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Abstract

Recent work within Categorial Grammar has seen the development of a number of multimodal
systems, where different families of connectives coexist within a single categorial logic. Such systems
can be viewed as making available differing modes of linguistic description within a single grammatical
formalism. This paper addresses proposals for constructing multimodal systems due to Hepple [7] and
Moortgat & Oehrle [15], which are in many ways similar, but which make apparently contradictory
claims concerning the appropriate interrelation of different modes of description, which lead in turn
to differences for the kind of linguistic accounts that the two approaches make possible. Although
we focus mostly on the view taken in Hepple [7], and its inspiration by earlier work involving
structural modalities, the paper proceeds to a discussion of whether the two approaches are genuinely
incompatible in the way that they at first appear.

1 Introduction

Categorial formalisms consist of logics, and different categorial formalisms use logics
that differ in their limitations on the use of ‘linguistic resources’ in deduction, and
their consequent sensitivity to the specific structuring of those resources. Compari-
son of logics in such terms (i.e. their resource usage characteristics) gives rise to the
‘substructural hierarchy’ of logics. Most categorial work has involved systems which
are set at a single level of the substructural hierarchy, i.e. have just a single mode of
resource usage. Such systems have turned out to be of restricted value for linguistic
analysis, because of the complexities of resource usage to be found within any indi-
vidual language, and, more generally, the differences of resource usage found between
languages. Such limitations suggest the need for systems that allow exploitation of
the resource usage characteristics of more than one substructural level.

One approach to realising this goal has employed structural modalities, which are
unary operators that allow controlled access to the (more liberal) resource usage
characteristics of higher substructural levels. In constructing a linguistic system under
this approach, some specific resource logic must first be chosen as ‘basic’ for stating
the grammar, thereby setting the default characteristics of resource sensitivity. Then,
structural modalities are used to allow controlled access to different modes of resource
usage. Various problems — theoretical, computational and practical — arise for the use
of such operators. One practical consideration is that the need to have a single
‘base’ logic, which sets the default resource characteristics, presents problems for
the development of a truly general cross-linguistic framework that is applicable to
highly dissimilar languages. Furthermore, the complexity of syntactic analyses that
require extensive use of structural modalities tends to encourage the selection of base
logics that are stronger than might otherwise be chosen, with a concomitant loss of
potentially useful resource sensitivity.

More recent work has seen the proposal of approaches which combine together
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substructural logics into a single multimodal system, i.e. where different families of
connectives coexist within a single combined logic. Sublogics combined in this way
may be familiar categorial systems (e.g. associative plus non-associative Lambek cal-
culus), or may include families of connectives that are tailored to specific linguistic
purposes, e.g. discontinuity phenomena.!

In this paper, I will be predominantly concerned with the proposals of Hepple [7]
and Moortgat & Oehrle [15], who describe general approaches for combining different
substructural subsystems into multimodal systems which allow type changes that
exhibit ‘movement between levels’ (i.e. where an operator of one substructural level
may be ‘rewritten’ to a corresponding one from another level). Although developed
independently, the two sources propose similar methods for formulating multimodal
logics. However, they make very different claims as to what constitute the appropriate
relations between substructural levels, reflecting different intuitions as to the meanings
of such sublogics within an overall multimodal system. This ‘difference of opinion’
between the two sources in turn leads to some differences for how multimodal systems
may be used as linguistic formalisms, and for the kind of linguistic accounts they make
possible.

In what follows, I will present the view of multimodal linkage taken in Hepple [7] —
what I will call, for the convenience of having a name, the ‘hybrid view’. This view is
inspired by the earlier work using structural modalities, and its goal is to eliminate the
need for structural modalities, whilst maintaining the descriptive power they provide.
After introducing structural modalities, and the view of linkage that they inspire, I
will go on to discuss some issues that arise for the use of a hybrid-style system as a
linguistic formalism, and also the ‘general linguistic approach’ that the hybrid view
tends to foster. Finally, I will directly address the question of which, if either, view
of how linkages should be arranged is correct.

