

Question Answering

Mark Andrew Greenwood MEng
(Supervised by Dr R. Gaizauskas)

Department of Computer Science, University of Sheffield,

Regent Court, 211Portobello St, Sheffield S1 4DP, UK
mark@dcs.shef.ac.uk

August – September 2002

 i

Abstract
This document reports the progress made during the first year of my studies into
question answering – mainly concerned with work undertaken to allow us to take part
in TREC 2002. The document also includes a comprehensive review of the history of
question answering, covering early work in areas such as natural language interfaces to
databases and reading comprehension systems. The report concludes with an outline
of a proposal for the next two years of my studies – which aim to show the uses and
benefits of natural language techniques to the field of question answering by
examining them against the backdrop of a simply pattern matching system, similar in
idea to those which have recently been shown to be highly successful.

i

 ii

Acknowledgements
The work detailed in this report would not have been possible without the support and
encouragement of quite a few people who I would like to thank:

• My supervisor Dr R. Gaizauskas for the huge amount of time he has spent
helping me familiarise myself with the research area, and for his numerous
suggestions and comments.

• Professor M. Holcombe and Dr M. Hepple for their constructive comments and
for asking those awkward questions designed to make me think harder.

• Ian Roberts for his help TREC and all the work he did on the information
retrieval side of Question Answering.

• My parents for their continued support and encouragement and for having
helped proof read this report.

• My girlfriend, Bryony Edwards, for her support and encouragement, and for
having helped proof numerous drafts of this report.

• All the members of the NLP group who have answered questions and pointed
me in the right direction.

ii

 iii

Contents
Abstract ..i

Acknowledgements ...ii

Contents... iii

1 Introduction ..1

2 The Scope of Question Answering...2
2.1 Applications and Their Users..2
2.2 Questions...2
2.3 Answers...4
2.4 Evaluation..5

2.4.1 Evaluation at TREC ...5

3 A Brief History of Question Answering ..8
3.1 Natural Language Database Systems ..8
3.2 Dialog Systems..9
3.3 Reading Comprehension Systems...13
3.4 Open-Domain Questions and TREC ...16

3.4.1 The Document Collections...17
3.4.2 Temporal and No Answer Questions ...17
3.4.3 Sub Tracks..18
3.4.4 Performance of Systems at TREC..19
3.4.5 The Future of TREC...21

3.5 Other Techniques Relevant to Question Answering ...21
3.5.1 Inference Rules...21

4 Progress to Date ...23
4.1 Overview of the TREC 9 System..23

4.1.1 Question Parsing ..24
4.1.2 Resolution of Question and Candidate Answer Texts25
4.1.3 Answer Output ...26

4.2 TREC 2001..26
4.3 Changes and Updates to the QA System...27

4.3.1 Processing Answer Instances ...28
4.3.2 Property Similarity ...28
4.3.3 Semantic Similarity ..28
4.3.4 Answer Scoring Algorithm ..31
4.3.5 Question - Answer Overlap..31
4.3.6 Combining Semantically Similar Answers ..31
4.3.7 Strategy for Ranking Answers ...32

4.4 Boosting System Performance Using Answer Redundancy33
4.5 List Questions..34
4.6 A Framework in which to Develop Grammars ...35
4.7 TREC 2002..36

4.7.1 Broken Questions ...36
4.7.2 Other Bugs in the System...37

iii

 iv

4.7.3 Answer Ranking...37
4.8 Question Answering over the World Wide Web ..38

4.8.1 Comparison to Other WWW QA Systems...39

5 Issues and Challenges Facing Question Answering...41
5.1 How Important is Reliable Information Retrieval?...41
5.2 Are Natural Language Techniques Helpful?...44
5.3 Does Machine Learning Have a Role to Play? ...45
5.4 Do Question Answering Systems Require World Knowledge45

6 Future Work ...48

7 Bibliography...51

Appendix 1: Index of Figures..54

Appendix 2: Index of Equations..55

Appendix 3: Index of Tables...56

iv

 Introduction 1

1 Introduction
Ever since the dawn of spoken language humans have hungered for knowledge. We
have explored the world around us by asking questions about what we can see and feel.
As time progressed we became more and more interested in acquiring knowledge,
constructing schools and universities to teach each new generation things their
forefathers could never have imagined. With modern technology it is now easier to
find any information than it has ever been in the history of human society.

With the recent explosive growth in the number of available electronic documents we
are entering an age where effective question answering (QA) technology will become
essential to being able to effectively access this vast collection of knowledge.

When the World Wide Web (WWW) exploded on the scene, during the late 80’s and
early 90’s, it allowed access to a vast number of electronic documents and search
engines were rapidly developed to allow a user to find a needle in this electronic
haystack.

Unfortunately, the increase in the amount of electronic text available shows no sign of
abating. Although modern search engines (such as Google1) are able to cope with the
amount of text available, they are most useful when a user presents a query to the
search engine which causes just a couple of documents to be returned, which the user
can then manually search to find the relevant information.

It is becoming more and more the case, however, that a simple query using a modern
search engine will return hundreds if not thousands of documents; more than can be
easily searched by hand (even ten documents is often too many for the time people
have available to find the information they are looking for). Clearly a new approach is
needed to allow more direct access to this vast store of information.

Ideally a user may ask a question such as “What is the state flower of Hawaii?”,
instead of the user being presented with a list of documents, question answering
technology would simply present the answer, “Hibiscus”, and a link to the relevant
document. This is the view of question answering that is currently prevalent due in no
small part to the question answering track at the Text REtrieval Conferences (for
detailed information about TREC see section 3.4).

1 Google is a registered trademark of Google Inc.

1

 The Scope of Question Answering 2

2 The Scope of Question Answering

2.1 Applications and Their Users
Many different types of question answering systems have been envisaged all with a
specific type of user in mind. One system of classifying the applications by the type of
user was detailed in [Burg2000]. The authors defined a scale with four different user
levels (and hence applications) as follows:

Level 1. Casual Questioner
Level 2. Template Questioner
Level 3. Cub Reporter
Level 4. Professional Information Analyst

On this scale the questions become more difficult and hence the applications become
more complex, for example the two ends of the spectrum are defined in Table 2-1 with
the other points on the scale falling between these two extremes.

 Casual Questioner Professional Information Analyst
Questions Simple facts Complex, uses judgement terms,

knowledge of user context
needed, broad scope

Answers Simple answers found in
a single document

Search multiple sources (in
multiple media/languages), fusion
of information, resolution of
conflicting data, multiple
alternatives, adding interpretation,
drawing conclusions

Table 2-1: Comparison of Casual Questioner and Professional Information Analyst.

Clearly this does not fully define the variation in the different possible applications and
users. Other possibilities include domain-specific question answering (i.e. help
systems), or even applying question answering to images, sounds or any other large
collection of data which about which a user may wish to ask questions.

2.2 Questions
Clearly there are many different types of questions that people will want to ask.
Researchers have often categorised questions based on the words they contain, i.e.
Who, What, When, Where, etc. This categorization is linguistically useful, but it tells
us nothing about how difficult the questions are for a system to answer, or even if they
will be able to answer them at all!

Moldovan et al. (see) define 5 question classes of increasing complexity and
the system requirements necessary to answer them:

[Mold2002]

1. QA systems capable of processing factual questions. These systems extract
answers from one or more documents. Often the answer is found verbatim in a
text or as a simple morphological variation.

2. QA systems enabling simple reasoning mechanisms. The characteristic of this
class is that answers are found in snippets of text, but unlike in 1, inference is
necessary to relate the question with the answer. An example is “How did
Socrates die?” where die has to be linked with drinking poisoned wine.

2

 The Scope of Question Answering 3

3. QA systems capable of answer fusion from different documents. In this class
the partial answer information is scattered throughout several documents and
answer fusion is necessary. The complexity of questions here ranges from
assembling simple lists to far more complex script-like answers (e.g. “How do
I assemble a bike?”).

4. Interactive QA systems. These systems are able to answer questions in the
context of previous interactions with the user.

5. QA systems capable of analogical reasoning. The characteristic of these
systems is their ability to answer speculative questions similar to: “Is the
airline industry in trouble?”

Also contained in the paper by Moldovan et al. is Table 2-2 showing the distribution of
the TREC questions (using all the QA questions from TRECs 8, 9 and 2001 including
the list and context questions – see section 3.4 for details about the different TRECs)
across these five different classes of question.

Type Number (%)
Class 1 (factual) 985 (67.5%)
Class 2 (simple reasoning) 408 (27.9%)
Class 3 (fusion – list) 25 (1.7%)
Class 4 (interactive – context) 42 (2.9%)
Class 5 (speculative) 0 (0.0%)

Table 2-2: Class distribution of TREC questions.

The best scoring systems, entered into TREC, are able to answer approximately two
thirds of the questions put to them. This matches almost exactly with the percentage of
Class 1 questions given in the above table.

This type of categorization is much more useful than one based on the question words
(who, what, etc.) and may prove to be a useful way of categorising a systems
capability. For example a system may only be able to reliably answer Class 1
questions, but if the user is aware of this limitation then the questions they ask will be
more likely to be correctly answered and hence they will be happier with the
performance of the system. For example a reporter researching the background to a
story will know only to ask questions that will have a factual answer. For instance if
they were working on the Concorde crash which happened in 2000 then they may have
asked questions such as:

“Has Concorde ever crashed before?”
“When was the last air crash in France?”

they would, however, know not to ask question such as:
“Will the authorities ground the remaining Concorde’s while they investigate
the crash?”

because this is a speculative (i.e. Class 5) question which they know the system will be
unable to answer. In simple terms labelling a system based on the class of questions
they can answer will limit user disappointment, as they will only expect the system to
be able to answer certain types of question. For this to be useful, however, enough
groups will have to adopt a single categorisation and apply it rigidly otherwise there
will be no appreciable benefit.

3

 The Scope of Question Answering 4

2.3 Answers
A precise all encompassing definition of what encompasses an answer is a difficult
think to come by. Clearly an answer has to be correct to be of any use, but this still
leaves a lot of scope for different systems to present the same answer in many different
ways. Most of the systems we will look at in the remainder of this paper use
unstructured text as their source of answers, and usually (but not always) simply
return, as an answer, a short extract from the text. The major question with this type of
system is how long the returned answer should be. To this end TREC 2002 is insisting
that the answers returned are exact although even that is difficult to define. The reason
for insisting on an exact answer is to see how good systems are at pinpointing the exact
answer. Most useable systems would want to return more than an exact answer, i.e.
they would want to place the answer in the same context as it was found in the
document or present some other form of justification. Isolating the exact answer does,
however, have its benefits, as it allows varying length strings to be taken from the
document correctly centred on the answer, and also it opens up the possibility of using
the exact answer along with text generation systems to provide answers which are not
simply cut from the text.

The main problem with asking systems to return exact answers is the definition of
what makes an answer exact. Quite a long discussion on this took place on the mailing
list for participants in TREC 2002 and the following sums up the feelings of most of
the participants:

It was suggested by L. Plamondon that an exact answers is usually a noun phrases.
This would mean that questions such as “Which river is known as the ‘Big
Muddy’?” can have all of the following as valid exact answers: Mississippi, the
Mississippi, Mississippi river and the Mississippi river. L. Liddy pointed out,
however, that certain types of ‘what’ questions can have a verb phrase as an exact
answer. Most interesting were the comments made by J. Prager: “…it is important
to distinguish extraneous material that is junk from extra material that further
answers the question. I just did a search with ‘What does a red wolf weigh?’ and
got a document that included the text ‘females weighing 40-60 pounds and males
weighing 60-80 pounds’. Isn’t this text a much better answer than just, say, ’60
pounds’? In other words, isn’t that the kind of answer we should be trying to get
our systems to give?”

Clearly it is very difficult for people to make a definition of what constitutes an exact
answer, which will satisfy every research group. Once the results of TREC 2002 are
released (around the 1st of October 2002) this discussion will surely resurface, as some
groups will undoubtedly be unhappy about some of the answers deemed to be non-
exact. My main concern lies with questions whose answers are date related. For
example, will a question such as “Which year…” expect only a year to be returned as
an exact answer or will a full date also be accepted, for example will the question
“What year did the shuttle Challenger explode?” have only 1986 as an exact answer,
or will January 1986 be excepted. Note that January 1986 is a more exact answer
than 1986 to the question “When did the shuttle Challenger explode?”.

4

 The Scope of Question Answering 5

2.4 Evaluation
Evaluation can be subjective, especially when dealing with certain types of natural
language systems. It is easy to evaluate systems in which there is a clearly defined
answer (i.e. named entity recognition), however, for most natural language tasks there
is no single correct answer. For example, the method of evaluating information
retrieval systems requires a text collection and a set of queries for which someone has
manually searched the entire collection for all the relevant documents. Only then can
the queries be used to make an evaluation of the system using recall and precision.
This is no easy task even for collections as small as the Cystic Fibrosis Database (see

), which contains 1239 articles and is approximately 5 megabytes in size2.
Imagine trying to do the same for the collection used for TREC 20013, which
contained approximately 979,000 articles in 3033 megabytes of text .

[Shaw1991]

[Voorh2001]

The LUNAR system was designed to answer questions about the geology of moon rocks
and is of interest to this section as it was one of the first question answering systems to
be subject to user-evaluation (see section 3.1 for more details on LUNAR and how it
fared). More recently evaluation of QA systems has focused mainly on the QA track
at the Text REtrieval Conferences (TREC) organised by the National Institute for
Science and Technology (NIST).

2.4.1 Evaluation at TREC
For the first two QA tracks held within the TREC competition (TRECs 8 and 9) each
system was allowed to return an ordered list of five possible answers to each question.
Although the systems were returning multiple answers for each question there was no
attempt to evaluate the confidence a system had in the answers other than the order in
which they were returned. At TREC 2001 the issue of confidence was addressed (in
part) by requesting that for each question the system should state which of the five
answers they were most confident in or state UNSURE to indicate that the system was
not confident in any of the proposed answers.

Unfortunately this attempt at introducing confidence to the track was not especially
successful as most systems always stated that they were confident in their first answer
and hence the percentage of questions for which the final answer was correct and the
system was sure was quite low (on average only 18.37%)

In this years track (TREC 2002) the idea of confidence has been taken a step further
and tightly integrated into the evaluation. Now each system can only return one exact
answer (see section 2.3 for a discussion of what constitutes an exact answer) for each
question but more importantly the answers for the different questions must be
presented in the submission file with the answer in which the system has most
confidence appearing first. The scoring algorithm then rewards systems which are
confident in their correct answers. The results for TREC 2002 are not yet available so
we do not have any idea as to how good systems are at assigning confidence measures
to their answers.

2 The collection is available from http://www.dcc.ufmg.br/irbook/cfc.html in both ASCII text and in the
form of XML documents.
3 Note that TREC 2001 is also referred to as TREC 10 and TREC 2002 as TREC 11 depending on which
papers you read.

5

http://www.dcc.ufmg.br/irbook/cfc.html

 The Scope of Question Answering 6

For the first three QA tracks at TREC (TRECs 8, 9 and 2001) the score for a single
question was the reciprocal rank of the first correct answer (or zero if no correct
answer was given). The overall system score was then the mean of the scores for all
the questions asked, known as Mean Reciprocal Rank (MRR), which is defined as:

1

1
q

i
i

r
MRR

q
==
∑

Equation 2-1: Equation for calculating MRR.

In which q is the number of questions and ri is the rank of the first correct answer for
question i (or 0 if no correct answer is returned).

In the first year (TREC 8) all the questions were generated by NIST and were usually
back formulation of statements in a document, i.e. for the text “Mozart was born in
1756” the likely question would be “When was Mozart born?”. In other words the
questions were relatively simple and most (if not all) would have fallen into the class
of factual questions (Class 1) as described in section 2.2.

