
Using a Named Entity Tagger to Generalise
Surface Matching Text Patterns for Question Answering

Mark A. Greenwood and Robert Gaizauskas
Department of Computer Science

University of Sheffield
Regent Court, Portobello Road

Sheffield S1 4DP UK
{m.greenwood,r.gaizauskas }@dcs.shef.ac.uk

Abstract

This paper explores one particular lim-
itation common to question answering
systems which operate by using induced
surface matching text patterns – namely
the problems concerned with question
specific words appearing within the in-
duced answer extraction pattern. We
suggest a solution to this problem by
generalising the learned answer extrac-
tion patterns to include named entity
classes.

1 Introduction

Many of the open-domain question answering sys-
tems developed prior to 2001 were heavily reliant
on external sources of knowledge and tools for
pinpointing exact answers within text. These in-
cluded resources such as WordNet (Miller, 1995),
named entity taggers, parsers and gazetteers. The
performance of these systems varied widely with
one of the best performing systems, FALCON
(Harabagiu et al., 2000), being able to answer
approximately 65% of the questions (Voorhees,
2000).

However, at the 10th Text REtrieval Confer-
ence, TREC 2001 (Voorhees, 2001), a system was
entered that used only a single resource consist-
ing of a large collection of surface matching text
patterns which were derived using simple machine
learning techniques from a set of question-answer
pairs and a corpus of documents in which the an-
swer was known to occur (Soubbotin and Soub-

botin, 2001). The surprising fact, was that this
system did exceptionally well, performing better
than any of the other systems entered into the eval-
uation. The performance of what appeared to be
a relatively simple system, provoked so much in-
terest that at least one group, Ravichandran and
Hovy (2002), choose to implement their own ver-
sion.

In this paper we observe that overly specific
patterns learned by this approach can cause prob-
lems such that it becomes extremely difficult to an-
swer certain types of question. These problems are
highlighted using our own implementation which
has been developed as the basis for a more ad-
vanced question answering system.

2 The Basic Pattern Induction Approach

The following sections detail the algorithms in-
volved in the basic approach to finding and us-
ing surface matching text patterns to answer ques-
tions.

2.1 Learning Text Patterns

Our approach to learning patterns is similar to that
outlined in the paper by Ravichandran and Hovy
(2002) as it also relies on suffix trees (Ukkonen,
1995) to extract patterns of an optimal length from
unstructured text. The best way of describing the
algorithm is through an example. The input to the
algorithm is a set of questions of a specific type
and their associated exact answer phrases. For
comparison with the Ravichandran paper we will
use questions of the form“When was X born?”.
Given this the algorithm is as follows:

1. For each example question of the specific
question type, produce a pair consisting of
the question term and the answer term. For
example:

• “Abraham Lincoln” “1809”

• “Adolf Hitler” “1889”

• “Louisa May Alcott” “1832”

• “Isaac Asimov” “1920”

2. For each example the question and answer
terms are submitted to Google, as a single
query, and the top 10 documents are down-
loaded1.

3. Each document then has the question term re-
placed by the single tokenAnCHoRand the an-
swer term byAnSWeR.

4. A tokeniser and sentence splitter are then ap-
plied to the documents.

5. Those sentences which contain bothAnCHoR

andAnSWeRare retained and joined together
to create one single document, in which each
sentence is separated by a# and the end of
the created document is marked by$2.

6. The single generated document is then used
to produce a token-level suffix tree, from
which the repeated substrings are then ex-
tracted.

7. Finally the list of repeated substrings is fil-
tered to retain only those which contain both
AnCHoRand AnSWeRand do not span a sen-
tence boundary (i.e. do not contain# or $).

This produces a set of patterns for the specific
question type. The following are a few of the pat-
terns generated using this approach, for questions
of the form“When was X born?”:

from AnCHoR (AnSWeR - 1969)
AnCHoR , AnSWeR -
- AnCHoR (AnSWeR
from AnCHoR (AnSWeR -
: AnCHoR , AnSWeR -

Unfortunately some of these patterns are specific
to one or more of the questions used to gener-
ate them (e.g. the first pattern includes a date of
death, which is question specific). A further stage

is therefore needed to analyse the patterns to de-
cide which are generic enough to be used to an-
swer unseen questions.