2 Categorial logics and substructural hierarchy

Categorial logics typically provide at least three connectives: a ‘product’ connective
(corresponding to some linguistic structure-building operation), plus two implicational
connectives (the product’s left and right ‘residuals’) notated as = and < for a product
o. Such a group of connectives minimally requires the sequent rules (2.1) and (2.2).2

The inclusion or otherwise of structural rules such as those in (2.3) will determine
the characteristics of resource usage that the resulting system displays. With no
structural rules, we have a version of the non-associative Lambek calculus (NL: [11]),
where deduction is sensitive to the order and bracketing of assumptions, each of which
must be used precisely once in a deduction. Adding [A] undermines sensitivity to
specific bracketing, giving a version of the associative Lambek calculus (L: [10]). If [P]
is also added, we have the system LP [2], which is closely akin to a fragment of linear
logic [6]. The remaining logical possibility, having Permutation, but not association,
is denoted NLP. For convenience, I will adopt distinct notations for the connectives
of three of these systems, as follows: L:{e \,/}, NL:{®§,4}, LP:{®,—0,0—}.

1Such discontinuity connectives are proposed in [12]. Regarding the formalisation and use of multimodal systems
including such connectives, see [8], [9], [13], [18], [19].

2A sequent I' = A indicates that the succedent formula A can be derived from the structured configuration (i.e.
non-empty bracketed sequence) of antecedent formulas I', where (-,-)° is the structural connective corresponding to
the connective 0. ['[®'] represents the result of replacing the subconfiguration ® with &' in I'[®].



3. MULTIMODAL LOGICS 345

(2.1) A=A (id) =B TIB|=A .
re] = A feut]
(2.2) (B,T)° = A _ $=C TB]=>A_
———[>R] S —L
I' > B—A I[(®, C-»B)°] = A
(T',B)° = A ®=>C TIB]=A
————[<R] - +L
I' > A<B [[(B+C, ®)°] = A
'=A &=8B (B, C)°] = A
. [oR] 0]
(T, ®)° = AoB I[BoC] = A
(2.3) (B, (C,D)°)°] = A I'[(B, C)°] =
[A] o Al
I[((B, C)°, D)°] = A T[(C, B)°] =

There are further possible structural rules, notably Weakening and Contraction,
which allow, respectively, that any resource may be ignored or may be multiply used.
These rules, together with those above, allow yet further logics. Comparison of logics
in terms of the freedom they allow in resource usage, where additional structural rules
means greater resource freedom, gives rise to the ‘substructural hierarchy of logics’.

3 Multimodal logics

The possibility arises to combine more than one substructural logic into a mixed or
multimodal system. For example, we might have a system which includes connectives
for more than one of the above systems, and allow the logical rules (2.2) to operate
schematically with respect to them. Schematic structural rules, conditioned to apply
in only appropriate circumstances, would also be required, as (e.g.) in (3.1).

(M)mﬁmjmﬂiAA{°“ﬁ@ ﬂ&ﬁﬂiAm %em@}
m@&ﬁMﬂéA] I[(C,B)°] = A

As things stand, the different levels within such a system would coezist, but would
not, in any interesting way, be interrelated. In particular, the logic displays, in its
derivability behaviour, no interesting relationships between the connectives of dif-
ferent levels, i.e. relationships revealing connections between the ‘meaning’ of these
operators, as might be shown by a transition such as (e.g.) Ao;B = Ao,;B. Such
‘linkage’ between levels can be effected by including a ‘quasi-structural rule’ such as
(3.2), which makes possible the derivation (3.3) of Ao;B = Ao;B. It is interesting to
observe that the same linkage rule yields the converse direction of rewriting between
the implicational connectives of the two subsystems, i.e. alongside Ao;B = Ao;B, we
have also A<ZB = A& B, as derived in (3.4).