During these first three question answering tracks participants submitted a single file to
NIST for evaluation. An excerpt from a submission is shown below:

1008 Q0 AP880531-0196 1 0.723 shef Hibiscus
1008 Q0 AP880531-0196 2 0.522 shef GEORGIA - Tiger swallowtail
1008 Q0 WSJ890815-0098 3 0.589 shef Connecticut's 8,800
1008 Q0 AP880324-0081 4 0.522 shef all tax food
1008 Q0 WSJ890815-0098 5 0.589 shef AIDS
1009 Q0 WSJ920116-0078 1 0.357 shef Mr. Wurzelbacher
1009 Q0 WSJ920212-0064 2 0.536 shef United Team
1009 Q0 AP900521-0190 3 0.522 shef 1988
1009 Q0 AP890830-0144 4 0.589 shef Gerald Richman
1009 Q0 WSJ920211-0060 5 0.615 shef Soviet Union

The format of the file is as follows4:
• The first column is the question number.
• The second column is currently unused and should always be Q0.
• The third column is either the official document identifier of the document that

justifies the answer OR the string NIL. If no answer is found.
• The fourth column is the rank of the answer, and the fifth column shows the

score (integer or floating point) that generated the ranking.
• The sixth column is called the "run tag" and should be a unique identifier for

the group and the method used.
• The last column is the answer-string. If the third column was NIL, this column

should be empty.

Clearly lots of useful information that groups could provide about how they answered
a question are not included as part of the evaluation procedure, just the textual answer
is used to evaluate and rank the systems.

4 Summarised from the TREC 2001 question answering guidelines.

6

 The Scope of Question Answering 7

Starting with TREC 2002 the measure used will be analogous to document retrieval's
un-interpolated average precision and is defined to be:

1

q

i
i

c i

q
=
∑

Equation 2-2: The TREC 2002 scoring measure.

In which q is the number of questions, i is the question number and ci is the number of
correct responses up to question i. This measure rewards systems that rank questions
they answered correctly above those that they did not.

Due to the different evaluation method (mainly because only one answer is being
returned per question) the format of the submission file is quite a bit different to that
used in previous years. An excerpt from a submission file for TREC 2002 is shown
below:

1494 shef NYT19981203.0051 Kipling
1494 shef 0.8839285714285714 100.0 1 2.0 true
1834 shef NYT19990402.0243 Judas
1834 shef 0.8773809523809524 100.0 126 1.0 true

The format of the file is as follows5:

The first line contains the response to be scored, in the format:
qid run-tag docid answer-string

where
• qid is the question number,
• run-tag is a unique identifier of the group and method used.
• docid is the id of the supporting document or the string NIL if no

answer is in the collection.
• answer-string is the exact answer or empty if docid is NIL.

The second line for a question contains the justification. The format for this
line is

qid run-tag justification

where qid and run-tag are the same as for line 1 and justification is a string of
at most 1024 bytes.

Clearly this new submission format allows systems to include their justification for
returning the answer they give. Some systems will probably return 1024 bytes of the
sentence containing the answer. Some groups have suggested they may include their
inference chains (although how much use these will be to any other research group is
debatable). Our system simply returns the information it uses to rank the answers (see
section 4.3.7 for details of what these attributes are). Until the results of TREC 2002
are available it is unclear how useful this justification will prove to be. Depending on
how people have used the line in this year’s evaluation tighter restrictions on what it
can contain may be introduced in future years.

5 Summarised from the TREC 2002 question answering guidelines.

7

 A Brief History of Question Answering 8

3 A Brief History of Question Answering
It would be wrong to claim that interest in QA technology is a recent development in
Natural Language Processing (NLP). In fact, one of the earliest papers on the subject
“Answering English Questions by Computer” which was written by Simmons in 1965

, begins with the statement that the paper reviews no less than fifteen
English language QA systems built over the previous five years. Clearly QA research
is not a new area, although over the intervening time its aims have shifted slightly.6

[Simm1965]

[Green1961]
[Woods1973]

[Woods1973]

[Grosz1986]
[Cope1990]

3.1 Natural Language Database Systems

Two of the best-known early QA systems were BASEBALL and LUNAR (see
and respectively). The BASEBALL system was designed to answer
questions about (funnily enough) baseball games which had been played in the
American league over a single season, while LUNAR was designed “…to enable a lunar
geologist to conveniently access, compare and evaluate the chemical analysis data on
lunar rock and soil composition that was accumulating as a result of the Apollo moon
mission” . Both systems were much more than toy research projects, with
LUNAR being successfully demonstrated at the Second Annual Lunar Science
Conference in 1971. Of the 111 questions that were non-comparative and within the
scope of the moon rock data; 78% were answered correctly, 12% failed for clerical
reasons and 10% had more serious errors.

Although many of these early systems were sophisticated, even by modern standards,
they were nearly all restricted to a limited with access to a structured database
containing the available domain knowledge. The questions presented to these systems
were usually analysed using linguistic knowledge to produce a canonical form, which
was then used to construct a standard database query. An example of this (taken from
a modern natural language database interface7) would be the question “List the authors
who have written books about business” for which an SQL (Structured Query
Language) query such as the following would be generated:

SELECT firstname, lastname FROM authors, titleauthor, titles

WHERE authors.au_id = titleauthor.au_id

AND titleauthor.title_id = titles.title_id

In simple terms, these early systems usually relied on having the knowledge required
to answer a question available in a highly structured form, not as completely
unstructured text, which is one of the challenges facing QA research today.

Most QA research that took place during the 1970’s was in a similar vein to the
systems already mentioned. More examples of early QA research along the lines of
LUNAR and BASEBALL can be found in . For a comprehensive review of this
type of natural language front-end work right through to 1990 see .

6 Note that some of the history of QA, as presented here, is based on the work of Hirschman and
Gaizauskas presented in [Hirs2001].
7 The example system is Microsoft’s English Query 2000, which is part of Microsoft SQL Server. See
http://www.microsoft.com/sql/ for more information.

8

http://www.microsoft.com/sql/

 A Brief History of Question Answering 9

3.2 Dialog Systems
In his seminal 1950 Mind article “Computing Machinery and Intelligence”, Alan
Turing described an experiment aimed at settling the question of whether or not a
computer is a capable of thought . The Turing Test (as the experiment has
become known) gave birth to research into computer systems capable of holding a
meaningful conversation. A conversation (usually referred to as a dialog) by its very
nature usually contains at least one question and therefore is relevant to this history of
QA technology.

[Turing1950]

[Weiz1966]

One of the earliest, and best known, of these Artificial Intelligence (AI) dialog systems
was Weizenbaum’s 1966 creation ELIZA . ELIZA was designed to emulate a
therapist, and for many years could be found listening to visiting academics in the AI
Laboratory at the Massachusetts Institute of Technology (M.I.T.).

The following is a typical conversation with Eliza8:

Men are all alike.
IN WHAT WAY?
They're always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE?
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED
It's true. I am unhappy
DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY
I need some help, that much seems certain.
WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP
Perhaps I could learn to get along with my mother.
TELL ME MORE ABOUT YOUR FAMILY
My mother takes care of me.
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU
My father.
YOUR FATHER
You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
You are not very aggressive but I think you don't want me to notice that.
WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE
You don't argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU
You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU
My father is afraid of everybody.
WHAT ELSE COMES TO YOUR MIND WHEN YOU THINK OF YOUR FATHER
Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND
MADE YOU COME HERE

8 Note that in all transcripts of machine-human conversations, presented in this paper, the human’s
speech is in italics and the computers output is in SMALL CAPITALS.

9

 A Brief History of Question Answering 10

Although on first sight ELIZA seems extremely sophisticated a closer look at how the
program works shows just how simplistic it really is. ELIZA operates through
sequences of pattern matching and string replacement, for example the pattern

_ _ _ you … me
matches the sentence

Why do you hate me?
On encountering this sentence the program selects a transformation from the list of
possible transformations for this pattern, for example:

YOU LIKE TO THINK I … YOU DON’T YOU?
and produces the output

YOU LIKE TO THINK I HATE YOU DON’T YOU?
Clearly this is not a robust dialog system and there are many examples of ELIZA
producing complete gibberish due to stringently applying these transformation rules. It
should also be clear that this type of system is never going to be able to answer open-
domain questions which require a real-world response, such as “What do penguins
eat?”. For a complete exposé of ELIZA and a similar program called PARRY,
developed by , see . [Heiser1980] [Cope1993]

[Wino1972] [Bobr1977]

Moving forward through the history of AI dialog systems research, we meet SHRDLU
and GUS (see and respectively). Both of these systems are
interfaces to databases holding information about a restricted domain. The difference
between these systems and systems such as LUNAR (see section 3.1) are their dialog
capabilities. GUS was designed to simulate a travel advisor and had access to a
database containing limited information about airline flight times. SHRDLU is probably
the better known of these two systems and controlled a robot arm in a virtual micro-
world which consisted of a table top strewn with coloured blocks of varying shapes
and sizes and a box into which the blocks could be placed9. The following is a
shortened version of the dialog that was used as a demo of SHRDLU:

Pick up a big red block.
OK.
Grasp the pyramid.
I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.
Find a block which is taller than the one you are holding and put it into the
box.
BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM
HOLDING.
OK.
What does the box contain?
THE BLUE PYRAMID AND THE BLUE BLOCK.
What is the pyramid supported by?
THE BOX.
How many blocks are in the box?
FOUR OF THEM.
Can the table pick up blocks?
NO.
Can a pyramid be supported by a block?
YES.

9 The original SHRDLU source code along with modern implementations can be found on the World
Wide Web at http://hci.stanford.edu/cs147/examples/shrdlu/.

10

http://hci.stanford.edu/cs147/examples/shrdlu/

 A Brief History of Question Answering 11

Can a pyramid support a pyramid?
I DON'T KNOW.
Stack up two pyramids.
I CAN'T.
Will you please stack up both of the red blocks and either a green cube or a
pyramid?
OK.
Which cube is sitting on the table?
THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID.
Is there a large block behind the pyramid?
YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN CUBE, AND THE BLUE
ONE.
Put a small one onto the green cube which supports a pyramid.
OK.
Put the littlest pyramid on top of it.
OK.
Does the shortest thing the tallest pyramid's support supports support anything
green?
YES, THE GREEN PYRAMID.
What color is it?
BY "IT", I ASSUME YOU MEAN THE SHORTEST THING THE TALLEST PYRAMID'S
SUPPORT SUPPORTS.
RED
How many things are on top of the green cubes?
I'M NOT SURE WHAT YOU MEAN BY "ON TOP OF" IN THE PHRASE "ON TOP OF
GREEN CUBES".
DO YOU MEAN:
1 - DIRECTLY ON THE SURFACE
2 - ANYWHERE ON TOP OF?
2
THREE OF THEM.
Thank you.
YOU’RE WELCOME!

Figure 3-1: Original screen display of SHRDLU in action10.

10 Image used with the kind permission of Terry Winograd

11

 A Brief History of Question Answering 12

Most people are bowled over by their first encounter with SHRDLU, however, the
system is still severely limited to only discussing the micro-world it inhabits. Take the
following exchange (this is a slightly modified version of a conversation, due to
Haugeland , which appeared in): [Haug1985] [Cope1993]

[Zue2000]

[Sene1998] [Poli2000]

Build a steeple.
SORRY, I DON’T KNOW THE WORD ‘STEEPLE’.
A ‘steeple’ is a stack that contains two green cubes and a pyramid.
I UNDERSTAND.
Trade you the steeple for three red cubes.
SORRY, I DON’T KNOW THE WORD ‘TRADE’.
A ‘trade’ is a free exchange of ownership.
SORRY, I DON’T KNOW THE WORD ‘FREE’.
Sorry, I thought you were smarter than you are.
SORRY, I DON’T KNOW THE WORD ‘SORRY’.

This attack is a little unfair, as no one ever claimed that the system had any knowledge
about trade or in fact anything other than the properties of the blocks, table, box and
the ability to move the blocks around. In fact even colours, which SHRDLU seems to
understand really well, are simply properties of the blocks; there is no understanding of
colour. Although an outstanding programming effort, SHRDLU is as limited as ELIZA
and in its creator’s own words “a dead end”.

Dialog systems were historically the domain of AI researchers. This has changed over
time, and currently there is a vast amount of NLP-based research into dialog systems.
One modern dialog system is Jupiter (see). The best description is taken
from its product page at MIT11:

“Jupiter is a conversational system that provides up-to-date weather
information over the phone. Jupiter knows about 500+ cities worldwide (of
which 350 are within the US) and gets its data from four different Web-based
sources”.

The following are example questions put to the Jupiter system; note how the system
remembers some aspects of the previous queries:

• What cities do you know about in California?
• How about in France?
• What will the temperature be in Boston tomorrow?
• What about the humidity?
• Are there any flood warnings in the United States?
• Where is it sunny in the Caribbean?
• What's the wind speed in Chicago?
• How about London?
• Can you give me the forecast for Seattle?
• Will it rain tomorrow in Denver?

Jupiter is based on the GALAXY client-server architecture (see and
for details on GALAXY) and consists of the following stages:

1. Speech Recognition: converts the spoken sentence into text.
2. Language Understanding: parses the text into semantic frame – a grammatical

structure containing the basic terms need to query the Jupiter database.

11 The product page for Jupiter is at http://www/sls.lcs.mit.edu/sls/whatwedo/applications/jupiter.html.

12

http://www/sls.lcs.mit.edu/sls/whatwedo/applications/jupiter.html

 A Brief History of Question Answering 13

3. Language Generation: uses the semantic frame’s basic terms to build a SQL
query for the database.

4. Information Retrieval: Jupiter executes the SQL query and retrieves the
requested information from the database.

5. Language Generation: converts the query result into a natural language
sentence.

6. Information Delivery: Jupiter delivers the generated sentence to the user via
voice (using a speech synthesizer) and/or display.

 Clearly Jupiter is more complex than systems such as SHRDLU as the system is dealing
with input via the telephone and hence has to cope with the added problem of robust
speech recognition to provide a reasonable input to the dialog system. Note, however,
that just as SHRDLU was limited to questions about the block world it inhabited so
Jupiter is limited to questions about weather reports for the cities it is aware of.

3.3 Reading Comprehension Systems
Reading comprehension tests are frequently used to test the reading level of children.
As early as 1977 (see the QUALM system detailed in) researchers recognised
this as an appropriate way of testing the language understanding abilities of computers
and started to build systems to answer reading comprehension tests.

[Lehn1977]

[Schank1977]

In a similar way to most of the early dialog systems (see the previous section) the early
reading comprehension systems were developed by the AI community. One of the
best known early systems is Sam which was developed at the Yale AI lab. Consider
the story:

John went to New York by bus. On the bus he talked to an old lady. When he
left the bus, he thanked the driver. He took the subway to Leone’s. On the
subway his pocket was picked. He got off the train and entered Leone’s. He
had some lasagne. When the check came, he discovered he couldn’t pay. The
management told him he would have to wash dishes. When he left, he caught a
bus to New Haven.

A simple story and one about which we could all answer simple questions. The
following is the transcript of a set of questions about the above story being put to Sam
(this transcription of the test comes from):

Why did John go to New York?
BECAUSE JOHN WANTED TO GO TO LEONE’S.
How did John get to Leone’s?
JOHN TOOK A BUS TO NEW YORK AND THEN HE TOOK THE SUBWAY TO LEONE’S.
Did anything unusual happen on the bus?
I DON’T REMEMBER ANYTHING.
Did anything unusual happen on the subway?
A THIEF PICKED JOHN’S POCKET.
What did John order?
JOHN ORDERED LASAGNE.
Did anything unusual happen at the restaurant?
JOHN DISCOVERED THAT HE COULDN’T PAY THE CHECK AND SO HE HAD TO WASH
DISHES.
Why couldn’t John pay the check?
BECAUSE JOHN DID NOT HAVE ANY MONEY.
Why didn’t John have any money?

13

 A Brief History of Question Answering 14

BECAUSE A THIEF PICKED JOHN’S POCKET.
How did John get back to New Haven?
JOHN WENT FROM LEONE’S BY SUBWAY AND THEN HE WENT TO NEW HAVEN BY
BUS.
How was John able to take the bus to New Haven?
PROBABLY JOHN HAD A TICKET.

