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Abstract

Cochannel interference of speech signals is a common practical problem in speech
transmission and recording. Ideally, cochannel speaker separation is desirable to recover one
or both of the speech signals from the compasite signal. Although the human auditory system
is adept at resolving the speech of one talker amongst many (the cock tail party effect), this
task still appears very difficult. When voices interfere over a monophonic channel (such as the
telephone), separation is much more difficult as one voice may mask the other.

There have been many algorithms proposed that eiminate background noise or other
interference from cochannel speech signal. The most successful family of cochannel speaker
separation approaches operate on the notion that spectral harmonics of each speaker are
separated depending on a pitch estimate. In this project, we implement an automatic system of
cochannel speaker separation. The system is based on a frame-by-frame speaker separation
algorithm that exploits the pitch estimate of the stronger speaker derived from the cochannel
speech signal. The idea is to recover the stronger talker’s speech by enhancing their harmonic
frequencies and formants give a pitch estimate. The weaker talker’s speech is then obtained
from the residual signal where the harmonics and formants of the stronger talker are
suppressed. The performance of our system has been evaluated at target-to-interferer ratios
(TIR’s) of 15 dB to -15 dB in human listening tests.



Acknowledgments iv

Acknowledgments

This dissertation would not have been possible without the support and encouragement of
my supervisor, Dr Guy J. Brown.

| aso owe a tremendous debt of gratitude to many of my friends, who help me finish my
testing and evaluation and gave me lots of valuable opinions.

Thanksto Dr. Stu Wrigley for supplying methe TIMIT database and TIDIGITS database.

Finally, I would like to thank my girlfriend Chunjie Bi, without whom none of this would
be possible. She is an unbelievable inspiration to me. Her boundless love and support has truly
been arock to me.

This dissertation is dedicated to my girlfriend and parents.



Table of Contents \%

Table of Contents

AADSEIBCL ...t r e nreene s i
ACKNOWIBAGMENTS ...ttt e e st e e et e e smteeeneeeereeeanseeennes iv
TaADIE OFf CONTENTS ...ttt sn e e n e e ane e v
I o T =SSR Y
LISt OF TADIES ...ttt et b et saeen e ie e b e Vil
Chapter 1 INEFOAUCTION ... 1
Chapter 2 LItEratUr@ SUIVEY ....oooiieiieeee e 3
21 Cochannel Separation SyStEMS REVIEW .........cocviiiiiiiiiieieeeeee e 3

22 PIECN ESHIMELION ... 6

23 Testing and EVAIUBLION .........cceiiiiiiiiieeee e 7

24 Related SOtWAIE..........eeiiieieeeeeee e 7
Chapter 3 Requirements and ANalYSIS ........cccveriiriienieiieeieesee e 9
31 INEFOTUCTION ... nne e 9

3.2 SYSEEM OVENVIEIW ...ttt 9

3.3 MOTUIES ANBIYSIS. ...t 10

A, \Voiced/UNnvoiced DELECION .........ccoeiriieiieiiesee e 10

B.  PICh ESHMALE........oiiiiieiee e 10

C.  0EAKEN RECOVEIY....ceiiiiiiieiieeee ettt 11

D.  SEaKer ASSIGNIMENT ....c.eeiiiiiiieiiee et 11

34 Software Engineering Methodologly ..........ccceeveeriieieenieiieeeesee e 12

35 Testing and Evaluation SCheme...........coooiiiiiiiee e 12
Chapter 4 SYSEEM DESIGN ... s 14
4.1 Framework DESIGN........ooieiiiieieee e 14

4.2 VOoiCed/UNVOICEA DELECIO ........ccveeieiiieeieesiee e 15

A, INETOUCTION ... nare e 15

B.  Feature MEaSUreMENTS........ooicreiiieee e e 16

4.3 YIN PItC ESHIMELOT .....c.eeeiiiiiieieeiee e 17

A, INETOAUCTION ...t 17

B.  PItCh ESMALION......ceiiiiiiie e 17

C. PoOst-Processing Methods...........cocveiieiiiiieeiece e 20

4.4 SPEAKEr RECOVEIY ...ttt 21

Al INETOAUCTION ..o nne e 21

B.  SPECral RECOVEIY ......ooiiiiiiiiieee e 22

C.  Spectral ENNanCemENT...........ooiiiiiieice e 25

4.5 SPEAKEN ASSIGNIMENE ...ttt e n e nnne e 28
Chapter 5 Implementation and TESHING ........ccoeieeiiiriiere e 30
51 Matlab IMPIEMENTALION ........coiieiieee e 30

A, Mixing Cochannel SgNalS.........cccoouiiiiieiieiie e 30

B. Pre-emphasisSof S0EECH.......cooiiiiii 30

C. YIN PItCh ESHMBION .....eeiiiiiieeieeeieeee et 30

52 L= (] 0o PP P RSP RPUUR PRSP 31

A, HUMAN LiSteNiNg TESES .......eiiiiiieiiee et 31

B.  Pitch EStmMation TESIS.......ccoiiiiiiiieeeesee e 32

C.  \oiced/Unvoiced DEteCtion TESES. .......coiviiieeiierieeie e 32

Chapter 6 ReSUltS and DiSCUSSION.......ccueiiiiiiieiie e 33
6.1 YIN PItCh ESHMELION ... 33

6.2 Voiced/UNVOICEH DELECHION...........eeieiiieeiiesiee ettt 35

6.3 Cochannel Speaker SEParation ...........cccocveeiierieniiieseesee e 37
Chapter 7 CONCIUSION. ...ttt 39



List of Figures Vi

List of Figures

Figure2.1 Typica applications of speech enhancement .............cccooiii i 3
Figure4.1 Block diagram of the cochannel speaker separation system. .........cccccvevceeeneene 15
Figure4.2 Block diagram of the Voiced/Unvoiced decision algorithm..........cccccceevveenieennen. 16
Figure4.3 Block diagram of pitch eStimator ............cceeioiiiiiieiee e 17
Figure4.4 (@) Differencefunction . (b) Cumulative mean normalized difference function...18
Figure4.5 Pitch tracking for the mixed speech, target speech, and interfering speech.......... 19
Figure4.6 Pitch track of the stronger talker SUPerimposed.........ccoooceverereiee e 20
Figure4.7 Block diagram of the speaker recovery system. ........ccccooceeiei e 21
Figure4.8 Block diagram of the operations involved in the discrete-time filtering procedure.
..................................................................................................................................... 22
Figure4.9 Plotting of transfer functions of the discrete-time filters..........cccooeviiiiiiicnenns 25
Figure4.10 Spectra of the same frame after applying the discrete-timefilters..................... 25
Figure4.11 Illustration of harmonic overlapping in cochannel speech separation................ 28

Figure6.1 YIN pitch detector tracking the cochannel pitch superimposed on the pitch tracks
of thetarget talkers at 0-15 dB TIR's, respectively. Solid lineis target pitch, dashed line

IS COChANNE! PITCN ... e 34
Figure6.2 Theerror rate of YIN pitch detector for cochannel pitch tracking at different
TIR’swith a male spoken sentence as the interference. ... 35

Figure6.3 Theerror rate of YIN pitch detector for cochannel pitch tracking at different
TIR swith a female spoken sentence as the interference. ..o, 35



List of Tables Vil

List of Tables

Table3-1 Speech Presentation SEQUENCE........coceveiieeiiiee e eeee e et e e e e seeee e 13
Table6-1 The Accuracy of YIN Pitch Detector for Cochannel Pitch Tracking in Voiced
Region. Interferer is afemale spoken Sentencens8. .........ooccevviee e 33
Table6-2 The Accuracy of YIN Pitch Detector for Cochannel Pitch Tracking in Voiced
Region. Interferer is afemale spoken sentenceng. .........oocevvieeeiie e 33
Table6-3 Means and Covariance matrices for the three classes for thetraining data............ 36
Table6-4 Matrix of incorrect identifications for the three classes for the speech data in the
LU= T 11 0T = RSP R 37
Table6-5 Matrix of incorrect identifications for the three classes for the speech data in the
L= 1 1 1= SRS S 37
Table6-6 Human Listening TSt RESUIL..........oouiiiieieieeee e 37

Table6-7  INEliGiDility TESE RESUIE vvvvveeeeeereeeeeeeeeseeeeeeeseeeseeeeeeeesseeeseseeseseeeseseessseeeeeseees 38



Chapter 1. Introduction 1

Chapter 1  Introduction

Cochannel speech is defined as a signal that is a combination of speech from two talkers.
This phenomenon occurs in many common situations: if the microphone at the transmitting
end is not acoustically isolated, all background noises including close neighbours' voice would
be transmitted along with the primary speaker due to the poor placement of the microphone; or
if two people are speaking simultaneously (e.g., when talking on the telephone). The goal of
cochannel speech separation is to be able to extract the speech of one or both of the talkers
from the cochannel speech and minimise artefacts in the processed speech. This is especially
important if the recovered speech is passed to an automatic speech recognition system or a
speaker recognition system.

