statechart with such transitions, the
characterisation set W could be longer. For example, in order to
distinguish between states A and C in Fig. 5.23, we have to use the se-
quence a-b c instead of a;yp-bsop Where the azop-bsop denotes the upper
compound transition consisting of the a-b transitions.

o if a pair of transitions which is i_same is considered to be not i_same, it
may become very difficult to select the triggering input and an appro-
priate output. For example, if transitions a-b in the above statechart,
on top and bottom, are treated as different, a;op-bsop could be used to
distinguish between states A and B. If they are, in fact, i_same, they
would have to behave differently when supplied with the same input
(triggering the top or bottom one). Consequently, we would have to
make such transitions ‘aware’ of which, top or bottom transition is
being triggered which could make augmentation for the design for test
complicated. This approach is described in Sect. 5.2.4 on p. 89.

5.3.2 Consideration of parts of compound transitions

So far, we illustrated issues related to treating transitions i same or not,
using CTs. What has been said also applies to parts of them, as shown in
Fig.5.24. Tt is possible to treat transitions with label b in both transitions

b a
A = B

Figure 5.24: Parts of compound transitions which could be treated i_same

to be i_same. Using such a fine-grained control mechanism over the parts
of transitions could allow users to make better decisions. For example, for

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 104

the statechart to comply with the design for test condition, the output from
the transition a has to be different from that of b and triggers could be
the same. If we consider b-a as a whole transition, this decision could be
more difficult to arrive at. In real statecharts, transitions could consist of
even more parts making such operations on compound transitions relatively
more complex than when looking at individual transitions. It is possible
to go even lower where individual disjuncts in the DNF representation of
transitions are considered, treating identical ones to be i_same and using
this to judge if individual transitions or compound ones are the same.

5.4 A summary of solutions to problems with shared
transitions and non-minimality

A number of problems caused by shared transitions have been pointed out
in sections 5.2.1 and 5.2.4. The incremental approach proposes construction
of auxiliary sets for parts of the design and combining them. Such auxiliary
sets can be constructed for every substate statechart, ignoring the content
of its substates. Sometimes, the substate statecharts cannot be considered
separately because they have a strong relation to their parent statecharts.
It could mean that many transitions in them share their schemas with that
of the main statechart, interlevel transitions are overused, much processing
is going on in static reactions or in substates. In this section we describe
what can be done to solve these problems. Since all the proposed approaches
are considering statecharts prohibited by requirements, not much detail on
solutions is provided.

1. Flattening the whole design solves all stated problems. Regarding
what has been said in Sect. 1.4.5 on p.16 about the incremental ap-
proach and refinement (Sect. 3.2.3 on p. 52), we seek methods to avoid
global flattening.

2. We could flatten OR states containing shared transitions. This is
done without looking inside that substate’s OR states. For exam-
ple, when flattening C in Fig. 5.8, we would flatten REW_FF but not
F ADVANCE and REWIND, even if they were not basic. The test

case basis would then be recomputed for the resulting statechart.

3. If considered transitions with the same label can be augmented indi-
vidually, we no longer need to consider them to be shared; refer to
Sect. 5.3 on p. 102 for details.

4. Sets C and W could be constructed such as not to include shared
transitions. In such a case, the testing method could be applied and
would provide some of the expected benefits. This is mentioned in
Req. 1d.

CHAPTER 5. REQUIREMENTS FOR THE TEST METHOD 105

5. As an extreme case, one could only design statecharts with all their
transitions having different labels. In order to distinguish states of
such statecharts, we would have to include one transition from every
state but one in W; all such transitions would be different resulting
in W containing n — 1 elements. For example, for a 3-state machine
we would need W containing 2 sequences of one transition each. This
W could be much bigger than the theoretically possible smallest one
(Sect.2.4.2 on p.42).

Chapter 6

Proofs for the testing
method

In order to do formal testing, we need to formalise statecharts. Unfor-
tunately, despite many formal semantics including that of automata com-
positions [Mar92, MLS97] modecharts [PSM96] and statecharts [MLPS97,
GK96, MSPT96, HGARS88, Day93, HMLS98, HRAR92] being developed, all
of them consider aspects of statecharts other than those we are interested
in. The difference is mainly that usually formalisation serves a purpose
of model-checking specifications and details of behaviour of transitions are
included in formalisations. In our case, we do not consider behaviour of tran-
sitions in detail since it is assumed to be correct (Req. 4a) and look in detail
at the transition structure. This focus on transition diagrams and default
connectors is absent from most formalisations considered, only [GK96] bears
some similarity to this work but lacks many useful propositions. For this
reason, another formalisation was developed in order to prove the method
to guarantee correctness on the basis of testing not revealing faults under
testing assumptions. It is based on the higher-level semantics [MLPS97].
Static reactions and history connectors are not considered.

In order to show that the set of test cases generated by the incremen-
tal approach has the same fault detection ability as the set of test cases
constructed from the flattened statechart, we prove that the test case basis
constructed as a result of merging possesses the required properties when ap-
plied to the flattened chart as illustrated by Fig.6.1. Test case generation is
described in Sect. 2 on p. 28, merging — in Sect. 3 on p.46 and in Sect. 6.4.3
on p.182 and the flattening process is formalised further in Sect. 6.2 on
p-157. Then, the behavioural equivalence between transition systems of
the design and implementation essentially follows from the Chow’s proof
[ChoT78]. Since the test data construction method presented in the the-
sis essentially follows the requirements described in [IH97] (refer to proofs
in Sect. 6.6 on p.201), we can directly apply the proof of [TH97] which guar-

106

CHAPTER 6. PROOFS FOR THE TESTING METHOD 107

statechart

flattening

(Sect. 6.1 on p.108)

Test case basis
construction

1
{ test case bases

merged test
case basis

Merging of test case bases
(Sect. 6.4.3 on p. 182)

(Sect. 6.4.1 on p.178)

flattened statechart
(Sect. 6.2 on p. 157)

Test case basis
construction
(Sect. 6.4.2 on p. 181)

test case basis

What we are trying

to prove here

(Sect. 6.4.4 on p.187).

The main result is proven in
Th.6.4.26 on p. 195

Figure 6.1: The diagram which is to be shown to commute

CHAPTER 6. PROOFS FOR THE TESTING METHOD 108

antees the correct operation of the implementation w.r.t design. While pro-
viding an outline of it, we clarify the difference between an FSM used by
Chow and an acceptor used by Ipate [IH97] and the author.

Z is used for expressions in order to facilitate comparison with other work
and make type-checking possible. Below in proofs we use some extensions
of Z [Toy98], namely expressions of the form 3, aa == ezpr. This means
that aa is an abbreviation of ezpr such that, for instance, if we later write
¢ = func(aa), it is the same as ¢ = func(ezpr). In declarations of functions
we have given types of arguments while predicate only considered meaningful
values of variables of these types. For example, in Def. 6.1.2, we write

defaultfrom : SSet + SSet

but then define it for sset : F X since it does not make sense to consider states
not belonging to the considered statechart. Not all statements proven are
necessary to show the main result. Unnecessary ones are useful to ascertain
intuitive properties of statecharts.

6.1 Formalisation of the state transition system of
a statechart

In this section we describe the formalisation [MLPS97] of the state transition
system of a statechart and its extension to non-full compound transitions.

6.1.1 State hierarchy

States of a statechart are considered to be of type STATE as given in
[NH95, MLPS97] and form a tree with a root state root. default-type states
are default connectors. The presence of the last two is necessary here to
include non-full compound transitions'. The child relation of a state tree
p: STATE + FSTATE provides a set of substates of a given state. The
state tree for our tape recorder (Fig.1.6) is given in Fig.6.2 and the one
for the AND-state in Fig.1.10 — in Fig.6.3. In Fig.6.2, we make the
main statechart state to be the root one while in Fig. 1.10, the state contain-
ing CONTROL and SEARCH states is an AND-one and we thus have to
introduce a higher-level OR-state, which we will call TAPE_RECORDER.
For a state, we might wish to consider it and a set of all states below it;

the construct p* is used for that. For example, in Fig. 6.2,

p*(root) = {root,default_ TAPE_RECORDER, PLAY, REW_FF,STOP,
RECORD, defauli_ REW_FF, F_ADVANCE, REWIND}
p*(PLAY) = {PLAY}

'[MLPS97] has only one nit at the top level since it does not consider non-full com-
pound transitions.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 109

root

default TAPE_RECORDER STOP REW_FF PLAY RECORD

default REW_FF F_ADVANCE REWIND

Figure 6.2: The state tree for the tape recorder

root

default_root TAPE_RECORDER
CONTROL SEARCH
default. CONTROL PLAY STOP RECORD default SEARCH IDLE REW_FF

Figure 6.3: The state tree for the tape recorder with an AND-state

pT is different from p* in that it does not include the state it was applied
to:

p*(root) = {default. TAPE_.RECORDER, PLAY, REW_FF, STOP,
RECORD, default. REW_FF, F_ ADVANCE, REWIND}
pT(PLAY) = @

We postulate the type STATE and possible types of states; CONNECTOR
type implies non-default connectors which we do not consider until Sect. 6.8
on p. 206.

[STATE]
TYPE ::= stateBASIC | stateAND | stateOR |
CONNECTOR | connectorDEFAULT

The definition of the state tree as given in [MLPS97] includes predicates
which ensure that the state tree is indeed a tree. They are provided here

CHAPTER 6. PROOFS FOR THE TESTING METHOD 110

with appropriate changes to reflect the statecharts we operate on. The type
of a state TYPEF is given by the function ¢.

Definition 6.1.1. A state tree of a statechart is defined as follows:
root : STATE

p,p* pt : STATE + F STATE

¢: STATE + TYPE

parent : STATE + STATE

3 SSet

domp\ U(ran p) = {root} N U(ran p) C domp A ¢(root) = stateOR
Vset :]F(U(ran p)) e (Fel:set o (Vst:set o el ¢ p(st)))

Vs: U(ran p) ® (3, anc : domp e s € p(anc) A parent(s) = anc)

dom parent = U(ran)

Vst: STATE o
(¢p(st) = stateAND =
(Vs :p(st) e ¢(s) = stateOR)) A
(p(st) = stateOR = (3, d : p(st) ® $(d) = connectorDEFAULT)) A
((¢(st) = stateBASIC V ¢(st) = connectorDEFAULT V
¢(st) = CONNECTOR) < p(st) = @)

> =domp A domp =dom¢
Vst: STATE e p*(st) = {st} U U{s :p(st) e p*(s)} A
pr(st) = p*(st) \ {st}

The definition consists of three parts, the first one making sure p forms a
tree (from [MLPS97]), the second asserting properties of states and the last
one defining ¥-the set of states of a statechart, p*, p* and domains of tree
operations. State properties are those given in [MLPS97] with addition of
connectors. An AND-state should have OR substates and every OR — state
should have a default connector. BASIC states and connectors cannot have
substates. The set Y. is further assumed to be finite.

The following function helps to determine a default connector of a stat-
echart in a state, passed to it as a parameter.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 111

Definition 6.1.2.
defaultfrom : SSet + SSet
defaultFROM : STATE + STATE

Vsset :FX e

defaultfrom(sset) = {s : sset | ¢(s) = connectorDEFAULT}
Vs:X|¢(s) = stateOR o

3, st : p(s) e ¢(st) = connectorDEFAULT A defaultFROM (s) = st

A configuration is a set of states, excluding default ones, a statechart can
be in simultaneously. For example, if we enter F_ ADVANCE state, FF_.REW
should also be entered since it is a parent of F_.ADVANCE in the state hi-
erarchy. Additionally, no more than a single substate of an OR-state can be
entered, for example we cannot be in STOP and PLAY states at the same
time. Thus, possible configurations in Fig. 6.2 are {root, F ADVANCE} and
{root,STOP} but {F_ ADVANCE,STOP} is not. For concurrent compo-
nents, some states in all of them should be entered; for example, if we
enter the statechart in Fig.1.10, a state inside each of the CONTROL and
SEARCH states, such as STOP and IDLE also have to be entered. For this
reason, allowed configurations include

{root, TAPE_.RECORDER, CONTROL, SEARCH, STOP, IDLE }

but not
{root, CONTROL,STOP}

These rules are given by the configuration relation between the top state of
a state hierarchy and a set of states:

Definition 6.1.3. Configuration of a statechart (essentially from [MLPS97])

configuration _ : F{(STATE x I, STATE)

Vitop : STATE; conf : F; STATE e
configuration(top, conf) < top € conf A conf C X A (V state : conf e
¢(state) € {stateOR, stateAND, stateBASIC'} A
(¢(state) = stateOR = #(p(state) N conf) = 1) A
(¢(state) = stateAND = p(state) C conf) A
(state = top V state # top A (I parent : conf e state € p(parent))))

The above definition excludes all connectors from a configuration. Since
configuration is defined such that it contains a root state, it is nonempty

CHAPTER 6. PROOFS FOR THE TESTING METHOD 112

and further, when talking about a configuration, we write, for instance,
conf : ¥, ¥ | configuration(root, conf)

Proposition 6.1.4. A parent of a non-root state in a configuration belongs

to the configuration.

V rootstate : 3; conf : F, X | configuration(rootstate, conf) e

(Vs:X o s € conf A s # rootstate = parent(s) € conf)

Proof. Is a restatement of the last line of the definition of a configuration
(Def. 6.1.3). O

st

Sa

S1

Figure 6.4: An illustration of the Prop.6.1.5

Proposition 6.1.5.
Vst:Ye
(Vs:% o s€pT(st)= (3,84 :p(st) ® s €p*(s4)))

This proposition is illustrated by Fig. 6.4.

Proof. By definition of pT, there is s : p(st) e s € p*(s). By the definition
of the tree (Def. 6.1.1, line 3 of the predicate part), this s; is unique. O

Some useful relations from [MLPS97] are Anc (ancestor), SAnc (strict ances-
tor) lca (lowest common ancestor), lcoa (lowest common strict OR-ancestor)
and orth (whether states are orthogonal or the same) are defined as follows.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 113

Definition 6.1.6.

Anc _,SAnc_:F|(STATE x F, STATE)
lea,lcoa : Fy STATE + STATE

orth _: F,(STATE x STATE)

orthset _: F (F STATE)

Vanc:%; sts:F; Y e
(Anc(anc, sts) < sts C p*(anc)) A
(SAnc(anc, sts) < sts C pt(anc))
Vsts :[F; X; anc: Y e
(lca(sts) = anc < Anc(anc, sts) A
(Vst:X o Anc(st,sts) = Anc(st,{anc}))) A
(lcoa(sts) = anc < SAnc(anc, sts) A
(Vst:X o SAnc(st, sts) A ¢(st) = stateOR = Anc(st,{anc})))
Vsi,8: 5 o orth(s1, s2) < (s1 & p*(s2) Asa & p*(s1) A
d(lca({s1, s2})) = stateAND)
Vsset : F, X o orthset(sset) <
(V51,50 : sset | s # sy ® orth(si,s2))

From Def. 6.1.3, we can show the following:

Proposition 6.1.7. Any set of orthogonal states is possible in some con-
figuration,

V states : F; STATE | orthset(states) ®
dconf : F; STATE e configuration(root, conf) A states C conf

Proof. configuration restricts which states could be a part of it only with
respect to OR-states, ¢(state) = stateOR = #(p(state) N conf) = 1, this is
always satisfied for orthogonal states. O

From Def. 6.1.6, propositions 6.1.8-6.1.10 follow:

Proposition 6.1.8. Consider st = lca(s1, s2) A st # s1, then
3y 54 : p(st) @ s1 € p*(sq).

Proof. From st = lca(s, s2), it follows by definition of lca that s; € p*(st).
Since st # s1, then s; € p™(st) and the result follows from Prop.6.1.5. [

CHAPTER 6. PROOFS FOR THE TESTING METHOD 114

We can also show the following:

Proposition 6.1.9. If p and q are unrelated states, a child of p is unrelated
to q.

Vp,q:X|pégp(9) ANggp*(p)e
(Vs:p*(p) ® s ¢ p*(q) A g ¢p(s))

Proof. The proof is illustrated with Fig. 6.5.

Figure 6.5: An illustration of the proof of Prop.6.1.9

If s = p, the result follows from the assumption of the proposition.

Consider s € p*(p), s € p*(q). If s = q then ¢ € p*(p) contradicting
the assumption of the proposition. Thus, s € p*(g) and by Prop.6.1.5,
3, s1 = parent(s), s1 € p*(q), s1 € p(p); by assumption of the proposition,
s1 # p, consequently, s; € pT(p).

Treating s; similarly to s above, we get that s; € p™(p) A 51 € p*(q) and
3, s2 = parent(s1). This sequence of s; is bounded by p since Vi e s; € p™(p)
and s; € p(s;+1)- This leads us to a contradiction as the tree is finite.

Consider s € p*(p), q € p*(s). By transitivity of p* (obvious from its
definition), ¢ € p*(p) — a contradiction. O

Proposition 6.1.10. Consider st = lca(s1,82), then if s1 # st N so # st
then 3, sq, sp : p(st) such that s1 € p*(sq) A s2 € p*(sp) N sq # sp. This is
illustrated in Fig. 6.6.

Proof. Let st = lca(s1, s2). From Prop.6.1.8, 3, s,, s : p(st) @ s1 € p*(s4) A
s9 € p*(sp). The inequality s, # sp is from the definition of Ica. O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 115

lea(sy, s2)

s1 52

Figure 6.6: An illustration of the proof of Prop. 6.1.10 and Prop.6.1.11

Proposition 6.1.11. orth possesses the following properties:

Vs:X e = orth(s,s)
V s1,80 : 2 e orth(sy, s2) < orth(sz, s1)
Vs1,8 : X o orth(sy, s2) = (Vsub: p*(s1) e orth(sub, s3))

Proof. The first two directly follow from the definition of orth.

Consider and = lca({s1,s2}), then, from definitions of lca and orth,
¢(and) = stateAND, s, € p*(and) A sy € p*(and) N s1 & p*(s2) N\ 52 ¢
p*(s1), from which follows that s; # and A s # and. Thus, by Prop. 6.1.10,
84,8 : pland) e s1 € p*(sq) N s2 € p*(sp) N S # Sp-

Anc(and, {sub, s2}) is satisfied for all sub € p*(s1) by definition of Anc.
We now show that and is the lowest ancestor of them from the contrary.
Consider the lower one [, such that Anc(l,{sub,s2}) Al € pT(and), then
st : p(and) e | € p*(st) (Prop.6.1.5); since Vs, : p(and) \ {sp} ® s. ¢
p*(sp) A sp & p*(sc), then by Prop.6.1.9 we get that sy, ¢ p*(sc). Thus for
all those s, s2 ¢ p*(s.) and consequently it only has to be [€ p*(s). By
Prop.6.1.9, Vsub : p*(s1) ® sub € p*(sq) N sub ¢ p*(sp). We get that [
cannot be an ancestor of sub and as a result, and = lca(sub, s2). O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 116

In the following, the term route is used for sets of states in the state
hierarchy, every two of them related with p*.

Definition 6.1.12. Route
‘ route : ¥ x ¥ + SSet

Y rootstate, s : ¥ | s € p*(rootstate) o
s = rootstate = route(rootstate, s) = {rootstate} A
s # rootstate = route(rootstate, s) = route(rootstate, parent(s)) U {s}

From the definition of configuration, we get that
V conf : F, X | configuration(root, conf) @ (Vs : conf ® route(root, s) C conf)

Consider a set of states states such that there is a configuration to which
all of them belong. It may be that there is a number of such configurations;
it is interesting to find out which states of states actually determine the
set of possible configurations and for those states, which belong to a single
configuration only, try to construct the smallest subset of them uniquely
determining the configuration. With that in mind, a given set of states
could be minimised without changes in the set of possible configurations
containing it. The above questions are answered in the following theorem.

Theorem 6.1.13. For a set of states in a valid configuration, we can try
to define as small a subset of them from which that configuration can be
reconstructed, as possible. The following subset is further considered:

{s : states | p (s) N states = @}

The function reducing a given set of states is called treereduced. Every pair
of states in the set obtained as a result of an application of the treereduced
function is orth. States in this set are basic.

treereduced : SSet + SSet

V states : F; ¥ o treereduced(states) =
{s : states | p™ (s) N states = &}
V conf : F, X | configuration(root, conf) e
¢(treereduced conf|) = {stateBASIC} A orthset(treereduced conf)

Note that are not claiming that treereduced produces the smallest set.

Proof. We begin with a justification of the definition of treereduced.

e By definition of a configuration, if an AND-state is in a configuration,

CHAPTER 6. PROOFS FOR THE TESTING METHOD 117

then all its substates are. If any child of any substate of an AND-state
is in the configuration, the AND-state is and all its substates.

e For OR-states, one and only one of its substates can be entered. Con-
sider s : ¥ such that ¢(s) = stateOR. If there is a substate s; of s in
a configuration conf, then by Prop.6.1.5, 3, s, € p(s) ® 51 € p*(s,)
implying that all states above s; up to the root (i.e. route(root,s;))
are in the configuration. Consequently, there is more than one con-
figuration possible for a set of states if there are some OR-states in it
such that no states below them are entered.

States which are treereduced are orth: they are not related by p* by
construction and have their lca of type stateAND as otherwise there would
be no valid configuration containing them.

States which are treereduced are basic: for a set of states defining a unique
configuration, all OR-states in it have one of their substates entered. If we
consider an AND-state entered, then one child of all substates of it should
be entered. Descending from the root state, we get that such lowest-level
states are basic ones.

Now we show that the reduced set of states defines a configuration
uniquely. Assume that there is more than one configuration with the given
set of basic states. We denote states to be the considered set of states,
conforig — the configuration it was constructed from
(states = treereduced(conforig)) and confpe, — some different configura-
tion, such that confyrig # confpew A states C confpe,. root state will
be contained in both of confyryy and confpe, by definition of a configura-
tion (Def. 6.1.3). We then descend from root, following states which are in
conforig N coNfrey until we find a non-basic state s : confyrig N confpe, such
that p(s) N conforig # p(s) N confpew. Such a state s has to exist as otherwise
CONforig = CONfnew,- Moreover, s has to be an OR-state as connectors are
not contained in configurations, basic states do not have substates and for
an AND-state, p(s) N conforig = p(s) N confpew = p(s). As s is an OR-state,
there are states s1,s2 : p(s) ® s1 # s, such that s, € conforig N p(s) A
S2 € confpew N p(s) since only a single substate of an OR-state may be
included in a configuration. Sets p™(s) N conforig and pT(s) N confpe, are
both non-empty (due to s; and s2) and non-intersecting from definitions
of a configuration and a state tree (Def.6.1.1). It means that treereduced
function, applied to conf,e, has to include either so or a state below it, i.e.
p*(s2) N treereduced(confpe,) # @. At the same time, since sy ¢ conforig,
p*(s2) N confpey = @ and consequently p*(sg) N treereduced(conforig) = @,
which implies that the two configurations cannot be reduced to the same set
of basic states. O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 118

6.1.2 Transitions — basic definitions and properties
Data

The description of data of statecharts below was developed by the author
to mimic that of X-machines. It explicitly models both persistent and event
variables.

Transitions are activated by some input and manipulate variables of a
statechart. Input and output are considered to be of type CHANGE and
internal data — DATA. This DATA consists of variables of both persistent
and event types; CHANGE is essentially an event which expresses changes to
them. This notation is particularly useful when we try to express behaviour
of multiple transitions taken in the same step. Due to step semantics, they
have to operate on original data and the modifications made by all of them
are combined. After an application of the combined changes to data, the
result becomes an original data for the next step. For this reason, functional
composition of behaviour of transitions cannot be used. In what follows
we show (Th.6.3.10) that the behaviour of a statechart under our testing
assumptions is the same as that of some X-machine.

[SPACE)

SPACE is the combined data space of internal data and changes.

For any given statechart, we can define these sets. For example, consider
a statechart with the following data, consisting of two variables, persistent
and event one,

SPACE®™'e DATA®™' CHANGE®*™™' ;. P, SPACE®™'
lenDATAsample : N
DATA**™' = N x (NU { L sampic})

CHANGE**™' = (N x { Lsampte}) U ({ Lsampte} X N)
lenDATAsample - 2

where

J—sample: 7
Lsample; 7, % 7.

Lsampge ¢ N
R (J—samplea —Lsample)

and

SPA CEsample - (N U {J—sample}) X (N U {J-Sdmple})

CHAPTER 6. PROOFS FOR THE TESTING METHOD 119

DATA®¥™! is the internal data; NU{ L sqmpie } part of it represents an event.
CHANGE**™!e ig defined such that we can either set a variable or leave it
unchanged.

For persistent variables, assignment means using a value of an appropri-
ate type and L — leaving a variable unchanged (we assume that L is not a
part of a type of any variable). Event variables can be set and if they are
not, they lose their values in the following step. Note that if a statechart sets
a value and environment then overrides it, this is not a case of racing since
environment makes its changes after the statechart completes its changes.

We do not have to differentiate between ordinary variables and events
since changes can be applied to both of them in the same way.

CHANGE is meant to be used for a modification of a single variable;
multiple changes are supposed to be in a set of changes, CSet. No changes
mean an empty set of changes.

[SPACE]
| DATA, CHANGE : P, SPACE

1: SPACE
CSet ==F CHANGE
CSetSet == F(F CHANGE)

For example, environment’s changes could be {(3, Lsampie), (L sampie, 6)}
which means setting the persistent variable to 3 and generating the event
with the value of 6.

For any given statechart, it is possible to define filtering, racing and
modifications of data for changes. For that, we define function = which
expresses a projection of a part of SPACE with the given number. The
indez function retrieves the number of the element of a CHANGE which is
assigned by it, i.e. the one for which w(index(change), change) #1. From
definition of CHANGE we can derive that

Vi:N|i<lenspace N i # index(data) e m(i, change) =L

CHAPTER 6. PROOFS FOR THE TESTING METHOD

Definition 6.1.14.

lenspace : N
7 : N x SPACE - SPACE

index : CHANGE — N

filter : CSet x FN - CSet

racing - : F; (CSet x CSet)

modify : CSet x SPACE - SPACFE

V cset : CSet; what : FN | what C 1..lengpacy ®
filter(cset, what) = {c : cset | indezx(c) € what}
V csety, csety : CSet o racing(csety, csety) <
(F ey : csety; e 2 csety o index(cy) = index(cz))
Y cset : CSet; data : SPACE e

(Vi:1..lenspace | 7 (Fc: cset o i =index(c))e
(1, modify(cset, data)) = w(i, data))

(V¢ : cset o w(index(c), modify(cset, data)) = w(index(c), c)) A

120

We cannot define racing with a single set of changes since if we have
those generated by two transitions, identical changes to the same variable
have to be flagged as erroneous. Uniting sets of such changes will make such

errors go undetected.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 121

For the example of the two variables given above, we can define

7.rsa,m;l)le - N x SPA CEsample - CHANGEsample
index®*™Pe . CHANGE*¥™l _y N
modifysample - CHANGEsample x DATAsample - DATAsample

Ve: SPA(Z‘ES‘"’””G o w8 (1 ¢) = (first(e), L sample) N
(2, e) = (L sample, second(e))
Vc: CHANGE®* ™' o
(c e Nx {Lsampie} = mdea:”mpje(c) =1)A
(¢ € {Lsampie} X N = indez®*™P*(c) = 2)
V cset : F CHANGE®™™'; data : DATA™™P o
(Fec: cset o index®™™P(c) =1 A
first(modify®®™" (cset, data)) = first(c)) V
- (3c: cset o index® ™ (c) =1) A
first(modify**™'¢ (cset, data)) = first(data))

A
(Fc: cset o index®™™P*(c) =2 A
second (modify*¥™ (cset, data)) = second(c)) V
= (3c: cset o index®¥™P(c) = 2) A
second(modify*¥™% (cset, data)) = second(data))

Transition labels

LABEL contains preconditions and data transformations performed by tran-
sitions. A transition can fire if a statechart is in its source state and the
supplied input is in the domain of that transition. The transition would
indeed occur provided no transition with a higher priority is also enabled as
outlined in Sect. 1.4.5 on p. 16 and formalised in Sect. 6.1.4 on p.153.

LABEL == DATA + CSet

Definition 6.1.15. We use an and operation on labels and have true- and
false-equivalent labels defined for them.

and : LABEL x LABEL — LABEL

andTRUE, andFALSE : LABEL

Vdata : DATA e data € dom andTRUE A and TRUE (data) = &

- (3 data : DATA e data € dom andFALSE)

Vi,lb: LABEL; data : DATA e (and(l,k))(data) = li(data) U ly(data)

CHAPTER 6. PROOFS FOR THE TESTING METHOD 122

The above definition uses ‘and’ since it is later used in Def. 6.1.37 to combine
labels which should be taken in the same step. It is possible to unite them
because no racing between such labels is allowed by Req. 3b.

An empty label can be defined as the andTRUFE function.

The definitions above differ from [MLPS97] where only event variables
are considered while above ordinary variables are permitted as well. Due to
the extension, the concept of changes was introduced which is unnecessary
if no persistent variables are allowed. Another difference between this work
and the referenced paper is that no events occurring when states are entered
or left, variables accessed or modified, are considered. These were omitted
but can be introduced relatively easily into actions of transitions.

An approach to represent data as a big Cartesian product described
above can be given an alternative representation as a partial function from
names of variables to their values. For example, for the above example we
could have values : NAME + VALUFE and

values = {(variable, 3), (event, L sampie) }

The functionality of such a function is essentially provided by functions
lenspace, ™ and index. Since the whole data space of a system is actu-
ally a Cartesian product of sets of values of variables used in it, the tuple
representation Nx (NU{Lgampie }) rather than its alternative has been used.

The basic definition of a transition

Definition 6.1.16. TRANSITION type represents a compound transition
which further in proofs will be referred to as transition; it can be defined

(from [MLPS97]) as:

TRANSITION

source, target : F; STATE
label : LABEL

TRANSITION does not have its source and target configuration uniquely
defined. Non-unique source configuration is possible for the stop transition
which exists from both . ADVANCE and REWIND in Fig. 1.6. Non-unique
target configuration is possible for transitions in concurrent states of the
statechart in Fig.1.10 where play can be taken together with rew_or_ff or
separately.

Now we provide a few useful definitions which are used in different parts
of this chapter.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 123

A few useful abbreviations are defined below:

SSet ==F STATE

TSeq == seq TRANSITION
TSet ==F TRANSITION
LSeq == seq LABEL

LSet == TF LABEL
TSeqSet == seq TSet
TSetSet == F TSet
LSeqSet == seq LSet
LSetSet ==F LSet
TSetSeq == T TSeq
LSetSeq == LSeq
TSetSeqSet == F TSeqSet
LSetSeqSet == IF LSeqSet

Now we define a function which takes a singleton set and returns the
only element of it.

— 144
FromSet : F{ AA -+ AA

VA:F,AA|#A=1e3a:A e FromSet(A) =a

In order to apply a function to sequences, we define the following func-
tion:

~AA, BB}
apply : seq AA x (AA + BB) + seq BB
VseqAA :seq AA; func: AA -+ BB e
apply(seqAA, func) = {i : dom seqAA o i — func(seqAAi)}

Composition is an auxiliary function used in definitions of Ty, C merged

and ®™¢ among others. For example,
Composition(ADD,{1,2,3}) = ADD(1, ADD(2,3))

assuming selection of elements from the set in order of appearance;
Composition is defined as follows:

CHAPTER 6. PROOFS FOR THE TESTING METHOD 124

—14A4]
Composition : (AA x AA— AA) x F;(AA) - AA
VsrcSet : F (AA); with : AA; Operation : (AA X AA— AA)e
#srcSet = 1 = Composition(Operation, srcSet) = FromSet(srcSet) A
#srcSet > 1= (Fel : srcSet o
Composition(Operation, srcSet) =
Operation(el, Composition(Operation, srcSet \ {el})))

The function to multiply sets can be defined as follows:
—1AA4]
setMULT : F(F AA) x F(F AA) > F(F AA)

V setset,, setsety : F(F AA) o setMULT (setset,, setsety) =
{set, : setset,; sety : setsety o set, U sety}

Definition 6.1.17. Multiplication of sets of sequences of sets is defined as
follows:

AA
ASetSeqSet == F(seq(F AA))

—1A44]
multOR : ASetSeqSet[AA] x ASetSeqSet[AA] + ASetSeqSet[AA]

VA, B : ASetSeqSet ® multOR(A,B) ={a:A; b: B e a " b}

4]
multOR1 : ASetSeqSet[AA] x ASetSeqSet|AA] + ASetSeqSet|AA]
VA, B : ASetSeqSet « multOR1(A, B) =

{a:A; b:B e front a™ (last a U head b) " tail b}

—{A44]
RaiseToPower : ASetSeqSet[AA] x N -+ ASetSeqSet[AA]
VYV A: ASetSeqSet o

RaiseToPower(A,0) = {()} A
(Vn :N; e RaiseToPower(A,n) =
multOR(A, RaiseToPower(A,n — 1)))

CHAPTER 6. PROOFS FOR THE TESTING METHOD 125

—1A44]
multAND : ASetSeqSet|AA] x ASetSeqSet[AA] + ASetSeqSet[AA]

VA,B: ASetSeqSet o
A# S NB+#3 = multAND(A,B) ={a: A; b: B e Unite(a,b)}

Above we used the following function

{44

Unite : seq(F AA) x seq(F AA) + seq(F AA)

Va,b:seq(F AA) e Unite(a,b) =
{n:1..min({#a,#b}) ¢ n— (a(n)Ub(n))}U
(1..min({#a,#b})) 9aU (1.. min({#a,#b})) Qb

Two useful conversion functions are defined below:

YY)
SegtoSeqSet : seq AA + seq(F AA)
SetSeqtoSetSeqSet : F(seq AA) + F(seq(F AA))
Vseq : seq AA e SeqtoSeqSet(seq) =
{1:1..#seq ® i +— {seqi}}
V setseq : F(seq AA) e SetSeqtoSetSeqSet(setseq) =
{seq : setseq o SeqtoSeqSet(seq)}

Transitions involved in a path are given by the following function:

Definition 6.1.18.
—{A4]
TRANSITIONS : ASetSeqSet[AA] +F AA

V asetseqset : ASetSeqSet o
TRANSITIONS (asetsegset) =

U{aseqset : asetsegset o U(ran asegset)}

CHAPTER 6. PROOFS FOR THE TESTING METHOD 126

Definition 6.1.19. The enable predicate can be used to check if a transition
can be taken from a given configuration and its precondition is satisfied. The
trigger predicate only verifies satisfiability of the precondition of a transition.

trigger _: F,(LABEL x DATA)
triggerSET _: F,(LSet x DATA)
V1 : LABEL; data : DATA e trigger(l, data) < data € dom

Viset : LSet; data : DATA e
triggerSET (Iset, data) < (V1 : Iset o trigger(l, data))

Here we define basic requirements for transitions of a statechart,

Definition 6.1.20. Valid transitions (transition VALID). The set of valid
transitions is T; the set of valid transitions actually used in a statechart is Y,
which includes default transitions. transitionDEFAULT s a helper function
to verify that a transition is a default one. We assume that Y is finite.

transition VALID _: F,(TRANSITION)
Y,7:F TRANSITION
transition DEFAULT _ : F,(TRANSITION)

Vir : TRANSITION e transitionVALID(tr) &

tr.source U tr.target C X A

root ¢ (tr.source U tr.target) A

#tr.source > 0 N #tr.target > 0 A

(V51,82 : tr.source ® 51 # so = orth(si, s2)) A

(V 51, 80 : tr.target ® s1 # s9 = orth(sy, s2)) A

(= (transitionDEFAULT (tr) V tr.source C p(root)) =
connectorDEFAULT ¢ ¢(tr.source|) U ¢(tr.target|)) A

(transition DEFAULT (tr) = #tr.source =1 A
tr.target C p* (parent(FromSet tr.source))) A

(Vst: X | ¢(st) = state AND e ((tr.source U tr.target) N p(st)) = @)

7 = {tr : TRANSITION | transition VALID(tr)} AT C 1
s : p(root); tr: T e ¢(s) = connectorDEFAULT A tr.source = {s}

Vir:te
transitionDEFAULT (tr) < ¢(tr.source|) = {connectorDEFAULT} A
= (tr.source C p(root))

Valid transitions should not begin or terminate at the root state and should
have both source and target states orthogonal. According to the Req. 4e,

CHAPTER 6. PROOFS FOR THE TESTING METHOD 127

we also restrict states entered by transitions to exclude default connec-
tors. Additionally, the definition formalises Req. 4f and Req. 4g (explained
in Sect. 5.2.11 on p. 101 and Sect.5.2.12 on p. 102).

Definition 6.1.21. Transition is enabled if it is triggered and a statechart
18 1n its source states

enable _ : F,(TRANSITION x DATA x SSet)

Vt:Y; data : DATA; conf : F, ¥ | configuration(root, conf) e
enable(t, data, conf) <
t.source C conf A trigger(t.label, data)

The definition of the transition DEFAULT does not treat the transition
entering the whole statechart as default. This reflects the fact that we
consider statecharts either not embedded in any other statecharts or entered
by some transition to which the one from the default substate of the root
state is a continuation. In both cases such a transition from the default
substate of the root state does not have a known initial one and thus should
be treated as an initial one. This allows us to construct a full compound
transition entering an initial configuration of a statechart. Such treatment
is consistent with Req. 4a, from which it follows that initial CT are always
not default transitions; continuation CTs are always default.

Proposition 6.1.22. FEvery non-default transition can go from some con-
figuration to another one.

Vir:Y e Jsrc,tgt : F; X e
configuration(root, src) A configuration(root, tgt) A
tr.source C src N tr.target C igt

Proof. Follows from Prop. 6.1.7 since source and target states of a transition
are orthogonal.

A configuration is invalid if one of the properties of Def.6.1.3 is not
satisfied. Since we are talking about a subset of a configuration, missing
states do not count, only those which cannot be in a valid configuration
together do. Such states are the following:

1. ¢(s) # stateAND V ¢(s) # stateOR — cannot be true for non-default
valid transitions.

2. For states being source or target states of a considered transition,
@(s) = stateOR A #(p(s) N states) > 1 — contradicts orth.

3. states \ ¥ # @ — contradicts transition VALID.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 128

O

Proposition 6.1.23. For every valid configuration there is a valid transi-
tion going from it and terminating at it. Note: such a transition does not
have to be in Y, but it will be in T.

V conf : F, ¥ | configuration(root, conf) e

(Ftrs : 7 @ trg.source C conf) A
(Ftrq : 7 o try.target C conf)

Proof. A configuration of a non-empty statechart contains at least one basic

state (for empty statecharts — only the root one). We can construct a
transition going from it which would satisfy transition VALID. Similarly for
target configuration. O

The scope of a transition is defined (from [MLPS97]) as follows:

Definition 6.1.24. Scope of a transition
‘ scope : TRANSITION + STATE

| Vir: 7 e scope(tr) = lcoa(tr.source U tr.target)

Transitions may be interlevel and non-interlevel; a non-interlevel transi-
tion and a sequence of them can be defined as follows:

Definition 6.1.25. Interlevel and a sequence of interlevel transitions

transitionNI _: F; TRANSITION

TSetNI _:F, TSet

TSegNI _: F, TSeq

Vi: 7Y e transitionNI(t) < (Is: X e t.source C p(s) A t.target C p(s))
Viset : TSet o TSetNI(tset) < (Vir : tset o transitionNI(ir))

Viseq : TSeq o TSeqNI(tseq) < TSetNI(ran tseq)

From the definition above, it is easy to see that non-interlevel transitions
have a single source and target state,

Vir : T | transitionNI (i) e #ir.source = 1 A #tr.target =1

CHAPTER 6. PROOFS FOR THE TESTING METHOD 129

In the proofs for the testing method (Sect. 6.4 on p. 178), we assume that
default transitions are not interlevel.

Definition 6.1.26. Default transitions are not interlevel

Vir: Y e transition DEFAULT (tr) = transitionNI (tr)

Note that default transitions can potentially be interlevel. Having all
of them this way though contradicts Req. la since states in the statechart
they are in would be unreachable. In a similar case, states inside the PLAY
one in the statechart depicted in Fig.8.16 on p.251 are unreachable due to
transitions entering them explicitly rather than entering an enclosing state.
This is formalised in the following proposition.

Proposition 6.1.27. If an OR state has a default transitions with no label
(empty label aka andTRUE one), it has only one such default transition

Proof. Follows from determinism of a statechart (Req.1b) O

The set of labels of transitions including interlevel ones within some state
but not inside its children can be defined as

Definition 6.1.28. Transitions within some state

TR : STATE + TSet
T :STATE + LSet

Vs:Xe
TR(s) = {tr: Y| s = scope(tr)} A
T(s) ={tr : T |s = scope(tr) o tr.label}

Above, s = scope(tr) captures the fact that we include interlevel transi-
tions in the set of transitions for their enclosing states; for non-interlevel
transitions it reduces to having source and target states of ¢r within s.

In the following we shall often consider sets of labels which correspond
to non-interlevel transitions within some state but not within its children
states.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 130

Definition 6.1.29. Non-interlevel transitions within some state

TR™ : STATE -+ TSet

T™ : STATE + LSet

Vs:% e TR™(s) = {tr : T | s = scope(tr) A transitionNI(tr))}

Vs:% o T"(s) = {tr: Y | s = scope(tr) A transitionNI(tr) e tr.label}

CHAPTER 6. PROOFS FOR THE TESTING METHOD 131

Non-conflicting transitions and their properties

Definition 6.1.30. A sequence of transitions can be taken in a step if tran-
sitions are pairwise non-conflicting. We define the set of states which is be-
ing exited (function exit) and entered (enter) by a transition and then give
the definition of non-conflicting transitions from [MLPS97].

Uezit, Uenter : TRANSITION + STATE

Vir:Te
A theUezit, theUenter : p(scope(ir)) e
tr.source C p*(theUexit) A Uezit(tr) = theUexit A
tr.target C p*(theUenter) A Uenter(tr) = theUenter

exit, enter : TRANSITION x F, STATE + [, STATE

Vir:YTe
V conf : F, £ | configuration(root, conf) e
exit(tr, conf) = conf N p*(Uexit(tr)) A
(I entconf : F; STATE e configuration(Uenter(tr), entconf) A
enter(tr, conf) = entconf A tr.target C entconf)

nonconflict _: F|(TRANSITION x TRANSITION x [, STATE)

Vir,,trg: Te
V conf : F, ¥ | configuration(root, conf) e
nonconflict(try, tra, conf) <
(try # tro = exit(try, conf) N exit(try, conf) = &)

orthogonal _ : F, (TSet)

Vtset : TSet o orthogonal(tset) <
H#itset <1V
(Vity, o : tset e
(V 51 : ty.s0urce; sy : ty.source o orth(sy, s2)) A
(V81 : t1.target; so : to.target o orth(sy, s2)))

Note that in the definition of Uezit and Uenter, the corresponding states
always exist in p(scope(tr)) as scope is defined to be a strict ancestor for
source and target states. This is illustrated in Fig. 6.7 where lca for high-
lighted transitions is B but lcoa is A.