This is without doubt an impressive display, of especially interest is that Sam has
managed to return information which is only implicitly stated in the story, for example:

• Sam inferred that John ordered the lasagne that he had
• Sam inferred that having to wash the dishes was a consequence of not being

able to pay the check
• Sam manages to correctly decide the John’s reason for going to New York was

to eat in Leone’s not to wash dishes or have his pocket picked.
• In the answers to the last two questions Sam makes sensible conjectures well

above the information given in the story.

This dazzling display is all the work of numerous scripts which Sam applies as he
works through a story (incidentally Sam stands for Script Applier Mechanism), in this
instance Sam would use scripts for restaurant, bus and subway. These scripts allow
simple stories to be expanded to contain all the standard things that happen in a
situation (such as sitting at a table in a restaurant although that is never mentioned).
Knowing exactly what should happen in a restaurant enables Sam to spot deviations
from the norm i.e. in this case John is unable to pay the check. Having already applied
the subway script and noticing that the usual outcome of having your pocket picked is
no money, Sam can then correctly deduce that John can not pay the check because he
has no money. Like many of the systems (in numerous domains) which we have
already discussed Sam is limited in that a script must exist for Sam to sensibly answer
any questions. Clearly there will come a time when a script is needed which has not
been prepared and the system will fail. The aim of this type of research must then be
to get away from the necessity of hand-coded resources, to open-domain unrestricted
question answering (the same problem that haunted early dialog processing systems).

Many of the modern reading comprehension systems are designed to return only the
sentence most likely to contain the answer, and not just the answer itself. Although
this is a step backward compared to systems such as Sam this limitation is partly based
around the fact that these systems no longer rely on scripts to generate answers. This
contrasts with most other question answering research in which systems aim to return
an answer (albeit surrounded by text from within a sentence) rather than the full
sentence containing the answer. Two such systems are Quarc and Deep Read (see

 and respectively) both of which report results at between 30% and
40% in reading comprehension tests for children in the 3rd to 6th grades12, an example
being test concerning maple syrup in Figure 3-2.

[Rilo2000] [Hirs1999]

Both systems work by using a set of pattern matching rules (often just bag-of-words)
and then augmenting this with one or more of the following NL techniques: Part of
Speech (POS) tagging, stemming, name identification, semantic class identification
and pronoun resolution.

12 For those not familiar with the American grade schools (including the author), children in these grades
are between eight and twelve years old.

14

 A Brief History of Question Answering 15

How Maple Syrup is Made
Maple syrup comes from sugar maple trees. At one time, maple syrup was
used to make sugar. This is why the tree is called a "sugar" maple tree.
Sugar maple trees make sap. Farmers collect the sap. The best time to
collect sap is in February and March. The nights must be cold and the days
warm. The farmer drills a few small holes in each tree. He puts a spout in
each hole. Then he hangs a bucket on the end of each spout. The bucket
has a cover to keep rain and snow out. The sap drips into the bucket.
About 10 gallons of sap come from each hole.

1. Who collects maple sap? (Farmers)
2. What does the farmer hang from a spout? (A bucket)
3. When is sap collected? (February and March)
4. Where does the maple sap come from? (Sugar maple trees)
5. Why is the bucket covered? (to keep rain and snow out)

Figure 3-2: An example reading comprehension test.

At first glance these systems seem exceptionally poor when compared with other QA
systems, such as those entered in TREC, which at best answer approximately 70% of
the questions. As was pointed out in , however, reading comprehension
tests are document-specific question answering tasks:

[Anand2000]

[Anand2000]

“Each question is asked with respect to a specific document and the answer
must be located from within that document … document-specific question
answering poses different challenges than general question answering because
an answer generally appears only once in a document … whereas in general
QA many documents contain an answer to the question, hence a document-
specific system usually only has one shot to find the answer”.

The benefit of multiple instances is discussed, in some detail, in relation to our QA
system in section 4.4.

One modern system that attempts to return an actual answer rather than the sentence
most likely to contain the answer is Spot (currently on version 5) which was developed
at the Johns-Hopkins summer workshop in 2000 and is detailed in . This
work is based on the hypotheses that:

“… once can fruitfully decompose the reading comprehension task into
question analysis (QAnalysis) categorizing the question as one of 30 odd types,
finding an answer region (HotSpotting), and finding the answer phrase in the
answer region (PinPointing)”

The system they then implemented uses this hypothesis to attack the problem as
follows:

QAnalysis: categorise the question based on a shallow parse of the question
combined with lexically grounded regular expressions.
HotSpotting: find the answer region (i.e. sentence) using word overlap
between question and region.
PinPointing (1): use independent tagger modules to mark phrases with types
corresponding to the question types from QAnalysis.
PinPointing (2): rank the candidate answers using information from
QAnalysis, HotSpotting, and PinPointing (1). Candidate ranking is necessary
since HotSpotting and PinPointing cannot be performed perfectly.

15

 A Brief History of Question Answering 16

Although a valiant effort they still only produced a system which could answer about
28% of the questions (clearly the result was going to be worse than the systems which
just return a sentence as this is a more difficult task), although if the system is
evaluated between the final two stages then the performance is comparable with Quarc
and Deep Read.

3.4 Open-Domain Questions and TREC
In recent years research in open-domain QA has been accelerated due to the inclusion
of a QA track at the annual Text REtrieval Conference (TREC). This track was first
run in 1999 with seventeen research groups entering one or more systems. Although
the performance of the systems varied wildly, some of were remarkably good (see

 for an overview of the track and for a report on the best overall
system). An additional aim of the track was to define a task that would appeal to both
the document retrieval community (as you could originally return up to 250 bytes, the
task could be seen as short passage retrieval) and the information extraction (IE)
community (where question answering is simply open domain IE).

[Voorh1999] [Mold1999]

[Hovy2001]

The QA track is now entering its fourth year, and contains not only the main QA track
but also a list track in which systems are required to name a set number of entities, that
meet some condition, with questions such as “Name 20 countries that produce coffee”.

The majority of the systems work in a similar fashion and consist of two main (often
separate) sub-systems. Firstly an information retrieval (IR) system is used to select the
top n documents or passages, which match a query that has been generated from the
question. For more details on this stage in the workings of a question answering
system see section 5.1.

The second stage then consists of finding the answer entities (usually snippets of text)
from within these documents and then ranking them in such a way as to select a
limited number of possible answers. The majority of the early TREC systems
pinpointed likely answers by using a form of window-based word scoring technique,
which rewards desirable words in the window. They moved the window across the
candidate answer text and returned the window at the position giving the highest score.
Clearly many variations on this technique are available by, among other options,
tuning the window size and the score assigned to different words. As reported in

, although this form of answer pinpointing works to some degree (giving
results of up to 30% in independent evaluations), this method has some serious
limiting factors:

• It is impossible to accurately pinpoint the boundaries of an answer (e.g. an
exact name or phrase).

• It relies solely on word level information and does not use semantic
information (hence no knowledge of the type, i.e. person or location, of the
answer being sought).

• It is impossible to see how this method could be extended to composing an
answer from many different documents or even from different sentences or
phrases within a single document.

Window based answer-pinpointing techniques are therefore limited and will not, in the
long run, be a satisfactory method for pinpointing candidate answers. This has led to
more and more of the TREC systems implementing a semantic method for pinpointing
answers.

16

 A Brief History of Question Answering 17

3.4.1 The Document Collections
Two different document collections have been used over the four years the TREC QA
track has now been running. For the first three years the collection was made up of a
subset of the TIPSTER collection (which consists of 5 CDs of compressed text). By the
end of the third year the set of documents being used for the QA task consisted of
approximately 979,000 articles from numerous different news services including the
Wall Street Journal and the Financial Times (see section 3.4.2 for a rundown of the
exact contents).

As of TREC 2002 the document set has been changed to use the same collection as
participants in ARDA’s new AQUAINT program. This consists of documents from the
following sources:

• AP newswire, 1998-2000
• New York Times newswire, 1998-2000
• Xinhua News Agency, 1996-2000

This new collection consists (according to NIST) of 1,033,461 documents. One point
of concern with this new collection is some of the articles provided by the Xinhua
News Agency. These articles appear to contain many spelling and grammar errors
which may have an impact on the performance of systems (see section 5.4 for a
discussion of world knowledge and document errors). Exactly what effect these errors
will have on the performance of systems is unclear, although it may well make the
evaluation more difficult (the documents are taken to be correct even if misspelled or
misinformed), a clearer understanding of this problem may emerge once the results of
the TREC 2002 evaluation have been released to the participants.

3.4.2 Temporal and No Answer Questions
In the first two TREC competitions each question was guaranteed to have a
corresponding answer within the text collection. This constraint was dropped for
TREC 2001 with 49 questions having no known answer. Systems were then able to
return NIL as the supporting document if they believed there to be no answer.

Detecting whether or not a question has an answer is feasible, with one system having
an accuracy of 0.76, but it is not trivial with only five of the sixty six runs having an
accuracy of over 0.25 (where accuracy is the number of questions for which NIL was
correctly returned divided by the total number of questions for which NIL was
returned). As systems could return up to five ranked answers per question, some
choose to always return NIL at rank five which resulted in an accuracy of only 0.1, but
slightly increased their overall MRR score.

Our system makes no attempt to recognise questions that have no answer in the
collection. Instead the system works by adding an initial NIL answer, with a zero
score, to the ranked list of possible answers. All the answers found in the documents
are then added to the list and as their scores will be greater than zero the NIL answer
will be placed at the bottom of the ranked list. In other words the only time we ever
return a NIL answer to a question is if we do not find any other possible answers
within the documents.

There is a possible issue with the TREC competitions and the use of external
resources. Many groups (including ours, see section 4.4, and Brill et al, see section 4.4

17

 A Brief History of Question Answering 18

and) make use of the web as a source of answers that are then matched
against the closed TREC collection. This is inherently dangerous as a question, which
has no relevant answer within the TREC collection will quite possibly have an answer
on the WWW. If this answer is found and then projected onto the TREC collection
there is always a chance that there will be a document which is relevant to both the
query and answer without being a justification for that answer. One class of questions
that can be a problem are those dealing with time.

[Brill2001]

The document collection used for the TREC 2001 conference, consists of
approximately 979,000 documents from the following sources:

• AP newswire, 1988-1990
• Wall Street Journal, 1987-1992
• San Jose Mercury News, 1991
• Financial Times, 1991-1994
• Los Angeles Times, 1989-1990
• Foreign Broadcast Information Service, 1996

As can clearly be seen from the list of sources the latest events the news articles could
cover would be the end of 1996, so a question such as “When did the Kursk sink?”
which is answered by “13th August 2000” could not possibly be answered by any
document in the collection. A system which utilises the Internet could, however,
generate a correct answer but then either be unable to find a corresponding answer in
the TREC collection or if like Brill et al. they simply look for a relevant document
using an IR engine (especially if using an IR engine based on the vector space model)
then they may find a relevant document but it certainly will not justify the answer
found using the WWW.

A related problem is how to generate answers that are guaranteed not to have an
answer in a closed collection, such as that used by TREC. Currently a question is
suggested and then a brief search is made of the collection for an answer. If none can
be found then it is assumed that it has no correct answer unless, during evaluation, a
system proposes a correct answer that is backed up by a supporting document from
within the collection. So even if the intention is to include say ten no-answer questions
by the end of the evaluation there may only be five or so no-answer questions
remaining.

The only sure way of introducing questions that do not have an answer in a closed
collection is to use temporal question such as that mentioned above. Asking “When
did the Kursk sink?” is a safe no-answer question if you know the contents of the
collection stop at 1996 and the event you are asking about took place in 2000.

3.4.3 Sub Tracks
At TREC 2001 two new sub tracks were added to the main question answering track.
These were concerned with answering list and context questions.

The list questions were designed to test the ability of systems to construct an answer to
a question from multiple documents by requesting a set number of entities i.e. “Name
20 countries that produce coffee”. The collection was guaranteed to contain at least
the requested number of entities but it was also guaranteed that more than one
document would be needed to answer the question. As with the main track, the

18

 A Brief History of Question Answering 19

abilities of the competing systems varied wildly from the system entered by the
Language Computer Corporation (see), which achieved an average precision
of 0.76, to the systems entered by Korea Advanced Institute of Science and
Technology (see) and Université de Montréal (see) whose systems
both achieved an average precision of only 0.07. This variation in ability of the
systems is similar to that shown in the main track where the lowest MRR was 0.003
and the highest was 0.676.

[Hara2001]

[Oh2001] [Plam2001]

The context questions are slightly different to the normal type of question asked. The
aim of this sub-track is to test the ability of systems to track discourse objects across
multiple questions (i.e. to have some idea of the interaction which has already taken
place with the user). One of the question sets used in this evaluation was the
following:

1. Which museum in Florence was damaged by a major bomb explosion in 1993?
2. On what day did this happen?
3. Which galleries were involved?
4. How many people were killed?
5. Where were these people located?
6. How much explosive was used?

Clearly the ability to answer the later questions intelligently depends on the systems
ability to resolve referential links across the questions.

In total seven runs were submitted to this task, unfortunately the results were not quite
what were expected. The ability of systems to answer questions later in a series did
not correlate with their ability to answer the earlier questions. Rather the early
questions allowed system to produce a document set (from the main TREC collection)
that the later questions could then be answered against. Hence the ability to answer
any question in the series was simply the ability to answer that particular type of
question (i.e. who, what …).

3.4.4 Performance of Systems at TREC
As was mentioned in section 2.4.1, the first QA track consisted wholly of questions
created by NIST as back formulations of text snippets. This lead to most of the
questions being relatively simple to answer, with questions such as “Who was the first
American in space?” having answers such as “Alan Shepard was the first American in
space” available directly in the text collection. It was, however, the first time that QA
systems had been evaluated in this way and so the task was harder than it might have
been as research groups were unsure exactly what to expect and had little training data
available.

TRECs 9 and 2001 used real questions taken from the logs of sites such as Ask Jeeves
and MSN. This meant that the task was no harder, not only because the questions were
not motivated by the text collection but also because there was now a significant
number of definition type questions such as “What is an eclipse?”.

TREC 2001 was by far the most difficult of the three completed conferences as not
only where the questions not based on the text but also not all of the questions were
guaranteed to have an answer in the text collection.

19

 A Brief History of Question Answering 20

Clearly the main task has been becoming more difficult year-on-year, although the
performance of the systems has been maintained at a reasonable level, probably due in
part to the experience gained from having competed in the previous years. This can be
seen in Table 3-1 and Figure 3-3, which show the performance of the best, worst and
mean systems as well as the best and worst performance of the Sheffield system at the
three conferences13.

 System MRR Score for
TREC Best Worst Mean Sheffield’s Best Sheffield’s Worst

8 0.660 0.002 0.237 0.081 0.071
9 0.580 0.038 0.218 0.206 0.159
10 0.676 0.003 0.236 0.343 0.169

Table 3-1: MRR scores of systems over TRECs 8, 9 and 10.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

8 9 10

TREC

M
R

R
 S

co
re

Best System
Worst System
Mean System
Sheffield's Best
Sheffield's Worst

Figure 3-3: Performance of systems over TRECs 8, 9 and 10.

After TREC 2001 it was decided that in future the number of definition style questions
will be monitored by NIST. This is partly because they are difficult to answer and to
judge but also as there are more efficient ways of answering these type of questions
other than using news wire texts (i.e. these questions could probably be better
answered by having a QA system as an interface to an encyclopaedia).

13 The results for the Sheffield system at TREC 10 are not official results, as the group did not enter a
system. Rather these show the worst and best performance we have obtained from running and judging
the questions ourselves.

20

 A Brief History of Question Answering 21

3.4.5 The Future of TREC
The future of the question answering track at TREC will be guided by both the
roadmap document and the ARDA AQUAINT program14. The main changes
for TREC 2002 will be the restriction to returning only exact answers as specified by
the roadmap, however, due to the poor performance on the context questions this sub-
track will be removed and will form part of the first year of the AQUAINT program.