Although the human auditory system is adept at separating the speech of one talker from
many (e.g. the cock tail party effect), this task appears to be very difficult as masking is an
everyday occurrence; quiet sounds are rendered inaudible by louder sounds. There have been
many algorithms proposed that separate background noise or other interference (eg.
competing speech signal) from cochannel speech signal. Some methods assume that the
interference is stationary (e.g. stationary background noise) or a priori information (e.g. the
fundamental frequency of the interfering speech) is available, otherwise they fail. These
methods are not suitable for the cochannel speech problem because typically the speech
interference is not stationary and a priori information is unavailable in realistic cochannel
situation. In 1970s a promising new group of cochannel speaker separation algorithms
emerged, which do not have these restrictions and achieve great success. These methods
operate on the notion that spectral harmonics of each speaker are separated exploiting the pitch
estimate of the stronger talker derived from the cochannel signal.

In this project, we attempt to design a system that automatically separates both of the
speech signals from cochannel speech signal. This system processes the cochannel signal
frame-by-frame and most separation procedure is done in frequency domain. First it uses a
YIN pitch estimator (Cheveigne and Kawahara, 2002) to get a pitch estimate of the stronger
speech. The pitch estimate is used to construct a pair of filters in the frequency domain, which
are then applied to the cochannel signal spectrum to separate the stronger and weaker talkers,
respectively. The recovered stronger signal is further processed by enhance energy at
frequencies corresponding to its harmonics and formants. On the other hand, the weaker
talker’s speech signal is obtained from the residual signal created when the harmonics and
formants of the stronger talker are suppressed. The recovered stronger and weaker signals are
then re-synthesised using overlap-add techniques (Oppenheim and Schafer, 1989).

For experimental purposes, cochannel speech signals are generated by linearly adding two
digitised speech signals. Cochannel signals created in this manner are sufficient for
experimenting with algorithms in an ideal mixing environment. The performance of our
technique is evaluated by listening tests. Two widely used speech databases, TIMIT and
TIDIGITS, are used in generating cochannel speech. In human listening tests, twelve digits
strings were selected from TIDIGITS as target signal and two sentences (one male-spoken and
one female-spoken sentence) were selected from TIMIT as interferer. They are mixed with
TIR's-12 dB and -18 dB. The system was also tested informally with other TIR's.
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This dissertation is organised as follows: Chapter 2 examines the cochannd speech
separation problem in more details and reports some previous work in the related research field
by other researchers. Chapter 3 gives the requirement of the project and presents a testing
scheme. In Chapter 4 we provide detailed descriptions of the voiced/unvoiced detection, the
pitch estimation, speaker separation and algorithms comprising our cochannel separation
system, step by step. Chapter 5 describes some implementation details and tests conducted to
evaluate our system. In Chapter 6 we present the testing results and discuss the results. Chapter
7 summarises our conclusion and suggests future directions for research.
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Chapter 2 Literature Survey

2.1 Cochannel Separation Systems Review

The presence of interference causes the quality or inteligibility of speech to degrade. A
noisy environment reduces the listener’s ability to understand what is said. Many speech
enhancement algorithms were proposed to reduce background noise, improve speech quality,
or suppress channel or speaker interference in past two decades. Many of these algorithms are
quite successful and made the speech enhancement of many applications. Figure 2.1 illustrates
some typical applications of speech enhancement.

The study of speaker separation algorithms began with the development of speech
enhancement since it is just the case where the interferer is a competing speaker. There are
many classes of approaches and each of these classes has its own set of assumptions,
advantages, and limitations. One grouping is depending on whether a single-channel or dual-
channel (or multi-channel) approach is used. For single-channel applications, only a single
microphone is available. Initial work addressing this problem evolved from several techniques
based on multi-microphone processing, such as speech enhancement and blind separation.
Among the techniques using two-microphone speech acquisition, the classical approach to
speech enhancement, adaptive noise cancelling (ANC), was first formulated by Widrow (1975)
and has been widely used. This technique was based on a least mean square (LMYS) criterion
and has the major advantage of requiring no a priori knowledge of the noise signal. However,
it focuses on restoring only the primary signal, and has difficulties when the primary signal is
also picked up by the reference microphone. A more general technique than Widrow's LMS
algorithm is proposed by Weinstein et al. (1993). This algorithm separates speech signals via
the adaptive decorrelation filtering (ADF) between two simultaneously acquired cochannel
signals.

Primary
speaker

Background Competing
noise speaker

Speech enhancement

h 4 h L
Human Speech Speaker
listener recogniser recaqniser

Figure2.1 Typical applications of speech enhancement
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Another enhancement technique is based on adaptive comb filtering (ACF) (Lim, et al.
1978). Since voiced speech is quasi-periodic, its magnitude spectrum contains a harmonic
structure. The essence of comb filtering is to build a filter that passes the harmonics of speech
while rgjecting interfering frequency components between the harmonics. It is clear that the
magnitude response contains enough energy to alow the accurate estimation of the
fundamental frequency component. A filter can be implemented that “ passes the fundamental
frequency plus harmonics while rgecting frequency components between harmonics’ (Déeller,
et al., 1993). Ideally, spacing between each “tooth” in the comb filter should correspond to the
fundamental frequency in Hz and should remain constant throughout the voiced section of
speech. Unfortunately, speakers normally vary their pitch and therefore require the comb filter
to adapt as data are processed.

If the noise source is a competing speaker, then an enhancement technique similar to comb
filtering can be formulated in which spectral harmonics of each speaker are separated based on
pitch estimates. Parsons (1976) proposed such a method by means of harmonic selection. The
difference between harmonic selection and ACF is that harmonic selection moves the noise
under the pitch harmonics, while comb filtering seeks to filter out the noise in the gaps
between harmonics.

Hanson and Wong (1984) proposed a harmonic magnitude suppression (HMS) technique
to suppress the stronger talker, which is used in Lee and Childers's system (1988). Their
system is a two-stage scheme for cochannel speech separation. It uses the HMS as a front-end
to make initial spectral estimates of each talker, and then a second stage uses a spectral
tailoring technique to obtain better spectral estimation. The system can recover the weaker
speech signal with significantly reduced interference. However, the quality of the original
speech is not retained.

The important work of McAulay and Quatiery (1986) on sinusoidal modelling of speech
provided analysis-synthesis techniques that have been subsequently applied to co-channel
separation of speech. Hanson and Wong's method (1984) utilised the envelope of the
estimated spectrum and an LPC synthesiser (Gold and Morgan, 2000). In recent work, Morgan
et al (1997) proposed the use of an overlap-add synthesiser (Oppenheim and Schafer, 1989) to
smooth the reconstructed speech. Compared to taking the IFFT of the estimated spectrum
directly, both of them recovered the desired speech with less interference and more naturalness.
Thus using a synthesiser to reconstruct the separated speech is preferred both for human
listeners and further processing.

