DISCONTINUITY AND THE LAMBEK CALCULUS

Mark Hepple

Department of Computer Science, University of Sheffield, Regents Court,
Portobello Street, Sheffield, UK. Email: hepple@dcs.sheffield.ac.uk

Introduction

This paper is concerned with the treatment of discon-
tinuous constituency within Categorial Grammar. In
particular, I address the problem of providing an ad-
equate formalisation of categorial connectives proposed
by Moortgat (1988), which are useful for handling cer-
tain forms of discontinuous constituency. Despite some
interesting proposals, a satisfactory logic for these con-
nectives has so far remained elusive. I will provide such
a logic, using an approach that falls within the gen-
eral framework of labelled deductive systems (Gabbay,
1991), employing novel methods for reasoning about
linear order in resource usage. The approach is illus-
trated by linguistic applications for extraction, pied-
piping and quantification.

The Lambek calculus

Our general framework is the associative Lambek cal-
culus (L: Lambek, 1958), a system which falls within
the class of formalisms known as Categorial Grammars.
The set of types is freely generated from a set of prim-
itive (atomic) types (e.g. {s, np, ...}), using binary
infix operators \, /, . The ‘meaning’ of these connect-
ives in L is fixed by a semantics for the logic, based
on a (semigroup) algebra of strings (£,), i.e. where
- 1s an associative, non-commutative binary operator,
with two-sided identity ¢, and L is the set of non-empty
(# ¢€) strings over some vocabulary. An interpretation
function []] assigns some subset of £ to each type, sat-
isfying the conditions below for complex types and type
sequences. A type combination Xi,...,X,, = Xg holds
in a model ((£,"), [[]]), if [Xi,....X,JCXol, and is
valid if it is true in all models. There are several for-
mulations of L that all realise this same meaning for
the connectives.!

[XeY] = {zye L |zeX] ayelY]}
[x/Y] = {z €L |VyelY].zye[X]}
IN\X] = {z €L |VyelY].yzelX]}
[X1,..Xn] = {z1can € L |z € [Xil A...Azy € [X,]}

1The alternative formulations include e.g. sequent (Lambek
1958), proof net (Roorda 1991), and natural deduction systems
(Morrill et al. 1990, Barry et al. 1991). Alternative formulations
carry different advantages, e.g. natural deduction is well suited
for linguistic presentation, whereas proof nets have benefits for
automated theorem proving.

Discontinuous type constructors

The Lambek calculus is a purely concatenative system:
where any two types are combined, the string of the
result is arrived at by concatenating the strings of the
types combined. This point is illustrated graphically
in (la,b), for the Lambek functors, where (follow-
ing Moortgat, 1991) each triangle represents a result
string, and unshaded and shaded areas represent func-
tor and argument strings, respectively.

(1) (a) X/Y (b) Y\X (c) X1Y (d) XY
X X X X
Y Y Y Y
Prefixation Suffixation Extraction Infixation

Various linguistic phenomena, however, suggest the
existence of discontinous constituency, i.e. situations
the result string from combining two constituents is
not produced by concatenating the component strings.
(See e.g. Bach, 1981.) Moortgat (1988) suggests aug-
menting L with two discontinuous type constructors.
An eztraction functor X1Y is one whose argument cor-
responds to a non-peripheral (or more precisely, not-
necessarily peripheral) substring of the result of com-
bination, as in (1c¢). An infixation functor X|Y itself
corresponds to a non-peripheral substring of the res-
ult of combination, as in (1d). Given these intuitive
characterisations, two options arise for the meaning of
each connective as to whether the point of insertion of
one string into the other is free (universal) for fixed
(existential). In this paper, I will focus on the exist-
ential variants of the connectives, which appear to be
the most linguistically useful, and whose interpretive
conditions are as follows:

[[XTY]] ={z|3z1,z9. z = z1-79 A VY E[[Y]:I. T1-y-T9 € I:[X]:I}

[[XlY]] ={z|Vy EHYHEIyuyz- Y =y1y2 Ay1-Tya GHXH}

Previous proposals

Each connective should have two inference rules: a rule
of proof (showing how to derive a type containing the
connective), and a rule of use (showing how to employ
such a type). This indicates a possible eight inference
rules that we might hope to state (i.e. proof/use x
universal /existential x infixation/extraction). Various
attempts have been made to provide a logic for the
discontinuous type constructors, but all have proved
unsuccessful or unsatisfactory in some way or another.

