
A Pattern Based Approach to Answering
Factoid, List and Definition Questions

Mark A. Greenwood and Horacio Saggion
Department of Computer Science

University of Sheffield
Regent Court, Portobello Road

Sheffield S1 4DP UK
{m.greenwood, saggion}@dcs.shef.ac.uk

Abstract
Finding textual answers to open-domain questions in large text collections is a difficult problem. In this paper we
concentrate on three types of questions: factoid, list, and definition questions and present two systems that make
use of regular expression patterns and other devices in order to locate possible answers. While the factoid and
list system acquires patterns in an off-line phase using the Web, the definition system uses a library of patterns
identified by corpus analysis to acquire knowledge in an on-line stage for each new question. Results are reported
over the question sets from the question answering track of the 2002 and 2003 Text REtrieval Conference (TREC).

1 Introduction
Finding textual answers to open-domain questions (Hirschman & Gaizauskas, 2001) in large text col-
lections, such as AQUAINT1 , is a challenging problem. Unlike Information Retrieval (IR) which aims
at providing documents satisfying users information needs expressed in the form of a query, Question
Answering (QA) aims at providing users with short text units that answer specific well formed natural
language questions.

There are an infinite number of questions users can ask, in this study, however, we concentrate on those
question types for which clearly defined evaluation methods exist, namely those questions used in the
question answering evaluation of the TREC (Voorhees, 2002). These questions fall into three categories:

• Factoid questions which require a single fact as answer. These include question such as “Who is
Tom Cruise married to?” and “What lays blue eggs?”.

• List questions which require multiple facts to be returned in answer to a question. Examples are
“Name 22 cities that have a subway system” and “List 16 companies that manufacture tractors”.

• Definition questions, such as “What is aspirin?”, which require textual answers that cover essential
(e.g., aspirin is a drug) as well as non-essential (e.g., aspirin is a blood thinner) descriptions of
the definiendum (i.e., the term to be defined).

No attempt is made by the system detailed in this paper to answer other question types, for example
speculative questions, such as “Is the airline industry in trouble?” are not handled.

The system described in the body of this paper makes no attempt to analyse the whole AQUAINT collec-
tion in the search for an answer, relying instead on the Okapi (Robertson & Walker, 1999) IR engine as
an effective filter between AQUAINT and the answer extraction components. Assuming that the IR sys-
tem is able to find at least one relevant document then the system will continue to process the documents
in the hope of finding an answer to the question.

Two different components are used for answering factoid (including list) questions and definition ques-
tions. Both components make use of patterns as strategies for locating possible answers. While the
factoid system acquires patterns from the Web in an off-line phase, the definition system uses a library
of patterns identified by corpus analysis to acquire knowledge about the definiendum in an on-line stage

1AQUAINT consists of over 1 million texts from the New York Times, the AP newswire, and the English portion
of the Xinhua newswire totaling approximately 3.2 gigabytes of data.

Document
Collection

Top n
passages

Questions

Answer
Ranking Answers

Question
Typer

Entity
Finder

Fallback to Semantic Entities

Pattern Set
Chooser

Pattern
System

Surface Matching Text Patterns

IR Engine

Figure 1: System architecture showing both the pattern and fallback systems.

for each new question. The query used for document retrieval is composed of all the tokens in the ques-
tion, for definition questions query expansion is also performed.

In the remainder of this paper we detail the approaches for answering each type of question and report
evaluation results against both the TREC 2002 and 2003 test sets.

2 Answering Factoid and List Questions
The system used for answering factoid and list questions, shown in Figure 1, consists of three main
phases:

• The question is used as the query for Okapi to retrieve the top n relevant documents.

• The question and retrieved documents are then used to find possible answers via both the surface
matching text patterns and the fallback system.

• Answer ranking then produces a final combined answer list from which as many answers as re-
quired can be returned.

This pattern based approach to factoid QA is derived from earlier work presented in (Greenwood &
Gaizauskas, 2003). The majority of the system is concerned with the acquisition of answer patterns
using a set of question-answer pairs. The patterns which are acquired can then be used to locate answers
for new unseen questions. In what follows we describe how the patterns are acquired and how they are
used to find possible answers.

2.1 Learning Pattern Sets
Learning a pattern set is a two stage process of acquisition and analysis. The easiest way to describe
both stages of the process is though an example and for easy comparison with other papers (including
(Greenwood & Gaizauskas, 2003), (Ravichandran & Hovy, 2002) and (Soubbotin & Soubbotin, 2001))
we use the example “When was X born?”. Given this the acquisition algorithm is as follows:

1. We collect together twenty example questions, of the correct type, and their associated answers.

2. For each example question we produce a pair consisting of the question term and the answer term.
For example “Abraham Lincoln”- “1809”.