We show a few properties of the above.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 132

T
(s .
O

Figure 6.7: An illustration of /coa returning a higher-level state than lca

Theorem 6.1.31. Transitions are not in conflict iff they have orthogonal
scopes,

Vi,tp:Te
(V conf : F, | configuration(root, conf) e
nonconflict(ty, to, conf) < orth(scope(ty), scope(tz)))

Proof.
=
The proof is illustrated by Fig.6.8. Consider configuration conf where #;

lea(ty.source) —~—_]

T ;

Sb

lea(t.target)

| = lca(ty-target)

lea(ty.s0urce)

Figure 6.8: An illustration of the proof of Th.6.1.31

and t, are both enabled and I, = lca(ty.source), b = lca(ty.source) and
and = leca(t;.source U tp.source).

If #ty.source = 1, then [y = FromSet(t;.source). For the case of
#t1.source > 1 we get i ¢ t1.source. Since ¢(l;) = stateOR contradicts
validity of ¢, we get that ¢(ly) = stateAND. Consequently, from definition
of scope, Ij € pT(scope(t1)) and from definition of Uezit — I = Uezit(t;).
As we consider ¢ to be enabled and parent states of states in a configuration
also belong to it, §j € conf and from the definition of ezit(¢1), i € exit(t1).
A similar result can be shown for t.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 133

The above proves that /; and l are not related by p* as otherwise tran-
sitions #; and ¢y would be in conflict.

Due to validity of transitions #; and ta, #t1.source > 0 A #tz.s0urce > 0
and thus #(#.source U tp.s0urce) > 1. Using the proof about the source
states of them, we have that and ¢ (t.source U ty.source). For this rea-
son, ¢(and) = stateAND as if it were stateOR, there would be no valid
configuration in which both #; and {# are enabled.

a = lea(ly, k) is an ancestor of all states in ¢.source U ta.source by
transitivity of p*. Since l; and lk are not related by p*, no state s : p*(f)
is an ancestor of any among t.source and vice-versa. As a result, {lj,kb} C
pT(and) which proves a = and, i.e. lca(ly, lp) = lca(t;.source U ty.source).

From Prop. 6.1.10 we get that 3 s,, s € p(and) A sq # sy Aly € p*(sg) A
b € p*(sp).

Assume that t.target € p*(s,). Denoting s = lca(t;.source U t;.target),
we get from this assumption that V ss : p*(s,) ® = Anc(ss, t;.target) and thus
and € p*(s) (if and ¢ p*(s), we get from t.source C p*(s) A ti.source C
p*(sq) that s € p*(s,) contradicting that s = lca(t,.source U ty.target)).
By definition of scope, scope(t;) = lcoa(t1.source U ty.target) and thus s €
p*(scope(t1)). Since scope is defined to be a strict ancestor and and €
p*(scope(t1)), we get that and € pT(scope(t1)); from t.source C p*(and),
and € exit(t;) follows. Considering that t¢;.source C conf, and € conf as a
parent of a state in conf. As a result, and € conf Nexit(t,). A similar result
can be shown for t,. It follows that if ¢1.target € p*(sq) A to.target < p*(sp),
transitions #; and ¢y are in conflict.

Assume that fo.target C p*(sp), then scope(tz) € p*(sp). If t1.target €
p*(sq), we get from s, € p(and), s € conf and and € conf N ezit(t;) that
to.target C (conf N exit(t1) N exit(t2)). A result similar to this one can be
shown for #.target C p*(sp) A to-target € p*(sp)-

We have just proven that in order to avoid conflict between ¢; and #o,
we have to allow t;.target C p*(sq) A to.target C p*(sp) only.

Since 4,8, € p(and) are immediate substates of an AND-state and
transitions cannot start or terminate in such states (Req.4g), we get that
ty.target C pt(sy), ta.target C pT(sp), t1.source C pT(s,) and ty.s0urce C
pT(sp). Thus, scope(t;) € p*(s,) and scope(ts) € p*(sy) which gives us
orth(scope(ty), scope(tz))

—

If scopes are orthogonal, orth(scope(t),scope(tz)), from the definition of
orth we get that and = lca(scope(t1), scope(tz)) is an AND-state and through
Prop.6.1.10 that 3s,,s5 € p(and) A sq # sp A scope(ty) € p*(sqa) A
scope(ty) € p*(sp). This implies that p*(Uezit(t1)) N p*(Uezit(tz)) = .
This implies that #; and #» are not in conflict. U

The result proven is also mentioned as property in the sketch of the proof
of well-definedness of a step (Def. 6.2.8) in [MLPS97]. [PS91], on the other

CHAPTER 6. PROOFS FOR THE TESTING METHOD 134

hand, puts the orthogonality of the areas (a similar concept to scope) in the
definition.

Proposition 6.1.32. Enabled nonconflicting transitions are orthogonal. Here
we assume that transitions have their triggers satisfied and hence only con-
sider state-related ‘enableness’.

Vi, ta: 15 conf : Fy ¥ | configuration(root, conf) e
t1.source C conf A ta.source C conf A nonconflict(ty, ta, conf) =
orthogonal ({t, t2})

Proof. If two transitions are nonconflicting, they have orthogonal scopes
from Th. 6.1.31, orth(scope(t;), scope(t2)). From the definition of orth we get
that and = lca(scope(t,), scope(ty)) is an AND-state and through Prop. 6.1.10)
that Isq,85 € pland) A sq # sp A scope(ti) € p*(sa) N scope(tz) €
p*(sp) and t.source C p*(sg) A ta.source C p*(sp) A t1.target C p*(sg) A
to.target C p*(sp) from which orthogonality of source and target states fol-
lows by definition of orthogonality. O

Proposition 6.1.33. nonconflict does not depend on configuration, i.e.,

Vir,,tro: Te
(3 conf : F, ¥ e configuration(root, conf) A (nonconflict(tr, try, conf) =
(Ve :F, 2| configuration(root, c) e nonconflict(try, tra, c))))
A
(3 conf : F, X e configuration(root, conf) A = nonconflict(try, tre, conf) =
(Ve :Fy 3| configuration(root, c) A tri.source C ¢ A try.source C ce
= nonconflict(try, tro, c)))

Proof. Two transitions are nonconflicting iff they have orthogonal scopes
from Th.6.1.31. The result follows from scopes and orthogonality of them
not depending on a particular configuration. U
We further use a definition

Definition 6.1.34. A set of transitions with orthogonal scopes,

‘ orthscope _: T, (TSet)

Viset : F, T o orthscope(tset) <
(Vit1,t2: tset | t1 # to ® orth(scope(t1), scope(ta)))

CHAPTER 6. PROOFS FOR THE TESTING METHOD 135

Definition 6.1.35. We can assert the requirement Req. 1e as follows:

Vs1,8:5 | s # s e (Vir: TR(s;) N TR(s2) e
transitionDEFAULT (tr) A tr.label = andTRUE)

Proposition 6.1.36. There exists a function giving a scope state to all non-
default transitions with a given non-andTRUFE label,
‘ getSCOPE : LABEL + STATE

Vibl: LABEL o (3tr:Te
tr.label = Ibl = getSCOPE(Ibl) = scope(ir))

Proof. By definition of T (Def. 6.1.28), and Def. 6.1.35 we get that

V state : ¥ o (Y Ibl : T(state) | Ibl # andTRUE e
(Vir: T | tr.label = bl o scope(tr) = state))

The above statement shows that for a given label there is only one scope
state, which proves that getSCOPE is indeed a function. U

Full compound transitions taken in the same step should enter the
same group of states in concurrent components

From Prop. 6.1.32 it appears that transitions which could be taken together
as a single full compound transition, cannot be taken in the same step if
they are parts of separate transitions. The generalised semantics described
below corresponds to usage of orthogonality of transitions to decide whether
some transitions can be taken in the same step or not. It is required for
parts of full compound transitions in [NH95]. Whether two full compound
transitions may be taken in the same step is more restrictive as given in
Th.6.1.31.

Consider a statechart in Fig.6.9. In some sense, we can say that transi-
tions ¢ and b can be taken both separately and together (this is prohibited
in Statemate semantics since they are conflicting). The same can be said
about those in Fig. 6.10. In Fig.6.11 full compound transitions starting with
a and b are both entering the same state D and thus could be theoretically
taken together. This is not the case for a¢ and ¢ which are entering different
OR-states. The difference between these two cases is the default state. A
modification to make it point to C would make a and c¢ possible and a,
b — not. Since such a modification does not modify the exiting states of
the transitions considered and its effects are rather subtle, the autor thinks

CHAPTER 6. PROOFS FOR THE TESTING METHOD 136

Figure 6.9: Transitions from concurrent states entering concurrent states

Figure 6.10: Transitions from concurrent states entering a single state

it is better to prohibit such a case and require that transtions which could
be taken in the same step should enter either the same state or orthogonal
states.

Note that we could state the same requirement for transitions leaving
states, i.e. require them to exit orthogonal states or the same one.

Combining transitions

Given a set of orthogonal transitions or full compound transitions, we can
unite them into a single transition as shown below, using auxiliary functions
landALL and andALL. The former combines provided labels, the latter —
labels of transitions given to it.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 137

C
A —_— C
I
77777777777777777 ﬁ D
B /
__
a

Figure 6.11: Transitions from concurrent states entering an OR-state and
its substates

Definition 6.1.37.

landALL : LABEL x LSet — LABEL
andALL : TSet - LABEL

V1 : LABEL; Iset : LSete
Iset = & = landALL(l,lset) =1 A
lset # @ = (bl : Iset ®
landALL(l,lset) = landALL(and(l,1bl),lset \ {Ibl}))

V1: LABEL; tset : TSete
andALL(tset) = landALL(andTRUE, {t : tset o t.label})

toTRANSITION : TSet ++ TRANSITION
Viset : F; Y | orthogonal(tset) A — (I tr : tset o transitionDEFAULT (tr)) e
toTRANSITION (tset) =
(source == U{t : tset o t.source},
target == U{t : tset o t.target},
label == andALL(tset) |

This definition does not include default connectors in the set of source
states. The transition constructed can be proven to be a valid transition if
the set of transitions supplied to toTRANSITION contains orthogonal and
valid transitions. This property (Prop.6.1.38) is used later in Sect. 6.2 on
p- 157 for flattened statecharts.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 138

Proposition 6.1.38. For a set of transitions which are valid, orthogonal
and non-default, toTRANSITION generates a valid transition.

Vitset : F; T | orthogonal(tset) A — (3tr : tset o transition DEFAULT (tr)) e
orthogonal(tset) = transition VALID (toTRANSITION (tset))

Proof. Since transitions are orthogonal, V sy : enter(try); so : enter(try)
orth(si,s0) and Vs : exit(tr)); so : exit(try) e orth(sy,se). This proves
that toTRANSITION generates a valid transition. From validity of transi-
tions of tset, we get that root ¢ source N target, connectorDEFAULT ¢
¢(source|), connectorDEFAULT ¢ (target]), where we denote source =
toTRANSITION (tset).source and target = toTRANSITION (tset).target,
and finally Vst : ¥ | ¢(st) = state AND e ((tr.source U tr.target) N p(st)) =
(%] U

Transitions which can be taken in the same step

From Prop.6.1.32 and the above description we get a hierarchy of con-
ditions transitions must satisfy, such that we could combine them with
toTRANSITION in valid transitions or take at the same time in a step
as shown in Tab. 6.1.

‘ requirement ‘ description ‘
transition VALID The basic requirement for valid transi-
tions.
orthogonal Allows to combine transitions into one

with toTRANSITION . This allows com-
bining compound transitions into a full
compound transition.
nonconflicting, i.e. orthscope | Allows to take transitions at the same
time in the same step.

Table 6.1: The hierarchy of requirements for transitions which could be
taken in the same step

6.1.3 Full compound transitions

The definition of a full compound transition is adapted from [MLPS97] with
a modification such that a transition from a default connector can be full

compound only if it starts in the default connector at the top level. This
change is included in the definition of transitionDEFAULT (Def. 6.1.20).

CHAPTER 6. PROOFS FOR THE TESTING METHOD 139

Definition 6.1.39. The definition of a full compound transition from [MLPS97]

is essentially reproduced as follows:

transitionFCT _MLPS97 _: F; TRANSITION

Vir: Y e transitionFCT _MLPS97(tr) <
(3 EnterState : p(scope(tr)) e
(Fconf : F, STATE e configuration(EnterState, conf) A
tr.target C conf A ¢(tr.target)) = {stateBASIC} A
(V51,89 : tr.source ® s1 # s, = orth(s1, s2))))

One might expect that a full compound transition enters a complete con-
figuration such that no continuation transitions are needed. This is indeed
the case because continuation transitions are only needed if entered states
are OR ones while the above definition requires them to be basic states.
Since orthogonality of source and target states is stated in Def. 6.1.20 and
existence of appropriate configuration is shown in Prop.6.1.22, the above
definition can be reduced as given below:

Definition 6.1.40. A full compound transition is the one satisfying
transitionFCT.

transitionFCT _: F; TRANSITION

Vir: Y e transitionFCT (tr) <
transition VALID (tr) A
- transitionDEFAULT (tr) A ¢(tr.target)) = {stateBASIC'}

From hierarchy in Tab. 6.1, we can show that full compound transitions
which are orthogonal, can be united into a single full compound transition.

Proposition 6.1.41. For a set of transitions which are orthogonal and full
compound toTRANSITION generates a full compound transition.

Viset :F; T e
(Vir : tset o transitionFFCT(tr)) A orthogonal(tset) =
transitionFCT (toTRANSITION (tset))

Proof. From Prop. 6.1.38 we get the validity of the result of to TRANSITION .
Since states entered by all tr : tset are basic, states entered by their union
will be so too. As no transitions in tset are default, no default connectors
will appear in the result of toTRANSITION. O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 140

In the following, we define the operational semantics of full compound
transitions which will be used later and show its equivalence to the de-
notational one given above. In some sense, we can say that Prop.6.1.41
gives soundness of FULL_COMPOUND (Def. 6.1.54) and completeness fol-
lows from Prop. 6.1.60.

We begin with the definition of the default completion function. This
function essentially corresponds to the Complete one in [CAB198].

Definition 6.1.42 (defaultEntranceComplete).

defaultEntrance Complete : STATE x SSet + SSet

V rootstate : 3; states : F X |
(Fconf : F, STATE e configuration(rootstate, conf) A states C conf) e
rootstate € defaultEntranceComplete(rootstate, states) A
(Vs : defaultEntrance Complete(rootstate, states)
(¢(s) = stateAND =
(p(s) C defaultEntrance Complete(rootstate, states))) A
(¢(s) = stateOR =
(pT (s) N states = @ =
(3, def : p(s) ® ¢(def) = connectorDEFAULT A
def € defaultEntrance Complete(rootstate, states))) A
(pt(s) N states £ @ = (I sl : p(s) e p*(sl) N states # @ A
sl € defaultEntrance Complete(rootstate, states)))))

We allow default Entrance Complete to be applied only to sets from which a
valid configuration can be constructed.

Proposition 6.1.43. configuration can be defined recursively.

V conf : F, £ | configuration(root, conf) e
Vs : conf e configuration(s, p*(s) N conf)

Proof. Follows from the definition of configuration. O

Proposition 6.1.44. In the line
sl : p(s) @ p*(sl) N states # &

of the Def. 6.1.42, sl is unique, 3, sl : p(s) & p*(sl) N states # .

Proof. Follows from the definition of configuration (Def. 6.1.3). O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 141

Proposition 6.1.45. All states supplied to defaultEntranceComplete are
included in the result (we assume that
(rootstate, states) € dom defaultEntrance Complete),

Y rootstate : 3; states : FX | states C p*(rootstate) o
states C defaultEntrance Complete(rootstate, states)

Proof. Due to Prop.6.1.44, defaultEntranceComplete follows a route to all
states in states. First of all, p*(rootstate)Nstates # &. If for some OR-states
s we have that pT(s) N states # @, then 3, 51 : p(s) e p*(s1) N states # @).
Such s; € p(s;—1) and there is a limit (belonging to states), due to finiteness
of a state tree it will be reached. All such s; will be included in the set of
states returned by defaultEntrance Complete. O

Proposition 6.1.46. defaultEntranceComplete has the following recursive
property:

V states : F X |
(Fconf : F, T e configuration(root, conf) A states C conf) e
(Vo : states o defaultEntrance Complete(root, states) N p*(o) =
default Entrance Complete(o, states N p*(0)))

Note that since p*(o) N states are the only states which can be children of o
(from definition of p*), we have to restrict states to p*(o) N states when the
root state passed to defaultEntranceComplete is o.

Proof. defaultEntrance Complete(o, states N p*(o)) will start from o which
will also be included in the result of defaultEntrance Complete(rootstate, states)
by Prop.6.1.45. As defaultEntranceComplete from a root state does the
same job as the one with o, results (when restricted to those within p*(o))
will be the same. d

CHAPTER 6. PROOFS FOR THE TESTING METHOD 142

Theorem 6.1.47. defaultEntrance Complete works fine with respect to
configuration, i.e.

1. result does not change regardless how many times we apply
defaultEntrance Complete, as long as we do once.

V rootstate : ¥; states : F X |
(3 conf : F; STATE e configuration(rootstate, conf) A states C conf) e
(defaultEntrance Complete(rootstate,
default Entrance Complete(rootstate, states)) =
default Entrance Complete(rootstate, states))

2. for a set of states which is a valid subset of some configuration,
defaultEntranceComplete with default connectors excluded is a subset
of the same configuration and will include those states.

Y rootstate : ¥; states : FX | states C p*(rootstate) o
(Fconf : F; STATE e configuration(rootstate, conf) A
states \ defaultfrom(states) C conf =
(defaultEntrance Complete(rootstate, states)\
defaultfrom(states) C conf) A
states C defaultEntranceComplete(rootstate, states))

3. if we pass it a complete configuration, the result will be the same con-
figuration.

Vrootstate : STATE; conf : F| STATE | configuration(rootstate, conf) e
defaultEntrance Complete(rootstate, conf) = conf

4. In a state tree returned by defaultEntranceComplete, default connec-
tors are orthogonal.

V rootstate : STATE; states : FX |
(Fconf : F, STATE e configuration(rootstate, conf) A states C conf) e
(V 51, 89 @ defaultEntrance Complete(rootstate, states) o
¢(s1) = connectorDEFAULT A
d(s2) = connectorDEFAULT = orth(s1, s2))

5. defaultEntranceComplete can be applied after any transition is taken.
Vir:Y e (Vconf : Fy STATE | tr.target C conf A configuration(root, conf) e

(root, conf) € dom defaultEntrance Complete)
Proof. We consider the above five statements in turn.

1. Follows from definition of defaultEntranceComplete (it tries to com-
plete on all states it includes).

CHAPTER 6. PROOFS FOR THE TESTING METHOD 143

2. That all states are included is shown in Prop. 6.1.45. The definition of
defaultEntranceComplete is similar to the definition of configuration
for AND-states. For OR-states, there are two cases,

(a) for some state o € states, no states lower it in the state tree are
included in states. In such a case, a default connector is added.
Since we remove it, the inclusion between
defaultEntranceComplete (o, states)\ defaultfrom (states) and conf
follows.

(b) there are states lower than o included in states. Since states form
a tree, there are unique routes from o to those states N p*(o).
All states along these routes will be included in the result of
defaultEntrance Complete. Now we show that if something gets
included which cannot be in a configuration, we have a contra-
diction. If there is an OR-state s such that

#(p(s) N defaultEntranceComplete(s, states)) > 1
then from definition of defaultEntrance Complete(s, states),
31,5 : p(s) e p*(s1) N states # S A p*(s2) N states # &

which contradicts that states is a subset of a valid configuration.
When considering defaultEntrance Complete(s, states), we rely on
Prop. 6.1.46.

The set of possible configurations conf e states C conf is unchanged
by defaultEntrance Complete. According to Th.6.1.13, the set of con-
figurations encompassing the given set of states is determined by

treereduced({s : £ | ¢(s) # state DEFAULT})

which is unchanged by Prop. 6.1.45 and item 2b of this theorem proven
above.

3. follows from item 2 of this proposition proven above.

4. Two default connectors cannot be related by p* due to them having no
substates. Default connectors can have their lowest common ancestor
lca to be either an OR-state or an AND-one. If it is an OR one,
lca would have more than one of its substates entered by Prop.6.1.10
and this contradicts that defaultEntrance Complete enters a subset of a
valid configuration. Consequently, Ica of every two default connectors
entered should be an AND-state in which case the result follows from
definition of orth.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 144

5. Follows from the fact that every configuration is in the domain of
default EntranceComplete and a transition always enters a set of states
possible for some configuration by Prop. 6.1.22.

O
Now we define a configuration entered when we take a transition
(confENTERED) and whether some transition is a continuation one.
Definition 6.1.48.
confENTERED : TRANSITION x F, STATE + F, STATE

Vir:Y; conf : ¥ STATE | configuration(root, conf) e
confENTERED (tr, conf) = defaultEntrance Complete(
root, conf \ p*(Uezit(tr)) U tr.target)

continuationDEF _ : F,(TRANSITION x TRANSITION)

Viri,trg: Te
continuationDEF (try, try) < tr) # tra A
transition DEFAULT (try) A transitionNI (try) A
tro.source C defaultEntrance Complete(Uenter(try), try.target)

continuation DEF' relates two transitions if the first one enters a non-basic
state; in this case transitions from default connectors have to be taken to
enter a configuration. Since such transitions are only considered with respect
to states entered by the transition taken, i.e. p*(Uenter(ir)), we do not need
to consider a configuration from which the initial transition #r is taken and
thus this configuration is not included in the definition.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 145

Definition 6.1.49. The validity of the set of transitions from which o full
compound transition is defined as follows:

tsetVALID _ : F,(TSet)

Viset : F; T o tsetVALID(tset) <
orthogonal ({t : tset | = transitionDEFAULT (t)}) A
(V tre : tset | transition DEFAULT (tr.) o
Atry : tset o continuationDEF (trs,tre)) A
(Virs : tset ® (Fire : tset o continuationDEF (tr, tr.) =
(3, tre : tset o continuationDEF (trs, trc))))

The definition states that all nondefault transitions of tset should be orthog-
onal; we cannot include default transitions in tset without those to which
they serve as a continuation. The last line states that there should be no
nondeterminism in selection of continuations.

Definition 6.1.50. toTRANSITION, is defined similarly to toTRANSITION
(Def. 6.1.37 on p. 137). Its purpose is to combine transitions with their con-
tinuations.

toTRANSITIONp : TSet + TRANSITION

Viset : F, Y | tset VALID (tset) e
toTRANSITIONp (tset) =
(source == U{t : tset | - transition DEFAULT (t) e t.source},

target == LJ{trs : tset
= (Ftre : tset o continuationDEF (trs, tr.)) e trs.target},
label == andALL(tset) |

Proposition 6.1.51. toTRANSITIONp possesses all properties of
toTRANSITION, i.e.

Viset : F; T | orthogonal(tset) A (Vt : tset ® = transitionDEFAULT(t)) e
toTRANSITION (tset) = toTRANSITIONp (tset)

Proof. Since toTRANSITION is only defined for non-default transitions,
comparison of definitions of the two gives the result. O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 146

Proposition 6.1.52. Transitions related by continuation DEF cannot be or-
thogonal and their scopes are related with pT,

Vtre, trs + X | transitionDEFAULT (tr.) A continuationDEF (trg, tr.) e
= orthogonal ({trs, tr.}) A scope(tr.) € p*(scope(irs))

Proof. We shall prove that for ¢r; and tr. considered, their target states
are not orth. This proof is illustrated by Fig.6.12. Consider a continuation

p

N

trs.source trg.target

N

tre.source tre.target

Figure 6.12: An illustration for the proof of Prop. 6.1.52

transition t¢r, such that 3s : try.target ® FromSet(tr;.source) € p(s). From
Req. 4f, we get that tr..target C p™(s) implying 3 s. : tre.target o s, € pt(s)
which contradicts the definition of orthogonality of tr; and tr,
V s1 : trg.target; so : tre.target o orth(si, s2).

In order to prove the result about scopes, we observe that the enclosing
state Sc of a default transition tr. is its scope:

Sc = parent(FromSet tr..source) = scope(trc)

This follows from that FromSet tr..source € p(Sc) by defition of a default
transition; tr..target C p*(Sc) from Req. 4f, giving Sc = scope(tre).

By definition of continuationDEF', s : trs.target o Sc € p*(s). Since
s € pt(scope(trs)), scope(tr.) € p*(scope tr). O

Proposition 6.1.53. A scope of a full compound transition is related to the
scope of an initial transition with p*.

Vinitial : Y; tset : F, T | = transition DEFAULT (initial) A
(Vtr: tset o transition DEFAULT (tr)) e
(3, fet == toTRANSITIONp ({initial} U tset) o
transitionFCT (fct) = scope(fct) € p*(scope(initial)))

CHAPTER 6. PROOFS FOR THE TESTING METHOD 147

Proof. Consider

bs = lcoa(initial.source U initial .target U U t.source U t.target)
t:tset

It differs from scope(fct) in that it includes states corresponding to default
connectors. From Prop.6.1.52, we get that bs = scope(initial). Since we
exclude some states from the above set of states, the lcoa might potentially
go down, scope(fect) € p*(scope(initial)). Fig.6.13 gives an example that
scope(fet) € p(scope(initial)). O

scope(initial)
m initial

scope(fct)
continuation

Figure 6.13: An example of scope(fet) € p(scope(initial))

Following step semantics, we can construct a full compound transition
from a number of initial ones by adding continuation transitions related by
continuationDEF. This is given by the FULL_COMPQOUND function. Here
we use an assumption that default transitions are just part of full compound
ones, rephrasing Req. 4b.

Definition 6.1.54.

FULL_COMPOUND : TSet x (STATE +» TRANSITION) + TSet

Vitset : F; T; nondetres : ¥ + Y | tset VALID (tset) o
dresult : TSet ¢ FULL_.COMPOUND(tset, nondetres) = result A

tset C result A

(Vtre = result \ tset o Jiry : result ®
tre € nondetres(trs.target|) A continuationDEF (tr, tre) A
= (Ftry : tset o try.source = tr..source)) A

= (Ttre : T\ result; trs : result o
tre € nondetres(trs.target|) A continuationDEF (trs, trc))

Since we could have multiple transitions going from a default connector, we
need to decide which one of them will be used. Considering that there can be
only one default connector in a state, this can be expressed by X + Y. tset

CHAPTER 6. PROOFS FOR THE TESTING METHOD 148

may have transitions in it which are related by continuation, i.e. rew_or_f-ff.
This is needed if we wish to enter a specific state rather than just some valid
configuration under a given state. Transitions of tset are treated to have
priority over those which are selected via nondetres. This is expressed with
line — (F try : tset o tr..source = try.source).

Well-definedness of FULL_COMPOUND is related to nondetresolution
function passed to it. This function decides which state is entered from a
default connector, if more than one transition exists such as ff and rew from
the default connector in state REW_FF in Fig. 1.6.

Proposition 6.1.55. FULL_.COMPOUND is well-defined.

Proof. Assume that there are two sets of resulting transitions, result; and
resulty for which the predicate part of the definition of FULL_COMPOUND
is satisfied. We shall now show that they are the same.

Consider tr. € result; \ tset. Then there is

trsq € resulty o continuationDEF (trs,, tr)

We can then take a trs, € result; o continuationDEF (trsy, trs,) and so on
until we reach a transition in ¢set. This will eventually occur since transitions
related by continuationDEF have their scopes related with p*™ (Prop. 6.1.52)
and thus when taking tryy, try. etc we have a sequence of their scopes going
higher on the state hierarchy, which is bounded by the root state.

Let us assume that try, € tset, then {r. is contained in result, since
otherwise the property

= (Ftre : T\ result; trs : result o
tr. € nondetres(trs.target)) A continuation DEF (trs, tr.))

will be not satisfied (we assume nondetres is a function).

We can take another transition tr.o from result; such that there is trgo :
tset U {tr.} and similarly show that tr.y is included in resulty too. Thus, we
get that results = result;. O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 149

Although the definition Def. 6.1.54 given above seems to be relatively
easy to understand, it is cumbersome in proofs. We rectify this with the
following proposition:

Proposition 6.1.56. The FULL_.COMPOUND function can be given an
operational definition

gettrc : TSet x (X + Y) <> TRANSITION
FULL_COMP : TSet x (STATE + TRANSITION) + TSet

Viset : F; T; nondetres : ¥ + T | tset VALID (tset) o
(Ftre: T\ tset; trs : tset e
tre € nondetres(|trs.target) A continuationDEF (trg, tr.) =
gettre(tset, nondetres) = tr.)

Viset : F, T; nondetres : ¥ + T | tset VALID (tset) o
((tset, nondetres) ¢ dom gettrc = FULL_COMP (tset, nondetres) = tset)
A
((tset, nondetres) € dom gettrc = FULL_COMP (tset, nondetres) =
FULL_COMP (tset U { gettrc(tset, nondetres) }, nondetres))

Proof. First of all, we observe that by construction of FULL_COMP, all
transitions added to tset by FULL_COMP are satisfying

tre € nondetres(trs.target|) A continuationDEF (trs, tr)
and not in conflict with existing ones,
= (T try : tset o try.source = tre.source)

Upon termination of it (if any), we get for
result = FULL_COMP (tset, nondetres) that

= (Ftre : T\ result; trs : result o
tre € nondetres(trs.target)) A continuationDEF (trg, tre))

This result also follows by construction of FULL_COMP.

The result of the FULL_COMP may only be affected by an order contin-
uation transitions are added to tset (i.e. taking some transition would not
allow us to take another one), if for some set of initial transitions and their
continuations, there are continuations possible which are not orthogonal.
This can only happen if there is more than one continuation transition pos-
sible from a default connector, which is rendered impossible by nondetres
being a function. This gives well-definedness of FULL_COMP.

From the results proven above we get that the result of FULL_COMP
satisfies the property of FULL_COMPOUND. It remains to show that ev-
erything constructed by FULL_COMPQOUND can also be constructed using

CHAPTER 6. PROOFS FOR THE TESTING METHOD 150

FULL_COMP. Since domains of the two are the same, we only need to con-
cern ourselves with well-definedness of FULL_COMPQOUND which is proven
in Prop. 6.1.55. Consequently, we get that

FULL_COMPOUND (tset, nondetres) = FULL_COMP (tset, nondetres)

O

Proposition 6.1.57. FULL_COMP terminates.

Proof. Follows from the fact that it only adds transitions and the number
of them is finite. O

Due to FULL_-COMPOUND and FULL_COMP being the same well-defined
terminating function, in the rest of this chapter we will often refer to
FULL_COMPOUND, but use the operational definition of FULL_COMP.

A set of transitions tset constructed by FULL_COMPOUND is equiva-
lent to a full compound transition with source and target states united by
toTRANSITION as shown below.

Proposition 6.1.58. FULL_COMPOUND generates full compound tran-
sitions with source states being the union of source states of non-default
transitions of tset,

Vtset : TSet; nondetres : STATE + TRANSITION | tsetVALID(tset) o
transitionFCT (toTRANSITIONp (FULL_-COMPOUND (tset, nondetres))) A
(toTRANSITIONp(FULL_-COMPOUND (tset, nondetres))).source =

(U{t : tset | - transitionDEFAULT (t) e t.source}

Proof. Orthogonality of target states of the considered FCT follows from
Prop.6.1.47, item 4 because all default connectors entered by
defaultEntrance Complete are orth and from Req. 4f, as due to this require-
ment toTRANSITION returns target states which are orth. Source states
are orth from definition of tsetVALID.

Let us denote

target = toTRANSITIONp(FULL_.COMPOUND (tset, nondetres)).target
and

source = toTRANSITIONp(FULL_.COMPOUND (tset, nondetres)).source
Due to Req. 4f, root ¢ target. Since all transitions in t¢set are valid,

(Vst:X | ¢(st) = stateAND e (source U target) N p(st) = @)

CHAPTER 6. PROOFS FOR THE TESTING METHOD 151

and source # & A target # @. From the definition of toTRANSITIONp
(Def. 6.1.50) and validity of transitions of tset, source N target does not con-
tain default transitions. This proves the validity of transitions generated by
FULL_COMPOUND. Since only default transitions are removed from the
union of source states by toTRANSITIONp,

source = U t.source
t:tset|— transitionDEFAULT(t)

By definition of to TRANSITION, only basic states are present in
toTRANSITIONp(FULL_-COMPOUND(t)).target which completes the proof.
O

Since FULL_COMPQOUND adds default transitions to the set of those it was
supplied with, one would expect to be able to apply it once again, which is
proven in the following proposition.

Proposition 6.1.59. FULL_ COMPOUND returns a set of transitions which
is tset VALID; if applied to a result of FULL_COMPOUND, FULL_COMPOUND

returns the same set.

V tset : TSet; nondetres : & -+ Y | tset VALID(tset) o
tset VALID (FULL_COMPOUND (tset, nondetres)) A
FULL_COMPOUND(FULL-COMPOUND (tset, nondetres), nondetres)
FULL_COMPOUND (tset, nondetres)

Proof. We consider three statements of the definition of tsetVALID in turn,

1. From definition of FULL_COMPQOUND, it only adds default transi-
tions and thus the set of non-default ones remains the same. For this
reason,

orthogonal({t : FULL_COMPOQOUND (tset) | = transitionDEFAULT (t)})

2. Follows from definition of FULL_COMPOUND.
3. Follows from Prop. 6.1.55.

FULL_.COMPOUND (FULL_.COMPOUND(tset)) = FULL_.COMPOUND (tset)
follows from the definition of FULL_COMPQOUND since default transitions
already included in tset have precedence over those which could be added
by FULL_COMP and the inner FULL_COMP has added all of those which
could be added. O

As shown in Tab. 6.1, transitions which could be taken in the same step
(nonconflict) are orthogonal and thus could be united into a single transition

CHAPTER 6. PROOFS FOR THE TESTING METHOD 152

with toTRANSITION. Default continuations could also be added to them
and the result will be a full compound transition. Since we cannot split
single full compound transitions into parts all of which could be taken in the
same step (orthogonal # nonconflict) as described in Sect. 6.1.2 on p. 135,
it would be nice to be able to apply FULL_-COMPQOUND to non-conflicting
compound transitions and have the result ‘splittable’ into non-conflicting
full compound transitions. This is indeed so as we show below.

From the definition of FULL_.COMPOUND (Def. 6.1.54), initial transi-
tions of tset are preserved in the output and as only default ones are added,
we can extract those initial transitions from the result of it. Since FCTs
have a single initial compound transition (Sect.1.4.5 on p.16), each such
initial transition is a beginning of a separate full compound one.

Proposition 6.1.60. The result of FULL_COMPQOUND can be split into a
number of full compound transitions each of which starting from a different
initial one and all of them non-conflicting if initial transitions are.

Vitset : TSet | tset VALID (tset) A
orthscope({t : tset | = transition DEFAULT (t)}) o
dfcts : TSetSet o
Jfcts = FULL_.COMPOUND (tset, nondetres) A
(V fety, feta = fets o fety N feto = D) A
(Vfet : fcts e
(3, t: fet o t € tset A = transition DEFAULT (t))) A
orthscope({fct : fets; t : TRANSITION |
t € fet A = transitionDEFAULT (t) e t})

Proof. Consider the following function fecti which takes a set of transitions
tset, an initial one initial and extracts all continuation transitions for initial
from tset:

feti : TSet x TRANSITION -+ TSet

Viset : F, Y5 initial : T | tset VALID (tset) A initial € tset o
initial € fcti(tset, initial) A
(V tre : feti(tset, initial) \ {initial} o (I trs : feti(tset, initial) o
continuationDEF (trs, tr.))) A
= (Ftry : feti(tset, initial); try : FULL_COMPOUND(tset, nondetres) e
continuationDEF (tr, try))

Consider fcts = {t : tset | = transitionDEFAULT(t) e fcti(tset,t)}.
From similarity to Def. 6.1.54, we get that all transitions originally included
in tset will appear in | fets since FULL_.COMPOUND is well-defined
(Prop. 6.1.55).

Since all the initial transitions in fcti(tset,t) above are expected to be

CHAPTER 6. PROOFS FOR THE TESTING METHOD 153

initial in full compound transitions which can be taken in the same step,
from Th.6.1.31 we get that scopes of all of them are orthogonal.

We show that there is no duplication of transitions in different fcts,
Y fety, fety = fets o fety N fety = @. Initial transitions initialy, initialy are such
that orth(scope(initialy), scope(initialy)). Consider a shared continuation
transition, tr., then

ditry : fety; trso = fety @ continuationDEF (tryy, tre) A continuationDEF (trgo, tr.)
and
scope(tre) € pT (scope(initialy)) A scope(tr.) € p™ (scope(initialy))

from Prop.6.1.52. This contradicts orthogonality of scopes of initial; and
initialy as it implies their relation by p*.

Every fct : fcts above is tsetVALID: it has only one non-default transi-
tion (initial) and thus orthogonal ({initial}); the second and third statements
of Def. 6.1.49 are satisfied by construction of fct.

From orthogonality of scopes of initial transitions and Prop.6.1.53, we
get from Prop. refth:orth-properties that scopes of full compound transitions
in the set fcts are orthogonal. By Th.6.1.31, we get that they are not in
conflict. O

Note that the above theorem also is true for initial transitions which are
interlevel and enter a set of states.

6.1.4 Transition priorities and structural determinism

When multiple conflicting transitions are enabled, the conflict may be re-
solved via a concept of priorities. It means that transitions are given priori-
ties and a transition with the highest one is taken; if a number of transitions
with the highest priority is enabled, nondeterminism is reported. The con-
cept of transition priority, related to state hierarchy, is absent in X-machines,
where if more than one transition is enabled, this always means nondeter-
minism.

Definition 6.1.61. Priority is determined by scope such that the transition
with a higher-level scope state is of higher priority, SAnc(scope(t1), scope(tz)).
For example, transition ff between REWIND and F_ADVANCE states in
Fig. 1.6 has its scope REW_FF and play transition from the REW_FF state —
the main statechart.

It is nice to know that for a given set of changes the response received
from a system will only depend on its internal state. This is one of the
requirements for the testing method. It is formalised below.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 154

Definition 6.1.62. A statechart is structurally deterministic if in any valid
configuration there are no conflicting (Def. 6.1.30) transitions of the same
priority [MLPS97].

V conf : F, ¥; tset : TSet | configuration(root, conf) A tset C T o
(Vit,to : tset o ty.source C conf A ty.source C conf A
(= nonconflict(t1, ta, conf) =
(SAnc(scope(t1), {scope(ta)}) V SAnc(scope(tz),{scope(ti)}))))

Definition 6.1.63. Implementation is considered deterministic if every se-
quence of changes and memory values correspond to one sequence of transi-
tions.

Although the proof may seem to be showing that no nondeterminism
may occur during testing, it does not consider possible faults in an im-
plementation. The above definition, being a reflection of Req. 1b, can be
seen as a remedy. While looking too restrictive, it can be justified from
the implementation point of view such that conditional operators in most
programming languages exhibit deterministic behaviour, due to precisely
defined evaluation order. From test set construction, we can also expect
deterministic execution as follows from the following proposition.

Proposition 6.1.64. Conflicting transitions are never triggered provided
they are not generated to be in the set of test cases.

Proof. Since we trigger only non-conflicting transitions we wish to take and
not others (definition of t_complete, Def. 6.6.1), and there are no shared tran-
sitions on a different level of hierarchy (Def. le), we get that no conflicting
transitions will be triggered. O

This proposition also allows us not to consider priorities of transitions, for
test case generation. Priorities are taken into account when we talk about
refinement (Sect. 6.5 on p.195). Conflicting transitions are later shown not
to be in the set of test cases (Prop.6.4.18).

6.1.5 Paths

A path is a sequence of sets of transitions. Paths which ezist must have
their sets contain transitions which may be executed in the same step and
together comprise a full compound transition. Intuitively, an existing path
can be taken by a statechart in a superstep consisting of a number of steps.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 155

In each of these steps, a set of transitions of a single element in the path
is executed; transitions in such a set have to be enabled. For example,
the transition to F_LADVANCE from the initial state is rew_or_ff-ff and a
path there can be written as ({rew_or_ff, ff }), because we have to take both
rew_or_ff and ff in the same step. The sequence from the initial state to
the PLAY state through the F_ ADVANCE one is rew_or_ff-ff play which
is ({rew_or_ff, ff } {play}). Existence of a path is given by the pathEXISTS
predicate.

Definition 6.1.65. A path being a sequence of sets of full compound tran-
sitions can be taken in a step in some configuration if the pathEXISTS
predicate is satisfied.

pathEXISTS _: F,(TSeqSet x F; STATE)

V path : TSeqSet; conf : F| STATE | configuration(root, conf) e
path = () A pathEXISTS (path, conf) V
path # () A (3, trans == toTRANSITIONp (head path) e
orthscope(head path) A

trans.source C conf A
pathEXISTS (tail path, confENTERED (trans, conf)))

6.1.6 Multiplication types

If we wish to construct a set of test cases from a test case basis, we use
the sequential set multiplication which essentially concatenates sequences.
For merging test case bases from those of OR or AND states, we take
appropriate transitions in the same step. This can be illustrated by the
tape recorder with a clock shown in Fig.6.14. Results of multiplication of

CONTROL CLOCK

TIME_SET

@ play REW_FF
PLAY
rew

direction F_ADVANCE REWIND

.k} rec
STOP RECORD

TIME_DISPLAY|

|

|

|

|

|

l

|

ff
stop | time_set

button_stop play ff rew |
| time_ok

rew_or_ff |

|

|

|

|

|

|

stop

Figure 6.14: The tape recorder with a clock

CHAPTER 6. PROOFS FOR THE TESTING METHOD 156

{rew_or_ff-ff play} by {time_set time_ok} are given in Tab.6.2. Sequences

‘ oper. ‘ result of multiplication ‘

* { rewoorff - ff - timeset play - time_ok
*1 { rew_or_ff i play - time_set time_ok
* { reworff - ff play time_set time_ok

N

Table 6.2: Results of multiplication of {rew_or_f-ff play} by
{time_set time_ok}, depending on the type of multiplication

to be AND-multiplied do not have to be of the same length,
{play direction}x{time_set} = {play-time_set direction}

In the merging of test bases and test case generation we use operators
%, %1, * which correspond to functions multOR, multOR1, and multAND.
Operators are easier to understand in explanations while functions are easier
to use in proofs.