Beginning with the work of Parsons (1976), Hanson and Wong (1984), Naylor and Boll
(1987), cochannel speaker separation algorithms have attempted to exploit pitch information to
separate the two talkers. They first try to estimate the pitch of at least one of the talkers, and
then to enhance the stronger speech or suppress the interfering talker based on the pitch
harmonics. However, these algorithms focus on enhancing voiced speech. Therefore, they
generally perform poorly for unvoiced speech. Since vowels (voiced speech) usually possess
larger amounts of energy, broadband noise degradation ends to mask unvoiced sections more
than voice, thus causing decreased intelligibility. Employing a technique that attempts to
improve quality in voiced sections may in fact decrease overall speech quality and
inteligibility. For this reason, these methods are not normally used to attenuate broadband
additive noise. Instead, their main area of successful application has been in reducing the
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effects of a competing spesker, where distinct fundamental frequency contours can be
identified.

For gationary and well-defined noise sources, effective solutions exist (Widrow, 1975;
Limet al., 1978; Parsons, 1976). However, it is often difficult to formulate a model for speech-
like noise sources such as crosstalk. Some researchers proposed solutions addressing this
problem that require the use of a priori information (Lee and Childers, 1988; Quatieri and
Danisewicz, 1990; Arslan and Hansen, 1997). Typically they assumed the position, or
amplitude of the true spectral harmonics is either available or not required. In these methods,
one successful and widely used technique is Quatieri and Danisewicz (1990). They explored
the use of sinusoidal modelling using a least-squares estimation algorithm to determine the
sinusoidal components of each of the talkers, based on the Widrow LMS technique (1975).
Naylor and Porter (1991) proposed a speech separation algorithm that requires no a priori
information, based on estimating the pitch of the weaker speech signal and modelling the
complex spectrum of the cochannel speech. However, the harmonic location error is generally
worse at higher frequencies, thus this approach is sensitive to additive noise.

Some recent investigations conducted on co-channel speaker separation are Benincasa and
Savic (1997), Morgan et al (1997), Yen and Zhao (1999) and Huang, et al.(2000). These
methods achieved a very good success. Benincasa and Savic focused on separating
overlapping voiced speech signals using constrained nonlinear optimisation. Their work is
unique in that it looks to optimise all three parameters, frequency, phase and amplitude for the
harmonics of both speakers. Morgan et al presented a harmonic enhancement and suppression
(HES) system to address the cochannel speech problem. It exploits the pitch estimate of the
stronger talker to recover the stronger talker’s speech by enhancing their harmonic frequencies
and formants. The weaker talker’s speech is obtained from the residual signal created when the
harmonics and formants of the stronger talker are suppressed. A silence/lunvoiced detection
algorithm was also proposed in their work, which therefore made their system more robust to
unvoiced speech and noise. Yen and Zhao's method is a hybrid of accelerated adaptive
decorréation filtering (ADF) (Naylor and Porter, 1991) and Widrow’s LMS algorithm (1975).
A switching between the two algorithms is made depending upon the active/inactive status of
the cochannel signal sources. Huang, et al. (2000) proposed a sub-band based ADF to address
the issues of high computational complexity and slow convergence of ADF.

As the same time, determining the effect of speaker interference on speaker identification
is of considerable interest. The development of an effective target speaker extraction technique,
which would provide for major improvement of co-channel speech, would also be a very
useful tool. They are discussed in Yantorno (1998) and Lewis and Ramachandran (2001).

Humans are very good at distinguishing competing audio streams from each other (the
cocktail party problem). This ability has motivated extensive research into the perceptual
segregation of sound. The research has resulted in much theoretical and experimental work in
so-called Auditory Scene Analysis (ASA) by Bregman (1990) and others, which led to the
development of early computational models of the auditory system. The more recent work in
this field has been done by Brown and Cooke (1994) and Wang (1996). Brown and Cooke
utilise various features derived from grouping and transition cues to separate and organize the
individual elements of an auditory map, which is a symbolic CASA architecture. Wang's
model is a neural oscillator architecture, which represents auditory activity within a time-
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frequency grid. Each point in the grid is associated with a neuron that has an oscillating
response pattern. The time dimension is created by a system of delay lines. Both of these two
models employed grouping principles. The primary goal of ASA isto model the segregation of
sound in the auditory system as accurately as possible.

Another solution to these kinds of problems is called Blind Source Separation (BSS).
Blind source separation attempts, as the name states, to separate a mixture of signals into their
different sources. The word "blind" is used because we have no prior knowledge about the
statistics of the source or the mixing process (e.g. assume mixed linearly) in general. One
popular information theoretical approach for BBS is the independent component analysis (ICA)
(Hyvarinen and Qja, 1999), which is used to separate independent sources from unknown
linear mixtures of the statistically independent source signals. To make sure that ICA works
properly, some constraints have to be made to the cochannel speech signals. First the number
of sources should not be greater than the number of sensors, in this case, microphones. Second
only very small sensor noiseis allowed. Thus the ICA method is not suitable for the cochannel
speaker separation problem as usually cochannel speech is recorded using only one
microphone.

Although separation of the target speaker from cochannel speech was richly researched in
past years, it has been still very difficult. Therefore, to make the problem more manageable, it
is worthwhile to understand what the final use of the target speechis. If thefinal goal were that
a human listener would use the speech, then inteligibility and quality would be important
characteristics of the extracted speech. However, if the extracted speech is to be used for
speaker identification, then one would be concerned with how much and what type of target
speech is need to perform “good” speaker identification, i.e., voiced and unvoiced speech or
just voiced speech. It is generally known that humans and speech recognizers process
information in different ways, a perceptual improvement does not necessarily translate into an
improvement in recognition accuracy. Sdtzer (2000) pointed out that after performing the
separation algorithm proposed by Morgan et al (1997), the reduction of word error rate for
speech recognition is quite small.

2.2 Pitch Estimation

As some pitch-based systems are not very robust with respect to pitch estimation errors, a
good pitch estimate algorithm for cochannel speech is required. The research about single-
talker pitch estimate is quite rich and this is well documented in the literatures (Wise, et al.,
1976; Droppo and Acero, 1998; Rosier and Frenier, 2002; Cheveigne and Kawahara, 2002).
Many authors tried to estimate fundamental frequencies in time domain, using extensions of
techniques based on the autocorreation method or the Maximum Likelihood principle. In a
real cochannel situation, one would be faced with the need to obtain a pitch estimate of one or
both of the speakers as a starting point for separating the two speech signals. Recent
experiments (Morgan, et al., 1997) have showed that the use of a single-talker pitch detector
proved satisfactory to determine the pitch of the stronger talker in cochannel speech.

Previous work has demonstrated that the ML pitch detector (Wise, et al., 1976)
outperforms cepstral, harmonic matching and auditory synchrony based pitch detectors
(Naylor and Ball, 1987). The ML technique performs well in the presence of additive noise,
which is important in noisy conditions or when the interfering speech is unvoiced. One of the
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drawbacks of the ML pitch detector is that it outputs an integer pitch estimate rather than a
fractional one. This is sometimes not adequate in accuracy for some tasks, eg. for the
cochannel speech separation. A possible solution to this problem is to employ a multi-
resolution search to determine a fractional pitch period, proposed by Morgan et al (1997).
However, this method will aso increase the amount of computation, which is a concern in
real-time system. Recently a new pitch determination algorithm called YIN has been described
in a journal publication by Cheveigne and Kawahara (2002). The YIN algorithm is an
approach to pitch determination that is based on autocorrelation, a well-known time-domain
approach to the problem. YIN improves upon a simple autocorrelation scheme in a number of
ways and gives a fractional pitch estimate. The results have showed that its error rates are
about three times lower than the best competing methods. The YIN algorithm outperforms the
ML approach in the way that it outputs a fractional pitch period estimate directly, and it is also
relatively a simple and effective algorithm to implement. Some other familiar schemes such as
median smoothing (Rabiner and Schafer, 1978) can be included in the post-processing
procedure. These techniques can further improve the robustness of the pitch estimate methods.

