Proceedings of the Third International Workshop on Computational
Semantics (IWCS-3), KUB, Tilburg, January 1999

A Functional Interpretation Scheme for D-Tree Grammars

Mark Hepple

Department of Computer Science
University of Sheffield, UK
hepple@dcs.shef.ac.uk

Abstract

This paper suggests a new method for interpreting D-Tree Grammar (DTG) de-
rivations that is inspired by ideas from the categorial area. The standard treatment of
DTG interpretation is based on the derivation tree (a record of the steps made during
the derivation) and requires that the derivation process be constrained in ways that
would not otherwise be required. The new method suggested is based on the derived
tree, rather than the derivation tree. As such it allows the constraints on the deriva-
tion process mentioned to be eliminated, both as an unnecessary complication of the
approach and as as obstacle to possible analyses that might be formulated within the
framework. A ‘glue language’ style variant of the approach is also described, which
makes possible a treatment of quantification.

Keywords: D-Tree Grammar, categorial grammar, glue language

1 Introduction

This paper considers some similarities between D-Tree Grammars and type-logical gram-
mars, suggested by a categorial parsing approach in which complex formulae are compiled
to simpler formulae (analogous to tree fragments), between which ‘inclusion’ requirements
hold (analogous to domination relations). This comparison suggests an approach to provid-
ing a functional semantics for D-Tree derivations, under which the interpretation for a de-
rivation is constructed on the basis of its derived tree, which takes the form of a standard
phrase structure tree. The standard approach to interpreting D-Tree Grammar deriva-
tions is, in contrast, based on the derivation tree, which is a record of the composition
steps made during the process of derivation. This latter method requires the derivation
process to be subject to certain constraints, that both complicate the framework and rule
out certain accounts of phenomena that could otherwise be formulated. By virtue of being
based on the derived tree rather than the derivation tree, the new method for interpreting
derivations allows these constraints on the derivation process to be eliminated. We con-
sider a treatment of pied-piping which this change makes possible. The approach, however,
has some limitations, as is discussed in relation to quantification, and we consider how
these limitations can be overcome by a reformulation that is inspired by the glue language
approach to interpreting LFG derivations (Dalrymple et al., 1993).

(1) s S S

: /\

S VP [ﬁn:+] NP

S
TN =T (hotdogs)
NP VP[fin:+] V. VP[fin:—] S
(he) E |
VP[fin:+] seems NP/\VP finc4]
N , :
vV g (Mary) :
| VP[fin:—]
claims N
A% NP

to adore e

2 D-Tree Grammars

The D-Tree Grammar (DTG) formalism is introduced in (Rambow et al., 1995). The basic
derivational unit of this formalism is the d-tree, which (loosely) consists of a collection
of tree fragments with domination links (d-links) between nodes in different fragments,
that link them into a single graph. D-trees are seen as partial descriptions of trees. Some
example d-trees, drawn from (Rambow et al., 1995), are shown in (1), that could be used
to derive the tree (2a) for Hotdogs;, he claims Mary seems to adore t; (for which a few
simple other d-trees are required). (The words shown in brackets in (1) are there only
make explicit the correspondences to (2a).

The main operation for composing d-trees is subsertion. When a d-tree « is subserted
into a d-tree vy, a fragment of « is substituted at a suitable node within -y, with other
(dominating) fragments of « being inserted into d-links of 7 or above its root node. For
example, the third d-tree in (1) might be subserted into the second, with the bottom
fragment of the former being substituted at the VP[fin:—] node of the latter to create a
new fragment (for seems to adore e). The other dominating fragments of the two initial
d-trees would now appear in a single merged d-link chain in some order (different orders
being possible). A second composition operation sister-adjunction is used in handling
modification, and adds in a modifier subtree as an additional daughter to an already
existing local tree. At the end of a derivation, the final d-tree can be reduced to a
conventional phrase structure tree by removing any d-links (the top and bottom nodes
of each d-link being merged, which is possible only if the two bear the same category).

Rambow et al. (1995) motivate the D-Tree Grammar approach in terms of some
problems that arise for some related formalisms, such as TAG (Tree-Adjoining Grammar
(Joshi et al., 1975)) and MCTAG-DL (Multi-Component TAG with Domination Links
(Becker et al., 1991)), involving linguistic coverage and the semantic interpretation of
derivations. It is this latter issue that is the main concern of this paper.