Consider multiplications of transitions in Def. 6.1.17, then from Prop. 6.1.38
it follows, that multAND|TSetSeqSet] generates valid paths when supplied
with valid ones. Other multiplication functions always generate valid transi-
tions because they do not combine them in the way what Unite[TRANSITION]
does in a(n) U b(n).

Proposition 6.1.66. Consider a set of transitions which can be taken in the
same step, i.e. orthscope. For a result of multAND|TSetSeqSet], we can al-
ways reconstruct original transitions if all sequences multAND[TSetSeqSet]ed
were of length 1.

Proof. Follows from Prop. 6.1.60. O

In the rest of the thesis, we shall not give multAND a type explicitly since
the type of sets of sequences of sets it is applied to, shall be clear from the
context. It can be either T'SetSeqSet or LSetSeqSet.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 157

6.2 Flattening of a statechart
The flattened statechart can be described as:

Definition 6.2.1.

Ef :]FSSet
Ty : TSet
execTRANS : TRANSITION + LABEL

where 3J; corresponds to a configuration of the original statechart and T s-to
a set of transitions which could be taken in the same step. Note that we do
not try to find infeasible sequences of transitions since the complexity of that
in real applications is expected to far outweigh difficulties with augmentation
in order to make a statechart satisfy the testing requirements. For a label
label, execTRANS (label) is the behaviour of a transition with label label.
The difference of it from label is the consideration of priorities of transitions.

6.2.1 Flattening of state hierarchy

stateFLATTEN partial function gives the flattening of a statechart by re-
lating a configuration to an appropriate state of a flattened statechart.

Definition 6.2.2.

stateFLATTEN : STATE x F, STATE + F, STATE

Vs:%; conf : F; STATE | configuration(s, conf) e
(¢(s) = stateBASIC = stateFLATTEN (s, conf) = {s}) A
(¢(s) = stateOR =
(3 8sup = conf N p(s) e stateFLATTEN (s, conf) =
state FLATTEN (Sgyp, conf))) A
(¢(s) = stateAND =
stateFLATTEN (s, conf) = U(stateFLATTEN(]p(S) x {conf})))

Proposition 6.2.3. stateFFLATTEN provides substates for all lowest-level
OR-states of a configuration,

V conf : F, X | configuration(root, conf) e state FLATTEN (root, conf) =
{s: conf | pT(s) N conf = & A d(parent(s)) = stateOR}

In other words, stateFLATTEN is an operational description of treereduced.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 158

Proof. The set of basic states generated by state FLATTEN provides unique
substates of all OR-states which follows from definition of state FLATTEN
(Def. 6.2.2) (if it does not, i.e.

Js: conf e ¢(s) = stateOR A conf N pT(s) = @,
from Def. 6.1.3 conf is not a valid configuration). O

Now when considering full compound transitions in flattened statecharts
beginning with a set of transitions ¢set and followed by continuation transi-
tions, we can use

state FLATTEN (root, toTRANSITION (tset).source)

to describe the source state in the flattened statechart and

state FLATTEN (root, toTRANSITION (FULL_-COMPOUND (tset)).target)

for the target one. Using the stateFLATTEN function, we can define the
flattened statechart as follows.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 159

Definition 6.2.4.

allFULLCOMPQUND : TSet + TSetSet
toFCT : TSet + TSetSet

Viset : F, Y | tset VALID (tset) e
allFULLCOMPOUND (tset) = Composition(setMULT,
{tr : tset @ {ndr : XY | (Vs:X | $(s) = stateOR »
scope(ndr(s)) € p(s) A transitionDEFAULT (ndr(s))) e
FULL_COMPOUND ({tr}, ndr)}}

)
Virs : F; T o toFCT(trs) =
U{tset : TSet | tset C trs A

- (Itr : tset o transition DEFAULT (tr)) A orthscope(tset) e
dIFULLCOMPOUND (tset)}

Ef :]FSSet
Ty : TSet
execTRANS : TRANSITION + LABEL

E¢ = {conf : F| 3 | configuration(root, conf) e stateFLATTEN (root, conf)}
Ty = {t:toTRANSITIONp(toFCT(Y)); conf : F; X |
configuration(root, conf) A t.source C conf e
(source == stateFLATTEN (root, conf),
target == state FLATTEN (root, confENTERED(t, conf)),
label == t.label)}
3, trans == toTRANSITIONp(toFCT(Y)|) e
Vit : trans; conf : F; X |
configuration(root, conf) A t.source C conf e
execTRANS(t) = (U{tr : trans |
tr.source C conf A scope(t) € p™(scope(tr)) e
dom tr.label})
<t.label

All possible completions of a set of transitions are given by

allFULLCOMPOUND, which makes use of all possible ndr — default com-
pletion (stands for nondeterminism resolution) functions. It completes every
transition in the tset given to it in all possible ways. We then take such a
set of completions of all transitions in tset and multiply all that together.
This means combining every possible completion of one transition with that
of another one and so on. The process described relies on the following fact:

CHAPTER 6. PROOFS FOR THE TESTING METHOD 160

Proposition 6.2.5.
Va,b:7Y | orthscope({a,b}) A
= transitionDEFAULT (a) A — transition DEFAULT (b) e
FULL_.COMPOUND ({a, b}, nondetres) =
FULL_COMPOUND ({a}, nondetres)U
FULL_.COMPOUND ({b}, nondetres)

Proof. Follows from Prop.6.1.60 as it explains how to extract
FULL_COMPOUND ({a}) and FULL_-COMPOUND ({b}) from
FULL_.COMPOUND ({a, b}). O

The execTRANS in Def. 6.2.4 resolves some cases of nondeterminism result-
ing from flattening conflicting transitions. This function takes a transition
and constructs a label from that of it by removing domains of higher-level
transitions from its domain. This is similar to priority resolution computa-
tions in [Bur99]. In our case, a non-and TRUE label may be used in only one
state which makes it possible to define ezecTRANS as ezecLABEL (using
the getSCOPE function).

Usage of Composition with setMULT is made well-defined by Req. 3b.

In order to convert states in ¥; to configurations, we define

Definition 6.2.6.
‘ toCONFIGURATION : SSet + SSet

Vst:X; e (3, conf == U{s : st ® route(root,s)} e
configuration(root, conf) A conf = toCONFIGURATION (st))

Proposition 6.2.7. toCONFIGURATION is well-defined and is essentially
a reverse of stateFLATTEN .

Vst: Xy e stateFLATTEN (root, toCONFIGURATION (st)) = st
V conf : F, ¥ | configuration(root, conf) e
toCONFIGURATION (stateFLATTEN (root, conf)) = conf

Proof. Follows from Prop.6.2.3 and Th.6.1.13. O

Now we adapt the definition of a step of statecharts from [MLPS97].

CHAPTER 6. PROOFS FOR THE TESTING METHOD 161

Definition 6.2.8.

— MLPS _Step
data, data’ : DATA
conf,conf' : F X
(3, ET == {tr : T | enable(tr, data, conf)} e
(3, HPT == {etr : ET | (Vir : ET o — SAnc(scope(tr),{scope(etr)}))} o
(3; MNS == (uncs : F(F HPT) | (Vtset : ncs o orthscope(tset)) A
(Vtset : ncs; t: HPT e orthscope({t} U tset) = t € tset)) e
(#MNS = 0 = conf' = conf A data' = data) A
(#MNS #0 = (3EN : MNS o
conf’ = (conf \ U{t : EN e exzit(t, conf)})U
U{t : EN e enter(t,conf)} A
data’ = modify(andALL(EN) data, data))))))

Abbreviations:
ET enabled transitions

HPT enabled transitions such that no two transitions which are in
conflict which can be resolved via priorities are included

MNS sets of maximal non-conflicting sets of transitions, which can
be taken in a step

The following proposition gives us confidence that flattened statechart
has the same behaviour as the original one. It also shows our compliance to
the semantics described in Def. 6.2.8 above.

Proposition 6.2.9. A transition t : Y; will be enabled in s : X, if and only

if the set of transitions corresponding to it is enabled in toCONFIGURATION (s).
There exists a set tset which is the member of the toFCT (Y) set in Def. 6.2.4,
from which t is constructed, such that toTRANSITIONp(tset) = t. In ad-
dition, t reflects a mazimal non-conflicting set of transitions from a given
configuration s.

Proof. From Def.6.2.4, transition ¢ : T; is triggered if all transitions of
the corresponding set tset are and none of the higher-priority transitions is
triggered. Conversely, if ¢ is triggered, the corresponding set of transitions
will be. Enabledness follows from Prop. 6.2.7.

Maximality of the set of transitions represented by ¢ : T; follows from
construction of Ty and ezecTRANS. In the definition of the latter, for any
transition #r : T; we modify triggers of all lower-priority ones such they will
not be triggered if the one under consideration is. Transitions from which ¢
is constructed are not in conflict by construction of to FCT(Y). O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 162

6.2.2 Flattening of paths

Since a path is a sequence of sets of transitions with each of the sets taken
in the same step, flattening corresponds to FULL_COMPQOUNDing each set
as provided below.

Definition 6.2.10.

flattenPATH : TSeqSet + TSeqSet

V path : TSeqSet |
(3 conf : F; X e configuration(root, conf)) e Inondetres : £+ T o
path = () A flattenPATH (path) = () A
path # () A flatten PATH (path) =
(FULL_-COMPOUND (head path, nondetres))

“flattenPATH (tail path)

The result of flattenPATH is a sequence of transitions from Y (follows from
comparison of this definition and the one for pathEXISTS). An example of
flattening is given in Fig. 6.15. Numbers 1-3 give transitions we take in steps
1, 2 and 3.

1 2 3

—= —= =) origina path
|
flattenPATH

4

~ default transitions
e = added by
FULL_COMPOUND

Figure 6.15: An example of path flattening

In a deterministic statechart (Req. 1b), we can also expect

V path e #{nondetres : ¥ + T o flatten PATH (path, nondetres)} =1

CHAPTER 6. PROOFS FOR THE TESTING METHOD 163

where nondetres is used as a parameter for FULL_.COMPOUND used by
flattenPATH . For this reason, nondetres is not a parameter of flattenPATH.

We shall prove that when paths are flattened, this does not affect our
ability to verify existent/nonexistent paths in Sect. 6.4 on p.178. First of
all, definitions of conversions between sequences of labels (as used in char-
acterisation set) and paths are given:

Definition 6.2.11. The definition describes conversion functions between
sets of labels and transitions (toLABELSET, toTRANSITIONSET), as well
as between sequences of such sets (toLPATH , toPATH).

toLABELSET : TSet + LSet

Viset : TSet o toLABELSET (tset) = {t : tset | t.label # andTRUE e t.label}

toTRANSITIONSET : LSet x F; STATE + TSet

Viset : LSet; conf : F; STATE | configuration(root, conf) e
Jtset : TSet o pathEXISTS ((tset), conf) A
toTRANSITIONSET (Iset, conf) = tset A toLABELSET (tset) = lset N
— (T tset2 : TSet o #tset2 < #tset A
pathEXISTS ((tset), conf) A toLABELSET (tset2) = lset)

toLPATH : TSeqSet + LSeqSet

V path : TSeqSet o
toLPATH (path) = apply(path, toLABELSET)

toPATH : LSeqSet x F; STATE + TSeqSet
V lpath : LSeqSet; conf : F, X | configuration(root, conf) e
Ipath = () = toPATH (lpath, conf) = () A
Ipath # () =
(3, trans == toTRANSITIONSET (head lpath, conf) e
toPATH (lpath, conf) = (trans) ~ toPATH (tail lpath,
confENTERED (toTRANSITION (trans), conf)))

The term Ipath stands for a sequence of labels, thus it starts with the
small letter ‘I. It may correspond to an existing path (sequence of transi-
tions) or not.

The

- (T tset2 : TSet o #tset2 < Ftset A
pathEXISTS (tset) A toLABELSET (tset2) = Iset)

CHAPTER 6. PROOFS FOR THE TESTING METHOD 164

lines in the definition of to TRANSITIONSET above together with
pathEXISTS ({tset), conf)

statement in the same definition make certain that all relevant default tran-
sitions with empty labels are included in the set of transitions returned by
toTRANSITIONSET. This relies on Prop. 6.1.27.

Proposition 6.2.12. For all sets of labels corresponding to a set of tran-
sitions possible from a given configuration, toTRANSITIONSET is well-
defined.

Proof. Existence of tset such that

pathEXISTS ((tset), conf) N\ toLABELSET (tset) = Iset

follows from Iset being a set of transitions which can be taken in the same
step. Default transitions with empty triggers do not make existence of mul-
tiple maximal paths with the same set of explicit labels possible due to
Prop. 6.1.27. Thus, uniqueness of the resulting path follows from the deter-
minism of a statechart (Req. 1b). O

Due to the above proposition, we can consider toLABELSET and
toTRANSITIONSET to be an inverse of one another and the same holds
for toLPATH and toPATH. If path exists, toPATH is well-defined.

For statecharts within some state, forgetting about interlevel transitions
and structure of compound states, clfollowPATH gives the state which can
be entered by a given sequence of labels from the default connector of the
considered state. clpathEXISTS checks for existence of a given Ipath from
a given state. The prefix ‘c’ in front of each considered function/predicate
means ‘local’ within some OR-state, where we do not consider interlevel
transitions and treat all substates as basic.

In a similar way to pathEXISTS we can define [followPATH and
lpath EXISTS which give the entered state and whether the given lpath exists,
for a flattened statechart.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 165

Definition 6.2.13.

clfollowPATH : LSeq x STATE + STATE
clpathEXISTS _:F,(LSeq x STATE)
IfollowPATH : LSeqSet x SSet -+ SSet
lpathEXISTS _: F,(LSegSet x SSet)

Y lpath : LSeq; st: X e
Ipath = () = clfollowPATH (lpath, st) = st A
Ipath # () = (3, trans : TRANSITION e
trans.label = head Ipath A #trans.source =1 A
FromSet(trans.source) = st A
(3, next == FromSet(trans.target) e
nezt € p(parent(st)) A
clfollowPATH (Ipath, st) = clfollowPATH (tail lpath, next)))
Y lpath : LSeq; st: X e
clpathEXISTS (Ipath, st) < (Ipath, st) € dom clfollowPATH
Vlpath : LSegSet; st : Xy e
Ipath = () = IfollowPATH (lpath, st) = st A
Ipath # () =
(3, trans : Ty o trans.label = landALL(andTRUE, head Ipath) A
IfollowPATH (lpath, st) = IlfollowPATH (tail lpath, trans.target))
Vlpath : LSegSet; st : Xy e
IpathEXISTS (lpath, st) < (lpath, st) € dom lfollowPATH

Theorem 6.2.14. Different existing paths map to different ones and same
ones map to the same ones if sets of transitions in all OR-states of a state-
chart are disjoint,

(VA,B:X e TH(A)NT™(B) = @) =
(V pathy, pathy : TSegSet; conf : F, ¥ | configuration(root, conf) A
pathEXISTS (pathy, conf) A pathEXISTS (pathy, conf) e
toLPATH (path;) # toLPATH (pathy) <
toLPATH (flattenPATH (pathy)) #
toLPATH (flattenPATH (paths)))

Proof. Consider the diagram in Fig. 6.16; we shall show that it commutes.

First of all, (a)-(c) are well-defined, by the determinism of a statechart,
properties of FULL_.COMPQOUND and definition of transitions correspond-
ingly. The correctness of exchanging toLPATH and Unite is explained be-
low.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 166

replacing labels
- - with transitions seguences
() of labels
flattening we need to
of paths prove this
(b) replacing
transitions
— with labels - sequences
- © of labels

Figure 6.16: A commutative diagram for the proof that different paths map
to different ones

Following Prop. 6.1.56, it is possible to express the behaviour of
FULL_COMPOUND in the following way:

Vtset : TSet | tset VALID (tset) o
d addition : TSet « FULL_.COMPOUND (tset, nondetres) =
tset U addition = Unite((tset), (addition)) (1)

Considering operations on paths, i.e. sequences of sets, we can write
that:

V path : TSeqSet |
(3 conf : F, ¥ e configuration(root, conf) N pathEXISTS (path, conf)) e
dcont : TSeqSet o flattenPATH (path) = Unite(path, cont) A

#path = #cont

and

toLPATH (Unite(path, cont))
= apply({i : dom path e i+ (path iU cont i)}, toLABELSET)
= {i : dom path e i — toLABELSET (path(i) U cont(i))}
= {i : dom path e i — toLABELSET (path(i)) U toLABELSET (conit(i))}
= Unite(toLPATH (path), toLPATH (cont))

We can write flattenPATH (path) = Unite(path, cont) since from Def. 6.2.10
flattenPATH applies FULL_.COMPQUND pointwise to elements of the path
and FULL_.COMPOUND can be considered to provide an addition to ev-
ery such element. cont can thus be constructed of such additions to every
element.

Using the above result, the proof itself is rather simple. Consider an Ipath
in the main statechart (a set of labels involved being labelset = | ran lpath),
then

CHAPTER 6. PROOFS FOR THE TESTING METHOD 167

V lpath : LSeqSet; conf : F; STATE | configuration(root, conf) A
(Ipath, conf) € dom toPATH e
(3, seq == toPATH (lpath, conf); cont : TSeqSet ®
toLPATH (flattenPATH (toPATH (lpath, conf)))
= toLPATH (Unite(seq, cont))
= Unite(toLPATH (seq), toLPATH (cont))
= Unite(Ilpath, toLPATH (cont)))

where ran Ipath C T, srarpcmanr and ran toLPATH (cont)NT™, \ crarpcnanr =
@ from T™(A) N T™(B) = @. Consequently, we get that

Unite(lpath, toLPATH (cont)) > T j..; = Ipath
which concludes the proof. O
The above theorem only considers paths which exist; nonexisting ones are

not misbehaving either, as follows.

Theorem 6.2.15. An Ipath exists in o flattened statechart iff it exists in
the original one.

(VA,B:X e T"(A)NT™(B) =) =
(Vlpath : LSeqSet; conf : F, ¥ | configuration(root, conf) e

(Ipath, conf) € dom toPATH <
IpathEXISTS (Ipath, state FLATTEN (root, conf)))

Proof. Follows from the comparison of definitions of toPATH and Ifollowpath.
O

6.2.3 Restrictions on an implementation by Req. 4b

The considered requirement imposes certain specific constraint on possible
errors in an implementation. Our handing of default transitions (the element
DE of a test case basis), depends of this constraint.

Definition 6.2.16. Reg. 4b can be formalised as follows:

possibleImpl : TSet + ¥, LSet

Viset : F, T o possibleImpl(tset) =
{trs : allFULLCOMPOUND(tset) e
{str :F; Y |str Ctrs AN (Vt:trse
- transition DEFAULT (t) = t € str) e andALL(str)}

CHAPTER 6. PROOFS FOR THE TESTING METHOD 168

Proposition 6.2.17. If we trigger a full compound transition, only a part
of which is implemented, this part will be triggered too.

Vliset : LSet; m : DATA e triggerSET (Iset, m) =
(Vis: LSet | ls # @ N ls C lset o triggerSET (Is, m))

Proof. Follows from the definition of triggerSET. O

This allows us to construct a test set without consideration that only subsets
of set of CTs comprising full compound transitions may be implemented.

6.3 Behaviour of statecharts and X-machines

Here we provide definitions of the behaviour of statecharts, of X-machi-
nes and relate the two. Specifically, we show that flat statecharts under
our testing requirements are behaviourally equivalent to X-machines with
almost the same transition diagram and the same labels on transitions.

6.3.1 Simple statecharts

Definition 6.3.1. A statechart is simple if the root state is the only OR-
state in it and it does not contain AND-states and has no default transitions

(as the only one transition which could be default due to Req. 1g is not treated
as such due to Def. 6.1.20).

Vs:X o (¢(s) # stateBASIC = s = root) A
(3, t:7Y e transitionDEFAULT(t))

Proposition 6.3.2. For simple statecharts we have that

Vs: X\ {root} e p(s) =@
p(root) = X\ {root}

Proof. Follows from Def. 6.3.1 and Def. 6.1.1. O

Proposition 6.3.3. An expanded statechart is simple.

Proof. Follows from Def. 6.2.4 and Req. 1g. O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 169

Proposition 6.3.4. Ezpanded simple statechart is essentially the same as
the original one, the two related by an isomorphism as given below:

statetoORIG : F; STATE + F, STATE
transitiontoORIG : TSet + TRANSITION

Vsset : F, ¥ o statetoORIG (sset) = { FromSet(sset), root}

Vitset : TSet o (3, tr == FromSet(tset)
transitiontoORIG (tset) = (source == statetoORIG (tr.source),
target == statetoORIG (tr.target), label == tr.label)

Proof. From definition of stateFLATTEN (Def.6.2.2), we get that it will
preserve all states, i.e.

V conf : F, ¥ | configuration(root, conf) e state FLATTEN (conf) = conf\{root}

This shows that statetoORIG is a bijection and exhibits the same behaviour
as toCONFIGURATION.

All transitions of a simple statechart are not default and have no default
continuations, since all states below the root one are basic and the initial
transition is not default by definition Def. 6.1.20. Since all transitions have
the same priority, FULL_.COMPQOUND will preserve sets of labels of full
compound transitions of the considered simple statechart. This implies that
transitiontoORIG is a bijection.

From above, we get that statetoORIG and transitiontoORIG give an
isomorphism of an original simple statechart and a flattened one. O

Behaviour of statecharts w.r.t step semantics described in Sect. 1.4.10 on
p- 22. We give this semantics in terms of X-machines in Sect. 6.3.3 on p. 173.

6.3.2 X-machines

In this section we give the formal definition for stream X-machines from
[HI98, Ipa95]. Only stream X-machines are considered in the thesis.

Definition 6.3.5 (Stream X-machine). In the original notation devel-
oped for X-machines, a stream X-machine is a tuple
M=ET,Q,M,®,F,I,T,my), where:

1. X is the set of inputs.
2. T is the set of outputs.
3. @ is the finite set of states.

4. M is a possibly infinite set called memory.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 170

5. ® is a finite set of partial functions, used on transitions
p:MxE*>T*"x M

Each transition function removes the head of the input stream and adds
an element to the rear of the output stream. Thus, a function cannot
use information from the tail of the input stream or any of the output
one.

6. F is the next state partial function F : Q x® — Q. It is often depicted
as a state- transition diagram.

7. I and T are the sets of initial and termination states respectively,
I1CQ, TCQ. Weassume that I is a singleton and Q = T.

8. mg € M 1is the initial memory value. This is the memory value what
the machine starts operating with.

A stream X-machine takes a symbol from the input and takes a transition if
the current symbol and memory value satisfy any function from the current
state. The output of the transition is appended to the output and memory
modified in accordance to the what the function does. If no transition can
be taken for a given input and memory value, an X-machine halts.

This notation while conventional in the X-machine world, contradicts
our one for statecharts, by the choice of symbols. In the following we relate
the two and will further use our statechart notation for X-machines.

Proposition 6.3.6. The notation X-machines is in one-to-one correspon-
dence with that for statecharts.

Proof.
e Input and output sets X and I' are equivalent to sets of changes CSet.
e The set of states () can be described as a subset of STATE.
e Memory M corresponds to DATA in statecharts.

e The set of functions @ corresponds to labels on transitions of state-
charts, {tr : T e tr.label}. Both are defined very similarly; in fact, the
only difference is an order of arguments, in X-machines it is
(memory, input) and in statecharts — (input, memory).

e The next-state function given by the state transition diagram can be
unchanged between simple statecharts and X-machines.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 171

o I (the set of initial states) is a singleton of the set of states in both
stream X-machines and simple statecharts. From the definition of an
X-machine (Def. 6.3.5) and testing requirements (Req. 1g) respectively.

e T (the set of terminal states) is equal to the set of states for both of
the two (except for the root state).

e my (initial memory value) is implicit in statecharts where it can be
specified on the definition of the initial transition.

For a given X-machine, a simple statechart can be constructed such
that its data is initialised to myp on its initial transition. Conversely, for
a simple statechart, we can construct an equivalent X-machine with
initial memory value my of it being the result of an action of its default
transition.

O

Definition 6.3.7. Behaviour of an X-machine can be defined following [HI98].
zmSTATUS

§: Y
m : DATA

Since transitions in the statechart notation are defined to take DATA
and produce CSet, a few conversion functions between this representation
and an X-machine one are needed.

lenjo : N
emptySPACE : SPACE

lenjo < lengpace
Vi:1..lenjo ® w(i,emptySPACE) =1

lenjo is the number of variables in the input tuple. SPACE is essentially an
equivalent of X [Ipa95], a generalised type on which X-machine transitions
can be defined to operate. It simply has input/output and memory parts
together, i.e. wvariables with indices 1 .. lenjo are from input/output ones
and the remaining lenjo + 1. . lenspace — represent memory. We consider
memory to be of type DATA and input/output — of type CHANGE, both of
which are potentially infinite. emptySPACE is described and used below.

‘ zmtoX : SPACE x SPACE — SPACE

VIO : CHANGE; M : SPACE e
(Vi:1..lenjo ® w(i,zmtoX (10, M)) = = (i,10)) A
(Vi:lenjo .. lenspace ® w(i,zmtoX (10, M)) = w(i, M))

CHAPTER 6. PROOFS FOR THE TESTING METHOD 172

zmtoX combines an input and data spaces into an X.

‘ InputtoX : CSet x DATA + SPACE
V'm : DATA; chset : CSet |
(Vi:1..lenjo o #(w({i} x chset])) >1)e
InputtoX (chset, m) = zmtoX (modify(chset, emptySPACE), m)

An input to an X-machine is of type CHANGE with indices for non-L1
elements of it ranging between 1 and lenjo. In relating X-machines to state-
charts, it is more convenient to operate on a set of changes. Combining them
together into a single tuple is done with modify(chset, emptySPACE) where
emptySPACE s the tuple corresponding to no changes to any variable?.

After the machine has taken a transition, we need to obtain an output
and new memory value. This is provided in a similar way to statecharts,
i.e. using changes. XtoChanges splits an individual change to X into parts
corresponding to output and changes to memory.

‘ XtoChanges : CHANGE + (CHANGE x CHANGE)

VX : CHANGE o
(3,4 :1..lengpace ® 7(i,X) #LA XtoChanges(X) = (zmtoX"~) (7 (i, X)))

where xmtoX "™ s a relational inverse of xmtoX.
The initial state and memory are given by the following schema:

emSTATUS _Initial
initg 1 2
inity, : DATA

It is then used to initialise an X-machine:

— zmINIT
AzmSTATUS
emSTATUS _Initial

! .. ! ..
§ = inits A m = inity,

2 emptySPACE is not of type CHANGE since absence of changes is described with the
set of changes being empty while individual elements of such a set have to provide those
changes.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 173

A transition taken by an X-machine implies performing the following
operation:

— zmTRANSITION
AzmSTATUS
in, in’, out, out’ : seq CSet

Jtr:Te
(3, allchanges == XtoChanges(tr.label(InputtoX (head in, m)))
(3, output == {cht : allchanges o first(cht)};
chmemset == {cht : allchanges o second(cht)} e
last out’ = output A m' = modify(chmemset, m) A
in' = tail in A front out’ = out A tr.source = {s} A tr.target = {s'}))

Behaviour of an X-machine can be expressed as
smTRANSITION § xmTRANSITION §...32mTRANSITION §zmINIT
until sequence in becomes empty,

Aresult : FlamSTATUS; in,in', out, out’ : seq CSet | true] e
result = ((zmINIT \ zmSTATUS _Initial)3
smTRANSITION §...3temTRANSITIONS
[in' : seq CSet | in' = ()]) \ (s',m')

Definition 6.3.8. An X-machine is complete and deterministic if for any
state, any memory value and input symbol, there is one and only one func-
tion enabled.

Vs:%; in: CSet; m: DATA e
(3, tr: T o InputtoX (in, m) € dom tr.label)

6.3.3 Behaviour of statecharts

Here we provide the formalisation of the behaviour of statecharts, informal
description of which was given in Sect.1.4.10 on p.22. The description
somewhat follows [Bog97].

Since there are two types of semantics to consider, we show how a sim-
ple statechart can comply with the synchronous one and then introduce the
second machine, which serves as an intermediary between the environment
and the first machine. This second one implements the asynchronous step

CHAPTER 6. PROOFS FOR THE TESTING METHOD 174

semantics. The described testing method under our testing assumptions
would then test the first machine; the second one is always assumed cor-
rect. Synchronous step semantics is implemented by labels of transitions.
The second machine and the communication between the two are shown in
Fig.6.17 in the notation similar to that of Sect. 5.2.7 on p. 93.

STEP
(flattened statechart)

ASYNC_STEP_SEMANTICS
next_step

input/ W
output
(> SUPERSTEP_IN_PROGRESS

no_next_step

input_received

WAITING_FOR_ENVIRONMENT_INPUT

Figure 6.17: Behaviour of statecharts expressed using X-machines

A statechart has input, output ports, holds data and a configuration, in
addition to a state-transition structure given in Def. 6.1.1.

stSTATUS
inport, outport : Ty N
data : DATA
conf : ¥y

inport and outport are the sets of indices of variables from the global data
space of a statechart, appearing in input and output ports, respectively.
They are non-empty as otherwise we either cannot supply a statechart with
inputs or observe outputs. In either case, testing of such a system (as defined
in Sect.1.1.4 on p.5) is impossible.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 175

The initial values of variables of a statechart are defined as

StSTATUS _Initial
mit_data : DATA

— StINIT
AstSTATUS
stSTATUS _Initial

Inondetres : STATE + TRANSITION; init tr : T e
(3, init_fct == toTRANSITIONp (
FULL_COMPOUND ({init_tr}, nondetres)) e
enable(init_fct, init _data, defaultEntranceComplete(root, {root})) A
data = modify(init_fct.label (init_data), init_data) A
conf = stateFLATTEN (root, init_fct.target))

This gives the initial configuration and memory of a statechart. We assume
that a full compound transition to the initial configuration is always enabled
and any init_data : DATA is in its domain; as such full compound transition

is unique, we get well-definedness of the result of this initialisation schema.
According to the semantics of statecharts, events hold their value for one

step only. This can be described with

‘ ev_indez : FN
| 7(ev_indez x CHANGE) = 7(ev_indez x DATA)

Above, ev_indez is a set of indices of event variables in the space of a stat-
echart. For events, sets of changes and values coincide.

Definition 6.3.9. event_discard takes the set of changes, and data; its be-
haviour is similar to modify, apart from that event_discard removes events
which were not generated. It is supposed to be applied to a set of changes
generated by transitions in a step.

event_discard : CSet x DATA — DATA

Y chset : CSet; m : DATA e
(Vi:1..lengpacr ®
i € (1..lenspacr) \ ev_indezx U index(chset|) =
7 (i, event_discard(chset, m)) = (i, modify(chset, m)) A
i ¢ (1..lenspace) \ ev-indezx U indez(chset)) =
7 (i, event_discard(chset,m)) =1)

CHAPTER 6. PROOFS FOR THE TESTING METHOD 176

event_discard does not affect changes which it was supplied with; only events
which were not generated in the previous step are removed. Consequently,
its behaviour does not affect racing. Output-distinguishability is not affected
according to Prop. 6.6.3.

Theorem 6.3.10. If a statechart is deterministic (Req. 1b) and required to
behave synchronously (Req. 3c, Req. 1f), an X-machine behaviourally equiv-
alent to the considered statechart can be constructed.

Proof. Consider a statechart; determinism of it implies well-definedness of
the result of the STEP function and thus of the labels of the X-machine.
Comparing the definition of STEP with the zmTRANSITION schema
in Def.6.3.7, we can see that STEP can be used as a function in an X-
machine on a transition between states t.source and t.target. Note that it
differs from the label of a statechart such that for a statechart label label,
the function of an X-machine will be event_discard(label(m), m). Conse-
quently, is possible to construct an X-machine corresponding to the consid-
ered statechart which has the same transition diagram but labels are re-

placed with the result of their composition with the event_discard function.
As for input and output behaviour of the constructed X-machine, we

introduce the zmTRANSITION (Def. 6.3.7)-equivalent schema of it as fol-
lows:

— stSTEP
A(data, conf)stSTATUS
in,in’, out, out’ : seq CSet

3, t: Yy e (3, newdata == modify(filter (head in, inport), data) ®
enable(t, newdata, conf) A conf' = t.target A
(3, changes == (execTRANS (t) newdata) ®
last out’ = filter(changes, outport) A
data’ = event_discard(changes, newdata) A
in' = tail in A front out’ = out))

In the above, we write conf’ = t.target since transitions of the flattened
statechart are defined such as to go from a configuration to a configuration
(Def. 6.2.4).

With this, we have an X-machine behaviourally equivalent to the simple
statechart considered by construction.

Note that synchronicity (Req. 3c) is used in the X-machine construction
since we put a single ezecTRANS(t) on a transition rather than a composi-
tion of them corresponding to a superstep.]

For complex statecharts, for construction of an X-machine we can use flat-
tened statecharts introduced in Sect. 6.2 on p.157 due to Prop.6.2.9 and

CHAPTER 6. PROOFS FOR THE TESTING METHOD 177

Prop.6.3.3.

To say that again, the top machine in Fig. 6.17 expresses what happens
during a step; the bottom one feeds it with changes from the environment
and then waits until it has finished processing them. The communication
mechanism is described in Sect.5.2.7 on p.93. For a simple statechart the
top machine in the figure is the same as the transition diagram of that
statechart; complex statecharts have their diagrams flattened.

The initial state of the ASYNC_.STEP_.SEMANTICS machine is the
WAITING_FOR_ENVIRONMENT_INPUT one. Communication between
it and the STEP machine is handled by the COMMUNICATE function.

COMMUNICATE : CSet — CSet
STEP,PERFORM _STEP : CSet + CSet

| PERFORM _STEP = COMMUNICATE 3 STEP 3 COMMUNICATE

where STEP expresses the behaviour of the STEP machine and COMMUNICATE
models the communication channel.

Transitions of the machine representing step semantics are given as fol-
lows (all three are communicating in terms of [BGG99)):

— input_received

enviy,, changes' : CSet

df envi, A changes’ = PERFORM _STEP (envy,)

— step

changes, changes' : CSet

changes € dom PERFORM _STEP A
changes' = PERFORM _STEP (changes)

— no_next_step
changes : CSet

changes ¢ dom PERFORM _STEP

we assume that the STEP machine can notify us if changes are within its
domain or not.

During testing, the tester communicates to the STEP machine bypassing
the ASYNC_STEP_SEMANTICS one as described in Sect. 5.2.7 on p. 93. If
testing does not reveal faults, we can guarantee correct behaviour of the
STEP machine and of the whole system, assuming correct implementation

CHAPTER 6. PROOFS FOR THE TESTING METHOD 178
of ASYNC_STEP_SEMANTICS and COMMUNICATE.

6.4 Proofs of the merging rules without refine-
ment

Here we provide formal definitions of the sets used in test case generation
introduced in Chap.3 on p.46 and the merging rules for them. We begin
with definitions of sets used in Chap.2 on p.28 and then show how they
can be generalised for complex statecharts. Proofs for merging rules are
then provided under assumption that default transitions are non-interlevel,
Req. 4h.

6.4.1 TCB for a substate of an OR state

Here we define sets comprising TCB for a substate of an OR-state, con-
sidering all its states basic. Such a substate statechart is an extension of a
simple statechart in that it may have multiple default transitions and inter-
level transitions. Since, due to the consideration of all substates being basic,
such statecharts have no concurrency in them, an element of every sequence
of labels in the corresponding ®, C or W is a single label rather than sets
of labels.

We define State CoverElement to contain a state and a label-path leading
to that state. This simplifies merging for C'. Definitions follow from those
in [HI98].

Definition 6.4.1.

StateCoverElement == [lpath : LSeq; state : STATE]
cStateCover _: F, (STATE x Fllpath : LSeq; state : STATE))

Y C : F StateCoverElement; st : X e
cStateCover(st, C) <
¢(st) # stateORN C =2V
P(st) = stateOR N (VS : p(st) e
(3 element : C o element.state = S A clfollowPATH (
element.lpath, default FROM (st)) = S))

CHAPTER 6. PROOFS FOR THE TESTING METHOD 179

Definition 6.4.2.

cCharacterisationSet _: F, (STATE x LSetSeq)

VY W : LSetSeq; st : X e
cCharacterisationSet(st, W) <
¢(st) = stateBASIC & W = oV
d(st) = stateOR A
#{s: p(st) | ¢(s) # connectorDEFAULT} =1 AW = {{)} V
#{s : p(st) | #(s) # connectorDEFAULT} > 1 A
(VS1,852 : p(st) e (Flpath : W e
(clpathEXISTS (lpath, S1) A = clpathEXISTS (Ipath, S2)) V
(clpathEXISTS (Ipath, S2) A = clpathEXISTS (Ipath, S1))))

Since transitions without triggers cannot be used to distinguish states,
we include {()} in W for OR-states with only one substate such that when
constructing a set of test cases we get nonempty result. This {()} has to be
removed during the merging process provided the resulting W is going to

contain non-empty sequences of labels.
For a state st, the defaultTransitionLabels function gives all possible

default entrances into st and is recursively defined as follows:

Definition 6.4.3.

default TransitionLabels : STATE + LSetSet

Vst:Ye
(¢(st) = stateBASIC = defaultTransitionLabels(st) = {@}) A
(p(st) = stateOR = default TransitionLabels(st) =
U{tr : TR™(st) | transitionDEFAULT (tr) e
Composition(setMULT, {
(if tr.label = andTRUE then{{@}} else{{tr.label}}),
default TransitionLabels(FromSet (tr.target))

)

H A
(¢p(st) = stateAND = default TransitionLabels(st) =

Composition(setMULT ,{s : p(st) o defaultTransitionLabels(s)}))

The meaning of the Composition function is illustrated by the Fig. 6.18.
Dashed lines represent two out of many paths connecting {}s. Every path
must take a single LSet from every LSetSet; sets on a path get united by
setMULT during the execution of Composition.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 180

L SetSet

tsa—+01 . [0] [0
O] oo

gl ol o
o 0

\/

L SetSetSet, whichisgiven to Composition

Figure 6.18: An illustration of the Composition function

Putting the above definitions together, the whole TCB for a statechart
has to satisfy the following:

Definition 6.4.4.

C : STATE -+ F StateCoverElement
W : STATE -+ LSetSeq
®,DE : STATE -+ LSetSet

Vst:Xe
cStateCover(st, C(st)) A
cCharacterisationSet(st, W (st)) A
D(st) ={l: T(st) e {I}} A
DE(st) = default TransitionLabels(st)

Note that when viewed as functions, C(st), W(st), ®(st) are not well-
defined, i.e. we could have different sets all qualifying for a valid TCB. In
the merging rules we assume that for every state we decided what the TCB
is before merging.

Proposition 6.4.5. For all states s and every element of DE(s), we have a
unique continuation transition TSet (consisting of individual transitions).

Vst : 3 e (I bijection : LSet —» TSet o DE(st) = dom bijection)

Proof. We need to show that exclusion of transitions with andTRUE labels
from DFE in Def. 6.4.3 does not introduce ambiguity and thus bijection is
a function. From construction of DE it follows that labels of transitions
selected correspond to a valid path from some transition entering state st
and continuing from the default connector. Prop. 6.2.12 gives us the desired
result.

The bijection™ (the relational inverse of bijection) is a function since

CHAPTER 6. PROOFS FOR THE TESTING METHOD 181

toLABELSET is defined for every TSet. This completes the proof. O

Definition 6.4.6. Minimality of statecharts (Req.1a) can be asserted as
follows:

Vs:X | ¢(s) = stateOR o
lpath : LSeq o clfollowPATH (lpath, defaultFROM (s)) = s
Vs:X | ¢(s) = stateOR o
Vsi,52:p(s) | s1# s2e
dlpath : LSeq e
(clpathEXISTS (Ipath, s1) A = clpathEXISTS (Ipath, s2)) V
(= clpathEXISTS (Ipath, s1) A clpathEXISTS (Ipath, s2))

It corresponds to the minimality of an associated automaton in [Ipa95].

For a minimal substate statechart for some state, we can construct a C
set to visit all states and a W set to distinguish all of them. In both cases
this is possible without usage of interlevel transitions.

Proposition 6.4.7. A simple statechart is minimal iff C and W exist for
it.

Proof. Existence of C' and W for a minimal statechart follows from com-
parison of definitions of C, W (Def.6.4.1, Def. 6.4.2) and minimality of a
statechart (Def. 6.4.6).

Conversely, if C exists, we can visit all states and thus all of them are
reachable. Existence of W ensures that no states have the same behaviour.
These two imply minimality. O

6.4.2 TCB for a flattened statechart

Here we define sets comprising TCB for a flattened statechart. This essen-
tially involves replacement of LSeq by LSeqSet, T by FT in the TCB for a
substate of an OR state and removal of “c” in front of names.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 182

Definition 6.4.8.

StateCover _ : F, (LSetSegSet)

YV C : LSetSeqSet ®
StateCover(C) <
Zf =gANC=aV
(F element : C o IfollowPATH (element,
stateFLATTEN (root, default Entrance Complete(root, @))) = S))

Definition 6.4.9.

CharacterisationSet _ : F, (LSetSeqSet)

VY W : LSetSeqSet o

CharacterisationSet(W) <

#L;=0NW =0V

#3; =1NA W = {{({andTRUE})} Vv

#3p > 1A (VSy,8: : Yre

dilpath : W e

(lpathEXISTS (Ipath, S1) = — lpathEXISTS (Ipath, S2)) A
(lpathEXISTS (lpath, S2) = — lpathEXISTS (Ipath, S1)))

Proposition 6.4.10. If we consider a simple statechart, the above defini-
tions are almost identical to those for the test case basis (TCBs for flattened
and original statecharts are related by SetSeqtoSetSeqSet[LABEL] which is
a bijection in our case).