Moortgat (1988), for example, uses an ordered se-

quent calculus framework, which allows only two of the
possible eight rules to be stated: a rule of proof for ex-
istential |, and a rule of use for universal |. Moort-
gat (1991) uses a proof method in which types are
not ordered in proof representations, where linear order
constraints and consequences are instead handled using
a system of string labelling, i.e. types are associated
with string terms, which are explicitly manipulated by
inference rules. This approach allows two further rules
to be stated, but the four expressible rules are dis-
tributed one per connective, i.e. a complete logic is
not given for even any one connective. As Versmissen
(1991) notes, Moortgat’s string label system does not
allow the recording of a specific position for inserting
one string into another, as would seem to be required.

Morrill & Solias (1993) avoid this latter problem by
augmenting the string labelling algebra with a non-
associative pairing operator (.,.), allowing labels such
as (s1, s2), indicating an insertion point in between s;
and ss. This system allows versions of | and | operat-
ors to be specified, but ones whose interpretive defini-
tions differ from Moortgat’s. The non-associativity of
pairing gives rise to limited flexibility for the system
in terms of the type combinations that can be derived,
and even the types that can be constructed, e.g. no
functor (X1Y)/Z, where a | argument is not the first
sought, 1s allowed.

Labelled deduction & Lambek calculus

I next develop a formulation of L which can be exten-
ded to allow for the (existential) discontinuity connect-
ives. Our starting point is a lambda term semantics for
implicational L due to Buszkowski (1987), based on
the well known Curry—Howard interpretation of proofs
(Howard, 1969).2 This uses a bidirectional variant of
the lambda calculus whose basic terms are direction-
ally typed variables. If ¢ is a term of type Y\X (resp.
X/Y), and u one of type Y, then (ut)! (resp. (tu)") is a
term of type X. If v is a variable of type Y, and £ a term
of type X, then Nv.t (resp. Xv.t) is a term of type Y\X
(resp. X/Y). A semantics for implicational L is given
by the class of terms which satisfy the conditions: (B1)
each subterm contains a free variable, (B2) no subterm

2Under the Curry—Howard interpretation (Howard, 1969), lo-
gical formulas are regarded as types of expressions in typed
lambda calculus, with atomic formulas corresponding to basic
types, and a formula A—B to the type of functions from A to B.
It is demonstrable that the set of formulas for which there exists
some correspondingly typed lambda term is precisely the theor-
ems of the implicational fragment of intuitionistic logic. Thus,
typed lambda calculus provides a semantics for implicational in-
tuitionistic logic, i.e. an independent characterisation of ‘valid
deduction’, just as the algebraic semantics of I provides an inde-
pendent characterisation of validity for that system. Semantics
for various other logics can be given in terms of classes of typed
lambda terms, i.e. subsets of the typed lambda terms which
satisfy certain stated criteria. van Benthem (1983) provides a
lambda semantics for the system LP, a commutative variant of
L. Wansing (1990) provides lambda semantics for a range of sub-
logics of intuitionisticlogic. The Curry—Howard interpretation so
permeates categorial work that the terms “formula” and “type”
have become almost interchangeable. Note that I have slightly
modified Buszkowski’s notation.

contains > 1 free occurrence of any variable, (B3) each
X (resp. X') binds the leftmost (resp. rightmost) free
variable in its scope.

This semantics can be used in formulating (implica-
tional) L as a labelled deductive system (LDS: Gabbay,
1991).3 Labels are terms of the directional lambda sys-
tem, and propagation of labels is via application and
abstraction in the standard manner. Natural deduction
rules labelled in this way are as follows:

(2) A/B:a B:b [B:v]
r E A:a
A :(ab) /1
A/B:Nv.a
B:b B\A:«a [B:v]
——— 7 \E .
A:(ba)l Aa \I
B\A : Xv.a

We can ensure that only deductions appropriate to
(implicational) L are made by requiring that the la-
bel that results with any inference is a term satisfying
Buszkowski’s three conditions. To facilitate testing this
requirement, I use a function X, which maps from label
terms to the string of their free variables occurring in
the left-right order that follows from type directional-
ity (giving what I call a marker term). A notion of
‘string equivalence’ (=) for marker terms is defined by
the axioms:

(=.1)

(=.2)

(=3)
¥ is recursively specified by the following clauses (where
FV returns the set of free variables in a term), but
it is defined for all and only those terms that satisfy
Buszkowski’s three conditions. Thus, we can ensure
correct deduction by requiring of the label that results
with each inference that there exists some marker term
m such that X(a) = m.

