A Compilation-Chart Method for
Linear Categorial Deduction

Mark Hepple
Dept. of Computer Science
University of Sheffield
Regent Court, 211 Portobello Street
Sheffield S1 4DP, UK
hepple@dcs.shef.ac.uk

Abstract

Recent work in categorial grammar has
seen proposals for a wide range of sys-
tems, differing in their ‘resource sensit-
ivity’ and hence, implicitly, their under-
lying notion of ‘linguistic structure’. A
common framework for parsing such sys-
tems is emerging, whereby some method
of linear logic theorem proving is used in
combination with a system of labelling
that ensures that only deductions appro-
priate to the relevant categorial formal-
ism are allowed. This paper presents a
deduction method for implicational lin-
ear logic that brings with it the be-
nefit that chart parsing provides for
CFG parsing, namely avoiding the need
to recompute intermediate results when
searching exhaustively for all possible
analyses. The method involves compil-
ing possibly higher-order linear formu-
lae to indexed first-order formulae, over
which deduction is made using just a
single inference rule.

1 Introduction

This paper presents a method applicable to pars-
ing a range of categorial grammar formalisms, in
particular ones that fall within the ‘type-logical’
tradition, of which the (associative) Lambek cal-
culus L is the most familiar representative (Lam-
bek, 1958). Recent work has seen proposals for a
range of such systems, differing in their resource
sensitivity (and hence, implicitly, their underly-
ing notion of ‘linguistic structure’), in some cases
combining differing resource sensitivities within a
single system.! Some of these proposals employ a
‘labelled deduction’ methodology (Gabbay, 1994),
whereby the types in a proof are associated with
labels under a specified discipline, the labels re-

1See, for example, the formalisms developed in
Moortgat & Morrill (1991), Moortgat & Oehrle
(1994), Morrill (1994), Hepple (1995).

cording proof information as a basis for ensuring
correct inferencing.

Alongside such developments, various work has
addressed the associated parsing problem.? Of
particular interest here are systems that employ
a theorem proving method that is (perhaps im-
plicitly) appropriate for use with linear logic, and
combine it with a labelling system that restricts
admitted deductions to be those of some weaker
logic. Moortgat (1992) shows how a linear proof
net method may be combined with a range of la-
belling disciplines to provide deduction for a range
of categorial systems. Morrill (1995) shows how L
types may be translated to labelled implicational
linear types, with deduction implemented via a
version of SLD resolution. The crucial observa-
tion is that linear logic stands above all of the
type-logical systems proposed as categorial form-
alisms in the hierarchy of substructural logics, and
hence linear logic deduction methods can provide
a common basis for parsing all of these systems.

The present work contributes to this project by
providing a method of deduction for the implic-
ational fragment of linear logic that, like chart
parsing for PSG, avoids recomputation of results,
i.e. where any combination of types contributes
to more than one overall analysis, it need only
be computed once. In what follows, I will first
introduce deduction for implicational linear logic,
and discuss its incompatibility with a chart-like
deduction approach, before presenting a compil-
ation method that converts formulae to a form
for which a chart-like deduction method is pos-
sible. Finally, T will introduce the Morrill (1995)
method for translating Lambek types to labelled
linear types, as a basis for illustrating how the
chart-compilation method can be used as a gen-
eral framework for categorial deduction, via the
use of such translations.

2 Approaches include sequent proof normalisation
methods for L (Konig, 1989; Hepple, 1990; Hendriks,
1992), chart parsing methods for L (Kénig, 1990;
Hepple, 1992), and proof net methods for a range of
systems (Roorda, 1991; Moortgat, 1992).



2 Implicational Linear Logic

Linear logic is an example of a “resource-sensitive”
logic, requiring that in any deduction, every as-
sumption (‘resource’) is used precisely once. We
consider only the implicational fragment of (in-
tuitionistic) linear logic.® The set of formulae F
arises by closing a (nonempty) set of atomic types
A under the linear implication operator o— (i.e.
F 2= A | Fo—F). Various alternative formula-
tions are possible. We here use a natural deduc-
tion formulation, requiring the following rules (o—
elimination and introduction respectively):

Ao-B:a B:b [B:v]
————_ oE A:a
A (ab) - 1
Ao-B:Av.a

Eliminations and introductions correspond to
steps of functional application and abstraction, re-
spectively, as the lambda term labelling reveals.
The introduction rule discharges precisely one as-
sumption (B) within the proof to which it applies
(ensuring linear use of resources, i.e. that each
resource is used precisely once). Consider the fol-
lowing proof that Xo—Y, Yo—7Z = Xo-7

Xo-Y:z Yo-Z:y [Z:7]
Y :(yz)
X:(z(y2))

Xo—7Z:Az.(x(yz))

Following Prawitz (1965), a normal form for
proofs can be defined using just the following
(meaning preserving) contraction rule (analogous
to B-conversion). This observation is of note in
that it restricts the form of proofs that we must
consider in seeking to prove some possible the-
orem.