The rule (3.2) is what Moortgat & Oehrle [15] term an ‘inclusion’ rule. A fur-
ther possibility for rules relating different substructural levels is what Moortgat &
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Oehrle [15] call ‘interaction’ rules, which are structural rules in which the structural
connectives (i.e. antecedent brackets) of more than one level appear, as (e.g.) in (3.5).

(3.2) T[(B, C)%] = A (3.3) B=B A=A
o [<] = [o;R]
T'[(B, C)%] = A (A, B)% = Ao,;B
- <
34 A=A B=B, W B)" = A8 1)
5 : [«-L] Ao;B = Ao;B
(A£B, B)* = A
(AZB, By = A [f}R (35)  T((B, (C,D)*)>] = A
ABo Al LN D(B, O, D)*] = A

We have now seen all the components that are required for stating a multimodal
logic. Approaches to constructing multimodal or ‘hybrid’ categorial logics along the
lines just sketched have been been independently developed and proposed by Hepple
[7] and Moortgat & Oehrle [15, 16]. Although these two sources disagree systemati-
cally on some matters concerning the relationships between levels, the details of how
they formulate such mixed systems (or more precisely, provide sequent formulations)
differ in only relatively minor regards.

Multimodal logics can be given an algebraic semantics whose components link quite
intuitively with the components of the logic. Moortgat & Oehrle [16] adapt a method
used with unimodal categorial logics, employing ternary Kripke-style relational struc-
tures. In a frame (W, R?), the ternary relation R may be seen as corresponding to
some mode of linguistic composition (where z in Rzxy arises by appropriate compo-
sition of z and y) — the mode of composition which, intuitively, underlies the logic’s
product and residuals. In the multimodal case, there are multiple such relations (one
for each group of connectives). A relation between levels in a mixed logic, as re-
vealed by a theorem such as Ao;B = Ao;B, corresponds in the semantics to a linkage
between the relevant relations R;, R;, such as (Vz,y,2 € W).R;zay — R;zzy.3

Despite the considerable similarity of the suggestions of [7] and [15] on how a mul-
timodal system may be formulated, they disagree quite strikingly on what transitions
between levels should be allowed. In particular, the two approaches take systemati-
cally contrary positions on the ‘direction of movement’ between levels. The view taken
by Hepple [7] — what I have called the ‘hybrid view’ — is inspired by ideas involving
structural modalities and embedding translations, which I will present next.

4 Structural modalities and embedding translations

Structural modalities are unary modal operators that may be used to allow controlled
involvement of structural rules which are otherwise unavailable in a system, and
thereby controlled access to the resource usage characteristics of stronger logics than
that which, in the given case, is being used. The original structural modalities are the
‘exponentials’ | and ? of linear logic [6], which give controlled reintroduction of the
structural rules Contraction and Weakening (which account for the resource usage

3Hence the use of the term ‘inclusion’. Hepple [7] provides a semantics for multimodal logics that is adapted

from the less general groupoid approach to interpreting categorial logics.
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differences between linear logic and intuitionistic logic). Morrill et al. [17] (see also
[1]) suggest a number of structural modalities having possible linguistic uses.

We shall consider a simple example of a structural modality, and its use to give
controlled involvement of a structural rule. In a sequent formulation, a structural
modality will be associated with one or more modified structural rules which differ
from their more general counterparts in requiring that one or more of the formulas
directly affected by the rule’s use are marked with a given modality. For example,
in a system where permutation is not freely available, restricted involvement of [P]
might be allowed via a unary operator A, having the sequent rules (4.1) (where AT
indicates a configuration in which all types have the form AX):

(4.1) I'[(AB, C)°] = A Al = A I'B]= A
AP —[AR Ee——
T[(C, AB)°] = A AT = AA I'[AB] = A

The restricted permutation rule [AP] allows any formula of the form AX to permute
freely, i.e. undermining linear order for just this assumption. The other rules are as
for necessity in the modal logic S4. The left rule [AL] plays a key role, allowing a A
modality to be discarded (e.g. we have the theorem AX = X), so that a permutable
assumption can be transformed to a non-modal one having a fixed linear position.
Such permutative modalities have been used in treatments of extraction, in particular
being needed to allow for cases where moved elements do not originate in peripheral
position within the domains from which they are extracted. Other such modalities can
be used to give controlled reintroduction of other structural rules, e.g. an associativity
modality could be used within a non-associative system, and so on.