(z.1) X(v) = v where v € Vars
(52) (@) = Ba)2()
where FV(a)NFV(b) =0
(z.3) X((ab)”) = X(a)-X(b)
where FV(a)NFV(b) =0
(24) Y(XNva) =p
where FV(XNv.a) # 0, X(a)=v-3
(2.5) X(Xv.a) =8
where FV(Xv.a) 20, X(a)= [

x.(y.z) : ("L‘.y).z
r=cx
r=ux¢

The following proofs illustrate this LDS (using tm as
shorthand for X(¢) = m, to indicate a significant marker

3In labelled deduction, each formula is associated with a la-
bel, which records information of the use of resources (i.e. as-
sumptions) in proving that formula. Inference rules indicate how
labels are propagated, and may have side conditions which refer
to labels, using the information recorded to ensure correct in-
ferencing. Evidently, the Moortgat (1991) and Morrill & Solias
(1993) formalisms are LDSs.

4Condition B2 is enforced by the requirement on the ap-
plication cases of ¥. Conditions B1 and B3 are enforced by
the first and second requirement on the abstraction cases of %,
respectively.

equivalence):
X/Y:iz Y/Z:y [Z:2]
Y:(yz)” /8
X:(z(yz)")" p = Y-z
X/Z: Xz (z(yz)")"
X/(Y/(Z\Y)):z [Z:2] [Z\Y :y] s
Y : (zy)! . Sz y
Y/(Z\Y) : Xy.(zy)"
/B 5
X:(z Ny.(29)')" =z

X/Z: Nz (z Ny.(zy)")"

This system can be extended to cover product using
the inference rules (3), and the additional X clauses
shown following (with the obvious implicit extensions
of the directional lambda system, and of Buszkowski’s
semantics). Labelling of [eI] inferences is via pairing,
and that of [eE] inferences uses an operator adapted
from Benton et al. (1992), where a term [b/vew].a
implicitly represents the substitution of b for v+w in
a. This rule is used in (4).

(3) [B:v] [C:w] A:a B:b
A:a BeCib NeB:(at) ol
A:[b/vew].a

(2.6) X({a, b)) = X(a)-X(b)
where FV(a)NFV(b) =0
(57) N([bjvew]a) = B-T(b)Bs
where FV(a)NFV(b) =0
Y(a)=frvw-fy
(4) X/Y/Z:z [Z:2] [Y:y] ZeY:w
X/Y i (z2)"
X:((z2)"y)"
ok D)
X :[w/zey].((zz)"y)" . = zew

X/(ZoY) : Nw.([w/zey].((z2)"y)")

JE

\E b
= Tezy

Labelled deduction & discontinuity

This approach can be extended to allow for existential
T and |. These connectives have standard implicational
inference rules, using additional distinguished operat-
ors for labelling (with superscript e for extraction and
i for infixation):

(5) ATB:a B:b [B:v]
B TE A:a
A:(abd) 1
ATB: Xv.a
A|B:a B:b [B:v]
—————|E .
A :(ab) A: a‘ i
A|B:Xv.a

Consider firstly how ¥ must be extended for the ab-
straction cases of the new introduction rules. For a
[11] term such as Xwv.a, the relevant X case allows v to
appear non-peripherally in the marker term of a. For
a [|I] term such as Xv.a, v is allowed to be discon-
tinuous in the marker of a (we shall see shortly how

this is possible), but requires its components to appear
peripherally.

(28) E()\ev.a) = 61'ﬁ2
where FV(Xv.a) Z 0, X(a)=p1vFq
(2.9) Y(Xv.a) =«
where FV(Xv.a) # 0
Y(a)=pry-Pa, Pr1-f2=v

To allow for the new application operators, the marker
system must be extended. Recall that the linear order
information implicit in labels is projected onto the left-
right dimension in markers. With | and |, however,
the possibility exists that either functor or argument is
discontinuous in the result of their combination. For
strings = € [[XTY]] and y € [[Y]], for example, we
know there is some way of wrapping z around y to
give a result in X, but we do not in general know how
the division of & should be made. This problem of un-
certainty is handled by using operators L and R, where
L(m) and R(m) represent indefinite but complement-
ary left and right subcomponents of the marker term
m. (L and R are not projection functions.) This idea
of the significance of L and R is given content via the
additional axiom (= .4), which allows that if the com-
plementary left and right subcomponents of a marker
appear in appropriate left-right juxtaposition, then the
marker’s resources may be treated as continuous.’

