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Abstract 
This document reports the progress made during the first year of my studies into 
question answering – mainly concerned with work undertaken to allow us to take part 
in TREC 2002.  The document also includes a comprehensive review of the history of 
question answering, covering early work in areas such as natural language interfaces to 
databases and reading comprehension systems.  The report concludes with an outline 
of a proposal for the next two years of my studies – which aim to show the uses and 
benefits of natural language techniques to the field of question answering by 
examining them against the backdrop of a simply pattern matching system, similar in 
idea to those which have recently been shown to be highly successful. 
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 Introduction 1 

1 Introduction 
Ever since the dawn of spoken language humans have hungered for knowledge.  We 
have explored the world around us by asking questions about what we can see and feel.  
As time progressed we became more and more interested in acquiring knowledge, 
constructing schools and universities to teach each new generation things their 
forefathers could never have imagined.  With modern technology it is now easier to 
find any information than it has ever been in the history of human society. 
 
With the recent explosive growth in the number of available electronic documents we 
are entering an age where effective question answering (QA) technology will become 
essential to being able to effectively access this vast collection of knowledge. 
 
When the World Wide Web (WWW) exploded on the scene, during the late 80’s and 
early 90’s, it allowed access to a vast number of electronic documents and search 
engines were rapidly developed to allow a user to find a needle in this electronic 
haystack. 
 
Unfortunately, the increase in the amount of electronic text available shows no sign of 
abating.  Although modern search engines (such as Google1) are able to cope with the 
amount of text available, they are most useful when a user presents a query to the 
search engine which causes just a couple of documents to be returned, which the user 
can then manually search to find the relevant information. 
 
It is becoming more and more the case, however, that a simple query using a modern 
search engine will return hundreds if not thousands of documents; more than can be 
easily searched by hand (even ten documents is often too many for the time people 
have available to find the information they are looking for).  Clearly a new approach is 
needed to allow more direct access to this vast store of information. 
 
Ideally a user may ask a question such as “What is the state flower of Hawaii?”, 
instead of the user being presented with a list of documents, question answering 
technology would simply present the answer, “Hibiscus”, and a link to the relevant 
document.  This is the view of question answering that is currently prevalent due in no 
small part to the question answering track at the Text REtrieval Conferences (for 
detailed information about TREC see section 3.4). 

                                                 
1 Google is a registered trademark of Google Inc. 
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2 The Scope of Question Answering 
 

2.1 Applications and Their Users 
Many different types of question answering systems have been envisaged all with a 
specific type of user in mind.  One system of classifying the applications by the type of 
user was detailed in [Burg2000].  The authors defined a scale with four different user 
levels (and hence applications) as follows: 

Level 1. Casual Questioner 
Level 2. Template Questioner 
Level 3. Cub Reporter 
Level 4. Professional Information Analyst 

On this scale the questions become more difficult and hence the applications become 
more complex, for example the two ends of the spectrum are defined in Table 2-1 with 
the other points on the scale falling between these two extremes. 
 

 Casual Questioner Professional Information Analyst 
Questions Simple facts Complex, uses judgement terms, 

knowledge of user context 
needed, broad scope 

Answers Simple answers found in 
a single document 

Search multiple sources (in 
multiple media/languages), fusion 
of information, resolution of 
conflicting data, multiple 
alternatives, adding interpretation, 
drawing conclusions 

Table 2-1: Comparison of Casual Questioner and Professional Information Analyst. 

Clearly this does not fully define the variation in the different possible applications and 
users.  Other possibilities include domain-specific question answering (i.e. help 
systems), or even applying question answering to images, sounds or any other large 
collection of data which about which a user may wish to ask questions. 
 

2.2 Questions 
Clearly there are many different types of questions that people will want to ask.  
Researchers have often categorised questions based on the words they contain, i.e. 
Who, What, When, Where, etc.  This categorization is linguistically useful, but it tells 
us nothing about how difficult the questions are for a system to answer, or even if they 
will be able to answer them at all! 
 
Moldovan et al. (see ) define 5 question classes of increasing complexity and 
the system requirements necessary to answer them: 

[Mold2002]

1. QA systems capable of processing factual questions.  These systems extract 
answers from one or more documents.  Often the answer is found verbatim in a 
text or as a simple morphological variation. 

2. QA systems enabling simple reasoning mechanisms.  The characteristic of this 
class is that answers are found in snippets of text, but unlike in 1, inference is 
necessary to relate the question with the answer.  An example is “How did 
Socrates die?” where die has to be linked with drinking poisoned wine. 

2 
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3. QA systems capable of answer fusion from different documents.  In this class 
the partial answer information is scattered throughout several documents and 
answer fusion is necessary.  The complexity of questions here ranges from 
assembling simple lists to far more complex script-like answers (e.g. “How do 
I assemble a bike?”). 

4. Interactive QA systems.  These systems are able to answer questions in the 
context of previous interactions with the user. 

5. QA systems capable of analogical reasoning.  The characteristic of these 
systems is their ability to answer speculative questions similar to: “Is the 
airline industry in trouble?” 

Also contained in the paper by Moldovan et al. is Table 2-2 showing the distribution of 
the TREC questions (using all the QA questions from TRECs 8, 9 and 2001 including 
the list and context questions – see section 3.4 for details about the different TRECs) 
across these five different classes of question. 
 

Type Number (%) 
Class 1 (factual) 985 (67.5%) 
Class 2 (simple reasoning) 408 (27.9%) 
Class 3 (fusion – list) 25 (1.7%) 
Class 4 (interactive – context) 42 (2.9%) 
Class 5 (speculative) 0 (0.0%) 

Table 2-2: Class distribution of TREC questions. 

The best scoring systems, entered into TREC, are able to answer approximately two 
thirds of the questions put to them.  This matches almost exactly with the percentage of 
Class 1 questions given in the above table. 
 
This type of categorization is much more useful than one based on the question words 
(who, what, etc.) and may prove to be a useful way of categorising a systems 
capability.  For example a system may only be able to reliably answer Class 1 
questions, but if the user is aware of this limitation then the questions they ask will be 
more likely to be correctly answered and hence they will be happier with the 
performance of the system.  For example a reporter researching the background to a 
story will know only to ask questions that will have a factual answer.  For instance if 
they were working on the Concorde crash which happened in 2000 then they may have 
asked questions such as: 

“Has Concorde ever crashed before?” 
“When was the last air crash in France?” 

they would, however, know not to ask question such as: 
“Will the authorities ground the remaining Concorde’s while they investigate 
the crash?” 

because this is a speculative (i.e. Class 5) question which they know the system will be 
unable to answer.  In simple terms labelling a system based on the class of questions 
they can answer will limit user disappointment, as they will only expect the system to 
be able to answer certain types of question.  For this to be useful, however, enough 
groups will have to adopt a single categorisation and apply it rigidly otherwise there 
will be no appreciable benefit. 
 

3 
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2.3 Answers 
A precise all encompassing definition of what encompasses an answer is a difficult 
think to come by.  Clearly an answer has to be correct to be of any use, but this still 
leaves a lot of scope for different systems to present the same answer in many different 
ways.  Most of the systems we will look at in the remainder of this paper use 
unstructured text as their source of answers, and usually (but not always) simply 
return, as an answer, a short extract from the text.  The major question with this type of 
system is how long the returned answer should be.  To this end TREC 2002 is insisting 
that the answers returned are exact although even that is difficult to define.  The reason 
for insisting on an exact answer is to see how good systems are at pinpointing the exact 
answer.  Most useable systems would want to return more than an exact answer, i.e. 
they would want to place the answer in the same context as it was found in the 
document or present some other form of justification.  Isolating the exact answer does, 
however, have its benefits, as it allows varying length strings to be taken from the 
document correctly centred on the answer, and also it opens up the possibility of using 
the exact answer along with text generation systems to provide answers which are not 
simply cut from the text. 
 
The main problem with asking systems to return exact answers is the definition of 
what makes an answer exact.  Quite a long discussion on this took place on the mailing 
list for participants in TREC 2002 and the following sums up the feelings of most of 
the participants: 

It was suggested by L. Plamondon that an exact answers is usually a noun phrases.  
This would mean that questions such as “Which river is known as the ‘Big 
Muddy’?” can have all of the following as valid exact answers: Mississippi, the 
Mississippi, Mississippi river and the Mississippi river.  L. Liddy pointed out, 
however, that certain types of ‘what’ questions can have a verb phrase as an exact 
answer.  Most interesting were the comments made by J. Prager: “…it is important 
to distinguish extraneous material that is junk from extra material that further 
answers the question.  I just did a search with ‘What does a red wolf weigh?’ and 
got a document that included the text ‘females weighing 40-60 pounds and males 
weighing 60-80 pounds’.  Isn’t this text a much better answer than just, say, ’60 
pounds’?  In other words, isn’t that the kind of answer we should be trying to get 
our systems to give?” 

Clearly it is very difficult for people to make a definition of what constitutes an exact 
answer, which will satisfy every research group.  Once the results of TREC 2002 are 
released (around the 1st of October 2002) this discussion will surely resurface, as some 
groups will undoubtedly be unhappy about some of the answers deemed to be non-
exact.  My main concern lies with questions whose answers are date related.  For 
example, will a question such as “Which year…” expect only a year to be returned as 
an exact answer or will a full date also be accepted, for example will the question 
“What year did the shuttle Challenger explode?” have only 1986 as an exact answer, 
or will January 1986 be excepted.  Note that January 1986 is a more exact answer 
than 1986 to the question “When did the shuttle Challenger explode?”. 
 

4 
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2.4 Evaluation 
Evaluation can be subjective, especially when dealing with certain types of natural 
language systems.  It is easy to evaluate systems in which there is a clearly defined 
answer (i.e. named entity recognition), however, for most natural language tasks there 
is no single correct answer.  For example, the method of evaluating information 
retrieval systems requires a text collection and a set of queries for which someone has 
manually searched the entire collection for all the relevant documents.  Only then can 
the queries be used to make an evaluation of the system using recall and precision.  
This is no easy task even for collections as small as the Cystic Fibrosis Database (see 

), which contains 1239 articles and is approximately 5 megabytes in size2.  
Imagine trying to do the same for the collection used for TREC 20013, which 
contained approximately 979,000 articles in 3033 megabytes of text . 

[Shaw1991]

[Voorh2001]
 
The LUNAR system was designed to answer questions about the geology of moon rocks 
and is of interest to this section as it was one of the first question answering systems to 
be subject to user-evaluation (see section 3.1 for more details on LUNAR and how it 
fared).  More recently evaluation of QA systems has focused mainly on the QA track 
at the Text REtrieval Conferences (TREC) organised by the National Institute for 
Science and Technology (NIST). 
 

2.4.1 Evaluation at TREC 
For the first two QA tracks held within the TREC competition (TRECs 8 and 9) each 
system was allowed to return an ordered list of five possible answers to each question.  
Although the systems were returning multiple answers for each question there was no 
attempt to evaluate the confidence a system had in the answers other than the order in 
which they were returned.  At TREC 2001 the issue of confidence was addressed (in 
part) by requesting that for each question the system should state which of the five 
answers they were most confident in or state UNSURE to indicate that the system was 
not confident in any of the proposed answers. 
 
Unfortunately this attempt at introducing confidence to the track was not especially 
successful as most systems always stated that they were confident in their first answer 
and hence the percentage of questions for which the final answer was correct and the 
system was sure was quite low (on average only 18.37%) 
 
In this years track (TREC 2002) the idea of confidence has been taken a step further 
and tightly integrated into the evaluation.  Now each system can only return one exact 
answer (see section 2.3 for a discussion of what constitutes an exact answer) for each 
question but more importantly the answers for the different questions must be 
presented in the submission file with the answer in which the system has most 
confidence appearing first.  The scoring algorithm then rewards systems which are 
confident in their correct answers.  The results for TREC 2002 are not yet available so 
we do not have any idea as to how good systems are at assigning confidence measures 
to their answers. 
 

                                                 
2 The collection is available from http://www.dcc.ufmg.br/irbook/cfc.html in both ASCII text and in the 
form of XML documents. 
3 Note that TREC 2001 is also referred to as TREC 10 and TREC 2002 as TREC 11 depending on which 
papers you read. 
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For the first three QA tracks at TREC (TRECs 8, 9 and 2001) the score for a single 
question was the reciprocal rank of the first correct answer (or zero if no correct 
answer was given).  The overall system score was then the mean of the scores for all 
the questions asked, known as Mean Reciprocal Rank (MRR), which is defined as: 

1

1
q

i
i

r
MRR

q
==
∑

 

Equation 2-1: Equation for calculating MRR. 

In which q is the number of questions and ri is the rank of the first correct answer for 
question i (or 0 if no correct answer is returned). 
 
In the first year (TREC 8) all the questions were generated by NIST and were usually 
back formulation of statements in a document, i.e. for the text “Mozart was born in 
1756” the likely question would be “When was Mozart born?”.  In other words the 
questions were relatively simple and most (if not all) would have fallen into the class 
of factual questions (Class 1) as described in section 2.2. 
 
During these first three question answering tracks participants submitted a single file to 
NIST for evaluation.  An excerpt from a submission is shown below: 
 

1008 Q0 AP880531-0196 1 0.723 shef Hibiscus
1008 Q0 AP880531-0196 2 0.522 shef GEORGIA - Tiger swallowtail
1008 Q0 WSJ890815-0098 3 0.589 shef Connecticut's 8,800
1008 Q0 AP880324-0081 4 0.522 shef all tax food
1008 Q0 WSJ890815-0098 5 0.589 shef AIDS
1009 Q0 WSJ920116-0078 1 0.357 shef Mr. Wurzelbacher
1009 Q0 WSJ920212-0064 2 0.536 shef United Team
1009 Q0 AP900521-0190 3 0.522 shef 1988
1009 Q0 AP890830-0144 4 0.589 shef Gerald Richman
1009 Q0 WSJ920211-0060 5 0.615 shef Soviet Union

The format of the file is as follows4: 
•  The first column is the question number.  
•  The second column is currently unused and should always be Q0.  
•  The third column is either the official document identifier of the document that 

justifies the answer OR the string NIL.  If no answer is found.  
•  The fourth column is the rank of the answer, and the fifth column shows the 

score (integer or floating point) that generated the ranking.  
•  The sixth column is called the "run tag" and should be a unique identifier for 

the group and the method used. 
•  The last column is the answer-string.  If the third column was NIL, this column 

should be empty. 
 