Where a weaker logic is augmented with an appropriate structural modality, the
resulting system is in general at least as strong as the relevant stronger logic (i.e.
that stronger logic which differs from the weaker one only in its free availability of
the structural rule that is associated with the structural modality). In particular, it
is possible to recreate the derivability characteristics of the stronger logic within the
weaker one by the use of a ‘global modalisation strategy’ that has the effect of making
the relevant structural rule available wherever needed for that derivation. Such a
‘global modalisation strategy’ is stated as an embedding translation. For example, the
translation (4.2) embeds a fragment of LP within L, so that I' = A is a theorem of
the former iff A|l'| = |A| is a theorem of the latter (see [5]). Another example is
that intuitionistic logic can be embedded within (intuitionistic) linear logic, via an
embedding translation using the exponentials ! and ?.

(4.2) |A| = A (where A is atomic)
|A@B] = (L|A]) « (A[B])
B—oA) = (A[B])\ |A|
|A=B)| = |A[/ (A[B])

5 Relations between substructural levels

Consider again the embedding translation (4.2). The embedding shows that LP can
be ‘represented’ within the system ‘L plus permutation modality’ (‘LA’). Of course,
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it is trivially true that L can also be ‘represented’ within LA, and so LA provides
a realm in which we can, in a sense, observe coexistence of L and LP (or at least of
‘images’ of these systems), and observe how the two systems interrelate.

Consider, for example, the LP formula X®Y and its translation (AX)e(AY) under
(4.2) (or strictly its translation assuming X,Y are atomic). The modalities indicate
that the XY subformulas may appear in either order, i.e. we observe the interderiv-
ability (AX)e(AY)<(AY)e(AX), akin to X@Y < Y®X for the original formula.
The A modalities may be ‘discarded’, e.g. we have (AX)e(AY) = XeY (and also
(AX)e(AY) = YeX), a step corresponding to selection of, or commitment to, one of
the two permitted orders. This latter theorem suggests how @ and e might be related
in a multimodal logic, i.e. so that X®Y = XeY is a theorem, as if XQY is in some
sense ‘implicitly modalised’ relative to XeY.

Consider next the LP implicational Xo—Y, and its translation X/(AY). This for-
mula exhibits the interderivability X/(AY) & (AY)\X, akin to Xo—Y < Y—oX. Note
that LA allows the transition X/Y = X/(AY), suggesting X/Y = Xo—Y as a theo-
rem of a mixed logic where there is coexistence of these two levels.

The above line of argument, applied to other substructural levels and modalities,
suggests a general view of linkage such that for any two products o; and o;, where the
former has greater freedom for resource usage than the latter (i.e. where the former’s
structural rules are a superset of the latter’s), then we can expect characteristic
theorems for the mixed logic such as:

AOZ'B = AOJ'B
ALB = AZB

6 Term assignment

I will next describe a system of term assignment for the hybrid approach, under
which the formulas in any proof are associated with lambda terms in accordance with
the well known Curry-Howard interpretation (Howard 1969). The term associated
with any succedent formula records the natural deduction structure of the dominating
subproof. These terms play a role in handling NL semantics and word order, as we
shall see shortly.