(=4) LE)R@)=e

The remaining clauses for X then are:

(2.10) X((ab)®) = L(X(a))-X(b)-R(X(a))
where FV(a)NFV(b) =0

(2.11) X((ab)) = L(Z(b)) B(a) R(X(b))
where FV(a)NFV(b) =0

Some example derivations follow:

X/Y:z [Y:y]
X:(zy)”

X/Y:z [Y:y]
E —/E
/ gmy-s X:(zy)” / 'gsa“y
11

X1Y : Xy.(zy)” XlY:/\iy.(a:y)T

X1lY:x] Y:y
TE ———————|E
X:(zy)?
B! - 11
XT(XLY): Xez.(zy)?

X1Y:x] Y:y
X:(zy)®
XUXTY) : Xz (zy)®

(X/Y)Z:x [Z:2] [Y:y]

1E
X/Y : (zz)® /B
X:((z2)°y)" = L(z)-2-R(z)y
X1Z: Xz ((z2)%y)" p = L(z)R(z)y = =y

(XTZ)/Y : XyXez.((zz)%y)”

5This axiom may be seen as stating the limit of what can be
said concerning ‘uncertainly divided’ resources, i.e. only where
the uncertainty is eliminated by juxtaposition can the L,R oper-
ators be removed, making some otherwise ‘hidden’ resource vis-
ible. Further reasonable axioms (not in practice required here)
are L(¢) =¢ and R(e) =&, l.e. the only possible left and right
subcomponents of an ‘empty’ marker are likewise empty.

X/Y:z [Y1Z:y] [Z:2]
— 1 E
Y:(yz)© /8
X:(z(yz)e)" 2 z-L(y)-z-R(y)
X1Z: Xz (z(yz)®)" = Ty
J1

(XTZ)/(Y1Z) : XyXz.(z(yz)¢)"

Word order and NL semantics

Labels encode both the functional structure and lin-
ear order information of proofs, and hence are used
in identifying both the NL semantic and word order
consequences of combinations. Label terms, however,
encode distinctions not needed for NL semantics, but
can easily be simplified to terms involving only a single
abstractor (A) and with application notated by simple
left-right juxtaposition, e.g.
XXz (z(yz)") ~ Azdz.((y2)z).

To determine the linear order consequences of a proof
with label a, we might seek a marker m consisting only
of concatenated variables, where X(a) =m. These vari-
ables would be the labels of the proof’s undischarged
assumptions, and their order in m would provide an
order for the types combined under the proof. Altern-
atively, for linguistic derivations, we might substitute
lexical string atoms in place of variables, and seeker a
marker consisting only of concatenated string atoms,
i.e. a word string. This method is adequate for ba-
sic L, but problems potentially arise in relation to the
discontinuity connectives.

Consider the transformation X/Y = X1Y. The con-
nective of the result type does not record all the lin-
ear order import of the input type’s connective, and
neither consequently will the application label operator
for a subsequent [JE]. However, S-normalisation yields
a simpler label term whose operators record the linear
order information originally encoded in the connect-
ives of the types combined. For example, the following
proof includes a subderivation of X/Y = X1Y. The
overall proof term does not simply order the proof’s
assumptions under ¥ (giving marker L(z)-y-R(z)), but
its B-normal form (zy)" does (giving z-y).