In the case of the cochannel speech separation, some algorithms were proposed to estimate
two-talker pitch simultaneously. Naylor and Porter’'s method is based on the modified
covariance (MC) spectrum estimator, which tries to detect the pitch of a speech signal that is
being masked by a much louder speech signal. Other multi-talker pitch estimators are based on
extensions of single-talker maximum likelihood (Chazan, et al., 1993). However, previous
experiments showed that two-talker pitch estimator seems computationally intensive and no
better performance (Morgan, et al., 1997).

2.3 Testing and Evaluation

When we consider speech enhancement, we normally think of improving a signal-to-noise
ratio (SNR). However, this may not be the most appropriate performance criterion for speech
enhancement. All listeners have an intuitive understanding of speech quality, intelligibility,
and listener fatigue. These aspects are not easy to quantify in most speech enhancement
applications since they are based on subjective evaluation of the processed speech signal.
However, many tests have been developed that assess the speech intelligibility by measuring
the speech reception threshold (SRT) (Plomp and Mimpen, 1979; Nilsson et al., 1994,
Versfeld et al., 1999). A SRT isthe lowest intensity and equally weighted two syllable word is
understood approximately fifty percent of the time. The pure tone average and speech
reception threshold should be within 7 dB of each other. Comparison of the speech reception
threshold and the pure tone average serves as a check on the validity of the pure tone
thresholds. Discrepancies between these measures may suggest a functional or non-organic
hearing loss.

2.4 Related Software

In this project, most of the implementation and experiments are done in MATLAB.
MATLAB is a high-performance language for technical computing. It integrates computation,
visualisation, and programming in an easy-to-use environment where problems and solutions
are expressed in familiar mathematical notation. It is aso an interactive system that allows us
to solve many technical computing problems, especialy those with matrix and vector
formulations. Thus MATLAB is ideally suitable for the speech processing work as every
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discrete-time signal can be represented by a vector or matrix. MATLAB has many build-in
mathematics functions, such as Fourier transform functions, which are frequently used in
signal processing. These functions have been optimised for years, thus have very high
performance. Another benefit of MATLAB isthat it is very convenient to visualise the result.
MATLAB supplies a big family of plotting and data visualisation functions, which operate
with other matrix manipulating functions naturally and easily.

However, MATLAB is not designed to develop a separate speech processing system, as it
cannot be compiled to an independent program and is difficult to build a function library to be
used by other programs. Java is first developed by Sun in early 1990s and designed to be an
object-oriented, robust, portable, and high-performance language. All Java source codes are
compiled into byte-codes, which can then be executed by Java virtual machine (JVM) on every
platform. Many speech research works were done with Java and several Java speech libraries
were developed for speech processing, known as Java Speech API (JSAPI).
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Chapter 3  Requirementsand Analysis

3.1 Introduction

Asin any engineering problem, it is useful to have a clear understanding of the objectives
and the ability to measure system performance in achieving those objectives. The goal of our
work is to develop an automatic cochannel speaker separation system that would be capable of
separating the cochannel signal without requiring a priori information that is unavailable in
realistic cochannel situation, would minimise artefacts in the processed speech, and would
emphasise software engineering approaches. The project is based around some audio
recordings in which two speakers are conversing, and separate recordings of the two
conversing speakers are required. Thus continuous real-time throughput is not necessary. To
make the problem more manageable, the final use of the recovered recordings is targeted for
human transcribing. So it is desirable to reconstruct the speech with less interference and more
naturalness. Final performance of the approach will be evaluated by listening tests.

3.2 System Overview

From previously research work, we were able to make use of proven techniques and avoid
known pitfalls. There are many classes of solutions addressing the cochannel speaker
separation problems. In Chapter 2, we reviewed several approaches including Blind Source
Separation (BSS) and some pitch-based methods. The BSS approach requires the number of
sources should not be greater than the number of microphones, and this, in the case of
cochannel speaker separation, means at least two microphones are needed. This is sometimes
impractical because audio recordings might be recorded using only one microphone (or, eg.,
the case of telephone recordings). Furthermore, BSS will fail if the variance between the two
microphones varies according to time, but in realistic world, people always move their heads
when speaking, causing non-stationary variance. These restrictions make BSS inappropriate
for our system.

The methods based on fundamental frequency (FO, or pitch) tracking do not have these
restrictions. These techniques capitalise on the property that waveforms during voiced
passages are periodic. The separation takes advantage of differences in fundamental frequency
contours. We found the work of Morgan et al (1997), who proposed a harmonic enhancement
and suppression (HES) technique to address the cochannel separation problem, is quite
promising. The HES approach is based the pitch estimate of the cochannel speech and
considers it as that of the stronger talker. This assumption can be satisfied in a redlistic
situation as normally the cochannel speech contains enough energy of the stronger talker for a
pitch estimator to get an accurate estimate. Our system is based on the principle informed by
the approach described in Morgan et al (1997). It avoids the need to jointly estimate the pitch
of both talkers, which is a main problem in previous methods as rdliably estimating pitch of
one talker in the presence of another is a very difficult task. Instead estimating the pitch of the
stronger talker is sufficient to achieve separation and make an estimate of the pitch of the
weaker talker during subsequent processing.

The basic strategy of our system is to process the signals frame-by-frame and the stronger
talker's speech is recovered by discarding the energy not associated with the harmonic
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frequencies of the stronger talker in frequency domain, given a pitch estimate of the stronger
talker. The weaker talker’s speech is obtained from the residual signal where the energy at the
harmonics is suppressed. The recovered stronger and weaker signals are then assigned to the
target or interfering talker and re-synthesised using overlap-add techniques. A voiced/unvoiced
detector is aso implemented to assist in smoothing the pitch track. The following sections
contain more detailed analysis of each step.

3.3 ModulesAnalysis

A. Voiced/Unvoiced Detection

The need for deciding whether a given segment of a speech waveform should be classified
as voiced speech, unvoiced speech, or silence arises in many speech analysis systems, for
example, fundamental frequency estimation, formant extraction or syllable marking. In our
system, the voiced/unvoiced decision is used in smoothing the pitch estimate. The SIUV
detection algorithm classifies each analysis frame of the cochannel signal as ether voiced or
S/UV.

A variety of approaches have been described in the literature for making this decision. The
most classic approach is short-time average zero-crossing rate. In the context of discrete-time
signals, a zero-crossing is said to occur if successive samples have different algebraic signs. A
reasonable generalisation is that if the zero-crossing rate is high, the speech signal is unvoiced,
while if the zero-crossing rate is low, the speech signal is voiced. However, an accurate
decision is not possible based on short-time average zero-crossing rate alone because we have
not said what is high and what is low. For this reason, nowadays a combination of several
features was used to classify voiced/unvoiced signal and achieved very high accuracy.

B. Pitch Estimate

As our system is based on tracking the fundamental frequency contour (pitch contour), the
pitch estimate step is the most fundamental and important step. In the case of cochannel
speaker separation problem, one speaker’s speech is often contaminated by the interfering
speech. Thus arobust and accurate pitch estimator is required.

Morgan et al (1997) pointed out that previous work (Naylor and Boll, 1987) has
demonstrated that ML pitch detector (Wise et al, 1976) outperforms cepstral, harmonic
matching and auditory synchrony based pitch detectors. However, one of the drawbacks of the
ML pitch detector is that it provides an integer estimate of pitch period, which is found
inadequate in further processing. Thus a more accurate pitch period estimate is needed.
Morgan et al proposed a technique that a multi-resolution search is conducted to determine a
fractional pitch period. This technique can give some helps addressing the problem to some
extent, but at the same time it also introduces new computational burden, which is key concern
in areal-time system.

Recently Cheveigne and Kawahara (2002) developed a pitch determination algorithm, YIN,
which combines the well-known autocorrelation method (Licklider, 1951) and Average
Magnitude Difference Function (AMDF) methods (Ross, 1974) with a set of incremental
modifications that combine to improve the overall pitch estimation. Cheveigne and Kawahara
(2001) described a methodology for evaluation of pitch estimation algorithms and provided
results for a set of methods. The evaluation was performed over an extensive laryngograph-
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labeled database aggregated from several sources comprising speech from a total of 38
speakers. The results showed the YIN method was uniformly more effective than others and
the error rates are about three times lower than the best competing methods. In the case of
cochannel speaker separation we found the performance of YIN method is very good and
steady.

