e = Rt

(COLING’92), Nantes, France, 1992

et SaetE mwmatmE ST atEmss W atkSsmE matw e etk WA e

D = Rt

CHART PARSING LAMBEK GRAMMARS:
MODAL EXTENSIONS AND INCREMENTALITY

Mark Hepple
Cambridge University Computer Laboratory, Cambridge, UK.

Abstract

This paper! describes a method for chart parsing Lam-
bek grammars. The method is of particular interest
in two regards. Firstly, it allows efficient processing of
grammars which use necessity operators, an extension
proposed for handling locality phenomena. Secondly,
the method is easily adapted to allow incremental pro-
cessing of Lambek grammars, a possibility that has
hitherto been unavailable.

Introduction

Categorial Grammars (CGs) consist of two compon-
ents: (i) a lexicon, which assigns syntactic types (plus
an associated meaning) to words, (ii) a calculus which
determines the set of admitted type combinations.
The set of types (T) is defined recursively in terms
of a set of basic types (Tg) and a set of operators
({\,/} for standard bidirectional CG), as the smallest
set such that (i) To C T, (ii) if x,y € T, then x\y,
x/y € T.? Intuitively, lexical types specify subcat-
egorisation requirements of words, and requirements
on constituent order. We here address a particular
flezible CG, the (product-free) Lambek calculus (L:
Lambek, 1958). The rules below provide a natural de-
duction formulation of L (Morrill et al. 1990; Barry et
al. 1991), where dots above a type represent a proof
of that type. Proofs proceed from a number of initial
assumptions, consisting of individual types, some of
which may be “discharged” as the proof is construc-
ted. Each type in a proof is associated with a lambda
expression, corresponding to its meaning. The elimin-
ation rule /E states that proofs of A/B and B may be
combined to construct a proof of A. The introduction
rule /1 indicates that we may discharge an assump-
tion B within a proof of A to construct a proof of
A/B (square brackets indicating the assumption’s dis-
charge). There is a side condition on the introduction
rules, reflecting the ordering significance of the direc-
tional slashes. For /I (resp. \I), the assumption dis-

1T am grateful to Esther Kénig for discussion of the paper.
The work was done under a grant to the Cambridge University
Computer Laboratory, “Unification-based models of lexical ac-
cess and incremental interpretation”, SPG 893168.

?In this notation, x/y and x\y are both functions from y
into x. A convention of left association is used, so that, e.g.
((s\np)/pp)/np may be written s\np/pp/np.

charged must be the rightmost (resp. leftmost) undis-
charged assumption in the proof. Elimination and in-
troduction inferences correspond semantically to steps
of functional application and abstraction, respectively.

Hypothesis rule: A:z

Elimination rules:

A/.B:f B.:x B.:x A\Bf

\E
A:fz A:fr
Introduction rules: ... [Bu’ [B:al' ...
—/1! —\1!
A/B:Az.f A\B:Az.f

Each proof demonstrates the possibility of combin-
ing the types of its undischarged assumptions, in their
given order, to yield the type at the bottom of the
proof. The following proof of “simple forward com-
position” illustrates the approach.

a/bix bjay [cd]!
b:(yz)
a:(z(yz))

afc:Az.(z(yz))
Following Prawitz (1965), a normal form (NF)
for proofs can be defined using the following mean-
ing preserving contraction rule and its mirror image
dual with \ in place of /, which, under a version of

the Curry-Howard correspondence between proofs and
lambda terms, are analogous to the (-contraction rule

((Az.P)Q > P[Q/z]) for lambda expressions.
-..[B)!

i

A > ;B
/Il . .
A/B B A
A
Under this system, every L proof has an equivalent
‘B-NF’ proof. Such [-NF proofs have a straight-
forward structural characterisation, that their main
branch (the unique path from the proof’s end-type to
an assumption, that includes no types forming the ar-
gument for an elimination step) consists of a sequence
of (> 0) eliminations followed by a sequence of (> 0)
introductions.
The main approach for parsing L has been sequent

calculus theorem proving.® Used naively, this ap-
proach is inefficient due to ‘spurious ambiguity’; i.e.
the existence of multiple equivalent proofs for com-
binations. Konig (1989) and Hepple (1990a) develop a
solution to this problem based on defining a NF for se-
quent proofs. These NF systems as yet cover only the
basic calculus, and do not extend to various additions
proposed to overcome the basic system’s shortcomings
as a grammatical framework.