3. For each example the question and answer terms are submitted to Google, as a single query, and
the top 10 documents are downloaded2.

2The documents are actually downloaded from Google’s cache to guarantee that we use the version of the page
indexed by Google.

4. Each retrieved document then has the question term replaced by the single token AnCHoR.

5. Depending upon the question type other replacements are then made. In this example all dates,
locations, organisations and person names are replaced by representative tags DatE, LocatioN
OrganizatioN and PersoN. For other question types differing entities may be replaced by tags.
If any of these tags replace text which contains the answer term then a compound tag, such as
AnSWeRDatE.

6. Any remaining instances of the answer term are then replaced by AnSWeR.

7. Sentence boundaries are determined and those sentences which contain both AnCHoR and AnSWeR

are retained.

8. A suffix tree (Ukkonen, 1995) is constructed using the retained sentences and all repeated sub-
strings containing both AnCHoR and AnSWeR and which do not span a sentence boundary are ex-
tracted.

This produces a set of patterns, which are specific to the question type. Continuing with the example of
“When was X born?” a selection of patterns are:

from AnCHoR (AnSWeRDatE - DatE)
AnCHoR , AnSWeRDatE -

- AnCHoR (AnSWeRDatE
from AnCHoR (AnSWeRDatE -

Unfortunately these patterns contain no information about how accurate they are when used to answer
unseen questions, so the second stage analyses the patterns, removing those which are of little value in
answering unseen questions. The analysis algorithm is then as follows:

1. A second set of twenty question-answer pairs are collected and for each question, the question term
alone is submitted to Google and the top ten documents are downloaded.

2. Within each document the question term is replaced by AnCHoR.

3. The same replacements as carried out in step 5 of the acquisition phase are also performed on the
document in this stage and a table is constructed of the inserted tags and the text they replace.

4. Each of the previously generated patterns is converted to a standard regular expression designed to
capture the answer text, giving expressions such as:

from AnCHoR \((DatE) - DatE \)
AnCHoR , (DatE) -
- AnCHoR \((DatE)
from AnCHoR \((DatE) -
: AnCHoR , (DatE) -

These expressions allow us to easily retrieve the single token which AnSWeR (or one of it’s extended
forms such as AnSWeRDatE), in the original pattern would have matched against.

5. Each of the previously generated patterns are then matched against each sentence containing the
AnCHoR tag. Along with each pattern, P , two counts are maintained: CP

a , which counts the total
number of times this pattern has matched against the text and CP

c , which counts the number of
matches which had the correct answer or a tag which expanded to the correct answer as the text
extracted by the pattern.

6. After a pattern, P , has been matched against the sentences if CP
c is less than five it is discarded

otherwise the precision of the pattern is calculated as CP
c /CP

a and the pattern is retained if its
precision is greater than 0.13.

Using this method to produce analysed patterns for the question type “When was X born?” gives pat-
terns such as those in Table 1, which can now be used to locate answers to unseen questions.

The current system includes pattern sets for the question types: What is the abbreviation for X?; When
was X born?; What is the capital of X?; What country is X the capital of?; When did X die?; What does
X stand for?

3These cut-off values were adopted based on empirical observations made during development.

Pattern Precision
AnCHoR \((DatE) - DatE \) 0.909
AnCHoR \((DatE) - 0.909
AnCHoR \((DatE) 0.738
AnCHoR (DatE) - DatE 0.700

Table 1: Analysed patterns for questions of the form “When was X born?”.

Pattern Set % Correct % Wrong % Unanswered
What is the abbreviation for X? 78 7 15
When was X born? 60 8 32
What is the capital of X? 29 61 10
What country is X the capital of? 55 40 5
When did X die? 54 1 45
What does X stand for? 21 30 49

Table 2: Evaluation of the individual pattern sets.

In all of these sets the names of people and organizations as well as dates and locations are replaced
by associated tags. The pattern set for questions of the form “What does X stand for?” also involves
replacing noun chunks with the tag NounChunK.

2.2 Pattern-Based Answer Extraction
One of the problems with the use of pattern sets for QA is determining which set to use to answer a given
question. Our current method of selecting the correct pattern set relies on associating with each set a
group of regular expressions which will match against questions suitable for answering with the pattern
set and which will also extract the AnCHoR term from the question. For example with questions asking
when someone was born, regular expressions covering at least the following formulations are available:

• When was X born?
• What year was X born?
• What date was X born?
• In which year was X born?
• X was born in which year?
• On what date was X born?