C. Speaker Recovery

The speaker recovery is the main step of our whole system. It is in this step where the
cochannel speech is separated into a stronger signal and a weaker signal. If we consider the
weaker speech as the interfering signal such as noise, there are several methods available
addressing the problem. Adaptive comb filtering (ACF) (Lim, 1979) is the most famous
method. Since voiced speech is quasi-periodic, its magnitude spectrum contains a harmonic
structure. If the noise is non-periodic, its energy will be distributed throughout the spectrum.
The essence of comb filtering is to build a filter that passes the harmonics of speech while
rejecting noise frequency components between the harmonics.

If the degrading noise source is a competing talker, then an enhancement technique similar
to comb filtering can be formulated in which spectral harmonics of each talker are separated
based on external pitch estimates. Parsons (1976) proposed such a method in which a short-
term spectrum is used to separate competing speakers. All processing is performed in the
frequency domain. An alternative to frequency domain harmonic selection is time domain
harmonic scaling (TDHS). This is a time domain technique that requires pitch-synchronous
block decimation and interpolation. Our system is based on the Parsons method.

After modifying the spectrum in frequency domain, we must transform it back to time
domain. There are two distinctly different methods for reconstructing a signal from its short-
time spectrum. One is filter bank summation (FBS) method and the other is overlap-add
method. Both methods have been shown capable of reconstructing the original signal exactly.

D. Speaker Assignment

Since in independently conversational speech the talkers can randomly appear as ether the
stronger or weaker talker as their speech signals evolve over time, a speaker assignment
algorithm is required. Speaker assignment is needed to assign the recovered stronger speech
and weaker speech to correct output signals.

Several strategies have been investigated for assigning the recovered signals to the correct
talkers. One of the most popular is two-talker pitch tracking (Zissman, and Seward, 1992; Wu
et al, 2003), which is used when both talkers are voiced. Other techniques use distortion
metrics to compare the spectra of the recovered signals.

However, our cochannel speaker separation system does not cover the speaker assignment
stage. Thisis because:

1. Theassignment error rateis too high, causing the output worse than input.

2. For many cochannel speeches, the need for speaker assignment is not quite often.
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3.4 Software Engineering M ethodology

Our system is designed according to the principle of software engineering methodology.
The system is divided into several manageable modules and each functional module, or logical
module, is independent of each other.

One advantage of this approach is that as we break the problem down into manageable
steps, we are able to work on each separate module to enhance its performance. Another
advantage is we can perform testing step by step. Furthermore, we can also compare our
system with other techniques at a module level. Thus we can replace some module by a better
one without influencing others as well as the whole system. However, the relationship between
two adjacent modules is still very important to make sure the whole system works better and is
also a key concern to decide how each modul e should work together.

3.5 Testing and Evaluation Scheme

When we consider speech enhancement, we normally think of improving a signal-to-noise
ratio (SNR). However, this may not be the most appropriate performance criterion for speech
enhancement. All listeners have an intuitive understanding of speech quality, intelligibility,
and listener fatigue. These aspects are not easy to quantify in most speech enhancement
applications since they are based on subjective evaluation of the processed speech signal.
However, many tests have been developed that assess the speech intelligibility by measuring
the speech reception threshold (SRT) (Plomp and Mimpen, 1979; Nilsson et al., 1994,
Versfeld et al., 1999). SRT is a very reproducible test to determine the lowest sound intensity
level at which fifty percent or more of the test words are repeated correctly. For the SRT a
sentence that is masked by noise is presented to a listener. The listener has to recall the
sentence precisely. If the listener produces a correct answer, the next sentence is presented
with an increased noise level of 2 dB. This continues till the response of the subject isincorrect,
than the noise level will be decreased by 2 dB. After a number of presentations, a noise level is
obtained for which 50 % of the sentences are responded correctly.

Running the SRT is complex because all the utterances have to be balanced for difficulty.
Normally in a speech database some utterances (e.g., very nasalised voices) are easier to
recognise than others. Hence, an SRT measured using this database would be invalid. To use
this database, one needs to scale their level in a pretest to make each interval of the same
difficulty. However, we can extract the concept of the SRT to form an evaluation scheme for
our system. Our system was subjected to human listening tests on linearly added speech
signals. The goal of the human listening tests is to transcribe a target speech signal when
contaminated by a stronger interfering speech signal, and use these transcriptions to determine
the performance variance between processed and unprocessed cochannel speech signals.

Two standard speech databases were used for testing our speaker separation algorithm:
TIMIT and TIDIGITS. The TIMIT corpus of read speech has been designed to provide speech
data for the acquisition of acoustic-phonetic knowledge and for the development and
evaluation of automatic speech recognition systems. It contains a total of 6300 sentences, 10
sentences spoken by each of 630 speskers from 8 major dialect regions of the United States.
TIDIGITS is a speaker-independent connected-digit database. This dialectically balanced
database consists of more than 25 thousand digit sequences spoken by over 300 men, women,
and children. The data were collected in a quiet environment and digitized at 20 kHz.
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Two sentences were selected from the TIMIT database as interfering speech. One is
uttered by a male speaker and the other is uttered by a female speaker. Twelve digit strings
were selected from the TIDIGITS database, which are uttered by different male speakers. Each
TIDIGITS string was considered as a target signal and the TIMIT sentences were considered
as interferers. They were linearly added at -12 dB, -18 dB TIR’s, forming 48 different
cochannel speech signals. Eight untrained listeners were asked to transcribe the digit strings
they heard in four types of speech signals: unprocessed cochannel signal at -12 dB, processed
weaker signal (digit string signal) at -12 dB, unprocessed cochannel signal at -18 dB, and
processed weaker signal at -18 dB. Thetest case of 0 dB TIR was not evaluated because it is a
trivial separation task for humans given the configuration of our experiment. We found human
listeners were so good at transcribing digits that even at -10 TIR the accuracy is still very high.

Speech was presented to the listener in the following order: two repetitions of the
interferer’s clean speech followed by unprocessed cochannel signals and processed signals.
Without first hearing the interferer’s clean speech, our listener found it too difficult to block
out the stronger interferer and focus on the weaker target talker. Table 3-1 is a detailed speech
presentation sequence.

Table3-1 Speech Presentation Sequence

Step 1 Step 2 Step 3 Step 4 Step 5

Clean three unprocessed
interferer | cochannel signals
speech at-12 dB

three processed three unprocessed three processed
signalsat -12 dB cochannel at -18 dB | signalsat -18 dB
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Chapter 4  System Design

4.1 Framework Design

Briefly, our strategy was to process the cochannd speech frame by frame and the
separation process is done in frequency domain. A frame of speech, formally, is defined to be
the product of a shifted window with the speech sequence:

def
fo =s(n)w(m-n) 4.1

Practically, aframeis just a“chunk” of speech which perhaps has been tapered by the window.
In this project, the system uses an analysis frame length of N = 400 samples, with a Hamming

analysis window, and assumes a frame increment of R = 100 samples. A sample rate of F_ =
20 kHz is used, thus the frame length of N (400 samples) corresponds 20 ms.

Figure 4.1 is a block diagram of our cochannel speaker separation system. Referring to
Figure 4.1, the system consists four main function parts: a voiced/unvoiced detector, a YIN
pitch detector, speaker recovery stage, and spesker assignment stage. For each N-sample

analysis frame, the cochannel signal s,[n] is analysed using a voiced/unvoiced detector to get
a V/UV decision. A YIN pitch estimator is then performed on the current analysis frame,
combined with its V/UV decision, to determine the pitch period of the stronger talker, denoted
as P, which corresponds to a radian pitch frequency W, = 277/ p, . The V/UV decision helps
smooth the pitch estimate. To make the pitch estimate more accurate, and to avoid the
interfering effect of the weaker talker when calculating pitch period, we use a two-pass speaker
recovery method. At the first pass, the pitch period P is used to drive the speaker recovery
algorithm, which produces estimates of the stronger speech signal. Then the recovered signal is
used to recalculate the pitch period, denoted as P, . The recalculated pitch is believed more
accurate to the stronger talker’ sreal pitch than the former one because it is calculated when the

interfering weaker speech is depressed. An informal test shows this method can help get the
stronger talker’s pitch at the frames whereiit is strongly interfered by the weak speech.