(B]
A . >
- : B
Ao-B B A
A

The normal form proofs of this system have a
straightforward structural characterisation, that
their main branch (the unique path from an as-
sumption to the proof’s end-type that includes no

21t follows that the parsing method to be developed
applies only to categorial systems having only implic-
ational connectives. It is standard in categorial calculi
to include also a ‘product’ operator, enabling matter
like addition of substructures, e.g. L has a product
(commonly notated as) e, with the Lambek implica-
tionals / and \ being its left and right residuals. Al-
though it is appealing from a logical point of view to
include such operators, their use is not motivated in
grammar.

minor premise of an elimination inference) con-
sists of a sequence of (> 0) eliminations followed
by a sequence of (> 0) introductions.

The differential status of the left and right hand
side formulae in a sequent may be addressed in
terms of polarity, with left formulae being deemed
to have positive polarity, and the right formula
to have negative polarity. Polarity applies also
to subformulae, i.e. in a formula Xo—Y with a
given polarity p, the subformula X has the same
polarity p, and Y has the opposite polarity. For
example, a positively occuring higher-order type
might have the following pattern of positive and
negative subformulae: ( Xt o— (Y~ o— Z% )= )*
Consider the following proof involving this type:

Xo—(Yo-Z) Yo-W Wo-7Z [Z]

W

Yo-7

X

Observe that the involvement of ‘hypothet-
ical reasoning’ in this proof (i.e. the wuse
of an additional assumption that is later dis-
charged) is driven by the presence of the higher-
order formula, and that the additional as-
sumption in fact corresponds to the positive
subformula occurrence Z within that higher-
order formula. In the following proof that
Xo—(Yo—(Yo-Z)) = Xo—Z, hypothetical reason-
ing again arises in relation to positive subformu-
lae, i.e. the subformula Yo—Z of the higher-order
formula ( Xt o— (Y~ o= (Yt o— Z7 )t )7 ¥,
as well as the subformula Z of the (overall neg-
ative) goal formula (X~ o— Z* )™,

Xo-(Yo-(Yo-2))  [Yo-7] [2]
Y
Yo—(Yo-7)
X
Xo-7

More specifically, additional assumptions link
to mazimal positive subformulae, i.e. a
subformula Y+ in a context of the form
(X= o= Y*)", but not in (Yt o Z7)F.
For an even more complex formula, e.g.
(VF 0-(W™ o—(XF o-(Y~ o 7% )= )* ) )*,
we might find that a proof would involve not only
an additional assumption corresponding to the
positive subformula Xo—(Yo-Z)), but that reas-
oning with that assumption would in turn involve
a further additional assumption corresponding to
its positive subformula Z.



3 A Compilation-Chart Method

Standard chart parsing for PSG has the advantage
that a simple organising principle governs the stor-
age of results and underpins search, namely span
within a linear dimension, specified by limiting left
and right points. A further crucial feature is that
what we derive as an item for any span is purely a
function of the results derived for substretches of
that span, and ultimately of the lexical categories
that it dominates (assuming a given grammar).
Deduction in implicational linear logic lacks both
of these features, although, as we shall see shortly,
some notion of ‘span’ can be specified. The cru-
cial problem for developing a chart-like method
is the fact that, in combining any two elements
A,B = C, there is an infinite number of possible
results C we could derive, and that what we in
fact should derive depends not just on the for-
mulae themselves, but upon other formulae that
might combine with that result. More particu-
larly, the reasoning needed to derive C is liable to
involve hypothetical elements whose involvement
is driven by the presence of some higher-order type
elsewhere.