The sets of regular expressions are applied to the question, in no particular order, until a match is found
or until all the sets have been exhausted. If the question matches against a regular expression then the
AnCHoR is extracted and is passed, along with the associated pattern set, to the module responsible for
locating possible answers.

Using a pattern set to find answers to a question is extremely simple. Each document retrieved by Okapi
has the question term replaced by AnCHoR and other associated replacements are made (the same as in
step 5 of the acquisition phase).

Each pattern within the set is then matched against the sentences containing AnCHoR and for each suc-
cessful match the token captured by the expression (or if the token is a tag then the text the tag replaced)
is stored along with the precision of the pattern. When all the patterns have been applied to all the sen-
tences any answers located are passed to the answer ranking module which returns the required number
of answers to the user.

2.3 Pattern Set Accuracy
Each analysed pattern set was evaluated over one hundred unseen examples with relevant documents
being downloaded from the Internet via Google, results can be seen in Table 2. It should be clear from
these results that although most of the pattern sets can correctly answer over 50% of the questions a
couple of the sets struggle, answering less than 30% of the questions.

We believe this problem is related to the analysis stage in which only the question term is submitted to
Google, this means that unless the answer term is highly related to the question term few of the retrieved
documents contain the answer and hence few patterns will be retained. For example with questions of
the type “What is the capital of X?” it is likely that there will be many documents containing the name of
the country that do not contain the name of the capital. A possible solution to this problem is to use the
entire question when analysing the patterns rather than just the question term, in this instance “capital”
would also be a search term increasing the chance of finding appropriate documents.

3 Fallback to Semantic Entities
As developing pattern sets is a time consuming task it has not yet been possible to develop enough
pattern sets to cover the variety of questions that may be asked. A simple fallback system is therefore
required to fill this hole until further pattern sets are developed. The approach taken was to assume that
the answer to every question will be one or more entities from a fixed set of semantic types. The entity
types which can currently be recognised include the standard named entity categories from the MUC
evaluations (person, organization, locations, times, dates and monetary amounts) as well as a wider class
of measurements (space, mass, duration, etc.) and other types frequently seen in example questions
(languages, nationalities, planets, Gods, state flowers, etc.). The following sections provide more details
of exactly how the system attempts to answer questions. For a more detailed description of this fallback
system interested readers should consult (Greenwood, 2004)

3.1 Question Typing
The first stage of this system involves determining the expected answer type of the question. This is
achieved through a set of hand coded rules working over the question text. Each rule precondition
specifies a number of keywords which the text of the question has to match in order to be classified as
one of the specified answer types. As an example, if the keyword “author” is found in the question text,
then the answer type of the question is “person”. Defining these rules is a relatively simple but time
consuming task. Even as a fallback system it should be clear that there are many questions which this
system will be unable to answer specifically those questions for which the answer is not an entity of a
type the system is capable of recognising. If a question is not assigned a type by the rules then a default
type of UNKNOWN is assigned.

3.2 Locating Possible Answers
Locating all the possible answers within a document simply involves extracting all entities of the ex-
pected type, unless they fail one of the following conditions:

• The document which contains the answer entity must also contain all the entities found in the
question, and

• the answer entity must not overlap (ignoring stopwords) with the question.

The remaining entities are then grouped together using the equivalence test (Brill et al., 2001):

two answers are said to be equivalent if all of the non-stopwords
in one answer are present in the other answer or vice versa.

When two answers are deemed to be equal then the longest realisation of the answer is the one retained.
The resulting answer list is then passed to the answer ranking module to determine how many, if any, of
the answers will be returned to the user.

4 Answer Ranking
If both approaches have located possible answers then there will be two competing answer lists. As the
pattern based approach is more restricted in the answers it can propose these are always preferred over
those found by the fallback system, so the answers from the fallback system are discarded4. Depending
on the source of the final answer list it is sorted in one of the following ways:

• if the answer list was generated by the pattern based approach then the answers are sorted based on
the highest precision of the patterns which located the answers and then (if necessary) the highest
rank of the documents in which the answer was found.

4Implementations of this system clearly do not need to produce an answer list using the fallback system if the
pattern based approach has already yielded one or more possible answers.