Some importance has been attached to the prop-
erties of flexible CGs in respect of incremental pro-
cessing. These grammars typically allow sentences to
be given analyses which are either fully or primar-
ily left-branching, in which many sentence-initial sub-
strings are interpretable constituents, providing for
processing in which the interpretation of a sentence
is generated ‘on-line’ as the sentence is presented. In-
crementality is characteristic of human sentence pro-
cessing, and might also allow more efficient machine
processing of language, by allowing early filtering
of semantically implausible analyses. It is notable,
however, that no methods have yet been proposed for
incremental parsing of Lambek grammars. In what
follows, I describe a chart method for L and then show
how it may be modified to allow both inclusion of an
operator O, used for handling locality constraints, and
also to allow incremental parsing of L.

Chart Parsing Lambek Grammars

Standard chart methods are inadequate for L because
proving that some combination of types is possible
may involve ‘hypothetical reasoning’; i.e. using addi-
tional assumptions over and above just the types that
are being combined. For example, the above proof of
a/b,b/c = a/c requires an additional assumption c,
subsequently discharged. Standard chart parsing in-
volves ordering the edges for lexical categories along a
single dimension, and then adding edges for constitu-
ents that span wider substretches of this dimension as
constituents are combined. The problem for L is that
there is no place in this set up for additional hypothet-
ical elements. Placing edges for them anywhere on the
single dimension of a normal chart would simply be in-
correct.

Konig (1990, 1991), in the only previous chart
method for L, handles this problem by placing hypo-
thetical elements on separate, independently ordered
‘minicharts’, which are created (‘emitted’) in response
to the presence of edges that bear ‘higher order’ func-
tor types (i.e. seeking arguments having functional
types), which may require ‘hypothetical reasoning’ in
the derivation of their argument. Minicharts may ‘at-
tach’ themselves into other charts (including other
minicharts) at points where combinations are pos-
sible, so that ‘chains of attachment’ may arise. Some
fairly complicated book-keeping is required to keep

3Space limits preclude discussion of recent proof net work.

track of what has combined with what as a basis for
ensuring correct ‘discharge’ of hypothetical elements.
This information is encoded into edges by replacing
the simple indices (or vertices) of standard charts
with ‘complex indices’. Unfortunately, the complex-
ity of this method precludes a proper exposition here.
However, some differences between Konig’s method
and the method to be proposed will be mentioned at
the end of the next section.

A New Chart Approach

I next present a new chart parsing method for L. Its
most striking difference to the standard approach is
that there is typically more than one ordering govern-
ing the association of edges in a chart. These order-
ings intersect and overlap, making a chart a ‘multi-
dimensional object’. A second difference is that the
basic unit we adopt for specifying the orderings of the
chart is primitive intervals, rather than point-like ver-
tices, where the relative order of the primitive intervals
that make up an ordering must be explicitly defined.
The span of edges is specified extensionally as the con-
catenated sum of some number of primitive intervals.
The method is perhaps most easily explained by ex-
ample.

To parse the combination x/y, y/z, z = x, we re-
quire a three element ordering ordering(a.b.c) (ab
and ¢ being primitive intervals). The three types give
three edges, each having three fields: (i) the edge’s
span (here a primitive interval), (ii) its type (iii) the
type’s ‘meaning’ (here a unique constant).