For TAG, the interpretation of derivations has been handled not in terms of the derived
phrase-structure tree, but rather the derivation tree, which is a record of the steps of the
derivation, i.e. which tree has been substituted or adjoined at which site in which other tree

(2) (a) s/ (b) claim
/\ SUMOMP
he seem
| comp
| /\

S
adores
NI
NP VP suBy " om)
/’\ | /\ Mary hotdogs
AdjP AdjP N he v S MoD_—" _MOD

| spicy small
Adj Adj hotdogs /\
NP

claims
| | VP
small spicy | /\
M
ay oy VP
| T

seems A NP
| |

to adore e

at each stage. However, as Rambow et al. (1995) discuss,! this approach is problematic,
as there is not a simple consistent relation between the TAG composition steps and the
semantic relations established, with the consequence that TAG derivation trees do not
provide a good representation of the semantic dependencies of the sentence.

DTG aims to overcome this problem by having a straightforward relation between
the tree composition operations and their semantic import. Thus, subsertion consistently
establishes head-complement relations (the subserted tree corresponding to the comple-
ment), and sister-adjunction consistently establishes head-modifier relations (the sister-
adjoined tree being the modifier). The approach is such that the derivation tree for a
phrase structure such as (2a) is isomorphic to its dependency structure, shown in (2b),
and so provides a suitable basis for interpretation. For this idea to work out, the derivation
process must be constrained so that derivation trees are in fact trees.?

Although the DTG use of derivation trees for handling interpretation improves on
the situation for TAG, there are some ways in which the approach might still be seen
as unsatisfactory. Firstly, we might question whether the need to formulate derivation
as a process is really in keeping with the spirit of the DTG framework. Given that the
basic units of the approach are lexicalised partial tree descriptions, we might hope to see a
purely declarative, constraint-based, treatment of ‘derivation’, in which we simply ask of
a given tree whether it satisfies the conjoined requirements of the partial tree descriptions

'See also Candito & Kahane (1998a) for further discussion of the issues arising.

2This requirement would be violated if two tree fragments that originate with the same initial d-tree &
were substituted into different structures during the derivation, as the lexical anchor of § would then be
interpreted as the dependent of two different heads, and a derivation ‘tree’ that was not a tree returned.
This possibility is blocked by constraining the propagation of a property substitutability, which a tree
fragment must have to be the substituted element in a subsertion step. Candito & Kahane (1998b)
suggest a variant of DTG with a view to allowing graph structured meaning representations.

associated with the words that it dominates. Secondly, the restriction of the derivation
process that is needed to ensure that interpretable derivation trees are returned may rule
out some possible syntactic analyses that might otherwise be offered within the framework.
An example is outlined later in the paper, involving a possible treatment of pied-piping.
This paper presents an approach for interpreting DTG analyses that is based purely
on the derived tree, rather than the derivation tree. As such, it eliminates the need to
constrain the derivation process, and so resolves both of the problems discussed above.
The approach is ‘functional’ in that it involves associating lambda expressions with the
tree fragments in initial d-trees, which allow us to compute a meaning term for a complete
analysis. The approach is suggested by some similarities between DTG and type-logical
grammars that are observed in the context of a parsing approach for the latter, outlined
in the next section, in which higher-order formulae are compiled to first-order formulae.

3 Type-logical Grammar & First-order Compilation

The associative Lambek calculus (Lambek, 1958) is the most familiar representative of the
‘type-logical’ tradition within categorial grammar, but a range of such systems have been
proposed, which differ in their resource sensitivity (and hence, implicitly, their underlying
notion of ‘linguistic structure’). Some of these proposals are formulated using a ‘labelled
deduction’ methodology (Gabbay, 1996), whereby the types in a proof are associated with
labels, under a specified discipline, which record proof information used in ensuring correct
inferencing. Such a labelling system must be overlaid upon a ‘backbone logic’, commonly
a fragment of linear logic such as its implicational fragment. This fragment can be seen
as constituting a categorial grammar in its own right, one that is very simple but which
is mostly adequate for the purposes of this paper, and to which we next turn. (The
fragment’s most obvious limitation for grammar purposes is that its types cannot encode
word order information).