Pattern
Generation

Mining
On-Line

Resources

Retrieval

Definiendum
Extraction

Secondary
Term

Extraction

Definition
Extraction

Questions
Patterns

WordNet Web

Instantiated
Patterns

AQUAINT
Collection

Relevant
Passages Secondary

Terms

Definiendum

Definiendum

Answers

Figure 2: Definition system components

• if the answer list was generated by the fallback system then the answers are sorted based on the
number of occurrences of the answer that were found and then (if necessary) the highest rank of
the documents in which the answer was found

If the current question is a simple factoid question then the first answer from the sorted list is returned
if it is a list question then the entire answer list is returned. If we were unable to generate an answer
list (i.e. both the pattern approach and the fallback system were unable to locate any answers) then the
system returns NIL.

5 Answering Definition Questions
Answering definition questions requires a different strategy to that used for answering factoid and list
questions. This is because definition questions provide very little information which can be used to help
find relevant definition-bearing passages in the text collection apart from the definiendum.

Our method for identifying answers to definition questions relies on using secondary terms to restrict the
search for definition-bearing passages, and a limited number of “seed” patterns to extract definitions.
Secondary terms, mined from on-line sources, are words which co-occur with the definiendum in defi-
nition contexts outside the target text collection The terms can therefore be used to refine the search for
definition-bearing passages in the target collection. For example, a term like “aspirin” occurs in 1108
sentences in the AQUAINT collection most of which are not definition-bearing sentences. If, however,
we know from external sources that the term “analgesic” usually occurs with “aspirin” in a definition
context, then both “aspirin” and “analgesic” can be used as search terms. This results in finding only 8
sentences in the AQUAINT collection.

Having reduced the search space to a small set of passages, definition patterns and filters, involving the
secondary terms, are used to select the best non-redundant answers. This process is shown in Figure 2.

6 Acquisition of Definiendum Related Knowledge from On-Line Sources
Obvious sources for mining definition related knowledge are dictionaries and encyclopedias. These
resources are particularly appropriate when trying to create a library of general definition patterns. In
our case, however, we aim to obtain knowledge about particular terms that may or may not appear in
these resources. In such cases, the redundancy of the web (Brill et al., 2001) can also be exploited.
We rely on the WordNet lexical database (Miller, 1995), the web site of the Encyclopedia Britannica5,
and the Web6 for finding definition-bearing passages for the term sought. The process consists of the

5http://www.britannica.com
6The Google Web API (http://www.google.com/apis) is used to download documents from the web.

Pattern Passage
Uninstantiated Instantiated Relevant Not Relevant
TERM is a aspirin is a Aspirin is a weak

monotripic acid
Aspirin is a great choice
for active people

such as TERM such as aspirin blood-thinners such as as-
pirin ...

Look for travel size items
such as aspirin and...

like TERM like aspirin non-steroidal anti-
inflammatory drugs
like aspirin ...

A clown is like aspirin,
only he works twice as fast

Table 3: The first column contains uninstantiated definition patterns. The second column contains the pattern
instantiated with the term “aspirin”. The third column contains definition-bearing passages matching the pattern.
The last column contains passages which match the pattern but are not definition bearing.

following steps:

1. Definiendum extraction: the term, for which a definition is sought, is identified in the question;

2. Pattern generation: a number of definition patterns containing the sought term are generated;

3. Document Retrieval: texts containing the patterns are retrieved from the web and WordNet;

4. Term extraction: words that co-occur with the sought term, in sentences matching one or more of
the patterns, are extracted.

Each of these steps is described in detail in the following subsections. All linguistic analysis is per-
formed using GATE (Cunningham et al., 2002) and components from the LaSIE (Humphreys et al.,
1998) system.

6.1 Definiendum Extraction
Since the definiendum can be a complex linguistic unit such as a term or named entity (e.g., “What is
Aum Shirikyo?”), we rely on named entity recognition, part-of-speech tagging, and parsing to extract
it from the question. Named entity recognition and classification is based on gazetteer list lookups and
regular expression matching. The result of this analysis together with part-of-speech information is used
as input to a chart parser which uses a context-free grammar specially adapted to parse questions. The
result is a syntactic representation of the question (which may be a set of unconnected chunks) from
which the definiendum (the rightmost noun phrase in the parsing tree) can be extracted.

6.2 Pattern Generation
Following (Saggion & Lapalme, 2002), a repository of 50 “seed” definition patterns have been manu-
ally assembled through an analysis of definition bearing texts. The patterns used in this work are rather
superficial, containing only lexical information. The idea of using reliable seed patterns has been ex-
ploited by (Hearst, 1992) to identify lexical semantic relations such as hyperonymy, in order to construct
ontologies from corpora.