Proof. Prop.6.3.4 states that expanded simple statechart is almost identical
to the original one. The conclusion of the theorem follows from comparison
of the definitions of StateCover and CharacterisationSet with cStateCover
and cCharacterisationSet above. O

6.4.3 Merging rules

We begin with the outline of the whole proof. As stated earlier, here we
consider the case with no refinement; refinement is dealt with in Sect. 6.5 on
p-195.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 183

Definition 6.4.11.

complete Transition : TRANSITION +» LSet

Virans : T e (Ilset : DE(FromSet(trans.target)) e
complete Transition(trans) = {trans.label} U lset)

completePath : LSeq x STATE + LSeqSet

Viseq : LSeq; state : Yo
Iseq = () = completePath(lseq, state) = () A
Iseg#() = (Ftr:Te
tr.source = {state} A transitionNI (tr) A
completePath(lseq, state) = (complete Transition(tr))™
completePath(tail lseq, FromSet(tr.target)))

multC : LSetSeqSet x LSetSeqSet + LSetSeqSet

V lsetseqsety, Isetsegsety : LSetSeqSet o
multC (Isetsegsety , lsetsegsety) =
{Isegset, : lsetseqsety; lsegsety : Isetseqsety o
Unite(lsegset;, Isegsets) }

cmersed . STATE + LSetSeqSet

Vst:Ye
(¢(st) = stateBASIC = C™9 (st) = {(@)}) A
($(st) = stateOR = C™9 (st) =
U{coverel : C(st) multOR1(
{completePath(front coverel.lpath, defaultFROM (st))U
{# coverel.lpath — {last coverel.lpath}}},
Cc™er9ed (coverel.state))}) A
(P(st) = stateAND = C™9 (5¢) =
Composition(multC,
{s:p(st) e {cel : C(s) o SeqtoSeqSet(cel.lpath)}}))

In the above definition, we have C™¢9%(st) = {(@)} for basic states, since
for all non-basic ones, we have a nonempty path to substates; when this path
is merged with C™™%(st), an @ disappears. A statechart always contains
at least one non-basic state — the root one. Usage of FromSet(tr.target)
in the completeTransition function is justified by our usage of only non-
interlevel transitions in C. The expression

CHAPTER 6. PROOFS FOR THE TESTING METHOD 184

Composition(multC,
{s: p(st) @ {cel : C(s) o SeqtoSeqSet(cel.lpath)}})

corresponds to usage of multAND to multiply cel.lpath as

multAND ({SegtoSeqSet Ipath, }, mult AND ({ SeqtoSeqSet Ipaths } .. .))

Every path in C' is made to consist of full compound transitions using the
completePath and multOR1 functions. The completePath function makes a
path given to it consist of FCTs. The last element of coverel.lpath is made
full compound by virtue of multOR1 uniting it with default transitions in
coverel.state, contained in C™¢"9¢ (coverel.state).

completePath function uses complete Transition which picks any valid
default completion for a state, entered by a given transition. Only transi-
tions from C' are supplied to complete Transition which are non-interlevel by
construction of C.

We define ®™¢79¢ for merging without refinement (multiplication of tran-
q)merged

sitions) and that with the weak one (union of transitions) &, “~9*:

Definition 6.4.12.

pmerged gmersed . 53 s [SetSet

union
Vst:Xe
P(st) = stateBASIC = ™9 (st) = & A @umr;?;d(st) =g A
¢(st) = stateOR =
(®™mer9ed (st) = B(st) U U{s : p(st) @ ®™eI(5)} A
d d
@ () = @ (st) U s + ls) @ 9T (5))) A
¢(st) = stateAND =
(®™er9ed (st) = Composition(setMULT,
s: p(st @} U pmerved (g g} A
{d P() o {2})
@omion (5t) = (J{s = p(st) o 2T (5)})

Above, we are dealing with sets of sets of labels rather than with sets of
sequences of sets as we do in W™e9¢d, For this reason, we use {@} instead
of {()} in Composition above.

Note that Vst : 5; ¢ : B9 (g1) o #¢p = 1.

union

CHAPTER 6. PROOFS FOR THE TESTING METHOD 185

Definition 6.4.13.
‘ wmerged . 52 4y LSetSeq

Vst:X e (3, union == W(st) U U{s : p(st) @ WM (5)} e

(#union > 1V union # {()} = W™ (st) = union \ {()}) A
(#union = 1 A union = {()} = W™ (st) = union))

Completion of compound transitions in ®™¢79¢4 and W™er9ed to full com-
pound ones is done using the defaultComplete function, in turn using
the transitionDefaultComplete function to complete every individual set of
transitions.

Definition 6.4.14.

convtoTRANSITIONSET : LSetSet + TSetSet

Vlisetset : LSetSet o
convtoTRANSITIONSET (lsetset) = {lset : lsetset o
{l:lset; tr: Y|
transition DEFAULT (tr) A scope(tr) = getSCOPE(l) e tr}

allFCTComplete : LABEL + TSetSet

V1: LABEL e allFCTComplete(l) =
U{tr : Y | = transition DEFAULT (tr) A tr.label =l o
Composition(setMULT,{s : tr.target o
convtoTRANSITIONSET (DE(s))})}

transitionDefaultComplete : LABEL + LSetSet

V1 : LABEL e transitionDefaultComplete(l) =
{tset : allFCTComplete(l) o {t : tset | t.label # andTRUE e t.label}}

defaultComplete : LSetSeq + LSetSeqSet

Vlisetseq : LSetSeq o defaultComplete(lsetseq) =
U{lseq : lsetseq e
{resseq : LSeqSet | (Vi:1..#lseqe
resseq i € apply(lseq, transitionDefaultComplete) i)}

CHAPTER 6. PROOFS FOR THE TESTING METHOD 186

convtoTRANSITIONSET converts labels of DE into corresponding transi-
tions, by picking those with the appropriate label. From determinism of a
statechart, only one default transition may exist with a given label in a state.
Note that default connectors without labels (i.e. with label andTRUE) are
ignored in both Def. 6.4.14 and DE which is possible due to Prop. 6.4.5.

The allFCTComplete takes all compound transitions labelled with the
given label (¢r : T | tr.label = I) and returns a set of all default possible
completions, for each such transition. Composition is necessary for interlevel
transitions entering AND-states where in each of the concurrent components
there could be multiple default completions. transitionDefaultComplete(l)
takes a label [and computes the unified label. As a result of this compu-
tation, we get a set of labels which can trigger all possible full compound
transitions containing an initial transition with a non-empty label [. Note
that no default transition completing the given one may also have this label
due to the absence of shared transitions. An initial transition in the same
statechart with that label does not cause a problem as well because FCTs
entering the statechart and those starting within it will have different labels.

defaultComplete takes every sequence Iseq of a given Isetseq and looks
at all possible full compound transitions which could exist in a statechart
starting from every its element [: ran [seq. Taking one element from each of
them, we get a possible path in the statechart which has its full compound
transitions begin with initial transitions of [set. A set of all such paths makes
a completion of a sequence and a union of such paths for all Iseq : Isegset is
returned by defaultComplete. We also have that

Proposition 6.4.15.
V Ipathsety , Ipathsety : LSetSeq o defaultComplete(Ipathset; U Ipathsety) =
default Complete(lpathset;) U default Complete(Ipathsety)

Proof. Follows from Def. 6.4.14. O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 187

Definition 6.4.16.

expandedPhi : LSetSet + LSetSet
Wmerged (I)merged (I)merged C 3 4 LSetSeqSet

final final union,final *
Vst:X e Wﬁrfﬁged(st) = defaultComplete(W ™9 (st))

Vlisetset : LSetSet o expandedPhi(lsetset) =
U{lset : Isetset o Composition(setMULT,
{l : Iset o transitionDefaultComplete(l)})
}
Vst:Xe
Q;ﬁnﬂlged(st) = {Iset : expandedPhi(®™9% (st)) o (Iset)} A
mersed (gt) = {Iset : expandedPhi(®™9 (st)) o (Iset)}

union,final union

The expression
Composition(setMULT, {1 : lset o transitionDefaultComplete(l)})

does the default transition expansion on every initial transition in Iset and
set-multiplies results. Instead of doing this, we could apply
transitionDefaultComplete to every transition in ®(st) at the stage of con-
struction of @mersed,

6.4.4 Proofs for the merging rules

Proposition 6.4.17. Sequences of labels multiplied by multAND in ® merg-
ing for AND-states, correspond to transitions which can be taken in the same
step.

Proof. From Def. 6.4.12 and Prop. 6.1.36, we get that

Vs:X e (VIbl: d™me9¢(5) e
(Vir: YT | tr.label € bl o scope(tr) € p*(s)))

For this reason, transitions multA NDed together in the part of Def. 6.4.12,
corresponding to AND-states, satisfy orthscope and by Th.6.1.31 they can
be taken in the same step. O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 188

The above proposition can be extended to all labels generated by ®™¢"9¢4 (root)
as follows.

Proposition 6.4.18. All transitions with labels from ®™¢"9¢4 (root) are not
conflicting.

Vitset : TSet | (Vitr: tset @ = transition DEFAULT (tr)) A
{tr : tset o tr.label} € ®™°9% (root) e
orthscope(tset)

Proof. From construction of ® for a state, it contains individual compound
transitions in that state (rather groups of them). As a result, conflicting
transitions are never included in ®. Merging rules for ® either merge sets or
multiply them, implying that conflicting transitions may emerge only due
to multiplication which forms groups of transitions to be taken in the same
step. Prop. 6.4.17 shows this not to be the case. Consequently, all transitions
which carry sets of labels belonging to ®™¢"9¢4(root), can be taken in the
same step.]

As a consequence of the above proposition and Prop. 6.1.64, we get that all
transitions triggered during test application are non-conflicting.

In both merging rules and definition of T, we expand transitions to make
them full compound. The following proposition shows that the two different
approaches to expansion, introduced for convenience, are equivalent.

Proposition 6.4.19. allFULLCOMPOUND 1is essentially
the same as allFCTComplete,

V1:LABEL o | J{tr : 1|
= transitionDEFAULT (tr) A tr.label =l e
allFULLCOMPOUND ({tr})} = allFCTComplete(l)

Proof. The proof consists of the five steps.

1. From construction of DE where we choose all possible non-interlevel
default transitions from every OR-state, we get that

{nd: X+ 71|
(Vs:X | ¢(s) = stateOR o (3, ndl == (nd s).label o
(ndl # andTRUE V (lset : DE(s) o ndl € Iset)) A
transitionNI (nd s) A transition DEFAULT (nd s)))}
={ndr:Z 7T |(Vs:X|d(s) = stateOR o
scope(ndr(s)) € p(s) A transitionDEFAULT (ndr(s)))}

CHAPTER 6. PROOFS FOR THE TESTING METHOD 189

The statement
(ndl # andTRUE V (3 lset : DE(s) o ndl € Iset))

follows from usage of Composition in Def. 6.4.3 for OR states. Since in
every state labels of default transitions are all different, from state-
ment tr : TR™(st) | transitionDEFAULT (tr) in the definition of
default TransitionLabels, it follows that all default transitions are con-
sidered and none of others. Hence our first set above is equal to the
second one.

This proves that DE essentially contains all possible nondetresolution
functions (the second set above is the one used in the definition of
allFULLCOMPOUND).

2. From the definition of defaultEntrance Complete, we get that

Vir: Y e defaultEntranceComplete(root, tr.target) =
U{s : tr.target o route(root, defaultFROM (s))}

For every target state s of transition t¢r, we can identify default com-
pletions. Each of them, denoted top, leaves the defaultFROM (s) of
an appropriate s, from which it follows that all these top are related
to tr by continuationDEF'.

3. Consider the following function

default Transitions : STATE + TSetSet

Vst:Xe
(¢(st) = stateBASIC = default Transitions(st) = {@}) A
(¢(st) = stateOR = default Transitions(st) =
U{tr : TR™(st) | transitionDEFAULT (tr) e
{tset : default Transitions(FromSet(tr.target)) o {tr} U tset}}) A
(¢(st) = stateAND = default Transitions(st) =
Composition(setMULT, {s : p(st) o defaultTransitions(s)}))

This function differs from default TransitionLabels (Def. 6.4.3), i.e. that
of DE, only by usage of {¢r} in the case of ¢(st) = stateOR rather
than {¢r.label}.

From construction of default Transitions(st) it follows that

CHAPTER 6. PROOFS FOR THE TESTING METHOD 190

Vtset : defaultTransitions(st) e 3, top : T e scope(top) = st A
- (3t :tset \ {top} e continuationDEF (t,top)) A
(Vtre : tset o transitionNI(tr.) A transitionDEFAULT (tr.) A
(3, try : tset \ {trc} o continuationDEF (trs, tr))) A
- (T trs = tset; tre : T\ U(default Transitions st) e
continuationDEF (trs, tr.))

The existence of such fop transition follows from consideration of
OR-states by default Transitions, since all further transitions are also
default non-interlevel and lower-level to it. Consequently, DE pro-
duces labels of transitions related by continuationDEF as required by
FULL_COMPOUND.

4. This shows that

Vir : T; nondetresolution : ¥+ Y e
(Fcont : X+ TSet o (Vs : tr.target o
toLABELSET (cont(s)) € DE(s)) A
(Vs : X e nondetresolution(s) € cont(s) A
FULL_COMPOUND ({tr}, nondetresolution) =

{tr} UU{s : tr.target o cont(s)}))

Existence of cont such that

toLABELSET (cont(s)) € DE(s) A
(Vs : X e nondetresolution(s) € cont(s))

follows from the fact that DE essentially contains all possible
nondetresolution functions. We can express FULL_COMPOUND in
the described way due to the result proven in the above two steps of
the proof.

Note that for a transition ¢r where s; € tr.target A sy € tr.target A
orth(s1, s2), we have cont(s;)Ncont(se) = & because transitions related
by continuationDEF are not orthogonal.

5. The above step shows that allFCTComplete generates sets of labels
for results of FULL_.COMPQOUND for all possible nondetresulution
functions. This proves the conclusion of the theorem.

O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 191

We can use expansion to construct @;inrf;lgw and Wﬁrzzgge'j given in Def. 6.4.16
due to the following proposition:

Proposition 6.4.20. A transition with initial CT [bl exists iff any of the
expanded lpaths generated by transitionDefaultComplete(Ibl) exist.

V conf : T, 5; Ibl : LABEL |
configuration(root, conf) A defaultEntrance Complete(root, conf) = conf e
({Ibl}, conf) € dom toTRANSITIONSET <
(I lset : transitionDefault Complete(Ibl) o
IpathEXISTS ((lset), stateFLATTEN (root, conf)))

Proof. This essentially follows from the proof of Prop. 6.4.19 as follows.
For a label bl, transitionDefaultComplete constructs the set of all possi-
ble continuations of it. This means that if a transition with the /bl label ex-
ists from a considered configuration, it will have a continuation and this con-
tinuation will be included in at least one element of transitionDefault Complete(Ibl).
In case it does not, no transition with labels from transitionDefault Complete(1bl)
may exist since it would have to begin with the considered initial transition
Ibl and no transition with such label exists from the considered configuration
by our assumption. O

Nondeterminism after expansion of transitions cannot occur due to require-
ment of deterministic behaviour of an implementation.

Proposition 6.4.21. Any set of labels of non-default transitions related by
orthscope is contained in ®Me9 (root).

Proof. First of all, we note that when labels lset correspond to some tran-
sitions related by orthscope, a set of states produced by getSCOPE (Iset)
(Prop. 6.1.36) has every pair of states in it orthogonal (i.e. related by orth).
Further in the proof we operate with this set of scopes, which we call group.

Consider a state top = lca(group). As all states in group are scope
states, Vs : group e ¢(s) = stateOR. If top € group, then Vs : group | s #
top e top = lca(top, s) which contradicts that states top and s are orthogonal
because orth requires ¢(lca(top, s)) to be an AND-state. Non-orthogonality
of top and s in turn contradicts orthscope-property of group. We thus have
top & group.

From the proof of Prop. 6.1.10, we have that there are states s1, s2,...,5p :
p(top) such that Vs : group e (I s; : p(top) e s € p*(s;)). From definition of
lca for top, it follows that there is more than one such s; : p(top).

Let us partition states in group into gr;, such that all states in gr; are
under the corresponding s;, Vs : gr; e s € p*(s;). We can build a tree of
states with the root of it being an AND-state top. Note that taking a single

CHAPTER 6. PROOFS FOR THE TESTING METHOD 192

state from each gr;, we get a set of states for which top is an lca (this follows
from the fact that top is an ancestor and s; prevent any lower state to be
such).

Partitions gr; are disjoint since they are contained in p*(s;), for different
states s;.

Now we consider every partition gr; individually. In case it is not a
singleton, every pair of states in it is orthogonal, from the definition of
orthscope. We can then construct a node top; = lca(gr;) and follow the
partitioning described above for states in gr;. Doing this for all gr; gives us
a set of nodes for our tree, each corresponding to gr;. These nodes are the
lower-level ones to top. For a singleton gr;, we have a leaf node FromSet(gr;)
under top.

The process of identifying a top state and partitioning can be repeated
with smaller partitions. Finally (and this will occur since partitions are
smaller in size than sets which were split), we arrive at a tree with leaf nodes
being our scope states and non-leaf nodes of the tree being AND-states.

The definition of merging for ®, Def. 6.4.12 unites sets of labels for OR-
states and multiplies those for AND-ones. In the latter case, the result
always contains original sets, due to the inclusion of {@} in the multiplica-
tion. Following the tree constructed from bottom to top, we can see from
Def. 6.4.12 that ®™e¢79¢d will contain the set of labels Iset. O

Proposition 6.4.22 (Merging rule for ®). Merging rules generate TCB
which is valid. For an expanded statechart Y is essentially

flattenPATH (toTRANSITIONSET (lpath))

The equality between the two is not, strictly speaking, correct since
toTRANSITIONSET takes a configuration as a parameter. Consequently,
the result to prove is somewhat more complicated:

Ty = {Isegset : LSeqSet; st : ¥y |
Isegset € @%nﬂ‘?ed(mot) A lpathEXISTS (Isegset, st) ®

toTRANSITIONp(flattenPATH (
(toTRANSITIONSET (lsegset(1),toCONFIGURATION (st))))(1))}

Vlsegset : @;ﬁn:l:lged(root) o (Ist:X; o IpathEXISTS (Isegset, st))

Proof. We need to show that labels of all full compound transitions are
captured by the @%n; ;lged, and no more than that is in there.

First of all, we observe that flattenPATH when applied to a sequence
consisting of a single element is the same as FULL_.COMPOUND and thus
we have to prove that Isets from @%n;;fw(root), expanded with

FULL_COMPOUND (toTRANSITIONSET (iset, to CONFIGURATION (st)))

CHAPTER 6. PROOFS FOR THE TESTING METHOD 193

generate all full compound transitions of the statechart.
From proof of Prop. 6.4.19, we get that for a set of non-default transitions

tset : TSet | {tr : tset o tr.label} € ®™9% (root),

@%"ﬂfed(root) will contain labels of all possible default continuations. From

determinism of the statechart, we get that for any such label and any
nondetresolution function, FULL_COMPOUND (tset) would return the same
set. From Prop. 6.4.18 and Prop. 6.4.19 we have that such a t¢set should be
returned by toFCT and thus corresponding transitions will be included in
T;. Since FULL_.COMPOUND generates valid transitions (Prop.6.1.58)
and as such transitions in T are valid, we get that

Jst : 35y e pathEXISTS (tset, toCONFIGURATION (st))

From a transition #r : T we can extract initial transitions of it due to
Prop. 6.1.60. These transitions will be orthscope since they can be taken in
the same step. Taking labels of them and applying Prop. 6.4.21, we get that
this set will be constructed by the result of merging of ®. The full compound
transition #r will then have labels belong to @]’ﬁ”,fglged due to Prop.6.4.19. O

Proposition 6.4.23 (Merging rule for C).
State Cover (C™¢9¢ (root))

Proof. Consider a lowest-level OR state st, which only contains basic sub-
states. C™e™9¢ (st) = C(st) (from Def. 6.4.11) gives paths to every substate
of it, from the default connector. Such paths would also consist of full com-
pound transitions (if considered within the state) as basic states have no
default transitions. Each path in C'(st) will begin with a default transition.

A higher-level state sp = parent(st) would have C(sp) visit every state,
including st. A path visiting this state would be multiplied with C'™€™9¢4(st),
such that paths entering every substate statechart of st from the default con-
nector of sp are formed and can be represented in the form (from Def. 6.4.11
and Def. 6.1.17)

Vst : 3; pathgy : LSeqSet; Cst : LSetSeqSet |
¢(st) = stateOR N Cst = {cel : C(st) e SeqtoSeqSet(cel.lpath)} e
multOR1({pathgp }, Cst) = {pathy : Cst e

front pathg, ~ (last paths, U head pathg) ~ tail pathg }

These paths would consist of full compound transitions. The part tail pathg,
has all transitions full compound as shown above. (last paths, U head paths;)
is an FCT too as it contains a transition entering an OR-state and a default

CHAPTER 6. PROOFS FOR THE TESTING METHOD 194

transition within that state, entering a basic state. This proves that transi-
tions entering OR- or basic states in sp or st get expanded to full compound
as a result of merging. The same can be said for all other OR-substates of
sp.

From the definition of completePath(coverel.path, defaultFROM (st)) we
get that front paths, consists of full compound transitions too. Consequently,
for OR-states C™¢"9¢ consists of full compound transitions and enters every
state.

From construction of C™€™¢ for AND-states and a result just shown,
we get that all combinations of states are entered by full compound transi-
tions. As a result, 0% produces a result complying with definition of
the StateCover (Def.6.4.8). O

Proposition 6.4.24 (Merging rule for W).
. . d
ChamcterzsatwnSet(Wﬁrflzyge (root))

Proof. For every S1,S52 : ¥y | S1 # Sz, we can construct confi, conf, using
toCONFIGURATION. We then have root € confi N confo. Consider a
non-basic state s : confi N confe such that p(s) N confi N confy, = &, then
this s is an OR-state (otherwise p(s) C confi N confo from the definition of
configuration) and

ds1,80: p(s) ® 51 # s9 A 51 € confy A sp € confa.

If there is no such s, conf; = confe (again from Def. 6.1.3) and thus S; = S5,
which contradicts our choice of S; and S>. Having shown that there exists
a state s with properties above, we may note that there could be more than
one such state, for instance, when in some AND-state substates of multiple
concurrent states are different between conf; and confo.

The characterisation set W for the state s can distinguish between s;
and s, and is included in W™€™9¢ by construction of it. Th.6.2.14 and
Th. 6.2.15 generalise this to W, distinguishing between conf; and confo; the
rest follows from Prop. 6.4.20. O

Proposition 6.4.25. If for every state, its substate statechart is minimal,
then flattened statechart will be minimal too.

Proof. From Prop. 6.4.7 follows the existence of C' and W for substate statechart
in every state. From Prop. 6.4.23 and Prop. 6.4.24 we get their existence for
the flattened statechart and thus using Prop. 6.4.7, arrive at the conclusion
of the proposition. O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 195

Theorem 6.4.26 (Merging rules). Merging rules work.

Proof. Proven in Prop. 6.4.22, 6.4.23, 6.4.24. O

The theorem we just proven is the main result of the proofs: it shows that
merging rules described in Chap. 3 on p. 46 allow provable correctness of an
implementation of a system w.r.t its design under assumptions provided in
Chap.5 on p.79.

6.5 Refinement of statecharts

In this section we provide proofs of the merging rules and test case construc-
tion for the three types of refinements, refinement of OR-states, weak and
strong refinement of AND-states.

6.5.1 Refinement of OR-states

In this subsection we describe a state refinement of OR states. In the process
of refinement, we add a statechart inside a state of a design and make
appropriate modification to an implementation.

As described in Sect.1.4.5 on p. 16, transitions have priorities associ-
ated with them such that a transition between the higher-level states has
a precedence over a transition between lower states in the state hierarchy.
Such priorities are related to the scope of a transition, i.e. the lcoa of the
union between the source and target states of the transition (Def.6.1.24).
Due to priorities, transitions entering the refined state enter a default con-
nector of it and those leaving take priority over those inside the state. This
allows us to eliminate testing of transitions exiting the state, from all its
substates.

The refinement considered is subject to restrictions that a design and
an implementation of the mainstatechart is expected to contain no transi-
tions with labels of transitions of a substate statechart and the same for the
substate statechart for labels of the mainstatechart. Interlevel transitions
between the two are not allowed either.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 196

Definition 6.5.1. A statechart in state state (further often referred to as
a substate statechart) is a state refinement of a statechart main statechart if
an implementation of the whole system satisfies the following property:

Vstate : Yo
(3, lblsub == toLABELSET ({tr : T | scope(tr) € p*(state)}) e
(Vir: Y e tr.label € lblsub < tr.source N p™ (state) # B)) A
(Vir: Y o ((tr.source U tr.target) N p™ (state)) # & <
tr.source U tr.target C p*(state))

In addition, we require that there are no transitions labelled with labels
of the substate statechart Iblsub from extra states of the main statechart, i.e.
states accounted for in m — n during test case generation.

Theorem 6.5.2. The set of test cases

_ 2
T - CMAIN STATECHART * ({1}) ¢MAIN STATECHART) QMAIN STATECHART U

U U @mMAIN STATECHART —NMAIN STATECHART"’l) * W
st MAIN STATECHART MAIN STATECHART

U
{path to State} *1 CsupsTaTesTATECHART * ({1} U @sypstarestarecaarT U

2
(pSUBSTATE STATECHART u...u

@ MSUBSTATE STATECHART —NSUBSTATE STATECHART+1) % W
SUBSTATE STATECHART SUBSTATE STATECHART

(an example of which is given in Eqn. 3.6 on p.54) is adequate for prov-
able correctness of an implementation to a design as a result of testing not
revealing faults.

Proof. Using multiplication operators rather than functions for clarity, we
have for the set of test cases,
T = Cx({1}udud?u...ud™ ")xWw
= (CMAINSTATECHART U {Path to Smt@} *1 CSUBSTATESTATECHART) *
*({1} u (QMAINSTATECHART U QSUBSTATE‘STATE‘CHART) u
U L U (QMAINSTATECHART U ¢SUBSTATESTATECHART)min+1) *
*(WMAINSTATECHART U WSUBSTATESTATECHART)
Where Cunsrarecuarr Visits all states of the main statechart and

Csvsstarestarscuarr — all of the substate statechart.
Using Def. 6.5.1, we have that

CMAINSTATECHART * @SUBSTATESTATEC’HART =

{path to some initial configuration of state} * ®sypsraresrarecrarr

CHAPTER 6. PROOFS FOR THE TESTING METHOD 197

since transitions with labels of substate statechart do not exist from any
state other than those in p*(state) by Req.le (Def.6.1.35). The resulting
set is contained in

{Path to State} %1 Csupstaresrarecuarr * Psussrarssrarscuart

As there are no transitions of the mainstatechart having any specific
states of the state statechart as their source state, every transition leaving
a configuration of state would leave any other configuration of it. Due to
Def. 6.5.1, {path to State} *1 Csypstaresrarecnart * @uavsrarecrarr can be

reduced to {Path to State} %1 Cyavstarecaart * ®Puanvsrareonart-
For sets of transitions

¢MAINSTATECHART * QSUBSTATESTATECHART =

{initial configuration of state} * ®sypsrarssrarscnarr

where initial configuration of state is the configuration entered by state for
transitions terminating at the border of it. This follows from the fact that
multiplication only yields pairs of transitions which could be followed if
the first one enters the substate statechart, i.e. a loopback or a transi-
tion entering an extra state of main statechart, having a transition system
with labels of substate statechart in it. The latter is made impossible by
Def. 6.5.1; from the fact that the initial configuration has to be included in
Csupstarestarecrarr, We get that @y aivsrarscrart * Psvpstaresrarecmarr 18
contained in Csygpsraresrarrcrart * Psvpsrarrsrarecmart-

@sypsrarestarecrart * Puamvsrarecaarr 18 contained in @y 4y srarecrarT *
D a1 srarscaary for similar reasons to those given in description of Cy 4y srarecmars*
@ \ra1vsTATECHART-

For sets W we get similar results to those of ®.

The above has shown that any multiplications of elements of the merged
test case basis from different statecharts is contained in or can be reduced
to that for one or another statechart. Consequently, we can discard all such
multiplications without impact on fault distinguishing ability of the set of
test cases, giving the following:

_ 2
T = CMAINSTATECHART * ({1} U @ yrarvsrarecrart U (I'MAINSTATECHART u

m—n+1
U...u (I)MAINSTATECHART) * Wuaivsrarponart

u
{p&th to Stat@} *1 CsupsraTesTaTecHART *
({1} U ®sypsrarpsrarecrarr U ®oypsrare starscranr U
Uu...u @g’lu;?&ﬁmmmcmm) * Wsupsrarestarecuarr

Consider sequences of transitions from @ 4 ;n srarecwarr Which will check
for extra states in mainstatechart. Due to Def.6.5.1 and Req. le, their

CHAPTER 6. PROOFS FOR THE TESTING METHOD 198

verification ability will not be affected by existence of extra states in the
substate statechart. In the same way, Psypsrarpsrarecuarr Will verify extra
states in substate statechart unhindered by those of main statechart, which
follows from the clause of Def. 6.5.1 concerning extra states of main statechart.
The just proven fact allows us to separate testing for the two statecharts
even more: we can assume different numbers of extra states. This completes
the proof. O

6.5.2 Weak refinement of AND-states

With weak refinement of AND-states we assume that transitions taken in
concurrent states in the same step will enter the same configuration and
exhibit the same behaviour as those taken sequentially, in any order.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 199

We begin with the definition of a helper function which is an exten-
sion of confENTERED, operating on sequences of sets of transitions rather
than on single transitions. It returns the entered configuration following
the sequence from a given configuration. Another helper function is called
label COMPUTED, which computes a label corresponding to a sequence of
transitions. Both are defined below:

Definition 6.5.3. Auziliary functions confENTEREDSEQ and label COMPUTED.

confENTEREDSEQ) : TSeq x F; ¥ x (STATE + TRANSITION) + F, 2

Viseq : TSeq; conf : F; X; nondetres : STATE + TRANSITION |
configuration(root, conf) e
tseq = () = confENTEREDSEQ (tseq, conf,nondetres) = conf A
tseq # () =
confENTEREDSEQ(tseq, conf, nondetres) =
confENTEREDSEQ(tail tseq,
confENTERED (toTRANSITIONp(
FULL_COMPOUND ({head tseq}, nondetres)), conf), nondetres)

label COMPUTED : TSeq x DATA x (STATE + TRANSITION) + CSet

Vitseq : TSeq; m : DATA; nondetres : STATE + TRANSITION e
tseq = @ = label COMPUTED(tseq, m, nondetres) = & A
tseq # & = label COMPUTED (tseq, m, nondetres) =
(toTRANSITIONp(FULL_-COMPOUND ({head tseq}, nondetres))).label mU
label COMPUTED (tail tseq, m, nondetres)

The above definition of labelCOMPUTED does not guarantee identi-
cal behaviour of transitions when taken in the same step and in differ-
ent ones; due to semantics of events, behaviour will almost always differ.
label COMPUTED is not necessary for the weak AND-state refinement which
focuses on transition diagram only and was included here only to make ob-
vious ‘oddities’ of behaviour impossible such as a tape recorder exploding if
user presses both rew and play buttons at the same time.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 200

Definition 6.5.4. For an AND-state (further referred to as state), a weak
refinement means that for an implementation considered

Vtset : TSet; state : X; conf : Fy 3 | configuration(root, conf) A state € conf A
(Vir : tset o scope(tr) € p*(state) A — transition DEFAULT (tr)) A orthscope(tset) e
(Ftseq : TSeq |

ran tseq = tset N\ #tseq = #tset N orthscope(ran tseq) e
V nondetres : STATE + TRANSITION; m : DATA |
enabled®9™ (to TRANSITIONp (
FULL_COMPOUND (tset, nondetres)), m, conf) A
enable(toTRANSITIONp(
FULL_COMPOUND (tset, nondetres)), m, conf) e
confENTERED (to TRANSITIONp
FULL_COMPOUND (tset, nondetres)), conf) =
confENTEREDSEQ(tseq, conf, nondetres) A
label COMPUTED (tseq, m, nondetres) = (toTRANSITIONp(
FULL_COMPOUND (tset,nondetres))).label m)

the above definition assumes that any sequentialisation of ¢set will deliver
the same target configuration which will coincide with that for taking all
those transitions in the same step.

Theorem 6.5.5. The set of test cases in Egqn. 3.9 on p. 58 is adequate for
provable correctness of an implementation to a design as a result of testing
not revealing faults.

Proof. Testing of weak refinements of AND-states is done similarly to a
non-refined case, but instead of ®7¢9¢ (state), we use ®7Y (state) in
ezpandedPhi (Def. 6.4.16).

1. Using Prop. 6.4.17 and Prop. 6.1.66, we get that the set ®™¢"9¢ (state)
for some state state can be reconstructed back from set @%"nglged(state)).

dmerged (stqte) consists of sets of sets of labels. For every label in any
of such sets (if there is more than one label in a set, such a set cor-
responds to ®™¢9 of an AND-state) we can construct FCTs corre-
sponding to it with transitionDefaultComplete. The resulting FCTs
could be ‘put back’ into construction of ®™€™¢ and the result will
not differ from @%n:;"fed(state)), due to Prop.6.1.60. The term ‘put
back’ means that we replace transitions in ®(st) used in construction
of ®™er9¢d (stqate), by sets of their full compound equivalents, generated

using default TransitionComplete.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 201

This proves that we can decompose parts of @;ﬁnﬂf’ed(state), corre-

sponding to concurrent transitions and these constituent transitions

will be included in @umrfi?;zcm o (state).

2. We now show that transitions which are not tested under the weak
refinement assumption (Def. 6.5.4) are behaving correctly (i.e. what
this theorem is supposed to demonstrate).

Consider ®™erved\ ™V Tt g equal to a set of sets of labels, each set

corresponding to multiple transitions taken concurrently in the same
step (follows from Def. 6.4.12), with full compound equivalents (using

Def. 6.4.16)
d d
Pl (51) \ Piion finat (5) =

{lset : expandedPhi(®™e9 (st) \ ™9 (41)) o (Iset)}.

UNION

The transition diagram, including all the transitions taken concur-

rently, can be tested using (I)umr;?;jinal' Using the weak refinement

assumption (Def. 6.5.4), we get from testing with @um;?;jinal not re-
vealing faults that behaviour of those transitions taken in the same
step will be identical to that when they are taken sequentially and
thus this behaviour will be correct; taking them concurrently will also

lead to the expected state.
O

6.5.3 Strong refinement of AND-states

Strong refinement assumes separate implementation of concurrent states and
absence of communication between them under test. With this, we need to
explore neither state nor transition space when testing. Consequently, sep-
arate testing of an AND-state is the same as testing of OR-state refinement
and the proof for it can be found in Sect. 6.5.1 on p. 195.

6.6 Test data generation

Here we give definitions for testing requirements related to data and show
how to use the testing theorem developed for X-machines, for statecharts.

We begin with definitions of helper functions aiding us to define testing
requirements.

Definition 6.6.1.

‘ noemptytrigger _ : F, (LSet)

Vlset : LSet o noemptytrigger(lset) <
(Vi:lset | (3tr: T e tr.dabel =1 A - transitionDEFAULT (tr)) e
(3m : DATA e — trigger(l,m)))

CHAPTER 6. PROOFS FOR THE TESTING METHOD 202

t_complete _: F,(LSet)
stSTATUS \ (data, conf)

Viset : LSet o t_complete(lset) <
(Vis: LSet |ls # & Nls Clsete
(Vm : DATA e (T cset : CSet e
triggerSET (Is, modify(filter (cset, inport), m)) A
= (3l : lset \ Is ® trigger(ly,m)))))

noracing _ : F, (LSet)

Vlset : LSet o noracing(lset) <
(Vl,lp:lset; m: DATA | Iy # Iy A triggerSET (Iset, m) e
— racing (i (m), k(m)))

output— distinguishable _ : F, (LSet)

stSTATUS \ (data, conf)

Vlset : LSet o output— distinguishable(lset) <
(Vl, b :lset; m: DATA | Iy # Iy A triggerSET (Iset, m) e
filter (li(m), outport) # filter(lo(m), outport))

Above, in noemptytrigger, t_complete, noracing and output—distinguishable,
we talk about compound transitions of a statechart. In the definition of
noracing we use trigger rather than enable. This is needed as we are trying
to verify all transitions from every state; if there are some which mask each

other, an implementation error could be missed.
Requirements for the test data generation can be put down as follows:

Definition 6.6.2. A statechart has to satisfy the requirements of t_completeness,
output-distinguishability, absence of racing, empty triggers and presence of
synchronous behaviour under test.

3, lset == {tr : T o tr.label} o
t_complete(lset) N\ noemptytrigger(lset) A
output — distinguishable(lset) N noracing(lset)

Note that this definition is rather strict; indeed, it requires completeness
and output-distinguishability of every compound transition. In practice,
this could be limited to those used for testing. For instance, we do not have
to require output-distinguishability of default transitions which cannot be
taken in the same step by Req. 4b. Removal of some unnecessary constraints

CHAPTER 6. PROOFS FOR THE TESTING METHOD 203

could be a subject of future work.

Proposition 6.6.3. Output-distinguishable transitions remain
output-distinguishable after an application of event_discard (rather than modify)
to them.

Proof. Follows since changes from transitions are not affected by event_discard.
O

Proposition 6.6.4. All changes made by full compound transitions in re-
sponse to our triggering them, are observable provided transitions satisfy the
output-distinguishability condition for individual transitions (Sect. 4.1.3 on
p. 70) and a statechart is running synchronously (Req. 3c).

Proof. An output from a transition will not be observable if it is masked by
some other transition or a number of them. This can potentially happen
when more than one transition is executed in the same superstep; without
loss of generality we can consider two transitions, the second of which masks
changes made by the first one. Consider the following cases:

o These two transitions execute in different steps. This contradicts the
requirement of synchronous execution under test (Req. 3c),

e Transitions execute in the same step, either in concurrent states or
as a part of a single full compound transition. Racing is prohibited
(Req. 3b).

O

Although the above proposition shows observability, it does not prove output-
distinguishability, which together with t_completeness and other require-
ments can be ensured as a part of design for test described in Sect.4.1.3 on
p- 70.

6.7 Testing theorem

In this section we essentially present the testing theorem from [Ipa95] with
some clarifications, therefore only an outline proof of the main result (Th.6.7.3)
is provided.

Consider a finite-state machine A corresponding to a simple statechart,
such that the two have the same number of states. For every transition ir
of an original simple statechart, we have the corresponding tr4 with the
same source and target states as tr but with the label tr.label/1. This
automaton has the set of inputs being the set of labels of transitions @ in
our simple statechart and the output set of {0,1}. We make A complete, i.e.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 204

have a transition defined for every possible input from all states, by adding
transitions from every state to the SINK state with output 0. Function
computed by A is denoted A(lseq) for a sequence of labels Iseq : LSeq.

For example, for the mainstatechart of our tape recorder, we have A
depicted in Fig. 6.193. Transitions with output 0 are drawn in thick lines.
rec
stop

r(l-:‘vv_or_ff

al
girgction
button_stop/0

SINK rew or ff

direction
Won_stoplo

REW_FF

play/1

>

direction/1

button_stop/1 play/1
rew_or_ff/1

gt_op i rec/1
irection
button_stop/0 STOP Stop/L RECORD £3\CN or ff
. play
diréction

button_stop/0

Figure 6.19: The tape recorder FSM with a sink state

Multiple transitions between the same pair of states with the same output
are drawn as a single transition. For example, between PLAY and SINK
we have rew_or_ff/0, stop/0, rec/0, play /0.

Proposition 6.7.1. There is the following relation between paths of the
simple statechart and A:

Viseq : LSeq o IpathEXISTS (Iseq) < 0 ¢ ran A(lseq)

Proof. If a path in the simple statechart labelled Iseq exists, then no transi-
tion to the SINK state in A will happen and thus there would be no 0 in the
output sequence. If there is no path, then the SINK state will be entered
and the output sequence will contain 0. Conversely, if there is no 0 in the

3In actual fact, the SINK state can be expected to exhibit divergence for any input.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 205

output sequence, no transition to SINK was taken and the path exists in
the original simple statechart; if there was 0, no such path would exist by
construction of A. O

Proposition 6.7.2. W constructed above is valid for A; C wvisits all states
but SINK.

Proof. Follows from Prop. 6.7.1. O

Theorem 6.7.3. Consider a statechart design satisfying the design require-
ments of Chap.5 on p.79, and an implementation of the considered sys-
tem satisfying the implementation-related requirements of the same chapter.
Then if the implementation delivers the expected output for t(T) where t is
the fundamental test function and T the set of test cases as follows

T = MultOR(MultOR(C™9% {()} U

Raise ToPower(q);inrfglged, 1)U Raz’seToPower((I)%n;;lged, 2)U

U...u RaiseToPower(@%n;;lged, m—n+ 1)), Wﬁrzzged),

then we have the behavioural equivalence between the considered design and
implementation.

Proof. We provide a sketch of the proof.

From requirements for statecharts, Def. 6.6.2, and Prop. 6.2.17 it follows
that in an implementation, when we trigger a transition, we can always
tell if it occurred or not. [Ipa95] proves that provided an X-machine sat-
isfies output-distinguishability and t_completeness, the ¢-fundamental test
function, converting a sequence of labels to that of input/output pairs, al-
lows to reason based on the output of the system under test, that the Ipath
considered exists there or not.

Let us assume that an implementation contains an implicit SINK state
such that if a transition with some label does not exist from a state, it is
assumed to lead to that state. With this assumption, the Chow’s theorem
[Cho78] can be applied to show the equivalence of behaviour between A
and implementation. With the help of Prop.6.7.2 and Th.6.4.26, we get
the behavioural equivalence between design and implementation. This fol-
lows from a proof in [Ipa95] for X-machines and that simple statecharts are
behaviourally-equivalent to X-machines (Prop. 6.3.10). O

CHAPTER 6. PROOFS FOR THE TESTING METHOD 206

6.8 Future work — OR- and AND-connectors

C, S, junction and diagram connectors could be included in the general
axiomatisation of statecharts described above. It is based on the introduc-
tion of a special type for states called CONNECTOR. Valid transitions are
restricted such that

Vir:7e
(CONNECTOR ¢ ¢(tr.source|) V
{CONNECTOR} = ¢(tr.source))) A
(CONNECTOR ¢ ¢(tr.target)) V
{CONNECTOR} = ¢(tr.target))

Definition 6.8.1.