[a, x/y, t1]
[b, y/z, t2]
[c, z, t3]

Edges are combined under the following chart rules,
corresponding to our elimination rules:

if [i, X/Y, A1 and [j, Y, B]
and isa_subord(i.j)

then [i.j, X, (AB)]

if [i, Y, Bl and [j, X\Y, Al
and isa_subord(i.j)

then [i.j, X, (AB)]

The rules allow two edges with appropriate types
to combine provided that the concatenation of their
spans is a substring of some defined ordering (a test
made by the predicate isa_subord). Given these
rules, our chart will expand to include the follow-
ing two edges. The presence of an edge with type x
that spans the full width of the single defined ordering
shows that x/y, y/z, z = x can be derived.

[b.c, y, (t2 t3)]
[a.b.c, x, (t1 (t2 t3))]

emit ([H,T,_1):
if T = X/(Y\B1/F1....\Bn/Fm),
then (add_edges: [i1,B1,vi],
add_condition:

if ordering(P.H.Q.R) and non_empty(Q)
if [(il1...in.K.jm...j1),Y,s]

add_condition:

., [in,Bn,vn], [jm,Fm,wn],

., [ji,F1,wi]

then ordering(iil...in.Q.jm...j1)
and isa_subord(H.K)

then [K, (Y\B1/F1i....\Bn/Fm), (wm@vn@....w1l@v1@S)])

else

if T = X\(Y\B1/F1....\Bn/Fm),

then (add_edges: [i1,B1,vi],
add_condition:

., [in,Bn,vn], [jm,Fm,wn],

., [ji,F1,wi]

if ordering(P.Q.H.R) and non_empty(Q) then ordering(iil...in.Q.jm...j1)

add_condition:

if [(i1...in.K.jm...j1),Y,S] and isa_subord(H.K)

then [K, (Y\B1/F1i....\Bn/Fm), (wm@vn@....wl@v1@S)])

Figure 1: The EMIT procedure

Our next example x/(y\p/a), y/z\p, z/q = x re-
quires ‘hypothetical reasoning’ in its derivation, which

is made possible by the presence of the higher-order
functor x/(y\p/q). In the natural deduction ap-
proach, deriving the functor’s argument y\p/q might
involve introduction inference steps which discharge
additional assumptions p and q occurring peripher-
ally within the relevant subproof. To chart parse the
same example, we require firstly the following three
edges and require a three element ordering:

ordering(a.b.c)
[a, x/(y\p/q), ti]
[b, y/z\p, t2]

[c, z/q, t3]

As in Konig’s approach, an ‘emit’ step is performed
on the edge which bears a higher-order type, giving
various additions to the chart needed to allow for hy-
pothetical reasoning. Firstly, this gives two new edges,
which are assigned new primitive intervals:

[d, p, vi]
[e, q, v2]

Some new orderings must be defined to allow these
edges to combine. Since the higher-order func-
tor is forward directional, possible arguments for
it must occupy non-empty intervals H such that
isa_subord(a.H). Hypothetical reasoning with the
two new edges is useful only in so far as it contributes
to deriving edges that occupy these spans. Hence,
the required new orderings are (d.H.e) such that
isa_subord(a.H). Such new orderings are most con-
veniently created by including the following condition
on orderings.

if ordering(P.a.Q.R) and non_empty(Q)
then ordering(d.Q.e)

In general, such conditions may fire after the emit step
that creates the condition, when other new orderings
are created that include the emitting edge’s span. The

above condition causes new orderings (d.b.e) and
(d.b.c.e) to be defined, allowing combinations that
yield the following edges:

[d.b, y/z, (£2 v1)]
[c.e, z, (£3 v2)]
[d.b.c.e, y, ((t2 v1)(t3 v2))]

The final thing created by the emit process is the
following condition on edges (where A@B represents
lambda abstraction over A in B):

if [d.0.e, y, S] and isa_subord(a.0)
then [0, y\p/q, v20v1es]

This condition has the effect that whenever an edge of
a certain form is added to the chart, another edge of
a related form is also added. The condition completes
the process of hypothetical reasoning, by syntactic-
ally and semantically abstracting over the hypothet-
ical elements (‘discharging’ them) to derive the func-
tion required as argument by the higher order functor.
Note that, since the intervals d and e are unique to the
two edges created in the emit process, any edge span-
ning an interval (d.0.e) must have involved these two
edges in its derivation. The condition ‘fires’ on the
above edge spanning (d.b.c.e) to give the first of
the following edges, which by combination gives the
second. This final edge demonstrates the derivability
of original goal combination.