First-Order Linear Deduction

Let us begin by avoiding this latter problem by
considering the fragment involving only first-order
formulae, i.e. those defined by F ::= A | Fo—A,
and furthermore allow only atomic goals (i.e. so
A is atomic in any I' = A). Consequently, the
[o—1I] rule is not required, and hypothetical reas-
oning excluded. In combining types using just
the remaining elimination rule, we must still en-
sure linear use of resources, i.e. that no resource
may be used more than once in any deduction,
and that in any overall deduction, every resource
has been used. These requirements can be en-
forced using an indexation method, whereby each
initial formula in our database is marked with a
unique index (or strictly a singleton set contain-
ing that index), and where a formula that results
from a combination is marked with the union of
the index sets of the two formulae combined.* We
can ensure that no initial assumption contributes
more than once to any deduction by requiring that
wherever two formulae are combined, their index
sets must be disjoint. Thus, we require the fol-
lowing modified [o—E] rule (where ¢, ¢, 7 are index
sets, and W denotes union of sets that are required
to be disjoint):

¢:Ao—B:a ¢¥:B:b
m:A:(ab)

T = Wy

In proving I' = A, a successful overall analysis is
recognised by the presence of a database formula

*See Lloré & Morrill (1995) for a related use of
indexing in ensuring linear use of resources.

A whose index set is the full set of indices as-
signed to the initial formulae in I'. For example,
to prove Xo—X, Xo—X, Xo—Y, Y = X, we might
start with a database containing entries as follows
(the numbering of entries is purely for exposition):

1. 2:Xo—X:v

2. j:Xo—X:w

3. k:Xo-Y:z

4. 1:Y:y
Use of the modified elimination rule gives addi-
tional formulae as follows:

5. {k,1}:X:zy [3+4]

6. {i,k,1}:X:v(xy) [145]

7. {4,k X w(xy) [245]

8. {44,k 1} X v(w(zy)) [147]

9. {44,k }: X w(v(zy)) [246]
There are two successful analyses, numbered 8 and
9, which we recognise by the fact that they have
the intended goal type (X), and are indexed with
the full set of the indices assigned to the initial
left hand side formulae. Note that the formula
numbered 5 contributes to both of the sucessful
overall analyses, without needing to be recom-
puted. Hence we can see that we have already
gained the key benefit of a chart approach for PSG
parsing, namely avoiding the need to recompute
partial results. It can be seen that indexing in
the above method plays a role similar to that of
‘spans’ within standard chart parsing.

An adequate algorithm for use with the above
approach is easily stated. Given a possible the-
orem Bi,...,B, = A, the left hand side formu-
lae are each assigned unique indices and semantic
variables, and put on an agenda. Then, a loop
is followed in which a formula is taken from the
agenda and added to the database, and then the
next formula is taken from the agenda and so on
until the agenda is empty. Whenever a formula
is added to the database, a check is made to see
if it can combine with formulae already there, in
which case new formulae are generated, which are
added to the agenda. When the agenda is empty, a
check is made for any successful overall analsyses,
identified as described above. Note that since the
result of a combination always bears an index set
larger than either of its parent formulae, and since
the maximal index set that any formula can carry
includes all and only the indices assigned to the
original left hand side formulae, the above process
must terminate.

Higher-Order Linear Deduction

Let us turn now to the general case, where higher-
order formulae are allowed. The method to be
described involves compiling the initial formu-
lae (which may be higher-order) to give a new,
possibly larger, set of formulae which are all
first order. We observed above how hypothet-
ical reasoning in a proof is driven by the pres-
ence within higher-order formulae of positively oc-



curring subformulae. The compilation method in-
volves identifying and excising such subformulae
(thereby simplifying the containing formulae) and
including them as additional assumptions. For ex-
ample, this method will simplify the higher-order
formula Xo—(Yo—Z) to become Xo—Y, generating
an additional assumption of Z. The two key chal-
lenges for such an approach are firstly ensuring
that the additional assumptions are appropriately
used (otherwise invalid reasoning will follow), and
secondly ensuring that a proof term appropriate
to the original type combination is returned.
Consider an attempt to prove the (invalid) type
combination: Xo—Zo—(Yo-Z), Y = X. Compil-
ation of the formula Xo—Zo—(Yo—7Z) yields two
formulae Xo—Zo—Y and Z, so the initial query
becomes Xo—Zo—Y, Z, Y = X, which is provable.
The problem arises due to inappropriate use of the
additional formula Z, which should only be used
to prove the argument Y (just as Z’s role would
be to contribute to proving the argument Yo—Z
in a standard proof involving the original formula
Xo—Zo—(Yo—7)). The solution to this problem re-
lies upon the indexing method adopted above.
The additional assumption generated in compiling
a higher-order formula such as Xo—(Yo—7) will it-
self be marked with a unique index. By recording
this index on the argument position from which
the additional assumption was generated, we can
enforce the requirement that the assumption con-
tributes to the derivation of that argument. Note
that a single argument position may give rise to
more than one additional assumption, and so in
fact an index set that should be recorded. For ex-
ample, The (indexed) formula ¢ : Xo—(Yo—Zo—W)
will compile to give three indexed formulae:
i:Xo—(Y:{4,k}) J:Z kW
We require a modified elimination rule that will
enforce appropriate usage:®