‘ transition CONTINUATION _: F,(TRANSITION)

Vir:Te
transition CONTINUATION (tr) < ¢(tr.source) = {CONNECTOR}

Definition 6.8.2. toTRANSITION is defined similarly to toTRANSITIONp
(Def. 6.1.50 on p. 145),

toTRANSITION¢ : TSet v TRANSITION
Viset : F; T | tset VALID (tset) e
toTRANSITION (tset) =
(source == U{t : tset | - transition DEFAULT (t) A
= transitionCONTINUATION (t) e t.source},
target == U{th : tset |
= (Ftre : tset o continuationDEF (trs,tr.)) e trs.target},
label == andALL(tset) |

default Entrance Complete and other functions have to be modified to take
transitions with connectors into account. Some problems with the design
for test for the considered connectors are described in Sect. 4.1.3 on p. 70.

Note that loops in the system of transitions comprising a compound tran-
sition are impossible due to conjunctional semantics of statecharts (Sect. 1.4.10
on p.24) within a step?.

4a loop does not make sense for this type of semantics where transitions in a set of
them can be executed within a step in any order and will produce the same result.

CHAPTER 6. PROOFS FOR THE TESTING METHOD 207

Given a sketch of how the theory could be extended to handle transitions
involving connectors, we will not elaborate on it and leave it for future work.

Chapter 7

Tool support

A method cannot find its acceptance in industry unless a toolset supporting
it has been built. Consequently, an implementation of the test set generation
method is necessary to have it adopted and used. In this section we describe
the tool support built as a part of the ESPRESS project, with particular
attention paid to the test set generation tool for statecharts, called TestGen,
which was developed by the author. All ESPRESS tools are prototypes; if
accepted, they will be rebuilt by a firm which would afterwards support
them.

7.1 uSZ tool support

Statemate tool is used for statechart editing and simulation. Transition
labels are designed using Z separately from statecharts. The editor runs
under zemacs and provides an easy way of entering schemas. The repre-
sentation for Z is IATEX-like. Users can either use an ‘insert symbol’ menu
or type control sequences; after being typed they are visualised as an ap-
propriate Z symbol. A type-checker for Z is implemented. The environ-
ment permits code generation from explicit Z schemas and integration with
Statemate’s simulation facilities. Usage of the SMV model-checker and the
HOL-Z/Isabelle theorem-prover is also possible.

7.2 TestGen tool

The TestGen tool is supposed to generate test cases and convert them to test
inputs for testing statechart designs against implementations. It implements
the main elements of the testing method described in Chap.3 on p.46 and
Chap.4 on p.65. Designs can be loaded and saved within the ESPRESS
framework the tool is supposed to run in. They can be annotated by a user
to make certain refinement assumptions (for AND and OR-states) and to
ignore specific transitions at certain stages in the test case generation.

208

CHAPTER 7. TOOL SUPPORT 209

7.2.1 Requirements for the tool
Inputs for the tool

The ZIRP format is used by the ESPRESS toolset (also referred to as ET)
to communicate data between tools. For example, a Z design can be passed
to a theorem-prover to derive disjunctive normal form for Z schemas of it.

Statechart designs in ZIRP and XMI format can be directly loaded into
the tool; Statemate databank files and workarea ones have to be converted
to the ZIRP format first. XMI [XMI99] is an exchange format developed for
UML CASE tools which recently (Mar 99) became a standard. It is based on
XML [XML], a widely accepted format for the interchange of information.

Inputs which are needed for test data generation are extracted by TestGen
from statecharts with labels adhering to the simple ‘single event/action’ for-
mat; they can also be explicitly added by a user using the tool.

Designs are expected to consist of Units which in turn consist of pro-
cess classes, containing statecharts. Semantically, a class is a part of larger
design, connected to other classes through ports, drawn on a data flow dia-
gram. Behaviour of such a class is given by a statechart!, refer to Sect. 1.4.11
on p. 24 for more details.

Outputs of the tool

Sets of test cases and test inputs are displayed by TestGen on the screen in
a popup window (TestGen graphical interface, also referred to as GUI), in
the terminal window (command-line version) or saved in a file. If errors are
reported, GUI also allows navigation to an erroneous part of a design.

7.2.2 TestGen graphical interface
The Main screen

The main screen of the TestGen tool is given in Fig.7.1. In the top-left of
the screen loaded process classes are displayed, in the top-right part of it —
statecharts of the currently selected class. Selected classes and statecharts
are given in blue. In the main portion of the window the state hierarchy with
transitions is shown, depicting our tape recorder in Fig.1.62. The bottom
portion of the main window is for error messages, refer to p. 217 for details.

In the state hierarchy, states are displayed with their corresponding
names and types (BASIC, AND, OR). For transitions, their labels in the

!Multiple statecharts for a class suggest that they have to be combined to form the
whole one. Since TestGen operates on individual statecharts only, the number of them in
a class does not matter to the tool.

2The state RECORD was renamed to RECORDS to avoid a conflict with a reserved
word.

210

CHAPTER 7. TOOL SUPPORT

(/A3d0L1s) uopysuen & o
ANT AV 1d Wene ays Aq paebBiui ag ued yoiym uonsuen e (/ANI~AY1d) uopsues & o
(/11740 " MmIY) uoisuen & o
{/A¥1d) UDlysuRs) & O
{/234) uoiysue) & ©
{(/ANI™dOLS) unjysues) & o
{(/ANI™dOLS) unjysues) & o
{/A¥1d) UDlysuRs) & O
Rbb1e INoylIM uonsuen e () uolsues) & o
(215va) A¥IdNOTYILSTTd IS O
(215v3) Sd01LSN\0TYALSATdWIS (I
{215vd) SAY0DIWNOTYIALSITd IS [
VUSRS PR RS AL dElSIleqe — = (U0)44 \MIYN0TYILSITdWIS O o
/ 9IS YO ue > (40)03YIL531dWIs O

AN

(HO) OIHILSId IS 2y zsioadalsa|dulls @ ajld

wal ad
LMo Uanse]

SSe|0 [p3109BS 8Uj1 UIL)IM SLeyoseIs Sessep do1Z

1eyosRIs e Jo Ayoresy al.s

SSe[o pa1dsfes Auelind

Figure 7.1: The main screen of the TestGen tool

CHAPTER 7. TOOL SUPPORT 211

form of trigger/action pairs are shown in braces. The blobs to the left of
states and transitions indicate that these items can be expanded to reveal
more information about them. For states we can see their substates and for
transitions — their source and target states.

If we consider a more complex statechart which contains some OR-states,
we might like to look at their substates as shown in Fig.7.2. An example

O SIMPLESTERED { OR)
® [SIMPLESTEREOM:REWN_FF{ OR)
O SIMPLESTEREOM:REW_FPuPy_ADYAMCE { BEASIC)
O SIMPLESTEREOM:REWS_FP:REWIND { EASIC)
O == transition (FF/)
@ =» transition (REW/)
@ =» transition (REW/)
D =» transition (FF/)
O SIMPLESTEREOM:RECORDS { BASIC)
O SIMPLESTEREOMSTOPS { BASIC)
O SIMPLESTEREOMPLAY (BASIC)
0 =3 transition (/)
D =» transition (PLAY/)

Figure 7.2: The expanded REW _FF state

of an expanded transition is given in Fig.7.3. It is possible to click on

O SIMPLESTEREO:RECORDS { EASIC)
O SIMPLESTEREONSTOPS (EASIC)
O SIMPLESTEREOW:PLAY { BASIC)

D =» transition (/)

=3 transition (PLAY/)

frnm:| SIMPLESTEREO\:REW_FF{ OR) |

@

to : | SIMPLESTEREOM:PLAY { BEASIC) |

@ =3 transition (STOP_END/)
=» transition (STOP_END/)
@ => transition (REC/)

o

Figure 7.3: Expanded transition

‘buttoned’ source and target states of a transition to navigate to them.

CHAPTER 7. TOOL SUPPORT 212

=
File | Test |

File: Generate test inputs
Test parameters

O SIMPLESTEREO { OR.)

@] SIMPLESTEREO:REW_FF { OR)
[SIMPLESTEREO:RECORDS { BASIC)
0 SIMPLESTEREOQ:STOPS { BASIC)
O SIMPLESTEREO:PLAY { BASIC)

@ = transition (/)

Figure 7.4: The ‘Test’ menu

Test case and test set generation

Test input generation is performed by selecting ‘Test Inputs’ either from the
‘Test” menu (Fig.7.4) or from the popup menu of the top-level state of a
statechart (the most top-left state on the state hierarchy diagram), with the
latter shown in Fig.7.5. The popup menu can be obtained via a click on a
state with the right mouse button. After that, the state becomes selected
with the black border around it and the menu appears.

One can choose ‘Test Cases’ in order to generate test cases for a state.
Although it is possible to do that for any of them, it makes most sense to
generate it for the top-level state of a statechart.

The sample result of test input generation is shown in Fig. 7.6. The cap-
tion of the window represents the kind of the set (‘Test Inputs’ in our case),
the name of the state for which the operation has been done is shown under
it (‘SIMPLESTEREQ’) with the test set or a set of test cases following.
Every line corresponds to a single test sequence. For a test input set, inputs
to be taken in a single step are given in curvy brackets ‘{’, ‘}’.

For test cases, transitions’ triggers are shown in brackets (Fig.7.7) and
those which should be invoked in the same step are separated by dashes.
A transition with an empty trigger '{ }’ is a default one. Test cases are
produced simply by multiplication and thus infeasible paths at the end of
sequences are not removed. Their removal during test data generation re-
sults in a reduction of the set of test sequences, note the different number
of the test cases in Fig. 7.7 and test inputs in Fig. 7.6.

When generating sets of test cases or inputs, we need to make an assump-

CHAPTER 7. TOOL SUPPORT 213

O SIMPLESTEREO L ne il
o [] SIMPLE merged test case hasis

[SIMPLE test case basis

[] SIMPLE Test Cases
] SIMPLE Test Inputs
= transiti Refinement
=3 transition (PLAY/)

= transition (STOP_END/) ignored in CW
= transition (STOP_END/)

=» transition (REC/)

= transition (PLAY/)

=>» transition (REW_OR_FF/)

= transition (PLAY_END/) ignored in CW
=3 transition (STOPEY/) ignored in CW

[0 5 O 5 0 0 5 B

Figure 7.5: Selection of ‘Test Inputs’ from the popup menu

tion about how many extra states our implementation could have, compared
to the number of states in the design (the size of the test set grows depend-
ing on the number of ‘loops’ in a statechart (Sect.4.2.3 on p.74), but no
faster than the size of the set of test cases). Selection of a difference m — n
can be either done through the ‘Test’” menu or by annotating the top-level
state of a statechart with refinement.

Refinement

An OR-state being refined means that the statechart within that state will
be tested separately from the one in the enclosing state. This allows us to
reduce the size of the set of test cases. Testing using refinement is possible
if a design and implementation were developed in parallel. It means that
at some stage we could have a statechart for the enclosing state and an
implementation of it. After that, we add a new statechart to the state we
wish to refine and make an appropriate change in the implementation. More
detail is given in Sect. 3.2.3 on p.52.

Refinement annotations are added by clicking with the right mouse but-
ton on a state and selecting ‘Refinement’ from the popup menu. Then, we
select the relevant box from a dialog (Fig.7.8). When having a substate
statechart tested separately, we could have a different assumption of the
number of extra states for it, compared with that for the enclosing state.
‘default refinement’ means the tool will take the value from the parent state
or any one above it with the assumed maximal number of extra states ex-
plicitly assigned. If no such state is found, the information provided in the

CHAPTER 7. TOOL SUPPORT 214

=| Test Inputs
[] SIMPLESTEREO { OR }
contains 64 sequences

T REC } [FF}

T REC } { STOFEW }

T REC }{ STOP_EMD} { FF }

T REC } { PLAY }

T PLAY } { FF}

T PLAY } [STOPEWVY] { FF}

T PLAY } { STOP_END }

T PLAY } [PLAY }

i FF 1

F STOPEW }
 STOP_END } —
t FF, REW_COR_FF } { FF}

T FF, REW_OR_FF} [STOFPEW }

i FF, REW_OR_FF }{ STOF_END} { FF }

T FF, REW_COR_FF}{ PLAY } { FF }

' REWY, REW_OR_FF1{FF}{FF}

I REWY, REW_OR_FF] { STOPEW }

' REWY, REW_OR_FF1{ STOP_END}{FF}
' REWY, REW_OR_FF}{ PLAY }1{ FF}

I REC }] REW]

I REC }{ PLAY _EMND)

T REC } { REW_OR_FF }

I REC }{ REC]

I REC 1 { STOP_END } { STOPEW }

I REC }{ STOP_END } { STOP_EMD }

r REC }{ STOP_EMD } { PLAY }

i

Figure 7.6: Sample sequences of test inputs

CHAPTER 7. TOOL SUPPORT 215

=| Test Cases
[0 SIMPLESTEREO { OR)
contains 152 sequences
}1{REC}{FF}{FF}

}11REC}{ 3TOPEW}{ FF}
}1REC}{ STOP_END} { FF}
}1REC}{ PLAY } { FF} o
}1PLAY }{FF}{FF} -
}{ PLAY }{ STOPEW} { FF}

} 1 PLAY } { STOP_END} { FF }

}{ PLAY }{ PLAY } { FF}

T1FFY{FF}

}15TOPEV Y FF}

11 8TOP_EMD} { FF}

}1 REW_OR_FF}-{FF}{FF}{FF}

}{ REW_OR_FF}-{FF}{ STOPEVW}{ FF}

11 REW_OR_FF}-{FF}{STOP_EMD}{ FF}

} 1 REW_OR_FF}-{FF}{PLAY }{ FF}

}1 REW_COR_FF}-{REW}{FF}{FF}

} 1 REW_OR_FF }-{ REW } { STOREW } { FF}
}{ REW_COR_FF}-{ REW }{ STOP_END} { FF}
11 REW_OR_FF }-{ REW } { FLAY } { FF }
}11REC}{FF}{STOPEVY}
}11REC}{FF}{STOP_END}
}1REC}{ FF}{ PLAY}

}11REC}{ REW]{FF}

}11REC}{ REW}{ STOPEY }
}{REC}{REW}{STOP_EMD}

11 REC }{ REW}{ PLAY }

1B

i
i
i
i
1
i
1
i
i
{
i
1
i
i
i
i
1
i
1
i
i
{
i
1
i
i

Figure 7.7: Sample test cases

CHAPTER 7. TOOL SUPPORT 216

‘testing parameters’ dialog is used.

o |OO SIMPLESTEREOM:REMWN_FF { OR), testing: Refinement, 1 states maximum Testing method: only state and transition cover|
1 SIMPLESTEREO\:RECORDS (BASIC) = =
— State refinemeant I
[SIMPLESTEREOMSTOPS (BASIC) . —

) no refinement

] SIMPLESTEREO%:PLAY ({ BASIC) 0Ok
o = transition (A i default refinement
s , . . i Cancel
o] 9 transition (PLAY/) = Refined with max. of extra states bheing [1
O = transition (STOP_END/) Testing method
@ => transition (STOP_END/) 1 default

O = transition (REC/)
O = transition (PLAY/) O

© =3 transition (REW_OR_FF/) @ only state and transition cover
O = transition (PLAY_END/) i only state cover

@ = transition (STOPEV/)

Figure 7.8: Refinement of an OR-state

The ‘Testing method’ element of the dialog allows us to select the testing
method to be utilised to test the statechart within the state. ‘full test’ is
the test method described in the thesis; only state and transition cover
means that we do not verify entered states, using the Eqn.2.2 on p.33
without W at the end and ‘state cover’ only visits all states. The last two
selections could be used to reduce the size of a test set, but no claim of correct
implementation can be made if they are used. Selection of the ‘default’
testing approach means usage of the method selected for the parent state
or the nearest state up in the state hierarchy, annotated with a particular
type of testing. If there is none, the one specified in the testing preferences
dialog (Fig. 7.13) is used.

The approach to testing AND-states is testing their expansion via state
and transition multiplication (Sect.3.3.1 on p.54). This results in a big
number of test cases; we could reduce it by making some assumptions. The
two of them, described in Sect.3.3.3 on p.57 and Sect. 3.3.4 on p.59, are
supported by the tool: usage of union of transitions instead of a multipli-
cation and separate testing of substates of an AND-state. The dialog to
select the appropriate assumption, shown in Fig. 7.9, is invoked similarly to
the one for refinement of OR-states, by selecting the ‘Multiplication param-
eters’ from the popup menu. Separate testing means strong refinement, if
it is not ticked, either no refinement can be selected (shown in the figure)
or the weak one. The latter can be chosen by removing the tick from the
‘multiply’ box.

There are some restrictions on the usage of annotations for AND-states
and refinement annotations for immediate substates of AND-states. Specifi-
cally, if the contents of an AND-state are tested as a multiplication of states
(i.e. weak or no refinement), refinement annotations of its OR substates
do not make sense. Consequently, the tool will not allow us to annotate
substates of an AND-state which is not marked for separate testing and if

CHAPTER 7. TOOL SUPPORT 217

O] FCT4{ OR)
o |O FCT4\STATEN_2 (AND)|
] FCT4%:51 (BASIC) *i AND—state

O =» transition (/) .
separate testin 0K
D =» transition (5/) I 9

¥l multiply transitions Cancel

Figure 7.9: Refinement of an AND-state

such marking is removed, substates’ annotations will be removed too.

Some transitions should not participate in the C' and W construction or
in testing at all, supporting Req. 1d (in which case they have to be assumed
correct). The tool allows us to mark these transitions to be ignored in the
two cases described. Annotation of transitions for that is performed via the
right mouse click on a transition (the transition will become selected and
get a black border drawn around it) and selection of a relevant element from
the popup menu. It is depicted in Fig. 7.10. If a transition is annotated in
such a way, all transitions with the same trigger and output will be ignored
in the same way (not at all, only for C and W construction or always).
Introduction of a user-defined trigger or output of a transition allows one
to define an input and/or an output to be used for testing as described in
Sect. 7.2.2 on p. 219.

@ = transition (STOP_END/) ignored in C,W

trigger/action

from: | SIMPLESTEREO:REWY_FF { OF .
view Latex

to : | SIMPLESTEREO\:STOPS { Basic| = included
® ignored in C,W

2 ignored always

© =% transition (STOP_END/)
© =3 transition (REC/)

Figure 7.10: An annotation of a transition

Error messages

Sometimes, a set of test cases or a test set cannot be generated. In such a
case, an error message pops up and the description of an error is added to
the bottom part of the main window. As an illustration, the error message
which occurs if some states are equivalent, is shown in Fig.7.11. The two
buttons with state names on them can be clicked which will result in relevant
states being highlighted in the state tree.

218

CHAPTER 7. TOOL SUPPORT

(21S¥8) AV1dAOTHILSTTAWIS | |

{215%8) SAHODIIHNOTHILSATd WIS

:sa)els Juajealnba sey ueyaayels

M) ul pauouBl (/AZ401S) uolysue] &
MD Ul paJouBl {/ANIAY1d) UDIHSURS) &=

M5l

(/14740 " MIY) UOINSURL] €=
{(/A¥1d) uoIyIsuen €

{(/234) uonsues) &

(/ONITdO1S) uolsues) €
“.m..:u:m {(A/ANI dOLS) UollsUed] ¢
{(/AV¥1d) uonisue.) &

(/) UDIYSUEL] €=

{215¥8) AY1d'\0IHILSITdWIS [T
(215v8) Sd015\0IHILSINdWIS [

(ST O I o B o R

[{21s¥3) S0¥023¥\0IHILSITd IS (]

(40)44 7\mAIWAN0TYILSITdIS O ©
{40) 0FYIL5IT1dWIS O

Figure 7.11: ‘some states are equivalent’ error message

CHAPTER 7. TOOL SUPPORT 219

The error above was produced by annotating transitions STOP_END,
PLAY END and STOPEV to be ignored and selecting ‘Test Cases’ for
the top-level state. Such an annotation results in all transitions labelled
STOP_END, PLAY_END and STOPEYV to be ignored, even if some of them

are not explicitly marked for that.

Transition triggers

In order to construct a test set, TestGen needs to know what input will
trigger which transition. Simple triggers can be extracted from a statechart,
if not, a user has to add them. Selection of ‘trigger/action’ from a popup
menu of a transition allows that. The dialog is given in Fig.7.12 with the
top line for a trigger and the bottom one — an action. An annotation will
be added to a transition containing user-selected trigger and an action; it is
afterwards displayed showing the original trigger/action and the one added
by a user. It is always possible to remove the pair added by clicking the
‘Original label’ button.

O = transition (STOP_END/) test input/output: transition (newtrigger/)|
@ =3 transition (REC/)
O = transition (PLAY/) -
@ = transition (REW_OR_FF/) Joeingger |

OK

© = transition (PLAY_END/) |

Cancel

@ = transition (STOPEV/) Original label

Figure 7.12: Selection of a trigger and an action for a transition

Main menu

In the top-left corner of the main window, just below the title bar, there are
a ‘File’ and ‘Test’ menus. We describe them in turn.

The ‘File’ menu allows us to save the ZIRP unit (corresponding to the
currently selected class (units consist of a number of process classes, possibly
containing multiple statecharts each), close one (after prompting a user to
save) or exit the tool. Names of units are not shown by the tool. Classes
corresponding to a modified unit are marked with ‘*’ to the left of their
names. For XML statecharts, a ZIRP unit containing one class with a
single statechart in it is saved.

The ‘Test’ menu contains two items, ‘Generate test inputs’ and ‘Test
parameters’ (Fig.7.4). The former allows us to generate test inputs. It
behaves the same way as the ‘Test inputs’ selection in the popup menu for
the root state of a statechart.

The number of extra states and the preferred testing method can be
defined by selecting ‘Test parameters’ from the ‘Test’ menu. The dialog
is shown in Fig.7.13 and is very similar to the refinement one (Sect.7.2.2

CHAPTER 7. TOOL SUPPORT 220

on p.213). Annotations in a statechart take precedence over the values

Testing parameters: _I

max. of extra states being oK
Output file name: cancel

=

Testing method
i full test (W)

1 only state and transition cover

) only state cover

Figure 7.13: Selection of parameters for testing

specified. An output file name can be provided using the dialog. In this
case, results of test set/test case generation will be recorded in the file rather
than displayed on the screen.

Upon exit or closure of a selected class, if there are any unsaved changes,
a user is prompted to save them. One can prevent an exit by clicking
‘Cancel’; an error during saving is followed by the same behaviour. When a
statechart is saved, a backup copy is created.

7.2.3 Design

This section describes the high-level design of the TestGen tool. We provide
the simplified class diagram for it and give brief descriptions of each of the
classes. Complete description is not included due to the size (the implemen-
tation contains 69 source files with 105 classes with more that 12000 lines of
Java) which would overwhelm the reader without providing a useful insight
into the structure of the tool. Full description also contains the Z design of
TestGen and algorithms used in test case generation (42 pages overall) and
documentation built from comments in the code (approximately 30% of the
overall number of lines are comments).

Development of the 7Z design of TestGen proved to be very useful. It
allowed us to take a high-level view and check its consistency with a type-
checker, which eliminated a number of would-be problems later on.

The simplified class hierarchy of the TestGen tool and class usage are
depicted in Fig. 7.14. Solid lines represent inheritance, dashed — usage and
dotted — implicit usage. Boxes drawn in bold represent classes and non-bold
ones — interfaces or abstract classes. ‘A statechart in ET’ is an abstraction
of a number of classes, not shown on the diagram. Classes shown above oth-
ers and connected with them, provide an appropriate service, for example,
xmachineTXT is derived from XMachine and uses both textTriggerAction

CHAPTER 7. TOOL SUPPORT 221

and textMatrix. Some classes have a few of their methods or an outline of
behaviour given next to them.
There are five main groups of classes, comprising the tool:

e General-purpose, such as error reporting (not shown on the diagram).
e Representation for statecharts and X-machines.

e Test case and set generation and representation.

From the diagram, it is clear that the classes comprising these two
groups of classes, can be divided into two groups: those dealing with
the textual representation of X-machines and statechart-related. The
latter use a more complex representation for events in consideration
for possible future incorporation of actual test data generation for
statecharts.

When the author’s Ph.D. work commenced, the tool stm_get was built,
implementing the X-machine testing method; a Windows user interface
has later been added to it. Stm_get was also translated into Java and
formed the basis of the testing method implemented in TestGen. The
textual part of the tool is essentially transformed stm_get; this part
was useful during the initial testing of the described tool.

e User interface (not shown on the diagram).
e Support for statecharts encoded in XML (not shown on the diagram).

In the following we use the typewriter font to indicate class or interface
names. The ‘abstract’ word in front of them means that either the class
is abstract, i.e. has some of its functionality not implemented, or is an
interface®. Either way, nothing abstract can be instantiated, i.e. an object
belonging to the abstract class or interface cannot be directly created.

General-purpose classes used by all parts of TestGen

General-purpose classes are classes which are used throughout the tool, such
as error reporting classes and the one used to facilitate observability of the
behaviour of the tool.

ET allows almost every element of it such as elements of statecharts to
be annotated. This is used in TestGen to mark transitions which should not
be included in C' and W or not used at all. In addition, states which are
refined are marked as such with related information.

3An interface in Java is a set of methods which a class conforming to the interface,
must provide functionality for. Such a class is said to implement the interface.

222

CHAPTER 7. TOOL SUPPORT

5 s indu | 1S9]1 9 Je Jauab
b mwabise 1 [T Joyos e sspeo

| s peulpI-HO'HO'ANY

INoIARURY BASINDSY

uomeoldninin
[1es3saLouwomux] . mo'e

I
I
I
I
I
! sindul<-suonsuel L
I
I
I
I
I

7 —
18S 1S8] 10 Huw>_ —CA._. 189S 1S3 10 108A

I
I
| —
I
I

9]e 1S8au IyoauX

FET W juaws |9

_x 11 1gNU0 :_mcm_.:um:wnm_ \\\\\\\\\\

m tmcumumuwm, mwumumuwm
s e suo |} Isue] 196
wo J4suo |} Isue] 106

W uaus [318s

SleISpalsINKeISqe

orISIdelse

—

Koua 1S 1SUOD23YD
uo I1e Jnu IS

uooyeBbLI 111

nd 1o 196

|
|
I_wnm.._ 19e 115qe
1966 111 106 !
| |
|
| WeLUOIIAUTIX)
|

|
JUaUUO J IAUT 9B J 1Sqe 7

Figure 7.14: The simplified class structure of the TestGen tool

CHAPTER 7. TOOL SUPPORT 223

Classes representing a statechart or an X-machine

This group of interfaces and classes contains classes representing fundamen-
tal data structures and methods used in the representation of statecharts,
X-machines and test set generation. We now focus on the main ones, de-
picted in Fig. 7.14.

abstractEnvironment The abstractEnvironment interface is an abstrac-
tion of the data of a statechart or memory of an X-machine as well as
input and output changes (Sect.6.1.2 on p.118). It is possible to say
that it reflects SPACE.

Although the tool does not operate with data, the design contains
provisions to accommodate it. This makes simulation of complete
statecharts possible with the purpose of generation of test outputs.

abstractState This interface encapsulates the notion of a state. It is a
generalisation of all possible states and connectors of statecharts and
X-machines. Every state has to have a name which could be empty or
null (no name assigned).

abstractVisitedState Thisis a state which can be visited, by invoking the
setVisited method of it and queried with the getVisited one. All
state-related classes used in statecharts and X-machines derive from
it because its functionality is used in test case construction.

abstractLabel The abstractLabel class encapsulates the concept of a la-
bel as used by the test case generation method. In terms of statecharts,
these are compound transitions constructed from parts separated by
connectors (ET removes OR-type connectors such as C but not AND
ones such as fork or joint). Default connectors are important for test
case generation and are not removed.

The Transition abstract class is derived from abstractLabel and
contains the following methods:

getTrigger takes DATA and returns a trigger which isa CHANGE
necessary to make to DATA to trigger the transition.

getOutput takes data : DATA, a trigger (possibly returned by
getTrigger) and returns an output corresponding to the trigger,
possibly updating the data. In terms of Chap. 6, it acts as

data’ = modify(andLABEL(modify(trigger, data)), data)

This relies on the fact that we assume that every transition has a
predefined test input and output, thus discarding of events which
are not generated (via event_discard) was not implemented in

CHAPTER 7. TOOL SUPPORT 224

TestGen; additionally, as we do not trigger conflicting transitions
(Prop.6.1.64 on p.154), there is no need to consider priorities
during simulation, consequently andA LL rather than execLABEL
was used in the construction of andLABFEL.

getSource,getTarget return sets of source and target states of
a transition.

This class can be subclassed to implement specific types of transitions,
such as the following:

transitions of X-machines This class, called textTriggerAction,
describes transitions with a single source and target states, a
textual trigger and an output.

individual transitions of statecharts The stateTransition class
makes possible usage of multiple source and target states, and a
reference to the representation of a trigger and an action in ET.
Such transitions are used in the stateMatrix class described be-
low. They are constructed from stateTransitions by removing
all connectors but default ones.

interlevel transitions of statecharts are represented by the
interlevelTransition class.

abstractTransitionMatrix This one is used to describe a transition ma-
trix of a state of a statechart, or that of an X-machine. The interface
allows user to retrieve the following information:

getTransitions returns a set of transitions in the matrix,

getTransitionsFrom returns a sequence of pairs
(abstractState, abstract Transition) for every transition which em-
anate from a given state,

getTransitionsTo returns a sequence of pairs
(abstractState, abstract Transition) for every transition entering a
given state.

The transition matrix is an abstraction of a transition structure. Main
classes implementing it are the following:

stateMatrix reflects the transition diagram of a statechart as ob-
tained from the ET framework.

statechartMatrix is the transition diagram of a statechart with all
connectors but default ones removed.

dataMatrix holds a transition diagram of an X-machine; it is sub-
classed to textMatrix such that the diagram can be loaded from
a text file.

CHAPTER 7. TOOL SUPPORT 225

The file uses stm_get file format where every line specifies a tran-
sition in the form

source_state_name target_state_name transition_name

Initial state is taken to be the first encountered one.

XMachine The XMachine class contains operations on the transition matrix
needed by an X-machine (represented by an instance of
abstractTransitionMatrix) and methods to verify its validity.

The purpose of this class is to give an X-machine appearance to a
transition matrix and aid with consistency checking and test case and
set generation. When an instance of XMachine is constructed, it is
supplied with a transition matrix and an initial state.

This class is subclassed to implement an X-machine with data being
read from a text file as well as a substate statechart of a state read from
ET framework. In the former case we have the xmachineTXT class and
in the latter — the xmachineState one.

Classes related to test case and set generation

Now we describe classes representing a set of test cases or a test set as well
as those used by TestGen to generate these sets.

TestSet is an interface. A class implementing it can represent a test set or
a set of test cases. Either of them can be viewed as a set of sequences. The
addTestSequence method provides a way to add a new sequence. When it
is invoked, the sequence will be added if it is not a prefix of any one already
in the set; if there is already a sequence being a prefix of the one to be
added, the existing sequence is replaced with the new one.

The VectorTestSet class is an implementation of the TestSet inter-
face which has a vector as an underlying storage mechanism for sequences.
VectorTestSetTXT class is an extension of VectorTestSet to support rep-
resentation of test data in the form of strings of text.

xmachineTestSet This class takes an XMachine and generates sets ¢, C
and W for it. It also provides a multiplication function and constructs a
set of test cases from a test case basis. If used with textual representation
of X-machines (class xmachineTXT), xmachineTestSet can also convert a
sequence of transition labels to inputs for any test case.

We subclass this class to implement the merging functionality for a test
case basis; such a class is called tcb. It allows construction of a set of test
cases for OR- and AND-states, including refined ones. Tracking the number
of extra states w.r.t. user selection (Fig. 7.8) is also the responsibility of tcb.

CHAPTER 7. TOOL SUPPORT 226

Finally, the xmachineTestSet class implements an exclusion of user-
selected transitions from testing (Fig. 7.10).

User interface

Statecharts loaded are drawn in a tree-like form for a user to inspect them
and possibly annotate states with refinements. Transitions can be annotated
with triggers and outputs, making them compliant with design for test;
marking some of them to be ignored during testing (Req. 1d) is possible too
(this could be done for shared transitions, refer to p.104 for details). The
comprehensive description of the interface is given in Sect. 7.2.2 on p. 209.

Swing user interface classes were chosen mainly for convenience of imple-
menting the tree-like view of data since standard Java classes do not include
this functionality.

The main class of TestGen’s browser is called browse. The browser
allows us to view a test case basis for a state (without consideration of its
substates), merged TCB and resulting sets of test cases and test inputs.

Command-line access to the functionality of the TestGen tool is provided
by the testgenMain class. It is useful for batch processing or testing of the
tool as well as when one does not wish to wait for the interface to load.

XML support

In Spring 1999 it became clear that the ET framework cannot be relied upon
to supply TestGen with statecharts since support for them in ET has been
effectively dropped at that time. For this reason, the author has developed
an approach to load XML-encoded statecharts into the tool. This represen-
tation was chosen because XML is a portable way to express information,
currently gaining acceptance for data exchange between tools and an ability
to import statecharts created by a number of them is considered important.

A standard representation of statecharts in XML is necessary to facili-
tate the possibilities of importing them and only one representation, which
is backed by industry, is available. It is called XMI and focuses at UML. For
this reason, a subset of it was chosen (description of which is not included
in the thesis) and implemented using IBM’s xm14j XML parser. As noted
above (Sect. 3.8.2 on p. 64), UML statecharts have a different semantics from
Statemate ones; TestGen simply treats them as if they were Statemate stat-
echarts.

7.2.4 Implementation

The tool is implemented in Java with Pizza extensions using Swing classes
for the interface. Java is the operating system- and hardware- independent
programming language developed by Sun Microsystems. Pizza extensions
were developed in the University of South Australia and add a number of

CHAPTER 7. TOOL SUPPORT 227

features of C++ and functional programming languages. These features
appealed to the developers of the ESPRESS tool set because Pizza allows
easy handling of the syntax of Z in Java. The author of the tool had to
use these extensions not only because it was necessary to access data ex-
posed by the toolset but also due to parametric polymorphism (the feature
similar to template classes in C++). This allows us to use parameterised
collections which only take instances of a specific class, eliminating a num-
ber of possible implementation errors. Swing is a collection of user interface
classes developed by Sun Microsystems. The collection makes it possible
to construct sophisticated user interfaces and in terms of features seems to
surpass many existing frameworks for a similar purpose. TestGen contains
12K lines of code in 69 files; 30% of code are comments, much of which can
be assembled together using the pizzadoc documentation program, to form
the description of all classes and methods of them.

7.2.5 Future improvements of the tool

The main limitations of the present version are that transition outputs are
not supported because the tool does not generate test outputs; every transi-
tion has to have a triggering input, being a single event. Test case and test
set generation take considerable time. Possible directions for improvement
of the tool are the following:

e At present, when changes have been made to a statechart with the
Statemate tool, all annotations have to be added anew. In future,
we might add a way to save them separately from a statechart and
re-apply after the statechart changes.

e Statemate allows us to associate attribute-value pairs with elements
of statecharts. Instead of adding refinement annotations in a separate
tool, we could use Statemate for that. Unfortunately, values of such
testing attributes may have non-trivial structure and it will be difficult
for a user to write them in a textual format, required by Statemate.
Integration of the interface of the TestGen tool with Statemate could
be done in future but is hindered by a serious lack of extensibility of
Statemate.

e At the moment, TestGen is supposed to retrieve statecharts from the
ET toolset and support for statecharts in the ET has been effectively
dropped from the beginning of 1999. It would then be a good idea
to make the tool read Statemate statecharts independently from the
framework. This also includes an extension of XMI support with OR-
connectors (only default and AND-type connectors are implemented
at the moment) as well as ensuring compatibility with existing im-
plementation of XMI, such as the one by IBM, which works with the
Rational Rose tool.

CHAPTER 7. TOOL SUPPORT 228

e The test tool could be extended with the possibility for a user to view
a list of ports and select those to be used for testing.

e Improvement of the support for default transitions. Here the following
limitations and faults to be corrected:

— The DE element of the test case basis is not implemented at
present.

— The present version of TestGen does not support default transi-
tions which are interlevel.

— The present version of TestGen adds default connectors to tran-
sitions entering states, during test data generation rather than
gathering them together as described on p.50. This approach is
possible if a label is not used on more than one transition entering
non-basic states.

— Only one default transition in a statechart can have an empty
trigger.

e Support for history, deep history and diagram connectors.

e Optimisation of the size of the set of test cases. This includes con-
struction of C' with every sequence in it of minimal length (Sect. 2.4.1
on p.42). W could also be optimised as described in Sect.2.4.2 on
p- 43.

e Enhancement of the simulation capabilities of the tool. Here two pos-
sibilities exist: usage of the Statemate tool for simulation, and re-
moval of limitations of the present simulator built as a part of TestGen
(p.223).

e Performance improvements, which may include rewriting parts of the
tool in C++.

e Extension of the tool with:

— addition of the transition tour method (Sect. 2.3.1 on p. 35) which
generates the smallest test set compared with other testing meth-
ods.

— generation of test sequences for an expanded statechart where
transitions are split into a number of parts, using results of the
category-partition method (Sect. 2.3.2 on p. 38).

— incorporation of handling of a different semantics of statecharts,
such as UML and Matlab/Simulink/Stateflow (the latter being

a subject of the continuation project between the University of
Sheffield and DaimlerChrysler).

Chapter 8

Case studies

In this chapter we show how the testing method developed can be applied
to three case studies. Each of them demonstrate certain properties of the
method, as outlined below

Speed This is a car control system where the speed of a vehicle is kept to
the value set by the driver unless the distance between his car and
the one in front falls below a certain threshold, at which moment the
speed is reduced.

The statechart is rather simple and ‘design for test’ properties are
satisfiable by an addition of a few testing inputs and outputs.

Air This is a part of an aircraft autopilot system.

The statechart is rather simple but the implementation contains a dif-
ferent set of transitions. Since the two sets of transitions are closely
related, the testing method tests the system to the extent it was speci-
fied. The case study demonstrates testing of systems somewhat outside
those allowed by testing requirements.

HI-FI This is a part of a hi-fi stereo system. It covers the overall control and
describes the tape subsystem in detail. The Z description of transitions
(40 pages) is not included in the thesis and design for test conditions
related to labels are not considered.

Statecharts of the model contain many states and transitions violat-
ing testing requirements such as transitions with timeouts in them
(App.B.3 on p.273). The case study also demonstrates how a choice
of refinement assumptions can reduce the size of a set of test cases by
many orders of magnitude.

The first two case studies are rather confidential and for this reason the
presentation of them was modified as to bear little resemblance to originals,
at the same time preserving all problems and leading to the same conclu-
sions.

229

CHAPTER 8. CASE STUDIES 230

8.1 Speed

8.1.1 Introduction

The Speed! system helps a driver to maintain a safe distance from a car in
front. When the distance falls to less than a predefined constant, it slows
the vehicle down; on a clear road the speed of movement can be set by a
driver. The statechart of the control part of Speed is presented in Fig.8.1.
init_speed and init_on labels do not have a trigger.

init_speed
*

OFF

sart | resume break or_stop
init_on J/. ON
tooclose
NORMAL LIMITING
U @ not_tooclose
plus minus

Figure 8.1: The Speed case study

The system can be activated (start or resume) and becomes inactive
upon driver command or his usage of a break pedal or the off switch. When
system is active, driver’s preferred speed of movement is set by transitions
plus and minus. If a car comes too close to the one in front of it, the
LIMITING state is entered, which limits the speed of travelling to that of
the vehicle in front. The difference between start and resume transitions is
that start sets the desired velocity to the current one of the car and resume
retains the value of it selected previously.

8.1.2 Test set generation

The case study has to be made compliant with requirements for testing;
only t_completeness and output-distinguishability are not satisfied. In order
to make Speed comply with them, a testing trigger and generation of a
testing event were added to every transition (in the thesis we do not provide
details as to why this was needed). Default ones were augmented with
an output rather than left without any due to our decision to augment

'Essentially the same system is described in [Sad98] under the name of Automatic
Cruise Control and in [GHD98], where it is called Cruise Control.

CHAPTER 8. CASE STUDIES 231

individual compound transitions of the full compound ones (Sect.4.1.3 on
p. 70). The result of augmentation is shown in Tab. 8.1.

‘ Transition ‘ Trigger ‘ Output ‘
init_speed none Outputin

start Trigger; Outputy

resume Triggers Outputy
brake_or_stop | Brake Outputy

imit_on none Outputy

plus Plus_button Outputy

minus Minus_button | Output;

tooclose Trigger; Outputprozimity
not_tooclose Trigger; Outputno_progimity

Table 8.1: Augmentation of the Speed system

The port with test input and output events is given below.

— Speed
PORT TESTPORT
Trigger,, Triggers : signal

Outputmit, Outputinit_on, Outputy,
OUtpUtpromimitya OUtpUtno_pmzimity : signal

INPUT Trigger;, Triggers

The test set consists of 27 sequences under assumption of no extra states
in an implementation. Consideration of the structure in the ON state as an
OR-state refinement (Sect. 3.2.3 on p.52) allows us to reduce this to 14.

8.1.3 Conclusion

The Speed case study is rather simple and was used in Oct 96 as the first
practical application of the X-machine testing method to a statechart. It
demonstrated that satisfiability of the design for test conditions is not hard
to achieve. OR-state refinement was shown to significantly reduce the size
of the test set.

CHAPTER 8. CASE STUDIES 232

8.2 Air

8.2.1 Introduction

The subject of this case study is an application of the testing method to a
part of an autopilot system using a high-level rather than detailed design of
it. In addition, its behaviour is real-time which adds some complications to
testing.