The sequent rules are restated below with term labelling. Antecedent formulas
are associated with variables. Cut inferences are interpreted via substitution (where
a[b/v] represents the substitution of b for v in a). For implicational connectives,
left and right inferences are interpreted via functional application and abstraction,
respectively. Note that a different abstraction and application operator is required
for each implicational, so that terms fully record the proof structure.* The implication
& (resp. =) has application operator % (resp. ), giving a5 b (resp. b7 a) for ‘a
applied to b’, and abstraction operator [$] (resp. [5]), e.g. [5]v.a (resp. [5]v.a) for
abstraction over v in a. Product right inferences are interpreted via system specific
pairing, and for product left inferences, a term such as [z /vow].a implicitly represents
the substitution of z for v+w in a.® A labelled version of the (schematic) inclusion

4See Buszkowski [4] and Wansing [20] for augmented term systems implementing the ‘formulas-as-types’ notion
for a variety of substructural logics.

5This operator is essentially a compact notation for one used by Benton et al. (1992) with linear logic.
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rule [<] is shown in (6.3). Note that the rule is ‘neutral’ regarding term assignment,
i.e. all premise sequent labels are passed on unchanged. Any structural rules will be
similarly neutral (including ‘interaction’ cases). The proof (6.4) illustrates this system
of term assignment.

(6.1) Arv=A:v  (id) ®=B:b TI[B:v]=A:a ]
[[®] = A:a[b/v]
(6.2) B:v,I')° = A:a ®=C:c TB:v]=>A:a o
5 —R] 3 [=L]
I' = BoA:[Gv.a I[(®, CoB:w)°] = A:a[(cdw)/v]
(I',B:v)° = A:a ®=C:c TI[B:v]=>A:a
-~ len : o e
I'=> A<B:[Sv.a I[(B+C:w, )°] = A:a[(w% c)/v]
I'=>A:a <I>:>B:b[oR] I(B:v, C:w)°] = A:a (oL
(T, ®)° = AoB:(a,b)° [[BoC:z] = A:[z/vow].a
(6.3) [[(B:b, C:0)%] = A:a
[[(B:b, C:c)%] = A:a[<]
(6.4) C:z=C:z2 B:w=B:w L]
(C:z,C§B:y)® = B:23y A:v=>A:v[/L]
(A/B:z, (C:z, C§B:9)®)® = Az (23y),
(A/B:z, (C:z, C§B:9)® )® = A: xf(z@y)f]
(A/B:z, (C:2, CyB:y)® )® = A: xt(zay)f
(A/B:z, (C§B:y, C:2)® )® = A: x‘?(z@y): ]
(A/B o, CYBr9)°, Cr2)® = Aros ()
(A/Bra, GYBy)° = Ao Ol (ean)

7 Word order and semantics in a hybrid formalism

It remains to be shown that a system which has (or at least includes) the hybrid di-
rection of linkage between levels, i.e. the direction suggested by structural modalities,
can usefully be employed as a linguistic formalism. Although the hybrid direction of
linkage, as compared with its converse, requires no special features in the formulation
of the logic, it does have some consequences for how such a system may be used in
linguistic analysis, specifically in regard to the treatment of word order. Consider,
for example a system which includes L and LP as levels, and a theorem T" = A,
corresponding to some linguistic combination, which can be derived just within L.
Such a mixed system will also admit alternative theorems I = A, where I’ is some
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configuration of precisely the formulas in I’ under any alternative ordering thereof.

One possible response to this problem might be to limit our attention, for linguistic
purposes, to only those sequents whose antecedents are configured with structural
connectives that do clearly order their subconfigurations, e.g. so that (-,-)® may appear
in the end-sequent of a linguistic derivation, but not (-,-)®, although the latter might
appear elsewhere in the body of the proof.” Such a requirement would seem too
strict, however, since it completely rules out the possibility of having lexical type
assignments that do not strictly order functor and argument, a decision which should
surely be in the hands of the grammar writer, rather than a fixed requirement of the
formalism.