The patterns are used by instantiating them for a given definiendum as a precursor to further linguistic
processing. Table 3 shows a selection of definition patterns, their instantiation after the definiendum is
known, and passages containing an exact pattern match.

6.3 Mining On-Line Sources
A collection of texts, from which secondary terms will be extracted, is built using a number of electronic
resources:

• WordNet: all glosses associated with meanings of the definiendum are extracted along with any
hypernyms (super-ordinate word) associated with the definiendum.

• Encyclopedia Britannica: all pages containing the definiendum are downloaded from the encyclo-
pedia web site (because we do not subscribe to this resource, we have only access to incomplete
information from this site).

Definiendum WordNet Britannica Web
Aum Shirikyo group; groups; cult; religious; japanese;

stages; terrorist; early; doomsday; etc.
aspirin analgesic; anti-

inflammatory;
antipyretic; drug,
etc.

inhibit;
prostaglandin;
ketoprofen;
synthesis; etc.

drugs; drug; blood; ibuprofen; medication;
pain; etc.

Table 4: The first column lists the definiendum. The second column shows terms associated with the definiendum
which were found in WordNet. The third column contains terms associated with the definiendum found on the
Britannica web site. The last column contains the terms found on the Web.

• Web: for each instantiated pattern, English language HTML pages containing an instantiated pat-
tern (e.g., “aspirin is a”) are downloaded. We rely on Googles exact match facility to ensure the
entire pattern is present in the page. Note that multiple patterns can download copies of the same
page although only one copy of each page is retained for further processing.

6.4 Secondary Term Extraction
Secondary terms are obtained from the texts found in the previous step by performing the following pro-
cesses: tokenisation; sentence splitting; part-of-speech tagging; and pattern matching of the instantiated
definition patterns. Three different methods are used depending on the source of the text:

• For each sentence in a WordNet gloss all nouns, verbs, and adjectives are extracted and stored
along with any hypernyms of the definiendum.

• For each sentence in the document downloaded from the Encyclopedia Britannica the nouns, verbs,
and adjectives are extracted only if the sentence contains the definiendum. Each extracted term is
stored along with its frequency of occurrence.

• For each sentence in the other Web documents: if the sentence contains a definition pattern, then
the nouns, verbs, and adjectives are extracted and stored along with their frequency of occurrence.

Terms extracted from the Encyclopedia Britannica and the Web are sorted in decreasing order of their
frequency of occurrence. Table 4 shows a selection of secondary terms extracted from the different
sources for the terms “aspirin” and “Aum Shirikyo” (a Japanese sect).

A list of secondary terms to be used for query expansion (with a maximum of n elements) is created in
the following way: firstly all terms extracted from WordNet (m terms) are included in the list; a maxi-
mum of (n−m)/2 terms from the Encyclopedia Britannica with a frequency greater than one are added
to the list; and finally terms extracted from the Web with a frequency greater than one are appended to
the list until the maximum of n is reached.

The order of terms in the list reflects, to a certain extent, the degree of confidence in the sources from
which they were extracted. Also the more a term is used in a particular “definition” context the more
we believe the term is associated with the definiendum hence we prefer terms extracted from definitions
of the definiendum, WordNet, followed by those extracted from a definition of any term, Encyclopedia
Britannica, and finally those that simply co-occur with the definiendum regardless of context, the Web.

7 Locating Possible Definitions
We construct a query consisting of the tokens contained in the question merged with the list of secondary
terms found during the knowledge acquisition step. This query is then submitted to Okapi and the 20
most relevant passages from the AQUAINT collection are retrieved.

Linguistic analysis of each passage is then performed, consisting of: tokenisation, sentence splitting,
dictionary look-up for the definiendum and any of the secondary terms, and pattern matching using the
instantiated patterns obtained during knowledge acquisition. We restrict our analysis of definitions to
the sentence level. A sentence is considered definition-bearing if it matches a definition pattern or if it
contains the definiendum and at least three secondary terms (this heuristic was determined after several
experiments on training data). In an effort to avoid the inclusion of unnecessary information, which may

be present in a definition-bearing sentence, we discard the sentence prefix which does not contain either
the definiendum or any of the secondary terms.

One of the problems faced when extracting definitions from huge text collections is that of redundancy:
in collections of newswire texts the same pieces of information may appear many times. We address this
problem by measuring the similarity of a candidate definition to the previously extracted definitions. A
vector representation of the extracted candidate definition, consisting of its terms and term frequencies,
is created. If the current answer candidate is too similar to any of the previous extracted answers, it is
ignored. The similarity score is the cosine between the two vector representations, and two vectors v1

and v2 are considered similar if cosine(v1, v2) > threshold (the threshold was set after a number of
experiments on a training set). Semantic similarity is not considered in this approach.