[b.c, y\p/q, v2@vie((t2 v1)(t3 v2))].
[a.b.c, x, (t1 v2evie((t2 v1)(t3 v2)))].

We have now seen all the basic ingredients re-
quired for handling hypothetical reasoning in the
new approach. Figure 1. shows a general (if still
somewhat informal) statement of the emit procedure
which is called on every edge added to the chart,
but which only has an effect when an edge bears
a higher-order type. The specific consequences de-
pend on the functor’s directionality. The notation
(Y\B1/F1....\Bn/Fm) stands for a functional type re-
quiring n backward directional arguments B1....Bn

and m forward directional arguments F1....Fmin any
order.* In each case, the procedure simply adds an
edge for each required hypothetical element, a condi-
tion on orders (to create all required new orderings),
and a condition on edges, which fires to produce an
edge for the result of hypothetical reasoning, should
it succeed. Note that edges produced by such condi-
tions are there only to be argument to some higher
order functor, and allowing them combine with other
edges as functor would be unnecessary work. I assume
that such edges are marked, and that some mechanism
operates to block such combinations.®

A slightly modified emit procedure is required to al-
low for deriving overall combinations that have a func-
tional result type. I will not give a full statement of
this procedure, but merely illustrate it. For example,
in proving a combination I' = y\p/q, where an order-
ing Q had been defined for the edges of the types T,
emitting the result type y\p/q would give only a single
new ordering (not a condition on orderings), a condi-
tion on edges, and two new edges for the hypothetical
elements as follows:

ordering(a.q.b)

if [a.Q.b, y, S]
then [Q, y\p/q, v2@(v1@S)]

[a, p, vi]
[b, g, v2]

That completes description of the new chart method
for L. A few final comments. Although the method
has been described for proving type combinations, it
can also be used for parsing word strings, since lex-
ical ambiguity presents no problems. Note that defin-
ing a new ordering may enable certain combinations
of edges already present in the chart that were not
previously allowed. However, simply checking for all
edge combinations that the new ordering allows will
result in many previous combinations being redone,
since new orderings always share some suborderings
with previously defined orderings. One way to avoid
this problem is to only check for combinations allowed
by substrings of the new ordering that were not pre-
viously suborderings.

Concerning the soundness of this method, note that
chart derivations can be easily translated into (cor-
rect) natural deduction proofs, given a knowledge of

4This notation is rather clumsy in that it appears to sug-
gest the presence of at least one forward and one backward
directional argument and also a relative ordering of these ar-
guments, when neither of these implications is intended. A
similar point can be made about abstractions in the schematic
semantics wm@vn@. . ..w1@v1@S, whose order and number will
in fact mirror that of the corresponding syntactic arguments.
A more satisfactory statement of the emit procedure could be
made recursively, but this would take up too much space.

5An alternative would be not entering such edges at all, but
instead have a condition on edges that creates an edge for the
result of combining the emitting higher-order functor with its
implicitly derived argument, directly.

which edges gave rise to which others, i.e. with binary
edge combinations corresponding to elimination infer-
ences, and with the creation of an edge by a condition
on edges corresponding to some sequence of introduc-
tion inferences. In fact, chart derivations all translate
to B-NF proofs, i.e. with introductions always made
after any eliminations on the main branch of any sub-
proof. This observation provides at least an informal
indication of the completeness of the method, since
the mechanisms described should allow for chart de-
rivations corresponding to all possible G-NF proofs of
a given combination, which (as we noted earlier) are
fully representative.