The solution to this problem pursued in Hepple [7] is based on the system of term
assignment described above, i.e. with the word order consequences of proofs being
derived from their proof terms. Recall that in the categorial approach, the word
order requirements of lexical items is specified via the connectives of their lexical type
assignment. Given the rich term algebra described above, proof terms fully record all
such information. To extract the word order consequences of a proof, its proof term
is first normalised,® reducing it to a form in which the linear order, etc, information
originally encoded by its antecedent types is most directly expressed. This information
can then be used in deriving an ordering over the free variables of the term, which in
turn implies an ordering of the types combined.

Consider, for example, the term [§]z.2% (23 y) generated by (6.4). The direction-
alities of applications suggests the ordering < z < y over variables. Abstraction
discounts z as an ‘orderable element’, leaving just < y, i.e. with A/B preceding C§B,
as we would expect from the former’s directionality. For a term z %y, the permuta-
tivity of ® suggests that both orderings of x and y are possible. Note however that
order determination must be sensitive to the specific modes of structuring and their
properties, e.g. the non-associativity of @ implies an ‘integrity’ for y,z in 2§ (y§ 2)
excluding y < = < z as a possible order, despite the permutativity of ®.

The method for determining order from a normalised proof term (which I will simply
sketch here) involves firstly transforming it to give a further term — its yield term — in
which the original term’s orderable elements are structured in accordance with their
original manner of combination, using operators that I will notate identically to the
corresponding type constructors, as in the following examples:

2% (29Y) = ze(209)
Blz.2% (23 y) — xey
[(vEw)/zey].(z,y) = (vEwW)

Yield terms may be restructured in ways appropriate to the different operators (e.g.

6Any proof of ' = A may be extended by multiple [<] inferences to give a proof of ® => A, where & is just like
T except all bracket pairs are ()® Extending this proof with repeated uses of [P] and [A], we can attain any desired
reordering of the antecedent types.

TThis idea is adapted from the Moortgat & Oehrle [16] treatment of head wrapping phenomena, where certain
structural connectives are designated as ‘abstract’, meaning ‘without phonetic interpretation’, and hence are not
allowed to appear in sequents corresponding to linguistic combinations.

8Such normalisation requires the following conversion rules:

(f5)v.a)5 b Loapel (b/vo'wl.a)5e 5 [b/vo’w].(a’se)
3 ([3]v-a) L apyel T (b/vo'wla) > [b/volw].(cTa)
[(b, c)° Jvowl.a > a[b/v,c/w]
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subterms p®q may be rewritten to ¢®p, etc.). Possible linear orders can simply be
‘read off’ the variants a yield term under restructuring, e.g. g (y & 2) gives orders
zyz and yzz, since its yield term is £®(y®z), whose only variant is (y©z)Qx

The lambda terms produced by proofs are also useful for handling the natural
language semantic consequences of type combinations. The fine-grained distinctions
they encode, between different modes of construction, are inappropriate for linguistic
semantics, but such terms can easily be transformed to simpler ones, employing only a
single form of abstraction (A) and with application notated by left-right juxtaposition.

8 The hybrid linguistic model

I noted earlier that one problem of a structural modality based approach is that
it tends to favour the selection of a relatively strong system for the base logic, i.e.
because the weaker the base level logic, the more extensive will be the need to use
structural modalities, giving rather complicated analyses. The choice of a stronger
base logic is associated with a loss of potentially useful resource sensitivity. This
problem does not arise for the hybrid approach, which freely allows us to use weaker
logics in specifying lexical types that richly encode linguistic information.