[Burg2000]

[Lin2001]

The ultimate goal of the AQUAINT program is not to develop QA systems for only
factually based questions whose answers can be found as a single string or within a
relatively short window of text (e.g. a 50 or 250 byte window) from a single
document15. Rather the research intends to address a scenario in which multiple, inter-
related questions are asked in a focused topic area by a skilled, professional
information analyst who is attempting to respond to larger, more complex information
needs or requirements (basically the top level of application envisaged in the roadmap,
see section 2.1 for more details). While some systems exist which offer some results
in these areas, they are limited and do not meet the US governments broader
requirements for question answering. The major areas of research to be funded are:

• Question Understanding and Interpretation (including contextual interpretation,
query expansion, query taxonomy),

• Determining the Answer (including information retrieval and extraction from
multiple media/languages and data types, interpretation, synthesis, resolving
conflicting information, justification),

• Formulating and Presenting the Answer (including summarization, synthesis,
generation), AND/OR

• Cross-Cutting/ Enabling/Enhancing Technologies that directly and materially
support the above goals (including but not limited to advanced reasoning,
sharable knowledge sources, content representation, interactive QA, role of
context in QA, role of knowledge in QA, and language processing and natural
language processing research required to support advances in QA.)

The current suggestion is that participants in the AQUAINT program will attempt harder
tasks, such as context questions, than the participants in the standard TREC QA track.
When these systems are achieving reasonable results the tasks will be moved into the
standard QA track for all the TREC participants to attempt.

3.5 Other Techniques Relevant to Question Answering
There are many different techniques that could be brought to bear on the problem of
question answering. This section aims to outline a few of the most promising of these
techniques.

3.5.1 Inference Rules
One of the major problems in question answering is the potential for mismatch
between the expressions used in the question and the expressions used in the text. This
is the problem which Lin and Pantel address in their paper, Discovery of Inference
Rules for Question Answering . The paper presents an unsupervised

14 The AQUAINT program can be found at http://www.ic-arda/InfoExploit/aquaint/index.html.
15 This paragraph is paraphrased from the AQUAINT description that can be found at http://www.ic-
arda.org/InfoExplot/aquaint/index.html

21

http://www.ic-arda/InfoExploit/aquaint/index.html

 A Brief History of Question Answering 22

algorithm for discovering these inference rules from text. The algorithm is based on
Harris’ Distributional Hypothesis, which states that words that occur in the same
context tend to be similar. Instead of this they use an altered version of the hypothesis,
which works with paths in the dependency trees of a parsed corpus, i.e. if two paths
tend to link the same set of words they hypothesize that the meanings of the paths are
similar.

This method allows phrases that are not the same, but which a read could infer as
having a similar meaning, to also be extracted from the text, for example both of the
following rules are extracted even though the second one is an inference and the two
phrases do not have the same meaning:

“X writes Y” implies “X is the author of Y”
“X caused Y” can be used to infer that “Y is blamed on X”

They also showed (by experimentation) that people find constructing these inferences
manually more difficult then they expected. For example most people would have
constructed

“X is the author of Y”
from the text

“X wrote Y”
whereas they would be unlikely to construct

“X’s Y factory” from “X manufactures Y”
from the query

“What does Peugot manufacture?”
which can be answered by the following text:

“Chrétien visited Peugot’s newly renovated car factory in the afternoon”.

The ability of the system to automatically discover these inferences from text allows
them to be easily applied to the problem of question answering, especially potential
mismatches between the question and answer bearing texts, without vast amounts of
time being required to hand-code similar inference rules. Methods like the one
described should soon start to appear in numerous different types of NLP systems
including those dealing with question answering. This should result in an
improvement in the performance of those NLP systems.

22

 Progress to Date 23

4 Progress to Date
The work I have undertaken this year has used, as its basis, the University of
Sheffield’s TREC system; known as QA-LaSIE, which was entered into TREC 8 and
TREC 9 (see and respectively for full details of the system). [Hump1999] [Scott2000]

[Brill1992]

4.1 Overview of the TREC 9 System

Before discussing how the original system has been updated in preparation for TREC
2002 we will first discuss the layout and workings of the original system, the key
features of which are shown in Figure 4-1.

TREC
Document
Collection

Okapi
Passage Retrieval

Top n
passages

QA-LaSIE

Questions Questions

Answers

Figure 4-1: Original system setup.

Firstly the TREC document collection is indexed using the Okapi information retrieval
system (this is done once only in advance of any questions). This index is then used to
return the top n passages relevant to the question, the query to Okapi simply being all
the question words. The top n passages are then submitted along with the question to
QA-LaSIE, which should produce one or more answers.

The main work of question answering takes place within QA-LaSIE, which is shown
in more detail in . Figure 4-2

Figure 4-2: Original QA-LaSIE system modules.

Tokenizer Gazetteer
Lookup

Sentence
Splitter

Brill
Tagger

Tagged
Morph

Parser Name
Matcher

Discourse
Interpreter

Question
Answer

The following is a brief description of each of the modules within QA-LaSIE:
• Tokenizer – Identifies token boundaries (as byte offsets into the text) and text

section boundaries (text header, text body and any sections to be excluded from
processing).

• Gazetteer Lookup – Identifies single and multi-word matches against multiple
domain specific full name (locations, organisations, etc.) and keyword
(company designators, person first names, etc.) lists, and tags matching phrases
with appropriate name categories.

• Sentence Splitter – Identifies sentence boundaries in the text body.
• Brill Tagger – Assigns one of the 48 Penn TreeBank part-of-speech tags to

each token in the text (see).
• Tagged Morph – Simple morphological analysis to identify the root form and

inflectional suffix for tokens that have been tagged as noun or verb.

23

 Progress to Date 24

• Parser – Performs two-pass bottom-up chart parsing, pass one with a special
named entity grammar, and pass two with a general phrasal grammar. A ‘best
parse’ is then selected, which may be only a partial parse, and a predicate-
argument representation, or quasi-logical form (QLF), of each sentence is
constructed compositionally.

• Name Matcher – Matches variants of named entities across the text.
• Discourse Interpreter – Adds the QLF representation to a semantic net, which

encodes the system’s world and domain knowledge as a hierarchy of concepts.
Additional information inferred from the input is also added to the model, and
coreference resolution is attempted between instances mentioned in the text,
producing an updated discourse model. A representation of the question is then
matched against the model, using the coreference mechanism.

• Question Answer – Selects the required answer text using the resolved question
representation in the discourse model.

Most of this system is unaltered from the LaSIE system entered into the 1998 Message
Understanding Conference (MUC-7) which is detailed in . The changes that
were made to create QA-LaSIE were within the Parser and Discourse Interpreter
modules and the addition of the Question Answer module.

[Hump1998]

4.1.1 Question Parsing

Questions were one of the sentence constructions which were not handled by the
original LaSIE parser, so extra grammar rules were developed to cover the example
questions that were available. The syntactic rules have a semantic component that is
used to build up a QLF representation of the question in a similar manner to the rest of
the grammar. One major difference between LaSIE and QA-LaSIE is the introduction
of a special semantic predicate, qvar (question variable), which is used to indicate the
entity requested by the question. For example, the question “Who wrote Hamlet?”
produces the following QLF representation:

qvar(e1), qattr(e1,name), person(e1), lsubj(e2,e1),
write(e2), time(e2,past), aspect(e2,simple),
voice(e2,active), lobj(e2,e3), name(e3,'Hamlet')

In this representation each entity in the question gives rise to a unique identifier of the
form en. The use of the word Who in the question causes the addition of person(e1),
as who suggests the answer to the question will be a person. Also the qvar is set to e1
showing that the question is seeking a person (because person and qvar share the
same entity). The relational predicates lsubj (logical subject) and lobj (logical
object) link any verb arguments founding the text with the verb in the correct
relationship.

The QLF representation of the question is stored for use in subsequent processing
against the candidate answer texts. When the QLF is stored the entity identifiers are
replaced by question entity identifiers of the form qn, i.e. e1 becomes q1, e2 becomes
q2 etc) to facilitate later processing.

24

 Progress to Date 25

4.1.2 Resolution of Question and Candidate Answer Texts
After a candidate answer text has been parsed to produce a QLF representation of each
sentence, the QLFs are passed to the discourse interpreter. This behaves exactly the
same as in the LaSIE system apart from the addition of a final processing stage.

The discourse interpreter has (by this stage) produced a semantic net of all the entities
and relationships present in the multiple QLFs for the document. The net has then had
a coreference algorithm applied to it to replace multiple instances of the same entity
with a single unified instance (i.e. if e3 and e7 refer to the same entity within the text
then they will all be replaced by e3).

Given this discourse model of a text the QLF of the question is added as the first
sentence (sentence0) to the model and coreference is then carried out between
question entities (qn) and entities within the text (en).

In the version of QA-LaSIE which was entered into TREC 8 this was the primary QA
mechanism: if the qvar was resolved with an entity in the text then this entity became
the answer; if not, then no answer was proposed. This approach had several major
drawbacks. First, it permitted only one answer per question, whereas the QA track
allowed five answers and secondly it was very fragile, as coreference was difficult to
establish.

Given these weaknesses, the system entered into TREC 9 followed a significantly
different approach. Instead of attempting to directly corefer the qvar with an entity in
the text, entities in the text are scored in a way which attempted to value their
likelihood as answers. The best scores were then used to select a single answer to
return for each sentence.

1. Each sentence is given a Constraint Score, C, equal to 1 point for each
Question Constraint that is a member of the sentence, where a question
constraint is an entity in the question. This has the effect that sentences which
contained entities detected as coreferring with entitles in the question will be
rewarded.

2. Within each sentence every remaining entity (eY) is tested against the question
variable (qvar) for:
a) Semantic Similarity, S: the reciprocal of the length of the path between

qvar and eY in the semantic lattice (ontology). For instance if the qvar is
of type person then an entity which also has the type person will receive a
score of 1.

b) Property Similarity, P: this is between 0 and 1 and is a measure of how
many properties the two instances share in common and how similar the
properties are (i.e. for a question such as “Name a green fruit” where a
property of fruit is the colour green it does not make sense to allow the text
“a sweet fruit such as the bright red strawberries” to be used as an answer
because here strawberry has the colour property red).

c) Object Relation, O: 0.25 if eY is related to a constraint within the sentence
by apposition, a qualifying relationship, or with the prepositions of or in.

25

 Progress to Date 26

d) Event Relation, E: 0.5 if there is an event entity in the QLF of the question
which is related to the qvar by a lsubj or lobj relation and is not the be
event (i.e. derived from a copula construction) and the entity being scored
stands in the same relation (lobj or lsubj) to an event entity of the same
type as qvar does.

These four values are then added together and then divided by 2.8 to give eY a score,
which is then added to the sentence Constraint Score, C, then divided by the number of
question constraints, Q, plus one. This can all be viewed as producing the following
equation:

()
2.8

Score for eY
1

S O P E
C

Q

+ + +
+

 =
+

Equation 4-1: Equation for scoring an answer instance.

4.1.3 Answer Output
The Question Answering module, simply collects the answers from the discourse
interpreter (which outputs one per sentence in the document) and ranks them according
to their score. Once all the documents for a question have been processed the module
simply outputs answers based on the five best scoring entities. The only processing
carried out in this module is concerned with selecting either 50 or 250 bytes of text
containing the five best answers, no other processing takes place.

4.2 TREC 2001
Although the University of Sheffield’s NLP group did not participate in TREC 2001,
they stayed involved in the ongoing discussions. As a way of introducing myself to
the QA community I volunteered to help produce regular expression patterns which
match the accepted answers to the questions used in TREC 2001. These patterns are
used to enable researchers to quickly and easily see how their systems perform against
the questions, without having to manually judge each answer (which is how the official
results for TREC are obtained)16. For example question 975 used in the TREC 2001
evaluation was “When was the first liver transplant?”. The judgement files published
by NIST show all the answers given by all the systems, but without the run tag so there
is no way of identifying the system which returned a specific answer. The judgement
file is useful, however, to groups who wish to gather questions and answers for a
machine learning approach to question answering. A section of the judgement file for
question 975 is shown below.

975 AP880511-0060 1 in 1967
975 AP880527-0033 1 first liver transplant in 1967 .
975 AP880527-0033 -1 split -
975 AP880527-0033 1 world 's first liver transplant in 1967
975 AP880529-0051 -1 1985
975 AP890104-0148 -1 e left the hospital _Dec. 16_.
975 AP890104-0148 -1 November
975 AP890104-0148 -1 November 1985
975 AP891018-0099 1 1963
975 AP891018-0099 1 [Date:891018] 1963 and pioneered; 1980s
975 AP900118-0221 1 , in 1963, as well as the 31 other liver

16 The patterns along with other QA related files can be found at http://trec.nist.gov/data/qa.html.

26

http://trec.nist.gov/data/qa.htl

 Progress to Date 27

The first column is the question number followed by the document identifier. The
third column is a 1 if the answer is correct and -1 if it is not. As you can clearly see
from this sample all those answers which were judged to be correct contain either the
year 1963 or 1967, whereas none of the answers judged to be incorrect contain either
of these years. So the following regular expression can be built to match against all
the correct answers:

196[37]

Research groups can then use these patterns to check if an answer they return to the
question contains the correct answer or not, without having to manually inspect each
single answer.

Since TREC 2001 we have presented the 500 questions from the TREC 2001
competition to our original TREC 9 system. Using the answer patterns mentioned
above our 50-byte answer system scored an MRR of 0.169 and failed to find a correct
answer to 360 of the 500 questions. Our exact answer system scored an MRR of 0.133
and failed to answer 396 of the questions. If we had taken part these runs would have
been ranked approximately 43rd and 51st, respectively, out of the 66 runs that were
submitted to the track with the worst system scoring an MRR of only 0.003.

4.3 Changes and Updates to the QA System
Part of the work I have undertaken this year has been to migrate the QA system from
the original GATE (General Architecture for Text Engineering) framework, ,
in which it ran during TREC 8 and TREC 9, to the new GATE 2 framework (see

 and). This has meant a large amount of re-writing of the
wrappers for the components used, while leaving the components themselves largely
unchanged, i.e. the bottom-up chart parser and the discourse interpreter are virtually
identical to those used in TREC 9. This has allowed me to familiarise myself with the
system ready for the more detailed work to follow. The new layout within GATE 2 of
the question answering system can be seen in Figure 4-3, note that those modules
marked by an asterisk are available as part of GATE 2 and are used unmodified in the
question answering system.

[Gaiz1996]

[Cunn2002a] [Cunn2002b]

[Hepple2000]

English

Tokeniser* Gazetteer* Sentence
Splitter*

POS
Tagger*

Tagged
Morph

NE
Transducer*

Ortho
Matcher* Parser Discourse

Interpreter
Question
Answer

Figure 4-3: The layout of the QA system in GATE 2.

The main changes to the layout are the use of a different POS tagger (Heptag, see
, instead of Brill’s tagger) and the fact that two modules, NE Transducer

and OrthoMatcher, have replaced the Name Matcher component. These changes,
however, make no significant difference to the way in which the question answering
system works.

The only changes to the bottom-up chart parser are the addition of a few extra
grammar rules aimed at increasing the performance of parsing specific types of
question. The following sections outline the changes made to the other modules in
preparation for TREC 2002.

27

 Progress to Date 28

4.3.1 Processing Answer Instances
The discourse interpreter has seen some alterations to make answering scoring more
appropriate. Processing, of a document, is the same up until the point at which the
possible answers are identified and then scored. The previous system simply returned
the highest scoring answer for each sentence within a document, i.e. the total number
of possible answers was equal to the number of sentences within the document. This
has a number of problems associated with it:

1. Often more than one answer within a sentence is awarded the same score. If
this happens for answers with the highest score then the system can only return
one of the possible answers, and therefore always returns the one that appeared
last in the sentence (i.e. the one it processed last).