Clearly lots of useful information that groups could provide about how they answered 
a question are not included as part of the evaluation procedure, just the textual answer 
is used to evaluate and rank the systems. 
 

                                                 
4 Summarised from the TREC 2001 question answering guidelines. 
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Starting with TREC 2002 the measure used will be analogous to document retrieval's 
un-interpolated average precision and is defined to be: 

1

q

i
i

c i

q
=
∑

 

Equation 2-2: The TREC 2002 scoring measure. 

In which q is the number of questions, i is the question number and ci is the number of 
correct responses up to question i.  This measure rewards systems that rank questions 
they answered correctly above those that they did not. 
 
Due to the different evaluation method (mainly because only one answer is being 
returned per question) the format of the submission file is quite a bit different to that 
used in previous years.  An excerpt from a submission file for TREC 2002 is shown 
below: 
 

1494 shef NYT19981203.0051 Kipling
1494 shef 0.8839285714285714 100.0 1 2.0 true
1834 shef NYT19990402.0243 Judas
1834 shef 0.8773809523809524 100.0 126 1.0 true

 
The format of the file is as follows5: 

The first line contains the response to be scored, in the format:  
qid run-tag docid answer-string

where 
•  qid is the question number,  
•  run-tag is a unique identifier of the group and method used. 
•  docid is the id of the supporting document or the string NIL if no 

answer is in the collection.  
•  answer-string is the exact answer or empty if docid is NIL.  

 
The second line for a question contains the justification.  The format for this 
line is  

qid run-tag justification

where qid and run-tag are the same as for line 1 and justification is a string of 
at most 1024 bytes.  

 
Clearly this new submission format allows systems to include their justification for 
returning the answer they give.  Some systems will probably return 1024 bytes of the 
sentence containing the answer.  Some groups have suggested they may include their 
inference chains (although how much use these will be to any other research group is 
debatable).  Our system simply returns the information it uses to rank the answers (see 
section 4.3.7 for details of what these attributes are).  Until the results of TREC 2002 
are available it is unclear how useful this justification will prove to be.  Depending on 
how people have used the line in this year’s evaluation tighter restrictions on what it 
can contain may be introduced in future years. 
 

                                                 
5 Summarised from the TREC 2002 question answering guidelines. 
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3 A Brief History of Question Answering 
It would be wrong to claim that interest in QA technology is a recent development in 
Natural Language Processing (NLP).  In fact, one of the earliest papers on the subject 
“Answering English Questions by Computer” which was written by Simmons in 1965 

, begins with the statement that the paper reviews no less than fifteen 
English language QA systems built over the previous five years.  Clearly QA research 
is not a new area, although over the intervening time its aims have shifted slightly.6 

[Simm1965]

[Green1961]
[Woods1973]

[Woods1973]

[Grosz1986]
[Cope1990]

 
3.1 Natural Language Database Systems 

Two of the best-known early QA systems were BASEBALL and LUNAR (see  
and  respectively).  The BASEBALL system was designed to answer 
questions about (funnily enough) baseball games which had been played in the 
American league over a single season, while LUNAR was designed “…to enable a lunar 
geologist to conveniently access, compare and evaluate the chemical analysis data on 
lunar rock and soil composition that was accumulating as a result of the Apollo moon 
mission” .  Both systems were much more than toy research projects, with 
LUNAR being successfully demonstrated at the Second Annual Lunar Science 
Conference in 1971.  Of the 111 questions that were non-comparative and within the 
scope of the moon rock data; 78% were answered correctly, 12% failed for clerical 
reasons and 10% had more serious errors. 
  
Although many of these early systems were sophisticated, even by modern standards, 
they were nearly all restricted to a limited with access to a structured database 
containing the available domain knowledge.  The questions presented to these systems 
were usually analysed using linguistic knowledge to produce a canonical form, which 
was then used to construct a standard database query.  An example of this (taken from 
a modern natural language database interface7) would be the question “List the authors 
who have written books about business” for which an SQL (Structured Query 
Language) query such as the following would be generated: 

SELECT firstname, lastname FROM authors, titleauthor, titles

WHERE authors.au_id = titleauthor.au_id

AND titleauthor.title_id = titles.title_id

 
In simple terms, these early systems usually relied on having the knowledge required 
to answer a question available in a highly structured form, not as completely 
unstructured text, which is one of the challenges facing QA research today. 
 
Most QA research that took place during the 1970’s was in a similar vein to the 
systems already mentioned.  More examples of early QA research along the lines of 
LUNAR and BASEBALL can be found in .  For a comprehensive review of this 
type of natural language front-end work right through to 1990 see . 
 
 

                                                 
6 Note that some of the history of QA, as presented here, is based on the work of Hirschman and 
Gaizauskas presented in [Hirs2001]. 
7 The example system is Microsoft’s English Query 2000, which is part of Microsoft SQL Server.  See 
http://www.microsoft.com/sql/ for more information. 
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3.2 Dialog Systems 
In his seminal 1950 Mind article “Computing Machinery and Intelligence”, Alan 
Turing described an experiment aimed at settling the question of whether or not a 
computer is a capable of thought .  The Turing Test (as the experiment has 
become known) gave birth to research into computer systems capable of holding a 
meaningful conversation.  A conversation (usually referred to as a dialog) by its very 
nature usually contains at least one question and therefore is relevant to this history of 
QA technology. 

[Turing1950]

[Weiz1966]

 
One of the earliest, and best known, of these Artificial Intelligence (AI) dialog systems 
was Weizenbaum’s 1966 creation ELIZA .  ELIZA was designed to emulate a 
therapist, and for many years could be found listening to visiting academics in the AI 
Laboratory at the Massachusetts Institute of Technology (M.I.T.). 
 
The following is a typical conversation with Eliza8: 

Men are all alike.  
IN WHAT WAY?  
They're always bugging us about something or other.  
CAN YOU THINK OF A SPECIFIC EXAMPLE? 
Well, my boyfriend made me come here.  
YOUR BOYFRIEND MADE YOU COME HERE  
He says I'm depressed much of the time.  
I AM SORRY TO HEAR YOU ARE DEPRESSED  
It's true. I am unhappy  
DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY  
I need some help, that much seems certain.  
WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP  
Perhaps I could learn to get along with my mother.  
TELL ME MORE ABOUT YOUR FAMILY  
My mother takes care of me.  
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU  
My father.  
YOUR FATHER  
You are like my father in some ways.  
WHAT RESEMBLANCE DO YOU SEE  
You are not very aggressive but I think you don't want me to notice that.  
WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE  
You don't argue with me.  
WHY DO YOU THINK I DON’T ARGUE WITH YOU  
You are afraid of me.  
DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU  
My father is afraid of everybody.  
WHAT ELSE COMES TO YOUR MIND WHEN YOU THINK OF YOUR FATHER  
Bullies.  
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND 
MADE YOU COME HERE 

 

                                                 
8 Note that in all transcripts of machine-human conversations, presented in this paper, the human’s 
speech is in italics and the computers output is in SMALL CAPITALS. 
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Although on first sight ELIZA seems extremely sophisticated a closer look at how the 
program works shows just how simplistic it really is.  ELIZA operates through 
sequences of pattern matching and string replacement, for example the pattern 

_ _ _ you … me 
matches the sentence 

Why do you hate me? 
On encountering this sentence the program selects a transformation from the list of 
possible transformations for this pattern, for example: 

YOU LIKE TO THINK I … YOU DON’T YOU? 
and produces the output 

YOU LIKE TO THINK I HATE YOU DON’T YOU? 
Clearly this is not a robust dialog system and there are many examples of ELIZA 
producing complete gibberish due to stringently applying these transformation rules.  It 
should also be clear that this type of system is never going to be able to answer open-
domain questions which require a real-world response, such as “What do penguins 
eat?”.  For a complete exposé of ELIZA and a similar program called PARRY, 
developed by , see . [Heiser1980] [Cope1993]

[Wino1972] [Bobr1977]

 
Moving forward through the history of AI dialog systems research, we meet SHRDLU 
and GUS (see  and  respectively).  Both of these systems are 
interfaces to databases holding information about a restricted domain.  The difference 
between these systems and systems such as LUNAR (see section 3.1) are their dialog 
capabilities.  GUS was designed to simulate a travel advisor and had access to a 
database containing limited information about airline flight times.  SHRDLU is probably 
the better known of these two systems and controlled a robot arm in a virtual micro-
world which consisted of a table top strewn with coloured blocks of varying shapes 
and sizes and a box into which the blocks could be placed9.  The following is a 
shortened version of the dialog that was used as a demo of SHRDLU: 

Pick up a big red block. 
OK. 
Grasp the pyramid. 
I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN. 
Find a block which is taller than the one you are holding and put it into the 
box. 
BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM 
HOLDING. 
OK. 
What does the box contain? 
THE BLUE PYRAMID AND THE BLUE BLOCK. 
What is the pyramid supported by? 
THE BOX. 
How many blocks are in the box? 
FOUR OF THEM. 
Can the table pick up blocks? 
NO. 
Can a pyramid be supported by a block? 
YES. 

                                                 
9 The original SHRDLU source code along with modern implementations can be found on the World 
Wide Web at http://hci.stanford.edu/cs147/examples/shrdlu/. 
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Can a pyramid support a pyramid? 
I DON'T KNOW. 
Stack up two pyramids. 
I CAN'T. 
Will you please stack up both of the red blocks and either a green cube or a 
pyramid? 
OK. 
Which cube is sitting on the table? 
THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID. 
Is there a large block behind the pyramid? 
YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN CUBE, AND THE BLUE 
ONE. 
Put a small one onto the green cube which supports a pyramid. 
OK. 
Put the littlest pyramid on top of it. 
OK. 
Does the shortest thing the tallest pyramid's support supports support anything 
green? 
YES, THE GREEN PYRAMID. 
What color is it? 
BY "IT", I ASSUME YOU MEAN THE SHORTEST THING THE TALLEST PYRAMID'S 
SUPPORT SUPPORTS. 
RED 
How many things are on top of the green cubes? 
I'M NOT SURE WHAT YOU MEAN BY "ON TOP OF" IN THE PHRASE "ON TOP OF 
GREEN CUBES". 
DO YOU MEAN: 
1 - DIRECTLY ON THE SURFACE 
2 - ANYWHERE ON TOP OF? 
2 
THREE OF THEM. 
Thank you. 
YOU’RE WELCOME! 

 
Figure 3-1: Original screen display of SHRDLU in action10. 

                                                 
10 Image used with the kind permission of Terry Winograd 
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Most people are bowled over by their first encounter with SHRDLU, however, the 
system is still severely limited to only discussing the micro-world it inhabits.  Take the 
following exchange (this is a slightly modified version of a conversation, due to 
Haugeland , which appeared in ): [Haug1985] [Cope1993]

[Zue2000]

[Sene1998] [Poli2000]

Build a steeple. 
SORRY, I DON’T KNOW THE WORD ‘STEEPLE’. 
A ‘steeple’ is a stack that contains two green cubes and a pyramid. 
I UNDERSTAND. 
Trade you the steeple for three red cubes. 
SORRY, I DON’T KNOW THE WORD ‘TRADE’. 
A ‘trade’ is a free exchange of ownership. 
SORRY, I DON’T KNOW THE WORD ‘FREE’. 
Sorry, I thought you were smarter than you are. 
SORRY, I DON’T KNOW THE WORD ‘SORRY’. 

This attack is a little unfair, as no one ever claimed that the system had any knowledge 
about trade or in fact anything other than the properties of the blocks, table, box and 
the ability to move the blocks around.  In fact even colours, which SHRDLU seems to 
understand really well, are simply properties of the blocks; there is no understanding of 
colour.  Although an outstanding programming effort, SHRDLU is as limited as ELIZA 
and in its creator’s own words “a dead end”.  
 
Dialog systems were historically the domain of AI researchers.  This has changed over 
time, and currently there is a vast amount of NLP-based research into dialog systems.  
One modern dialog system is Jupiter (see ).  The best description is taken 
from its product page at MIT11: 

“Jupiter is a conversational system that provides up-to-date weather 
information over the phone.  Jupiter knows about 500+ cities worldwide (of 
which 350 are within the US) and gets its data from four different Web-based 
sources”. 

The following are example questions put to the Jupiter system; note how the system 
remembers some aspects of the previous queries: 

•  What cities do you know about in California? 
•  How about in France? 
•  What will the temperature be in Boston tomorrow? 
•  What about the humidity? 
•  Are there any flood warnings in the United States? 
•  Where is it sunny in the Caribbean? 
•  What's the wind speed in Chicago? 
•  How about London? 
•  Can you give me the forecast for Seattle? 
•  Will it rain tomorrow in Denver?  

 
Jupiter is based on the GALAXY client-server architecture (see  and  
for details on GALAXY) and consists of the following stages: 

1. Speech Recognition: converts the spoken sentence into text. 
2. Language Understanding: parses the text into semantic frame – a grammatical 

structure containing the basic terms need to query the Jupiter database. 
                                                 
11 The product page for Jupiter is at http://www/sls.lcs.mit.edu/sls/whatwedo/applications/jupiter.html. 
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3. Language Generation: uses the semantic frame’s basic terms to build a SQL 
query for the database. 

4. Information Retrieval: Jupiter executes the SQL query and retrieves the 
requested information from the database. 

5. Language Generation: converts the query result into a natural language 
sentence. 

6. Information Delivery: Jupiter delivers the generated sentence to the user via 
voice (using a speech synthesizer) and/or display. 

 Clearly Jupiter is more complex than systems such as SHRDLU as the system is dealing 
with input via the telephone and hence has to cope with the added problem of robust 
speech recognition to provide a reasonable input to the dialog system.  Note, however, 
that just as SHRDLU was limited to questions about the block world it inhabited so 
Jupiter is limited to questions about weather reports for the cities it is aware of. 
 