Another issue is whether the method is minimal
in the sense of allowing only a single chart deriva-
tion for each reading of a combination. This is not
so, given that distinct but equivalent -NF proofs of
a combination are possible, due to a second source
of equivalence for proofs analogous to n-equivalence
of lambda expressions (i.e. that f = Az.fz). For ex-
ample, the combination a/(b/c), b/c = a has two -
NF proofs, one involving ‘unnecessary’ hypothetical
reasoning. However, having equivalent edges represen-
ted on the chart, and the undesirable consequences for
subsequence derivations, can be avoided by a simple
identity check on edge addition, provided that the
meaning terms of edges produced by conditions on
edges are subject to p-normalisation.

I will finish with some comparisons of the method
to that of koénig (1990, 1991). The importance of
Konig’s method as precursor for the new method can-
not be overstated. However, the new approach is, I be-
lieve, conceptually much simpler than Konig’s. This
is largely due to the use of ‘conditions on edges’ in the
new approach to handle discharge of hypothetical ele-
ments, which allows edges to be much simpler objects
than in Konig’s approach, where edges instead have to
encode the potentially complex information required
to allow proper discharge in their ‘complex indices’.
The complex nature of Konig’s edges considerably ob-
scures the nature of parsing as being simply reasoning
about sequences of types, and also makes it difficult
to see how the method might be adapted to allow for
extensions of L involving additional operators, even
ones that have straightforward sequent rules.

A second difference of the new method is that or-
derings that govern the association of edges are ex-
plicitly defined. There is a sense in which the mul-
tiple intersecting orderings of the new approach can be
seen to express the dimensions of the search space ad-
dressed in sequent calculus theorem proving, although
collapsing together the parts of that search space that
have common structure. In Konig’s method, although
the elements that belong together in a minichart are
relatively ordered, the attachment of one minichart to
another is allowed wherever relevant edges can com-
bine (although subject to some constraints preventing
infinite looping). This means that elements may be

combined that would not be in sequent calculus the-
orem proving or in the new chart method. The con-
sequences of this difference for the relative complexity
of the two chart methods is at present unknown.

Parsing Modal Extensions

Various extensions of the basic Lambek calculus have
been proposed to overcome some of its limitations as a
grammatical approach. Morrill (1989, 1990) suggests
a unary operator O, for handling locality constraints
on binding and reflexivisation. This has the following
inference rules, which make it behave somewhat like
necessity in the modal logic S4:

D.A A where every undischarged
—aOE —0OI assumption is a O-type
A OA

I will try to briefly suggest how O may help in hand-
ling locality constraints. Boundaries arise where lex-
ical functors seek a modal argument, i.e. are of the
form x/0y, the presence of the O making the argu-
ment phrase potentially a bounded domain. In ad-
dition, all lexical types are of the form Ox, i.e. have
a single O as their outermost operator, which allows
them to appear embedded within modal domains (c.f.
the O1 rule’s requirement of O-ed assumptions). For
example, a lexical NP might be Onp, a transitive verb
O(s\np/np), and a sentence-complement verb like be-
lieves type O(s\np/0s). In a standard flexible CG
treatment, extraction is handled by functional ab-
straction over the position of the missing (i.e. extrac-
ted) element. The type of the abstracted element is
determined by the type of the higher order lexical type
that requires this abstraction, e.g. the relative pro-
noun type rel/(s/np) abstracts over np. Note that
this relative pronoun type cannot extract out of an
embedded modal domain, because it abstracts over a
bare (i.e. non-modal) np, whose presence would block
01 rule’s use in deriving the overall modal constitu-
ent. However, a relative pronoun rel/(s/0Onp), which
abstracts over a modal type Onp, can extract out of
an embedded modal domain.

Including this operator presents considerable prob-
lems for efficient processing. Firstly, it excludes the
use of the NF systems devised for the calculus (Konig,
1989; Hepple, 1990a). As noted above, spurious ambi-
guity makes ordinary (i.e. non-normal form) sequent
theorem proving of L inefficient. This problem is
greatly increased by inclusion of O, largely due to non-
determinism for use of the OE rule.®

8Consider a sequent S = Ox1,0x9, ..., Ox, = x¢, where the
related sequent S’ = xi,x9,...,Xp = Xo is a theorem. Non-
determinism for use of [OL] means that there are n! different
paths of inference from S to S’, so that there are at least n!
proofs of S for each proof of S’. In fact, interaction of [OL] with
other inference rules means that there is typically many more
proofs than this.