The part of the autopilot considered supports the following commands,

climb This command makes an airplane climb (increase the height of flight)
by a certain number of meters. Execution of this command causes the
plane to face slightly up, continue this way until it almost reaches
the desired height and then level (change its position into horizontal
again).

descent This command is similar to the climb one but causes a descent.

flaps on Deflects flaps in order to increase the lifting force on a plane.

flaps off Levels flaps such that they essentially do not affect the flight of
the plane.

terminate Stops the command in progress. This is only applicable to the
climb and descent commands and stops the execution by levelling the
plane at the current height.

abort Stops the command currently executing without making any further
changes to the controls. For the climb and descent commands it means
that if, for example, the plane was climbing, it would continue doing
that and it would be up to a pilot to level it. In case one of the flaps-
related commands were active, flaps will be left in the intermediate
position.

The operation currently being executed by the autopilot is indicated on the
cockpit instrument panel.

8.2.2 Design and implementation

The statecharts of the design and the corresponding implementation are
given in Fig.8.2 and Fig.8.3. The implementation statechart has been
reverse-engineered from the implementation code the author was supplied
with. The OFF state represents an idle autopilot; in the OPERATING one
it performs a given task. Two different ways to cancel an execution of a
given command, are provided by transitions terminate and abort, with the
latter having precedence over the former. The control of the plane over time
is split into multiple phases, represented by the do_operating, do_terminating
and do_aborting transitions. Phases are changed by the remaining ones.

CHAPTER 8. CASE STUDIES 233

.
-

OFF
command_complete L
termination_complete
command
OPERATING - TERMINATING
u terminate u
do_operating do_terminating
abort abort_complete
ABORTING
do_aborting

Figure 8.2: The design of the autopilot

From figures 8.2 and 8.3 it is clear that the implementation has different
labels for command, command_complete and terminate. Specifically, the first
two have been split into three, climb_descent, flaps_on and flaps_off and the
corresponding completion transitions. The behaviour of the terminate tran-
sition is such that it can only be taken if climbing or descent is in progress.
For this reason, it seems to be a good choice for it to be implemented as it
was from the CLIMB_DESCENT state.

8.2.3 Testing requirements and test data generation

Statecharts describing the behaviour of the autopilot are sufficiently simple
to satisfy most of the requirements of the design for test condition. The two
we have to focus at are t_completeness and output-distinguishability.

Since the set of labels of transitions implemented is different from the
designed one and some transitions are implemented with a different domain
than designed, making the system t_complete and output-distinguishable
assumes the following:

1. finding a correspondence between labels of the design and that of the
implementation. This is not an easy task in general because an imple-
mentation may combine labels of transitions, making it not amenable
to a direct application of the statechart testing method being de-
scribed. In such cases we could reverse-engineer an implementation
and model-check the behaviour of it w.r.t. a design or, simply, per-
form a partition-based testing of it. This area, though, is not covered

CHAPTER 8. CASE STUDIES 234

.

OPERATING
FLAPSON [T flaps on
flam .W
flaps_off
FLAPS OFF OFF

flaps_off complete

climb_descent_complete

termination_complete

1 climb_descent
CLIMB_DESCENT =_| TERMINATING
u terminate v
do_operating do_terminating
abort abort_complete
ABORTING
do_aborting

Figure 8.3: The implementation of the autopilot

in the thesis.

2. augmenting those labels, using the reverse-engineered implementation.
Reverse-engineering is unnecessary for systems build with testing in
mind. Unfortunately, in many cases implementations to test do not
implement transitions directly; instead, labels are optimised for the
intended behaviour. In such cases, we do need the code to determine
triggers and/or outputs of transitions.

During test case generation, we get sequences of labels to trigger. Gen-
erally, we do not have to consider them during design for test since we can
then always find appropriate test data. Often it means that for every tran-
sition we select the triggering input and an expected output in advance. In
practice, however, minimal amount of augmentation is preferred and thus
selection of test data could be attempted in such a way as to minimise the
number of testing events, considering every specific sequence of labels used
in the set of test cases. For instance, in this case study (Fig.8.2) we often
have to follow the sequence command terminate. The definition of the latter
is such that it will only occur if the command is climb or descent. For this
reason, it is better to use climb as a trigger for command as this would allow
usage of terminate as otherwise the terminate transition would have to be
augmented with the testing input in order for us to take it after command.
Note that it is only possible because command is the only transition which

CHAPTER 8. CASE STUDIES 235

sets the internal data on which the trigger of terminate depends.

With the proposed trigger for command, we have that implementation
is only tested to the extent it was designed, i.e. the FLAPS ON and
FLAPS_OFF states are not considered. This is not a limitation of the
described testing method but failure of the implementation to follow re-
quirements for the testing method. The method can nonetheless be applied
but the scope of the implementation it covers is limited. In principle, selec-
tion of different triggers for different sequences of labels or by execution of
every sequence with a different test data may allow us to test systems where
implementation splits transitions according to input received. For example,
we could try to convert test cases to test data using all of the flaps on,
flaps off, climb and descent as triggers for command. While increasing the
size of the test set, this would provide a more thorough testing for non-
compliant implementations. In case something is known about transitions
which can be split, we could try to utilise the method described in Sect. 2.3.2
on p.40. Here we designate a part of a split transition as a main one (like
climb_descent above) and test most of the transition structure using it. Af-
ter that, the rest gets tested. Unfortunately, the autopilot implementation
is such that some of the states (FLAPS_ON FLAPS_OFF) are unreachable
when limiting ourselves to main transitions. It could be possible to derive
some conditions allowing complete testing for such implementations; this
work is left for future.

All completion labels (command_complete, termination_complete and
abort_complete) are designed to occur after a specific time has elapsed. We
can either wait long enough such that if any of them may occur, it will
definitely do that or augment the tm function of the system, used to describe
timeouts, in order to have a direct control over those labels (described in
App.B.3 on p.273 and referred to from Sect.5.2.8 on p.97). Unless tm is
augmented, when triggering do_command, do_termination or do_abort, we
have to do that fast such that no completion transitions become triggered.

An alternative way to distinguish states can be based on the observa-
tion of dashboard lights because the current operation of the autopilot is
displayed there. Such observations do not require us to take any transitions,
for example, we can always tell if we are in the OPERATION state, and
using this OPERATION_LIGHT output, we can construct an optimised
characterisation set. Usage of status is further described in App.C.4 on
p- 282.

The considered system is operating in real time. For this reason, obser-
vations of input’s effect on control surfaces of an aircraft could be used to
distinguish states. For example, levelling and climbing require vastly differ-
ent movements of appropriate surfaces, helping us to tell the OPERATING
and TERMINATING apart. Here we have to observe behaviour over time,
since levelling due to termination is likely to be done faster than that in nor-
mal operation, i.e. when climbing or decent is complete. This can be done

CHAPTER 8. CASE STUDIES 236

by periodic sampling of the position of an appropriate surface and identify-
ing the trend in its movement. Usage of Fourier transformation could help
in this case; such state identification could be considered for future work.

The abort transition was implemented such that it will only occur when
any of the surfaces is deflected. This makes sense but is not, strictly
speaking, correct. Derivation of its real behaviour had to involve reverse-
engineering of the implementation.

While we did not have to add testing inputs to all transitions, test out-
puts had to be added since the system exhibits continuous operation and
reaction of it to test inputs has to identify transitions immediately while
transitions changing phases of behaviour make no output and those per-
forming deflection of surfaces do that rather slowly.

8.2.4 Conclusion

The test method developed for statecharts appeared to be applicable to a
reasonably realistic system. The implementation of the given one appeared
to be similar to the design, but sets of transition labels were different. These
differences could be divided into two groups, labels being split into a number
of using their inputs and labels implemented with different domains. The
former prevented testing of the whole of the transition structure of the im-
plementation but most of it was tested; for the latter it was impossible to
derive test data from the design itself and implementation had to be used
for that. In practical development of safety-critical systems, this would not
be a major problem as deviations from a design would likely to be docu-
mented and these details combined with the design are expected to permit
derivation of test data.

The case study has highlighted alternative approaches to state identifi-
cation. Specifically, usage of indicators to verify states without taking any
transitions was a new idea and inspired extensions of the testing method,
see App. C on p. 276 for details. In addition, capture of real-time movement
of control surfaces appeared to allow state distinguishing.

8.3 The model of the hi-fi stereo

Here the simplified model of a hi-fi tape deck will be presented which can be
viewed as a vastly extended version of that in Fig. 1.6. It will be used later
to show how its design can be used to generate a set of test cases, how it can
be modified to comply with testing requirements, and the effect different
refinement assumptions make on the size of the set of test cases.

The description is limited to the statecharts of the model since a Z design
of transitions is only necessary in order to verify the design for test condition.
Since applicability of this condition was illustrated by the case studies given

CHAPTER 8. CASE STUDIES 237

above, no work was done on this for the hi-fi. We also slightly simplified the
model by excluding static reactions.

8.3.1 Introduction

The prototype for the model is the author’s ATWA (TM)NSX-V50 hi-fi stereo.
The original can play compact discs, tapes, has an FM/MW /LW radio and
a sound input which could be used to amplify a TV, video or any other
external sound source. The stereo contains two tape decks both of which
are auto-reverse; the second of them (also called deck B) can be used for
recording. It has a smarter auto-reverse than the deck A. Specifically, it is
possible to select if it will change a side, stop or select deck A for a playback
when a tape has stopped. When listening to a tape, it is possible to skip a
song in both directions.

The control panel of the model is presented in Fig. 8.4. The main features
of the model are described below:

e Only tape decks and an auxiliary input are modelled. Tape decks
include almost all features of the original and the auxiliary input gen-
erates a saw-shaped signal. In the future we may consider expanding
the model with extra functionality.

e Karaoke button and microphone input as well as headphone output are
not included (simulating headphones will require us to switch speakers
off when the plug is inserted as well as filter out all low and high
frequencies of audio signal).

The model can be represented by a top-level data flow diagram shown
in Fig. 8.5 with the following elements:

CIRCUIT_TAPE_PLAY, CIRCUIT_TAPE_RECORD represent the two tape decks of
the model.

CIRCUIT_AUX represents an auxiliary input. In the model, it just produces
a saw-shaped signal.

STEREO_MAIN is the controller which manages the behaviour of the
stereo. This is essentially the core of the model. It receives commands
from a user, from different parts of the model and manages the tape.

238

CHAPTER 8. CASE STUDIES

Bnidun

g adey

ul bnid

anp piosar K D dos

ana Q O po xne
29y O

00T
06
08

\\\0 5
0L sy

09 (g OF

o

N

o
Q=

(TPt

o
[32]

v ade)
a1 1S
olpel adey
wd
we
=

yoeqAe|d

67 8T :T¢ L66T-100-€ @7

lud "0@u81s/11d : |sued

Figure 8.4: The control panel of the hi-fi

239

CHAPTER 8. CASE STUDIES

noL <>~

plil[ada)

<O

Dnwexw>moO

ad

M INOY

01 319vD

JOYLINOD O3

JOHLNOD AY

XNV LINDHID®

L1NdNIT XNV

4 37gvyo 3189v0 XN

1n0]

YELINNOD H3YIdvL
HIUNNOTF AVildAdNWL

LL)

HV1 1INDYID>Td1D d1D

ado23y IdVL LINDHID

»

dvl LI

Y

MOHIO>TH1D d1D

HdvjL AYd

HdV1 1IN2dI1D

JdddviL

Lno 318

« A 4 Y

NIVIN- O3431S®

IW3LSAS O3H3LS

VO OlafV AV1dadvl

379vo_0IaNy_03ady.L
31gvO OIaNy OIHIYL

6G ¥T:T¢ L661-100-€ :931ed (pa 1

J1pau) 8 :uo IsIaA ==Y

11w

Figure 8.5: The data-flow diagram of the model

CHAPTER 8. CASE STUDIES 240

The tape deck (CIRCUIT_TAPE)

The behaviour of the tape deck is represented by the statechart shown in
Fig.8.6. Circuit_tape is a generic statechart. We instantiate it twice
to represent a playback-only (circuit_tape play) and recording-capable
(CIRCUIT_TAPE_RECORD) decks. The physical tape is modelled as a big ar-
ray, to hold sides A and B in mono. It is hard to model a continuous tape,
thus we discreticise it with the sampling rate of AUDIOSAMPLINGFREQUENCY.
The higher the AUDIOSAMPLINGFREQUENCY, the more accurate the model is,
but it also takes more time to do the simulation.
The tape deck can be given the following commands:

tape._direction — which direction to play, tapedirection ff or
tapedirection rew.

tape_command — either of the following four commands: tapecommand move,
tapecommand_play, tapecommand _record, tapecommand_stop.

tape_headposition — which side to play, tapeside_a, tapeside_b.

tape_inserted — whether a tape is inserted or not; we assume that only
one tape cartridge may be used.

The following outputs are generated:
tape_counter — counter pulses.

tape_signal — the sound. It is used as an output during playback and as
an input during recording.

The notation used for transitions in the rest of this chapter is [trigger]|/action
rather than the one used elsewhere in the thesis. The difference is due to
the model being compatible with Statemate notation (refer to Sect. 8.3.5 on
p.260). For this reason all triggers are surrounded with square brackets.

An auxiliary input (CIRCUIT_AUX)

The statechart is shown in Fig. 8.7. The only transition with a label gener-
ates an appropriate signal. The guard of it is the preAUX _ACTION schema,
and AUX_ACTION is the action. We use a similar notation for many other
transitions of the model.

The controller (STEREO_MAIN)

The main statechart is the STEREO_MAIN statechart, shown in Fig. 8.8.
It contains a number of off-page statecharts, referred to by using ‘Q’ in front
of their names. For instance, STEREQO_TAPE, contained in the appropriate
state, is written as @STERFEQO_TAPE. Further, we would occasionally refer

241

CHAPTER 8. CASE STUDIES

Qo

[LIvM ™ONIddoLS |

ONIddO1S

3dV.1dO1S NOILOY/ [3dV1dOLS \NOLLOVe |

HONVYE31adIN 3dV.1dOLS / [HONvME3Taal

HONVYE1437 3dV.IdOLS / [HONVHE143T \3dV.dolsed |

9]

[doisano™g

HONVHELHOI 3dV1dOLS / [HONVHELHO I Sdw1dO1seud

DIHIJVL NOILLOV / [QHOO3HIdV.L \NOILOWe] AVId3dVLI NOILOV / [AVidadv.i advno]

[@yoozdano advno

QHOOTY 3dVL - AVd 3dVL

[AVIdano auvno

) .advNo | [3nowans advno]

[adoozuady

[doisawo aavno

Y3INNODILVHINIONOIHO NOILOV / [ONILYVIS auvNo]

E

[a343sNI3dvL advno

The statechart of the tape deck (CIRCUIT_TAPE)

Figure 8.6

CHAPTER 8. CASE STUDIES 242

CIRCUIT_AUX

[preAUX_ACTION] / AUX_ACTION

AUX_GEN >

Figure 8.7: An auxiliary input

to such statecharts as states. Some of the statecharts mentioned in Fig. 8.8
are not present in the model. They are shown to describe where they would
go if the complete model of the hi-fi stereo were built.

The state hierarchy tree is provided below with the help of indentation;
states mentioned are described later.

STEREQO_CD. This statechart is supposed to deal with playing a com-
pact disc but the functionality of it is absent.

STEREO_AUX (Fig.8.11). Auxiliary input amplifier.

STEREO_TAPE (Fig.8.15). The statechart responsible for most tape
deck operations.

PLAYING_TAPES (Fig.8.16). Controls tape playback and auto
reverse.

MUSIC_SENSOR_OPERATION (Fig.8.17). Provides music sen-
sor functionality. It allows one to rewind/fwd. advance a tape to
the next song.

STEREO_RADIQ. A radio receiver is absent in the model.

CD_CHANGE. This part of the model is expected to deal with chang-
ing a disc, i.e. opening/closing the tray and rotating it. It is absent
as well.

STEREO_TIMER(Fig.8.12). Advances a clock and allows to set it.

243

FONVHO 00® HYIWIL OISO

S3dV1 Hl08 SNONNILNOD 3a57319NIS
[300WA3Y NOLLNE GavNo]

_mn0§>mmwzot:mwmm<:w_K\ \ i

[olawd NOLLNE ayvNo]

[3dviNOLLNg a¥vNo | Olavi 0343150

XNV 03YILSD [3dvi Moling auyno |

[olavd NoLLNg auvNo]

—

YOLOINNOD O 0109

[xNv NoLLNg ¢

[ao™NoLLng advno |

SNOILYY3dO3dVL IAVAT/

o/' a0 03¥31S®

CHAPTER 8. CASE STUDIES

3dV1 OISO
ST Y [¥3amod NoLlLng ayvno |
i [¥3mod NOLLNE auvNo]
NOILYISNI 3dV.L 3Lvadn :
! Ee) /
T e m NI"a399N1d
NIONd/ ﬁz_o(ﬁyf ondNn/fontdnnend
SNIVW 240

Figure 8.8: The main statechart of the model (STEREO_MAIN)

CHAPTER 8. CASE STUDIES 244

CLOCK_SETTING_STATE(Fig.8.13). Responsible for clock set-
ting.

DISPLAY_TIME (Fig. 8.14). It is an auxiliary statechart used
to display time with possible blinking of an hour or a minute.

STEREO_MIXER(Fig.8.10). Performs volume control. In a complete
model it would also allow selection of a sound source and support an
equaliser.

TAPE_REC_ROT(Fig.8.9). Deals with tape rewinding/f. advancing,
dubbing and recording from an auxiliary input.

The STEREO_MAIN state contains states responsible for the model be-
ing plugged into the mains (the PLUGGED_IN state) and being switched
on (the ON state). While stereo is in the ON state, it can either be ready to
play tapes (STEREO_TAPE), discs (STEREO_CD), radio (STEREO_RADIO)
or just amplify a signal from an external source (STEREO_AUX). Each of
them is represented by a separate statechart. Additionally, the model han-
dles tape insertion/removal (state UPDATE_TAPE INSERTION). While
listening to radio, external signal or playing a compact disc, it is possible
to record the sound on a tape. Apart from recording, one can also per-
form a forward advance, a rewind or dubbing from tape to tape. Due to
tape operations being possible in STEREO_RADIO, STEREO_AUX and
STEREO_CD states, the TAPE_REC_ROT statechart (Fig.8.9) is concur-
rent to others in the ON state.

The tape reversal mode is selectable independently. It governs what
happens if a tape in deck B has reached the end of it during playback. Hi-fi
can either stop the playback, continue from a different side or switch to
another deck.

Discs can also be changed at any time thus the CD_CHANGE statechart
is concurrent to others in the PLUGGED_IN state too.

STEREO_MIXER (Fig.8.10) is supposed to update the information on
the equaliser display and perform the modifications of the audio signal with
respect to user equaliser settings as well as those for the volume and sur-
round. It is presently limited to volume control.

STEREOQO_TIMER deals with updating the system time and allowing it
and the alarm to be set; the statechart for it is shown in Fig. 8.12.

STERFEO_MIXER and STERFEO_AUX statecharts

We shall first consider the most simple of them, the AUDIO_MIXER, shown
in Fig. 8.10. It contains two states: MUTE and PLAYING. When the model
is switched on, it enters the MUTEFE state and after a short while — the
PLAYING one. The delay is used on the real system to prevent a click in
loudspeakers when the device is being turned on and is initially unstable. In

245

CHAPTER 8. CASE STUDIES

@NIMIHENAdOLS |

3LVAdN V1Va3dv.L

and qa

0110V / [ONISENAYOIANIMIY A3HSINIH advNO |

/ [and

H109 dOl1S 3dV./ [a3aHsSINHENa advno |

ANIMBYENALYVIS NOLLOY / [aNIM3dENaLyviS auvno |

H109 aNIM3Y

LV1S

H10g

.

,,ocmgﬂ

GNAWHON

7 14VIS/ (4

3AISOFYIDNVHO NOILOVY / [01avy a0 XNV O3 44 aNIadv.L]

[o1avy™ a0 XNV O34 M3y aNFadvy]

olava a0 XNV 03 3AV3T/ [31vIS\0Iavy \do \XNY

[and ¥aiNg]

[dO1S/ [3dV.L 03¥3IS NI dOLS a¥VND

7 3snvd

ISNVd O3 ¥3INT/ [ISNvd 03y WILNFid,]

AVI3a ;
Vﬂﬂwm\wkﬂtz_\ [3SNvd 034 aLVILINRM

7 QHOOFPEE ;

A T

I \XNV 034 \ogedd | (/o ONIQHOOIHES

INNS3Y 034/ [3INi i\ogueud |

olavy ad> Xnv -

NOILOV / [01avy @D XNy 03y ¥31INI auvno]

S3dV.IHIOE LHOI 1a 135/

3701 3dvL

{04 TR ad _ - ——
FAMIY O VAT / [4AMIN MO \FuVdudeid] HLOT OIS 3dVL / [A3ddOLS SYM =May |

EEY|

Q31S3N03Y FHMIYWOHS AV / [A31S3NOIY WIMEINOES \AVTdeud |

M3 LAVIS/ [M3 LY. .
LHO OMId L3S /

EEQVER]

| p—————

104 034 3dV L

The statechart describing operations on a tape which could be

Figure 8.9

done concurrently with listening to radio, CD or auxiliary input

CHAPTER 8. CASE STUDIES 246

STEREO_MIXER

i/ DO_MUTE

MUTE

[preEXIT\ MUTE] / EX|IT_MUTE

PLAYING

Figure 8.10: The mixer

the PLAYING state the statechart takes the audio_signal and generates
audio_output depending on the volume. This behaviour is expressed by a
static reaction not shown on the figure.

The statechart STEREO_AUX (Fig.8.11), which is responsible for am-
plifying an external signal, actually passes the input a saw-shaped signal
from CIRCUIT_AUX to the model, which can be recorded on a tape as well as

listened to.
Y_ww
[preDO_AUX] / DO_AUX
AUX

STATE_STEREO_AUX

Figure 8.11: An auxiliary input part of the stereo

STEREO_TIMER

The statechart is shown in Fig.8.12. It is responsible for clock increment,

CHAPTER 8. CASE STUDIES 247

T~

STEREO_TIMER

.

@CLOCK_SETTING_STATE

Figure 8.12: The timer

performed within a static reaction. The CLOCK_SETTING_STATE state
displays and allows to modify the time. It is shown in Fig. 8.13.

We have to consider displaying time when the stereo is off (in the OFF
state) and when it is on. When off, time should be shown with reduced
brightness (state DISPLAY_TIME_WHEN_OFF); when on, it should usu-
ally not be displayed (state DISPLAY_NOTHING). Upon request (the spe-
cial clock button on a remote control) time should appear (the DISPLAY_TIME
state).

While time is displayed, clock alteration mode is entered by a depress
of the set button and then time changed with << and >> to set an hour
followed by set and similarly for a minute. The stop button selects 12/24
hour clock.

In clock alteration mode, an hour or a minute blinks. This and time in-
dication are encapsulated in the DISPLAY_TIME generic statechart, shown
in Fig.8.14. This statechart contains a single state with a static reaction
performing the task.

Tape operations (STEREO_TAPE)

This is the most elaborate and complicated part of the model. The tape
controller is modelled to a rather high level of detail including the mu-
sic sensor operation. Its main functionality is located in the following two
statecharts, STEREO_TAPE, shown in Fig.8.15 and PLAYING_TAPES —
Fig.8.16 (diagram connectors are numbered and drawn as ovals). The former
contains the IDLE state and those corresponding to manual tape dubbing
(TAPE_DUB) and erasing (REC). The tape erasing state is called REC be-
cause in the real stereo it deals with recording from microphone. As one is
absent from the hi-fi model, a tape is just erased. Automatic tape dubbing
is supported in the TAPE_RFEC_ROT statechart, Fig. 8.9, in the DUB state.

248

440 NIHM IWIL AVIdSIa

[3d0 ur]

ONIHLON AVdSIA

a ¥v3o/ (3w

[EEON!]]

[4507u]
I AV IdSIqun |

[4407urMou]

a ¥va10/ [440 uiou]

[0070 NoLLNE [AdvN9]

AVESIA ¥VATO [[IWIL AV IdSIqun |

JIWILAVIESIA

[NoLLng |13]

[3LNNIN advmOvE] A

HNOH QYVYMMOVE / [HNOH \advMMOveed] A

YNOH FONVAQY/ [¥NOH FONVAaved] A

[3LNNIN QdvMmyO4 | A

11910 LHOI™ INIL

[NOLLNg 135] »

11910 1437 3INIL

Y0010 ONILLIS

™

CHAPTER 8. CASE STUDIES

J1VIS ONILIIS MO010

Figure 8.13: The statechart allowing to display and modify the current time

CHAPTER 8. CASE STUDIES 249

'\

DISPLAY_TIME

Figure 8.14: The generic statechart which displays time

The PLAYING_STATES statechart is responsible for playing tapes. It
contains two states PLAY_1 and PLAY_2, representing a tape being played
in the first and second decks respectively. When a tape has stopped not due
to user action, it can decide to reverse it or switch to another deck. The
state without a name is an intermediate one. It deals with the fact that
switching to another tape requires a change in tape_select variable (which
holds the number of the currently active tape) and initialisation of the new
tape drive, to side A forward direction. The process of switching is thus
two-step. We first change the value of tape_select and then supply new
parameters to the current deck. Since within every step values of variables
are as at the beginning of a step and we wish to modify tape_select and
perform operations based on its new value, a new step has to be started and
the unnamed state is just for that.

Following [Har87] we use history connectors to express loopback transi-
tions (i.e. those leaving and then entering the same state), present in every
substate of a state. It means we have them leaving every substate (such as
PLAY_1 and PLAY_2), do something (say, change a side) and then return
to the state left via a history connector.

The state DUB of TAPE_REC_ROT (Fig. 8.9 on p. 245) controls the au-
tomatic dubbing of the whole tape. It starts with rewinding both tapes to
the beginning (state REWIND_BOTH) and then does the recording (state
NORMDURB). If the model of a tape drive were supporting high-speed play-
back/recording, HIDUB state would be included. The NORMDUB state is
placed as a substate. This is necessary to express that stopping of a tape is
of a higher priority than recording.

The REW_FF state deals with tape rewind/fwd. advance. As stated be-
fore, its behaviour can be executed in parallel to STEREO_RADIO, STEREO_CD,
STEREO_AUX and STEREO_TAPE. We could start rewinding and switch
to listen to something other than a tape or we may try to rewind in order
to skip the current song. In the latter case the musical sensor mechanism
comes into play.

The music sensor is described in the MUSIC_.SENSOR_OPERATION
statechart, shown in Fig. 8.17. If invoked when there is no music, the pause
is skipped first. When music begins, we wait for it to finish. Such waiting
is accomplished via timeouts: if we are in the WP_NOSIGNAL state for a
while, it means that there is no signal for that period of time. Thus the time-

250

CHAPTER 8. CASE STUDIES

LIX3. WVHOVIa

[doSNas oSN dols |

NOILYYH3dO HOSNIS DISNIND

["OoSNaS OISNIN LAVIS]

31al
3dVL HOLIMS / [3dV.I\HOLIMSad

SNOILVH3dO3dVL LINI/

440 01anv / — — — —
7 [AVId NOLLNE ayvN9]

3dVION AVId/ [3dVION AV
/ [ONIQH0034dOlS]

[9ONI40034 OIN[doLS]

o3
[ZIS"3ONVHO / [3AISFONVHO QHO03HOIN | A

ONIQHOD3Y LHVIS/ [ONIQH003Y \Ldv1seid |

[03¥3dv.LI 01091

aNAaTVNNYIW do1S / [8naTyNNYI \dolsaud |

[MovEAvid 0109]

JAOW ON

ﬂ

ana VANV 0d/ [8na \TyNNYIW \0ge.d]

ana advi

T~

ENATYNNYWLHVIS NOILOV / [8NdTVNNVNLYYIS ayvNo]

[AV1d3dVL OIO!

1

S3dVL ONIAV D

T. AVHOVIa

¥ WYHOVIQ <. WvaovId £.WYHOVIQ

The STEREO_TAPE statechart

Figure 8.15

251

CHAPTER 8. CASE STUDIES

Z.NvEOVId >

14V
/[3as™39NY
pUe IN3AT 30|

S3dVL ONIAVId

ZHOVEAYd LHVIS/ [ZMOVEAYTd \dvised |

[@aHSINII 030034 4314V dO1S advno |

[@3143SNI"S3dVL H1O8 1ON QdvND

O3 € MOVEAVd 18IS
1 [o3d e \MOvEAYId \Ldvised |

®

_ AVd € YOVEAVd 18VIS
_ 3015T3ONVHO 1 LAV € DVOVEAYd \Livised |

/ [3a1I5739NVHO 0L 0
pue Avid NOLLNG advno |

B dO1S 3dVL
1 [dols™NoLLNg a¥vNo]

TYNNYIW 3dVL HOLIMS
1 LA NoLLNg auvno |

IS"IONVHO
HO 01730
ISTONVHO]

pa—

[AV 3dVL LINI]

MO3A”AVId OL HOLIMS MO3A AV OL HOLIMS
1 [%03a\Av1d 0L \HOLIMSR] / [030\AVd \OL \HOLIMSRd]

T AV

AV S— Q)
[dO1s ™03 3dvL]

[dO1S AVid 3dvL]

I. WVHOVIa

Figure 8.16: The PLAYING_TAPES statechart

252

CHAPTER 8. CASE STUDIES

QYVaH

TONIHIIWOS i 3SH3ATY / [QHvaH SIN9)

13W0os WiN\3syaATweud]

TYNOIS HOH LIVM

[@yvaH SI"aNNOS pug TYNDIS ON ¥O a3LIvVM]

[>ove oo oL a3

[Moveg

TYNDISSM

[@dvaH LON SI"annos]

3SNVd ONidd IS

[ayvaH si"annos]

TYNDIS ON SM

[@dvaH LON'S ,\n_z:oMJ/-

[Q¥V3H SI"ANNOS PUe TYNDIS Yod a3Livm |

TYNOIS ON dM

[ayvaH sirannos]

SNV HO4 ONILIVM

[advaH 1oN'si"annos |

TYNDIS dM

Emﬁxwwﬂaz:Om_//l

NOILVY3dO HOSNIS OISNIN ILYIS

NOT3AOW]

T T N B—

LIX3. WvHOvId

[M3y B4~ a31sAN03 |

>

—

[oveLigy 3A0W]

Figure 8.17: The music sensor

CHAPTER 8. CASE STUDIES 253

out occurs and we enter the WAIT_FOR_SIGNAL state where we are waiting
for another song to begin. After it happens, it may be necessary to rewind
back, as expressed by states GO_BACK_A_BIT and GO_LONG_BACK. The
appropriate one is chosen based on the current side and direction of music
searching.

8.3.2 Testing requirements

Since different components of the overall system (Fig.8.5) are indepen-
dent, they can be tested separately. The case study focuses at the stereo
controller since it contains almost all statecharts the hi-fi consists of, at
least those with a nontrivial behaviour.

In this section we consider structural requirements the model has to
satisfy. Many of them appeared not to be satisfied by the hi-fi. The revealed
inconsistencies between its design and testing requirements were picked by
the TestGen tool.

The following transformations of the model were performed to make it
follow the testing requirements:

e All C connectors in the model were removed and equivalent compound
transitions constructed.

o States STEREO_CD and STEREO_AUX appeared to be behaviourally-
equivalent since we only observe output from transitions rather than
some indicator telling us which state we are it. On a real device, a dis-
play “tape radio aux cd” in Fig. 8.4 will indicate the major mode. Such
indication we call status and consider using it for state identification
in App. C.4 on p. 282.

For the model, the transition between STEREO_CD and STEREO_TAPE
was removed and a status loop transition added to STEREQO_TAPE
to prevent it becoming equivalent to STEREO_CD. Extension of the
tool to support status could be considered for future work.

e Loopback transitions were added to states SINGLE_SIDE and CON-
TINUOQUS to distinguish between them. Status would be useful in
this case too since the state is displayed on the panel as well.

e State ON in Fig. 8.8 is unreachable without taking an interlevel transi-
tion from OFF because the [GUARD_BUTTON_POWER)] transition
enters a history connector. This connector was removed and transition
expanded into four separate transitions, each entering the respective
state.

Similar problem occurs in Fig. 8.16 where the PLAY state is unreach-
able without usage of interlevel transitions. Here the cause is that
this state was introduced to conceptually group states PLAY_1 and

CHAPTER 8. CASE STUDIES 254

PLAY_2, rather than to express a hierarchy (this is called ‘abbrevi-
ation’ in [Sim00]). To remedy this problem, a transition from the
unnamed state at the top of the IDLE one in Fig.8.15, to PLAY_1
was introduced.

e In states shown in Fig.8.9 and Fig. 8.16, a history connector was re-
placed by a number of transitions (this connector did not introduce
unreachable states, though). No testing of history connectors, de-
scribed in Sect. 3.5 on p. 60, was done.

e Labels of loopback transitions leaving states NORMDUB, stateRE-
CORD (Fig.8.9) and TAPE_DUB (Fig.8.8) correspond to the tape
recorder recording data; these transitions are taken once in a while
and with each invocation a fixed chunk of data gets recorded. The
loopback transitions appeared to be shared because timeouts on all
of them were the same and were for this reason changed to become
different. When testing these transitions, we assume that we can trig-
ger timeouts as if they were ordinary events, utilising the approach
described in App.B.3.2 on p. 275.

An alternative approach would be to augment these transitions such
that during testing they are triggered by a different input depending
on a state they are used in. This approach is described in Sect. 5.2.4
on p. 89.

Similar problem with shared transitions occurred in the statechart
in Fig.8.17, where the output from a tape is compared with zero
in SOUND_IS_HEARD and SOUND_IS_NOT_HEARD transitions.
Consequently, multiple different ‘zero’ constants were introduced. The
new zero variables could be chosen sufficiently close to zero such as not
to affect the behaviour not under test. This approach to augmentation
is outlined in App.B.2 on p.273.

o In the statechart shown in Fig. 8.13, transitions labelled button_set are
shared. For this reason, the one from SETTING_CLOCK state was
renamed to button_setl.

e Substates TIME_LEFT_DIGIT and TIME_RIGHT_DIGIT are instan-
tiations of generic statecharts and in accordance with Sect. 3.6 on p. 61
are tested as an OR-state refinement.

e In the statechart in Fig. 8.17, transitions to enter WAITIING_FOR_PAUSE
and SKIPPING_PAUSE states have no trigger; the one to fire is deter-
mined by triggers on default transitions in the corresponding states.
The method considers such a statechart as nondeterministic since the
only thing visible without looking inside the two states is the default
connector with two transitions leaving it. For this reason, the inner

CHAPTER 8. CASE STUDIES 255

transitions have been moved to start from the default connector of
state STATE MUSIC_.SENSOR_OPERATION.

Since the above change caused the newly-constructed default transi-
tions to be defined the same way as SOUND_IS_HEARD and
SOUND_IS_NOT_HEARD, more different ‘zero’ constants were intro-
duced.

e In the statechart in Fig.8.17, many interlevel transitions are used.
This causes the state WAIT_FOR_SIGNAL to become unreachable and
states GO_BACK_A_BIT and GO_-LONG_BACK to be indistinguish-
able using non-interlevel transitions. In the former case, transition
was modified to start at the border of the WAITING_.FOR_PAUSE
state. In the latter one, a new state, called RETURNED_BACK, was
introduced, to which the considered GO_ transitions were leading and
from that state — a new transition to the Diagram‘EXIT’ diagram
connector.

e Numerous shared transitions not considered above were eliminated by
prefixing transition labels with their scope state.

Some shared transitions were diagnosed by the tool incorrectly, such
as default transitions without labels. This problem with TestGen is
expected to be corrected in future (Sect. 7.2.5 on p.227).

e The statechart in Fig. 8.6 has multiple termination connectors in use.
These connectors could potentially be treated as the same state. Then
the transition from the default connector of the main operational state
(entered by [GUARD_STARTING]|/
ACTION_.CHECKGENERATECOUNTER) to the termination one leaves
its enclosing state. Such behaviour of default transitions is prohibited
by testing requirements. In our case, the best solution is to remove
this transition since it does not make much sense because the con-
sidered statechart can be always terminated by a transition to the
termination state, such as [GUARD_CMDSTOP], with a priority over
any transition inside the main operational one.

With the described changes, the hi-fi system complies with structural
requirements of the testing method. Had it been built without history con-
nectors, the work would have been easier. In addition, usage of OR-states
in order to group related functionality rather than to introduce a hierarchy
was causing problems in statecharts depicted in Fig. 8.16 and Fig.8.17. Such
OR-states can be flattened. As indicated above, usage of status information
would help us distinguish states without introducing changes to the model.
Finally, transitions with timeouts on them should be built to behave dif-
ferently during testing but almost identically after it is finished (this also

CHAPTER 8. CASE STUDIES 256

means that they should not be i_same — Sect.5.3 on p.102). During the
design stage, one might also consider not introducing shared transitions.

8.3.3 Test case generation

Here we focus at test case basis generation for the stereo controller and
estimation of the size of the set of test cases. The statechart itself contains
105 states and 136 transitions. The number for states was arrived at by
counting all OR~, AND-, basic states and default connectors; all compound
transitions were counted.

We note that usage of DE is almost irrelevant for the case study since
it is only necessary if there is more than one transition with the same label
entering any state or more than one default transition in any state. In our
case DE is not a singleton in only one state,
STATE_MUSIC_SENSOR_OPERATION, and while taking it into account
would introduce extra complexity, the effect on the size of the set of test
cases is negligible (there are not many transitions entering the state
STATE_MUSIC_SENSOR_OPERATION compared with the overall number
of transitions).

The Tab. 8.2, provided for reference, gives the state hierarchy of the
considered statechart (stereo controller), to the extent it was defined.
In our case the tree looks rather like a sequence.

‘ state ‘ type ‘
top-level state OR
PLUGGED_IN AND
MAIN OR
ON AND
MODE OR
STEREO_TAPE | AND

Table 8.2: The state hierarchy of the controller

It is possible to make different assumptions about refinements of AND
states. Results are shown in Tab.8.3. They were computed from @, C,
W provided by the tool for every state since TestGen took too much time
computing multiplications necessary in test case basis construction. This
deficiency of it is expected to be addressed in future.

The table shows the estimate size of the set of test cases, for three differ-
ent types of testing of all concurrent states; all OR-states are tested without
an expectation of refinement.

CHAPTER 8. CASE STUDIES 257

‘ Type of testing for all AND-states ‘ test case set size ‘
Multiplication of states and transitions 329000M
Multiplication of states and Union of transitions 42M
Separate testing of every concurrent state 3.18K

Table 8.3: Hi-fi estimate test case set sizes for different refinement assump-
tions

The following abbreviations are used:
M means ‘million’, i.e. 329000M means 3.29 % 10'".
K is ‘thousand’, i.e. 3.18K is 3180.

Mult means that we generate test cases using multiplication of states and
transitions (Sect. 3.3.1 on p. 54).

Union multiplication of states and union of transitions is used (weak re-
finement, Sect. 3.3.3 on p.57).

Separate we test every substate of the given state separately from the rest
of the statechart (strong refinement, Sect.3.2.3 on p. 52).

It is clear that testing without usage of refinement assumptions can easily
create an unmanageable test set, just compare 329000M with 41M which
uses a weak refinement assumption. Separate testing, on the other hand,
may require too many assumptions to be made; at the same time the amount
of testing is negligible.

Consider the state STEREO_TAPE separately (i.e., forgetting about all
states not underneath it). The Tab. 8.4 reflects how the size of the set of

‘ type of refinement ‘ test case size ‘

Mult 326K
Union 35K
Separate 2.1K

Table 8.4: Test case sizes for different types of refinement of state
STEREO_TAPE

test cases for the state changes with an assumption of weak and strong
refinement. Since the state has much less states and transitions than the
whole statechart, the reduction due to refinement is a lot less than that for
the whole controller (in both absolute and relative terms).

In Tab. 8.5 we provide estimate sizes of the set of test cases for testing
of the considered statechart using separate testing of only specific states.

CHAPTER 8. CASE STUDIES 258

UniSep means that we consider a given AND-state separately (as in OR-

‘ state ‘ refinement type ‘ test case number ‘
No refinement 42M
top-level Separate 39M
PLUGGED_N UniSep 39M
PLUGGED_IN Separate 5.7TM
MAIN Separate 5."TM
ON UniSep 5.1M
ON Separate 58K
MODE Separate 63K
STEREO_TAPE UniSep 1M
STEREO_TAPE Separate 1M

Table 8.5: Separate testing of different states (all AND-states are tested
using weak refinement)

state refinement testing) but test it using multiplication of states and union
of transitions. This can only be applied to AND-states.

‘ state ‘ type ‘ test case size ‘
top-level OR | 42M
PLUGGED_IN AND | 39M
MAIN OR | 5.7TM
ON AND | 5.1M
MODE OR | 57K
STEREO_TAPE | AND | 35K

Table 8.6: State hierarchy and the number of test cases depending on the
level in it

From formulas giving test case sizes, it is clear that the size of the set
of test cases monotonically grows when numbers of states and transitions
grow. Merging rules are such that those numbers never decrease as a result of
merging (unless we consider prefix removal), which gives a monotonic growth
of the size of the set of test cases, on the number of levels of state hierarchy
it spans. Tab. 8.5 shows that introduction of separate testing at a high level
does not eliminate the high size of the set since there are many levels below
it; the same occurs at the bottom, where when we test STEREO_TAPE
separately, the reduction is insignificant. It also appears that there is a
point in the middle of the hierarchy, such that separate testing used there
allows to cut the size down by 3 orders of magnitude in our case.

Let us compare the Tab.8.5 with Tab. 8.6 which provides the size of

CHAPTER 8. CASE STUDIES 259

the set of test cases at each level in the state hierarchy (AND-states are
tested with weak refinement). From Tab. 8.6 we can see that the ON state
causes a growth of almost 2 orders of magnitude while in all other cases it
is 1 order or less. This correspond to the point described above, where the
introduction of separate testing allows us to reduce the size of the set of test
cases dramatically.

From these observations it is possible therefore to think that using the
separate testing for states which contribute most to the size of test set seems
to be the most appropriate strategy. Such states can be determined by com-
paring sizes of the set of test cases for different AND-states, as we did above.
Such refinement could be put into practice by splitting the functionality of
the system under development into a number of approximately equally com-
plex parts, developing and testing them separately. Each of such parts could
be split in turn.

Having removed a lot of complexity associated with testing state ON
via state multiplication, we could consider further reduction in the size of it.
Consider, for instance, the STEREO_TAPE state contributing 35K of test
cases alone v.s. 58K for testing only the ON state separately. By testing
both states separately, we get the number of test cases down to 4.6K which
is rather close to that for completely separate testing (3.2K). This is a result
of splitting the system once in the ON state and then one of the parts once
again in the STERE_TAPE state.