For example, consider a multimodal system that includes only the levels L and
LP. Of these two levels, L is clearly the one that will in general be more appro-
priate for linguistic description. Under the hybrid view, the linkage between these
two levels is such that XQ@Y = XeY is a theorem, alongside which we will find also
(e.g.) X/Y = Xo—Y. Note that it is the latter theorem, and its variants, that most
crucially bear upon what is gained by the move to a mixed system, given that the
lexical encoding of linguistic information predominantly involves the assignment of
functional types. Hence, a lexical functor constructed with L connectives may be
transformed to one involving LP connectives, allowing us to exploit the structural
freedom of that level. For example, the availability of the LP level, and its permu-
tative character, allows for a possible treatment of extraction phenomena, whereby a
‘sentence missing NP somewhere’ may be derived as so—np. This possible treatment
is illustrated by the proof (8.1). If we take the proof term generated by this proof,
and substitute for variables the corresponding word atoms, we would have a term:
who([Blv.(kim < ((sent’s v)'%e away))), which gives a total ordering over word atoms:
who < kim < sent < away i.e. this proof constitutes a derivation for who Kim sent
away. Note that with the converse direction of linkage between L and LP, but with
lexical specification still exploiting the connectives of L, no practical use of the LP
level would arise.

In practice, it is likely that a weaker logic would be preferred for lexical specification,
as this would enable more information to be encoded in lexical types. For example,
lexical encoding using (predominantly) the level NL would allow us to identify during
syntactic derivation, what was lexically given argument order, i.e. since any ‘non-
associative functor’, of the form A¢B or BRA, would have to be a ‘natural projection’
of some lexical head. Given the hybrid pattern of ‘movement between levels’, such
lexical specification is still compatible with the above approach to extraction (i.e. since
we have, most importantly, transformations XgY = X/Y = Xo—Y). Even weaker
logics would allow yet further information to be lexically encoded. For example, it is
likely that lexical assignments should specify headedness or dependency information,



352 Hybrid Categorial Logics
as in the calculi of Moortgat & Morrill [14].

(8.1) np = np s =S

(np, np\s)® = s B pp = pp

(np, ((np\s)/pp, pp)*)* = s np = np
(np, ((((np\s)/pp)/np, np)*, pp)*)* =

(np, ((((np\s)/pp)/np, np)®, pp)*®

((np\s)/pp)/np, np)®, pp)®

(np\s)/pp)/np, np)®, pp)®

np\s)/pp)/np, (up, pp)®)®

)/pp) p)®)

)

/np, (pp, np)®)®
/pp)/np, pp)®, np)®)® = s
/pp)/np, pp)®)®, np)® = s
rel = rel (np, (((np\s)/pp)/np, pp

(vel/(so—np), (np, (((np\s)/pp)/np, pp)®
who Kim sent away

) =
)* =
)®

fA
e ]
)®
)

np\s

)
)

@ o—n
;) R Sy

®)® = rel

Hopefully, the above discussion will serve to give a feeling for the character of
the linguistic model that the hybrid approach will favour, i.e. one with rich lexical
encoding of syntactic information, achieved using predominantly the implicational
connectives of the weakest sublogics, with the stronger sublogics of the mixed system
allowing less informative descriptions of (functional) linguistic objects, of use in han-
dling phenomena for which some lexically encoded information is not relevant and
would get in the way of a simple and elegant account.

In closing this section, I will briefly mention a further elaboration that is possi-
ble for this formalism, and which will, I believe, greatly extend its power (in both
formal and practical senses). This extension involves lexical encoding of derivational
structure, in which lexical items are associated with complex string terms that are
constructed using the operators of the proof term algebra, which (being isomorphic
to proofs) can be seen to encode partial proofs. The proof structure that such lexical
terms encode can be brought into play within linguistic derivations by appropriate use
of normalisation, allowing further capabilities for lexical specification of linguistic in-
formation. See Hepple [9] for a detailed presentation of this method with a somewhat
different multimodal system (which combines L with connectives for discontinuity).®
Treatments of a range of phenomena are presented there which depend on the lexical
encoding method, including, for example, treatments of quantification, pied-piping
and gapping.1©

9The lexical encoding method is also used in Hepple [7], but the presentation there is flawed by a failure to
recognise that an appropriate involvement of normalisation is needed for all but the simplest of cases. For example,
multiple quantifier cases cannot be derived without normalisation.