The new chart method is fairly easily adapted to
allow for O, avoiding the non-determinism problem of
the sequent system, so that parsing examples with O
is typically only slightly slower than parsing related
examples without any Os. Firstly, it is crucial that we
can always identify the parent edge(s) for some edge
(i.e. the immediate edge(s) from which it is derived),
and thereby an edge’s more distant ancestors. 1 ig-
nore here the precise details of how this is done. The
following chart rule serves in place of the OE rule:

if [i, [IX, A] then [i, X, Al
For the combination x/Oy, O(y/z), Oz = x, we would
require the following ordering and first three edges.

The next three edges then result from the operation
of chart rules:

ordering(a.b.c)

[a, x/[y, t1]

(b, [1(y/z), t2]

[c, [z, 3]

[b, y/z, t2]

[c, z, t3]

[(b.c), y, (t2 t3)]

To allow completion, we must extend the emit proced-
ure to also take action in cases where the type of an
added edge seeks a modal argument. For the case at
hand, the emit procedure would create a condition on
edges as follows:

if [H, y, S] and isa_subord(a.H)

and check_modal_history([H, y, S])

then [H, [ly, S]

The procedure check_modal_history used by this
condition checks the edge’s ‘history’ to see if it has ap-
propriate ancestors to license the O-introduction step.
Recall that the O1 rule requires that the undischarged
assumptions of the proof to which it applies are all O-
types. The corresponding requirement for the chart
system is that the edge must have ancestors with O-
types that together span the full width of the edge’s
span H (i.e. there must be a subset of the edge’s an-
cestor edges that have O-types, and whose spans con-
catenate to give H). The edge [(b.c), y, (t2 t3)]
satisfies this requirement, and so the condition will
fire, allowing the parse to proceed to successful com-
pletion, as follows:

[(b.c), Oy, (t2 t3)]

[(a.b.c), x, (t1 (t2 t3))]

More complicated cases arise when an emitted func-
tor seeks an argument type that is both functional and
modal. As suggested above, a satisfactory statement
of the emit process is best given recursively, but there
is not sufficient space here. Hopefully, an example will
adequately illustrate the method. Consider what is re-
quired in emitting an edge [a, w/([](x\y)/z), t1],
whose type seeks an argument (O(x\y)/z, i.e. a func-
tion to a modal form of a further functional type. As
before, emitting creates two new edges and a single
condition on orderings:

[i, y, vi]
[i, z, v2]

if ordering(P.a.Q.R) and non_empty(Q)
then ordering(i.q.j)

However, recursive decomposition of the type
((O(x\y)/z) gives rise to three separate conditions on
edges (which reflect the three aspects of the descrip-
tion of this type as a ‘function to a modal form of a

further functional type’):

if [(i.H.j), x, S] and isa_subord(a.H)
then [(H.j), x\y, vies]

if [H.j, x\y, S] and isa_subord(a.H)
and check_modal_history([H.j, x\y, S1)
then [H.j, [I(x\y), s]

if [H.j, [O(x\y), S] and isa_subord(a.H)
then [H, [1(x\y)/z, v2es]

These three conditions ‘chain’ together to create edges
with the type required by the emitted functor. Of
course in practice, the three conditions could be col-
lapsed into a single condition, and such a move seems
sensible from the viewpoint of efficiency.