3.1 Implicational Linear Logic

In linear logic proofs, each assumption is used precisely once. Natural deduction rules of
elimination and introduction for linear implication (—o) are as in (3). (The premises of
the —o E rule can appear in either order. In the —oI rule, [B] indicates a discharged or
withdrawn assumption.) Eliminations and introductions correspond to steps of functional
application and abstraction, respectively, as the lambda-term labelling reveals.

(3) B—oA:a B:b [B:v]
—E A:
A (ab) —a_01
B—oA:)v.a

The proof in (4) illustrates ‘hypothetical reasoning’, where an additional assumption,
or ‘hypothetical’, is used that is later discharged. The involvement of hypotheticals is
driven by the presence of higher-order formulae (i.e. functors seeking an argument that
bears a functional type): each corresponds to a subformula of a higher-order formula, e.g.

Z in (4) is a subformula of (Z oY) —X.3
(4) [Z:2] Z—oW:w W-oY:y (Z—oY)—oX:z
W: (wz)
Y: (y(wz))
7Y : Az.y(wz)
X:z(Az.y(wz))

3.2 First-order Compilation

Hepple (1996) shows how deductions in implicational linear logic can be recast as deduc-
tions involving only first-order formulae (i.e. where any arguments sought by functors bear
atomic types) and using only a single inference rule (a variant of —o E). The compilation
reduces higher-order formulae to first-order formulae by ezcising subformulae correspond-
ing to hypotheticals, e.g. so (Z—oY)—-oX gives Y —oX plus Z. A system of indexing is
used to ensure correct use of excised subformulae, to prevent invalid reasoning, e.g. the
excised Z must be used to derive the argument of Y —o X. Each compiled formula has an
index set with one member, e.g. ({j},Z,2) (sometimes written (j,Z, z)), which serves as
its unique identifier. The index set of a derived formula identifies the assumptions used
to derive it. The single inference rule (5) ensures correct propagation of indices (where W
is disjoint union). Each argument slot of a compiled functor also has an index set, which
identifies any assumptions that must be used in deriving its argument, as enforced by the
rule condition a C 2.

(5) (¥,B,b) (¢,(B:a)—oA,\v.a)
(m, A, a[bfv])

In proving Z—oW, W—oY, (Z—oY)—oX = X, for example, compilation yields the as-
sumption formulae of the following proof:

™
67

P
(4

N

(4,Z,2) (I,(Z:0) oW, v.wv) (k,(W:0)—oY, uyu) (i (Y:{j})—oX, \.z(r2.t))
({4,1}, W, wz)
({4,511, Y, y(wz))
({i,7,k,1}, X, z(Az.y(wz)))

The leftmost (F1) and rightmost (F2) assumptions of the proof both come from the formula
(Z—oY)—oX, and F1 requires its argument to include F2. Compilation has removed the
need for an explicit introduction step in the proof, c.f. proof (4), but the effects of this
step have been compiled into the semantics of the formulae. Thus, the term of F1 includes
an apparently vacuous abstraction over variable z, which is the term assigned to F2. The
semantics of rule (5) is handled not by simple application, but rather direct substitution for

3The relevant subformulae can be can be identified via a notion of polarity (see Hepple, 1996). The
statement of the compilation procedure below is based on the presentation in (Hepple, 1998).

the variable of a lambda expression, employing a version of substitution which specifically
does not act to avoid ‘accidental’ binding.* Hence, in the final step of the proof, the
variable z falls within the scope of the abstraction, and so becomes bound. (Note that
this method requires care to be taken with variable identities, so that the only accidental
binding to occur is that which is intended.)

