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Abstract

This paper describes an Information Extrac-
tion (IE) system to identify genic interactions
in text. The approach relies on the automatic
acquisition of patterns which can be used to
identify these interactions. Performance is
evaluated on the Learning Language in Logic
(LLL-05) workshop challenge task.

1. Extraction Patterns

The approach presented here uses extraction patterns
based on paths in dependency trees (Lin, 1999). De-
pendency trees represent sentences using dependency
relationships linking each word in the sentence with
the words which modify it. For example in the noun
phrase brown dog the two words are linked by an ad-
jective relationship with the noun dog being modified
by the adjective brown. Each word may have several
modifiers but each word may modify at most one other
word.

In these experiments the extraction patterns consist
of linked chains, an extension of the chain model pro-
posed by Sudo et al. (2003) which represents patterns
as any chain-shaped path in a dependency tree starting
from a verb node. Our model extends this to patterns
produced by joining pairs of chains which share a com-
mon verb root but no direct descendants. For example
the fragment “...agent represses the transcription of
target...” can be represented by the dependency
tree in Figure 1. From such a tree we extract all the
chains and linked chains that contain at least one se-
mantic category giving the 4 patterns (2 chains and 2

Appearing in Proceedings of the 4 th Learning Language in
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linked chains) shown in Table 1.

Figure 1. An example dependency tree.

The nodes in the dependency trees from which our
patterns are derived can be either a lexical item or
a semantic category such as gene, protein, agent,
target, etc. Lexical items are represented in lower
case and semantic categories are capitalised, e.g. in
verb[v/transcribe](subj[n/GENE]+obj[n/PROTEIN])1 ,
transcribe is a lexical item while GENE and PROTEIN

are semantic categories which could match any lexical
item of that type. These patterns can be used to
extract interactions from parsed text by matching
against dependency trees.

2. Extraction Pattern Learning

Our approach learns patterns automatically by identi-
fying those with similar meanings to a set of seed pat-
terns known to be relevant. The motivation behind
this approach is that language is often used to express
the same information in alternative ways. For example
“agent represses the transcription of target”, “the
transcription of target is repressed by agent”, and
“target (repressed by agent)” describe the same in-
teraction. Our approach aims to identify various ways
interactions can be expressed by identifying patterns

1In this pattern representation + signifies that two nodes
are siblings and a nodes descendants are grouped within (
and ) directly after the node.
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verb[v/repress](subj[n/AGENT])

verb[v/repress](obj[n/transcription](of[n/TARGET]))

verb[v/repress](obj[n/transcription]+subj[n/AGENT])

verb[v/repress](obj[n/transcription](of[n/TARGET])+subj[n/AGENT])

Table 1. The patterns extracted from the dependency tree in Figure 1.

which paraphrase one another. A similar method is
outlined in more detail in Stevenson and Greenwood
(2005).

Extraction patterns are learned using a weakly super-
vised bootstrapping method, similar to that presented
by Yangarber (2003), which acquires patterns from a
corpus based upon their similarity to patterns which
are known to be useful. The general process of the
learning algorithm is as follows:

1. For a given IE scenario we assume the existence
of a set of documents against which the system
can be trained. The documents are unannotated
and may be either relevant (contain the descrip-
tion of an event relevant to the scenario) or irrele-
vant although the algorithm has no access to this
information.

2. This corpus is pre-processed to generate the set
of all patterns which could be used to represent
sentences contained in the corpus, call this set S.
The aim of the learning process is to identify the
subset of S representing patterns which are rele-
vant to the IE scenario.

3. The user provides a small set of seed patterns,
Sseed, which are relevant to the scenario. These
patterns are used to form the set of currently
accepted patterns, Sacc, so Sacc ← Sseed. The
remaining patterns are treated as candidates for
inclusion in the accepted set, these form the set
Scand(= S − Sacc).

4. A function, f , is used to assign a score to each pat-
tern in Scand based on those which are currently in
Sacc. This function assigns a real number to can-
didate patterns so ∀ c ǫ Scand, f(c, Sacc) 7→ R.
A set of high scoring patterns (based on absolute
scores or ranks after the set of patterns has been
ordered by scores) are chosen as being suitable for
inclusion in the set of accepted patterns. These
form the set Slearn.