8 Evaluation
In the following sections we describe the results obtained by our system over both the TREC 2002 and
2003 QA test sets.

8.1 Factoid and List Questions
Before entering the system in the TREC 2003 QA evaluation we evaluated the system over the questions
used in the 2002 evaluation. The system correctly answered 26% (130/500) of these questions. Only 33
questions were suitable to be answered using the pattern sets and in all but one case the question term,
AnCHoR, was correctly identified. Relevant documents within AQUAINT were located for 20 of these
questions. Unfortunately the pattern sets only located answers for 7 of these 20 questions of which only
2 answers were correct.

The TREC 2003 QA factoid and list subtasks consisted of finding answers for 413 factoid and 37 list
questions. The evaluation metric for factoid questions was answer-accuracy (the percentage of correct
answers found by the system) and for list questions was the mean F-score over all list questions (where
precision and recall are equally weighted).

Of the 413 factoid questions 12 questions were suitable for answering with the pattern sets, unfortu-
nately none of the patterns selected any answers, correct or otherwise. Using the fallback system the
first stage assigned an incorrect type to 53 questions, 27 of these were typed as UNKNOWN so only 26
answers of the wrong type could actually be returned. In total 146 of the questions were assigned the
UNKNOWN type, so 267 questions were typed – 241 correctly. The system returned NIL for 191 of the
questions so the system was unable to find an answer for 45 of the typed questions. Of the remaining 241
questions, 18 have no known answer leaving 223 questions to which the system could return a correct
non-NIL answer. Unfortunately Okapi was only able to locate answer bearing passages for 131 of the
223 questions correctly assigned a type, which means that the maximum obtainable score for the whole
system is 0.317 (131/413). The official TREC score was 0.138 (57/413) but this contains fifteen correct
NIL responses so we only provided a correct answer for 42 questions giving a score of 0.102 which is
32.2% of the maximum score. The average accuracy over all the systems evaluated (54 runs) was 0.700
(best), 0.177 (median), 0.034 (worst).

Similar problems occurred when the system attempted to answer the list questions. Over the 37 ques-
tions the system returned 20 distinct correct answers achieving an F-score of 0.029 (compared to the
average F-score, obtained by the systems evaluated, of 0.396 (best), 0.069 (median), and 0.000 (worst)).
Unfortunately the ability of the system to locate a reasonable number of distinct answers was offset by
the fact that for each question many answers (i.e. all those found) are proposed dramatically lowering
the precision and hence the F-score. For example there are seven known answers, within AQUAINT, to
the question “What countries have won the men’s World Cup for soccer?” for which the system returned
32 answers only two of which were correct. This gave a recall of 0.286 but a precision of only 0.062.

The results from both evaluations show that the system still requires improvement. Currently the ac-
quired patterns sets contributing little, if anything, to the performance of the system with most of the
questions which were answered correctly answered by the fallback system.

NR =
number of essential nuggets returned

number of essential nuggets

allowance = 100 ∗ number of essential or non-essential nuggets returned

length = number of non-white-space characters in the answer set

NP = 1: if length < allowance

NP = 1 −
length-allowance

length
: if length ≥ allowance

F =
26 ∗ NP ∗ NR

25 ∗ NP + NR

Figure 3: Formulas used to score answers to definition questions.

8.2 Definition Questions
The TREC QA 2003 definition subtask consisted of finding answers for 50 definition questions. The
set consisted of 30 “Who” questions (e.g., “Who is Aaron Copland?”) and 20 “What” questions (e.g.,
“What is a golden parachute?”). The TREC assessors created, for each question, a list of acceptable
information nuggets (pieces of text) from all submitted answers and information discovered during ques-
tion development. Some nuggets are considered essential (i.e., a piece of information that should be part
of the definition) while others are considered non-essential. During evaluation, the assessor takes each
system response and marks all essential and non-essential nuggets contained in it. A score for each ques-
tion consists of nugget-recall (NR) and nugget-precision (NP), see Figure 3. These scores are combined
using the F-score measure with recall five times as important as precision. We obtained an F-score of
0.236. The average F-score over all systems (54 runs) is 0.555 (best), 0.192 (median), 0.000 (worst);
placing our definition system above the median.