10Those accounts can be reconstructed within the present hybrid framework, using the LP connectives o—,—0 in
place of the discontinuity connectives that are used there.
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9 On two views of linkage

The view of linkage argued for in the previous section contradicts that taken by Moort-
gat & Oehrle [15, 16]. For example, they suggest AeB = A®B as the characteristic
theorem linking the L and LP levels. More generally, for a characteristic theorem
Ao;B = Ao;B, the level of o; should have a subset of the structural rules of the level
of o;. This view is defended in terms of giving inter-level transformations that involve
‘forgetting’ or ‘loss of information’. Thus, the more structural rules that a level has,
the ‘less informative’ it is seen to be, since the less the structure that is preserved
at that level. Since LP is permutative, the transformation XeY = X®Y is seen to
involve the forgetting of order.

Despite its diametrically opposing idea of what constitute the ‘natural linkages’
between levels, the hybrid view can also be argued to allow only inter-level trans-
formations that give ‘loss of information’. According to this view, the permutativity
X®Y & Y®X is taken to indicate that both orders are possible, rather than that the
ordering is unknown, and so the transformation X®QY = XeY can again be seen to
involve ‘loss of information’, i.e. forgetting of one the two orders that are possible. In
general for the hybrid view, the more structural rules a level has, the more informa-
tive it is seen to be, since the structural rules are seen to indicate a conjunction of
alternative possibilities.

How are we to make sense of such contradictory views? Intuitively, when evaluated
by their own criteria, both approaches appear to be correct in their claims of ‘loss
of information’ in inter-level transitions. For Moortgat & Oehrle, the formula X®Y
does not appear to order X and Y, since no order dependent use of its subtypes can
be made. For the hybrid view, however, the formula X®Y does appear to encode both
orders as being possible, precisely because it can be transformed to both XeY and
YeX. These comments suggest that the apparent disagreement may stem from the
lack of a clear enough understanding of how to identify the ‘meaning’ of a level within
a multimodal system. It may be that the meaning of a level within a multimodal
system cannot be determined purely from level-internal considerations, because a
vital component of this meaning is the level’s linkages to other levels and its place
within the overall system. In that case, it would be a mistake to expect a formula
X®Y to have the same meaning in the alternative approaches, because the two ‘LP’
levels, having different linkages within different multimodal systems, are consequently
incomparable.

If this suggestion is correct, both Hepple [7] and Moortgat & Oehrle [15] are wrong
to claim that the sublogics of a multimodal system must be ordered according to
some criterion based on level-internal characteristics. Rather the very linking of lev-
els determines their meaning, such that inter-level transitions must be well-behaved
regarding ‘loss of information’ (even if only by a collapse to all levels having the same
meaning, where a circular pattern of linkage is imposed). In that case, the possibility
arises of a system having, amongst others, two distinct levels that both correspond
to LP (when evaluated by purely internal criteria) but which play very different
roles within the system due to their different linkages, i.e. with one level indicating
conjunction, and the other underdetermination, of order.
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10 Concluding remarks

I have described an approach for formulating multimodal logics in which ‘movement
between levels’ is allowed in derivation, corresponding to what might be seen as move-
ment between different modes of linguistic description. The pattern of movement
between levels is inspired by consideration of categorial systems employing structural
modalities, and multimodal systems so formulated should, I believe, allow reconstruc-
tion of many of the accounts that have depended on structural modalities, whilst
allowing such operators to be dispensed with. The approach I have described is in
many ways similar to that of Moortgat & Oehrle [15], the striking difference being
diametrically opposing views of how the different sublogics should be linked. I have
suggested that these two sources may be, in some sense, both right and both wrong:
right in allowing the linkages they allow, and wrong in claiming that the alternative
should be excluded. If this suggestion is correct, future multimodal systems may well
exploit both directions of linkage. In that case, the special mechanisms required by
the hybrid approach in relation to word order determination, or some alternative that
fulfils the same role, will be required, so that the systems so developed should have
much of the character of the approach described here.
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