As seen in Figure 4.1, speaker recovery is a two-stage algorithm that exploits the pitch
estimate of the stronger talker P and the cochannel signal s,[n]. The first stage is spectral
recovery, in which a filter pairs are applied in the frequency domain to separate cochannel
speech into recovered stronger signal S.[n] and weaker signal S,[n] , respectively. The

second stage of speaker recovery is spectral enhancement, where the recovered cochannel
speech is further enhanced by nonlinear post-processing steps.

All these inputs are then passed to the final stage: the speaker assignment. The speaker
assignment algorithm uses a pitch-based algorithm to produce two output recovered signals,

§,[n] and §,[n], onefor thetarget and the other for the interferer.

This approach avoids the need to jointly estimate the pitch of both talkers, which isamain
problem in previous methods as reliably estimating pitch of one talker in the presence of
another isa very difficult task. Instead estimating the pitch of the stronger talker is sufficient to
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achieve separation and make an estimate of the pitch of the weaker talker during subsequent
processing. The following sections contain more complete descriptions of each stage shown in
Figure4.1.
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Figure4.1 Block diagram of the cochannel speaker separation system.

4.2 Voiced/Unvoiced Detector

A. Introduction

The need for deciding whether a given frame of a speech waveform should be classified as
voiced speech, unvoiced speech, or silence arises in our system. The decision is used to
smooth the pitch estimate according to several rules described in section 4.3C and is stored in
the pitch estimate by setting pitch estimates of unvoiced/silence frames to a specific (invalid)
value.

A variety of approaches have been described in the literature for making this decision. In
our system, we use a pattern recognition approach for classifying a given speech segment. The
pattern recognition approach provides an effective method that combines the contributions of
five features, which individually may not be sufficient to discriminate between classes. The
method is essentially a classical hypothesis testing procedure based on the statistical decision
theory. In this method, for each of the two classes, a non-Euclidean distance measure is
computed from a set of measurements made on the speech frame and the segment is assigned
to the class with minimum distance. The detector generates a binary voicing decision, which
we label V[n], where V[n]=1 corresponds to a voiced classification.

The success of a hypothesis-testing depends upon the measurements or features which are
used in the decision criterion. Five features were selected in our system based on the
experimental evidence:

* Energy of thesignal

» Zero—crossing rate of the signal

» First predictor coefficient

* Energy of the prediction error

» Autocorrelation coefficient at unit sample delay

A block diagram of the analysis and decision algorithm is shown in the following figure.
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Figure4.2 Block diagram of the Voiced/Unvoiced decision agorithm

B. Feature Measurements

1

Zero-crossing count N, the number of zero-crossing in the frame

The zero crossing count is an indicator of the frequency at which the energy is
concentrated in the signal spectrum. Voiced speech is produced as a result of excitation of
the vocal tract by the periodic flow of air a the glottis and usually shows a low zero
crossing count (usually 14 per 10 msec).. Unvoiced speech is produced due to excitation of
the vocal tract by the noise-like source at a point of constriction in the interior of the vocal
tract and shows a high zero crossing count (usually 49 per 10 msec). The zero-crossing
count of silence is expected to be lower than for unvoiced speech, but quite comparable to
that for voiced speech.

Log energy E, isdefined as

1Il.?
E=10logis+— > T n
2 NZ (7))

H=1
where € is a small positive constant added to prevent the computing of log of zero.
Generally speaking, E, for voiced data is much higher than the energy of silence. The
energy of unvoiced data is usually lower than that for voiced sounds but higher than that
for silence.
Thefirst predictor coefficient a[1] computed from a 12-order linear prediction analysis.

Log of the prediction error normalised by the first autocorrelation coefficient,
log(EP /R[] +1) .

Normalized autocorrelation coefficient at unit sample delay, C; which is defined as
A
> s(m)s(n ~1)
= z-l
1 . Ai-1 .
\/(Zs CHIPIREN)
-l H=ll

This parameter is the autocorrelation between adjacent speech samples. Due to the
concentration of low frequency energy of voiced sounds, adjacent samples of
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voiced speech waveform are highly correlated and thus this parameter is closeto 1.
On the other hand, the correlation is close to zero for unvoiced speech.

4.3 YIN Pitch Estimator

A. Introduction

The YIN pitch estimator is an implementation of a method developed by Cheveigne and
Kawahara (2002). The method combines the well-known autocorrdation method (Licklider,
1951) and Average Magnitude Difference Function (AMDF) methods (Ross, 1974) with a set
of incremental modifications that combine to improve the overal pitch estimation. These
modifications focus on two different issues. one is how to get a periodic lag function less
sensitive to amplitude change and imperfect periodicity; the other is how to extract the correct
period fromiit.

The approach is very much an engineering solution to the problem of imperfectly period
signals rather than a purely theoretic one. Cheveigne and Kawahara (2001) described a
methodology for evaluation of pitch estimation algorithms and provided results for a set of
methods. The results showed the YIN method was nevertheless uniformly more effective than
others. YIN performs very well especially in noisy conditions and the error rates are
about three times lower than the best competing methods. This featureis very important in the
case of cochannel speech as the unvoiced part in interfering speech may act like noise
interferer. YIN is robust to get the periodic information in either target speech or interfering
speech, whichever is stronger. Furthermore, the algorithm is reatively simple and may be
implemented efficiently and with low latency. Thus YIN is ideal for our cochannel speech
separation system.

Figure 4.3 isthe block diagram of our pitch estimator.

VIV state
oo e y S i
g, [=]__L | YIN Pitch | five-point | Fule-hased || 2
' | Estimator me dian filter Smoother |,

Figure 4.3 Block diagram of pitch estimator
B. Pitch Estimation

YIN divides an audio signal into a series of overlapping windows, on each of which
functions are calculated to get the pitch. The fundamental function of the YIN algorithm is the
autocorrelation function (ACF), which is given by Equation 4.2:

t+W

r(r) = zxjxjﬂ' (4.2)

j=t+1
where r,(7) or r/(7) is the autocorrelation function of lag 7 calculated at time index t,

andW is the window size. The autocorrelation function chooses the highest non-zero-lag peak
within a window, but it is quite sensitive to amplitude changes (Hess, 1983), which may cause
the algorithm to choose a higher-order peak. A difference function (Equation 4.3) is then
introduced to make the system |ess susceptibl e to the problem.
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t+W

di (1) = D (X = X;4r)? (4.3

j=t+l
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Figure 4.4 (a) Difference function . (b) Cumulative mean normalized difference function.
Note that the function starts at 1 rather than 0 and remains high until the dip at the period.

The difference function of Figure 4.4 (a) is zero at zero lag and often nonzero at the period
because of imperfect periodicity. Unless a lower limit is set on the search range, the algorithm
must choose the zero-lag dip instead of the period dip and the method must fail. Even if alimit
is s&t, a strong resonance at the first formant might produce a series of secondary dips, one of
which might be degper than the period dip. The solution is to replace the difference function by
the “cumulative mean normalized difference function” (CMND), which is defined in Equation
4.4. Figure 4.4 (a) and (b) shows the difference between the two functions.

1, ifr =0, (4.9
di(r) = d‘(f)/[(l”)i d‘(j)} otherwise .

Based on the Equation 4.4, some other steps are employed to make the algorithm further
robust to noise. Rather than rely on the minimum value over a window, YIN recognises that
even the CMND function is liable to produce multiples of the period with lower values.
Instead an absolute threshold is set. The threshold scheme marks the smallest lag in the
function that falls below the threshold as the pitch period.