Incremental Parsing

Despite considerable interest in the theoretical pos-
sibility of incremental processing using the Lambek
calculus, no incremental parsing methods have as
yet been proposed. Indeed, most Lambek parsing
work has been based around sequent theorem proving,
which might be viewed as antithetical to incremental
processing since it fundamentally involves reasoning
about complete sequences of types. In fact it is fairly
easy to modify the chart method to allow some extent
of incremental processing, i.e. so that scanning left-to-
right through an input string (or type sequence), the
chart will contain edges assigning types to substrings
that would not otherwise receive types during parsing,
including some for initial substrings of the input.
The modification of the chart method involves al-
lowing an additional extent of hypothetical reasoning
over that so far allowed, so that edges for hypothet-
ical types are added not only for higher-order func-
tors, but also for first-order functors. This is allowe
by a new procedure emit*, described below. emit*
is called on every edge added to the chart, but only
has an effect if the edge’s type is functional, creating
a new edge for a hypothetical type corresponding to
the function’s first argument, as well as a condition on
orderings and one on edges. The condition on order-
ings creates new orderings allowing the hypothetical
edge to combine with its ‘emittor’, and the result of
that combination to be combined with further edges.
(The requirement J \= i.K prevents the condition in-
correctly reapplying to its own output.) Note that the
new edge’s interval is peripheral in the new orderings
that are defined since it is only in peripheral position

that the new hypothesis can be discharged (hence, we
have (G.H.1) in the condition of the first case rather
than (G.H.i.J)). Such discharge is made by the new
condition on edges.

emit*([H,T,_1):
if T = X/Y

then add_edge: [i, Y, v]
add_condition:
if ordering(G.H.J) and J \= i.K
then ordering(G.H.1i)
add_condition:
if [(Q.1i),Z,S] and non_empty(Q)
then [Q,Z/Y,v@S]
else
if T = X\Y
then add_edge: [i, Y, v]

add_condition:
if ordering(G.H.J) and G \= K.i
then ordering(i.H.J)
add_condition:
if [(1.Q),Z,S] and mnon_empty(Q)
then [Q,Z\Y,v@S]

Let us look at some examples (where we limit our at-
tention to just edges relevant to the discussion). Con-
sider parsing the type sequence (x/y, y/z, z). Since
the method should not depend on the parser know-
ing the length of the input sequence in advance, an
ordering will be defined with each scanning step that
covers just the material so far scanned, and which ex-
tends the ordering of the previous scanning step by
one. After scanning the first two types of the input,
the chart will include at least the following two edges
and ordering:

ordering(a.b)
[a, x/y, t1]
[b, y/z, t2]

Applying emit#* to the second edge (ignoring the first
edge here) yields the following edge and conditions:

[i, z, v]

if ordering(G.b.J) and J \= i.K
then ordering(G.b.i)

if [(Q.1i),T,S] and mnon_empty(Q)
then [Q,T/z,ves]

The condition on orderings will fire on the ordering
(a.b) to produce a new ordering (a.b.1i), which per-
mits the first two of the following edges to be built,
the third being generated from the second by the con-
dition on edges. The type x/z this edge assigns to the
initial substring (x/y, y/z) of the input (correspond-
ing to the composition of the two functions) would not
have been created during parsing with other Lambek
parsing methods.

[(b.i), y, (t2 v)]
[(a.b.i), x, (t1 (t2 v))]
[(a.b), x/z, ve(tl (t2 v))]

As a second example, consider the stage of hav-
ing scanned the first two types of the input sequence
(v, x\y/2, z). Scanning yields the following ordering
and the first two edges. Applying emit* to the second
edge yields the third edge, and two conditions:

ordering(a.b)

[a, x/y, t1]

[b, y/z, t2]

[i, z, v]

if ordering(G.b.J) and J \= i.K
then ordering(G.b.i)

if [(Q.1),T,S] and non_empty(Q)
then [Q,T/z,v@S]

The ordering condition gives the following new order-
ing, allowing creation of the subsequent new edges. As
before, the last edge assigns a type to the combination
of the first two input types which would not otherwise
be expected during parsing.

ordering(a.b.i)

[(b.1), x\y, (t2 v)]
[(a.b.i), x, ((t2 v) t1)]
[(a.B), x/z, ve((t2 v) t1)]