In 5 cases the definiendum extraction component extracted an incorrect term, for example for the ques-
tion “Who was Abraham in the Old Testament” the system extracted the definiendum “Abraham in the
Old Testament” instead of “Abraham”. This seriously affects the performance of the extraction system
because of the particular way in which patterns are created with the definiendum.

Our system provided answer sets for 28 of the 50 questions (56%). For these 28 questions, 23 (82%)
contained at least one definition nugget and all contained at least one essential nugget. The system an-
swered 12 “Who” questions (40% of this type) and 11 “What” questions (55% of this type).

Considering the knowledge acquisition step, WordNet provided relevant secondary terms for only 4 ques-
tions (8%). The Britannica web site helped with relevant secondary terms in only 5 questions (10%).
The Web, however, helped to find relevant secondary terms for 39 questions (78%). In cases where the
knowledge acquisition system failed in finding relevant terms or found only a few irrelevant terms, the
answer extraction system also failed. This is due to the filters that are used to determine if a sentence
is extracted. The patterns as they are implemented in the current version of the system allow for little
variation, this has an impact on both the knowledge acquisition and extraction steps.

In the light of nuggets identified by NIST analysts, a more ‘lenient’ and optimistic analysis can be done
of the answers provided by (and omissions of) our system. Our system returned no answers in 22 cases.
After close examination of the documents returned by the Okapi retrieval system, we can conclude that
in 15 cases (68%) the documents contain some of the nuggets required to answer the question. The
system failed to return answers because the definition patterns and filters were far too restrictive to cover
these definitions (recall problem), a problem that we are presently addressing.

9 Related work
The concept of “answer patterns” is not new in the field of QA. Mostly these patterns have constituted
only a small part of a system, such as those used in (Harabagiu et al., 2000) which were used solely for
answering definition questions. The first attempt at using patterns as the main approach to open-domain
QA can be traced back to a system (Soubbotin & Soubbotin, 2001) entered in the 2001 TREC QA evalu-

ation. Of the 289 correct answers returned by this system 193 (66%) were located using acquired answer
patterns, unfortunately details of exactly how the other 96 questions were answered is scant.

Such was the interest in this pattern based approach that at least one group (Ravichandran & Hovy, 2002)
choose to implement their own version. This implementation achieved similar results to the original sys-
tem but more details were made available allowing further work to be carried out by other interested
parties. The unfortunate point of this implementation was that no attempt was made to build an entire
QA system, rather the intent was to show that the approach worked well over the question types evalu-
ated.

The approach to learning answer patterns used in this paper is an extension of that given in (Greenwood
& Gaizauskas, 2003) which attempts to find more generalised patterns than those in either of the two
previous systems via the use of more detailed natural language analysis, i.e. named entity recognition
and noun chunking. This approach is very similar to (Ravichandran & Hovy, 2002) achieving similar
results over specific question types but allowing patterns to be acquired for a large range of question
types.

Related to our approach for answering definitions is the DefScriber system (Blair-Goldensohn et al.,
2003) that combines both world knowledge in the form of definitional predicates (genus, species, and
non-specific) and data-driven statistical techniques. World knowledge about the predicates is created via
machine learning techniques over annotated data. Data-driven techniques including vector space model
and cosine distance are used to exploit the redundancy of information about the “definiendum” in non-
definitional Web texts. We differ from this approach in two aspects. Firstly we do not rely on annotated
data to acquire knowledge and secondly we mine information in definition-bearing passages to ensure
that only terms relevant for definitions are found. Nevertheless, we employ similar statistical techniques
to identify similarities across sentences.

Also related to our research is the work by (Fleischman et al., 2003) who create pairs of concept-instances
such as “Bill Clinton-president” mining newspaper articles and web documents. These pairs constitute
pre-available knowledge that can be used to answer “Who is ...?” questions. They use lexico-syntactic
patterns learnt from annotated data to identify such pairs. We differ in that we learn knowledge in a
targeted on-line way, without relying on annotated data. The knowledge acquired can be used to answer
two different types of definition questions “Who” and “What”.

10 Conclusion and Future Work
In this paper we have presented a pattern-based method for answering factoid, list, and definition ques-
tions from large text collections that relies on knowledge mined from on-line sources. The pattern-based
method for answering factoid and list questions is combined with a simple method which assumes that
all questions require a named entity as answer, the most frequent entity (of the correct type) in the re-
trieved documents being proposed as the answer. The definition extraction method combines definition
patterns with the presence of secondary terms likely to appear in definition-bearing passages.

When answering factoid questions we noted that as the patterns have been acquired from the Web, they
do not necessarily reflect the writing style of documents of in a collection such as AQUAINT. When an-
swering definition questions we have identified that the filters used to determine if a passage is definition-
bearing, are far too restrictive and so they should be relaxed.