2. Often the answer module (which is completely independent of the discourse
interpreter) will throw away an answer as it is deemed unlikely to be correct. If
this happens then a sentence will not have an answer associated with it (due to
point 1), and on occasions this might result in a document having no answers
associated with it.

These two issues are both addressed by simply returning all possible answers and their
associated scores from the discourse interpreter and allowing the answer module to
decide which to make use of and which to discard.

4.3.2 Property Similarity
When it comes to scoring answers alterations have also been made to the previous
system. One of the components of the score for an answer is property similarity,
which was mentioned in section 4.1.2. In the TREC 8 system all common properties
between qvar and eY had to match for eY to be considered a possible answer. This,
however, was deemed to be too hard a constraint and was relaxed, for TREC 9, to the
number of common matching properties of qvar and eY, divided by the total number
of properties of qvar and eY. From analysis of the system this appeared to still be too
strict a requirement and hence property similarity has been removed altogether.

4.3.3 Semantic Similarity
The major addition to the scoring algorithm is concerned with the semantic similarity
between qvar and eY. In the TREC 9 system the semantic similarity is defined as the
reciprocal of the distance between qvar and eY in the systems ontology (the path was
not even constrained to the shortest possible path, just the first to be found). The
problem with this approach is that the ontology is extremely small, and so often qX, eY
or both are not in the ontology and hence get a semantic similarity score of zero, even
if they are clearly linked in some way (i.e. neither house nor abode are in the ontology
although these two words are clearly related). The solution to this has been to
implement a two-stage process. Firstly the original algorithm (with the added
constraint of always returning the shortest path) is used and only if no path is found is
the new method used. This allows us to specify specific relationships in our ontology
if we deem them necessary.

The new method takes WordNet (see) and assumes that it is an ontology.
The semantic similarity of two entities, qvar and eY, is then computed using a
variation of the Leacock and Chodorow method (LCH) presented in . In their
original method semantic similarity is defined in Equation 4-2.

[Mill1995]

[Lea1998]

28

 Progress to Date 29

Semantic Similarity ln
32
d = −

Equation 4-2: The Leacock and Chodorow Semantic Similarity equation.

Where d is the distance between the two words in question17. The distance between
two words is calculated by building hypernym (… is a kind of …) trees, one for each
of the noun senses of both words. These trees are then overlapped and the distance
between two words is the number of hypernym (or hyponym if going down a tree)
relationships required to go between them, plus one. As an example, assume we want
to know how semantically similar the words fish and food are to each other. Firstly we
build the hypernym trees for the all the noun senses of both words, these can be seen in

. Figure 4-4

Figure 4-4: The hypernym trees for fish and food.

entity

object

substance

food

foodstuff

fish1

life form

animal

chordate

vertebrate

aquatic
vertebrate

fish2

person

victim

fish3

act

activity

card
game

fish4

entity

object

substance

food

We then work out all the paths between fish and food using the generated hypernym
trees. It turns out there are three distinct paths (in which signifies a hypernym
relation, signifies a hyponym relation and = signifies that that two things are
identical, i.e. the join between two hypernym trees):

1. fish1 foodstuff food = food
2. fish2 aquatic vertebrate vertebrate chordate animal life form

entity = entity object substance food
3. fish3 victim person life form entity = entity object substance

food

17 Note that the normalising factor of 32 is not arbitrary but is double the maximum depth of the
WordNet hierarchy.

29

 Progress to Date 30

The shortest of these three paths is shown more clearly in . Figure 4-5

Figure 4-5: The shortest path from fish to food.

entity

object

substance

object

substance

food

foodstuff

fish1

food

entity

Equation 4-2 for calculating the semantic similarity does not produce a score, which is
in anyway comparable to the semantic similarity already calculated by our system
using the built-in ontology. To correct this problem we use the equation given below
to calculate semantic similarity.

1Semantic Similarity
d

=

Equation 4-3: Equation used to calculate semantic similarity in our system.

Table 4-1

Table 4-1: Table showing distances and scores for the three paths.

 presents the distances, LCH measure and our measure for each of the paths.

Path Number Distance LCH Measure Our Measure
1 3 2.37 1

3
2 10 1.16 1

10
3 8 1.39 1

8

Other possible methods of computing the semantic distances between words, using
WordNet, could have been used and these include , , and

.
[Jiang1997] [Resnik1995] [Lin1998]

[Hirst1998]

30

 Progress to Date 31

4.3.4 Answer Scoring Algorithm
The modified answer scoring algorithm is identical to that detailed in section 4.1.2,
apart from the complete removal of the property similarity component, which gives the
following equation:

()
2.8

Score for eY
1

S O E
C

Q

+ +
+

 =
+

Equation 4-4: Equation, used in TREC 2002, for scoring an answer instance.

4.3.5 Question - Answer Overlap

The one component of the system that is radically different is the final answer module.
This takes the possible answers as identified by the discourse interpreter and ranks
them according to their score and other attributes. Before the algorithm for ranking the
answers can be explained a few minor algorithms and ideas, which it uses, have to be
covered.

As has already been discussed, in section 3.4, window-based methods for pinpointing
answers are severely limited and are unlikely to be involved in the future of QA
research. Our system goes one step further than this, however, and assumes that
overlap between the question and a candidate answer is inherently bad. Clearly for a
question such as “Where is Perth?” an answer of “Perth is in” is not correct and can
be eliminated using the following method.

In most cases it is unlikely that a correct answer to a question will contain many, if
any, of the non-stopwords in the question. We can use this assumption to throw away
some of the possible answer strings before we even look at the score assigned to them.
Word overlap between a question and candidate answer is best viewed as a percentage.
At 0% there is no overlap between the question and candidate answer and so the string
may be a correct answer to the question and therefore requires further processing. At
100% overlap all the non-stopwords in the candidate answer appear in the question, at
which point it is highly unlikely that this string will be a correct answer to the question
and can then be disregarded (an exception is TREC 2001 Q1026 “What does target
heart rate mean?” which has as one of its possible answers “target heart rate”,
although the more important question here is whether “target heart rate” is in fact a
valid answer to the question). At points in between it is unclear whether the candidate
answer may be correct, or not, based only on the percentage overlap.

The initial attempt at including overlap in the system worked simply by assuming that
if there were any overlap at all then the candidate answer would be discarded. As a
naïve approach this was actually quite successful, however, the current system simply
discards any answers where the overlap with the question is 100%.

4.3.6 Combining Semantically Similar Answers
Having carried out some limited analysis of the performance of our system over the
TREC 2001 questions, one thing was clear; we would often return two or more
semantically equivalent answers. Clearly if the answer is correct then this is alright,
but if these answers are wrong then this may well prevent correct answers from
appearing in the top n documents which we are allowed to return. On some occasions

31

 Progress to Date 32

we were actually returning identical answers (i.e. for Q1000 we returned five answers
all of which were “the sun”), these are easy to remove by simply keeping only the
highest scoring of two identical answers.

Unfortunately, equivalent answers are not always identical strings; as is the case for
the question “Where is Perth?” to which our system returned within the top five
answers: Australia and Western Australia. Clearly Australia and Western Australia
are semantically equivalent answers to the question, so only one of them need be
returned.

The approach taken to deal with these answer strings, which is similar to that used in

, is to test if two answers A and B are the same by checking that the stem of
every non-stopword in A matches a stem of a non-stopword in B, or vice versa. Using
this test, if two answers match, then both are removed and a new answer is created
from the highest of the two scores and the longest answer string. The effect of this
method on our example question was that now only Western Australia is listed as one
of the top five possible answers.

[Brill2001]

Clearly the same approach to the question “In which country is Perth?” would not be
as effective as Western Australia is not an exact country name, this method is still
better than simple string matching approaches although it still needs some
improvement.

Using this approach improved the system performance slightly. More importantly was
the unexpected side effect which caused the system to clarify some answer strings,
with the most obvious being people’s names: ‘Armstrong’ becoming ‘Neil A.
Armstrong’ and ‘Davis’ becoming ‘Eric Davis’.

4.3.7 Strategy for Ranking Answers
Using the ideas outlined above for refining the list of possible answers we can now
detail the algorithm used to rank the answers for a specific question.

1. Firstly a NIL answer is added to the list of possible answers, LA. Currently this
answer is given a score of zero, although through further work it may be
possible to give this answer a score - hence introducing a cut-off point below
which a score is so small that the chances of the answer being correct are
minimal.

2. We then calculate the percentage word overlap between the current document
and the question (ignoring stopwords). From experience we know that the
performance of our IR step is not as good as we would like, so this calculation
has the effect of re-ranking the documents returned by the IR system.
Hopefully when more work has been carried out on the IR system we will be
able to remove this step altogether.

3. For each candidate answer:
• We get the score, the answer text, the rank of the document it came

from and if it is an exact answer or not (exact answers come from
name(eX,Y) in the semantics, other answers are snippets of text taken
from the documents).

• If the overlap between the answer and the question is 100% then this
answer is discarded.

32

 Progress to Date 33

• If the score for this answer is greater than any answer we have seen thus
far, within this document, then we store all the other answers to date,
from this document, in a list, LO, and create a new answer list, LP, with
just this answer. If it is the same as the currently highest scored answer
then we put them both in the list LP. If it is lower than the currently
highest scored answer we put it straight in the list, LO.

4. We now take the list of highest ranked answers, LP, and add these to the set of
answers taken from previous documents, LA. This process of adding them in
makes sure semantically similar answers are merged rather than simply added.

5. We then take the list of all the answers from all the documents processed so far
for this question, LO, which were not the highest ranked answers and merge
these answers with the list we updated in step 4, LA. The difference here is the
answers are not added but only merged, i.e. scores are only updated if an
answer in the list LO is semantically the same as one in the highest ranked list,
LA, but has a higher score.

6. Once all of the documents for a question have been processed in this way then
the list of answers, LA, is sorted on the following attributes (i.e. if the value of
the first attribute is the same for two answers then we sort on the second
attribute, two answers are equally ranked if all of their attribute values are
identical):

• The score (the higher the better)
• The question-document overlap (the higher the better)
• The number of other answers which were semantically the same as this

one (the higher the better)
• The rank of the document from which the answer originates (the lower

the better)
• If the answer is exact or not (exact is better).

7. The number of answers requested by the user is then taken from the top of the
LA list and returned.

4.4 Boosting System Performance Using Answer Redundancy

As has been reported by numerous research groups, including , the number
of answer instances (within a single document or multiple documents each containing
the answer once) directly impacts the end-to-end performance of a QA system. This is
partly due to the fact that the IR engine is more likely to find a relevant document, and
also because there may be multiple different wordings of an answer within the text;
giving the parser’s grammars a better chance of getting at least one of them to parse in
a way that is beneficial to the rest of the system.

[Light2001]

[Buch2001]

To this end it was decided to attempt to boost the knowledge available to our system,
not as may be expected, by returning more documents at the initial IR step, but by
using two different text collections. The second text collection that was chosen was
the World Wide Web. A document collection for a single question is made up of the
snippets displayed on the Google results page for the top ten documents returned by
Google. These are certainly not full documents, and are rarely full sentences but this is
not a problem as the bottom-up chart parser we employ simply returns the best parse, it
is not constrained to only returning a full sentence or a complex phrase. This method
of using just the snippets has been shown to be successful in , although they
used the snippets from the first one thousand documents rather than the first ten.

33

 Progress to Date 34

The QA system is run against both text collections and then the results are merged
together. The end result must be an answer which references a document in the TREC
collection so the process of merging is as follows: for each answer returned from the
Google corpus (both the list of high scoring answers and the list of rejected answers),
if an answer exists from a document in the TREC corpus which is semantically
equivalent, then merge by keeping the highest score etc., but the reference to the
TREC document.

Over a sample of one hundred questions (TREC questions 1000 to 1099) the results of
combining the collections in this way were (based on returning the top five answers for
each question):

Collection MRR Not Found (%)
TREC 0.256 68 (68%)
Google 0.227 68 (68%)
Combined 0.285 65 (65%)

Table 4-2: Results of using Google to boast system score.

Using multiple document collections, especially the WWW, has been previously
reported in Data-Intensive Question Answering by Brill et al . Their
reasoning behind using the web is the same as ours; to increase the number of answer
instances within the text available to process. Their system differs vastly from ours,
however, in the way in which they make use of this extra collection. Their system
finds the top five answers from the WWW using Google as the information retrieval
system (the method of finding answers is immaterial for this comparison and is
therefore not detailed here). At this point for each of the top five answers they submit
a query to the TREC collection (indexed using Okapi) consisting of the question words
and the candidate answer. The top ranked document is then returned as the supporting
document for the answer. The difference between this system and ours should be
clear; Brill et al make no attempt to process the documents in the TREC collection and
rely solely on the answers obtained from the web. This seems inherently dangerous as
there is no way of knowing if the top document returned from the TREC collection for
a query and candidate answer, relates in any way to the question being asked.
Fortunately, it appears that their system for finding answers from the web is highly
reliable and hence the chance of one of the answers having a supporting document
assigned to it is quite high. At TREC 2001 the system scored an MRR of 0.347 (in
two separate runs), which ranked them 12th and 13th out of the 66 runs submitted to the
main task.

[Brill2001]

4.5 List Questions

List questions are inherently harder to answer than standard, single answer questions,
mainly because the systems have to combine information from multiple sources to
locate the required number of answers. Also the system has to be able to extract from
the question the number of different answers required.

Our simple solution to these problems is as follows. The system processes the
question in the usual way producing a long list of answers (sorted in the same way as
before). The question is the scanned, token by token, until the first token whose part
of speech (POS) signifies that it is a number, we then assume that this is the number of

34

 Progress to Date 35

answers sought, which are simply returned from the top of the answer list already
produced.

Clearly this suffers from the obvious problem that some questions may contain more
than one number, i.e. “The United States has 2 main political parties name 1 of them.”

Our system appears to have another flaw, in that the grammar used by the chart parser
was not designed to handle questions such as “Name 20 countries that produce coffee”
and so often fails to instantiate a qvar which means it is very unlikely the system will
be able to generate a correct answer (as by default the qvar is associated with the first
element in the semantics, which is usually question, due to the *question* which is
pre-pended to every question). To alleviate this problem, if it is known that the
question being processed is a list question and a qvar has not been instantiated then
the semantics are searched for the first instance of count(eY, Z) and then the qvar is
initialised to eY (note that Z should be the number of answers we are looking for but
this is not currently checked). So for the example question the semantics would
contain “countries(e2), count(e2,20)” hence “qvar(e2)” will be added to the
semantics, successfully initialising the qvar to the correct type. In a real system this
would not be possible as there would be know way of knowing in advance that we
were processing a list question, however in TREC the list track is completely separate
to the main track so we know before the run starts that we are dealing exclusively with
list questions.

4.6 A Framework in which to Develop Grammars
One of the main areas of the system that still requires some work is the grammar used
in the bottom-up chart parser. Many books try to express the English language in
terms of grammar rules (see , and specifically), it is
however, very difficult to develop grammars, even from these guides, as a small
change in one rule, to fix a phrase which has not parsed correctly, will often have
many little knock-on effects in other phrases.

[Gee1983] [Jarv1993] [Burt1997]

Therefore, the best way of developing grammars is to have a test framework in which
one can quickly see all the knock-on effects of a change over numerous different
phrases.

To this end I have developed an application, using GATE 2 as the processing engine in
the same way as the QA system, which will allow grammars to be developed and
tested in an easy way18. The interface to the application can be seen in . Figure 4-6

This framework is designed to allow the user to develop a grammar and quickly see
the changes a new rule makes to both the generated syntax and semantics for a number
of phrases. To this end the syntax and semantics are presented in two different tables
(accessed through the tabs at the bottom of the interface). Both tables are identical in
contents and allow the user to see; the phrase being parsed, the result of the previous
parse, the result of the current parse, the gold standard parse (set by the user) whether
or not the current parse is different to the previous and whether or not the previous or

18 The framework application can be used by members of the department by executing the script
/share/nlp/projects/trec11/parser_test/framework/run.sh and the grammar in use can be found
in …/parser_test/buchart/grammar.