A procedure 7 for compiling an individual formula (plus its term, e.g. X : z) to indexed
first-order form is specified by the following cases:

70
71
T2
73

T:t) = 7({i,T,t)) where i a fresh index
(,X,8)) = (¢,X,s) where X atomic
(9, Y X, s)) =7((¢h,(Y:0) <0 X,s)) whereY has no index set

(¢, (Y:9) ©Xy,5)) = (b, (Y:) 0 Xp, Az.t) UT
where Y is atomic; z a fresh variable; 7((¢, X1, (sz))) = (¢, Xg,t) &’

(r4) 7({¢, (Z—Y):9p) = X,5)) = 7((¢, (Y:7) = X, Ay.s(Az.9))) UT((, Z, 2))

where ¢ a fresh index; y, z fresh variables; # =i U

T

=

/\/\/‘\/\

(70)
(T1)
(r2) =
(73)

T

4 Relating DTG and Type-logical Grammar

The above compilation produces results that bear more immediate similarities to the D-
Tree approach than the original type-logical system, as discussed in Hepple (1998).5 First-
order formulae are easily viewed as tree fragments (in a way that higher-order formulae
are not), e.g. a word w with formula pp —o np —os might be viewed as akin to (6a) below
(modulo the order of daughters which is not encoded). For a higher-order formula, the
inclusion requirement between its first-order derivatives is analogous to a domination link
within a d-tree, e.g. a relative pronoun (np —os) —orel (c.f. directional rel/(s/np)) would
yield s —orel plus np, which we can view as akin to (6b).

By default, it is natural to associate the string of the initial formula with its main
residue under compilation, as in (6b). Following proposals in (Moortgat, 1988; 1996),
some categorial systems have used connectives 1 (‘extraction’) and | (‘infixation’), where

4The move of allowing accidental binding is clearly not an innocuous one, but rather means that the
terms associated with compiled formulae are not lambda terms in the conventional sense. For example,
as an anonymous reviewer has emphasised, the term At.z(Az.t) in the proof above cannot be replaced
with, say, At.z(Aw.t), even though the two should be equivalent under a-conversion. When a subformula
is excised from a higher-order formula during first-order compilation, the two are not then truly separate.
Rather, an inclusion relation remains which is enforced by the indexing method. Such a relation implicitly
obtains also for the lambda terms associated with the formulae, and so there is a sense in which the
abstraction over z in At.x(Az.t) is mot vacuous, but instead is an abstraction over the occurrence of z
with the hypothetical, and in that case it makes sense that a-conversion should not apply (unless the
hypothetical’s variable is also simultaneously changed). At the end of a derivation, however, all variables
will be within the scope of the lambdas that bind them, and the final lambda term is a ‘normal’ one, to
which a-conversion can be freely applied. There is some extent of a parallel here with formalisms allowing
partial descriptions of lambda expressions, such as the Constraint Language over Lambda Structures of
(Egg et al., 1998), used for underspecified semantics, which allows lambda bindings specified via dominance
relations.

®See (Joshi et al., 1997; Henderson, 1992) for other work connecting categorial formalisms (namely, the
Lambek calculus and CCG, respectively) to tree-oriented formalisms.

Y17Z is a “Y missing Z somewhere” and a type X|(Y1Z) infixes its string to the position
of the missing Z. Thus, a word w with type X|(Y1Z) (c.f. the linear type (Z—oY)—oX)
compiles to Y — X and Z, abd is akin to (6¢). As another example, the PP pied-piping
relative pronoun type rel/(stpp)d(ppTtnp), from (Morrill, 1992), which infixes to an NP
site within a PP, is akin to (6d).

6) (a) s (b) rel (c) X (d) rel
P P
TN s—orel s Y—oX Y / \
np —os np | : | : s —orel S
/\ which n'p e Z / \
pp—onp-—os pp | | pp—os—orel pp PP
| ¢ w | o
w . np e
|
whom

5 A Functional Approach to Interpreting DTG Derivations

The rest of this paper explores the idea of providing a functional semantics for DTG
derivations, in a manner akin to that of categorial grammar.® The approach envisaged is
one in which each tree fragment (i.e. maximal unit containing no dominance links) of an
initial d-tree is associated with a lambda term. At the end of a derivation, the meaning of
the resulting tree would be computed by working bottom up, applying the meaning term
of each basic tree fragment to the meanings computed for each complete subtree added in
at the fragment’s frontier nodes, in some fixed fashion (e.g. such as in their right-to-left
order). Strictly, terms would be combined using the special substitution operation of rule
(5) (allowing variable capture in the manner discussed). Suitable terms to associate with
tree fragments will be arrived at by exploiting the analogy between d-trees and higher-
order formulae under compilation.