Results obtained on the recent TREC QA 2003 evaluation indicate many avenues of future research. For
the factoid and list QA system these could include:

• acquiring a wider range of pattern sets to cover more question types;

• experiments to gauge the affect of altering the document retrieval of the analysis stage to use the
full question not just the question term;

• development of a method which given a question and answer (gold standards) attempts to find
supporting documents within a closed collection from which patterns are learn;

For the definition QA system future research could include:

• extracted secondary terms for definition questions could be ranked, perhaps using their IDF values,
in order to help to eliminate inappropriate definition pattern matches (aspirin is a great choice for
active people).

• in order to extract better definition strings, a syntactic-based technique that prunes a parse tree
could be implemented;

• in order to cross the sentence barrier, coreference information could be used in the extraction
patterns;

• in order to improve recall, a relaxation of the definition criteria currently implemented or develop-
ment of a back-off strategy could be considered.

References
Blair-Goldensohn, S., McKeown, K. R., & Schlaikjer, A. H. (2003). DefScriber: A Hybrid Approach for Answer-

ing Definitional Questions (Demo). In Processdings of the 26th ACM SIGIR Conference, Toronto, Canada, July.
ACM.

Brill, E., Lin, J., Banko, M., Dumais, S., & Ng, A. (2001). Data-Intensive Question Answering. In Proceedings of
the Tenth Text REtrieval Conference.

Cunningham, H., Maynard, D., Bontcheva, K., & Tablan, V. (2002). GATE: A Framework and Graphical Devel-
opment Environment for Robust NLP Tools and Applications. In Proceedings of the 40th Anniversary Meeting
of the Association for Computational Linguistics.

Fleischman, M., Hovy, E., & Echihabi, A. (2003). Offline Strategies for Online Question Answering: Answering
Questions Before They Are Asked. In Proceedings of the ACL 2003, (pp. 1–7). ACL.

Greenwood, M. A. & Gaizauskas, R. (2003). Using a Named Entity Tagger to Generalise Surface Matching
Text Patterns for Question Answering. In Proceedings of the Workshop on Natural Language Processing for
Question Answering (EACL03), (pp. 29–34), Budapest, Hungary, April 14.

Greenwood, M. A. (2004). AnswerFinder: Question Answering from your Desktop. In Proceedings of the 7th
Annual Colloquium for the UK Special Interest Group for Computational Linguistics (CLUK ‘04), (pp. 75–80),
Birmingham, UK, January 7.

Harabagiu, S., Moldovan, D., Paşca, M., Mihalcea, R., Surdeanu, M., Bunescu, R., Gı̂rju, R., Rus, V., & Morǎrescu,
P. (2000). FALCON: Boosting Knowledge for Answer Engines. In Proceedings of the 9th Text REtrieval
Conference.

Hearst, M. A. (1992). Automatic Acquisition of Hyponyms from Large Text Corpora. In Proceedings of COL-
ING’92, Nantes.

Hirschman, L. & Gaizauskas, R. (2001). Natural Language Question Answering: The View From Here. Natural
Language Engineering, 7(4).

Humphreys, K., Gaizauskas, R., Azzam, S., Huyck, C., Mitchell, B., Cunningham, H., & Wilks, Y. (1998).
Description of the LaSIE-II system as used for MUC-7. In Proceedings of the Seventh Message Understanding
Conference (MUC-7).

Miller, G. A. (1995). WordNet: A Lexical Database. Communications of the ACM, 38(11):39–41, November.
Ravichandran, D. & Hovy, E. (2002). Learning Surface Text Patterns for a Question Answering System. In

Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, (pp. 41–47), Penn-
sylvania.

Robertson, S. E. & Walker, S. (1999). Okapi/Keenbow at TREC-8. In Proceedings of the 8th Text REtrieval
Conference.

Saggion, H. & Lapalme, G. (2002). Generating Indicative-Informative Summaries with SumUM. Computational
Linguistics, 28(4):497–526.

Soubbotin, M. M. & Soubbotin, S. M. (2001). Patterns of Potential Answer Expressions as Clues to the Right
Answers. In Proceedings of the 10th Text REtrieval Conference.

Ukkonen, E. (1995). On-line Construction of Suffix Trees. Algorithmica, 14(3):249–260.
Voorhees, E. M. (2002). Overview of the TREC 2002 Question Answering Track. In Proceedings of the 11th Text

REtrieval Conference.