35

 Progress to Date 36

current parses were identical to the specified gold standard parse. This is a lot of
information but it is presented to the user in a way which any changes are quickly
visible.

Figure 4-6: An application for assisting the development of grammars.

4.7 TREC 2002

Having made the changes outline above we took part in TREC 2002 submitting a total
of five runs, three in the main track and two in the list sub-track. The different runs
were as follows:

• sheft11mo3 – This main run used only passages of up to three paragraphs
retrieved from the AQUAINT collection using Okapi.

• sheft11mog3 – This main run used passages of up to three paragraphs
retrieved from the AQUAINT collection using Okapi, and also the top ten
snippets returned by Google for the question.

• sheft11mog1 – This main run was identical to sheft11mog3 apart from the
maximum passage size was limited to only one paragraph.

• sheft11lo – This list run used the same settings as sheft11mo3.
• sheft11log – This list run used the same settings as sheft11mog3.

Once the runs had been submitted to TREC for evaluation I started to carry out some
simply evaluation and failure analysis to see roughly how we had fared over the 500
questions.

4.7.1 Broken Questions
A Broken Questions is one that causes the system to fail for some reason. There were
a number of different reasons that caused questions to be classified as broken during
TREC 2002:

1. Chart Parser Problems – This problem occurred only if a document was very
long or if it had a very odd structure, the problem being that the question never
completed processing (one of the questions was stopped after it had been
processing the same document for 68 hours). The majority of documents that
caused this problem were lists of football matches (i.e. each line was ‘CLUB vs

36

 Progress to Date 37

CLUB’) and no sentence breaks were found in the document. This meant the
entire document, with its odd structure, was treated as a single sentence. As yet
no attempt has been made to fix this issue, although it is likely that the easiest
option would be to modify the sentence splitter to introduce more sentence
breaks in this type of document.

2. WordNet Access Problems – The code used to access WordNet, works by
carrying out numerous binary searches over the index and data files to locate
the required information. This is much faster than having to compile and load
the entire WordNet database into Prolog for each document. When accessing
the database, however, the index and data files were being repeatedly opened
and closed; unfortunately the closing of the files does not appear to release the
operating system file handles. This meant that for large documents, which
necessitated a vast number of WordNet look-ups, the operating system would
refuse to allow one of the files to be opened again which meant that the
discourse interpreter would fail, losing all possible answers contained within
the document. This problem has been fixed by simply opening each file once
(the first time it is accessed) and then seeking to the beginning of the file on
future occasions. Unfortunately this does have the unfortunate side effect of
slightly slowing down the processing of each document.

4.7.2 Other Bugs in the System

So far a few small issues have been identified with the system, which may have
affected the performance of the system over the TREC 2002 questions. Some of these
were covered in the previous section but those that did not cause the system to fail are
documented here.

1. Case Sensitivity – The grammar rules are case sensitive but this is usually not
an issue as the attribute of a word, which is usually used, is referred to as the
m_root, which stores the morphological root of the word as calculated by the
Tagged Morph module. This attribute should always be stored in the lower
case form and this usually is what happens. Unfortunately a bug in the new
Tagged Morph wrapper meant that words for which a root is not known
(usually because the word is already the root) is stored in the same case as it
appears in the text. This caused a serious problem with the list questions as
most of them start “Name…” and Name is already the root of the word and so
was placed into the chart parser with a capital letter so the question rules
referred to name and they did not match against the m_root of Name, hence a
lot of the list questions were not correctly interpreted leading to worse results
than should have been obtained.

4.7.3 Answer Ranking

A quick look at the submission files for the main task shows one thing quite clearly.
Although the system is relatively good at answering questions the algorithm for
ranking the answers to multiple questions is most certainly lacking. As was explained
in detail in section 4.3.7 the ranking algorithm uses each attribute of an answer in a set
sequence in order to rank the answers for a question and in the same way to rank
answers for multiple questions. The problem which arises is as follows: a question
may be incorrectly answered with an answer which scores very highly for some reason
but is only seen once and a another question could be answered correctly by a low
scoring answer which we see multiple times. For example the two questions “What is

37

 Progress to Date 38

the appropriate gift for a 10th anniversary?” and “Who is Tom Cruise married to?”
(1608 and 1395 from the TREC 2002 set) have the following entries in the
sheft11mog1 submission file (the format is explained in section 2.4.1).

1608 sheft11mog1 XIE19961211.0078 Zhebung Temple Celebrates 1st

1608 sheft11mog1 0.8616071428571429 100.0 3 1.0 true

…

1395 sheft11mog1 APW19990612.0066 Nicole Kidman

1395 sheft11mog1 0.35714285714285715 100.0 54 1.0 true

Clearly the answer to question 1608 is wrong, we do not even have to look at the
supporting document to know this, however it is ranked sixth in the submission file
because of its very high score (0.861607) even though it is only seen 3 times in all the
documents processed. On the other hand the answer to question 1395 is right (or at
least it was when the supporting document was written, see section 3.4.2 for a
discussion of temporal questions) but it is ranked four hundred and twelfth in the
answer file due to its relatively low score (0.357143) even though the answer is seen
54 times. Clearly this answer should be ranked a lot higher in the submission file.
What may not be instantly obvious is if this problem occurs when ranking the answers
to multiple questions surely it will also occur when ranking the multiple answers to a
single question. A brief experiment was carried out over 100 of the TREC 2001
question (Q1000 to Q1099) to see if changing the ranking algorithm to use the score
multiplied by the number of occurrences would improve the performance within a
single question. The results are shown in Table 4-3.

System MRR Not Found (%)
Original Ranking Algorithm 0.288 61 (61%)
Score * Number of Occurrences 0.343 59 (59%)
Table 4-3: Results of combining score and number of occurrences.

Although the difference is not vast it should be clear that it is still a significant
improvement over simply using the score as the main ranking attribute. More work
needs to be carried out to see if this naïve approach of simply multiplying the score by
the number of occurrences is the best method of ranking answers or whether there is a
better alternative.

4.8 Question Answering over the World Wide Web
The original idea for adapting our TREC 9 QA system to use the WWW as its
document collection was outlined in . Unfortunately, this project was never
successfully completed - the web front end and the QA system were never integrated.

[Bamf2001]

More recently, before the QA system was moved to GATE 2, the project was restarted
using the original specification. This system worked by getting Google to return the
top 100 related sites using the full question text as the search query. The top n
documents (where n is between 1 and 10 and can be specified by the user) which
Google lists as being less than 6K in size were downloaded to produce the document
collection for the question. The size restriction was an attempt to allow the processing
of the question to be completed within a reasonable amount of time. The answers
produced were then formatted for display in the user’s browser with links to the

38

 Progress to Date 39

documents from which they were taken19. Unfortunately the system is restricted in
numerous ways, especially the restriction to small documents and the instability of the
old GATE system. As the GATE 2 framework is more reliable, development of this
specific interface has been halted.

An improved WWW QA system using GATE 2 has been developed which takes
advantage of the Web APIs, which Google has made available for applications to
access the search engine using SOAP20. The system uses the top 10 snippets returned
by Google, for the question words, to build the document collection over which the
question answering system can then run. Although the system only uses the top 10
snippets, which rarely consist of full sentences the accuracy of the system is
comparable to the system running on the top 20 relevant documents from the TREC
collection. The main reason for limiting the number of snippets to 10 is to allow the
system to process a question in a relatively short period of time. If time was not an
issue then the system would have been designed to use the top 100 or even top 1000
snippets as other groups have done.

Figure 4-7: The interface to our new WWW QA system.

At the moment, although the application is functional, there is still work to be done to
produce a user-friendly system21. It has been suggested that this system may in fact be
integrated with another project to allow spoken questions to be answered over the
WWW.

4.8.1 Comparison to Other WWW QA Systems
Probably the best-known question answering system that works over the WWW is Ask
Jeeves22. Little information is available on exactly how Ask Jeeves works,
contains what little they are willing to admit. The claims are that Ask Jeeves carries
out syntactic and semantic processing of the questions which is then used by a
template response system to provide a list of more detailed questions. When a user
selects one of the more detailed questions a proprietary knowledge base, containing

[Ask2002]

19 The online QA system can be found at http://raki.dcs.shef.ac.uk. Access is restricted to machines
within the University of Sheffield’s Department of Computer Science.
20 The Google Web APIs are available for download from http://www.google.com/apis/.
21 The new web QA system can be used by members of the department by executing the script
/share/nlp/projects/trec11/AskGoogle/run.sh although each user will require a Google Web API
licence key which can be freely obtained from http://wwww.google.com/apis/.
22 Ask Jeeves can be found at http://www.askjeeves.com.

39

http://raki.dcs.shef.ac.uk/
http://www.google.com/apis/
http://wwww.google.com/apis/
http://www.askjeeves.com/

 Progress to Date 40

answers to more than seven million questions, is used to provide the answers to the
user. Clearly Ask Jeeves differs from our question answering systems in many ways,
but basically the fact that we process each question from the same initial state whereas
Ask Jeeves uses its knowledge base (which is at least partially hand constructed) to
answer questions and updates the knowledge base when asked a question which it has
not encountered before.

One WWW question answering system, SHAPAQA23 presented in , is much
more like our system then Ask Jeeves. The main difference between this system and
ours is that they have bypassed the problem of having to understand the question. To
ask a question using SHAPAQA, a user simply fills in a web form similar to that shown
in Figure 4-8, which asks them for certain phrases.

[Buch2001]

[Kwok2001]

Who/What
did
whom/what
when
where
why
how
about/as/...
with/without
whom/what

invented

the telephone

?

Figure 4-8: SHAPAQA User Interface.

This interface works by the user entering the parts of the question they know (the given
phrases) and placing a question mark against the phrase they are looking for. As can
be seen from the example given above, which shows how to fill in the form for the
question “When was the telephone invented?”. The rest of the QA system is then
similar to ours with syntactic and semantic processing of the documents taking place in
order to attempt to answer the question.

Another online question answering system is MULDER24 developed by Kwok et al.,
which they claim to be the first general-purpose, fully-automated question-answering
system available on the web (see). This system works in a very similar way
to ours; the user enters a question in English and then the answers are displayed in the
browser with links to the relevant documents. The only real difference is that with
each answer the system also gives a measure of how confident it is in the answer, a
feature which it would be nice to incorporate in our system. Their major claim (other
than being first) is that using just Google requires a lot more user effort to achieve the
same level of recall as MULDER.

23 SHAPAQA can be found http://ilk.kub.nl/~antalb/abvi/week3/shapaqa.html.
24 MULDER can be found on the web at http://mulder.cx.

40

http://ilk.kub.nl/~antalb/abvi/week3/shapaqa.html
http://mulder.cx/

 Issues and Challenges Facing Question Answering 41

5 Issues and Challenges Facing Question Answering
There are many challenges which modern question answering research must address,
this section outlines some of the more important issues and asks where we can go in
search of solutions.

5.1 How Important is Reliable Information Retrieval?
Most modern QA systems consist of two almost separate stages, an initial IR stage and
then a further stage (be that semantic processing or pattern matching) that extracts the
answers from those documents/passages deemed relevant by the IR engine. This has a
serious implication: if the IR stage does not return relevant documents then no amount
of processing will result in a correct answer being extracted.

In an experiment using the 432 question from TREC 2001 for which at least one
system found a correct (non NIL) answer our IR stage retrieved at least one relevant
document for 347 of the questions or in other words we found a relevant document for
80.32% of the questions. On first sight these figures seems quite reassuring, that is
until you realise that we failed to find a relevant document for roughly 20% of the
questions, i.e. no matter what we do we are limited to a maximum MRR of 0.8. Yes,
an MRR of 0.8 is way above the current ability of the system (or most systems come to
think about it), but it is still a limiting factor and will clearly prevent any system using
this as its basis from ever answering every question presented to it, for which the text
collection contains an answer.

An important question involving information retrieval is the level (i.e. the amount of
text returned) at which retrieval should take place. The reason for needing IR is that
no NLP based system could ever hope to process an entire collection to find the
answer to a question, so IR acts as a filter between the document collection and the QA
system only allowing documents which are relevant to be processed. The question,
however, is how far we can narrow the filter: do we only allow through whole
documents or is it better to allow through short paragraphs or even just sentences?

One of the worries of returning short passages or sentences is anaphora resolution.
The passage returned by the IR engine as relevant (i.e. contains most of the query
terms) may not actually contain the answer, rather a neighbouring passage may refer,
through words such as he, she or it, to the query terms. In this scenario although a
passage from a relevant document has been returned the answer is not and the chance
of this occurring is increased the smaller the returned passage becomes. On the other
hand returning whole documents increases the amount of processing the NLP system
has to perform and can introduce noise by providing more entities within the text
which may obscure the actual answer to the question. As an example, consider the
question “When was Mozart born?” for which a document containing the following is
returned by the IR engine: “Mozart was a composer of many well known pieces of
classical music. He was born in 1756.”. Now it is clear that depending on the query
words given to the IR system there is the possibility that the second sentence may not
be returned if we limit the system to returning only a sentence, where clearly we will
need both sentences to answer the question: the first to know we are dealing with
Mozart and the second sentence to give us the birth date of a man (and as there is only
one man mentioned) who must be Mozart (hence the need for the first sentence).

41

 Issues and Challenges Facing Question Answering 42

Numerous experiments were carried out on the different sizes of passage used as the
document collection for our QA system (these experiments are documented in

). The main results from these experiments are detailed in Table 5-1, in
which the best results in each column are underlined for clarity.
[Rob2002]

[Rob2002]

Passage Length %ABD IR MRR Correct Answers

(out of 100)
TREC Score

1 paragraph 67% 0.3354 13 0.2068
2 paragraphs 74% 0.4096 11 0.2097
3 paragraphs 72% 0.4025 7 0.1631
4 paragraphs 72% 0.3925 8 0.1559
5 paragraphs 70% 0.4203 7 0.1542
6 paragraphs 70% 0.4249 7 0.1511
7 paragraphs 71% 0.4566 7 0.1588
full documents 72% 0.4800 7 0.1683

Table 5-1: Results of IR experiments and their effects on the QA system.

The definition of the data in each column is as follows:
• %ABD - the percentage of questions for which at least one relevant answer

bearing document was found in the retrieved data.
• IR MRR - a mean reciprocal rank measure for the IR performance: the mean of

the reciprocals of the rank of the first relevant answer bearing document
retrieved by Okapi, or 0 if no such document was retrieved. These two
measures are computed using the relevance judgements and Perl answer
patterns supplied by NIST.

• The number of correctly answered questions (out of 100), i.e. the number of
questions for which the exact answer returned by the system matched one of
the Perl patterns supplied for that question.

• The TREC-2002 style score for the run (see section 2.4.1).

From these results it is unclear that there is any significant difference between using
documents of one, two or three passages in length, although clearly returning a small
number of passages (three or less) produces significantly better end-to-end results
(there is a small statistical advantage to using passages of three paragraphs in length).

The IR step of our system only returns the top twenty documents which match the
query. This is to allow the system to process the documents in a reasonable amount of
time and because supplying the system with large amounts of text cause it to be more
unstable (mainly through issues of memory). This does, however, mean that some of
the relevant documents are being disregarded before the NLP modules have a chance
to work on them. To find out what effect returning only twenty documents had on the
%ABD a series of experiments were carried out which are summarised here (detailed
results can be found in).

All 1193 questions from TRECs 9 and 10 were used to calculate the %ABD at
numerous different cut-of points (5, 10, 30, 30, …). Of the 1193 questions no answer
was found for 93 of them and so the maximum %ABD value that can be obtained is
90.02%. The results of these experiments using documents of 1, 2 and 3 paragraphs in
length are shown in Table 5-1, and presented graphically in Figure 5-1.