5. The patterns in Slearn are added to Sacc and re-
moved from Scand, so Sacc ← Sacc ∪ Slearn and
Scand ← Sacc − Slearn.

6. If a suitable set of patterns has been learned then
stop, otherwise return to step 4.

The most important stage in this process is step
4; the task of identifying the most suitable pat-
tern from the set of candidates. We do this by
finding patterns that are similar to those already
known to be useful. Similarity is measured using
a vector space model inspired by that commonly
used in Information Retrieval (Salton & McGill,
1983). Each pattern is represented as a set of pat-
tern element-filler pairs. For instance, the pattern
verb[v/transcribe](subj[n/GENE]+obj[n/PROTEIN])

contains the pairs verb transcribe, subj GENE and
obj PROTEIN. The set of element-filler pairs in a corpus
can be used to form the basis for a vector space in
which each pattern can be represented as a binary
vector (where the value 1 for a particular element
denotes the pattern contains the pair and 0 that it
does not). The similarity of two pattern vectors can
be compared using Equation 1.

similarity(~a,~b) =
~aW ~bT

|~a||~b|
(1)

Here ~a and ~b are pattern vectors, ~bT the transpose of
~b, and W a matrix listing the semantic similarity be-
tween each of the possible pattern element-filler pairs
which is crucial for this measure. Assume that the
set of patterns, P , consists of n element-filler pairs
denoted by p1, p2, ...pn. Each row and column of W

represents one of these pairs. So, for any i such that
1 ≤ i ≤ n, row i and column i are both labelled with
pair pi. wij is the element of W in row i and column j

and is the similarity between pi and pj . Pairs with dif-
ferent pattern elements (i.e. grammatical roles) have
a similarity score of 0. The remaining elements of W

represent the similarity between the filler of pairs of
the same element type. Similarity is determined us-
ing a metric defined by Banerjee and Pedersen (2002)
which uses the WordNet lexical database (Fellbaum,
1998)2. This metric measures the relatedness of a pair
of words by examining the number of words that are
common in their definitions.

Figure 2 shows an example using three potential ex-
traction patterns:

2This measure was chosen since it allows relatedness
scores to be computed for a wider range of grammatical
categories than alternative measures.
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Extraction Patterns
a. verb[v/block](subj[n/protein])
b. verb[v/repress](subj[n/enzyme])
c. verb[v/promote](subj[n/protein])

Matrix Labels
1. subj protein 4. verb repress
2. subj enzyme 5. verb promote
3. verb block

Similarity Matrix Similarity Values
1 0.95 0 0 0

0.95 1 0 0 0
0 0 1 0.9 0.1
0 0 0.9 1 0.1
0 0 0.1 0.1 1

sim(~a, ~b) = 0.925
sim(~a, ~c) = 0.55

sim(~b, ~c) = 0.525

Figure 2. Similarity scores and matrix for an example vec-
tor space using three patterns.

verb[v/block](subj[n/protein])

verb[v/repress](subj[n/enzyme])

verb[v/promote](subj[n/protein])

This example shows how these patterns can be repre-
sented as vectors and gives a sample semantic similar-
ity matrix. It can be seen that the first pair of patterns
are the most similar using the proposed measure de-
spite the fact they have no lexical items in common.

The measure shown in Equation 1 is similar to the co-
sine metric, commonly used to determine the similarity
of documents in the vector space model approach to
Information Retrieval. However, the cosine metric will
not perform well for our application since it does not
take into account the similarity between elements of a
vector and would assign equal similarity to each pair
of patterns in this example3.

The second part of a pattern element-filler pair can be
a semantic category, such as GENE. The identifiers used
to denote these categories do not appear in WordNet
and so it is not possible to directly compare their sim-
ilarity with other lexical items. To avoid this problem
such tokens are manually mapped onto the most ap-
propriate node in the WordNet hierarchy which is then
used in similarity calculations.