The algorithm used to analyse the patterns and
discard those which are not generic, also allows us
to associate a numerical precision with each pat-
tern which can later be used as a measure of how
confident the system is in any answers it proposes.
Continuing with the same example as above, the
steps in this algorithm are as follows:

1. Using a different set of question-answer
pairs, only the question term is submitted to
Google and the top ten documents are down-
loaded.

2. Each document then has the question term re-
placed byAnCHoRand the answer term (if it
appears within the document) is replaced by
AnSWeR.

3. Those sentences which containAnCHoR are
retained and joined together to create one sin-
gle document.

4. Each of the previously generated patterns is
converted to a standard regular expression de-
signed to capture the answer text, giving ex-
pressions such as3:
from AnCHoR \(([ˆ]+) - 1969 \)
AnCHoR , ([ˆ]+) -
- AnCHoR \(([ˆ]+)
from AnCHoR \(([ˆ]+) -
: AnCHoR , ([ˆ]+) -

These regular expressions allow us to easily
retrieve the single token whichAnSWeRin the
original pattern would have matched against.

5. Each regular expression is then matched
against each sentence in the generated docu-
ment. Along with each pattern,P , two counts
are maintained:CP

a , which counts the to-
tal number of times this pattern has matched

1. The documents are actually downloaded from Googles
cache to guarantee that we use the version of the page indexed
by Google.

2. These separators are a necessary part of the suffix tree
construction and processing but they do not appear in the re-
sulting patterns.

3. For those not familiar with standard regular expressions,
([ˆ]+) matches any sequence of one or more non-space
characters and captures that part of the text in a variable for
latter use.

Regular Expression Precision
AnCHoR \(([ˆ]+) - 0.967
AnCHoR \(([ˆ]+) 0.566
AnCHoR ([ˆ]+) - 0.263

Table 1: Regular expressions and their associated
precision for questions of the form“When was X
born?”.

against the text andCP
c , which counts the

number of matches which hadAnSWeRas the
extracted answer.

6. After a pattern,P , has been matched against
every sentence in the generated document if
CP

c is less than five then it is discarded other-
wise the precision of the pattern is calculated
as CP

c /CP
a and the pattern is retained if its

precision is greater than 0.14.

Using this method to produce a list of anal-
ysed patterns for the question type“When was X
born?” gives regular expressions such as those in
Table 1, which are now generic and could be ap-
plied to any other question of the same type.

2.2 Using Text Patterns to Find Answers

Using these regular expressions to find answers to
questions is extremely simple. Firstly the question
term is extracted from the question and submitted
as a query to Google. Each document returned
by Google then has the question term replaced by
AnCHoRand those sentences containgAnCHoRare
retained to create a single document. Each regular
expression is then matched against the sentences
and for each successful match the token captured
by the expression is stored along with the preci-
sion of the pattern. When all the regular expres-
sions have been applied to all the sentences, any
answers found are sorted based firstly on the pre-
cision of the pattern which located them and sec-
ondly on the number of times the same answer was
found.

3 The Limitations Imposed by Overly
Specific Patterns

Most papers which describe systems using surface
matching text patterns (Soubbotin and Soubbotin,
2001; Ravichandran and Hovy, 2002), including

the current paper, explain the workings of the sys-
tem through questions of the form“When was X
born?” often using“When was Mozart born?”as
a specific example. One or more of the analysed
patterns are usually capable of extracting the an-
swer from text such as:“Mozart (1756-1791) was
a musical genius”. Indeed extracting the answer
from sentences of this form is a sensible thing to
do, due to the fact that this formulation of the an-
swer is both precise and commonly occurring in
unstructured text. This example, however, exposes
a serious problem with the approach.

A similar question, which could also be an-
swered from the example sentence, is“When did
Mozart die?”. The problem is that generating pat-
terns for this type of question using multiple ex-
amples will not lead to a simple generic pattern
that can be applied to other questions. The ex-
tracted patterns, for a single example, will include
the year of birth, such as:

AnCHoR (1756 - AnSWeR
AnCHoR (1756 - AnSWeR)

When these patterns are analysed against a second
set of question-answer pairs, and their precision
is calculated, they will most likely be discarded5,
due to the presence of a specific year of birth. This
problem does not occur when generating patterns
for questions of the form“When was X born?”as
multiple patterns will be produced some of which
contain the date of death and some of which do
not, simply because the date of death usually ap-
pears after the year of birth in the answer phrases.