Finally, a best local estimate is chosen instead of original value. This step is effectively a
smoothing of the final pitch-time function. After calculating the estimated pitch for all time
frame, YIN then looks again at each point chosen to see if any local point (in a window we
define to be the original window size) were chosen with “better” (i.e. lower) values of the
CMND function. These pitches are then chosen instead. The “best local estimate’” method is
reminiscent of median smoothing, but differs in that it takes into account a relatively short
interval and bases its choice on quality rather than mere continuity.

Following all these steps, YIN appears to be quite a robust estimator of pitch and performs
very well in either a noisy condition or a cochannel speech case.

In our system, a window size of W = 25 msis used when calculating pitch period. With a
samplerate of F_= 20 kHz, this window size corresponds 500 samples. This window size was
selected so that fundamental frequencies as low as 40 Hz could be identified.

Figure 4.5 illustrates how the YIN pitch estimator tracks the pitch of the stronger talker for

two linearly added sentences “Don't ask me to carry an oily rag like that” and “She had your
dark suit in greasy wash...”. The target-interferer-ratio (TIR) for these complete sentencesis 6
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dB, athough the TIR's between different analysis windows can vary significantly. The target
(stronger) speech is uttered by a female speaker and the interfering (weaker) speech is uttered
by a male speaker. Both sentences are selected from TIMIT database and contain unvoiced
speech, some silence, vowels, and low-energy voiced consonants. In Figure 4.5, the upper part
is the waveform of the mixed speech, and the middle part is its corresponding pitch track. In
the lower part the darker curveis pitch track for target (female) speech while the dotted curve
is that for interfering (male) speech. The result is almost perfect. YIN tracks the pitch for all
the voiced part of the target speech as well as the pitch for some voiced part of the interfering
speech when the target is unvoiced/silence at those frame. A formal evaluation about pitch
tracking performanceis included in chapter 6.

Figure 4.6 shows the pitch track for the mixed speech (the solid line) superimposed on the
a priori pitch tracks for both talkers (dotted line and dashed line) at 6 dB TIR. In this example
both sentences are uttered by female (different) speakers; so their fundamental frequencies are
not so different as in Figure 4.5. YIN performs still very well in this case, although at some
voiced part of the target speech it tracks the pitch of the interfere speech. This is because the
cochannel pitch estimate is not always the pitch of one talker; it is the pitch of the stronger
talker. It tends to swap from one talker’s pitch track to the other over time, and at all times the
cochannel pitch corresponds closely to the pitch of one talker or the other.

Waweform of mixed speech with ZMNR =6 dB
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Figure 4.5 Pitch tracking for the mixed speech, target speech, and interfering speech.
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Co-channel Pitch Traclks
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Figure 4.6 Pitch track of the stronger talker superimposed
on thea priori pitch tracks of both talkersat 6 dB SNR.

C. Post-Processing Methods

Although the YIN performs very well in pitch estimation, we still need some post-
processing methods to correct errors in pitch estimation. A popular technique is median-
smoothing (Tukey, 1974). The concept of median-smoothing is very simple but it is quite
useful. This method looks at a sequence of final pitch estimates and tries to find the median of
this sequence. Then the centre of the sequence is replaced by the median. For example, in the
sequence “5, 6, 12, 7, 8”, the median is 7; thus the centre of the sequence is replaced by 7, so
the new sequence becomes “5, 6, 7, 7, 8”. In this example, the outlier 12 was replaced.

In many cases, median-smoothing is preferable to a linear filter, for which the effect of an
outlier would spread to other samples. In the case of pitch estimation, for each window of N
points, where N is an odd integer, the value of point (N+1)/2 in the window is set equal to the
median of the points in the window. The window then is stepped along by one sample point,
and the same operation is repeated.

In our system, two median-smoothing filters are applied to the output of the YIN estimator
to compensate for gross errors and to smooth the estimate when the pitch may not be stationary.
We cascade a three-point median filter with a five-point median filter. Furthermore, before
performing median-smoothing we set all the inappropriate pitch estimates (e.g. too high or too
low) to zero, which represents unvoiced. For example, in a sequence of “200, 201, 0, 210, 205",
the zero gets changed to a “201” and the modified sequenceis “ 200, 201, 201, 210, 205". By
this means, apparently pitch errors and unvoiced gap errors can be fixed by median-smoothing.

After being smoothed by two median filters, the output pitch estimate is then processed by
a rule-based smoothing algorithm (Seltzer, 2000) for each analysis frame. The rule-based
smoother combines the voiced/unvoiced state from a Voiced/Unvoiced detector and the pitch
estimate value to smooth the pitch track. Following rules are used to smooth the estimated
pitch contour:

* A voiced segment of speech must consist of at least three successive frames. Any
voiced segments less than three frames in length are relabelled as unvoiced and
corresponding pitch estimates are set to a specific invalid value, eg. “NaN” in Matlab.

* Anunvoiced segment must also last at least three frames. Any unvoiced segment that
is less than three frames is considered incorrectly labeled and changed to voiced
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speech. The pitch estimates for these frames (formerly set to an invalid value) are
determined by linearly interpolating between the pitch estimates of the bounding
adjacent voiced frames.

* At voiced/unvoiced or unvoiced/voiced boundaries, the candidate pitch estimates of
the unvoiced regions are re-evaluated. If the unvoiced frames at the boundary have a
pitch estimate that is within a fixed threshold of the neighbouring voiced frames, those
frames are rdlabelled as voiced. This threshold was empirically set at 8Hz.

The smoother enables the pitch estimates to contain the voiced/unvoiced information.
After these rules are applied, a signal frame can be considered as a voiced frame if the frame
has a corresponding valid pitch estimate value. Unvoiced frame will hold an invalid pitch
value. Combining all these post-processing methods, the YIN pitch estimator is believed to
work very well in the cochannel speech separation system.

4.4 Speaker Recovery

A. Introduction

The speaker recovery step is amain part of our system as maost separation work is donein
this stage. The speaker recovery algorithm operates on each analysis frame and attempts to
recover the speech of both the stronger and weaker talkers. For voiced sounds, the basic
strategy behind this algorithm is to recover the stronger talker by enhancing their formants and
pitch harmonics. The recovered weaker talker, at the same time, is the residual signal obtained
by suppressing the stronger talker’s formants and pitch harmonics. For the unvoiced or silence
frames, we simply pass them through our speaker recovery algorithm unprocessed. However,
a scaling term (which is typically in the range of 0.3-0.6) is applied because applying the
algorithm to voiced sounds reduces the energy present.

The algorithm involves two stages: the first one is spectral recovery stage and the other is
spectral enhancement stage. Figure 4.7 is a block diagram that shows the steps in the speaker
recovery algorithm. Ideally, the outputs of this system are the recovered speech signals of the
stronger talker and the weaker talker, which are then passed to the speaker assignment stage.

Spectral Recovery Spectral Enhancement
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Figure4.7 Block diagram of the speaker recovery system.
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B. Spectral Recovery

Speech signals have a spectrum that falls off at high frequencies. In our cochannel speaker
separation system, it is desirable that this high-frequency falloff be compensated by “pre-
emphasis’. A ssimple and widely used method of pre-emphasis is linear filtering by a “first
difference’ filter of theform:

yinl =x{n] -a {n-1]

where X[ n] isthe input speech signal and y[N] is the output “ pre-emphasised speech” and
is an adjustable parameter.

In the first stage of speaker recovery, the cochannel signal is first pre-emphasised with a
factor of .95 to flatten the spectrum and help emphasise higher pitch harmonics. Pre-emphasise
can also help to minimise the possibility of close formants merging in spectral enhancement
stage. The speech signal is then processed 401 points at a time with a 100 points advance by a
discrete-time filter. Each frame is Hamming-windowed for future re-synthesis procedure.
Figure 4.8 is the block diagram of the operations involved in the discrete-time filtering
procedure. The discrete-time filter begins as a simple ddlay and add to recover the stronger
talker, and delay and subtract to recover the weaker talker. Given the pitch period estimate

denoted by P,, the following transfer functions (Equation 4.5) proposed by Morgan et al
(1997) are constructed to recover the two talkers' spectra

H.(2) =(@+az ™)/(1+a),

] . (4.5)
H (2)=@Q-az ™)1-az™)I(1+a)?.

where o = .99 is the factor introduced to avoid H,(2) = 0 a z=¢€**® . Morgan et a

pointed that the second-order filter formulation for H_(z) was found to provide a broader
notch at harmonic frequencies, and produced superior perceptual results.
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RN
Y 5,0k]| 4096-p X )
..r;;.; TFFT - (X5 [n]

Figure 4.8 Block diagram of the operations involved in the discrete-time filtering procedure.