For example, consider a simple grammar consisting of the four d-trees in (7), of which
only that for which has more than one fragment. Each tree fragment is associated with a
meaning term, shown to the right of “:”. The two fragments in the d-tree for which each
have their own term, which are precisely those that would be assigned for the two compiled
formulae in (6b) (assuming the meaning term for the precompilation formula rel/(s/np)
to be just which).” This grammar allows the phrase-structure (8a) for Mary saw John,
whose interpretation is produced by ‘applying’ the term for saw to that for the NP John

5See Muskens & Krahmer (1998) for an alternative approach to the functional interpretation of a DTG-
like formalism, one which allows a treatment of quantification. Their approach extends the use of partial
descriptions to the semantics, and employs a technique of internalising the logical binding mechanism, so
as to allow partial tree descriptions to be associated with underspecied semantics.

TA treatment of wh-movement based on this structure is useful for expositional purposes, but clearly
differs from the standard TAG/DTG approach, where a moved wh-item originates with a structure that
includes the governor of the extraction site (typically a verb that subcategorises for the moved item). Such
structures present no problem for this approach, i.e. we could simply pre-combine the d-trees of which and
saw given in (7), to give a single tree of two fragments (which being associated with the upper fragment,
and both sew and the ‘trace’ with the lower fragment.

(i.e. the subtree added in at the rightmost frontier node of saw’s single tree fragment),
and then to that of the NP Mary, giving (saw j m), as shown in (8b). The grammar
allows the tree (9a) for the relative clause which Mary saw. Here, the object position of
saw is filled by the lower fragment of which’s d-tree, so that the subtree rooted at S has
interpretation (saw z m). Combining this with the term of the upper fragment of which
gives interpretation which(Az.saw z m), as shown in (9b).

(7) S Rel NP :m NP :j
NP VP : Az)y.(saw z y) NP,, S :Av.which(Az.v) Mary John
PN | !
V NP which NP :z
| |
saw e
(8) (a) S (b) [Xziy.(sawzy) + j + m]
TN ~ (saw j m)
NP VP
| P
Mary \Y% NP
| |
saw John
9) (a) Rel (b) [Aw.which(Az.v) +
/\ [AzAy.(saw zy) + z + m]]
NPy S ~ which()\z.(saw z m))
| /\
which np VP
| P

Mary Y N|P

Saw €

The tree composition steps required to derive the trees above would be handled in DTG
by the subsertion operation. As noted earlier, DTG has a second composition operation
sister-adjunction, used in handling modification, which adds in a modifier subtree as an
additional daughter to an already existing local tree. A key motivation for this operation
is so that DTG derivation trees distinguish argument vs. modifier dependencies, so as to
provide an appropriate basis for interpretation. Categorial grammars typically make no
such distinction in syntactic derivation, where all combinations are simply of functions
and arguments. Rather, the distinction is implicit as a property of the lexical meanings
of the functions that participate. Accordingly, we recommend elimination of the sister-
adjunction operation, with all composition being handled instead by subsertion. Thus, a
VP modifying adverbial might have d-tree (10a), and give structures such as (10b). (Such
structures are more in line with the standard TAG treatment than that of DTG.)

(10) (a) VP (b) S

VP Adv : Az.(clearly z)

| NP VP
clearly | / \
Mary — yp Adv
P |
\Y NP clearly
| |

saw John

(11) (a) s (b)

S
/\ NP/ \VP :AAy.(Af.f saw)(Ap.z)y)

np np —os
N VP
vp—onp —os vp P
| E V NP:p
e vp |
N saw

np—-ovp 1np

saw

Such an analysis requires a different lexical d-tree for saw to that in (7), one where the
VP node is ‘stretched’ as in (11b) to allow possible inclusion of modifiers. As a basis for
arriving at suitable functional semantics for (11b), consider the following. A categorial
approach might make saw a functor (np\s)/np with semantics saw. This functor could be
type-raised to (np\s))((np\s)1((np\s)/np)) with semantics (Af.f saw). By substituting
the two embedded occurrences of (np\s) with the atom vp we get (np\s)!(vpT(vp/np)),
which compiles to first-order formulae as in (11a), which are analogous to the desired d-tree
(11b), so providing the meaning terms there assigned. Using (11b) to derive the structure
(8a) involves identifying the two VP nodes. Such a derivation gives an interpretation as
in (12a), whilst a derivation of (10b) gives the interpretation (12b).