42

 Issues and Challenges Facing Question Answering 43

Doc Length %ABD at Rank
(paragraphs) 5 10 20 30 50 100 200 400 500

1 45.43 54.48 61.02 64.71 67.48 71.84 75.61 78.12 78.71
2 51.47 59.26 66.05 69.15 72.59 79.04 79.04 81.89 82.48
3 54.90 61.78 67.56 70.83 74.27 80.72 80.72 83.65 84.16

Table 5-2: Evaluation of %ABD against document ranking.

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

Rank

%
A

B
D

1 paragraph passages
2 paragraph passages
3 paragraph passages

Figure 5-1: Evaluation of %ABD against document ranking.

Clearly the increase in %ABD does not start to level of towards a maximum until 100
documents have been retrieved, which is a cause for concern as the current system
only uses the top twenty documents. Retrieving the top 500 documents still does not
achieve the maximum %ABD of 90.02% suggesting that the IR engine is simply not
able to locate some of the relevant documents.

Some groups, including Harabagiu et al. , have suggested using boolean
retrieval methods instead of ranked methods (such as the vector space model), to
guarantee that all the question terms are present in the returned documents. The main
problem with boolean retrieval methods is that they do not provide a method of
ranking the documents, hence you can not just decide which subset of those relevant
documents you should use, unlike ranked retrieval where the approach is usually to use
the top n relevant documents, as they should be more relevant than those below them
in a ranked list. The approach to this problem taken in the paper by Harabagiu et al. is
to have an iterative boolean retrieval loop. The question words are made into a query
that is passed to the retrieval engine and an upper and lower bound is placed on the
number of documents that may be returned from the retrieval step. If more or less
documents are retrieved then the query is modified (see for details as to how
the query is modified) and the retrieval step is repeated until the number of returned
documents is within the specified bounds.

[Hara2000]

[Mold2000]

Another possibility would be the combination of boolean and ranked retrieval. This
may improve the IR performance by allowing only documents which contain the query

43

 Issues and Challenges Facing Question Answering 44

words to be returned but at the same time applying a sorting to these documents. It is
envisaged that this would work as a three step process:

1. Firstly a boolean retrieval would be carried out against the document
collection, to retrieve just the relevant document identifiers.

2. Next a ranked retrieval would be carried out again to retrieve just the relevant
document identifiers.

3. The intersection of the two sets of document identifiers is then taken as the list
of relevant documents, keeping them in the order that they appeared in the
ranked retrieval set.

Numerous issues arise from this process, such as what happens when there is no
intersection between the two lists, or when the process does not return enough
documents. At the moment it is unclear what the appropriate course of action should
be in these situations Only experimentation will enable us to decide if this method is
anymore successful than either of the two standard methods applied independently,
and what should be done in the situations previously mentioned.

5.2 Are Natural Language Techniques Helpful?
Certainly some natural language techniques are essential, such as part-of-speech (POS)
tagging, whereas full parsing, to produce syntax trees and semantics, may not be as
useful as has been previously thought.

As an example consider answering all of the Who, Where and When questions from
TREC 2001 simply by returning the most frequently occurring unique instance of the
correct type (person, location, date) as tagged by a named entity (NE) transducer25.
The results of using this simple approach and using our normal full NLP approach are
detailed in , in which the best performing system, within each class of
questions, is underlined.

Table 5-3

Table 5-3: Comparison of TREC 2002 system and NE frequency count.

Question Type System MRR Not Found (%)
When TREC 2002 0.394 14 (53.8%)
 Named Entity 0.396 11 (42.3%)
Where TREC 2002 0.446 8 (30.8%)
 Named Entity 0.571 9 (34.6%)
Who TREC 2002 0.324 28 (59.6%)
 Named Entity 0.298 27 (57.4%)
Combined TREC 2002 0.375 50 (50.5%)
 Named Entity 0.395 47 (47.5%)

In this simple study it is clear that nothing is gained from producing a full syntactic
and semantic representation of the question and answer bearing documents (or at least
not from the representations generated by our system). It is unclear how this simplistic
approach could be extended to cope with other types of questions such as “What is…”
as there is no single word that allows one to decide on the type of answer. If, however,
there was a simple way to extend the system to cover all question types and the
performance was comparable with that given in the above table then clearly the NLP

25 Using the ANNIE NE Transducer included within the standard GATE 2 distribution.

44

 Issues and Challenges Facing Question Answering 45

processing used in our current system is completely redundant, as the named entity
tagging is already taking place as part of that processing

5.3 Does Machine Learning Have a Role to Play?
Machine Learning (ML) techniques definitely have a role to play in modern question
answering systems, be this the main method of answering questions or simply within
an algorithm for sorting answers found using a NLP approach.

The best performing system at TREC 2001 relied solely on machine learning and
contained no advanced NLP techniques (the only thing they used was tokenising and
sentence splitting), see for details. This surprised a lot of researchers as they
had assumed that more involved processing of documents is required to be able to
answer questions as reliably as this system appeared to do. This surprise was matched
with interest and the system has been re-implemented by at least one group .

[Soub2001]

[Soub2001]

[Ravi2002]

[Ravi2002]

[McMan2002]

Both these systems used a large corpus of questions and answers along with a text
collection (usually the web) to generate a vast number of surface matching patterns.
For example questions such as “When was Mozart born?” produce a list of patterns
such as the following:

<NAME>(<ANSWER> -)

<NAME> was born on <ANSWER> ,

<NAME> was born in <ANSWER>

<NAME> was born <ANSWER>

<ANSWER> <NAME> was born

- <NAME> (<ANSWER>

<NAME> (<ANSWER> -

<NAME> (<ANSWER>) ,

born in <ANSWER> , <NAME>

of <NAME> (<ANSWER>

These patterns were obtained by taking the overlap between sentences known to
contain the answer and query term (in this case Mozart). The patterns are then ranked
by using the patterns to answer multiple question of the same type and seeing how
accurate the patterns are, i.e. when a pattern is matched by the text does it match
against a piece of text containing the correct answer or not. However simple this
system appears it seems to work exceptionally well with the system from InsightSoft
(see) achieving an MRR score at TREC 2001 of 0.676, with the re-
implemented system by Ravichandran and Hovy (see) claming similar
results with an outstanding MRR of 0.86 on questions having a location as the answer.

5.4 Do Question Answering Systems Require World Knowledge
As with any AI task the question of whether or not world knowledge is required to
answer questions needs to be addressed. Certainly many systems perform extremely
well using very simple pattern matching techniques (see [Soub2001] and [Ravi2002]), but
this could simply be a result of the class of questions asked at TREC (see section 2.2
for a discussion of question classes).

In [Deglin1996] Deglin and Kinsbourne discuss a number of experiments on patients
undergoing electroconvulsive therapy (ECT) and specifically their ability to solve
syllogisms (for a lay man’s approach to this paper see chapter 8 of). In
the experiments most of the patients could correctly answer the syllogisms before

45

 Issues and Challenges Facing Question Answering 46

treatment but their ability to answer them after therapy depended on which side of the
brain had been treated (i.e. suppressed due to the ECT). Consider the following
syllogism:

Every state has a flag. Zambia is a state. Does Zambia have a flag?
It is a straightforward question with no hidden trick and I am sure you all know that
the answer is “Yes, Zambia does have a flag”. Those patients who had received a
right-sided shock (leaving the left half of the brain working) solved the problem in a
very mechanical fashion such as:

It is written here that each state has a flag, and that Zambia is a state,
therefore Zambia has a flag.

In other words they were strictly logical in their answers, whereas patients having
received a left sided shock (leaving the right half of the brain working) gave answers
similar to:

I’ve never been to Zambia and know nothing about its flag.
Clearly these patients were relying total on their world knowledge to answer the
question and not approaching the question logically. This is very similar to the surface
matching patterns used in and , they contain no world knowledge
but are able to extract an answer purely from the text they are given. As we have
already seen these systems perform exceptionally well in evaluations such as TREC,
where the document collection is held as the universal truth, i.e. if a document contains
an error which a system relies on to answer a question then the system is not penalised
as the document is taken to be true even if it is not. As an example question 1396
(from TREC 2002) is “What is the name of the volcano that destroyed the ancient city
of Pompeii?” which most people know to be Vesuvius. At least one document,
however, misspells the volcano’s name as Vesuve, and this is the answer returned by
our system. Based on the TREC assumption that the document collection is always
correct then this is a valid answer, even though it is clearly a misspelling of the
mountain involved which with foreign names/places may be important and may not be
obvious to the user of the system.

[Soub2001] [Ravi2002]

When confronted with a syllogism which contained a false premise such as:

“All monkeys climb trees. The porcupine is a monkey. Does the porcupine
climb trees?”

the patients reacted very differently. Those who had received a right-sided shock (and
were able to correctly answer the previous question) used the same approach to answer
this question, namely:

Since the porcupine is a monkey it climbs trees.
Even when one of the experimenters pointed out that “… you do know that a
porcupine is not a monkey?” the patients would reply along the lines of “It is written
on the card.” showing that they were solving the problem purely through the
information they had been given. Patients who had been given a left sided shock (and
had failed to correctly answer the previous question) usually responded with great
indignation:

“Porcupine? How can it climb trees? It’s not a monkey it’s prickly like a
hedgehog. Its wrong here!”

showing that again they were using their world knowledge this time being able to
correctly point out the false hood in the question.

46

 Issues and Challenges Facing Question Answering 47

The conclusion of this experiment is that the brain contains not only the capacity for
logical reasoning but also world knowledge, neither of these on their own is enough to
correctly answer questions but combined they make a comprehensive system capable
of answering different types of questions and ignoring incorrect information. The
relevance of this experiment to question answering is that no matter how good systems
are if they are relying solely on the documents from which they extract their answers
then there is always a possibility of the answers being wrong due to a falsehood in the
text. Only world knowledge will overcome this difficulty, although how it should be
integrated into the current style of good performing QA systems is not clear.

47

 Future Work 48

6 Future Work
Numerous groups have recently reported great success in question answering using
only simple surface matching patterns over a document collection. Most researchers
have been stunned by the apparent success of these systems, and in one case even
implemented the system themselves to prove that the process did function as well as
had been reported. Clearly if these systems are performing better, or at least as well
as, conventional NLP systems they should be studied in detail to see how the
techniques can be improved or incorporated into those systems which are more NLP
based.

One thing that is instantly clear is their simplicity and (usually) a complete lack of any
advanced NLP techniques. I believe this is an area which needs more research.
Consider for example what the benefits of adding techniques such as named entity
tagging and anaphora resolution to these systems may be.

Named entity tagging could be used to restrict the type of answer allowed. For
example, asking a question starting with the word When is clearly requesting some
form of date or time, so combining the surface matching patterns with a named entity
tagger to ascertain that the answer found (by the pattern) is indeed a date would surely
remove some of the erroneous answers currently proposed by these systems.

It should be clear that these surface matching patterns are limited to only matching
against text that has been seen during the training phase. This can be a problem, but
one which it may be possible to reduce through the use of anaphora resolution. As an
example one of the patterns usually mentioned for questions of the form “When was X
born?” is:

<NAME> (<ANSWER> -

where the pattern will match against text such as:
“Mark Greenwood (1979 -) Currently a student at the University of Sheffield”.

Clearly in this instance the proposed patterns will work without any problems and
correctly extract the answer of 1979. A pattern such as

<NAME> was born in <ANSWER>

can cause problems, however. Clearly it will match against texts such as:
“Mark Greenwood was born in 1979”

but it would not be able to extract the correct answer from the text:
“Mark Greenwood is currently a student at the University of Sheffield. He was
born in 1979”.

If, however, the text could be expanded through anaphora resolution of the pronouns in
the text to give

“Mark Greenwood is currently a student at the University of Sheffield. Mark
Greenwood was born in 1979”

then the surface-matching pattern would be able to extract the correct answer, even
though to a human the text no longer flows as well as the unexpanded version. The
same argument can also be applied to matching name variations across a text. For
example if the text used in the previous example was replaced by the following slight
variation:

48

 Future Work 49

“Mark Greenwood is currently a student at the University of Sheffield. Mark
was born in 1979”.

and the question text had been “When was Mark Greenwood born?” then the pattern
still would not match against the text, however, a name matching algorithm would
enable Mark Greenwood and Mark to be related and hence allow the text to be
expanded in the same way as for the anaphora resolution.

Another possible expansion of the patterns would involve incorporating the inference
rules as outlined in section 3.5.1. In this extension a pattern would include a place
holder for text based on inference rules rather than just text taken straight from a
document. For example the question “Who wrote Macbeth?” may generate, in the
normal implementation, a pattern such as:

<ANSWER> wrote <NAME>
which would clearly match against the text

“Shakespeare wrote Macbeth”
but would not match against

“Shakespeare was the author of Macbeth”
as this would involve a second pattern, which may not have been generated if this form
of construction had not been previously seen. The inference extraction technique
would, however, be able to generate the inference:

“X wrote Y” implies “X was the author of Y”
From the combination of inference rules and patterns could emerge a pattern of the
form:

<ANSWER> <WROTE INFERENCE> <NAME>

where <WROTE INFERENCE> would match against “wrote”, “was the author of” or any
other text which was in the same set of inferences. This would now allow the system
to process both “Shakespeare wrote Macbeth” and “Shakespeare was the author of
Macbeth” and extract Shakespeare as the correct answer. The downside to this (and
any other) method of expanding the patterns is the increase in complexity and the
possible loss of the patterns being easy to read and understand.

One thing these new breed of QA systems have in common is the use of some form of
question classification, i.e. each question is answered using a specific set of patterns
based on its type and the type of answer sought. These topologies are usually hand
coded, although I believe that it may be possible to grow them from the questions and
pattern sets.

Currently for each question type many questions are processed to produce the set of
patterns for the question type. A possible alternative is to take each question and
produce a set of patterns independently of all other questions. The questions can then
be grouped into categories based on the overlap between the sets of patterns (i.e. if the
pattern sets for two questions overlap by 100% then clearly they should be grouped
together, although it would make sense to suggest that there is some level other than
100% at which two questions should be grouped together). This has not been
investigated as part of this report and although the idea seems plausible problems such
as stopping conditions etc would need to be investigated in detail.

49

 Future Work 50

The aim of my future study will be to determine the necessity and benefit of natural
language techniques to the field of question answering. This will take the form of
building a simple surface pattern matching system (similar to those in and

) which will hopefully incorporate an automatically generated question
topology. The intention is to build the system as a set of GATE modules which should
allow the system to be altered and expanded with relative by the addition of extra
modules. These extra modules are likely to take the form of NLP techniques (such as
named entity tagging and anaphora resolution). These modules can be evaluated as to
their own independent performance (i.e. how well they do on their own task, for
example NE tagging) and as to their impact on the performance of the end-to-end
question answering process. Clearly with multiple modules comes the ability to
evaluate the effectiveness of combining multiple techniques.

[Soub2001]
[Ravi2002]

The result of this work will hopefully be not only an effective question answering
system, but empirical details of how useful, effective or necessary numerous NLP
techniques are to question answering. This may lead to some techniques being
removed from consideration as useful, while promoting research into other techniques
which show promise.

An extra benefit of this research should be a resource of questions and answer
documents which will been tagged with information such as named entities and
anaphora attachments etc. which will have been used to evaluate modules in this
research but which could be used by other groups either as a resource for evaluating
their own systems or as a resource for machine learning techniques.

50

 Bibliography 51

7 Bibliography
[Anand2000] P. Anand, E. Breck, B. Brown, M. Light, G. Mann, E. Riloff, M. Rooth and M. Thelen.

Fun with Reading Comprehension. Produced at Johns Hopkins Summer Workshop
2000. Available: http://www.clsp.jhu.edu/ws2000/groups/reading/index.shtml (2nd
September 2002)

[Ask2002] What is Ask Jeeves? [online]. Available: http://www.ask.co.uk/docs/about/what_is.asp
(13th August 2002).

[Bamf2001] J. Bamford. Building an Interface for an On-Line Question Answering System.
Unpublished undergraduate dissertation, The University of Sheffield, 2001.

[Bobr1977] D. Bobrow, R. Kaplan, M. Kay, D. Norman, H. Thomson and T. Winograd. GUS, a
Frame Driven Dialog System. Artificial Intelligence, 8:155-173, 1977.