Although the method allows for a considerable de-
gree of incrementality, some conceivable incremental
constituents will not be created that would be in pars-
ing with alternative categorial frameworks. For ex-
ample, rules of type raising and composition in Com-
binatory Categorial Grammar (Steedman, 1987; Sz-
abolcsi, 1987) would allow incremental combination
of types vp/s, np = vp/(s\np), not allowed by the
present approach. The modified chart method instead
allows for the construction of incremental constituents
in a manner that most closely relates to the notion of
dependency constituency argued for by Barry & Pick-
ering (1990) (see also Hepple, 1991), although since
the modified parser is still a complete parser for L
it cannot be viewed as implementing a notion of de-
pendency constituency.” Finally, it should be noted
that the additional hypothetical reasoning allowed by
emit* and combinations involving additional ‘incre-
mental constituents’ result in many ‘spurious’ ana-
lyses, so that the incremental chart method is in gen-
eral slower than the non-incremental chart method.

Conclusion

I have presented a chart parsing method for the Lam-
bek calculus, which I would argue has several advant-
ages over that of Konig (1990, 1991). Firstly, I be-
lieve that it is considerably conceptually clearer than
Konig’s method, and more straightforwardly reflects

"However, some version of a chart parser that used only the
kind of hypothetical reasoning allowed by the emit* procedure,
and not that of the emit procedure, might well implement a
notion of dependency constituency.

intuitions about the nature of hypothetical reason-
ing in proving L combinations. Secondly, the relat-
ively straightforward nature of the system with re-
spect to reasoning about sequences of types should, I
believe, make it easier to adapt the method to allow for
additional type-forming operators over those already
provided in the (product-free) Lambek calculus, par-
ticularly where operators have fairly straightforward
sequent rules. We have seen how the method can be
extended to allow for Morrill’s Ooperator. We have
also seen how the method may be modified to allow
incremental parsing of Lambek grammars.

References

Barry, G., Hepple, M., Leslie, N. and Morrill, G.
1991. ‘Proof Figures and Structural Operators for
Categorial Grammar’, Proc. of EACL-5..

Barry, G. and Morrill, G. 1990. (Eds). Studies in
Categorial Grammar. Edinburgh Working Papers in
Cognitive Science, Volume 5. Centre for Cognitive
Science, University of Edinburgh.

Barry, G. and Pickering, M. 1990. ‘Dependency and
Constituency in Categorial Grammar’, in Barry and
Morrill, 1990.

Hepple, M. 1990a. ‘Normal form theorem proving for
the Lambek calculus’, Proc. of COLING-90.

Hepple, M. 1990b. The Grammar and Processing
of Order and Dependency: A Categorial Approach.
Ph.D. dissertation, Centre for Cognitive Science,
University of Edinburgh.

Hepple, M. 1991. ‘Efficient Incremental Processing
with Categorial Grammar’, Proc. of ACL-27.

Konig, E. 1989, ‘Parsing as natural deduction’, Proc.
of ACL-25.

Konig, E. 1990, ‘The complexity of parsing with ex-
tended categorial grammars’, Proc. of COLING-90.

Konig, E. 1991, ‘Parsing categorial grammar.” DY-
ANA, deliverable R1.2.C.

Lambek, J. 1958. ‘The mathematics of sentence struc-
ture.” American Mathematical Monthly 65. 154-170.

Morrill, G. 1989. ‘Intensionality, boundedness, and
modal logic.” Research Paper EUCCS/RP-32,
Centre for Cognitive Science, University of Edin-
burgh.

Morrill, G. 1990. ‘Intensionality and Boundedness’,
Linguistics and Philosophy, 13.

Morrill, G., Leslie, N., Hepple, M. and Barry, G. 1990.
‘Categorial Deductions and Structural Operations’,
in Barry and Morrill, 1990.

Prawitz, D. 1965. Natural Deduction: a Proof Theor-
etical Study, Almqvist and Wiksell, Uppsala.

Steedman, Mark. 1987. ‘Combinatory Grammars and
Parasitic Gaps’, NLLT, 5:3.

Szabolesi, A. 1987 ‘On Combinatory Categorial gram-
mar’, Proc. of the Symposium on Logic and Lan-
gquage, Debrecen, Akadémiai Kiad6, Budapest.