(12) (a) [AzXy.((Mf.f saw) (Ap.z)y) + [Aupu + j] + m] ~» (saw jm)

(b) [AzAy.((Af.f saw) (Ap.x)y) + [Av.(clearly v) + [Aupu + j]] + m]
~» (clearly (saw j) m)

For a ditransitive verb, we might want a structure providing more than one locus for
inclusion of modifiers, such as (13). The semantics provided for this d-tree is arrived at
by a similar process of reasoning to that for the previous case, except that the initial
categorial type of the verb is type-raised twice (hence the subterm (Ag.g(Af.f sent)) of
the upper fragment’s term).

Let us next consider a possible account that can be handled with this new approach
to interpreting derivations that would be problematic under the standard approach. The
compiled formulae in (6d), stemming from Morrill’s proposal for handling pied-piping,

are suggestive of the d-tree (14a) for a pied-piping relative pronoun. The semantics of
this d-tree is given as if it were compiled from a linear formula for the relative pro-
noun having semantics whom®. This symbol here stands in place of a more complex
term AfAg.whom(\z.f(gz)) for the relative pronoun’s semantics, which is one that puts
together the meanings of the pied-piped material and of the sentence from which it is
extracted, effectively performing reconstruction at the semantic level.

(13) S

T

NP VP : AzAy.((Ag-g(Af.f sent))(Ap.x)y)
VP
/\

PP : MWAw.(p(Ag.v)w)

D

V. NP :g¢
|

sent

14 (@) Rel s AAw.whomsx(Az.v) (Ay.w) (b) S : AsAt.(spoke s t) (c) PP FAu.(to u)

/\ / \ P/\NP
PP S NP VP

: : P |

NP :y PP :z V PP to

| | |
whom e spoke

Using the additional d-trees in (14b) and (14c), we can derive the relative clause to whom
John spoke as in (15a), which receives the interpretation in (15b) that simplifies (when
we substitute for whom*) to whom(\z.spoke (to z) j). This treatment is ruled out by
the restrictions on the derivation process that are required for the standard treatment of
DTG semantics, as the relative pronoun d-tree has two fragments that would need to be
substituted into other structures in subsertion steps during the derivation.

(15) (a) Rel (b) [AwAw.whom™ (\z.v)(\y.w)
/\ + [AsAt.(spoke st) + z + j]
+ [Au.(tou) + y]]
PP S
N P ~ whom™(\z.spoke z j)(Ay.to y)
NP VP

P NP
to wnom John Vv PP

~ whom(\z.spoke (to z) j)

spoke e

10

5.1 Limitations of the approach

We next consider a case that the outlined approach does not handle, which reveals
something of its limitations: quantification. Following a suggestion of (Moortgat, 1996),
the connectives 1 (‘extraction’) and | (‘infixation’) have been used in a categorial treat-
ment of quantification. The lexical quantified NP everyone, for example, might be assigned
type sl(sTnp), so that it has scope at the level of some sentence node but its string appears
in some NP position. First-order compilation yields the results (16a). The corresponding
d-tree (16b) is unusual from a phrase-structure point of view in that its upper fragment is
a purely interpretive projection, but would serve to produce appropriate interpretations.

(16) (a) s (b) S
P
S—0S s g Az.everyone(Az.x)
| 5
‘ il NP 2
everyone |
everyone S
|
(17) (a) s (b) S (c) S
S—0S8 S N S NP
N 5 : P
fmes—es noup NP Det N
| |
e every | |
every every

A simple quantifier every has type sl(sTup)/n, to combine firstly with a noun, with the
combined string of every+noun then infixing to a NP position. First-order compilation,
however, produces the result (17a), comparable to (17b), which is clearly an inappropriate
structure. What we would hope for is a structure more like that in (17c¢), but although
it is perfectly possible to specify an initial higher-order formula that produces first-order
formulae comparable to this d-tree, the results do not provide a suitable basis for inter-
pretation. More generally, the highly restrictive approach to semantic composition that is
characteristic of the approach outlined is such that a fragment cannot have scope above its
position in structure (although a d-tree having multiple fragments has access to multiple
possible scopes). This means, for example, that no semantics for (17c) will be able to
get hold of and manipulate the noun’s meaning as something separate from that of the
sentence predicate, rather the former must fall within the latter.