3.3 Reading Comprehension Systems 
Reading comprehension tests are frequently used to test the reading level of children.  
As early as 1977 (see the QUALM system detailed in ) researchers recognised 
this as an appropriate way of testing the language understanding abilities of computers 
and started to build systems to answer reading comprehension tests. 

[Lehn1977]

[Schank1977]

 
In a similar way to most of the early dialog systems (see the previous section) the early 
reading comprehension systems were developed by the AI community.  One of the 
best known early systems is Sam which was developed at the Yale AI lab.  Consider 
the story: 

John went to New York by bus.  On the bus he talked to an old lady.  When he 
left the bus, he thanked the driver.  He took the subway to Leone’s.  On the 
subway his pocket was picked.  He got off the train and entered Leone’s.  He 
had some lasagne.  When the check came, he discovered he couldn’t pay.  The 
management told him he would have to wash dishes.  When he left, he caught a 
bus to New Haven. 

A simple story and one about which we could all answer simple questions.  The 
following is the transcript of a set of questions about the above story being put to Sam 
(this transcription of the test comes from ): 

Why did John go to New York? 
BECAUSE JOHN WANTED TO GO TO LEONE’S. 
How did John get to Leone’s? 
JOHN TOOK A BUS TO NEW YORK AND THEN HE TOOK THE SUBWAY TO LEONE’S. 
Did anything unusual happen on the bus? 
I DON’T REMEMBER ANYTHING. 
Did anything unusual happen on the subway? 
A THIEF PICKED JOHN’S POCKET. 
What did John order? 
JOHN ORDERED LASAGNE. 
Did anything unusual happen at the restaurant? 
JOHN DISCOVERED THAT HE COULDN’T PAY THE CHECK AND SO HE HAD TO WASH 
DISHES. 
Why couldn’t John pay the check? 
BECAUSE JOHN DID NOT HAVE ANY MONEY. 
Why didn’t John have any money? 
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BECAUSE A THIEF PICKED JOHN’S POCKET. 
How did John get back to New Haven? 
JOHN WENT FROM LEONE’S BY SUBWAY AND THEN HE WENT TO NEW HAVEN BY 
BUS. 
How was John able to take the bus to New Haven? 
PROBABLY JOHN HAD A TICKET. 

This is without doubt an impressive display, of especially interest is that Sam has 
managed to return information which is only implicitly stated in the story, for example: 

•  Sam inferred that John ordered the lasagne that he had 
•  Sam inferred that having to wash the dishes was a consequence of not being 

able to pay the check 
•  Sam manages to correctly decide the John’s reason for going to New York was 

to eat in Leone’s not to wash dishes or have his pocket picked. 
•  In the answers to the last two questions Sam makes sensible conjectures well 

above the information given in the story. 
 
This dazzling display is all the work of numerous scripts which Sam applies as he 
works through a story (incidentally Sam stands for Script Applier Mechanism), in this 
instance Sam would use scripts for restaurant, bus and subway.  These scripts allow 
simple stories to be expanded to contain all the standard things that happen in a 
situation (such as sitting at a table in a restaurant although that is never mentioned).  
Knowing exactly what should happen in a restaurant enables Sam to spot deviations 
from the norm i.e. in this case John is unable to pay the check.  Having already applied 
the subway script and noticing that the usual outcome of having your pocket picked is 
no money, Sam can then correctly deduce that John can not pay the check because he 
has no money.  Like many of the systems (in numerous domains) which we have 
already discussed Sam is limited in that a script must exist for Sam to sensibly answer 
any questions.  Clearly there will come a time when a script is needed which has not 
been prepared and the system will fail.  The aim of this type of research must then be 
to get away from the necessity of hand-coded resources, to open-domain unrestricted 
question answering (the same problem that haunted early dialog processing systems). 
 
Many of the modern reading comprehension systems are designed to return only the 
sentence most likely to contain the answer, and not just the answer itself.  Although 
this is a step backward compared to systems such as Sam this limitation is partly based 
around the fact that these systems no longer rely on scripts to generate answers.  This 
contrasts with most other question answering research in which systems aim to return 
an answer (albeit surrounded by text from within a sentence) rather than the full 
sentence containing the answer.  Two such systems are Quarc and Deep Read (see 

 and  respectively) both of which report results at between 30% and 
40% in reading comprehension tests for children in the 3rd to 6th grades12, an example 
being test concerning maple syrup in Figure 3-2. 

[Rilo2000] [Hirs1999]

 
Both systems work by using a set of pattern matching rules (often just bag-of-words) 
and then augmenting this with one or more of the following NL techniques: Part of 
Speech (POS) tagging, stemming, name identification, semantic class identification 
and pronoun resolution. 

                                                 
12 For those not familiar with the American grade schools (including the author), children in these grades 
are between eight and twelve years old. 
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How Maple Syrup is Made 
Maple syrup comes from sugar maple trees.  At one time, maple syrup was 
used to make sugar.  This is why the tree is called a "sugar" maple tree.  
Sugar maple trees make sap.  Farmers collect the sap.  The best time to 
collect sap is in February and March.  The nights must be cold and the days 
warm.  The farmer drills a few small holes in each tree.  He puts a spout in 
each hole.  Then he hangs a bucket on the end of each spout.  The bucket 
has a cover to keep rain and snow out.  The sap drips into the bucket.  
About 10 gallons of sap come from each hole.  

1. Who collects maple sap?  (Farmers) 
2. What does the farmer hang from a spout?  (A bucket)  
3. When is sap collected?  (February and March) 
4. Where does the maple sap come from?  (Sugar maple trees)  
5. Why is the bucket covered?  (to keep rain and snow out) 

Figure 3-2: An example reading comprehension test. 

 
At first glance these systems seem exceptionally poor when compared with other QA 
systems, such as those entered in TREC, which at best answer approximately 70% of 
the questions.  As was pointed out in , however, reading comprehension 
tests are document-specific question answering tasks: 

[Anand2000]

[Anand2000]

“Each question is asked with respect to a specific document and the answer 
must be located from within that document … document-specific question 
answering poses different challenges than general question answering because 
an answer generally appears only once in a document … whereas in general 
QA many documents contain an answer to the question, hence a document-
specific system usually only has one shot to find the answer”. 

The benefit of multiple instances is discussed, in some detail, in relation to our QA 
system in section 4.4. 
 
One modern system that attempts to return an actual answer rather than the sentence 
most likely to contain the answer is Spot (currently on version 5) which was developed 
at the Johns-Hopkins summer workshop in 2000 and is detailed in .  This 
work is based on the hypotheses that: 

“… once can fruitfully decompose the reading comprehension task into 
question analysis (QAnalysis) categorizing the question as one of 30 odd types, 
finding an answer region (HotSpotting), and finding the answer phrase in the 
answer region (PinPointing)”  

The system they then implemented uses this hypothesis to attack the problem as 
follows: 

QAnalysis: categorise the question based on a shallow parse of the question 
combined with lexically grounded regular expressions. 
HotSpotting: find the answer region (i.e. sentence) using word overlap 
between question and region. 
PinPointing (1): use independent tagger modules to mark phrases with types 
corresponding to the question types from QAnalysis. 
PinPointing (2): rank the candidate answers using information from 
QAnalysis, HotSpotting, and PinPointing (1).  Candidate ranking is necessary 
since HotSpotting and PinPointing cannot be performed perfectly. 
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Although a valiant effort they still only produced a system which could answer about 
28% of the questions (clearly the result was going to be worse than the systems which 
just return a sentence as this is a more difficult task), although if the system is 
evaluated between the final two stages then the performance is comparable with Quarc 
and Deep Read. 
 

3.4 Open-Domain Questions and TREC 
In recent years research in open-domain QA has been accelerated due to the inclusion 
of a QA track at the annual Text REtrieval Conference (TREC).  This track was first 
run in 1999 with seventeen research groups entering one or more systems.  Although 
the performance of the systems varied wildly, some of were remarkably good (see 

 for an overview of the track and  for a report on the best overall 
system).  An additional aim of the track was to define a task that would appeal to both 
the document retrieval community (as you could originally return up to 250 bytes, the 
task could be seen as short passage retrieval) and the information extraction (IE) 
community (where question answering is simply open domain IE). 

[Voorh1999] [Mold1999]

[Hovy2001]

  
The QA track is now entering its fourth year, and contains not only the main QA track 
but also a list track in which systems are required to name a set number of entities, that 
meet some condition, with questions such as “Name 20 countries that produce coffee”. 
 
The majority of the systems work in a similar fashion and consist of two main (often 
separate) sub-systems.  Firstly an information retrieval (IR) system is used to select the 
top n documents or passages, which match a query that has been generated from the 
question.  For more details on this stage in the workings of a question answering 
system see section 5.1. 
 
The second stage then consists of finding the answer entities (usually snippets of text) 
from within these documents and then ranking them in such a way as to select a 
limited number of possible answers.  The majority of the early TREC systems 
pinpointed likely answers by using a form of window-based word scoring technique, 
which rewards desirable words in the window.  They moved the window across the 
candidate answer text and returned the window at the position giving the highest score.  
Clearly many variations on this technique are available by, among other options, 
tuning the window size and the score assigned to different words.  As reported in 

, although this form of answer pinpointing works to some degree (giving 
results of up to 30% in independent evaluations), this method has some serious 
limiting factors: 

•  It is impossible to accurately pinpoint the boundaries of an answer (e.g. an 
exact name or phrase). 

•  It relies solely on word level information and does not use semantic 
information (hence no knowledge of the type, i.e. person or location, of the 
answer being sought). 

•  It is impossible to see how this method could be extended to composing an 
answer from many different documents or even from different sentences or 
phrases within a single document. 

Window based answer-pinpointing techniques are therefore limited and will not, in the 
long run, be a satisfactory method for pinpointing candidate answers.  This has led to 
more and more of the TREC systems implementing a semantic method for pinpointing 
answers. 
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3.4.1 The Document Collections 
Two different document collections have been used over the four years the TREC QA 
track has now been running.  For the first three years the collection was made up of a 
subset of the TIPSTER collection (which consists of 5 CDs of compressed text).  By the 
end of the third year the set of documents being used for the QA task consisted of 
approximately 979,000 articles from numerous different news services including the 
Wall Street Journal and the Financial Times (see section 3.4.2 for a rundown of the 
exact contents). 
 
As of TREC 2002 the document set has been changed to use the same collection as 
participants in ARDA’s new AQUAINT program.  This consists of documents from the 
following sources: 

•  AP newswire, 1998-2000 
•  New York Times newswire, 1998-2000 
•  Xinhua News Agency, 1996-2000 

This new collection consists (according to NIST) of 1,033,461 documents.  One point 
of concern with this new collection is some of the articles provided by the Xinhua 
News Agency.  These articles appear to contain many spelling and grammar errors 
which may have an impact on the performance of systems (see section 5.4 for a 
discussion of world knowledge and document errors).  Exactly what effect these errors 
will have on the performance of systems is unclear, although it may well make the 
evaluation more difficult (the documents are taken to be correct even if misspelled or 
misinformed), a clearer understanding of this problem may emerge once the results of 
the TREC 2002 evaluation have been released to the participants. 
 

3.4.2 Temporal and No Answer Questions 
In the first two TREC competitions each question was guaranteed to have a 
corresponding answer within the text collection.  This constraint was dropped for 
TREC 2001 with 49 questions having no known answer.  Systems were then able to 
return NIL as the supporting document if they believed there to be no answer.   
 
Detecting whether or not a question has an answer is feasible, with one system having 
an accuracy of 0.76, but it is not trivial with only five of the sixty six runs having an 
accuracy of over 0.25 (where accuracy is the number of questions for which NIL was 
correctly returned divided by the total number of questions for which NIL was 
returned).  As systems could return up to five ranked answers per question, some 
choose to always return NIL at rank five which resulted in an accuracy of only 0.1, but 
slightly increased their overall MRR score. 
 
Our system makes no attempt to recognise questions that have no answer in the 
collection.  Instead the system works by adding an initial NIL answer, with a zero 
score, to the ranked list of possible answers.  All the answers found in the documents 
are then added to the list and as their scores will be greater than zero the NIL answer 
will be placed at the bottom of the ranked list.  In other words the only time we ever 
return a NIL answer to a question is if we do not find any other possible answers 
within the documents. 
 
There is a possible issue with the TREC competitions and the use of external 
resources.  Many groups (including ours, see section 4.4, and Brill et al, see section 4.4 
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and ) make use of the web as a source of answers that are then matched 
against the closed TREC collection.  This is inherently dangerous as a question, which 
has no relevant answer within the TREC collection will quite possibly have an answer 
on the WWW.  If this answer is found and then projected onto the TREC collection 
there is always a chance that there will be a document which is relevant to both the 
query and answer without being a justification for that answer.  One class of questions 
that can be a problem are those dealing with time. 

[Brill2001]

 
The document collection used for the TREC 2001 conference, consists of 
approximately 979,000 documents from the following sources: 

•  AP newswire, 1988-1990 
•  Wall Street Journal, 1987-1992 
•  San Jose Mercury News, 1991 
•  Financial Times, 1991-1994 
•  Los Angeles Times, 1989-1990 
•  Foreign Broadcast Information Service, 1996 

As can clearly be seen from the list of sources the latest events the news articles could 
cover would be the end of 1996, so a question such as “When did the Kursk sink?” 
which is answered by  “13th August 2000” could not possibly be answered by any 
document in the collection.  A system which utilises the Internet could, however, 
generate a correct answer but then either be unable to find a corresponding answer in 
the TREC collection or if like Brill et al. they simply look for a relevant document 
using an IR engine (especially if using an IR engine based on the vector space model) 
then they may find a relevant document but it certainly will not justify the answer 
found using the WWW. 
  