X/Y:z [Y:v] Y:y

X:(zv)" B
-
X1Y : Xv.(zv)”

X ((Xv(zv)7) y)°©

Of course, normalisation can only bring out ordering
information that s implicit in the types combined. For
example, the combination XY :2,Y:y = X:(zy)°¢ is
a theorem, but the label (zy)¢ does not simply order
x and y. However, if we require that lexical subcat-
egorisation is stated only using the standard Lambek
connectives, then adequate ordering information will
always be encoded in labels to allow simple ordering
for linguistic derivations. Alternatively, we could allow
discontinuity connectives to be used in stating lexical
subcategorisation, and further allow that lexical types
be associated with complex string terms, constructed

using label operators, which encode the requisite order-
ing information. For example, a word w with lexical
type X1Y might have a string term Xv.(wv)", which
does encode the relative ordering of w and its argu-
ment. A more radical idea is that deduction be made
over lexical types together with their (possibly com-
plex) lexical string terms, and that the testing of side
conditions on inferences be done on the S-normal form
of the end label, so that the implicit ordering informa-
tion of the lexical string term is ‘brought out’, extend-
ing proof possibilities. Then, the lexical units of the
approach are in effect partial proofs or derivations.®
Such a change would greatly extend the power of the
approach. (We shall meet a linguistic usage for this
extension shortly.)

Linguistic applications

We shall next briefly consider some linguistic uses of
the discontinuity connectives in the new approach. The
most obvious role for 1 is in handling extraction (hence
its name). Adapting a standard approach, a relative
pronoun might have type rel/(snp), i.e. giving a re-
lative clause (rel) if combined with sTnp (a ‘sentence
missing a NP somewhere’). Note that standard L al-
lows only types rel/(s/np) and rel/(np\s), which are
appropriate for extraction from, respectively, right and
left peripheral positions only. For example, whom Mary
considers _ foolish can be derived under the following
proof. The atom string (6a) results via substitution of
lexical string terms in the proof label, and ¥. Substi-
tution of lexical semantics and deletion of directional
distinctions gives (6b).

(whom) (mary) (considers) (foolish)
rel/(sTnp):w np:z ((np\s)/adj)/np:y [np:u] “ adj:z
(np\s)/adj: (yu)”
/E

np\s: ((yu)"2)"
\E
s:(2((yu)"2)")!
sTop : Xu.(z((yu)"2)")
rel : (w /\eu.(l‘((yu)TZ)r)l)r

11

l
/E

(6) a. whom-mary-considers-foolish
b. whom' (Au.considers’ u foolish’ mary’)

Moortgat (1991) suggests that a (for example) sen-
tentially scoped NP quantifier could be typed s|(snp),
if infixation and extraction could be linked so that in-
fixation was to the position of the ‘missing np’ of sTnp.”
Such linkage does not follow from the definitions of the
connectives but can be implemented in the present ap-
proach by assigning a complex lexical string term, as
in the lexical entry (<TYPE,STRING,SEM>):

SThis idea invites comparisons to formalisms such as lezical-
ised tree adjoining grammar (see Joshi et al, 1991), where the
basic lexical and derivational units are partial phrase structure
trees associated with lexical items.

"In the approach of Morrill & Solias (1993) such linkage fol-
lows automatically given the interpretive definitions of their con-
nectives. Moorgat (1990,1991) proposes special purpose quanti-
fication type constructors.

<s|(sTnp), Xu.(u someone)®, someone’ >
Such a string term would result under a ‘type raising’
transformation such as: np = s|(snp). The example
John gave someone money can be derived as follows,
with string and semantic results in (7).

(gave) (money)

(someone) (john)
s|(sTnp):¢ np:z ((np\s)/np)/np:y [np:v] Enp:z

(np\s)/np: (yv)”

np\s: ((yv)"z)"
E
st (z((yv)"2)")!
sTap: Xv.(z((yv)"2)")!
s: (g Xv.(z((yv)"2)")H)"

/E

11

|E

(7) a. john-gave-someone-money
b. someone’ (Av.gave’ v money’ john’)

There is a sense in which this view of quantifiers
seems very natural. Quantifiers behave distribution-
ally like simple NPs, but semantically are of a higher
type. Raising the string component under the trans-
formation np = s|(s{np) resolves this incompatibility
without imposing additional word order constraints.

This account as stated does not allow for multiple
quantification,® but would if lexical string terms were
treated as partial proofs used in assembling larger de-
rivations, as suggested in the previous section.