6 A Glue-like Treatment of Interpretation

One possibility for overcoming the limitations of the approach that were discussed in the
previous section would be to loosen the tight coupling between derivations and the func-
tional semantics, perhaps in a manner akin to the glue language method for interpreting

11

Lexical-Functional Grammar derivations (Dalrymple et al., 1993). We shall next briefly,
and informally, sketch such a proposal. Each lexical d-tree is associated with one or more
lambda terms which bear linear types, in which the type atoms that appear correspond
to node identities in the associated d-tree,® as in the following (where the correspondence
of type atoms to nodes is shown in the tree by markers in angle brackets beside nodes):

(18) {n,)S
Py { (ny —ong —ong): AzAy.(saw z y)
(ng) NP VP

N
NP NP
A% NP (n'y) (ns) | { nsg:m (na) | ng :j
| Mary John
Saw

Given a derived tree such as (19a), we can ‘fix’ node identities, arriving at fully specified
typed lambda terms as in (19b). These terms combine to produce a term with type nl
(i.e. the root node of the tree), corresponding to the meaning for the entire sentence. Note
how the correspondence between tree nodes and types serves to restrict deduction over
the lambda terms to produce results appropriate to the syntactic derivation.

(19) (a) (n1) S (b) (n3—on2-—onl):Az\y.(saw z y)
/\ n3:j
(n2) NP VP n2:m
| N 1. .
Mary V NP (n3) ~ nl:(saw j m)
saw John

The benefit of having a glue-like separation of structures and formulae comes from the
additional freedom a glue-like approach allows in the mapping from syntactic structures
to typed terms. This can be seen with the following d-tree for the quantifier every, where
the meaning of the noun that will appear within the lower fragment is marked to be fed
directly to the major meaning term for the quantifier (rather than being ‘trapped’ within
some embedded interpretation for the noun phrase), and where node atoms can be reused
to create endocentric functors such as (nl1 —onl) (a feature which makes it possible for the
upper fragment of the d-tree to be just a single node, rather than a S-over-S interpretive
projection as in (16a)).?

8The LFG glue analysis uses a mapping (‘o-projection function’) from syntactic analyses (in their case
f-structures rather than phrase structure trees) to glue terms. Note that the clean separation of types and
lambda terms in the above proposal makes it more in line with the ‘categorial-style’ formulation of the
LFG glue account given in (Dalrymple et al, 1997), rather than its standard formulation.

9See (Shieber & Schabes, 1990) for a Synchronous TAG treatment of quantification, where the semantics
is treated as a second system of tree representations that are operated upon synchronously with syntactic
trees. Although operations upon syntactic and semantic representations in that account are synchronous,
they are not parallel in the way that is rigidly required in categorial semantics (and in the initial formulation
of the functional interpretation scheme for DTG). The non-parallelism that their approach allows is strongly

12

(20) (na) S

5 (ny —ong —on,): Aulv.(every u (Aw.v))
(ng) NP ng:w
N

Det N{n,)
|

every

Given a similar lexical d-tree for some, we can derive Every girl saw some boy as in (21a),
yielding the formulae in (21b), which combine to give a result of type nl in two alternative
ways, corresponding to the alternative scope readings of the sentence, shown in (21c).

(21) (a) (n1) S (b) (n3 —onl —onl): Aulv.(every u (Aw.v))
/\ n2:w
(n5 —onl —onl): ArAs.(somer (At.s))
(n2) NP VP nd:t
Dg\N (3) T (n4 —on2 —onl): Az y.(saw z y)
| | v NP (n4) n3:girl
| RN n5:boy

every girl saw Det N (n5)
| |

some boy

(¢) ~ mnl:(every girl (Aw.(some boy (At.(saw t w)))))
~» nl:(some boy (At.(every girl (Aw.(saw t w)))))

7 Conclusion

Two approaches for interpreting DTG derivations have been described, both of which
allow DTG’s current process-based interpretation model to be dispensed with, along with
the constraints it requires, and so allow the possibility of formulating accounts within the
formalism that would otherwise be excluded.