An associated problem is that WordNet is a domain
independent resource and may list several inappropri-

3The cosine metric for a pair of vectors is given by the
calculation a.b

|a||b|
. Substituting the matrix multiplication in

the numerator of Equation 1 for the dot product of vectors

~a and ~b would give the cosine metric. Note that taking
the dot product of a pair of vectors is equivalent to multi-

plying by the identity matrix, i.e. ~a.~b = ~aI ~bT . Under our
interpretation of the similarity matrix, W , this equates to
saying that all pattern element-filler pairs are identical to
each other and not similar to anything else.

ate meanings for domain specific words. For exam-
ple WordNet lists five senses of the word transcribe,
only one of which is related to the biomedical domain.
To alleviate this problem domain specific restrictions
are applied to WordNet. In these experiments only
specific senses of 58 words are used with the alterna-
tive senses for each word being ignored by the system.
These 58 words include the 30 verbs detailed in the
PASBio project4 (Wattarujeekrit et al., 2004) and 28
words determined by manual analysis of MedLine ab-
stracts. For example, transcribe contains five senses in
WordNet but our system considers only the final one;
convert the genetic information in (a strand of DNA)
into a strand of RNA, especially messenger RNA.

We experimented with several techniques for ranking
candidate patterns to decide which patterns to learn
at each iteration of our algorithm and found the best
results were obtained when each candidate pattern was
compared against the centroid vector of the currently
accepted patterns. At each iteration we accept the four
highest scoring patterns whose score is within 0.95 of
the best pattern being accepted. For further details
of the same approach using predicate-argument struc-
tures to perform sentence filtering, see Stevenson and
Greenwood (2005).

3. Pattern Acquisition

Two training corpora were used for the experiments
reported in this paper:

Basic The basic data set, without coreference, as pro-
vided by the LLL-05 challenge organizers.

Expanded The basic data set expanded with 78 au-
tomatically acquired weakly labelled (Craven &
Kumlien, 1999) MedLine sentences. This extra
training data was obtained by extracting, from
MedLine abstracts5 containing the phrase Bacil-
lus subtilis, those sentences which contain two
dictionary entries (or their synonyms) which are
known to form an interaction in the basic training
data.

The training corpora are pre-processed to produce one
sentence per known interaction, replacing the agent
and target by representative tags, AGENT and TARGET,
and all other dictionary elements by the tag OTHER.
The resulting sentences are then parsed using mini-

4
http://research.nii.ac.jp/∼collier/projects/

PASBio/
5Only abstracts which appeared after the year 2000

were used in order to comply with the LLL challenge guide-
lines.
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par (Lin, 1999) to produce dependency trees from
which the candidate extraction patterns (in the form
of chains and linked chains) are extracted.

The learning algorithm was used to learn two sets of
extraction patterns using the pair of corpora and the
seed patterns in Table 2 which where chosen follow-
ing a manual inspection of the training data. Due to
the small amount of training data the learning algo-
rithm was allowed to run until it was unable to learn
any more patterns. When trained using the basic cor-
pora the algorithm ran for 74 iterations and acquired
127 patterns. When trained using expanded corpora
the algorithm ran for 130 iterations and acquired 236
patterns.

Not all the extraction patterns acquired in this way en-
code a complete interaction, i.e. they do not contain
both AGENT and TARGET slots. To generate full inter-
actions those agents and targets which are extracted
are joined together using the following heuristics:

• Each AGENT extracted is paired with all the
TARGET instances extracted from the same sen-
tence (vice-versa for TARGETS).

• Each AGENT/TARGET discovered by a pattern is
paired with the closest (distance measured in
words) dictionary element.

For example imagine a sentence in which all the
agents and targets discovered by extraction pat-
terns are tagged as AGENT or TARGET, all other dic-
tionary elements are replaced by OTHER: TARGET1

blocks AGENT and OTHER which inhibits TARGET2.
From this sentence the following interactions would
be extracted AGENT→TARGET1, AGENT→TARGET2 and
AGENT→OTHER, i.e. the AGENT would be paired with
all TARGET instances as well as the closest dictionary
element.

4. A Baseline System

A baseline system was developed for comparison with
our main approach. This baseline system assumes that
interactions exist between all possible pairs of named
entities in any given sentence (participants were pro-
vided with an exhaustive named entity dictionary).
For instance, given a sentence containing three named
entities labelled A, B and C, six interactions AB, AC,
BA, BC, CA and CB are generated. This baseline
will identify many interactions although the precision
is likely to be low as many incorrect interactions will
also be generated.