Another observation from Tab. 8.5 is that for states where one substate
contributes much to the size of the set of test cases and others — hardly
anything, separate testing of such a substate does not change the size of the
set of test cases noticeably. Examples of such states include the top-level
state of the controller statechart.

8.3.4 Conclusion

The described case study provided an application of the testing method to
the model which was developed in an attempt to produce a realistic example
of a design, with many features used as well as many states and transitions.
This was supposed to be the scalability test for the method under develop-
ment since the other considered case studies lack anywhere complex state-
transition diagrams. The results were quite encouraging: although the size
of the set of test cases is rather big without refinement assumptions, making
use of refinement can reduce it by many orders of magnitude. This also
enables the method to be used in environments with different requirements
for reliability of software. On one hand, we can assume refinements at al-
most any level and make a small test set, on another one, little number of
assumptions gives rise to a huge test set; by choosing right ones, we can
balance testing complexity and the amount of assumptions.

The case study has exhibited non-conformance with a variety of testing

CHAPTER 8. CASE STUDIES 260

requirements and had to be modified to make the testing method applicable
to it. This allowed us to illustrate various approaches to making designs
comply with the requirements, which were described theoretically in Chap. 5
on p.79.

The TestGen test tool appeared to be extremely slow even at generation
of the test case basis for the case study. For example, it took 84 minutes on
a SUN Ultra-2 workstation to compute the merged test case basis for the
ON state under assumption of usage of multiplication of states and union
of transitions; it was expected to take many hours to do that for the whole
model. In future the performance of the tool will be improved.

8.3.5 Tools developed to facilitate the work

When the case study was under development, the ET toolkit supporting
execution of a subset of Z, was not available. In order to validate the model
against the author’s perception of what it should do as well as the hi-fi user
manual and the actual device, the model was built and simulated in pure
Statemate statecharts. Transitions of it were later converted to Z. In order
to provide for a possibility of changes of the model and eliminate the need to
re-convert the whole thing due to changes, the tool tomsz was built. It takes
Statemate statecharts and a file listing Statemate definitions of transitions
with corresponding uSZ equivalents and does the substitution. This is the
way statecharts presented in this chapter were generated.

Usually, visualisation of statecharts can be done using the Statemate
tool, but since the author had to run it in a different university department
and the license was expiring periodically with lengthy delays on renewal
(if at all), an alternative solution was developed. This program is called
hello.java and displays and randomly simulates a subset of statecharts. The
drawing part of it was ported to the Perl language and statecharts of the
hi-fi case study were converted from Statemate files using it.

By the time the case study was done, the ESPRESS framework still
lacked a version of the tool capable of converting statecharts of the hi-fi to the
ZIRP format understood by the tool, consequently, the author implemented
an extension to TestGen capable of understanding a subset of statecharts
encoded in XML (for more details, refer to Sect.7.2.3 on p.226). The hi-fi
model was then converted to the considered format and results presented
below were developed using the converted design.

Chapter 9

Conclusion and future work

9.1 The summary of the work done

In the thesis, the automated testing method for statechart notation has
been developed. Due to the graphical nature of statecharts and their usage
in industry, the testing method could be useful in improvement of the quality
of safety-critical software. Chapters 2-9 describe the original work done by
the author, except where stated otherwise, such as Sect. 2.3 on p. 33.

The application of the black-box testing method to statechart designs
is justifiable by the need to show conformance of an implementation to a
design, lacked by white-box testing methods. At the same time,

e usage of some white-box information, such as internal data may allow
us to verify states (App. C.4 on p.282),

e details of the process used to develop the system under test, can make
is possible to show absence of specific faults and thus in some cases
(Sect. 8.3.3 on p. 256) reduce the amount of testing dramatically.

Consequently, the developed testing method can be viewed as a greybox
one, combining benefits of both black- and white-box approaches to testing.

With some restrictions on possible statecharts we deal with (Chap. 5 on
p.-79), the method is shown to guarantee that all faults in the implementa-
tion of a statechart design are detected. While the requirements could be
thought to be rather restrictive, case studies provided in Chap.8 on p. 229
have shown otherwise. It appeared that with probably little effort from
designers developing testable systems, it is possible to test realistic imple-
mentations (Sect.8.1 on p.230, Sect.8.2 on p.232). With the underlying
X-machine testing method exhibiting good results at fault detection even if
some of the testing assumptions are not satisfied (Sect.5.2.8 on p.97), we
can assume similar behaviour for our statechart testing method, although
in such cases complete fault coverage is not guaranteed.

261

CHAPTER 9. CONCLUSION AND FUTURE WORK 262

The tool supporting the method has been built (Sect.7.2 on p.208).
TestGen allows a designer to verify some of the testing requirements and
then generate a set of test cases for his system. The tool does not really
provide automated derivation of test data. While it can do so for very simple
statecharts, for real applications a test engineer has to do that manually. If
statecharts have been built with future testing in mind, this task is expected
to be easy to automate.

The author also believes that manual derivation of test data from se-
quences of test cases may help diagnose problems with a design. Indeed, the
derivation of those sequences does not take any behaviour expected from
the system into account; for this reason, test sequences may expose un-
desired behaviour, which has to be particularly avoided for safety-critical
applications.

Refinement assumptions consider the process used to build the system
under test. Exploiting specific properties of the process, we can demonstrate
absence of specific types of faults. With this in mind, the size of a test set
can be reduced substantially. An experiment with the hi-fi case study has
shown (Sect. 8.3.3 on p. 256) that by development of non-monolithic systems
with complexity spread evenly between their components, the test set size
may be reduced by many orders of magnitude.

The tool support favourably compares to that available in many other re-
search projects. The Autofocus toolset [BS99] only considers transition tour
(Sect.2.3.1 on p.35) as an approach to testing; Sacres project [Sac98] re-
places testing by a proof of correct compilation, without consideration of the
actual environment the system will operate in. The author admits, though,
that these tools do not specifically focus at testing. [TPvB96] considers only
FSMs and [OA99] does not rely on any formal method.

Another difference of the tool developed from others is the usage of the
formal specification language Z to develop a high-level design of TestGen,
which has been subsequently type checked. This allowed to eliminate a
number of problems with tool development which might be rather more
difficult to correct afterwards.

9.2 Main problems solved in the course of the re-
search

Statechart notation contains significantly more features than X-machines.
For this reason, one of the main tasks of the work was to identify the subset
of it for which the method could be developed and state the conditions under
which proofs could be constructed. This objective has been successfully
completed, with requirements provided in Chap.5 on p.79 and proofs — in
Chap. 6 on p. 106, with the main result shown in Th. 6.4.26.

Much of the complexity in the application of the X-machine test method

CHAPTER 9. CONCLUSION AND FUTURE WORK 263

to statecharts can be attributed to the consideration of default transitions
containing triggers. Indeed, if there are none of them, the test case basis
shrinks from 4 elements to 3 and merging rules simplify considerably. The
complexity is related to the fact that default transitions can be viewed to
have a somewhat different semantics from the rest of statecharts. With in-
corporation of them in the developed method, one could consider extending
it for different semantics without imposing severe limitations of the second
clause of t_completeness requirement (p. 63).

9.3 Advantages and disadvantages of the method
developed

As shown by the case studies, the fact that the method proves correctness
can be seen as both an advantage and a disadvantage.

e Having proofs of the method allows us not only to do complete testing
but also makes it possible to introduce changes to it, such as relaxing
some testing requirements and have a firm base to reason about com-
pleteness of testing. For instance, usage of refinements based on the
process used to develop a particular system, is such a modification.

e The disadvantage is a big test set; if the purpose of testing is to
demonstrate a specific relationship between a design and an imple-
mentation, rather than behavioural equivalence, methods proposed in
[PS96b, FJJV96] can be used. Note that these methods can also be
helpful for determination of behavioural equivalence between a design
and an implementation which cannot be made to satisfy requirements
for the testing method (refer to Sect.8.2.3 on p.233 for a discussion).

The testing method for statecharts seems to be best suited for testing
an implementation against a middle-level design. For designs which are too
high-level, we may have difficulties ensuring usage of the same set of tran-
sitions as indicated by the Air case study. Too low-level designs might be
hard to make compliant with t_completeness and output-distinguishability
requirements. Consider, for instance, programs consisting of commands ex-
ecuted in a sequence (i.e. having no branches). Making them triggerable
and output-distinguishable could require us to write a lot more code than
that of the original implementation.

There are many applications which are centered around data trans-
formations; they are best tested with appropriate methods such as DNF
(Sect.2.3.2 on p.38) rather than with state-machine- based ones. Unfor-
tunately, most of the behaviour of the TestGen tool falls into this class of
applications which is why an application of it to itself would be difficult.

CHAPTER 9. CONCLUSION AND FUTURE WORK 264

9.4

Future work

In this section we provide a list of directions for possible future work. The
following could be done:

Enhancement of the TestGen tool, described in Sect.7.2.5 on p.227.
The referred to section describes modification of the tool to handle
statecharts to the extent described in the thesis; we could also improve
it based on future research, directions for which are provided below.

Improvement of the approaches to generation of test data (App.B.1
on p.269, App.B.2 on p.273). This also includes usage of theorem-
proving and /or model-checking tools'.

Reduction of the test set size or length of test sequences:

— research into different assumptions which could be made, other
than requirements and refinement assumptions described in the
thesis,

— estimation of the size of the set of test cases/test inputs based on
the complexity of statecharts and the recommendation of some
possibilities for a user to change a design,

— optimisations described in Sect. 2.4.2 on p. 44,

— research into usage of status (App.C.4 on p.282), and the be-
haviour of a system over time (Sect.8.2.3 on p.235) for state
identification together with the Wp method (App. C.3 on p. 281).

Test result analysis and fault location by testing; estimation of reliabil-
ity of the testing method based on probabilities of testing assumptions
to fail in some way. More details are given in Sect.4.4 on p.78.

Testing step semantics on the basis of the prior successful testing with
our method (Sect.5.2.8 on p.98).

An adaptation of the testing method for UML and Pnueli and Shalev’s
statecharts (Sect.3.8.2 on p. 63).

Development of an automated approach to verification of the require-
ments of the testing method (Sect. 2.5 on p.44).

Extension of the testing method to deal with statecharts not satisfying
testing requirements, such as statecharts which

— do not have full compound transitions satisfy (Req.1g), but can
be assumed to contain correct compound transitions,

such as expressing t_completeness and output-distinguishability properties in the form
of CTL, for instance, by using a graph (Sect.B.1 on p. 269).

CHAPTER 9. CONCLUSION AND FUTURE WORK 265

— have multiple initial configurations (Req. 1g),
— execute chains of transitions following those we trigger (Req. 3c),
— are nondeterministic (Req. 1b),

— contain C connectors and others, such as history ones, which
are presently considered to be absent (Sect.3.1 on p.46); this is
outlined in Sect. 6.8 on p.206 and Sect. 3.5 on p. 60,

— consideration of designs which are not fully observable or deter-
ministic [LvBP94] or operating in context [PYvBDY6].

e We could consider relaxing some of the design for test conditions, such
as t_completeness and output-distinguishability. This is possible based
on our usage of only a subset of specific data for testing, as described
in the note under Def. 6.6.2.

e The growth of the size of test set w.r.t m — n could be looked into
(described in Sect.4.2.3 on p. 74).

e Test set generation acceleration via parallel computation. Using a net-
work of workstations, we can speed up test set generation and appli-
cation by using them in parallel. Algorithms for testing of statecharts
seem to make this easy.

9.5 Work in progress, not included in the thesis

For the duration of the author’s Ph.D research, a number of ideas were pro-
posed, not all of them directly related to the testing method. Consequently,
such ideas, some of which were only partially elaborated, were not included
in the thesis. In this section we provide an outline of them as follows:

Chart objects Statecharts can be considered as objects; systems — con-
structed from them by combining those objects together using transi-
tions between them. The approach covers the structure and testing of
such systems.

Independence theory Statemate statecharts employ two types of seman-
tics, based on conjunction (between transitions taken in the same step)
and composition of behaviour of steps. Independence theory tries to
unify the two and give a more general semantics for statecharts. Refer
to Sect. 1.4.10 on p. 24 for more details.

Usage of language recognisers for testing Since an FSM language recog-
niser can potentially be reversed to generate the language, we could
build an X-machine recogniser to recognise partitions of an input set
and reverse it to generate tests falling into them.

CHAPTER 9. CONCLUSION AND FUTURE WORK 266

The idea can be also adapted to recognise specific classes of X-machi-
nes (such as those with a characterisation set of a specific length or
simply containing less than certain number of states) and after rever-
sal generate machines falling into them. Test data could be computed
from each of those machines [ABM98] as a sequence of inputs to dis-
tinguish it from the given one. Unlike referenced paper, our approach
is more general in terms of mutant machine generation.

Partition testing and input refinement For a given X-machine, we could
partition its input sequences into a number of sets. After that, deriva-
tive X-machines could be built from the original ones, each operating
on sequences of inputs corresponding to its partition. These machines
could be tested using different testing methods, such as the X-ma-
chine one with different numbers of expected extra states as well as
its relaxations, such as by using UIO sequences (Sect.2.3.1 on p. 36)
instead of a W set. The approach provides a way to combine parti-
tion testing with X-machine testing method, where every partition is
tested according to its importance. A different combination of the two
is provided in Sect. 2.3.2 on p. 40.

Coverage The present testing method separates testing of the behaviour of
transitions from that of a transition diagram. An alternative separa-
tion is to split all transitions using the DNF approach and assume one
of the partitions of every transition correct. The transition diagram
consisting of such correct transitions could then be tested, followed by
testing of the rest of transitions (Sect.2.3.2 on p.40). The coverage
idea generalises on coverage of a design combining different testing
methods.

Dataflow testing In principle, we could try to use the X-machine testing
method for testing data flow diagrams. Processes depicted in a data
flow diagram could be considered as states, data flow arrows — as
transitions. A test set can then be generated; an application of it
involves generation of some events in one process and verifying that
they were received in another one. This approach could potentially
be applied to communication of concurrent statecharts (Sect. 3.3.2 on
p. 57).

Appendix A

Communication of a tester
and a system under test

In the thesis we consider a tester communicating with a statechart under
test via externally accessible variables, possibly using a port introduced
to facilitate testing. There is an alternative: we could embed a tester in
a statechart, giving it access to all internal data of the statechart and a
capability to observe and influence its behaviour before a superstep or even
a step is over. Such an approach allows us to weaken the requirements
for statecharts, specifically, we no longer need transitions not to mask each
other. The summary of different kinds of embedding is given in Tab. A.1;
more detail is given in Sect. 5.2.7 on p. 93.

Here we also assume absence of communication between concurrent com-
ponents of a statechart during testing (described in Sect. 3.3.2 on p. 57).

267

APPENDIX A. COMMUNICATION OF A TESTER AND A SYSTEM UNDER TEST268

£[reo
-Tuyo9} d[qissod jou st Furppoquio
10 (9¢ "boy) snouoayouds A[[e1yues
-5 SI INOTARYDQ 9y} JI POsn 9q Ued

uoye)
oJe suorysuer) punod
-0 [[NJ I93Je soduryd
osA[eue 0} posn 9q Ued

uoyR)
oIe suorysuer) punod
-WOY I9)Je sodueyd oS4
-[eue 0} posn oQq Uued

uoye)
oIe SUOI}ISURI}) [BNPIA
-Ipul 19%Je sodueyd oS4
-[eUR 0} posn og Ued

-sind
-)NO WOJJ 9ALIDP 0} pIey SI SUOI}
-ISURI} JO UOINIOXd JO IOPIO UR

Ie9[d SI UOIND
-9x9 uomnisue) punod
-wod [[NJ JO IOPIO UR

‘poposu jou st
UOI)RUIULIdNOP SIT Jul
-)SBW JO 90UdSqR pue
sonyuewos Jeuorjoun(
-u0d 0} onp Jng IedD
ST UOIINIOXD UOIYISURI)
punodwod jo 1epIo ue

‘popoou
j0U ST UOIIRUIULISIOP
S71 SURSBUW JO 90UIS(E
puUR SOIJUBWIDS [RUOI}
-unfuod 03 onp Inq
Ie9[O SI UOIINIOXD UOI}
-IsueI} JO J9pIO UB

Surppoquio
oy} Jjo ofesn
uor}

-NJJXd JO JI9PIO

‘S9INI9X0 9ouanbos poroad
-X9 93} JeYy} Yons s1083u1) [erjul
1098 0} d[qissodwr d9q PnNod 1
pue s107)0 108311} URD SUOI}ISURIY
Q0UIS YSe) piey ® SI)] 'SIO8
-3y 9ndwoo pue oousnbos)50l
B WOIJ oy} oM suonsuer) punod
-WOd 1Y JO 108 YOIYM OPIOdp om

‘oye) 09
USIM JOU Op oM [PIYM
9S0Y) 9[qesIp pue uor)
-1suer) punodwod [[ng
A19A0 198311} ueD oM

‘oe) 0}
USIM JOU Op oM [OIyMm
9S0Y) 9[qesIp pue uorl)
-1sue1) punodwod A1
-A9 193311} ued om

‘oe) 0}
USIM JOU Op oM [oIyMm
9S0Y) 9[qesIp pue uorl)
-IsuelI) [eNpIAIpul AT
-A9 1933113 UueD om

ssouajo[dwoo)

‘A[uo suorjisuea) punod
-wod [[nj Jo oouenbes & Aq opew
SoZURYD OAIR[NUIND 99S UED om

REVET
Peo Junp{sewr WOIJ
we) sjuesdad qg ‘boy
‘uonyisuer) punodwod
g e £q opew oFueyod
AIoAd 00S UBD oM

REVLT
oed JuD[SEW WOJJ
we) sjuesdad qg ‘boy
‘uonyisuer) punodwod
e Aq opew o3ueyd
AIoAd 998 UBD oM

19)89) ®
0} 9[qISIA SI JeyM

(soryuewros dogs snoUOIYD
-ufse) suonisueI} jo seduonbos

(son
-uewos dojs snouoIyo

-ufs) ST.OJ [enplAIpul

(sonyuewss ,do1so1d
-w,) SI) [enprarpur

uorIsueI}
e Aq opewr o3ueyd
A19A9 998 URD oM

(sonueuros
doysoueu,) SUOIYIS
-ueIy 10309UU09-07

-10900UU0D [eNPIAIPUI

100dse

Suippequo j0u

Suippoquio

d not embedding approaches

ing an

Comparison between embeddi

Table A.1

Appendix B

Augmentation approaches to
make statecharts comply
with t_completeness and
output-distinguishability

B.1 The tree approach for transitions

The following approach to augmentation applies to both types of augmen-
tation of transitions, full compound as a whole, CTs they consist of or
individual connector-to-connector transitions. It is proposed as a heuris-
tical method to facilitate augmentation and/or test data generation. The
applicability study is left for future work.

B.1.1 Disjunctive approach

Every transition can be considered as a disjunction (not necessarily non-
intersecting; quantified expressions are considered atomic). Triggering a
transition is then equivalent to satisfying any part of its disjunction. We
call such parts disjuncts.

For a given sequence of transitions, we can construct a directed acyclic
graph called an augmentation graph and shown in Fig. B.1. Every horizontal
dashed line represents a transition with graph nodes (drawn as blobs) being
its disjuncts. A node is usually connected to all those in the dashed line
below it, with weight functions on edges depending on the complexity (we
call it difficulty) of triggering the target disjunct of an edge. The sequence of
test inputs is given by a sequence of disjuncts triggered, i.e. a path through
the graph from top to bottom; bold lines represent a sample one. The diffi-
culty of it can be determined by adding together individual edge difficulties,
each of which may depend on the path from the top to the beginning of an

269

APPENDIX B. AUGMENTATION FOR T_-COMPL. AND OUT.-DIST.270

Figure B.1: An augmentation graph

edge. The graph may be used for:

e augmentation of transitions of a statechart; for that they are consid-
ered in some order,

e generation of test data from test cases.

Note that some edges would not exist in the augmentation graph, such as
those corresponding to contradicting disjuncts. We can say that they possess
a very big difficulty.

B.1.2 Syntax tree approach

Syntax trees for labels allow a similar method of augmentation to usage of
disjuncts. An example of such a tree for a transition

tri:(aAN-bVe)AN-d

is shown in Fig.B.2, where a branch leading to a leaf is a trigger for a
transition. It can be represented in a more compact BDD form [And94].
This approach separates common parts of disjuncts instead of treating
every one of them separately. This could lead to improved performance.
Syntax trees can be combined together with a path of a statechart to form
a graph as shown in Fig. B.3, using which test data generation can be done.
Blobs in the figure represent partitions of DATA X conf. Similar to ordering
of variables in BDDs, this method suffers from a need to rearrange syntax of
labels in order to get best results. The described way of test data generation
bears some similarity with the CFTT approach (Sect.2.3.5 on p.42). The

APPENDIX B. AUGMENTATION FOR T_-COMPL. AND OUT.-DIST.271

aAN—b

Figure B.2: An example of a syntax tree

differences is that here we take a specific path and try to find a sequence! of
test data to follow it rather than to build an automaton such that every path
in it is feasible. Fig.B.3 can also seem to be a little like Fig. 2.6 on p.40,
but instead of doing complete testing, we are only interested in determining
a sequence of inputs to get from the root of the graph to any of its leaves.

Figure B.3: A test data derivation graph composed using syntax trees

B.1.3 Estimation of ‘difficulty’

A recursive function pathcompl may be defined to return a minimal ‘diffi-
culty’ of augmenting a transition. Such a function can be defined as

minchilde children(node) (
pathcompl(path ~ edge(node, child), child))
+difficulty (path, node, child), if children(node) # &
0, if children(node) = &

pathcompl(path, node) =

lor more than one sequence, see Air case study.

APPENDIX B. AUGMENTATION FOR T_-COMPL. AND OUT.-DIST.272

where difficulty is a function returning the complexity of following the edge
to the node provided the path path has been taken. path may can be a path
in either augmentation or transition syntax graphs.

The difficulty function is defined on atomic expressions and has to take
the following into consideration:

e Satisfiability of the expression. This also includes considerations for
contradictions with previously augmented transitions.

e The number of events we shall have to generate to trigger a transition.
For example, for a A b, two atomic predicates a and b have to be
satisfied while for a A b A ¢ — three.

e Whether new variables or events have to be made accessible to an
external tester in order to achieve t_completeness or
output-distinguishability.

B.1.4 Output-distinguishability

Now we show how the output-distinguishability is evaluated. In general,
we cannot do this but the proposed solution will probably suffice for most
transitions. The remaining ones will have to be augmented by hand.

For a disjunct, we begin with identification of atomic outputs where the
value of the visible output is clear. This includes most explicit assignments
like df ev’, df ev’ A vl ev’ = 5, or war = 3. For a vector of variables visible
to a tester, we fill in the expected values and put question marks for those
whose value we cannot determine for certain.

For every transition, we can specify what output makes it distinguish-
able, in other words where its vector is different from that of others with
the same trigger.

Traversing a triggering graph (Fig.B.1), we can keep a set of vectors of
expected pure outputs of transitions encountered so far. Every new transi-
tion’s output can be compared with this union and an augmentation decision
reached which input to use (i.e., which edge to follow).

In a more general way, we could keep predicates in an output vector.
Consider a statechart with labels a > 5 A evi, evs/a = 8 + y/a and the
initial value a = 6. The first of them will not be enabled when a < 5, but
in practice it will always be. Having the expression 8 + /a in the output
vector of the second of them could allow us to reason about a > 5 (assuming
a is a real number). Although applicable to a wider range of designs, usage
of expressions is rather complicated and is left for future work.

APPENDIX B. AUGMENTATION FOR T_-COMPL. AND OUT.-DIST.273

B.2 Augmentation of transitions which use real
numbers

In this subsection we describe a mechanism for augmentation of transitions
to stop them from being shared between states, such that no extra testing
inputs need to be introduced. It is based on the assumption that every
system uses numbers of a specific accuracy.

Consider the following two transitions:

try : a>2.0/
tro : a>2.0/

Since triggers of these transitions use the number 2.0, we could assume that
functionality of our system will not get outside allowable if we change tr;
to be a > 2.0001/. The main idea of this kind of augmentation is that
we slightly modify real numbers used in triggers and/or actions such as
to make transitions different at the same time making sure that modified
transitions do not cause an undesired behaviour. An application of such
an augmentation is described in Sect.8.3.2 on p.254. The same idea can
potentially be applied to timeouts (App. B.3 on p.273).
Two aspects of this method have to be stressed:

e If the communication channel between tester and the system under
test is noisy, we have to select modification values in such a way as to
prevent noise from making augmented transitions behave the same way
as original ones? (for the noise level of 0.5, the augmentation chosen
above is ineffective). Things become more interesting if the amount of
noise is comparable with augmentation of variables, such as 0.00003.
In this case, the two transitions ¢r; and tro can be distinguished sta-
tistically (under the assumption of a deterministic system).

e The correctness of behaviour of this type of a system is often defined up
to some accuracy. This implies, for instance, that an incorrect imple-
mentation which nevertheless produces the result within the expected
bounds has to be considered correct.

The area of testing of such systems (which can also be expected to operate
in real time, Sect. 8.2.3 on p.235), can be considered in the future.

B.3 Delays as triggers for transitions

Real-time systems may have delays specified explicitly in them. This section
describes usage of delays as inputs for triggering transitions whose triggers

*We would prefer not to add an extra level of accuracy to a system by using error-
correction codes simply to utilise some augmentation method when other approaches are
available.

APPENDIX B. AUGMENTATION FOR T_-COMPL. AND OUT.-DIST.274

involve timeouts. Two approaches are presented.

B.3.1 Generation of delays

Consider the following transition (similar to the one on p.14):

stop : tm(play, 4320) /

df operation’ A vl operation’ = stop

In order to trigger it, we can wait for 4320 seconds. While it is possible to
treat a delay as a regular input, it is harder to make sure we do not trigger
an undesired transition.

Consider the case when there is a number of transitions from a state
with trigger involving timeouts:

tm(tape_end, 60 operation = play

tm(tape_end, 5 operation = play
operation = rec
= tm(tape_end, 0.00001

tm (tape_end, 100000

operation = stop

> > > > >

)
)
tm(tape_end, 4)
)
)

operation = rew

In the above, the top two transitions have identical triggers except for the
timeout. Since in the first case we wait for 60 seconds and 5 will expire
before that, a test input has to be added to one of these transitions. The
third transition has its time-independent part (operation=rec) different from
all other transitions. We can trigger it without difficulty. The triggerability
of the fourth transition depends on the relative performance of the system
and the program under test. In the case when the program cannot be
supplied with inputs fast enough, the timeout may expire before we generate
operation = stop. In such cases the transition cannot be triggered without
an addition of a testing input. The last transition is hard to trigger due to
a very long time we have to wait for it. It is best to augment it too.

Below the result of augmentation of the considered five labels is shown.

tm(tape_end, 60) V

inputiess N\ operation = play

>

tm(tape_end, 5) operation = play
tm(tape_end,4) A operation = rec
= tm(tape_end, 0.00001) A
TEST_IN_PROGRESS = FALSE v
nputiest N operation = stop
tm(tape_end, 100000) V

mputiess N operation = rew

APPENDIX B. AUGMENTATION FOR T_-COMPL. AND OUT.-DIST.275

We could augment the transition with timeout of 5 rather than the one
with that of 60; our decision allows us to reduce the time necessary for test
application. TEST_IN_PROGRESS = FALSE is used to disable transitions
with small timouts.

The tm event occurs after the specified time period and expires one
step after. In case we have more complex constructs like before(time) or
after(time), augmentation can be done similarly.

B.3.2 Augmentation of the ¢m function

Timeouts in statechart designs are often described using the tm function.
For testing, we could augment it such that for every value of the argument
the outcome will be the one we need. For instance, in the above example
with five transitions, ¢m is supplied with a different delay in every transition;
we could augment it such that it would produce the timeout event depending
on a single testing input inputyme such that

Vev : event; delay : R e
tmaugmented(eva delay) g
inputime = delay N TEST_IN_PROGRESS = TRUE Vv
tm(ev, delay) N TEST_IN_PROGRESS = FALSE

This allows us to invoke transitions which use delays without having to
supply inputs with appropriate delays which could be hard for short delays
and time-consuming for long ones.

Appendix C

Wp method

Usage of the whole set W is not always necessary. In a number of cases we
could construct sets Wy for some states such that the set W, allows us to
distinguish state s from all other states. For example, if variable inspection
makes it possible to reason reliably about entered states, we might like to
use this for state identification. Most importantly, the Wp method can be
applied which allows us to reduce the size of a test set while preserving the
behavioural equivalence result of testing not revealing faults.

In this chapter we describe how sets W for every state s of a statechart
could be constructed, merging rules for them and the Wp method test case
generation approach. The proof of correctness is outlined too.

C.1 Basic definitions

Let us denote dis; ; the sequence which distinguishes between states 7 and
J in the same flat statechart. We can turn it into a set with the following

definition
o [Adisig), ii £
“ | @, otherwise

From this, the definition of characterisation set W can be expressed in terms
of w; j as

Wa= |J wiy
i,j €p(st)

where st is the considered statechart.
For a state i € p(st) we define an identification set w; as

wi= J wiy
J€p(st)

in order to have sets allowing us to distinguish between a particular state in
a statechart and all other states in the same statechart (but generally not on

276

APPENDIX C. WP METHOD 277

a different level of hierarchy). Note the difference between Wy and w,. The
former is the characterisation set for a statechart s while the latter is the
distinguishing set for the state s in some statechart. For our tape recorder
we could have

wsrop = {stop}
Wpray = {direction}
Wrpoorp = {stop, play}
Wrpw.rr = {Stop,play}
WrEwIND = {ﬁ }
WF_ADVANCE = {Tew}

Characterisation set W can be rewritten as

W = |J w (C.1)
1€p(st)

C.2 Merging rules for Wp method

Rules to construct a characterisation set W for a statechart involve merg-
ing Wyamwsrarscuarr of the main statechart and Wsypsraresrarecnarr con-
structed for every non-basic state in it. We can use the same approach to
merging identification sets. A state st in a mainstatechart can be identified
with wg;. We write this as wi#™VS™TFCHART — 4, In order to get the iden-
tification set w}/ASTATECHART for 3 gstate s contained in the state st of the
main statechart (we assume it to be an OR state), we need to identify that
we are in st and s. Similar to merging of W,

MAIN STATECHART MAIN STATECHART st
s = Wg U Wy (CQ)

For our example (Fig. 1.6),

MAIN STATECHART _
w?"ew - {ﬁ’ 8t0p7 pla’y}a
wMAINSTATECHART — {Tew,stop,play}.

In case the above sets seem to be unreasonably big, skip to Prop.C.2.5 on
p- 280 which describes how to reduce them.

APPENDIX C. WP METHOD 278

The general rule for merging of w can be put down as follows:
Definition C.2.1.
Vst: 3 e wit =2
(Vi : plst)|
(Vi: p(st) |
(Vi:pt(st

B(st) = stateOR o wi' = w;) A
P(st) = stateAND o wit = &) A
o Gysip(st) i €p*(s) @ wit = wg Uwy))

st
st

The second rule states that w; identifies a state within it enclosing state;
in order to identify it within levels of hierarchy, we need to unite identifica-
tion sets for all states on a route (refer to Def. 6.1.12 for details) from st to
s. This can also be written as w* = wfl Uwi U...Uw where s; ... sy are
such that s; € p(st),s2 € p(s1),---,5n € p(Sn—1),7 € p(sy). The last line of
the above definition has 3, in it due to Prop. 6.1.5.

Proposition C.2.2 (Merging rule for w). wf identifies a state i in a
statechart st.

Proof. The proof is by induction.

1. Consider an OR- state st such that i € p(s), then from Th.6.2.14 and
Th.6.2.15 w} identifies i within s. For st = parent(s), w’® identifies s

in st and thus w* = w U w? will identify i in st.

2. For AND-states s, w; = @ as we do not need to identify components of
concurrent states because all of them have to be entered by Def. 6.1.3
on p.111.

O

The above proposition deals with states of an original statechart; those of
the flattened one, i.e. configurations of the original, will now be considered.

Definition C.2.3. The identifying set w® . for a configuration conf is

conf

V conf : F, X | configuration(root, conf) e
w(fénf =U{s: conf e wi}

In a similar way, we can define w §OOt-'

. root __ , root
VS Yy e wfg®™ = WioCONFIGURATION(S)

From Def. C.2.1 and Def. C.2.3, we get that

APPENDIX C. WP METHOD 279

VS:%s e wfgoot = J{s: toCONFIGURATION(S) »
(U{i : route(root, s) \ {root} e wf“”i"t(z)}}
= U{s : route({root} x toCONFIGURATION (S))) \ {root} e wparent)}

Proposition C.2.4. For any S : Xy, w m"t allows to identify configura-
tions.

Proof. For some S : ¥y, consider a configuration
conf = toCONFIGURATION(S) and any other configuration conf,. We
show thatwfi° distinguishes between them.
Let state s be one of the lowest-level OR-states which belong to these two
conﬁguratlons We then have that s € confiNconfa and p(s)NconfiNconfo =
& (the first one follows from root € confi N confy. If there is no such s such
that the second one is true, we get from Def. 6.1.3 that conf = confs).
From the second statement, we have that

Is1,8 : p(s) ® 81 7# 59 A 81 € confi A s9 € confy

Since w} € wfi®" by construction of wfI**, conf and conf, can be distin-
guished using wfI°". O

An extension of the definition of W (Eqgn. C.1) for the case of merged w
is consistent with merging rules for W (p.48) as follows:
wmerged U{conf F, 3 | configuration(st, conf) e wwnf}
= U{conf :IF, X | configuration(st, conf) e

U{s : route(|{st} x conf|) | s # st e wfarent(s)}}
= U {conf : F, ¥ | configuration(st, conf) e
s:p(st)
wst U U{z : route({s} x conf|) | i # s o wPre)1}
— U (w:t U Wsmerged)
s:p(st)

— U w:tU U Wsmerged

s:p(st) s:p(st)

If ¢(st) = stateOR, |J = W, and we get

s:p(st)

d d
Wmerge W U U Wsmerge
s:p(st)

!This part of the proof is similar to that of Prop. 6.4.24.

APPENDIX C. WP METHOD 280

while if ¢(st) = stateAND, wst = @ and

merged __ merged
Wst - U Ws
s:p(st)

For the tape recorder in Fig. 1.6 we get from above

merged _ MAIN STATECHART U MAIN STATECHART U MAIN STATECHART U
MAIN STATECHART - wSTOP wPLAY wRECORD
wMAINSTATECHART U wMAINSTATECHART
REWIND F_ADVANCE

= Wsrop U Wpray U Wrpcorp U
((wREW_FF u wREWIND) U (wREW_FF u wF-ADVANCE))

= {play, stop, rec, ff , rew}

Compared with Eqn. 3.4, this W,¢¥%, wine contains more sequences of
transitions than necessary. The difference is that when building w, we try
to identify states and this causes an increase of the size of W constructed
from them. This suggests that should construct and merge W separately
from w since the two have opposite goals (individual state identification and
distinguishing all states respectively, refer to Sect.2.4.2 on p. 42 for details).

Above, we merged wrpwwp and Wg spvancs With wrpw pr even though
it is not necessary as Wrpwivp and Wr spvance already identify states in the
expanded statechart. Note that if we used wp apyance = {ff} there would
be no way to tell STOP and F_ADVANCE apart in the merged statechart
because ff transition exists from neither of them. These considerations give
rise to the following proposition:

Proposition C.2.5. Merging rules (Def. C.2.1) can be simplified for an

. arent(s
OR-state main statechart to become wMANSTATECHART — P (s)

(i.e. wYAINSTATECHART — o,) if the following holds:

o labels used in a substate statechart are not used anywhere else
(VA,B:X | A# B e T™(A)N T™(B) = @)

o for all states s of all substate statecharts st, ws only contains transi-
tions which exist from s

Vs:X e (Vir: ws e clpathEXISTS (s,tr))

Proof. By construction, w, distinguishes between s and all other states in
st, i.e.

Vp:ws e clpathEXISTS(s,p) A (Vss: p(st)\ {s} ® = clpathEXISTS (ss,p)

APPENDIX C. WP METHOD 281

Since transitions of w,; are not used in any other statechart, this can be
generalised to Vp : wy; ss: 2\ {s} e = clpathEXISTS (p, ss). According to
Th.6.2.14 and Th.6.2.15, w, identifies the state corresponding to s in the
flattened statechart. O

The first condition for this theorem holds due to requirements for the test
method, the second one can be made true by construction of ws.
Using the proposition, we get for our tape recorder

MAIN STATECHART — __
WrpwinD = {ff},
MAINSTATECHART — __

Wr spvancE = {rew}.

C.3 Description of the Wp method

The Wp method is [FvBK'91] an improvement of a W one, targeted at
reduction of a number of test sequences. We describe here an adaptation of
it to statecharts.

Definition C.3.1. Sets for the Wp method can be defined as follows: ®, C
and W are @mrfgf’ed, cmenged gnd Wﬁrzzged, i.e. the same as those for the W
method (Def. 6.4.16, Def. 6.4.11).

VS:%; e w§°°t’ﬁ"“l = defaultComplete (wfi*®)

The main idea of the method is usage of identification sets instead of
a full W set. As shown above, each of these sets can be smaller than W
which leads to a smaller test set. Unfortunately, in a faulty implementation
small sets wfi%" may fail to identify states correctly. To cope with this, the
two-phase approach is taken.

1. Checking whether states defined in a design exist in an implementa-
tion, using full W as in the W-method. Each state k is also checked
whether it could be identified by the smaller set wg. The set of test
cases can be written as

. d merged merged? merged M —N merged
Ty = 0™ ({1Ug 7 Ueg 7™ U...UDg) * Wi
The full W is used instead of appropriate w; as in case of faulty im-
plementations when individual w; sets may lose their power of identi-
fication. This differs from the full test set in that the highest power of

@gbrfgfed is m — n rather than m — n + 1.

APPENDIX C. WP METHOD 282

2. Testing all transitions left out in the first step. Here we can use small
wy, sets to identify states and therefore create less test cases as com-
pared with the W method while still providing the same level of con-
fidence in results of testing.

From schema stINIT (p.175), we have an initial configuration conf
of a considered statechart which we shall denote confi,;; here. With
this, the set of test cases for the second phase of the Wp method is
the following:

2
T, = U{lseqset . gmerged @?jgfed * ({1} U @g’;;?ed U Q);,in;;fed U...
dm*n t
U(I';?nrf(:?e) * {lseq‘SEt} * wlj‘?)?lowPATH(lseqset,confim-t)} (03)

Theorem C.3.2 (Wp method). Consider a statechart design satisfying
the design requirements of Chap. 5 on p. 79, and an implementation of the
considered system satisfying the implementation-related requirements of the
same chapter. Then if the implementation delivers the expected output for
t(T) where t is the fundamental test function (Th.6.7.3) and T the set of
test cases as follows

T = Omeve s ({1} U@l y gty
D Wi
U U{lseqset . gmerged @gﬂfed x ({1} U @%nrfgfed U @?:gfed? U...
U‘b;ﬁnrfgf]edm_n) o {Iseqset} * WiupaTH (1segset,confony)

then we have the behavioural equivalence between the considered design and
implementation.

Proof. The proof of Th.6.7.3 as well as [FvBK191] allows us to restrict
our attention to proofs of properties of sets used in the method. Those for
wfio°! follow from Prop. 6.4.24 (i.e. Th.6.2.14 and Th.6.2.15), Prop. 6.4.20
and Prop. C.2.4; properties of ¢merged meryed ang Wmerded are proven in

final final
Th. 6.4.26. U

C.4 Usage of status information

In some statecharts, we can detect a state we are in by observing a value
of some variable (such as a portion of memory of an X-machine), without
taking any transitions or by using a static reaction (which will not cause
any state to be exited or entered). This could help us reduce the size of a

APPENDIX C. WP METHOD 283

test set considerably. Information given by such variables is further called
‘status’.

We consider status information to be correctly implemented and its usage
restricted in the same way as transitions (Req. 1e): if some variable is used
in a group of states to identify individual states in it, all those states should
be in the same statechart.

The above considerations for distinguishing sets w; could be applied to
the case where we can use status. Status variables allow us to identify groups
of states without taking any transitions and thus when constructing wy for a
state s, we have to distinguish it only from members of the group it belongs
to.

More precisely, when constructing w,, we identify groups gr of transi-
tions we can detect using status variables statusg and then construct wg, g,
for states within each group. Then ws = w; g U statusy.. For example,
in our tape recorder we can see whether a tape is moving or not. This
allows us to have the status_moving boolean status variable and wgrop =
{— status_moving} (- means that the output should be negative from the
status. The negation sign is not actually used in the set of test cases but is
shown here for clarification of the expected output);
fors € {PLAY, RECORD, REW_FF}, ws = {play, stop}U{status_-moving} =
{play, stop, status_moving}. We have to use both stop and play to tell PLAY,
RECORD and REW_FF apart. Usage of status_mowving is enough to distin-
guish the STOP state from others, we do not have to try stop or play from
it.

There could be more than a single status variable; for example, if we
can identify that a tape is moving really fast, the REW_FF state can be
assumed and w4 Von CPAET would be { status_fastmoving, rew}. We could
also write wMAINSTATECHART — [status_moving, status_fastmoving, rew}. For

F_ADVANCE
all states, we have

Wemwinn T PCHART = L status_fastmoving, ff }
WA STATPOHART = { status_fastmoving, rew}
w;\/;%[;’VSTATECHART — {_| Sta,tus_mofuzng}
whAIYSTATECHART — — L status_moving, direction}
Wy S TATEOHART — — L status_moving, direction }

In the above we are using the direction transition to distinguish states PLAY
and STOP in the group status_moving N — status_fastmoving. Note that
we can identify every state with a singe transition.

Similar to the construction of w sets, we can use status to build a charac-
terisation set. The difference is that instead of trying to identify individual
states, we try to distinguish between them (details in Sect.2.4.2 on p.42).

APPENDIX C. WP METHOD 284

During the construction of statusy,, status variables can be combined
using * but static reactions cannot since two static reactions in the same
state cannot be taken concurrently. Such static reactions can be combined
sequentially with x.