A related problem is how to generate answers that are guaranteed not to have an 
answer in a closed collection, such as that used by TREC.  Currently a question is 
suggested and then a brief search is made of the collection for an answer.  If none can 
be found then it is assumed that it has no correct answer unless, during evaluation, a 
system proposes a correct answer that is backed up by a supporting document from 
within the collection.  So even if the intention is to include say ten no-answer questions 
by the end of the evaluation there may only be five or so no-answer questions 
remaining. 
 
The only sure way of introducing questions that do not have an answer in a closed 
collection is to use temporal question such as that mentioned above.  Asking “When 
did the Kursk sink?” is a safe no-answer question if you know the contents of the 
collection stop at 1996 and the event you are asking about took place in 2000. 
 

3.4.3 Sub Tracks 
At TREC 2001 two new sub tracks were added to the main question answering track.  
These were concerned with answering list and context questions. 
 
The list questions were designed to test the ability of systems to construct an answer to 
a question from multiple documents by requesting a set number of entities i.e. “Name 
20 countries that produce coffee”.  The collection was guaranteed to contain at least 
the requested number of entities but it was also guaranteed that more than one 
document would be needed to answer the question.  As with the main track, the 
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abilities of the competing systems varied wildly from the system entered by the 
Language Computer Corporation (see ), which achieved an average precision 
of 0.76, to the systems entered by Korea Advanced Institute of Science and 
Technology (see ) and Université de Montréal (see ) whose systems 
both achieved an average precision of only 0.07.  This variation in ability of the 
systems is similar to that shown in the main track where the lowest MRR was 0.003 
and the highest was 0.676. 

[Hara2001]

[Oh2001] [Plam2001]

 
The context questions are slightly different to the normal type of question asked.  The 
aim of this sub-track is to test the ability of systems to track discourse objects across 
multiple questions (i.e. to have some idea of the interaction which has already taken 
place with the user).  One of the question sets used in this evaluation was the 
following: 

1. Which museum in Florence was damaged by a major bomb explosion in 1993? 
2. On what day did this happen? 
3. Which galleries were involved? 
4. How many people were killed? 
5. Where were these people located? 
6. How much explosive was used? 

Clearly the ability to answer the later questions intelligently depends on the systems 
ability to resolve referential links across the questions. 
 
In total seven runs were submitted to this task, unfortunately the results were not quite 
what were expected.  The ability of systems to answer questions later in a series did 
not correlate with their ability to answer the earlier questions.  Rather the early 
questions allowed system to produce a document set (from the main TREC collection) 
that the later questions could then be answered against.  Hence the ability to answer 
any question in the series was simply the ability to answer that particular type of 
question (i.e. who, what …). 
 

3.4.4 Performance of Systems at TREC 
As was mentioned in section 2.4.1, the first QA track consisted wholly of questions 
created by NIST as back formulations of text snippets.  This lead to most of the 
questions being relatively simple to answer, with questions such as “Who was the first 
American in space?” having answers such as “Alan Shepard was the first American in 
space” available directly in the text collection.  It was, however, the first time that QA 
systems had been evaluated in this way and so the task was harder than it might have 
been as research groups were unsure exactly what to expect and had little training data 
available. 
 
TRECs 9 and 2001 used real questions taken from the logs of sites such as Ask Jeeves 
and MSN.  This meant that the task was no harder, not only because the questions were 
not motivated by the text collection but also because there was now a significant 
number of definition type questions such as “What is an eclipse?”. 
 
TREC 2001 was by far the most difficult of the three completed conferences as not 
only where the questions not based on the text but also not all of the questions were 
guaranteed to have an answer in the text collection. 
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Clearly the main task has been becoming more difficult year-on-year, although the 
performance of the systems has been maintained at a reasonable level, probably due in 
part to the experience gained from having competed in the previous years.  This can be 
seen in Table 3-1 and Figure 3-3, which show the performance of the best, worst and 
mean systems as well as the best and worst performance of the Sheffield system at the 
three conferences13. 
 

 System MRR Score for 
TREC Best Worst Mean Sheffield’s Best Sheffield’s Worst 

8 0.660 0.002 0.237 0.081 0.071 
9 0.580 0.038 0.218 0.206 0.159 
10 0.676 0.003 0.236 0.343 0.169 

Table 3-1: MRR scores of systems over TRECs 8, 9 and 10. 
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Figure 3-3: Performance of systems over TRECs 8, 9 and 10. 

After TREC 2001 it was decided that in future the number of definition style questions 
will be monitored by NIST.  This is partly because they are difficult to answer and to 
judge but also as there are more efficient ways of answering these type of questions 
other than using news wire texts (i.e. these questions could probably be better 
answered by having a QA system as an interface to an encyclopaedia). 
 

                                                 
13 The results for the Sheffield system at TREC 10 are not official results, as the group did not enter a 
system.  Rather these show the worst and best performance we have obtained from running and judging 
the questions ourselves. 
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3.4.5 The Future of TREC 
The future of the question answering track at TREC will be guided by both the 
roadmap document  and the ARDA AQUAINT program14.  The main changes 
for TREC 2002 will be the restriction to returning only exact answers as specified by 
the roadmap, however, due to the poor performance on the context questions this sub-
track will be removed and will form part of the first year of the AQUAINT program. 

[Burg2000]

[Lin2001]

 
The ultimate goal of the AQUAINT program is not to develop QA systems for only 
factually based questions whose answers can be found as a single string or within a 
relatively short window of text (e.g. a 50 or 250 byte window) from a single 
document15.  Rather the research intends to address a scenario in which multiple, inter-
related questions are asked in a focused topic area by a skilled, professional 
information analyst who is attempting to respond to larger, more complex information 
needs or requirements (basically the top level of application envisaged in the roadmap, 
see section 2.1 for more details).  While some systems exist which offer some results 
in these areas, they are limited and do not meet the US governments broader 
requirements for question answering.  The major areas of research to be funded are: 

•  Question Understanding and Interpretation (including contextual interpretation, 
query expansion, query taxonomy),  

•  Determining the Answer (including information retrieval and extraction from 
multiple media/languages and data types, interpretation, synthesis, resolving 
conflicting information, justification),  

•  Formulating and Presenting the Answer (including summarization, synthesis, 
generation), AND/OR  

•  Cross-Cutting/ Enabling/Enhancing Technologies that directly and materially 
support the above goals (including but not limited to advanced reasoning, 
sharable knowledge sources, content representation, interactive QA, role of 
context in QA, role of knowledge in QA, and language processing and natural 
language processing research required to support advances in QA.)  

 
The current suggestion is that participants in the AQUAINT program will attempt harder 
tasks, such as context questions, than the participants in the standard TREC QA track.  
When these systems are achieving reasonable results the tasks will be moved into the 
standard QA track for all the TREC participants to attempt. 
 

3.5 Other Techniques Relevant to Question Answering 
There are many different techniques that could be brought to bear on the problem of 
question answering.  This section aims to outline a few of the most promising of these 
techniques. 
 

3.5.1 Inference Rules 
One of the major problems in question answering is the potential for mismatch 
between the expressions used in the question and the expressions used in the text.  This 
is the problem which Lin and Pantel address in their paper, Discovery of Inference 
Rules for Question Answering .  The paper presents an unsupervised 

                                                 
14 The AQUAINT program can be found at http://www.ic-arda/InfoExploit/aquaint/index.html. 
15 This paragraph is paraphrased from the AQUAINT description that can be found at http://www.ic-
arda.org/InfoExplot/aquaint/index.html 
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algorithm for discovering these inference rules from text.  The algorithm is based on 
Harris’ Distributional Hypothesis, which states that words that occur in the same 
context tend to be similar.  Instead of this they use an altered version of the hypothesis, 
which works with paths in the dependency trees of a parsed corpus, i.e. if two paths 
tend to link the same set of words they hypothesize that the meanings of the paths are 
similar. 
 
This method allows phrases that are not the same, but which a read could infer as 
having a similar meaning, to also be extracted from the text, for example both of the 
following rules are extracted even though the second one is an inference and the two 
phrases do not have the same meaning: 

“X writes Y” implies “X is the author of Y” 
“X caused Y” can be used to infer that “Y is blamed on X” 

They also showed (by experimentation) that people find constructing these inferences 
manually more difficult then they expected.  For example most people would have 
constructed 

“X is the author of Y” 
from the text 

“X wrote Y” 
whereas they would be unlikely to construct 

“X’s Y factory” from “X manufactures Y” 
from the query 

“What does Peugot manufacture?” 
which can be answered by the following text: 

“Chrétien visited Peugot’s newly renovated car factory in the afternoon”. 
 
The ability of the system to automatically discover these inferences from text allows 
them to be easily applied to the problem of question answering, especially potential 
mismatches between the question and answer bearing texts, without vast amounts of 
time being required to hand-code similar inference rules.  Methods like the one 
described should soon start to appear in numerous different types of NLP systems 
including those dealing with question answering.  This should result in an 
improvement in the performance of those NLP systems. 
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4 Progress to Date 
The work I have undertaken this year has used, as its basis, the University of 
Sheffield’s TREC system; known as QA-LaSIE, which was entered into TREC 8 and 
TREC 9 (see  and  respectively for full details of the system). [Hump1999] [Scott2000]

[Brill1992]

 
4.1 Overview of the TREC 9 System 

Before discussing how the original system has been updated in preparation for TREC 
2002 we will first discuss the layout and workings of the original system, the key 
features of which are shown in Figure 4-1. 
 

TREC
Document
Collection

Okapi
Passage Retrieval

Top n
passages

QA-LaSIE

Questions Questions

Answers

 
Figure 4-1: Original system setup. 

Firstly the TREC document collection is indexed using the Okapi information retrieval 
system (this is done once only in advance of any questions).  This index is then used to 
return the top n passages relevant to the question, the query to Okapi simply being all 
the question words.  The top n passages are then submitted along with the question to 
QA-LaSIE, which should produce one or more answers. 
 
The main work of question answering takes place within QA-LaSIE, which is shown 
in more detail in . Figure 4-2

Figure 4-2: Original QA-LaSIE system modules. 
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The following is a brief description of each of the modules within QA-LaSIE: 
•  Tokenizer – Identifies token boundaries (as byte offsets into the text) and text 

section boundaries (text header, text body and any sections to be excluded from 
processing). 

•  Gazetteer Lookup – Identifies single and multi-word matches against multiple 
domain specific full name (locations, organisations, etc.) and keyword 
(company designators, person first names, etc.) lists, and tags matching phrases 
with appropriate name categories. 

•  Sentence Splitter – Identifies sentence boundaries in the text body. 
•  Brill Tagger – Assigns one of the 48 Penn TreeBank part-of-speech tags to 

each token in the text (see ). 
•  Tagged Morph – Simple morphological analysis to identify the root form and 

inflectional suffix for tokens that have been tagged as noun or verb. 
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•  Parser – Performs two-pass bottom-up chart parsing, pass one with a special 
named entity grammar, and pass two with a general phrasal grammar.  A ‘best 
parse’ is then selected, which may be only a partial parse, and a predicate-
argument representation, or quasi-logical form (QLF), of each sentence is 
constructed compositionally. 

•  Name Matcher – Matches variants of named entities across the text. 
•  Discourse Interpreter – Adds the QLF representation to a semantic net, which 

encodes the system’s world and domain knowledge as a hierarchy of concepts.  
Additional information inferred from the input is also added to the model, and 
coreference resolution is attempted between instances mentioned in the text, 
producing an updated discourse model.  A representation of the question is then 
matched against the model, using the coreference mechanism. 

•  Question Answer – Selects the required answer text using the resolved question 
representation in the discourse model. 

 
Most of this system is unaltered from the LaSIE system entered into the 1998 Message 
Understanding Conference (MUC-7) which is detailed in .  The changes that 
were made to create QA-LaSIE were within the Parser and Discourse Interpreter 
modules and the addition of the Question Answer module. 

[Hump1998]

 
4.1.1 Question Parsing 

Questions were one of the sentence constructions which were not handled by the 
original LaSIE parser, so extra grammar rules were developed to cover the example 
questions that were available.  The syntactic rules have a semantic component that is 
used to build up a QLF representation of the question in a similar manner to the rest of 
the grammar.  One major difference between LaSIE and QA-LaSIE is the introduction 
of a special semantic predicate, qvar (question variable), which is used to indicate the 
entity requested by the question.  For example, the question “Who wrote Hamlet?” 
produces the following QLF representation: 

qvar(e1), qattr(e1,name), person(e1), lsubj(e2,e1),
write(e2), time(e2,past), aspect(e2,simple),
voice(e2,active), lobj(e2,e3), name(e3,'Hamlet')

In this representation each entity in the question gives rise to a unique identifier of the 
form en.  The use of the word Who in the question causes the addition of person(e1), 
as who suggests the answer to the question will be a person.  Also the qvar is set to e1 
showing that the question is seeking a person (because person and qvar share the 
same entity).  The relational predicates lsubj (logical subject) and lobj (logical 
object) link any verb arguments founding the text with the verb in the correct 
relationship. 
 
The QLF representation of the question is stored for use in subsequent processing 
against the candidate answer texts.  When the QLF is stored the entity identifiers are 
replaced by question entity identifiers of the form qn, i.e. e1 becomes q1, e2 becomes 
q2 etc) to facilitate later processing. 
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4.1.2 Resolution of Question and Candidate Answer Texts 
After a candidate answer text has been parsed to produce a QLF representation of each 
sentence, the QLFs are passed to the discourse interpreter.  This behaves exactly the 
same as in the LaSIE system apart from the addition of a final processing stage. 
 
The discourse interpreter has (by this stage) produced a semantic net of all the entities 
and relationships present in the multiple QLFs for the document.  The net has then had 
a coreference algorithm applied to it to replace multiple instances of the same entity 
with a single unified instance (i.e. if e3 and e7 refer to the same entity within the text 
then they will all be replaced by e3). 
 
Given this discourse model of a text the QLF of the question is added as the first 
sentence (sentence0) to the model and coreference is then carried out between 
question entities (qn) and entities within the text (en). 
 