5. Evaluation

The official evaluation results, for both the baseline
system and the systems trained using the two corpora
detailed in Section 3, can be seen in Table 3.

We may expect the baseline system to achieve 100%
recall by proposing a link between each pair of enti-
ties in each sentence. However certain constructions
describe two relations between a pair of entities. For
example “...A activates or represses B...” describes
both repression and activation relationships between
A and B while the baseline would propose just one.

In comparison with the baseline system our machine
learning approach to pattern acquisition performed
poorly due to low recall, although with a precision
score over twice that of the baseline. The performance
can probably be attributed to the small amount of
available training data. It is clear that adding just
a small amount of additional training data (78 sen-
tences from MedLine) had a positive effect increasing
the overall F-measure from 14.8% to 17.5%. The same
effect can be seen if we consider the performance of
the systems over the three interaction types; action,
bind and regulon. The system trained using just the
basic data finds 6 correct interactions 5 of which are
actions and 1 a binding interaction (see Table 4 for
a full breakdown of the results for all three submis-
sions). The system fails to find any regulon family
interactions. This is understandable given the train-
ing data which contains different percentages of each
of the three interaction types. For instance only three
sentences containing a regulon family interaction are
provided illustrating just six interactions. Given our
method of pattern acquisition this means that even if
all the relevant patterns from these three sentences are
learnt they would only apply to very similar sentences
when used for extraction as they will not have been
able to generalise far enough away from the specific
instances present in the three example sentences.

5.1. Additional Evaluation

We carried out additional evaluations after the official
results for the challenge task had been released.

A more detailed evaluation of the learning algorithm
considers the performance of the patterns acquired at
each separate iteration as opposed to the results in the
previous section which evaluate all the acquired pat-
terns as a single set. Figure 3 shows the F-measure
score of the system trained using the expanded cor-
pus (see Section 3) at each iteration of the learning
algorithm.

This evaluation highlights a number of interesting
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verb[v/transcribe](by[n/AGENT]+obj[n/TARGET])

verb[v/be](of[n/AGENT]+s[n/expression](of[n/TARGET]))

verb[v/inhibit](obj[n/activity](nn[n/TARGET])+subj[n/AGENT])

verb[v/bind](mod[r/specifically](to[n/TARGET])+subj[n/AGENT])

verb[v/block](obj[n/capacity](of[n/TARGET])+subj[n/AGENT])

verb[v/regulate](obj[n/expression](nn[n/TARGET])+subj[n/AGENT])

verb[v/require](obj[n/AGENT]+subj[n/gene](nn[n/TARGET]))

verb[v/repress](obj[n/transcription](of[n/TARGET])+subj[n/AGENT])

Table 2. Seed patterns used for pattern acquisition.

System P R F
Baseline 10.6% (53/500) 98.1% (53/54) 19.1%
LLL-05 Basic 22.2% (6/27) 11.1% (6/54) 14.8%
LLL-05 Expanded 21.6% (8/37) 14.8% (8/54) 17.5%

Table 3. Evaluation results of our three submissions.

All Interactions Action Bind Regulon No Interaction
System C M S C M S C M S C M S C M S
Baseline 53 1 447 35 1 95 14 0 46 4 0 6 0 0 300
LLL-05 Basic 6 48 21 5 31 7 1 13 2 0 4 0 0 0 12
LLL-05 Expanded 8 46 29 7 29 11 1 13 2 0 4 0 0 0 16

Table 4. Breakdown of the official evaluation results including results for individual interaction types (columns represent
Correct, Missing, and Spurious). Precision = C/(C+S), Recall = C/(C+M)
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Figure 3. Increasing F-measure scores.

points. Firstly the seed patterns (Table 2) while be-
ing possibly representative of the training data do not
match any of the interactions in the test set (i.e. the
F-measure at iteration zero is 0% reflecting the fact
that no correct interactions were extracted by the seed
patterns). This is unfortunate as the learning algo-
rithm is designed to acquire patterns which are sim-
ilar in meaning to a set of known good patterns. In
this instance, however, the algorithm started by ac-
quiring patterns which are similar to the seeds but
which clearly do not represent the interactions in the
test set. However, this also means that those interac-
tions extracted by the completed system were done so
using only patterns acquired during training and not
hand-picked good quality seed patterns.