More generally any acquired pattern mustcon-
sist of three components 1) theAnCHoRtag (which
gets initialised as the question-specific anchor, e.g.
Mozart), 2) theAnSWeRregular expression, and 3)
literal text occurring between 1) and 2). In the
basic text pattern learning approach of Section 2,
component 3) cannot be generalised, i.e. cannot be
a regular expression containing meta-characters,
and hence can only match itself.

There are other patterns, which could be ex-
tracted, for questions of the form“When did X

4. These cut-off values were adopted based on empirical
observations made during development.

5. An exception, specific to this example, would be if the
same year of birth appeared in the question sets used for both
inducing the answer patterns and assigning precisions to the
answer patterns.

die?”. For example:
AnCHoR died in AnSWeR
AnCHoR was killed in AnSWeR

These patterns, however, are not as precise as
those possible for“When was X born?” (for ex-
ampleAnSWeRcould easily be a location instead
of a date). In an experiment (documented in Sec-
tion 5) our system failed to generate any patterns
for the question type”When did X die?”.

4 Generalising the Answer Patterns

It is clear that for this style of question answer-
ing to be as accurate as possible a way needs to
be found to generate as precise a set of patterns
as possible for each question type. As we have
already noted one problem is that in certain for-
mulations of the answer phrase words specific to
the question appear betweenAnCHoRandAnSWeR.
Many of these words are dates, names and loca-
tions in fact exactly the words that can be recog-
nised using the well understood natural language
techniques of gazetteers and named entity taggers.
The solution employed by our system is therefore
a combination of the question answering system
described in Section 2 and a gazetteer and a named
entity tagger6.

The approach taken to incorporate these NLP
techniques is to substitute the text marked as a
named entity by a tag representing its type, hence
dates becomeDatE , locations becomeLocatioN ,
etc. This replacement is carried out after the
question and answer text have been replaced with
AnCHoR and AnSWeRrespectively but before any
other processing is carried out. This is the only
change to the algorithms for inducing and assign-
ing precisions to the answer patterns.

When these new patterns are used to answer
questions extra work is, however, required as it is
possible that an answer found by a pattern may in
fact be, or may include, a named entity tag. When
using the patterns not only do we replace named
entities with a tag but also store the original text so
that if an answer contains a tag it can be expanded
back to the original text.

As was previously mentioned, the standard im-
plementation failed to create any patterns for the
questions“When did X die?” this extended imple-
mentation, however, produces regular expressions

Regular Expression Precision
AnCHoR \(DatE - ([ˆ]+) \) . 1.000
AnCHoR \(DatE - ([ˆ]+) \) 1.000
AnCHoR DatE - ([ˆ]+) 0.889

Table 2: Regular expressions, augmented with
named entity tags, and the associated precisions
for questions of the form“When did X die?”.

Regular Expression Precision
AnCHoR \(([ˆ]+) - 0.941
AnCHoR \(([ˆ]+) - DatE \) . 0.941
AnCHoR \(([ˆ]+) - DatE \) 0.941
AnCHoR \(([ˆ]+) 0.600
AnCHoR ([ˆ]+) - DatE 0.556
AnCHoR ([ˆ]+) - 0.263

Table 3: A selection of regular expressions, aug-
mented with named entity tags, and the associated
precisions for questions of the form“When was X
born?”.

such as those in Table 2.
It is clear, from these patterns, that incorporat-

ing the NLP techniques allowed us to extract ex-
actly the type of patterns we extended the system
to handle.

This extended system can also be used to gener-
ate a new set of patterns for questions of the form
“When was X born?”, a selection of these can be
seen in Table 3.

5 Results

A set of experiments was carried out to see the ef-
fect of extending the patterns in the way suggested
in the previous section. The question sets used
for the experiments consisted of one hundred and
forty examples, divided into three groups: twenty
examples for inducing the patterns, twenty for as-
signing precisions to the patterns and one hundred
over which to test the patterns. A selection of the
analysed patterns have already been presented in
Tables 1, 2 and 3.

Results are given for four experiments the com-
bination of the original and extended systems over

6. The gazetteer and named entity tagger used in these ex-
periments are slightly modified versions of those which are
included as part of the GATE 2 framework (Cunningham et
al., 2002), available from http://gate.ac.uk.