[Brill1992] E. Brill. A Simple Rule-Based Part-of-Speech Tagger. Proceedings of the Third
Conference on Applied Natural Language Processing, pages 152-155, Trento, Italy,
1992.

[Brill2001] E. Brill, J. Lin, M. Banko, S. Dumais and A. Ng. Data-Intensive Question Answering.
Proceedings of the Tenth Text REtrieval Conference (TREC 2001).

[Buch2001] S. Bucholz and W. Daelemans. Complex Answers: A Case Study using a WWW
Question Answering System. Journal of Natural Language Engineering, Vol. 7, No. 4
(2001).

[Burg2000] J. Burger, C. Cardie, V. Chaudhri, R. Gaizauskas, S. Harabagiu, D. Israel, C.
Jacquemin, C. Y. Lin, S. Maiorano, G. Miller, D. Moldovan, B. Ogden, J. Prager, E.
Riloff, A. Singhal, R. Shrihari, T. Strzalkowski, E. Voorhees and R. Weishedel. Issues,
Tasks and Program Structures to Roadmap Research in Question & Answering (Q&A).
October 2000. Available:
http://www-nlpir.nist.gov/projects/duc/roadmapping.html.

[Burt1997] N. Burton-Roberts. Analysing Sentences: An Introduction to English Syntax (2nd
Edition). Longman, 1997.

[Coop2000] R. J. Cooper and S. M. Rüger. A Simple Question Answering System. The Ninth Text
REtrieval Conference (TREC 9), 2000.

[Cope1993] J. Copeland. Artificial Intelligence: A Philosphical Introduction. Blackwell Publishers
Ltd, 1993.

[Cope1990] A. Copestake and K. Sparck Jones. Natural Language Interfaces to Databases. The
Knowledge Engineering Review, 5(4):225-249, 1990.

[Cunn2002a] H. Cunningham. GATE, a General Architecture for Text Engineering. Computers and
the Humanities, volume 36, pp. 223-254, 2002.

[Cunn2002b] H. Cunningham, D. Maynard, K. Bontcheva and V. Tablan. GATE: A Framework and
Graphical Development Environment for Robust NLP Tools and Applications.
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics (ACL'02). Philadelphia, July 2002.

[Deglin1996] V. L. Deglin and M. Kinsbourne. Divergent Thinking Styles of the Hemispheres: How
Syllogisms Are Solved during Transitory Hemisphere Suppression. Brain and
Cognition, 31, pages 285-307 (196).

[Gaiz1996] R. Gaizauskas, H. Cunningham, Y. Wilks, P. Rodgers and K. Humphreys. GATE – An
Environment to Support Research and Development in Natural Language Engineering.
In Proceedings of the 8th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI-96), pages 58-66, Toulouse, France, October 1996.

[Gee1983] R. Gee and C. Watson. The Usborne Book of Better English. Usborne Publishing,
1983.

[Green1961] B. F. Green, A. K. Wolf, C. Chomsky and K. Laughery. BASEBALL: An Automatic
Question Answerer. In Proceedings of the Western Joint Computer Conference 19,
pages 219-224 (1961). Reprinted in [Grosz1986], pages 545-549.

[Grosz1986] B. J. Grosz, K. Sparck Jones and B. L. Webber, editors. Readings in Natural Language
Processing. Morgan Kaufmann, Los Altos, CA (1986).

[Hara2000] S. Harabagiu, D. Moldovan, M. Paşca, R. Mihalcea, M. Surdeanu, R. Bunescu, R.
Gîrju, V.Rus and P. Morărescu. FALCON: Boosting Knowledge for Answer Engines.
The Ninth Text REtrieval Conference (TREC 9), 2000.

51

http://www.clsp.jhu.edu/ws2000/groups/reading/index.shtml
http://www.ask.co.uk/docs/about/what_is.asp
http://www-nlpir.nist.gov/projects/duc/roadmapping.html

 Bibliography 52

[Hara2001] S. Harabagiu, D. Moldovan, M. Paşca, M. Surdeanu, R. Mihalcea, R. Gîrju, V.Rus, F.
Lăcătuşu, P. Morărescu and R.Bunescu. Answering complex, list and context questions
with LCC's Question-Answering Server. Proceedings of the Tenth Text REtrieval
Conference (TREC 2001).

[Haug1985] J. Haugland. Artificial Intelligence: the Very Idea. MIT Press, 1985.
[Heiser1980] J. F. Heiser, K. M. Colby, W. S. Faught and R. C. Parkinson. Can Psychiatrists

Distinguish a Computer Simulation of Paranoia from the Real Thing? Journal of
Psychiatric Research, 15, pages 149-162, 1980.

[Hepple2000] M. Hepple. Independence and Commitment: Assumptions for Rapid Training and
Execution of Rule-based POS Taggers. Proceedings of the 38th Annual Meeting of the
Association for Computational Linguistics (ACL-2000), pp278-285, Hong Kong,
October 2000.

[Hirs1999] L. Hirschman, M. Light, E. Breck and J. Burger. Deep Read: A Reading
Comprehension System. In Proceedings of the 37th Annual Meeting of the Association
for Computational Linguistics, 1999.

[Hirs2001] L. Hirschman and R. Gaizauskas. Natural Language Question Answering: The View
From Here. Journal of Natural Language Engineering, Vol. 7, No. 4 (2001).

[Hirst1998] G. Hirst and D. St-Onge. Lexical Chains as Representations of Context for the
Detection and Correction of Malapropisms. In Fellbaum 1998, pp. 305-332.

[Hovy2001] E. Hovy, L. Geber, U. Hermjakob, C. Lin and D. Ravichandran. Towards Semantics-
Based Answer Pinpointing. Proceedings of the DARPA Human Language Technology
conference (HLT). San Diego, CA, 2001.

[Hump1998] K. Humphreys, R. Gaizauskas, S. Azzam, C. Huyck, B. Mitchell, H. Cunningham and
Y. Wilks. Description of the LaSIE-II System as Used for MUC-7. Proceedings of the
Seventh Message Understanding Conference (MUC-7), 1998.

[Hump1999] K. Humphreys, R. Gaizauskas, M. Hepple and M. Sanderson. University of Sheffield
TREC 8 Q & A System. The Eighth Text REtrieval Conference (TREC 8), 1999.

[Jarv1993] G. Jarvie. Bloomsbury Grammar Guide. Bloomsburry Publishing, 1993.
[Jiang1997] L. Jiang and D. Conrath. Semantic Similarity Based on Corpus Statistics and Lexical

Taxonomy. In proceedings of International Conference on Research in Computational
Linguistics, Taiwan, 1997.

[Kwok2001] C. Kwok, O. Etzioni and D. Weld. Scaling Question Answering to the Web. ACM
Transactions in Information Systems, Vol 19, No. 3, July 2001, pages 242-262.

[Lea1998] C. Leacock and M. Chodorow. Combining Local Context and WordNet Similarity for
Word Sense Identification. In C. Fellbaum, editor, WordNet: An Electronic Lexical
Database, chapter 11, pages 265-284. MIT Press, 1998.

[Lehn1977] W. Lehnert. A Conceptual Theory of Question Answering. Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, pages 158-164, 1977.
Reprinted in [Grosz1986] pages 651-657).

[Light2001] M. Light, G. Mann, E. Riloff and E. Breck. Analyses for Elucidating Current Question
Answering Technology. Journal of Natural Language Engineering, Vol. 7, No. 4
(2001).

[Lin1998] D. Lin. An Information-Theoretic Definition of Similarity. In Proceedings of the 15th
International Conference on Machine Learning, Madison, WI, 1998.

[Lin2001] D. Lin and P. Pantel. Discovery of Inference Rules for Question Answering. Journal of
Natural Language Engineering, Vol. 7, No. 4 (2001).

[McMan2002] C. McManus. Right Hand, Left Hand: The Origins of Asymmetry in Brains, Bodies,
Atoms and Cultures. Orion Publishing Group, 2002.

[Mill1995] G. A. Miller. WordNet: A Lexical Database. Communication of the ACM, vol 38:
No11, pages 39-41, November 1995.

[Mold1999] D. Moldovan, S Harabagiu, M. Paşca, R. Mihalcea, R. Goodrum, Roxana Gîrju and V.
Rus. LASSO – A Tool for Surfiing the Answer Net. The Eighth Text RErieval
Conference (TREC 8), 1999.

[Mold2000] D. Moldovan, S. Harabagiu, M. Paşca, R. Mihalcea, R. Goodrum, R. Gîrju and V. Rus.
The Structure and Performance of an Open-Domain Question Answering System.
Proceedings of the 38th Annual Meeting of the Association for Computational
Linguistics (ACL-2000), pages 563-570, 2000.

52

 Bibliography 53

[Mold2002] D. Moldovan, M. Paşca, S. Harabagiu and M. Surdeanu. Performance Issues and Error
Analysis in an Open-Domain Question Answering System. In Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, pages 33-40,
Pennsylvania, 2002.

[Oh2001] J.H. Oh, K.S. Lee, D.S. Chang, C. Seo and K.S. Choi. TREC-10 Experiments at
KAIST: Batch Filtering and Question Answering. Proceedings of the Tenth Text
REtrieval Conference (TREC 2001).

[Plam2001] L. Plamondon, G. Lapalme and L. Kosseim. The QUANTUM Question Answering
System. Proceedings of the Tenth Text REtrieval Conference (TREC 2001).

[Poli2000] J. Polifroni and S. Seneff. Galaxy-II as an Architecture for Spoken Dialogue
Evaluation. Proceedings of the Second International Conference on Language
Resources and Evaluation (LREC), Athens, Greece, May 31st - June 2nd, 2000.

[Ravi2002] D. Ravichandran and E. Hovy. Learning Surface Text Patterns for a Question
Answering System. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 41-47, Pennsylvania, 2002.

[Resnik1995] P. Resnik. Using Information Content to Evaluate Semantic Similarity. In Proceedings
of the 14th International Joint Conference on Artificial Intelligence, pages 448-453,
Montreal, 1995.

[Rilo2000] E. Riloff, and M. Thelen. A Rule-based Question Answering System for Reading
Comprehension Tests. ANLP/NAACL-2000 Workshop on Reading Comprehension
Tests as Evaluation for Computer-Based Language Understanding Systems

[Rob2002] I. Roberts. Information Retrieval for Question Answering. MsC Dissertation, The
University of Sheffield, UK, 2002.

[Schank1977] R. Schank and R. Abelson. Scripts, Plans, Goals and Understanding. Hillsdale, 1977.
[Scott2000] S. Scott and R. Gaizauskas. University of Sheffield TREC 9 Q & A System. The Ninth

Text REtrieval Conference (TREC 9), 2000.
[Sene1998] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue. Galaxy-II: A Reference

Architecture for Conversational System Development. Proceedings of ICSLP 98,
Sydney, Australia, November 1998.

[Shaw1991] M. Shaw, J. Wood, R. Wood, H Tibbo. The Cystic Fibrosis Database: Content and
Research Opportunities. LISR 13, pp. 347-366, 1991

[Simm1965] R. F. Simmons. Answering English Questions by Computer: A Survey.
Communications of the ACM, 8(1):53-70 (1965).

[Soub2001] M. M. Soubbotin. Patterns of Potential Answer Expressions as Clues to the Right
Answers. Proceedings of the Tenth Text REtrieval Conference (TREC 2001).

[Turing1950] A. M. Turing. Computing Machinery and Intelligence. Mind 59, pages 433-460, 1950.
[Voorh1999] E. Voorhees. The TREC 8 Question Answering Track Report. The Eighth Text

REtrieval Conference (TREC 8), 1999.
[Voorh2001] E. Voorhees. Overview of the TREC 2001 Question Answering Track. Proceedings of

the Tenth Text REtrieval Conference (TREC 2001).
[Weiz1966] J. Weizenbaum. ELIZA – A Computer Program for the Study of Natural Language

Communication Between Man and Machine. Communications of the ACM, 9, pages
36-45, 1966.

[Wino1972] T. Winograd. Understanding Natural Language. Academic Press, New York, 1972.
[Woods1973] W. Woods. Progress in Natural Language Understanding – An Application to Lunar

Geology. In AFIPS Conference Proceedings, volume 42, pages 441-450 (1973).
[Zue2000] V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T. Hazen and L. Heatherington.

JUPITER: A Telephone-Based Conversational Interface for Weather Information.
IEEE Transactions on Speech and Audio Processing, 8(1):100-112, 2000.

53

 Index of Figures 54

Appendix 1: Index of Figures

Figure 3-1: Original screen display of SHRDLU in action... 11
Figure 3-2: An example reading comprehension test... 15
Figure 3-3: Performance of systems over TRECs 8, 9 and 10. .. 20
Figure 4-1: Original system setup. ... 23
Figure 4-2: Original QA-LaSIE system modules... 23
Figure 4-3: The layout of the QA system in GATE 2.. 27
Figure 4-4: The hypernym trees for fish and food.. 29
Figure 4-5: The shortest path from fish to food.. 30
Figure 4-6: An application for assisting the development of grammars. ... 36
Figure 4-7: The interface to our new WWW QA system.. 39
Figure 4-8: SHAPAQA User Interface.. 40
Figure 5-1: Evaluation of %ABD against document ranking. ... 43

54

 Index of Equations 55

Appendix 2: Index of Equations

Equation 2-1: Equation for calculating MRR. ... 6
Equation 2-2: The TREC 2002 scoring measure.. 7
Equation 4-1: Equation for scoring an answer instance. .. 26
Equation 4-2: The Leacock and Chodorow Semantic Similarity equation. ... 29
Equation 4-3: Equation used to calculate semantic similarity in our system. .. 30
Equation 4-4: Equation, used in TREC 2002, for scoring an answer instance... 31

55

 Index of Tables 56

Appendix 3: Index of Tables

Table 2-1: Comparison of Casual Questioner and Professional Information Analyst. 2
Table 2-2: Class distribution of TREC questions... 3
Table 3-1: MRR scores of systems over TRECs 8, 9 and 10. .. 20
Table 4-1: Table showing distances and scores for the three paths.. 30
Table 4-2: Results of using Google to boast system score... 34
Table 4-3: Results of combining score and number of occurrences... 38
Table 5-1: Results of IR experiments and their effects on the QA system. ... 42
Table 5-2: Evaluation of %ABD against document ranking.. 43
Table 5-3: Comparison of TREC 2002 system and NE frequency count. ... 44

56

	Abstract
	Acknowledgements
	Contents
	Introduction
	The Scope of Question Answering
	Applications and Their Users
	Questions
	Answers
	Evaluation
	Evaluation at TREC

	A Brief History of Question Answering
	Natural Language Database Systems
	Dialog Systems
	Reading Comprehension Systems
	Open-Domain Questions and TREC
	The Document Collections
	Temporal and No Answer Questions
	Sub Tracks
	Performance of Systems at TREC
	The Future of TREC

	Other Techniques Relevant to Question Answering
	Inference Rules

	Progress to Date
	Overview of the TREC 9 System
	Question Parsing
	Resolution of Question and Candidate Answer Texts
	Answer Output

	TREC 2001
	Changes and Updates to the QA System
	Processing Answer Instances
	Property Similarity
	Semantic Similarity
	Answer Scoring Algorithm
	Question - Answer Overlap
	Combining Semantically Similar Answers
	Strategy for Ranking Answers

	Boosting System Performance Using Answer Redundancy
	List Questions
	A Framework in which to Develop Grammars
	TREC 2002
	Broken Questions
	Other Bugs in the System
	Answer Ranking

	Question Answering over the World Wide Web
	Comparison to Other WWW QA Systems

	Issues and Challenges Facing Question Answering
	How Important is Reliable Information Retrieval?
	Are Natural Language Techniques Helpful?
	Does Machine Learning Have a Role to Play?
	Do Question Answering Systems Require World Knowledge

	Future Work
	Bibliography
	Index of Figures
	Index of Equations
	Index of Tables