In interesting test case, combining both movement
and scope issues, arises with pied piping constructions,
where a wh-item moving to clause initial position is ac-
companied by (or ‘pied pipes’) some larger phrase that
contains it, as in e.g. the relative clause to whom John
spoke, where the PP t{o whom is fronted. Following
Morrill & Solias (1993), and ultimately Morrill (1992),
a treatment of pied piping can be given using | and |.
Again, linkage of infixation and extraction is achieved
via complex lexical string assignment. A PP pied-
piping relative pronoun might be (rel/(s1pp))|(ppTnp)
allowing it to infix to a NP position within a PP, giving
a functor rel/(sTpp), i.e. which prefixes to a ‘sentence
missing PP’ to give a relative clause. Hence, for ex-
ample, to whom would have type rel/(spp), and so to
whom John spoke is a relative clause. The lexical se-
mantics of whom will ensure that the resulting meaning
is equivalent to the non-pied piping variant whom John
spoke to.

References

Bach, E. 1981. ‘Discontinuous Constituents in Gener-
alized Categorial Grammars.” NELS, 11, ppl-12.

Barry, G., Hepple, M., Leslie, N. and Morrill, G. 1991.
‘Proof figures and structural operators for categorial
grammar’. In Proc. of FACL-5, Berlin.

van Benthem, J. 1983. ‘The semantics of variety in
Categorial Grammar.” Report 83-29, Dept. of Math-

8For example, we might seek to extend the proof just given
by abstracting over z in a [1I] inference, as a basis for adding in a
further quantifier, but the current proof label would not license
such an inference, due to the presence of the ()z application.

ematics, Simon Fraser University. Also in W. Busz-
kowski, W. Marciszewski and J. van Benthem (Eds),
Categorial Grammar, Vol. 25, Linguistic and Literary
Studies in Eastern Europe, John Benjamins. 1988.

Benton, N., Bierman, G., de Paiva, V. & Hyland, M.
1992, “Term assignment for intuitionistic linear logic.’
Technical Report, Cambridge University Computer
Laboratory.

Buszkowski, W. 1987. ‘The Logic of Types.” In J.
Srzednicki (Ed), Initiatives in Logic, Martinus Nijhoff
Publishers, Dordrecht.

Gabbay, D. 1991. Labelled deductive systems. Draft
1991. (to appear: Oxford University Press).

Hepple, M. 1990. The Grammar and Processing of Or-
der and Dependency: A Categorial Approach. Ph.D.
dissertation, Centre for Cognitive Science, University
of Edinburgh.

Howard, W.A. 1969. ‘The formulae-as-types notion of
construction.” In J.R. Hindley & J.P. Seldin (Eds), To
H.B. Curry, Essays on Combinatory Logic, Lambda
Calculus and Formalism, AP, 1980.

Joshi, A.K., Vijay-Shanker, K. & Weir, D. 1991. ‘The
convergence of mildly context-sensitive formalisms’.
In P. Sells, S. Shieber & T. Wasow (Eds.) Founda-
tional issues in Natural Language Processing. MIT
Press, Cambridge MA.

Lambek, J. 1958. “The mathematics of sentence struc-
ture.” American Mathematical Monthly, 65.

Moortgat, M. 1988. Categorial Investigations: Logical
and Linguistic Aspects of the Lambek Calculus, Foris,
Dordrecht.

Moortgat, M. 1990. ‘The quantification calculus.” In
Hendriks, H. and Moortgat, M. (Eds), Theory of Flez-
tble Interpretation. Esprit DYANA Deliverable R1.2.A,
Institute for Language, Logic and Information, Uni-
versity of Amsterdam.

Moortgat, G. 1991. ‘Generalized Quantification and
Discontinuous type constructors’. To appear: W. Sijts-
ma & A. van Horck (Eds) Proc. Tilburg Symposium
on Discontinuous Constituency. De Gruyter.

Morrill, G. 1992. ‘Categorial Formalisation of Relativ-
isation: Pied Piping, Islands and Extraction Sites.’
Research Report, Dept. de Llenguatges i Sistemes In-
formatics, Universitat Politécnica de Catalunya.

Morrill, G. & Solias, M. T. 1993. ‘Tuples, Discontinuity,
and Gapping in Categorial Grammar.” In: Proc. of
EACL-6, Utrecht.

Roorda, D. 1991. Resource Logics: Proof Theoretical
Investigations. Ph.D. Dissertation, Amsterdam.

Versmissen, K. 1991. ‘Discontinuous type construct-
ors in Categorial Grammar.” ms. OTS, Universiteit
Utrecht, Netherlands.

Wansing, W. 1990. ‘Formulas-as-types for a hierarchy
of sublogics of Intuitionistic Propositional Logic.” ms.
Institut fur Philosophie, Freie Universitat Berlin.