In the version of QA-LaSIE which was entered into TREC 8 this was the primary QA 
mechanism: if the qvar was resolved with an entity in the text then this entity became 
the answer; if not, then no answer was proposed.  This approach had several major 
drawbacks.  First, it permitted only one answer per question, whereas the QA track 
allowed five answers and secondly it was very fragile, as coreference was difficult to 
establish. 
 
Given these weaknesses, the system entered into TREC 9 followed a significantly 
different approach.  Instead of attempting to directly corefer the qvar with an entity in 
the text, entities in the text are scored in a way which attempted to value their 
likelihood as answers.  The best scores were then used to select a single answer to 
return for each sentence. 
 

1. Each sentence is given a Constraint Score, C, equal to 1 point for each 
Question Constraint that is a member of the sentence, where a question 
constraint is an entity in the question.  This has the effect that sentences which 
contained entities detected as coreferring with entitles in the question will be 
rewarded. 

2. Within each sentence every remaining entity (eY) is tested against the question 
variable (qvar) for: 
a) Semantic Similarity, S: the reciprocal of the length of the path between 

qvar and eY in the semantic lattice (ontology).  For instance if the qvar is 
of type person then an entity which also has the type person will receive a 
score of 1. 

b) Property Similarity, P:  this is between 0 and 1 and is a measure of how 
many properties the two instances share in common and how similar the 
properties are (i.e. for a question such as “Name a green fruit” where a 
property of fruit is the colour green it does not make sense to allow the text 
“a sweet fruit such as the bright red strawberries” to be used as an answer 
because here strawberry has the colour property red). 

c) Object Relation, O: 0.25 if eY is related to a constraint within the sentence 
by apposition, a qualifying relationship, or with the prepositions of or in. 
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d) Event Relation, E: 0.5 if there is an event entity in the QLF of the question 
which is related to the qvar by a lsubj or lobj relation and is not the be 
event (i.e. derived from a copula construction) and the entity being scored 
stands in the same relation (lobj or lsubj) to an event entity of the same 
type as qvar does. 

 
These four values are then added together and then divided by 2.8 to give eY a score, 
which is then added to the sentence Constraint Score, C, then divided by the number of 
question constraints, Q, plus one.  This can all be viewed as producing the following 
equation: 
 

( )
2.8

Score for eY
1

S O P E
C

Q

+ + + 
+ 

 =
+

 

Equation 4-1: Equation for scoring an answer instance. 

4.1.3 Answer Output 
The Question Answering module, simply collects the answers from the discourse 
interpreter (which outputs one per sentence in the document) and ranks them according 
to their score.  Once all the documents for a question have been processed the module 
simply outputs answers based on the five best scoring entities.  The only processing 
carried out in this module is concerned with selecting either 50 or 250 bytes of text 
containing the five best answers, no other processing takes place. 
 

4.2 TREC 2001 
Although the University of Sheffield’s NLP group did not participate in TREC 2001, 
they stayed involved in the ongoing discussions.  As a way of introducing myself to 
the QA community I volunteered to help produce regular expression patterns which 
match the accepted answers to the questions used in TREC 2001.  These patterns are 
used to enable researchers to quickly and easily see how their systems perform against 
the questions, without having to manually judge each answer (which is how the official 
results for TREC are obtained)16.  For example question 975 used in the TREC 2001 
evaluation was “When was the first liver transplant?”.  The judgement files published 
by NIST show all the answers given by all the systems, but without the run tag so there 
is no way of identifying the system which returned a specific answer.  The judgement 
file is useful, however, to groups who wish to gather questions and answers for a 
machine learning approach to question answering.  A section of the judgement file for 
question 975 is shown below. 

975 AP880511-0060 1 in 1967
975 AP880527-0033 1 first liver transplant in 1967 .
975 AP880527-0033 -1 split -
975 AP880527-0033 1 world 's first liver transplant in 1967
975 AP880529-0051 -1 1985
975 AP890104-0148 -1 e left the hospital _Dec. 16_.
975 AP890104-0148 -1 November
975 AP890104-0148 -1 November 1985
975 AP891018-0099 1 1963
975 AP891018-0099 1 [Date:891018] 1963 and pioneered; 1980s
975 AP900118-0221 1 , in 1963, as well as the 31 other liver

                                                 
16 The patterns along with other QA related files can be found at http://trec.nist.gov/data/qa.html. 
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The first column is the question number followed by the document identifier.  The 
third column is a 1 if the answer is correct and -1 if it is not.  As you can clearly see 
from this sample all those answers which were judged to be correct contain either the 
year 1963 or 1967, whereas none of the answers judged to be incorrect contain either 
of these years.  So the following regular expression can be built to match against all 
the correct answers: 

196[37]

Research groups can then use these patterns to check if an answer they return to the 
question contains the correct answer or not, without having to manually inspect each 
single answer. 
 
Since TREC 2001 we have presented the 500 questions from the TREC 2001 
competition to our original TREC 9 system.  Using the answer patterns mentioned 
above our 50-byte answer system scored an MRR of 0.169 and failed to find a correct 
answer to 360 of the 500 questions.  Our exact answer system scored an MRR of 0.133 
and failed to answer 396 of the questions.  If we had taken part these runs would have 
been ranked approximately 43rd and 51st, respectively, out of the 66 runs that were 
submitted to the track with the worst system scoring an MRR of only 0.003. 
  

4.3 Changes and Updates to the QA System 
Part of the work I have undertaken this year has been to migrate the QA system from 
the original GATE (General Architecture for Text Engineering) framework, , 
in which it ran during TREC 8 and TREC 9, to the new GATE 2 framework (see 

 and ).  This has meant a large amount of re-writing of the 
wrappers for the components used, while leaving the components themselves largely 
unchanged, i.e. the bottom-up chart parser and the discourse interpreter are virtually 
identical to those used in TREC 9.  This has allowed me to familiarise myself with the 
system ready for the more detailed work to follow.  The new layout within GATE 2 of 
the question answering system can be seen in Figure 4-3, note that those modules 
marked by an asterisk are available as part of GATE 2 and are used unmodified in the 
question answering system. 

[Gaiz1996]

[Cunn2002a] [Cunn2002b]

[Hepple2000]

 
English

Tokeniser* Gazetteer* Sentence
Splitter*

POS
Tagger*

Tagged
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Question
Answer  

Figure 4-3: The layout of the QA system in GATE 2. 

The main changes to the layout are the use of a different POS tagger (Heptag, see 
, instead of Brill’s tagger) and the fact that two modules, NE Transducer 

and OrthoMatcher, have replaced the Name Matcher component.  These changes, 
however, make no significant difference to the way in which the question answering 
system works. 
 
The only changes to the bottom-up chart parser are the addition of a few extra 
grammar rules aimed at increasing the performance of parsing specific types of 
question.  The following sections outline the changes made to the other modules in 
preparation for TREC 2002. 
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4.3.1 Processing Answer Instances 
The discourse interpreter has seen some alterations to make answering scoring more 
appropriate.  Processing, of a document, is the same up until the point at which the 
possible answers are identified and then scored.  The previous system simply returned 
the highest scoring answer for each sentence within a document, i.e. the total number 
of possible answers was equal to the number of sentences within the document.  This 
has a number of problems associated with it: 

1. Often more than one answer within a sentence is awarded the same score.  If 
this happens for answers with the highest score then the system can only return 
one of the possible answers, and therefore always returns the one that appeared 
last in the sentence (i.e. the one it processed last). 

2. Often the answer module (which is completely independent of the discourse 
interpreter) will throw away an answer as it is deemed unlikely to be correct.  If 
this happens then a sentence will not have an answer associated with it (due to 
point 1), and on occasions this might result in a document having no answers 
associated with it. 

These two issues are both addressed by simply returning all possible answers and their 
associated scores from the discourse interpreter and allowing the answer module to 
decide which to make use of and which to discard. 
 

4.3.2 Property Similarity 
When it comes to scoring answers alterations have also been made to the previous 
system.  One of the components of the score for an answer is property similarity, 
which was mentioned in section 4.1.2.  In the TREC 8 system all common properties 
between qvar and eY had to match for eY to be considered a possible answer.  This, 
however, was deemed to be too hard a constraint and was relaxed, for TREC 9, to the 
number of common matching properties of qvar and eY, divided by the total number 
of properties of qvar and eY.  From analysis of the system this appeared to still be too 
strict a requirement and hence property similarity has been removed altogether. 
 

4.3.3 Semantic Similarity 
The major addition to the scoring algorithm is concerned with the semantic similarity 
between qvar and eY.  In the TREC 9 system the semantic similarity is defined as the 
reciprocal of the distance between qvar and eY in the systems ontology (the path was 
not even constrained to the shortest possible path, just the first to be found).  The 
problem with this approach is that the ontology is extremely small, and so often qX, eY 
or both are not in the ontology and hence get a semantic similarity score of zero, even 
if they are clearly linked in some way (i.e. neither house nor abode are in the ontology 
although these two words are clearly related).  The solution to this has been to 
implement a two-stage process.  Firstly the original algorithm (with the added 
constraint of always returning the shortest path) is used and only if no path is found is 
the new method used.  This allows us to specify specific relationships in our ontology 
if we deem them necessary. 
 
The new method takes WordNet (see ) and assumes that it is an ontology.  
The semantic similarity of two entities, qvar and eY, is then computed using a 
variation of the Leacock and Chodorow method (LCH) presented in .  In their 
original method semantic similarity is defined in Equation 4-2. 

[Mill1995]

[Lea1998]
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Semantic Similarity ln
32
d = −  

 
 

Equation 4-2: The Leacock and Chodorow Semantic Similarity equation. 

Where d is the distance between the two words in question17.  The distance between 
two words is calculated by building hypernym (… is a kind of …) trees, one for each 
of the noun senses of both words.  These trees are then overlapped and the distance 
between two words is the number of hypernym (or hyponym if going down a tree) 
relationships required to go between them, plus one.  As an example, assume we want 
to know how semantically similar the words fish and food are to each other.  Firstly we 
build the hypernym trees for the all the noun senses of both words, these can be seen in 

. Figure 4-4

Figure 4-4: The hypernym trees for fish and food. 
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We then work out all the paths between fish and food using the generated hypernym 
trees.  It turns out there are three distinct paths (in which  signifies a hypernym 
relation,  signifies a hyponym relation and = signifies that that two things are 
identical, i.e. the join between two hypernym trees): 

1. fish1  foodstuff  food = food 
2. fish2  aquatic vertebrate  vertebrate  chordate  animal  life form  

entity = entity  object  substance  food 
3. fish3  victim  person  life form  entity = entity  object  substance  

food 

                                                 
17 Note that the normalising factor of 32 is not arbitrary but is double the maximum depth of the 
WordNet hierarchy. 
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The shortest of these three paths is shown more clearly in . Figure 4-5

Figure 4-5: The shortest path from fish to food. 
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Equation 4-2 for calculating the semantic similarity does not produce a score, which is 
in anyway comparable to the semantic similarity already calculated by our system 
using the built-in ontology.  To correct this problem we use the equation given below 
to calculate semantic similarity. 

1Semantic Similarity
d

=  

Equation 4-3: Equation used to calculate semantic similarity in our system. 

Table 4-1

Table 4-1: Table showing distances and scores for the three paths. 

 presents the distances, LCH measure and our measure for each of the paths. 
 

Path Number Distance LCH Measure Our Measure 
1 3 2.37 1

3  
2 10 1.16 1

10  
3 8 1.39 1

8  

Other possible methods of computing the semantic distances between words, using 
WordNet, could have been used and these include , ,  and 

. 
[Jiang1997] [Resnik1995] [Lin1998]

[Hirst1998]
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4.3.4 Answer Scoring Algorithm 
The modified answer scoring algorithm is identical to that detailed in section 4.1.2, 
apart from the complete removal of the property similarity component, which gives the 
following equation: 

( )
2.8

Score for eY
1

S O E
C

Q

+ + 
+ 

 =
+

 

Equation 4-4: Equation, used in TREC 2002, for scoring an answer instance. 

 
4.3.5 Question - Answer Overlap 

The one component of the system that is radically different is the final answer module.  
This takes the possible answers as identified by the discourse interpreter and ranks 
them according to their score and other attributes.  Before the algorithm for ranking the 
answers can be explained a few minor algorithms and ideas, which it uses, have to be 
covered. 
 
As has already been discussed, in section 3.4, window-based methods for pinpointing 
answers are severely limited and are unlikely to be involved in the future of QA 
research.  Our system goes one step further than this, however, and assumes that 
overlap between the question and a candidate answer is inherently bad.  Clearly for a 
question such as “Where is Perth?” an answer of “Perth is in” is not correct and can 
be eliminated using the following method. 
 
In most cases it is unlikely that a correct answer to a question will contain many, if 
any, of the non-stopwords in the question.  We can use this assumption to throw away 
some of the possible answer strings before we even look at the score assigned to them.  
Word overlap between a question and candidate answer is best viewed as a percentage.  
At 0% there is no overlap between the question and candidate answer and so the string 
may be a correct answer to the question and therefore requires further processing.  At 
100% overlap all the non-stopwords in the candidate answer appear in the question, at 
which point it is highly unlikely that this string will be a correct answer to the question 
and can then be disregarded (an exception is TREC 2001 Q1026 “What does target 
heart rate mean?” which has as one of its possible answers “target heart rate”, 
although the more important question here is whether “target heart rate” is in fact a 
valid answer to the question).  At points in between it is unclear whether the candidate 
answer may be correct, or not, based only on the percentage overlap. 
 
The initial attempt at including overlap in the system worked simply by assuming that 
if there were any overlap at all then the candidate answer would be discarded.  As a 
naïve approach this was actually quite successful, however, the current system simply 
discards any answers where the overlap with the question is 100%. 
 

4.3.6 Combining Semantically Similar Answers 
Having carried out some limited analysis of the performance of our system over the 
TREC 2001 questions, one thing was clear; we would often return two or more 
semantically equivalent answers.  Clearly if the answer is correct then this is alright, 
but if these answers are wrong then this may well prevent correct answers from 
appearing in the top n documents which we are allowed to return.  On some occasions 
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we were actually returning identical answers (i.e. for Q1000 we returned five answers 
all of which were “the sun”), these are easy to remove by simply keeping only the 
highest scoring of two identical answers.   
 