The per-iteration evaluation in Figure 3 also shows
that the learning algorithm is relatively stable even
when inappropriate patterns are acquired. At least one
pattern is acquired at each iteration and these results
show that even if patterns are not able to extract valid
interactions they rarely affect the performance of the
current set of acquired patterns. The notable excep-
tion to this is at iteration 51 when a pattern is acquired
which drops the F-measure from 12.1% to 10.8%, al-
though further analysis shows that this was in fact a
problem with the extraction procedure and not the ac-
quired pattern. The algorithm acquired the pattern
verb[v/contain](obj[n/TARGET]+subj[n/AGENT]). Un-
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fortunately while the TARGET usually matches against a
dictionary element the AGENT often matches other text.
This causes the nearest (in words) dictionary element
to be used as the AGENT which, in turn, can lead to
incorrect interactions being extracted from text.

This analysis of the system’s failings highlights a use-
ful feature of our approach. Many machine learning
algorithms produce classifiers which are statistical in
nature and do not consist of a set of rules but rather
a complex combination of probabilities. This makes it
difficult to analyse classification mistakes and does not
allow the ability to modify the classifier by removing
badly performing rules. In contrast to this our ap-
proach learns human readable extraction rules which
can be easily inspected, modified or removed to suit a
given scenario. This allows an expert to examine the
extraction rules while automating the time consuming
process of rule acquisition.

5.2. Sentence Filtering

Our approach to automatically acquiring IE patterns
has been shown to be suitable for determining the rel-
evance of sentences for an extraction task in the man-
agement succession domain (Stevenson & Greenwood,
2005). The sentence filtering task involves using the
set of acquired patterns to classify each sentence in a
corpus as either relevant (containing the description
of an interaction) or not. Sentence filtering is an im-
portant preliminary stage to full relation extraction.
Using the patterns acquired from the expanded corpus
(described in Section 3) we can also perform sentence
filtering of the LLL challenge test data6. The results
of this filtering, at different iterations of the algorithm,
can be seen in Figure 4.

These results show that set of acquired patterns
achieves an F-measure score of 47.5% resulting from
precision and recall scores of 57.6% and 40.4% respec-
tively. This compares to results reported by Nédellec
et al. (2001) who achieve an F-measure score of ap-
proximately 80% over similar data using a supervised
approach in which the learning algorithm was aware of
the classification of the training instances. It should
be noted that our approach was trained using only
a small amount of unlabelled training data (181 sen-
tences compared with approximately 900 sentences
used by Nédellec et al. (2001)) and the sentence filter-
ing results should be considered in this context.

6Thanks to Claire Nédellec for providing the
relevant/not-relevant labelling of the sentences required
for this evaluation.
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Figure 4. BioMedical Sentence Filtering.

6. Failure Analysis

The experiments reported in this paper have shown
that our system is disappointing when used to perform
relation extraction. The main failure of the system to
extract meaningful relations can be traced back to the
lack of training data. When extra data obtained from
MedLine was also used to train the system there was
an improvement in performance, acquiring more data
may further improve performance. Another possible
solution to this problem would be to generalise the ac-
quired patterns in some form, perhaps by allowing any
synonym of a pattern element filler to match. These
could be extracted from WordNet.

One further source of failure was due to errors in
the dependency trees introduced by minipar. This
is probably because the parser was not trained on
biomedical texts and hence suffers from problems with
unknown words and grammatical constructions. The
approach here relies heavily on access to accurate de-
pendency tree representations of text.

7. Conclusions

In this paper we have presented a linguistically moti-
vated approach to extracting genic interactions from
biomedical text. Whilst the performance of the sys-
tem was disappointing achieving an F-measure score of
only 17.5% we believe that the approach is well moti-
vated but suffers from a lack of training data and pars-
ing problems. We showed that increasing the training
data using weakly labelled text did in fact increase the
performance of the system. The additional evaluation
of the extraction patterns showed that the approach is
also resilient to the algorithm learning inappropriate
extraction patterns.
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