¢:Ao—(B:a):a
m:A:(ab)

v:B:b

T = oWy
a C

Note that the compilation process must also gen-
erate additional assumptions corresponding to the
positive subformulae of the right hand side of a
query, e.g. compilation of Xo—Y, Yo—7 = Xo-7
simplifies the right hand side formula to atomic
X, giving and additional assumption Z.

The second challenge we noted for such an ap-
proach is ensuring that a proof term (loosely, the

®Note the requirement that o is a proper subset of
¥, which will have the consequence that other assump-
tions must also contribute to deriving the argument
B. This will block a derivation of the linear logically
valid Xo—(Yo-Y) = X. However, this move accords
with general categorial practice, where it is standard
to require that each deduction rests on at least one as-
sumption. The alternative regime is easily achieved,
by making the condition o C %.

‘semantic recipe’ of the combination) appropri-
ate to the original type combination is returned.
Let us illustrate how this can be achieved with a
simple example. Consider the following proof:

Xo—(Yo-7):z

Yo-W:y Wo-Z:w

W:wz

[Z: 2]

Y y(wz)
Yo7 : Az.y(wz)
X:z(Azy(wz))

Deriving the argument Yo—Z7 of the higher-order
formula involves a final introduction step, which,
semantically, corresponds to an abstraction step
that binds the variable semantics of the additional
assumption Z. The possibility arises that com-
pilation might insert the abstraction into the se-
mantics of the compiled formula, so that it later
binds the variable of the additional formula. For
example, compilation of Xo—(Yo—Z) might yield
Xo—Y with term Ay.z(Az.y) and Z with variable
term z, so that combining the former with some
formula derived from the latter (i.e. whose term
included z) would cause the free occurrence of z to
become bound, giving a result such as z(Az.f(z)).
In that case, we can see that although compila-
tion has eliminated the need for an explicit in-
troduction step in the proof, the step still occurs
implicitly in the semantics.

Of course, anyone familiar with lambda calcu-
lus will immediately spot the flaw in the preced-
ing proposal, namely that the substitution process
that is used in S-conversion is carefully stated to
avoid such ‘accidental binding’ of variables (by re-
naming bound variables, wherever required). We
will instead use a special variant of substition
which specifically does not act to avoid accidental
binding, notated _[_/_] (e.g. t[s//v] to indicate
substitution of s for v in ¢). Note that the assign-
ment of term variables in the approach in general
is such that other cases of ‘accidental binding’ (i.e.
beyond those that we want) will not occur. In-
corporating this idea, we arrive at the following
(final) version of the elimination rule

¢:Ao—(B:a): Av.a
7:Aalb)v]

Note that the form of the rule requires the im-
plicational formula that it operates upon to be of a
certain form, i.e. involving an abstraction (Av.a).
This requirement is met by all implicationals, (as
a side effect of the compilation process.

A precise statement of the compilation proced-
ure (7) is given in Figure 1. This takes a sequent
I' = A:z asinput, where every left and right hand
side formulais labelled with a unique variable, and
returns a structure (A, (¢ : G : u)), where A is a
set of indexed first order formulae, ¢ is the full

v:B:b  wm= oWy

a C Y




(X121, X t2n > Xo:2o) = (A, (¢ : G :u))
where i, ..., 1, fresh indices
neg(io : Xo : 2g) = (do : G : w)&l
A =TUpos(iy : X1 : 21)
Uu...
Upos(in : Xy @ 2p)
¢ = indices(A).

pos(i: X :¢)=(i: X :t) where X atomic.
pos(i: X10-Y7 :t) = (i : Xo0— (Y3 : @) : Au.s)
Urua
where neg(i: Y7 :v) = (i : Yy : w)wl
(v a fresh variable)
pos(i: X1 : (tv)) = (i : Xo: s)WA
¢ = indices(T").

neg(¢: X :v) =(¢: X :v) where X atomic.
neg(i: X10-Y1 tu)=(i: Xo :w)UTUA
where u := Av.z (v, z fresh variables)
neg(i: Xy :a) = (i: X2 :w)dl
pos(j: Y1 :v) = A (Jj a fresh index).