Unfortunately, equivalent answers are not always identical strings; as is the case for 
the question “Where is Perth?” to which our system returned within the top five 
answers: Australia and Western Australia.  Clearly Australia and Western Australia 
are semantically equivalent answers to the question, so only one of them need be 
returned. 
 
The approach taken to deal with these answer strings, which is similar to that used in 

, is to test if two answers A and B are the same by checking that the stem of 
every non-stopword in A matches a stem of a non-stopword in B, or vice versa.  Using 
this test, if two answers match, then both are removed and a new answer is created 
from the highest of the two scores and the longest answer string.  The effect of this 
method on our example question was that now only Western Australia is listed as one 
of the top five possible answers. 

[Brill2001]

 
Clearly the same approach to the question “In which country is Perth?” would not be 
as effective as Western Australia is not an exact country name, this method is still 
better than simple string matching approaches although it still needs some 
improvement. 
 
Using this approach improved the system performance slightly.  More importantly was 
the unexpected side effect which caused the system to clarify some answer strings, 
with the most obvious being people’s names: ‘Armstrong’ becoming ‘Neil A. 
Armstrong’ and ‘Davis’ becoming ‘Eric Davis’. 
 

4.3.7 Strategy for Ranking Answers 
Using the ideas outlined above for refining the list of possible answers we can now 
detail the algorithm used to rank the answers for a specific question. 

1. Firstly a NIL answer is added to the list of possible answers, LA.  Currently this 
answer is given a score of zero, although through further work it may be 
possible to give this answer a score - hence introducing a cut-off point below 
which a score is so small that the chances of the answer being correct are 
minimal. 

2. We then calculate the percentage word overlap between the current document 
and the question (ignoring stopwords).  From experience we know that the 
performance of our IR step is not as good as we would like, so this calculation 
has the effect of re-ranking the documents returned by the IR system.  
Hopefully when more work has been carried out on the IR system we will be 
able to remove this step altogether. 

3. For each candidate answer: 
•  We get the score, the answer text, the rank of the document it came 

from and if it is an exact answer or not (exact answers come from 
name(eX,Y) in the semantics, other answers are snippets of text taken 
from the documents). 

•  If the overlap between the answer and the question is 100% then this 
answer is discarded. 
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•  If the score for this answer is greater than any answer we have seen thus 
far, within this document, then we store all the other answers to date, 
from this document, in a list, LO, and create a new answer list, LP, with 
just this answer.  If it is the same as the currently highest scored answer 
then we put them both in the list LP.  If it is lower than the currently 
highest scored answer we put it straight in the list, LO. 

4. We now take the list of highest ranked answers, LP, and add these to the set of 
answers taken from previous documents, LA.  This process of adding them in 
makes sure semantically similar answers are merged rather than simply added. 

5. We then take the list of all the answers from all the documents processed so far 
for this question, LO, which were not the highest ranked answers and merge 
these answers with the list we updated in step 4, LA.  The difference here is the 
answers are not added but only merged, i.e. scores are only updated if an 
answer in the list LO is semantically the same as one in the highest ranked list, 
LA, but has a higher score. 

6. Once all of the documents for a question have been processed in this way then 
the list of answers, LA, is sorted on the following attributes (i.e. if the value of 
the first attribute is the same for two answers then we sort on the second 
attribute, two answers are equally ranked if all of their attribute values are 
identical): 

•  The score (the higher the better) 
•  The question-document overlap (the higher the better) 
•  The number of other answers which were semantically the same as this 

one (the higher the better) 
•  The rank of the document from which the answer originates (the lower 

the better) 
•  If the answer is exact or not (exact is better). 

7. The number of answers requested by the user is then taken from the top of the 
LA list and returned. 

 
4.4 Boosting System Performance Using Answer Redundancy 

As has been reported by numerous research groups, including , the number 
of answer instances (within a single document or multiple documents each containing 
the answer once) directly impacts the end-to-end performance of a QA system.  This is 
partly due to the fact that the IR engine is more likely to find a relevant document, and 
also because there may be multiple different wordings of an answer within the text; 
giving the parser’s grammars a better chance of getting at least one of them to parse in 
a way that is beneficial to the rest of the system. 

[Light2001]

[Buch2001]

 
To this end it was decided to attempt to boost the knowledge available to our system, 
not as may be expected, by returning more documents at the initial IR step, but by 
using two different text collections.  The second text collection that was chosen was 
the World Wide Web.  A document collection for a single question is made up of the 
snippets displayed on the Google results page for the top ten documents returned by 
Google.  These are certainly not full documents, and are rarely full sentences but this is 
not a problem as the bottom-up chart parser we employ simply returns the best parse, it 
is not constrained to only returning a full sentence or a complex phrase.  This method 
of using just the snippets has been shown to be successful in , although they 
used the snippets from the first one thousand documents rather than the first ten. 
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The QA system is run against both text collections and then the results are merged 
together.  The end result must be an answer which references a document in the TREC 
collection so the process of merging is as follows: for each answer returned from the 
Google corpus (both the list of high scoring answers and the list of rejected answers), 
if an answer exists from a document in the TREC corpus which is semantically 
equivalent, then merge by keeping the highest score etc., but the reference to the 
TREC document. 
 
Over a sample of one hundred questions (TREC questions 1000 to 1099) the results of 
combining the collections in this way were (based on returning the top five answers for 
each question): 
 

Collection MRR Not Found (%) 
TREC 0.256 68 (68%) 
Google 0.227 68 (68%) 
Combined 0.285 65 (65%) 

Table 4-2: Results of using Google to boast system score. 

Using multiple document collections, especially the WWW, has been previously 
reported in Data-Intensive Question Answering by Brill et al .  Their 
reasoning behind using the web is the same as ours; to increase the number of answer 
instances within the text available to process.  Their system differs vastly from ours, 
however, in the way in which they make use of this extra collection.  Their system 
finds the top five answers from the WWW using Google as the information retrieval 
system (the method of finding answers is immaterial for this comparison and is 
therefore not detailed here).  At this point for each of the top five answers they submit 
a query to the TREC collection (indexed using Okapi) consisting of the question words 
and the candidate answer.  The top ranked document is then returned as the supporting 
document for the answer.  The difference between this system and ours should be 
clear; Brill et al make no attempt to process the documents in the TREC collection and 
rely solely on the answers obtained from the web.  This seems inherently dangerous as 
there is no way of knowing if the top document returned from the TREC collection for 
a query and candidate answer, relates in any way to the question being asked.  
Fortunately, it appears that their system for finding answers from the web is highly 
reliable and hence the chance of one of the answers having a supporting document 
assigned to it is quite high.  At TREC 2001 the system scored an MRR of 0.347 (in 
two separate runs), which ranked them 12th and 13th out of the 66 runs submitted to the 
main task.  

[Brill2001]

 
4.5 List Questions 

List questions are inherently harder to answer than standard, single answer questions, 
mainly because the systems have to combine information from multiple sources to 
locate the required number of answers.  Also the system has to be able to extract from 
the question the number of different answers required. 
 
Our simple solution to these problems is as follows.  The system processes the 
question in the usual way producing a long list of answers (sorted in the same way as 
before).  The question is the scanned, token by token, until the first token whose part 
of speech (POS) signifies that it is a number, we then assume that this is the number of 
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answers sought, which are simply returned from the top of the answer list already 
produced. 
 
Clearly this suffers from the obvious problem that some questions may contain more 
than one number, i.e. “The United States has 2 main political parties name 1 of them.” 
 
Our system appears to have another flaw, in that the grammar used by the chart parser 
was not designed to handle questions such as “Name 20 countries that produce coffee” 
and so often fails to instantiate a qvar which means it is very unlikely the system will 
be able to generate a correct answer (as by default the qvar is associated with the first 
element in the semantics, which is usually question, due to the *question* which is 
pre-pended to every question).  To alleviate this problem, if it is known that the 
question being processed is a list question and a qvar has not been instantiated then 
the semantics are searched for the first instance of count(eY, Z) and then the qvar is 
initialised to eY (note that Z should be the number of answers we are looking for but 
this is not currently checked).  So for the example question the semantics would 
contain “countries(e2), count(e2,20)” hence “qvar(e2)” will be added to the 
semantics, successfully initialising the qvar to the correct type.  In a real system this 
would not be possible as there would be know way of knowing in advance that we 
were processing a list question, however in TREC the list track is completely separate 
to the main track so we know before the run starts that we are dealing exclusively with 
list questions. 
 

4.6 A Framework in which to Develop Grammars 
One of the main areas of the system that still requires some work is the grammar used 
in the bottom-up chart parser.  Many books try to express the English language in 
terms of grammar rules (see ,  and specifically ), it is 
however, very difficult to develop grammars, even from these guides, as a small 
change in one rule, to fix a phrase which has not parsed correctly, will often have 
many little knock-on effects in other phrases. 

[Gee1983] [Jarv1993] [Burt1997]

 
Therefore, the best way of developing grammars is to have a test framework in which 
one can quickly see all the knock-on effects of a change over numerous different 
phrases.  
 
To this end I have developed an application, using GATE 2 as the processing engine in 
the same way as the QA system, which will allow grammars to be developed and 
tested in an easy way18.  The interface to the application can be seen in . Figure 4-6
 
This framework is designed to allow the user to develop a grammar and quickly see 
the changes a new rule makes to both the generated syntax and semantics for a number 
of phrases.  To this end the syntax and semantics are presented in two different tables 
(accessed through the tabs at the bottom of the interface).  Both tables are identical in 
contents and allow the user to see; the phrase being parsed, the result of the previous 
parse, the result of the current parse, the gold standard parse (set by the user) whether 
or not the current parse is different to the previous and whether or not the previous or 
                                                 
18 The framework application can be used by members of the department by executing the script 
/share/nlp/projects/trec11/parser_test/framework/run.sh and the grammar in use can be found 
in …/parser_test/buchart/grammar. 
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current parses were identical to the specified gold standard parse.  This is a lot of 
information but it is presented to the user in a way which any changes are quickly 
visible. 
 

 
Figure 4-6: An application for assisting the development of grammars. 

 
4.7 TREC 2002 

Having made the changes outline above we took part in TREC 2002 submitting a total 
of five runs, three in the main track and two in the list sub-track.  The different runs 
were as follows: 

•  sheft11mo3 – This main run used only passages of up to three paragraphs 
retrieved from the AQUAINT collection using Okapi. 

•  sheft11mog3 – This main run used passages of up to three paragraphs 
retrieved from the AQUAINT collection using Okapi, and also the top ten 
snippets returned by Google for the question. 

•  sheft11mog1 – This main run was identical to sheft11mog3 apart from the 
maximum passage size was limited to only one paragraph. 

•  sheft11lo – This list run used the same settings as sheft11mo3. 
•  sheft11log – This list run used the same settings as sheft11mog3. 

 
Once the runs had been submitted to TREC for evaluation I started to carry out some 
simply evaluation and failure analysis to see roughly how we had fared over the 500 
questions. 
 

4.7.1 Broken Questions 
A Broken Questions is one that causes the system to fail for some reason.  There were 
a number of different reasons that caused questions to be classified as broken during 
TREC 2002: 

1. Chart Parser Problems – This problem occurred only if a document was very 
long or if it had a very odd structure, the problem being that the question never 
completed processing (one of the questions was stopped after it had been 
processing the same document for 68 hours).  The majority of documents that 
caused this problem were lists of football matches (i.e. each line was ‘CLUB vs
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CLUB’) and no sentence breaks were found in the document.  This meant the 
entire document, with its odd structure, was treated as a single sentence.  As yet 
no attempt has been made to fix this issue, although it is likely that the easiest 
option would be to modify the sentence splitter to introduce more sentence 
breaks in this type of document. 

2. WordNet Access Problems – The code used to access WordNet, works by 
carrying out numerous binary searches over the index and data files to locate 
the required information.  This is much faster than having to compile and load 
the entire WordNet database into Prolog for each document.  When accessing 
the database, however, the index and data files were being repeatedly opened 
and closed; unfortunately the closing of the files does not appear to release the 
operating system file handles.  This meant that for large documents, which 
necessitated a vast number of WordNet look-ups, the operating system would 
refuse to allow one of the files to be opened again which meant that the 
discourse interpreter would fail, losing all possible answers contained within 
the document.  This problem has been fixed by simply opening each file once 
(the first time it is accessed) and then seeking to the beginning of the file on 
future occasions.  Unfortunately this does have the unfortunate side effect of 
slightly slowing down the processing of each document. 

 
4.7.2 Other Bugs in the System 

So far a few small issues have been identified with the system, which may have 
affected the performance of the system over the TREC 2002 questions.  Some of these 
were covered in the previous section but those that did not cause the system to fail are 
documented here. 

1. Case Sensitivity – The grammar rules are case sensitive but this is usually not 
an issue as the attribute of a word, which is usually used, is referred to as the 
m_root, which stores the morphological root of the word as calculated by the 
Tagged Morph module.  This attribute should always be stored in the lower 
case form and this usually is what happens.  Unfortunately a bug in the new 
Tagged Morph wrapper meant that words for which a root is not known 
(usually because the word is already the root) is stored in the same case as it 
appears in the text.  This caused a serious problem with the list questions as 
most of them start “Name…” and Name is already the root of the word and so 
was placed into the chart parser with a capital letter so the question rules 
referred to name and they did not match against the m_root of Name, hence a 
lot of the list questions were not correctly interpreted leading to worse results 
than should have been obtained. 

 
4.7.3 Answer Ranking 

A quick look at the submission files for the main task shows one thing quite clearly.  
Although the system is relatively good at answering questions the algorithm for 
ranking the answers to multiple questions is most certainly lacking.  As was explained 
in detail in section 4.3.7 the ranking algorithm uses each attribute of an answer in a set 
sequence in order to rank the answers for a question and in the same way to rank 
answers for multiple questions.  The problem which arises is as follows: a question 
may be incorrectly answered with an answer which scores very highly for some reason 
but is only seen once and a another question could be answered correctly by a low 
scoring answer which we see multiple times.  For example the two questions “What is 
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the appropriate gift for a 10th anniversary?” and “Who is Tom Cruise married to?” 
(1608 and 1395 from the TREC 2002 set) have the following entries in the 
sheft11mog1 submission file (the format is explained in section 2.4.1). 
 