Having described the construction of statusg, and the corresponding w; g
state identification set, we need to integrate them. While it is possible to use
U to merge the two as shown above, this leads to an unnecessary increase of
the size of test set and for this reason combining them using multiplication
operators is preferred. During test set application we observe output after
taking transitions rather than before. Consequently, *; sign cannot be used
when combining wy ¢ with status gr since status has to be checked before
taking transitions rather than after. For example, w4005 vos ¢ 745" can be
{status_moving-status_fastmoving rew}.

The modification of the Wp method to take advantage of status infor-
mation is rather easy. Below we present the new transition verification part
since state verification is unaffected.

For a sequence Isegset in the Eqn. C.3, entering configuration conf =
IfollowPATH (lsegset, confinit), we can identify groups grs to which every
state s : conf \ {root} belongs and produce the test case

{lseqset} * .s’tatusgrs1 % .s’tatusg,ﬂs2 *1 ...k statungSk *
cwltet
Note that without status the above test case is equivalent to that of Eqn. C.3
due to Def. C.2.1.

Certain aspects of consistency of statecharts can be verified by testing.
For example, we can ascertain that if a state is entered, its parent state is
entered too. For the tape recorder, we could verify that F_ ADVANCE €
p(REW_FF) by using wr_apvancs = {status_moving-status_fastmoving rew},
since Wrpw.rr = {status_moving-status_fastmoving} and using Prop. C.2.5,
the optimal wp_spyance = {rew}. Status information provides a ‘free’ way
to do this type of checking.

Index

*, 31, 47, 124

%1, 47, 124, 184

* 56, 58, 125, 184
/, 14

1, 30

acceptor, 27

action, 13
allFCTComplete, 185
allFULLCOMPOUND, 159
Anc, 113

and, 121

AND connector, 19

AND state, 19

andALL, 137

andFALSE, 121
andTRUE, 121
annotation, 208

apply, 123

ASetSeqSet, 124
asynchronous step semantics, 23
augmentation, 66, 81
automaton, 27

basic state, 16
broadcast communication, 20, 57

C, see state cover, 180

C connector, 15

C method, see characterising se-
quence method

category partition testing, 38

cCharacterisationSet, 179

CFTT method, 42

CHANGE, see change

change, 73, 119

285

characterisation set, 30

CharacterisationSet, 182

characterising sequence method, 37

choice connector, 15

circle, 93, see port

clfollowPATH, 165

clpathEXISTS, 165

Cmerged’ 183

coding, 5

COMMUNICATE, 177

completePath, 183

completeTransition, 183

Composition, 124

compound transition, 19, 47

compound transition, 15

confENTERED, 144

confENTEREDSEQ, 199

configuration, 17, 111

CONNECTOR, 109

connectorDEFAULT, 109

continuation compound transitions,
16

continuationDEF | 144

convtoTRANSITIONSET, 185

cStateCover, 178

CT, see compound transition

DATA, 118

DD method, 37

DE, 180

DE, 48

default transition, 16, 48, 126
defaultComplete, 185
defaultEntrance Complete, 140
defaultFROM , 111
defaultfrom, 111

INDEX

default TransitionLabels, 179

design, 9

design for test, 65, 81

deterministic statechart, 154

diagram connector, 17, 62

disjunctive normal form, see DNF

distinguishing sequence, 35

distinguishing sequence method, 35

DNF, 9, 38

do nothing static reaction, 20, 60

double line, 93

DS method, see distinguishing se-
quence method

EFSM, see extended finite-state ma-
chine

emptySPACE, 171

enable, 127

enabled transition, 14, 126

enter, 131

ET, 209

event variables, 14

event_discard, 175

erecTRANS, 157, 159

exit, 131

expandedPhi, 187

extended finite-state machine, 27

fair nondeterminism, 85
FCT, see full compound transition
filter, 120

finite-state machine, 10

fires, a transition, 13
flattenPATH , 162

fork connector, 20

FromSet, 123

FSM, see finite-state machine
full compound transition, 17
FULL_COMP, 149
FULL_COMPOUND, 147
functional determinism, 84
fundamental test function, 73

getSCOPE, 135

286

hello.java, 260
history connector, 22, 60

i_same, 102
identification set, 276
implementation, 5
index, 120

individual CT, 19
individual transition, 19
initial compound transitions, 16
InputtoX, 172
INSTATE, 89

interface, 221
invertible, 37

joint connector, 20
junction connector, 15

label COMPUTED, 199
landALL, 137

lca, 113

lcoa, 113

lenjo, 171

lenspace, 120
IlfollowPATH , 165
loopback transition, 35, 249
LOTOS, 41

Ipath, 163
lpathEXISTS, 165
LSeq, 123

LSeqSet, 123

LSet, 123

LSetSeq, 123
LSetSeqSet, 123
LSetSet, 123

m, 31

main statechart, 26
Mes mazy 97

memory, 11

merging rules, 46, 182
minimality, 181
MLPS Step, 161

Minr mazs 91

model, see design

INDEX

modify, 120

uSZ, 9,24

MUIO method, 36
multAND, 125
multC, 183
multOR, 124
multOR1, 124

n, 31

s mazy 91

Nes miny O7

Nmr maz, 91

Nomr min, 91
noemptytrigger, 201
nonconflict, 131
nondetresolution, 148
noracing, 202

off-state statechart, 17, 62

OR connector, 16

OR state, 16

orth, 113

orthogonal, 131

orthscope, 134

orthset, 113
output-distinguishability, 65, 202

parent, 110

partition testing, 38
path, 17, 155
pathEXISTS, 155
PERFORM _STEP, 177
persistent variables, 14
®, 30, 180

¢, 110

D maz s 57

(I,merged’ 184

d
mered 187

d merged 184

union ?

) merged 187

union,final’

mr macr
m, 120
port, 25
possibleImpl, 167

precondition, 13

prefix, 74

priority of transitions, 153
process class, 24

racing, 92, 120
racing, 120
RaiseToPower, 124
refinement
AND
strong, 59, 201
weak, 57, 200
OR, 52, 196
requirement, 5
p, 110
pt, 110
p*, 110
root, 110
route, 116

S connector, 15

SAnc, 113

scope, 51, 128
SeqtoSeqSet, 125
setMULT, 124
SetSeqtoSetSeqSet, 125
¥, 110

¥y, 157, 159

simple statechart, 168
Sizec, 56

Sizep, 56

Sizer, 33, 51, 54, 56, 58, 60
Sizew , 56

SPACE, 118
specification, 9

SSet, 123

STATE, 109

state cover, 30
stateAND, 109
stateBASIC', 109
statechart, 10, 12
StateCover, 182
StateCoverElement, 178
stateFLATTEN , 157

287

INDEX

Statemate Analyser, 44
stateOR, 109

static reaction, 20, 60
status, 253, 283

step, 23, 161, 176

stINIT, 175

stm_get, 221

structural determinism, 154
structural requirements, 81
structural view, 24
stSTATUS, 174

stSTATUS _Initial, 175
substate statechart, 17, 26
SUIO method, 36
superstep, 23
supersynchronous, 96

SW method, 37

switch connector, 15

synchronous step semantics, 23

T,129

t_completeness, 65, 202
TAPE RECORDER, 108
T, 126

TCB, 46

test case basis, 46
TEST_IN_PROGRESS, 67
TestGen, 8, 208

tm, 14

™, 130
toCONFIGURATION, 160
toFCT, 159
toLABELSET, 163
toLPATH, 163

toPATH, 163
toTRANSITION, 137
toTRANSITION ¢, 206
toTRANSITIONp, 145
toTRANSITIONSET, 163
TR, 129

TRANSITION, 122
transition label, 14, 121
transition set, 29
transition tour method, 35

288

transition CONTINUATION , 206
transition DEFAULT , 126
transitionDefault Complete, 185
transitionFFC'T, 139
transitionFFCT _MLPS97, 139
transitionNI, 128
TRANSITIONS, 125
TRANSITIONS, 125
trigger, 126

triggered transition, 14, 126
triggering, 14

triggerSET, 126

TR™, 130

TSeq, 123

TSeqNI, 128

TSeqSet, 123

TSet, 123

TSetNI, 128

TSetSeq, 123

TSetSeqSet, 123

TSetSet, 123

tsetVALID, 145

TT method, see transition tour method

TULD property, 37
TYPE, 109

Uenter, 131
Uexit, 131
UIO method, see unique input out-

put sequence method
UIOv method, 36

unique input output sequence method,

36
unit, 209, 219
Unite, 125
T, 126
Ty, 157, 159

valid transition, 126
validation, 5
verification, 5

W, see characterisation set, 180
W method, 28
watchdog, 44

INDEX 289

waterfall, 4
Wmerged 185
Winered, 187

Wp method, 281

X-machine, 9, 10, 169
smINIT, 172
zmSTATUS, 171
xmSTATUS _Initial, 172
zmtoX, 171
smTRANSITION, 173
XtoChanges, 172

INDEX

DefC.2.1, 278
DefC.2.3, 278
DefC.3.1, 281
Def6.1.1, 110

Def6.1.2, 111

Def6.1.3, 111

Def6.1.6, 113

Def6.1.12, 116
Def6.1.14, 120
Def6.1.16, 122
Def6.1.17, 124
Def6.1.18, 125
Def6.1.20, 126
Def6.1.21, 127
Def6.1.24, 128
Def6.1.28, 129
Def6.1.30, 131
Def6.1.34, 134
Def6.1.35, 135
Def6.1.37, 137
Def6.1.39, 139
Def6.1.40, 139
Def6.1.42, 140
Def6.1.48, 144
Def6.1.49, 145
Def6.1.50, 145
Def6.1.54, 147
Def6.1.61, 153
Def6.1.62, 154
Def6.1.63, 154
Def6.1.65, 155
Def6.2.1, 157

Def6.2.2, 157

Def6.2.4, 159

Def6.2.6, 160

Def6.2.8, 161

Def6.2.10, 162
Def6.2.11, 163
Def6.2.13, 165
Def6.2.16, 167
Def6.3.1, 168

Def6.3.5, 169

Def6.3.7, 171

Def6.3.8, 173

Def6.3.9, 175
Def6.4.1, 178
Def6.4.2, 179
Def6.4.3, 179
Def6.4.4, 180
Def6.4.6, 181
Def6.4.8, 182
Def6.4.9, 182
Def6.4.11, 183
Def6.4.12, 184
Def6.4.13, 185
Def6.4.14, 185
Def6.4.16, 187
Def6.5.1, 196
Def6.5.4, 200
Def6.6.1, 201
Def6.6.2, 202

Proposition C.2.2, 278
Proposition C.2.4, 279
Proposition C.2.5, 280
Theorem C.3.2, 282
Proposition6.1.4, 112
Proposition6.1.5, 112
Proposition6.1.7, 113
Proposition6.1.8, 113
Proposition6.1.9, 114
Proposition6.1.10, 114
Proposition6.1.11,115
Theorem 6.1.13, 116
Proposition 6.1.22,127
Proposition6.1.23, 128
Proposition6.1.27, 129
Theorem 6.1.31, 132
Proposition6.1.32, 134
Proposition6.1.36, 135
Proposition6.1.38, 138
Proposition6.1.41, 139
Proposition6.1.43, 140
Proposition6.1.44, 140
Proposition6.1.45, 141
Proposition 6.1.46, 141
Theorem 6.1.47, 142
Proposition6.1.51, 145

290

INDEX

Proposition 6.1.52, 146
Proposition 6.1.55, 148
Proposition 6.1.56, 149
Proposition 6.1.57, 150
Proposition 6.1.58, 150
Proposition 6.1.60, 152
Proposition 6.1.64, 154
Proposition 6.1.66, 156
Proposition 6.2.3, 157
Proposition 6.2.7, 160
Proposition6.2.9, 161
Proposition 6.2.12, 164
Theorem 6.2.14, 165
Theorem 6.2.15, 167
Proposition6.2.17, 168
Proposition 6.3.2, 168
Proposition6.3.3, 168
Proposition 6.3.4, 169
Theorem 6.3.10, 176
Proposition 6.4.5, 180
Proposition 6.4.7, 181
Proposition6.4.15, 186
Proposition 6.4.17, 187
Proposition6.4.18, 188
Proposition 6.4.19, 188
Proposition 6.4.20, 191
Proposition 6.4.21, 191
Proposition 6.4.22, 192
Proposition 6.4.23, 193
Proposition 6.4.24, 194
Proposition 6.4.25, 194
Theorem 6.4.26, 195
Theorem 6.5.2, 196
Theorem 6.5.5, 200
Proposition 6.6.3, 203
Proposition 6.6.4, 203
Proposition 6.7.1, 204
Proposition 6.7.2, 205
Theorem 6.7.3, 205

291

Bibliography

[ABM9S]

[And94]

[BCCZ98]

[BOM+92]

[BDARY7]

[Ber94]

[BFH97]

[BGYS]

P. Ammann, P. E. Black, and William Majurski. Using model
checking to generate tests from specifications. In Proceedings
of the 2nd IEEE International Conference on Formal Engineer-
ing Methods (ICFEM ’98), pages 46-54, Brisbane, Australia,
December 1998.

H. R. Andersen. An introduction to binary decision diagrams.
http://www.daimi.aau.dk/BRICKS/vip/users/btools/
bdd-note.ps, December 1994.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. Obtained privately, 1998.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic model checking: 10%° states and beyond.
Information and Computation, 98:142-170, 1992.

C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico. Au-
tomatic executable test case generation for extended finite
state machine protocols. Technical Report 1060, Déparment
d’informatique et de recherche opérationnelle, Universidé of
Montréal, Universidé of Montréal, Montréal, Canada, March
1997.

P. J. Bernhard. A reduced test suite for protocol conformance
testing. ACM Trans. on Software Engineering and Methodology,
3(3):201-220, July 1994.

K. Bogdanov, M. Fairtlough, M. Holcombe, F. Ipate, and
C. Jordan. X-machine specification and refinement of digital

devices. Technical Report CS-97-16, Department of Computer
Science, The University of Sheffield, 1997.

R. Buessow and W. Grieskamp. The Z of ZETA. distributed
with ZETA,
http://uebb.cs.tu-berlin.de/zeta/, December 1998.

292

BIBLIOGRAPHY 293

[BGGYS

[BGG+99]

[BGGKY7]

[BGKYS]

[BH97]

[BHOS]

[BHS98a]

[BHS98b]

[BHS99]

[BKN]

[Bog96]

[Bog97]

T. Balanescu, H. Georgescu, and M. Gheorghe. Stream X-
machines with underlying distributed grammars. Obtained pri-
vately; the paper submitted to Informatica, 1998.

T. Balanescu, H. Georgescu, M. Georghe, M. Holcombe, and
C. Vertan. A new appproach to communicating X-machines
suystems. Obtained through private correspondence, 1999.

R. Bussow, R. Geisler, W. Grieskamp, and M. Klar. The pySZ
notation version 1.0. Technical Report 97-26, Technische Uni-
versitat Berlin, Fachbereich Informatik, December 1997.

R. Buessow, R. Geisler, and M. Klar. Specifying safety-critical
embedded systems with statecharts and Z: A case study. Lecture
Notes in Computer Science, 1382:71-87, 1998.

K. Bogdanov and M. Holcombe. The mapping between uSZ
statecharts and X-machines. ESPRESS Workshop, Berlin, Ger-
many, January 1997.

K. Bogdanov and M. Holcombe. September 98 report. internal
report for Daimler-Benz, October 1998.

K. Bogdanov, M. Holcombe, and H. Singh. Test generation
from statemate specifications. Testing Workshop, York, UK,
September 1998.

K. Bogdanov, M. Holcombe, and H. Singh. Testing statemate
models. Notes presented at the X-Machines Day, Department
of Computer Science, University of Sheffield, UK, July 1998.

K. Bogdanov, M. Holcombe, and H. Singh. Automated test
set generation for statecharts. In D. Hutter, W. Stephan,
P. Traverso, and M. Ullmann, editors, Applied Formal Methods
- FM-Trends 98, volume 1641 of Lecture Notes in Computer
Science, pages 107-121. Springer Verlag, 1999.

M. Benini, S. Kalvala, and D. Nowotka. Program abstraction
in a higher-level logic framework.
http://www.dcs.warwick.ac.uk/holly/papers/
AbstractionAndlLogic.ps.gz.

K. Bogdanov. Six-month report. Technical report, Department
of Computer Science, The University of Sheffield, October 1996.

K. Bogdanov. Basics of mapping from statecharts to X-
machines, the first year report. Technical report, Department
of Computer Science, The University of Sheffield, April 1997.

BIBLIOGRAPHY 294

[Bog98]

[BS96]

[BS99]

[Bur98]

[Bur99]

[BW9S]

[CAB*98]

[CGHY4]

[Cho78]

[CJ95]

[CK96]

K. Bogdanov. The second year report: a road to Ph.D. Tech-
nical report, Department of Computer Science, The University
of Sheffield, May 1998.

A. Bertolino and L. Strigini. On the use of testability measures
for dependability assessment. IEEFE transactions on Software
Engineering, 22, NO. 2:97-108, February 1996.

M. Broy and O. Slotosch. Enriching the software develop-
ment process by formal methods. In D. Hutter, W. Stephan,
P. Traverso, and M. Ullmann, editors, Applied Formal Methods
- FM-Trends 98, volume 1641 of Lecture Notes in Computer
Science, pages 44—61. Springer Verlag, 1999.

S. Burton. 1st year qualifying dissertation, 6 July 1998. Ob-
tained privately.

S. Burton. Towards automated unit testing of statechart imple-
mentations. Technical Report YCS 319, Department of Com-
puter Science, University of York, UK, 1999.

U. Brockmeyer and G. Wittich. Tamagotchis need not die —
verification of STATEMATE designs. Lecture Notes in Com-
puter Science, 1384:217-231, 1998.

W. Chan, R. Anderson, P. Beame, S. Burns, F. Modugno,
D. Notkin, and J. Reese. Model Checking Large Software
Specifications. IEEE Transactions on Software FEngineering,
24(7):498-520, 1998.

E. Clarke, O. Grumberg, and K. Hamaguchi. Another look
at LTL model checking. Lecture Notes in Computer Science,
818:415-427, 1994.

T. S. Chow. Testing software design modeled by finite-state
machines. IEEE Transactions on Software Engineering, SE-
4(3):178-187, 1978.

E. M. Clarke and S. Jha. Symmetry and induction in model
checking. Lecture Notes in Computer Science, 1000:455-470,
1995.

S. C. Cheung and J. Kramer. Checking subsystem safety proper-
ties in compositional reachability analysis. In 18th International
Conference on Software Engineering, pages 144-154, Berlin -
Heidelberg - New York, March 1996. Springer.

BIBLIOGRAPHY 295

[Cor96]

[CT98]
[CW96]

[Day93]

[DBY4]

[DBYS]

[DF93]

[DN84]

[Fau99]

[Fel98]

[FHIT95]

J. C. Corbett. Evaluating deadlock detection methods for con-
current software. IEEFE Transactions on Software Engineering,
22, NO. 3:161-180, March 1996.

Cadd and Todd. The final year project, 1998.

E. M. Clarke and J. M. Wing. Formal methods: State of the art
and future directions. ACM Computing Surveys, 28(4):626-643,
December 1996.

N. Day. A model checker for statecharts. Technical Report
TR-93-35, UBC, October 1993.
ftp://ftp.cs.ubc.ca/ftp/local/techreports/1993/
TR-93-35.ps.

TESSY - yet another computer-aided software testing tool? In
EuroSTAR. Daimler-Benz AG, 1994.

J. Derrick and E. A. Boiten. Testing refinements by
refining tests. In J. P. Bowen, A. Fett, and M. G.
Hinchey, editors, ZUM’98: The Z Formal Specification
Notation, volume 1493 of Lecture Notes in Computer
Science, pages 265-283. Springer-Verlag, September 1998.
http://www.cs.ukc.ac.uk /pubs/1998/609.

J. Dick and A. Faivre. Automating the generation and se-
quencing of test cases from model-based specifications. In
J.C.P. Woodcock and P.G. Larsen, editors, FME ’93: Indus-
trial Strength Formal Methods, volume 670 of Lecture Notes
in Computer Science, pages 268-284. Formal Methods Europe,
Springer Verlag, April 1993.

J. W. Duran and S. C. Ntafos. An evaluation of random testing.
IEEFE Transactions on Software Engineering, SE-10(4):438-443,
July 1984.

D. R. Faught. comp.software.testing.faq.
http://www.rstcorp.com/c.s.t.faq.html, 1999.

C. Feldman. False alarm on jet causes 2 near-crashes.
http://www.cnn.com/US/9801/15/near.collision/index.html,
January 1998.

M. Fairtlough, M. Holcombe, F. Ipate, C. Jordan, G. Laycock,
and Z. Duan. Using an X-machine to model a video cassette
recorder. Current issues in electronic modelling, 3:141-161,
1995.

BIBLIOGRAPHY 296

[FITV96]

[FIW97]

[FS97]

[FvBK*91]

[GHY9]

[GHDYS]

[GK96]

[Har87]

[Har97]

[HB97]

[HCBY2]

J.-C. Fernandez, C. Jard, T. Jeron, and G. Viho. Using on-
the-fly verification techniques for the generation of test suites.
Lecture Notes in Computer Science, 1102:348-359, 1996.

V. Friesen, S. Jahnichen, and M. Weber. Specification of soft-
ware controlling a discrete-continuous environment. In Proceed-
ings of the 19th International Conference on Software Engineer-
ing (ICSE ’97), pages 315-325, Berlin - Heidelberg - New York,
May 1997. Springer.

F. Fummi and D. Sciuto. a complete test strategy based on
interacting and hierarchical FSMs. In IEEFE International sym-
posium on Circuits and Systems, pages 2709-2712, June 1997.

S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi. Test selection based on finite state models. IEEE
Transactions on Software Engineering, 17(6):591 — 603, June
1991.

A. Gargantini and C. Heitmeyer. Using model checking to gen-
erate tests from requirements specifications. In proceedings of
ESEC/FSE’99, Tolouse, France, September 1999.

W. Grieskamp, M. Heisel, and H. D6rr. Specifying embedded
systems with statecharts and Z: An agenda for cyclic software
components. Lecture Notes in Computer Science, 1382:88-106,
1998.

R. Geisler and M. Klar. Towards a formal semantics for
statemate statecharts.
http://(espress/Arbeitsgruppen/Spezifikation/
dokumente/semantik.ps), August 1996.

D. Harel. Statecharts: a visual formalism for complex systems.
Science of Computer Programming, 8:231-274, 1987.

D. Harel. Some thoughts on statecharts, 13 years later. Lecture
Notes in Computer Science, 1254:226-231, 1997.

M. Holcombe and K. Bogdanov. The third step towards correct
software. British Colloquium for Theoretical Computer Science
(BCTCS) 13, Sheffield, UK, March 1997.

F. Hayes, D. Coleman, and S. Bear. Introducing objectcharts or
how to use statecharts in object oriented design. IEEE Trans-
actions on Software Engineering, 18(1):9-18, January 1992.

BIBLIOGRAPHY 297

[HGY4]

[HGY6]

[HGJRSS]

[HHH*99)

[HHS86]

[HI98]

[Hie96]

[Hie97a]

[Hie97b)

[Hie97c]

[Hie97d]

D. Harel and E. Gery. Executable object modeling with
statecharts.
http://www.wisdom.weizmann.ac.il/Papers/trs/
CS94-20/abstract.html, 1994.

D. Harel and E. Gery. Executable object modeling with stat-
echarts. In 18th International Conference on Software Engi-
neering, pages 246-257, Berlin - Heidelberg - New York, March
1996. Springer-Verlag.

C. Huizing, R. Gerth, and W. P. de Roever. Modelling stat-
echarts behaviour in a fully abstract way. Lecture Notes in
Computer Science, 299:271-294, 1988.

M. Harman, R. Hierons, M. Holcombe, B. Jones, S. Reid,
M. Roper, and M. Woodward. Towards a maturity model for
empirical studies of software testing. Obtained privately, July
1999.

J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement
refined (resumé). In ESOP’86, volume 213 of Lecture Notes in
Computer Science, pages 187-196. Springer Verlag, 1986.

M. Holcombe and F. Ipate. Correct Systems: building a business
process solution. Springer-Verlag Berlin and Heidelberg GmbH
& Co. KG, September 1998.

R. M. Hierons. Extending test sequence overlap by invertibility.
COMPJ: The Computer Journal, 39(4):325-330, 1996.
http://www.oup.co.uk/jnls/list/comjnl/hdb/Volume 39/
Issue_04/390325.sgm.abs.html.

R. M. Hierons. Controlling testing and failure location using a
finite state machine. Obtained through private correspondence,
1997.

R. M. Hierons. Testing from a finite state machine: extend-
ing invertibility to sequences. COMPJ: The computer journal,
40(4), 1997.

R. M. Hierons. Testing from a Z specification. Journal of soft-
ware testing, verification and reliability, 7(1):19-33, 1997.

R. M. Hierons. Testing from semi-independent communicating
finite state machines with a slow environment. IEE Proceedings
on Software Engineering, 144(5-6):291-295, 1997.

BIBLIOGRAPHY 298

[HL96]

[HLN*90]

[AMLS98]

[HNY6]

[HNS]

[HPSS87]

[HRAR92]

[HT0]

[THO6]

[THY7]

[TH98a]

M. E. Heimdahl and N. G. Leveson. Completeness and consis-
tency in hierarchical state-based requirements. IEEFE Transac-
tions on Software Engineering, 22(6):363-377, June 1996.

D. Harel, H. Lachover, A. Nammad, A. Pnueli, M. Politi,
R. Sherman, A. Shtull-Trauring, and M. Trakhtenbrot. STATE-
MATE: A working environment for the development of complex
reactive systems. IEEE Transactions on Software Engineering,

16(4):403-414, April 1990.

G. Holzmann, E. Mikk, Y. Lakhnech, and M. Siegel. Verifying
statecharts with Spin. Proc. Workshop on Industrial-strength
Formal specification Techniques, October 1998.

D. Harel and A. Naamad. The STATEMATE Semantics of
Statecharts. ACM Transactions on Software Engineering and
Methodology, 5(4):293-333, 1996.

S. Helke, T. Neustupny, and T. Santen. Automating test case
generation from Z specifications with isabelle.
http://(espress/Arbeitsgruppen/V&V/papers).

D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On the
formal semantics of statecharts (extended abstract). In Sympo-
sium on Logic in Computer Science (LICS ’87), pages 5464,
Washington, D.C., USA, June 1987. IEEE Computer Society
Press.

J. J. M. Hooman, S. Ramesh, and W.P. de Roever. A com-
positional axiomatization of statecharts. Theoretical Computer
Science, 101:289-335, 1992.

D. Hamlet and R. Taylor. Partition testing does not in-
spire confidence. IEEFE Transactions on Software Engineering,
16(12):1402-1411, December 1990.

F. Ipate and M. Holcombe. Another look at computability.
Informatica, 20:359-372, 1996.

F. Ipate and M. Holcombe. An integration testing method that
is proved to find all faults. International Journal on Computer
Mathematics, 63:159-178, 1997.

F. Ipate and M. Holcombe. A method for refining and test-
ing generalised machine specifications. International Journal
on Computer Mathematics, 68:197-219, 1998.

BIBLIOGRAPHY 299

[THY8D)

[TH99]

[I095a]

[Ilo95b]

[Ipa9s]

[TMY4]

[Kan99]

[Kar92]

[KE98]
[KHC*99)

[KP92]

[KP98]

F. Ipate and M. Holcombe. Specification and testing using gen-
eralized machines:a presentation and a case study. Software
testing, verification and reliability, 8, 1998.

F. Ipate and M. Holcombe. Generating test sequences from non-
deterministic X-machines. Obtained from Prof. M. Holcombe,
1999.

llogix, inc. Statemate Analyser reference manual, v6.0, May

1995.

Tlogix, inc. Statemate User reference manual, Volume 1, v6.0,

May 1995.

F. E. Ipate. Theory of X-machines and Applications in Speci-
fication and Testing. PhD thesis, University of Sheffield, July
1995.

F. Jahanian and A. K. Mok. Modechart: A specification lan-
guage for real-time systems. IEEE Transactions on Software
Engineering, 20(12):933-947, December 1994.

C. Kaner.
http://www.nmsvr.com/~kaner/, 1999.

G. Karjoth. Implementing LOTOS specifications by commu-
nicating state machines. In W. R. Cleaveland, editor, CON-
CUR ’92: Third International Conference on Concurrency The-
ory, volume 630 of Lecture Notes in Computer Science, pages
386-400, Stony Brook, New York, August 1992. Springer-
Verlag.

Khan and East. The final year project, 1998.

Y. G. Kim, H. S. Hong, S. M. Cho, D. H. Bae, and S. D. Cha.
Test cases generation from UML state diagrams. IEE Proceed-
ings - Software, 146(4):187-192, August 1999.

Y. Kesten and A. Pnueli. Timed and hybrid statecharts and
their textual representation. In J. Vytopil, editor, Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, number 571
in Lecture Notes in Computer Science, pages 591-620, Berlin,
1992. Springer-Verlag.

T. Koomen and M. Pol. Improvement of the test process using
TPI.
http://www.iquip.nl/images/tpi_summary.doc, 1998.

BIBLIOGRAPHY 300

[Lay92]

[LC96]

[LFHH]

[LHHR94]

[LvBPY4]

[LY94]

[Mar92]

[Meu98]

[Mil89]

[MLPS97]

G. T. Laycock. The Theory and Practice of Specification Based
Software Testing. PhD thesis, University of Sheffield, September
1992.

K. R. P. H. Leung and D. K. C. Chan. Extending statecharts
with duration.
ftp://ftp.cs.utwente.nl/pub/doc/0M/chan/
96.08_P_Statecharts.ps.gz, 1996.

L. Logrippo, M. Faci, and M. Haj-Hussein. An introduction to
LOTOS: Learning by examples.
ftp://lotos.csi.uottawa.ca/pub/Lotos/Papers/tutorial

N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese.
Requirements specification for process-control systems. IEEE
Transactions on Software Engineering, 20(9):684-707, Septem-
ber 1994.

G. Luo, G. von Bochmann, and A. Petrenko. Test selection
based on communicating nondeterministic finite-state machines
using a generalized WP-method. IEEE Transactions on Soft-
ware Engineering, 20(2):149-162, February 1994.

D. Lee and M. Yannakakis. Testing finite state machines: State
identification and verification. IEEE Transactions on Software
Engineering, 43(3):306-320, March 1994.

F. Maraninchi. Operational and compositional semantics of syn-
chronous automaton compositions. In W. R. Cleaveland, edi-
tor, CONCUR ’92: Third International Conference on Concur-
rency Theory, volume 630 of Lecture Notes in Computer Sci-
ence, pages 550-564, Stony Brook, New York, August 1992.
Springer-Verlag.

C. Meudec. Aytomatic Generation of Software Test Cases from
Formal Specifications. PhD thesis, The Queen’s University of
Belfast, May 1998.
http://www.geocities.com/CollegePark/Square/4148/
research/thesis/thesis.zip.

R. Milner. Communication and Concurrency. Prentice Hall,
1989.

E. Mikk, Y. Lakhnech, C. Petersohn, and M. Siegel. On for-
mal semantics of statecharts as supported by statemate. In
BCS-FACS Nothern Formal Methods Workshop, pages 0-13,
Craiglands Hotel, Ilkley, West Yorkshire, U.K., July 1997.

.ps.Z.

BIBLIOGRAPHY 301

[MLS97]

[MSP96]

[MSPTY6]

[MST97]

[Mye79]

[NHY5]

[NRS96]

[0A99]

[Ove94]

[PCCW93]

[Pel96]

E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical automata
as model for statecharts. Lecture Notes in Computer Science,
1345:181-196, 1997.
http://www.informatik.uni-kiel.de/~erm/FILES/
asian97.ps.

A. Maggiolo-Schettini and A. Peron. A graph rewriting frame-
work for statecharts semantics. Lecture Notes in Computer Sci-
ence, 1073:107-121, 1996.

A. Maggiolo-Schettini, A. Peron, and S. Tini. Equivalences of
statecharts. In Ugo Montanari and Vladimiro Sassone, editors,
CONCUR ’96: Concurrency Theory, Tth International Confer-
ence, volume 1119 of Lecture Notes in Computer Science, pages
687-702, Pisa, Italy, August 1996. Springer-Verlag.

A. Maggiolo-Schettini and S. Tini. Projectable semantics for
statecharts.

http://www.daimi.aau.dk/~bra8130/

LOMAPS _archive/DIPISA-37.ps.Z, 1997.

G. J. Myers. The art of software testing. John Wiley and Sons,
1979.

A. Naamad and D. Harel. The statemate semantics of state-
charts. Technical Report, Weizmann Institute of Science, 1995.

D. Nazareth, F. Regensburger, and P. Scholz. Mini-statecharts:
A lean version of statecharts.
http://www4.informatik.tu-muenchen.de/reports/
TUM-19610.ps.gz, February 1996.

J. Offutt and A. Abdurazik. Generating tests from UML spec-
ifications. In Second International Conference on the Unified
Modeling Language (UML99), Fort Collins, CO, October 1999,
October 1999.

J. Overback. Testing generic classes. FuroSTAR 1994, pages
41/1-41/11, 1994.

M. Paulk, B. Curtis, M. Chrissis, and C. Weber. Capability
maturity model for software, version 1.1. Technical Report
CMU/SEI-93-TR-024,ESC-TR-93-177, SEI, February 1993.

J. Peleska. Test automation for safety-critical systems: Indus-
trial application and future developments. In M. C. Gaudel and
J. Woodcock, editors, FME’96: Industrial Benefit and Advances
in Formal Methods, pages 39-59. Springer, 1996.

BIBLIOGRAPHY 302

[Per95]

[PF90]

[PM94]

[Pre94]

[PS91]

[PS96a]

[PS96b]

[PS97a]

[PS97b]

[PSM96]

A. Peron. Statecharts, transition structures and transforma-
tions. Lecture Notes in Computer Science, 915:454-468, 1995.

D. H. Pitt and D. Freestone. The derivation of conformabnce
tests from LOTOS specifications. IEEE Transactions on Soft-
ware Engineering, 16(12):1337-1343, December 1990.

A. Peron and A. Maggiolo-Schettini. Transitions as interrupts:
A new semantics for timed statecharts. Lecture Notes in Com-
puter Science, 789:806-821, 1994.

R. S. Pressman. Software Engineering, a practitioner’s ap-
proach. London, McGraw-Hill, third edition, 1994.

A. Pnueli and M. Shalev. What is in a step: On the seman-
tics of statecharts. In T. Ito and A. Meyer, editors, Int. Conf.
TACS’91: Theoretical aspects of Computer Software, volume
526, pages 244-264. Springer-Verlag, September 1991.

J. Peleska and M. Siegel. From testing theory to test driver
implementation. In M. C. Gaudel and J. Woodcock, editors,
FME’96: Industrial Benefit and Advances in Formal Methods,
pages 538-556. Springer, 1996.

J. Peleska and M. Siegel. Test automation of safety-critical
reactive systems.
http://www.informatik.uni-bremen.de:80/~jp/
papers/sacj97.ps.gz, August 1996.

J. Philipps and P. Scholz. Compositional specification of
embedded systems with statecharts. In Michel Bidoit and
Max Dauchet, editors, TAPSOFT’97:Theory and Practice
of Software Development, volume 1214 of Lecture Notes in
Computer Science, pages 637-651, Lille, France, April 1997.
Springer-Verlag.
http://hpbroy3.informatik.tu-muenchen.de/~scholzp/
Postscript/tapsoft.ps.

J. Philipps and P. Scholz. Formal verification of statecharts
with instantaneous chain reactions. In TACAS’97, Twente,
1997.
http://hpbroy3.informatik.tu-muenchen.de/~scholzp/
Postscript/tacas.ps.

C. Puchol, D. Stuart, and A. K. Mok. An operational semantics
and a compiler for modechart specificiations. Technical Report
CS-TR-95-37, University of Texas, Austin, July 1996.

ftp://ftp.cs.utexas.edu/pub/techreports/tr95-37.ps.Z.

BIBLIOGRAPHY 303

[PSS98]

[PYvBD96]

[Rat97]

[RDT95a]

[RDT95b]

[Rop94]
[RR93]

[Sac98]

[Sad9g]

[Sch96]

[SCWYS]

[Shig5)

A. Pnueli, M. Siegel, and E. Singerman. Translation validation.
Lecture Notes in Computer Science, 1384:151-166, 1998.

A. Petrenko, N. Yevtushenko, G. von Bochmann, and
R. Dssouli. Testing in context: framework and test derivation.
Computer Communications, 19:1236-1249, 1996.

Rational Corp. UML 1.1 semantics - behavioral elements
package: State machines.
http://www.rational.com/uml/resources/
documentation/semantics/semantila.jtmpl, September
1997.

T. Ramalingam, A. Das, and K. Thulasiraman. Fault detection
and diagnosis capabilioties of test sequence selection methods
based on the fsm model. Computer Communications, 18(2):113—
122, February 1995.

T. Ramalingam, A. Das, and K. Thulasiraman. On testing and
diagnosis of communication protocols based on the fsm model.
Computer communications, 18(5):329-337, May 1995.

M. Roper. Software Testing. McGraw-Hill, 1994.

M. Roper and R. Rahim. Software testing using analysis and
design based techniques. Software Testing, Verification and Re-
liability, 3:165-179, 1993.

Sacres project.
http://www.tni.fr/sacres/indexpres.html, 1998.

S. Sadeghipour. Testing Cyclic Software Componenets of Reac-
tive Systems on the Basis of Formal Specifications. Verlag Dr.
Kovaé, 1998.

P. Scholz. An extended version of mini-statecharts.
http://wwwé4.informatik.tu-muenchen.de/reports/
TUM-19628.ps.gz, June 1996.

S. Stepney, D. Cooper, and J. C. P. Woodcock. More powerful
7 data refinement: Pushing the state of the art in industrial
refinement. Lecture Notes in Computer Science, 1493:284-307,
1998.

F. Shi. Automatic coding from ZedCharts to SPARC Ada for
Safety-Critical Systems. PhD thesis, University of York, UK,
October 1995.

BIBLIOGRAPHY 304

[Sim00]

[SL89]

[SLDY0]

[Spi92]

[SS98]

[SVG]

[Toy98]

[TPvBY6]

[TPvB97]

[TS95]

A. J. H. Simons. On the compositional properties of UML stat-
echart diagrams. To appear in proceedings of the 3rd Rigorous
Object-Oriented Methods workshop (ROOM3), University of
York, UK, January 2000.

D. Sidhu and T. Leung. Formal methods for protocol testing:
A detailed study. IEEE Transactions on Software Engineering,
15(4):413 — 426, 1989.

Y.-N. Shen, F. Lombardi, and A. T. Dahbura. Protocol confor-
mance testing using multiple uio sequences. In E. Brinksma,
G. Scollo, and C. A. Vissers, editors, Protocol Specification,
Testing and Veification IX, pages 131-143. Elsevier Schence
Publishers B.V. (North-Holland), 1990.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice
Hall International Series in Computer Science, 2nd edition,
1992.

http://www.blackwell.co.uk/cgi-bin/bb_item?0139785299.

S. Sadeghipour and H. Singh. A tool environmenet for testing
on the basis of formal specifications. Obtained privately, 1998.

A. A. Salona, J. Q. Vives, and S. P. Gémez. An introduction
to LOTOS.

ftp://ftp.dit.upm.es/pub/lotos/papers/
tutorial/lotos_language_tutorial.ps.

I. Toyn. Innovations in the notation of standard Z. Lecture
Notes in Computer Science, 1493:193-213, 1998.

Q. M. Tan, A. Petrenko, and G. v. Bochmann. A test generation
tool for specifications in the form of state machines. In Inter-
national Communications Conference (ICC) 96, session on ad-
vanced tools and technologies for developing high integrity soft-
ware systems, Dallas, Texas, pages 225—229, 23-27June 1996.

Q. M. Tan, A. Petrenko, and G. von Bochmann. Deriving
test with fault coverage for specificatios in the form of labeled
transition systems. Technical Report 1073, Universiteé de
Montreéal, June 1997.
http://www.iro.umontreal.ca/labs/teleinfo/
TRs/P1073.ps.gz.

P. Tripathy and B. Sarikaya. Analysis and representation of
test cases generated from LOTOS. Computer Communications,
18(7):493-506, July 1995.

BIBLIOGRAPHY 305

[Ura92]

[US94]

[vdB93]

[vdB94]

[vdSU95]

[WD96]

[Web96]

[Wez90]

[WTF94]

[WVF95]

[XMI99]

[XML]

H. Ural. Formal methods for test sequence generation. Com-
puter Communications, 15(5):311-325, 1992.

A. C. Uselton and S. A. Smolka. A compositional semantics for
statecharts using labeled transition systems. In Bengt Jonsson
and Joachim Parrow, editors, CONCUR ’94: Concurrency The-
ory, volume 836 of Lecture Notes in Computer Science, pages
2-17, Berlin, 1994. Springer Verlag.

M. von der Beeck. Integration of structured analysis and timed
statecharts for real-time and concurrency specification. Lecture
Notes in Computer Science, 717:313-328, 1993.

M. von der Beeck. A comparison of statecharts variants. Lecture
Notes in Computer Science, 863:128-148, 1994.

H. van der Schoot and H. Ural. Data flow oriented test se-
lection for LOTOS. Computer Networks and ISDN Systems,
27(7):1111-1136, 1995.

J. Woodcock and J. Davies. Using Z Specification, Refinement,
and Proof. London, Prentice Hall, 1996.

M. Weber. Combining statecharts and Z for the design of safety-
critical systems. In M. C. Gaudel and J. Woodcock, editors,
FME’96: Industrial Benefit and Advances in Formal Methods,
volume 1051, pages 307-326. Springer, 1996.

C. Wezeman. The CO-OP method for compositional derivation
of conformance testers. In E. Brinksma, G. Scollo, and C. A.
Vissers, editors, Protocol Specification, Testing and Veification
IX, pages 145-158, 1990.

H. Waeselynck and P. Thévenod-Fosse. An experimentation
with statistical testing. FuroSTAR 1994, 1994.

J. M. Wing and M. Vagziri-Farahani. Model Checking Software
Systems: A Case Study. In Proceedings of SIGSOFT’95 Third
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 128-139, October 1995.

XML metadata interchange.
http://www.software.ibm.com/ad/standards/xmi.html,
1999.

Extensible markup language.
http://www.w3.org/XML/.