Figure 1: The compilation procedure

set of indices, G is an atomic goal type, and u a
variable. Let A* denote the result of closing A
under the elimination rule. The sequent is proven
iff (¢ : G :u) e A* for some assignment of a
value to u. Under that assignment, the original
right hand side variable z will return a complete
proof term for the implicit proof of the original
sequent. Note that the proof terms so produced
have a form which corresponds, under the Curry-
Howard isomorphism, to normal form deductions
(as defined earlier).

A simple example. Compilation of the sequent:

Xo—(Yo-Z):2, Yo-W:y Wo-Z:w = X:v
yields the goal specification ({7, j, k,{}:X:v) and
formulae 1-4, with formulae 5-7 arising under com-
bination. Formula 7 meets the goal specification,
so the initial sequent is proven, with proof term
z(Az.y(wz)) returned.
i:Xo—(Y:{j}): Au.z(Az.u)
3:7:z
k:Yo—W:Au.yu
l:Wo-Z: Au.wu
{j,1} :W:wz
{,k,1}:Y :y(wz) [3+5]
{i,7,k, 1} : X:2(Az.y(wz)) [146]

The indexed first-order formulae generated by
the compilation procedure can be processed us-
ing precisely the same algorithm as that described
above for handling formulae of the first-order frag-
ment, with precisely the same benefit, i.e. avoid-
ing recomputation of partial results.

Some efficiency questions arise. Imagine a Pro-
log implementation of the method, with indexed
formulae being stored as facts (‘edges’) in the Pro-

[2+4]

SO Ot 2N

log database. An important overhead will arise
when adding an agenda item to the database from
locating those formula already there that the cur-
rent formula can combine with, i.e. if we must
separately access every formula already stored to
evaluate if indexation requirements are satisfied,
and combination possible. Note firstly that, since
compiled formulae are all first-order, if we are
adding an atomic formula we need only look to
stored implicational formulae for possible combin-
ations, and vice versa. This is easily achieved.
The problem of evaluating indexation require-
ments can be eased by using a bit-vector encoding
of index sets. The compilation process will return
a full set I of the unique indices assigned to any
formulae. If we impose an arbitrary order over
the elements of this set, we can then encode the
extension of any index set we encounter using an
n-place bit-vector, where n is the cardinality of I,
i.e. if some index set contains the ith element of
(ordered) I, then the ith element of its bit-vector
is 1, otherwise 0. It is useful to store fully specified
bit-vectors with atomic formulae, specifying their
index set. For implicational formula, however, it
is useful to store a bit-vector encoding its require-
ments for an appropriately indexed argument, i.e.
with Os instantiated for the elements of the implic-
ational’s own index set (to enforce disjointness of
index sets), and with 1s appearing for those in-
dices that it requires have been involved in deriv-
ing the argument. Other positions will be filled
with anonymous variables. The bit-vectors for an
implicational and an atomic formula will match
just in case they are permitted to combine, accord-
ing to indexation requirements. (The one shortfall
here is that the method allows the implicational to
specify that certain indices are a subset of those of
the argument, but not that they are a proper sub-
set thereof.) By storing such vectors with formu-
lae in the database, indexation requirements can
be checked by the process of matching to the data-
base, so that only appropriate entries are brought
out for further examination.

4 Labelling and Lambek Calculus

As discussed in the introduction, the above
method is proposed as a general method for pars-
ing categorial systems, via a tranformation of for-
mulae from the relevant system to linear formu-
lae. Such translation should induce labelling that
imports the constraints of the original weaker lo-
gic. In that case, although we employ a general
method for implicational linear deduction, the res-
ults we derive will be all and only those that re-
flect validity of the weaker system. I will illustrate
this idea by considering one of two such transla-
tion methods described by Morrill (1995). This
method is based on a relational algebraic model
for L (van Benthem, 1991), which interprets types
as relations on some set V' (intuitively, pointal



string positions), i.e. sets of ordered pairs from
V x V (intuitively, strings identified by delimiting
points):