The first method involves associating the tree fragments in lexical d-trees with lambda
terms, with the meaning for a derivation being computed by combining the lambda terms
of the basic tree fragments in a manner that is fixed by the form of the derived phrase
structure. The initial lambda terms are arrived at by exploiting an analogy between d-trees
and the results of compiling higher-order linear formulae under the method of (Hepple,
1996). The success of the method is suggestive of some real content to the analogy, i.e.
that d-trees are, in some sense, higher-order objects.

The second method is a variant of the first inspired by glue language work, which gains
some freedom in assembling basic meanings, enabling a treatment of quantification, whilst
losing some of the first method’s simplicity.

comparable to the freedom gained in the move to a glue-like treatment above, although a glue-like approach
is chosen here as it is more in keeping with a functional analysis. Similar non-parallelism is allowed by
the Muskens & Krahmer (1998) account mentioned earlier, and is again crucially important in allowing
quantification to be handled.

13

References

Becker, T., Joshi, A. & Rambow, O. 1991. ‘Long distance scrambling and tree adjoining
grammars. Proc. EACL-91.

Candito, M.—H. & Kahane, S. 1998a. ‘Can the TAG derivation tree represent a semantic
graph? An answer in the light of Meaning-Text Theory.” Proc. Fourth Workshop on
Tree-Adjoining Grammars and Related Frameworks (TAG+/).

Candito, M.-H. & Kahane, S. 1998b. ‘Defining DTG derivations to get semantic graphs.’
Proc. Fourth Workshop on Tree-Adjoining Grammars and Related Frameworks.

Dalrymple, M., Lamping, J. & Saraswat, V. 1993. ‘LFG semantics via constraints.” Proc.
EACL-6, Utrecht.

Dalrymple, M., Gupta, V., Lamping, J. & Saraswat, V. 1997. ‘Relating resource-based
semantics to categorial semantics.” Proc. MOL-5.

Egg, M., Niehren, J., Ruhrberg, P. & Xu, F. 1998. ‘Contraints over Lambda-Structures
in Semantic Underspecification.” Proc. COLING-ACL’98 Joint Conference.

Gabbay, D. 1996. Labelled deductive systems. Volume 1. Oxford University Press.

Henderson, J. 1992. ‘A Structural Interpretation of CCG.” UPenn Technical Report, MS-
CIS-92-49.

Hepple, M. 1996. ‘A Compilation-Chart Method for Linear Categorial Deduction.” Proc.
COLING-96.

Hepple, M. 1998. ‘Memoisation for Glue Language Deduction and Categorial Parsing.’
Proc. COLING-ACL’98 Joint Conference.

Hepple, M. 1998. ‘On Some Similarities Between D-Tree Grammars and Type-Logical
Grammars.” Proc. Fourth Workshop on Tree-Adjoining Grammars and Related Frame-
works.

Joshi, A., Levy, L. & Takahashi, M. 1975. Tree Adjunct Grammars. Journal of the
Computer and System Science, 10.

Joshi, A. & Kulick, S. 1997. ‘Partial proof trees as building blocks for a categorial gram-
mar.” Linguistics and Philosophy.

Lambek, J. 1958. ‘The mathematics of sentence structure.” American Mathematical
Monthly, 65.

Moortgat, M. 1988. Categorial Investigations: Logical and Linguistic Aspects of the Lam-
bek Calculus. Foris, Dordrecht.

Moortgat, M. 1996. ‘Generalized quantifiers and discontinuous constituency.” H. Bunt
and A. van Horck (eds). Discontinuous Constituency, Mouton de Gruyter.

Morrill, G. 1992. ‘Categorial Formalisation of Relativisation: Pied Piping, Islands and
Extraction Sites.” Research Report LSI-92-23-R, Universitat Politécnica de Catalunya.

Muskens, R. & Krahmer, E. 1998. ‘Description Theory, LTAGs and Underspecified Se-
mantics.” Proc. Fourth Workshop on Tree-Adjoining Grammars and Related Frameworks.

Rambow, O., Vijay-Shanker, K. & Weir, D. 1995. ‘D-Tree Grammars.” Proc. ACL-95.

Shieber, S.M. & Schabes, Y. 1990. ‘Synchronous tree-adjoining grammar.” Proceedings of
COLING-90.

14