1608 sheft11mog1 XIE19961211.0078 Zhebung Temple Celebrates 1st

1608 sheft11mog1 0.8616071428571429 100.0 3 1.0 true

…

1395 sheft11mog1 APW19990612.0066 Nicole Kidman

1395 sheft11mog1 0.35714285714285715 100.0 54 1.0 true

 
Clearly the answer to question 1608 is wrong, we do not even have to look at the 
supporting document to know this, however it is ranked sixth in the submission file 
because of its very high score (0.861607) even though it is only seen 3 times in all the 
documents processed.  On the other hand the answer to question 1395 is right (or at 
least it was when the supporting document was written, see section 3.4.2 for a 
discussion of temporal questions) but it is ranked four hundred and twelfth in the 
answer file due to its relatively low score (0.357143) even though the answer is seen 
54 times.  Clearly this answer should be ranked a lot higher in the submission file.  
What may not be instantly obvious is if this problem occurs when ranking the answers 
to multiple questions surely it will also occur when ranking the multiple answers to a 
single question.  A brief experiment was carried out over 100 of the TREC 2001 
question (Q1000 to Q1099) to see if changing the ranking algorithm to use the score 
multiplied by the number of occurrences would improve the performance within a 
single question.  The results are shown in Table 4-3. 
 

System MRR Not Found (%) 
Original Ranking Algorithm 0.288 61 (61%) 
Score * Number of Occurrences 0.343 59 (59%) 
Table 4-3: Results of combining score and number of occurrences. 

Although the difference is not vast it should be clear that it is still a significant 
improvement over simply using the score as the main ranking attribute.  More work 
needs to be carried out to see if this naïve approach of simply multiplying the score by 
the number of occurrences is the best method of ranking answers or whether there is a 
better alternative. 
 

4.8 Question Answering over the World Wide Web 
The original idea for adapting our TREC 9 QA system to use the WWW as its 
document collection was outlined in .  Unfortunately, this project was never 
successfully completed - the web front end and the QA system were never integrated. 

[Bamf2001]

 
More recently, before the QA system was moved to GATE 2, the project was restarted 
using the original specification.  This system worked by getting Google to return the 
top 100 related sites using the full question text as the search query.  The top n 
documents (where n is between 1 and 10 and can be specified by the user) which 
Google lists as being less than 6K in size were downloaded to produce the document 
collection for the question.  The size restriction was an attempt to allow the processing 
of the question to be completed within a reasonable amount of time.  The answers 
produced were then formatted for display in the user’s browser with links to the 
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documents from which they were taken19.  Unfortunately the system is restricted in 
numerous ways, especially the restriction to small documents and the instability of the 
old GATE system.  As the GATE 2 framework is more reliable, development of this 
specific interface has been halted. 
 
An improved WWW QA system using GATE 2 has been developed which takes 
advantage of the Web APIs, which Google has made available for applications to 
access the search engine using SOAP20.  The system uses the top 10 snippets returned 
by Google, for the question words, to build the document collection over which the 
question answering system can then run.  Although the system only uses the top 10 
snippets, which rarely consist of full sentences the accuracy of the system is 
comparable to the system running on the top 20 relevant documents from the TREC 
collection.  The main reason for limiting the number of snippets to 10 is to allow the 
system to process a question in a relatively short period of time.  If time was not an 
issue then the system would have been designed to use the top 100 or even top 1000 
snippets as other groups have done. 
 

 
Figure 4-7:  The interface to our new WWW QA system. 

 
At the moment, although the application is functional, there is still work to be done to 
produce a user-friendly system21.  It has been suggested that this system may in fact be 
integrated with another project to allow spoken questions to be answered over the 
WWW.  
 

4.8.1 Comparison to Other WWW QA Systems 
Probably the best-known question answering system that works over the WWW is Ask 
Jeeves22.  Little information is available on exactly how Ask Jeeves works,   
contains what little they are willing to admit.  The claims are that Ask Jeeves carries 
out syntactic and semantic processing of the questions which is then used by a 
template response system to provide a list of more detailed questions.  When a user 
selects one of the more detailed questions a proprietary knowledge base, containing 

[Ask2002]

                                                 
19 The online QA system can be found at http://raki.dcs.shef.ac.uk.  Access is restricted to machines 
within the University of Sheffield’s Department of Computer Science. 
20 The Google Web APIs are available for download from http://www.google.com/apis/. 
21 The new web QA system can be used by members of the department by executing the script 
/share/nlp/projects/trec11/AskGoogle/run.sh although each user will require a Google Web API 
licence key which can be freely obtained from http://wwww.google.com/apis/. 
22 Ask Jeeves can be found at http://www.askjeeves.com. 
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answers to more than seven million questions, is used to provide the answers to the 
user.  Clearly Ask Jeeves differs from our question answering systems in many ways, 
but basically the fact that we process each question from the same initial state whereas 
Ask Jeeves uses its knowledge base (which is at least partially hand constructed) to 
answer questions and updates the knowledge base when asked a question which it has 
not encountered before. 
  
One WWW question answering system, SHAPAQA23 presented in , is much 
more like our system then Ask Jeeves.  The main difference between this system and 
ours is that they have bypassed the problem of having to understand the question.  To 
ask a question using SHAPAQA, a user simply fills in a web form similar to that shown 
in Figure 4-8, which asks them for certain phrases. 

[Buch2001]

[Kwok2001]

 

Who/What
did
whom/what
when
where
why
how
about/as/...
with/without
whom/what

invented

the telephone

?

 
Figure 4-8: SHAPAQA User Interface. 

This interface works by the user entering the parts of the question they know (the given 
phrases) and placing a question mark against the phrase they are looking for.  As can 
be seen from the example given above, which shows how to fill in the form for the 
question “When was the telephone invented?”.  The rest of the QA system is then 
similar to ours with syntactic and semantic processing of the documents taking place in 
order to attempt to answer the question. 
 
Another online question answering system is MULDER24 developed by Kwok et al., 
which they claim to be the first general-purpose, fully-automated question-answering 
system available on the web (see ).  This system works in a very similar way 
to ours; the user enters a question in English and then the answers are displayed in the 
browser with links to the relevant documents.  The only real difference is that with 
each answer the system also gives a measure of how confident it is in the answer, a 
feature which it would be nice to incorporate in our system.  Their major claim (other 
than being first) is that using just Google requires a lot more user effort to achieve the 
same level of recall as MULDER. 
 
 

                                                 
23 SHAPAQA can be found http://ilk.kub.nl/~antalb/abvi/week3/shapaqa.html. 
24 MULDER can be found on the web at http://mulder.cx. 
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5 Issues and Challenges Facing Question Answering 
There are many challenges which modern question answering research must address, 
this section outlines some of the more important issues and asks where we can go in 
search of solutions. 
 

5.1 How Important is Reliable Information Retrieval? 
Most modern QA systems consist of two almost separate stages, an initial IR stage and 
then a further stage (be that semantic processing or pattern matching) that extracts the 
answers from those documents/passages deemed relevant by the IR engine.  This has a 
serious implication: if the IR stage does not return relevant documents then no amount 
of processing will result in a correct answer being extracted. 
 
In an experiment using the 432 question from TREC 2001 for which at least one 
system found a correct (non NIL) answer our IR stage retrieved at least one relevant 
document for 347 of the questions or in other words we found a relevant document for 
80.32% of the questions.  On first sight these figures seems quite reassuring, that is 
until you realise that we failed to find a relevant document for roughly 20% of the 
questions, i.e. no matter what we do we are limited to a maximum MRR of 0.8.  Yes, 
an MRR of 0.8 is way above the current ability of the system (or most systems come to 
think about it), but it is still a limiting factor and will clearly prevent any system using 
this as its basis from ever answering every question presented to it, for which the text 
collection contains an answer. 
 
An important question involving information retrieval is the level (i.e. the amount of 
text returned) at which retrieval should take place.  The reason for needing IR is that 
no NLP based system could ever hope to process an entire collection to find the 
answer to a question, so IR acts as a filter between the document collection and the QA 
system only allowing documents which are relevant to be processed.  The question, 
however, is how far we can narrow the filter: do we only allow through whole 
documents or is it better to allow through short paragraphs or even just sentences? 
 
One of the worries of returning short passages or sentences is anaphora resolution.  
The passage returned by the IR engine as relevant (i.e. contains most of the query 
terms) may not actually contain the answer, rather a neighbouring passage may refer, 
through words such as he, she or it, to the query terms.  In this scenario although a 
passage from a relevant document has been returned the answer is not and the chance 
of this occurring is increased the smaller the returned passage becomes.  On the other 
hand returning whole documents increases the amount of processing the NLP system 
has to perform and can introduce noise by providing more entities within the text 
which may obscure the actual answer to the question.  As an example, consider the 
question “When was Mozart born?” for which a document containing the following is 
returned by the IR engine: “Mozart was a composer of many well known pieces of 
classical music.  He was born in 1756.”.  Now it is clear that depending on the query 
words given to the IR system there is the possibility that the second sentence may not 
be returned if we limit the system to returning only a sentence, where clearly we will 
need both sentences to answer the question: the first to know we are dealing with 
Mozart and the second sentence to give us the birth date of a man (and as there is only 
one man mentioned) who must be Mozart (hence the need for the first sentence). 
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Numerous experiments were carried out on the different sizes of passage used as the 
document collection for our QA system (these experiments are documented in 

).  The main results from these experiments are detailed in Table 5-1, in 
which the best results in each column are underlined for clarity. 
[Rob2002]

[Rob2002]

 
Passage Length %ABD IR MRR Correct Answers 

(out of 100) 
TREC Score 

1 paragraph 67% 0.3354 13 0.2068 
2 paragraphs 74% 0.4096 11 0.2097 
3 paragraphs 72% 0.4025 7 0.1631 
4 paragraphs 72% 0.3925 8 0.1559 
5 paragraphs 70% 0.4203 7 0.1542 
6 paragraphs 70% 0.4249 7 0.1511 
7 paragraphs 71% 0.4566 7 0.1588 
full documents 72% 0.4800 7 0.1683 

Table 5-1: Results of IR experiments and their effects on the QA system. 

The definition of the data in each column is as follows: 
•  %ABD - the percentage of questions for which at least one relevant answer 

bearing document was found in the retrieved data. 
•  IR MRR - a mean reciprocal rank measure for the IR performance: the mean of 

the reciprocals of the rank of the first relevant answer bearing document 
retrieved by Okapi, or 0 if no such document was retrieved.  These two 
measures are computed using the relevance judgements and Perl answer 
patterns supplied by NIST. 

•  The number of correctly answered questions (out of 100), i.e. the number of 
questions for which the exact answer returned by the system matched one of 
the Perl patterns supplied for that question. 

•  The TREC-2002 style score for the run (see section 2.4.1). 
 
From these results it is unclear that there is any significant difference between using 
documents of one, two or three passages in length, although clearly returning a small 
number of passages (three or less) produces significantly better end-to-end results 
(there is a small statistical advantage to using passages of three paragraphs in length). 
 
The IR step of our system only returns the top twenty documents which match the 
query.  This is to allow the system to process the documents in a reasonable amount of 
time and because supplying the system with large amounts of text cause it to be more 
unstable (mainly through issues of memory).  This does, however, mean that some of 
the relevant documents are being disregarded before the NLP modules have a chance 
to work on them.  To find out what effect returning only twenty documents had on the 
%ABD a series of experiments were carried out which are summarised here (detailed 
results can be found in ). 
 
All 1193 questions from TRECs 9 and 10 were used to calculate the %ABD at 
numerous different cut-of points (5, 10, 30, 30, …).  Of the 1193 questions no answer 
was found for 93 of them and so the maximum %ABD value that can be obtained is 
90.02%.  The results of these experiments using documents of 1, 2 and 3 paragraphs in 
length are shown in Table 5-1, and presented graphically in Figure 5-1. 
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Doc Length %ABD at Rank 
(paragraphs) 5 10 20 30 50 100 200 400 500 

1 45.43 54.48 61.02 64.71 67.48 71.84 75.61 78.12 78.71 
2 51.47 59.26 66.05 69.15 72.59 79.04 79.04 81.89 82.48 
3 54.90 61.78 67.56 70.83 74.27 80.72 80.72 83.65 84.16 

Table 5-2: Evaluation of %ABD against document ranking. 
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Figure 5-1: Evaluation of %ABD against document ranking. 

Clearly the increase in %ABD does not start to level of towards a maximum until 100 
documents have been retrieved, which is a cause for concern as the current system 
only uses the top twenty documents.  Retrieving the top 500 documents still does not 
achieve the maximum %ABD of 90.02% suggesting that the IR engine is simply not 
able to locate some of the relevant documents. 
 
Some groups, including Harabagiu et al. , have suggested using boolean 
retrieval methods instead of ranked methods (such as the vector space model), to 
guarantee that all the question terms are present in the returned documents.  The main 
problem with boolean retrieval methods is that they do not provide a method of 
ranking the documents, hence you can not just decide which subset of those relevant 
documents you should use, unlike ranked retrieval where the approach is usually to use 
the top n relevant documents, as they should be more relevant than those below them 
in a ranked list.  The approach to this problem taken in the paper by Harabagiu et al. is 
to have an iterative boolean retrieval loop.  The question words are made into a query 
that is passed to the retrieval engine and an upper and lower bound is placed on the 
number of documents that may be returned from the retrieval step.  If more or less 
documents are retrieved then the query is modified (see  for details as to how 
the query is modified) and the retrieval step is repeated until the number of returned 
documents is within the specified bounds. 