D(A\B) = {(va,v3) | V(v1,v2) € D(A),
(v1,v3) € D(B)}

D(B/A) = {(v1,v2) | V(v2,v3) € D(A),
(v1,v3) € D(B)}

Morrill specifies polar translation functions,
which convert Lambek types that are marked
for position (‘span’) to labelled linear formulae.
The translation functions are identity functions
on atomic formulae, and for complex formulae are
defined mutually as follows (where each super-
script p stands for one of the functions, with p
indicating the complementary function to p):

i—k:B? o i—3j:AP  whereiis a new
variable/constant

j—k’:A\Bp as pis +/—
i—k:B? o j—k:AP  where kis a new
variable/constant

i—j:B/Ap as pis +/—

A sequent Bi,...,B, = A is translated as:
0—-1:BF,...,(n=1)—n:BFf=0-n:A4"
For example, X/(Y/Z), Y/W, W/Z = X trans-
lates to give the following linear formulae (where
i,j,1 are variables, and k a constant):

Database: (0 —#:X)o—((2 — k:Y)o—(i — k:Z))
(1—7:Y)o—(2 —7:W)
(2—-1W)o—(3-1:7)

Goal: (0-3:X)

Such linear formulae can be used with any linear
deduction method, given the (trivial) additional
task of unifying variables and constants in the
string position labels. Note that for cases that are
not L valid, but where the translation is linear lo-
gically valid, deduction will fail due to unification
failure for string position labels. A minor com-
plication arises for using this approach with the
compilation-chart method described above. For
example, the higher-order formula would compile
to two indexed formulae:

a:(0 —:X)o—(2 — k:Y): Ay.z(Az.y)

b:(i — k:Z):z
Note that the string position variable ¢ appears in
both resulting formulae. For an overall deduction
employing these two formulae to be correct, the
binding of the two instances of ¢ must be consist-
ent. However, we cannot simply employ a global
binding context since the chart method should be
able to return alternative proofs of the same the-
orem, and such alternative proofs will typically in-
duce distinct (but internally consistent) bindings
over string position variables. Variable bindings
must instead be handled locally, i.e. each formula
in the database will carry with it a context in-
dicating bindings that have been made in its de-

rivation. Where two formula are combined, their
contexts are merged (and must be consistent).

References

van Benthem, J. 1991. Language in Action: Cat-
egories, Lamdas and Dynamic Logic. Studies in
Logic and the Foundations of Mathematics, vol
130, North-Holland, Amsterdam.

Gabbay, D.M. 1994. Labelled deductive systems.
Part I: Foundations. Oxford University Press
(to appear). First draft 1989, current draft May
1994.

Hendriks, H. 1992. ‘Lambek Semantics: normal-
isation, spurious ambiguity, partial deduction
and proof nets’, Proc. of Fighth Amsterdam
Colloguium, ILLI, University of Amsterdam.

Hepple, M. 1990. ‘Normal form theorem proving
for the Lambek calculus’, Proc. of COLING-90.

Hepple, M. 1992. ¢ Chart Parsing Lambek Gram-
mars: Modal Extensions and Incrementality’,
Proc. of COLING-92.

Hepple, M. 1995. ‘Mixing Modes of Linguistic
Description in Categorial Grammar’, Proceed-
ings FACL-7, Dublin.

Konig, E. 1989, ‘Parsing as natural deduction’,
Proc. of ACL-25.

Konig, E. 1990, ‘The complexity of parsing
with extended categorial grammars’, Proc. of
COLING-90.

Lambek, J. 1958. The mathematics of sentence
structure. American Mathematical Monthly 65.

Lloré, F.X. & Morrill, G. 1995. ‘Difference Lists
and Difference Bags for Logic Programming
of Categorial Deduction’;, Proc. of SEPLN XI,
Duesto.

Moortgat, M. 1992. ‘Labelled deductive sys-
tems for categorial theorem proving’, Proc.
of Eighth Amsterdam Colloguium, ILLI, Uni-
versity of Amsterdam.

Moortgat, M. & Oehrle, R. 1994. ‘Adjacency,
dependency and order’. Proc. of Ninth Ams-
terdam Colloguium.

Moortgat, M. & Morrill, G. 1991. ‘Heads and
Phrases: Type Calculus for Dependency and
Constituency.” To appear: Journal of Lan-
guage, Logic and Information.

Morrill, G. 1994. Type Logical Grammar: Cat-
egorial Logic of Signs. Kluwer Academic Pub-
lishers, Dordrecht.

Morrill, G. 1995. ‘Higher-order Linear Logic Pro-
gramming of Categorial Dedution’; Proc. of
EACL-7, Dublin.

Prawitz, D. 1965. Natural Deduction: a
Proof Theoretical Study, Almqvist and Wiksell,
Uppsala.

Roorda, D. 1991. Resource Logics: Proof Theor-
etical Investigations. Ph.D. Dissertation, Ams-
terdam.