System % Correctly MRR Confidence
Number Answered Score Weighted

1 52% 0.52 0.837
2 53% 0.52 0.843
3 0% 0.00 0.000
4 53% 0.53 0.852

Table 4: Results of using both the original and ex-
tended systems.

the two different question types. The experiments
are as follows:

1. The original system answering questions of
the form“When was X born?”.

2. The extended system answering questions of
the form“When was X born?”.

3. The original system answering questions of
the form“When did X die?”.

4. The extended system answering questions of
the form“When did X die?”.

The results of these experiments can be seen
in Table 4. The mean reciprocal rank (MRR)
score (Voorhees, 2001) of 0.52 for system 1 is
comparable to the results of similar experiments
(Ravichandran and Hovy, 2002) over the same
question type.

The results show that not only does the extended
system allow us to achieve similar results for the
questions“When did X die?”but also that extend-
ing the system in this way had no significant detri-
mental effects on the performance over question
types answerable by the original system and actu-
ally produced a higher confidence weighted score
(Voorhees, 2002) for all question types. The slight
increase in the confidence weighted score is proba-
bly due to the greater number of overlapping high
precision patterns induced for a specific question
type. This leads to the same answer being ex-
tracted more often and with a higher precision than
in the original system, leading to these answers be-
ing ranked higher when the answers for multiple
questions are sorted.

6 Discussion and Conclusions

Although the results given in this paper cover only
a small number of experiments, they show that
the use of a gazetteer and named entity tagger al-
low the simple pattern matching question answer-
ing system to be extended to answer some ques-
tions which the original approach could not an-
swer. Furthermore, the performance of the ex-
tended system on questions which could already
be answered is improved.

Clearly more experimentation is needed before
we can claim that this technique solves all the
problems associated with overly specific answer
patterns. This paper has shown that it successfully
handles one specific question type. Experiments
were also carried out for the question type“What
is the capital of X?”in which although the extend
system produced better results, than the original
system, the improvement was not significant, be-
cause in most cases no question-specific text fell
between theAnCHoRand theAnSWeR.

It should be clear, however, that this ap-
praoch can be applied to any question type where
question-specific text is likely to occur between
the AnCHoRand theAnSWeR, such as“When was
America discovered?” which can easily be an-
swered by the text“In 1492 Columbus discovered
America”, where Columbus needs to be gener-
alised before a sensible pattern could be induced
from this answer phrase.

There are other ways in which the text within an
answer pattern can be generalised, and we do not
claim that our solution is the only way forward,
rather that it has been shown to work well over a
small set of question types. More work is needed
to expand not only the types of question the sys-
tem can answer but also to test other methods of
generalising the surface matching text patterns in-
duced from free text.

References

H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. 2002. GATE: A framework and graphical
development environment for robust NLP tools and
applications. InProceedings of the 40th Anniver-
sary Meeting of the Association for Computational
Linguistics.

Sanda Harabagiu, Dan Moldovan, Marius. Paşca, Rada
Mihalcea, Mihai Surdeanu, Řazvan Bunescu, Rox-
ana Ĝırju, Vasile Rus, and Paul Morǎrescu. 2000.
FALCON: Boosting Knowledge for Answer En-
gines. InProceedings of the 9th Text REtrieval Con-
ference.

George A. Miller. 1995. WordNet: A Lexical
Database.Communications of the ACM, 38(11):39–
41, November.

Deepak Ravichandran and Eduard Hovy. 2002. Learn-
ing Surface Text Patterns for a Question Answering
System. InProceedings of the 40th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 41–47, Pennsylvania.

M. M. Soubbotin and S. M. Soubbotin. 2001. Pat-
terns of Potential Answer Expressions as Clues to
the Right Answers. InProceedings of the 10th Text
REtrieval Conference.

E. Ukkonen. 1995. On-line Construction of Suffix
Trees.Algorithmica, 14(3):249–260.

Ellen M. Voorhees. 2000. Overview of the TREC-9
Question Answering Track. InProceedings of the
9th Text REtrieval Conference.

Ellen M. Voorhees. 2001. Overview of the TREC 2001
Question Answering Track. InProceedings of the
10th Text REtrieval Conference.

Ellen M. Voorhees. 2002. Overview of the TREC
2002 Question Answering Track. InProceedings of
the 11th Text REtrieval Conference. Draft version
which appeared in the conference notebook.