[Hara2000]

[Mold2000]

 
Another possibility would be the combination of boolean and ranked retrieval.  This 
may improve the IR performance by allowing only documents which contain the query 
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words to be returned but at the same time applying a sorting to these documents.  It is 
envisaged that this would work as a three step process: 

1. Firstly a boolean retrieval would be carried out against the document 
collection, to retrieve just the relevant document identifiers. 

2. Next a ranked retrieval would be carried out again to retrieve just the relevant 
document identifiers. 

3. The intersection of the two sets of document identifiers is then taken as the list 
of relevant documents, keeping them in the order that they appeared in the 
ranked retrieval set. 

Numerous issues arise from this process, such as what happens when there is no 
intersection between the two lists, or when the process does not return enough 
documents.  At the moment it is unclear what the appropriate course of action should 
be in these situations  Only experimentation will enable us to decide if this method is 
anymore successful than either of the two standard methods applied independently, 
and what should be done in the situations previously mentioned. 
 

5.2 Are Natural Language Techniques Helpful? 
Certainly some natural language techniques are essential, such as part-of-speech (POS) 
tagging, whereas full parsing, to produce syntax trees and semantics, may not be as 
useful as has been previously thought. 
 
As an example consider answering all of the Who, Where and When questions from 
TREC 2001 simply by returning the most frequently occurring unique instance of the 
correct type (person, location, date) as tagged by a named entity (NE) transducer25.  
The results of using this simple approach and using our normal full NLP approach are 
detailed in , in which the best performing system, within each class of 
questions, is underlined. 

Table 5-3

Table 5-3: Comparison of TREC 2002 system and NE frequency count. 

  
Question Type System MRR Not Found (%) 
When TREC 2002 0.394 14 (53.8%) 
 Named Entity 0.396 11 (42.3%) 
Where TREC 2002 0.446 8 (30.8%) 
 Named Entity 0.571 9 (34.6%) 
Who TREC 2002 0.324 28 (59.6%) 
 Named Entity 0.298 27 (57.4%) 
Combined TREC 2002 0.375 50 (50.5%) 
 Named Entity 0.395 47 (47.5%) 

In this simple study it is clear that nothing is gained from producing a full syntactic 
and semantic representation of the question and answer bearing documents (or at least 
not from the representations generated by our system).  It is unclear how this simplistic 
approach could be extended to cope with other types of questions such as “What is…” 
as there is no single word that allows one to decide on the type of answer.  If, however, 
there was a simple way to extend the system to cover all question types and the 
performance was comparable with that given in the above table then clearly the NLP 

                                                 
25 Using the ANNIE NE Transducer included within the standard GATE 2 distribution. 
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processing used in our current system is completely redundant, as the named entity 
tagging is already taking place as part of that processing 
  

5.3 Does Machine Learning Have a Role to Play? 
Machine Learning (ML) techniques definitely have a role to play in modern question 
answering systems, be this the main method of answering questions or simply within 
an algorithm for sorting answers found using a NLP approach. 
 
The best performing system at TREC 2001 relied solely on machine learning and 
contained no advanced NLP techniques (the only thing they used was tokenising and 
sentence splitting), see  for details.  This surprised a lot of researchers as they 
had assumed that more involved processing of documents is required to be able to 
answer questions as reliably as this system appeared to do.  This surprise was matched 
with interest and the system has been re-implemented by at least one group . 

[Soub2001]

[Soub2001]

[Ravi2002]

[Ravi2002]

[McMan2002]

 
Both these systems used a large corpus of questions and answers along with a text 
collection (usually the web) to generate a vast number of surface matching patterns.  
For example questions such as “When was Mozart born?” produce a list of patterns 
such as the following: 

<NAME>( <ANSWER> - )

<NAME> was born on <ANSWER> ,

<NAME> was born in <ANSWER>

<NAME> was born <ANSWER>

<ANSWER> <NAME> was born

- <NAME> ( <ANSWER>

<NAME> ( <ANSWER> -

<NAME> ( <ANSWER> ) ,

born in <ANSWER> , <NAME>

of <NAME> ( <ANSWER>

These patterns were obtained by taking the overlap between sentences known to 
contain the answer and query term (in this case Mozart).  The patterns are then ranked 
by using the patterns to answer multiple question of the same type and seeing how 
accurate the patterns are, i.e. when a pattern is matched by the text does it match 
against a piece of text containing the correct answer or not.  However simple this 
system appears it seems to work exceptionally well with the system from InsightSoft 
(see ) achieving an MRR score at TREC 2001 of 0.676, with the re-
implemented system by Ravichandran and Hovy (see ) claming similar 
results with an outstanding MRR of 0.86 on questions having a location as the answer. 
 

5.4 Do Question Answering Systems Require World Knowledge 
As with any AI task the question of whether or not world knowledge is required to 
answer questions needs to be addressed.  Certainly many systems perform extremely 
well using very simple pattern matching techniques (see [Soub2001] and [Ravi2002]), but 
this could simply be a result of the class of questions asked at TREC (see section 2.2 
for a discussion of question classes). 
 
In [Deglin1996] Deglin and Kinsbourne discuss a number of experiments on patients 
undergoing electroconvulsive therapy (ECT) and specifically their ability to solve 
syllogisms (for a lay man’s approach to this paper see chapter 8 of ).  In 
the experiments most of the patients could correctly answer the syllogisms before 
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treatment but their ability to answer them after therapy depended on which side of the 
brain had been treated (i.e. suppressed due to the ECT).  Consider the following 
syllogism: 

Every state has a flag.  Zambia is a state.  Does Zambia have a flag? 
It is a straightforward question with no hidden trick and I am sure you all know that 
the answer is “Yes, Zambia does have a flag”.  Those patients who had received a 
right-sided shock (leaving the left half of the brain working) solved the problem in a 
very mechanical fashion such as: 

It is written here that each state has a flag, and that Zambia is a state, 
therefore Zambia has a flag. 

In other words they were strictly logical in their answers, whereas patients having 
received a left sided shock (leaving the right half of the brain working) gave answers 
similar to: 

I’ve never been to Zambia and know nothing about its flag. 
Clearly these patients were relying total on their world knowledge to answer the 
question and not approaching the question logically.  This is very similar to the surface 
matching patterns used in  and , they contain no world knowledge 
but are able to extract an answer purely from the text they are given.  As we have 
already seen these systems perform exceptionally well in evaluations such as TREC, 
where the document collection is held as the universal truth, i.e. if a document contains 
an error which a system relies on to answer a question then the system is not penalised 
as the document is taken to be true even if it is not.  As an example question 1396 
(from TREC 2002) is “What is the name of the volcano that destroyed the ancient city 
of Pompeii?” which most people know to be Vesuvius.  At least one document, 
however, misspells the volcano’s name as Vesuve, and this is the answer returned by 
our system.  Based on the TREC assumption that the document collection is always 
correct then this is a valid answer, even though it is clearly a misspelling of the 
mountain involved which with foreign names/places may be important and may not be 
obvious to the user of the system. 

[Soub2001] [Ravi2002]

 
When confronted with a syllogism which contained a false premise such as: 

“All monkeys climb trees.  The porcupine is a monkey.  Does the porcupine 
climb trees?” 

the patients reacted very differently.  Those who had received a right-sided shock (and 
were able to correctly answer the previous question) used the same approach to answer 
this question, namely: 

Since the porcupine is a monkey it climbs trees. 
Even when one of the experimenters pointed out that “… you do know that a 
porcupine is not a monkey?” the patients would reply along the lines of “It is written 
on the card.” showing that they were solving the problem purely through the 
information they had been given.  Patients who had been given a left sided shock (and 
had failed to correctly answer the previous question) usually responded with great 
indignation: 

“Porcupine?  How can it climb trees?  It’s not a monkey it’s prickly like a 
hedgehog.  Its wrong here!” 

showing that again they were using their world knowledge this time being able to 
correctly point out the false hood in the question. 
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The conclusion of this experiment is that the brain contains not only the capacity for 
logical reasoning but also world knowledge, neither of these on their own is enough to 
correctly answer questions but combined they make a comprehensive system capable 
of answering different types of questions and ignoring incorrect information.  The 
relevance of this experiment to question answering is that no matter how good systems 
are if they are relying solely on the documents from which they extract their answers 
then there is always a possibility of the answers being wrong due to a falsehood in the 
text.  Only world knowledge will overcome this difficulty, although how it should be 
integrated into the current style of good performing QA systems is not clear. 
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6 Future Work 
Numerous groups have recently reported great success in question answering using 
only simple surface matching patterns over a document collection.  Most researchers 
have been stunned by the apparent success of these systems, and in one case even 
implemented the system themselves to prove that the process did function as well as 
had been reported.  Clearly if these systems are performing better, or at least as well 
as, conventional NLP systems they should be studied in detail to see how the 
techniques can be improved or incorporated into those systems which are more NLP 
based. 
 
One thing that is instantly clear is their simplicity and (usually) a complete lack of any 
advanced NLP techniques.  I believe this is an area which needs more research.  
Consider for example what the benefits of adding techniques such as named entity 
tagging and anaphora resolution to these systems may be. 
 
Named entity tagging could be used to restrict the type of answer allowed.  For 
example, asking a question starting with the word When is clearly requesting some 
form of date or time, so combining the surface matching patterns with a named entity 
tagger to ascertain that the answer found (by the pattern) is indeed a date would surely 
remove some of the erroneous answers currently proposed by these systems. 
 
It should be clear that these surface matching patterns are limited to only matching 
against text that has been seen during the training phase.  This can be a problem, but 
one which it may be possible to reduce through the use of anaphora resolution.  As an 
example one of the patterns usually mentioned for questions of the form “When was X 
born?” is: 

<NAME> ( <ANSWER> -

where the pattern will match against text such as: 
“Mark Greenwood (1979 - ) Currently a student at the University of Sheffield”. 

Clearly in this instance the proposed patterns will work without any problems and 
correctly extract the answer of 1979.  A pattern such as 

<NAME> was born in <ANSWER>

can cause problems, however.  Clearly it will match against texts such as: 
“Mark Greenwood was born in 1979” 

but it would not be able to extract the correct answer from the text: 
“Mark Greenwood is currently a student at the University of Sheffield.  He was 
born in 1979”. 

If, however, the text could be expanded through anaphora resolution of the pronouns in 
the text to give 

“Mark Greenwood is currently a student at the University of Sheffield.  Mark 
Greenwood was born in 1979” 

then the surface-matching pattern would be able to extract the correct answer, even 
though to a human the text no longer flows as well as the unexpanded version.  The 
same argument can also be applied to matching name variations across a text.  For 
example if the text used in the previous example was replaced by the following slight 
variation: 
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“Mark Greenwood is currently a student at the University of Sheffield.  Mark 
was born in 1979”. 

and the question text had been “When was Mark Greenwood born?” then the pattern 
still would not match against the text, however, a name matching algorithm would 
enable Mark Greenwood and Mark to be related and hence allow the text to be 
expanded in the same way as for the anaphora resolution. 
 
Another possible expansion of the patterns would involve incorporating the inference 
rules as outlined in section 3.5.1.  In this extension a pattern would include a place 
holder for text based on inference rules rather than just text taken straight from a 
document.  For example the question “Who wrote Macbeth?” may generate, in the 
normal implementation, a pattern such as: 

<ANSWER> wrote <NAME> 
which would clearly match against the text 

“Shakespeare wrote Macbeth” 
but would not match against 

“Shakespeare was the author of Macbeth” 
as this would involve a second pattern, which may not have been generated if this form 
of construction had not been previously seen.  The inference extraction technique 
would, however, be able to generate the inference: 

“X wrote Y” implies “X was the author of Y” 
From the combination of inference rules and patterns could emerge a pattern of the 
form: 

<ANSWER> <WROTE INFERENCE> <NAME>

where <WROTE INFERENCE> would match against “wrote”, “was the author of” or any 
other text which was in the same set of inferences.  This would now allow the system 
to process both “Shakespeare wrote Macbeth” and “Shakespeare was the author of 
Macbeth” and extract Shakespeare as the correct answer.  The downside to this (and 
any other) method of expanding the patterns is the increase in complexity and the 
possible loss of the patterns being easy to read and understand. 
 
One thing these new breed of QA systems have in common is the use of some form of 
question classification, i.e. each question is answered using a specific set of patterns 
based on its type and the type of answer sought.  These topologies are usually hand 
coded, although I believe that it may be possible to grow them from the questions and 
pattern sets. 
 
Currently for each question type many questions are processed to produce the set of 
patterns for the question type.  A possible alternative is to take each question and 
produce a set of patterns independently of all other questions.  The questions can then 
be grouped into categories based on the overlap between the sets of patterns (i.e. if the 
pattern sets for two questions overlap by 100% then clearly they should be grouped 
together, although it would make sense to suggest that there is some level other than 
100% at which two questions should be grouped together).  This has not been 
investigated as part of this report and although the idea seems plausible problems such 
as stopping conditions etc would need to be investigated in detail.  
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The aim of my future study will be to determine the necessity and benefit of natural 
language techniques to the field of question answering.  This will take the form of 
building a simple surface pattern matching system (similar to those in  and 

) which will hopefully incorporate an automatically generated question 
topology.  The intention is to build the system as a set of GATE modules which should 
allow the system to be altered and expanded with relative by the addition of extra 
modules.  These extra modules are likely to take the form of NLP techniques (such as 
named entity tagging and anaphora resolution).  These modules can be evaluated as to 
their own independent performance (i.e. how well they do on their own task, for 
example NE tagging) and as to their impact on the performance of the end-to-end 
question answering process.  Clearly with multiple modules comes the ability to 
evaluate the effectiveness of combining multiple techniques. 

[Soub2001]
[Ravi2002]

 
The result of this work will hopefully be not only an effective question answering 
system, but empirical details of how useful, effective or necessary numerous NLP 
techniques are to question answering.  This may lead to some techniques being 
removed from consideration as useful, while promoting research into other techniques 
which show promise. 
 
An extra benefit of this research should be a resource of questions and answer 
documents which will been tagged with information such as named entities and 
anaphora attachments etc. which will have been used to evaluate modules in this 
research but which could be used by other groups either as a resource for evaluating 
their own systems or as a resource for machine learning techniques. 
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