The discrete-time filter is in fact an adaptive comb filter (ACF) (Lim, 1978). Since voiced
speech is quasi-periodic, its magnitude spectrum contains a harmonic structure. If the weaker
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speech does not have the same harmonic structure, its energy will be distributed between the
harmonics throughout the spectrum. The essence of the discrete-time filtering is then to build a
filter that passes the harmonics of the stronger speech while regjecting interfering speech or
noise frequency components between the harmonics. The weaker speech recovery filter, on the
other hand, regjects the harmonics of the weaker speech while passing the interfering speech
frequency components. The technique is best explained by considering Figure 4.9 and Figure
4.10. In Figure 4.9 (a), the magnitude spectrum of a voiced (periodic) speech frame is shown.
The transfer functions for both stronger speaker recovery and weaker speaker recovery filters
are displayed in Figure 4.9 (b) and (c), respectively. The “stronger” filter has large values at
the specified fundamental frequency FO (in this case 244Hz) and its harmonics, and low values
between. The “weaker” filter looks just like a vertical flip of the stronger one; so it has low
values at the fO and its harmonics, and large values between. Figure 4.10 is the result applying
these filters to the spectrum shown in Figure 4.9 (a).

When implemented in frequency domain, the two transfer functions become:
H, (k) = 1+ ae 02"™W%) [(1+ @),
H_(K) = (1- e 1Z"%)(1 - gel27™'® ) (1 + g2,
where M is the point of used DFT. We could see that the linear phase factor e (2™
determines the value of the function. Since for non-integer P, values, e £1in general,

(4.5)

to delay a real signal by a non-integer value of P, the linear phase factor must therefore
beimplemented differently. For an even value of M, the linear phase factor is:

~(j271/ M )kp, . M
e NIIfOS k< /2
-(j2mIM)(k-M)ps _
e if /2+1S k<sM-1

When a 4096-point FFT is used and the speech sample rate is 20 KHz, we get a frequency
resolution Af = fs/M =4.88Hz . So each sample in frequency domain represents the

frequency
f, =index_ f, xAf =index_ f,x fs/M
where index__ f, is the corresponding index of each frequency in frequency domain.
We can then deduce:
index_ f, =M /(fs/ f,)=M/p, or
P, /M =index_ f, (4.6)
where P, isthe pitch period estimate in samples. Combining Eq. (4.5) and (4.6) we can get:

H, (K) = (L+ ge 12%*-To) /(1 + a),

_ _ 4.7)
H_(k) - (1_ ae—]anEhdex_fo)(l_aejanEhdex_fo)/(1+ a)Z



Chapter 4. Design 24

From Eq. (4.7) we can see H, (k) achieves maximal value at multiple index__ f, positions,

which correspond to the harmonics positions. Meanwhile, H_(k) achieves minimal value at
these positions.

Ideally, spacing between each “tooth” in the discrete-time filter should correspond to the
fundamental frequency in Hz and should remain constant throughout the voiced section of
speech. Unfortunately, speakers normally vary their pitch and therefore require the filter to
adapt as data are processed. For each analysis frame, we use corresponding pitch estimate to
construct the transfer functions for the filters. As the frame advances, we have to reconstruct
the transfer functions according to each pitch estimate.

Referring to Figure 4.8, we perform an 4096-point FFT to each analysis frame to get
S, [K], where m is the first sample in the frame. Given a pitch period p,, the stronger and

weaker talkers' spectra are recovered by constructing H, (k) and H_(k) according Eq (4.7)
and multiplying by S, [K] to produce S,[K] and S, [K] .

One of the disadvantages of the discrete-time filter approach is that it is extremely
dependent upon an accurate estimate of the stronger talker’'s true pitch. We found that
estimates of the pitch harmonics were often off by more than one DFT bin at higher
frequencies. Thus we need an accurate pitch estimate to ensure that the location of higher order
harmonics is accurate to within one DFT bin. Our YIN pitch estimate can supply a fractional
pitch estimate, i.e., the precision is less than 1Hz. This precision is adequate enough to ensure
the location of higher order harmonics is within one DFT hin.

Since the discrete-time filter can only be used to enhance voiced speech, a method must be
available with which to handle unvoiced speech or silence section. Two approaches are typical.
First, we can pass the unvoiced speech through the filter unprocessed. In this case, a scaling
term (typically in the range of 0.3-0.6) is necessary because applying the discrete-time filter to
voiced speech reduces the energy present. Failure to apply attenuation in unvoiced or silence
sections results in unnatural emphasis of unvoiced speech sounds with respect to voiced
sounds. The second method for processing unvoiced speech is to maintain a constant pitch
period, obtained from the last voiced speech frame, and process the unvoiced sounds or silence
asif they werevoiced. Deller et al. (1993) pointed out that the first method is more successful
than the second. In our system, we choose a scaling term 0.6 for stronger speaker recovery and
0.3 for weaker speaker recovery. This is because more energy is suppressed in the weaker
speaker recovery procedure.

After all the modifications to the spectrum are completed, the recovered signals are then
converted back to the time domain. A 4096-point IFFT is then applied to produce the estimate
of both the stronger speech and the weaker speech using overlap-add synthesis. This technique
resultsin a great improvement of the perceptual quality of the reconstructed speech.
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Figure 4.10 Spectra of the same frame after applying the discrete-timefilters

C. Spectral Enhancement

Referring to Figure 4.7, having recovered the raw stronger and weaker talker signals, we
perform several nonlinear post-processing steps to further enhance the recovered signals. A
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zero-phase Hamming window is first applied to make sure the frequency response of the
window is “totally real even.” This prevents the window from influencing the phase response
of the recovered signals during subsequent processing. To further reduce the residue effects of

weak talker interference, the stronger signal S.[n] is enhanced by “sampling” the harmonics.

A 4096-point FFT is used to obtain a frequency resolution of 4.88 Hz (assuming the sample
rateis 20 kHz). The bandwidth of each sampled harmonic is empirically set to 53.7 Hz, that is,
only the energy associated with the frequency bins closest to the harmonics, and at the five
adjacent bins on either side is retained in frequency domain. The energy not associated with
these binsis discarded.

The energy associated with the formant frequency bins is also retained. Twelfth-order
linear prediction analysis is employed to determine the location of the stronger talker’s first
three formants. Formants can be estimated from the predictor parameters in one of two ways.
The most direct way is to factor the predictor polynomial and, based on the roots obtained, try
to decide which are formants, and which correspond to spectral shaping poles (Markel, 1973).
The alternative way of estimating formants is to obtain the LPC spectrum, and choose the
formants by a peak picking method (McCandless, 1974). A distinct advantage inherent in the
linear predictive method of formant analysis is that the formant centre frequency and
bandwidth can be determined accuratdy by factoring the predictor polynomial. Since the
predictor order p is chosen a priori, the maximum possible number of complex conjugate poles
that can be obtained is p/2. Since 12-order linear prediction analysis is performed, we can use
the method proposed by Markel (1973) to determine the location of the stronger talker’s first
three formants.

The energy in the bins not associated with the formants is then discarded. A similar
process is also used to enhance the weaker speech. Residue signal is used to enhance weaker
signal by suppressing the stronger energy at harmonics and formants. In this case the energy
associated with the harmonics and stronger signal’s formants is discarded. However, we found
that the same bandwidth of each harmonic and formant frequency is not wide enough for the
weaker speech enhancement. This is because the energy of the stronger speech may spread as
wide as 100 Hz at each harmonic. Discarding energy in only half of these bins can still leave
more energy of stronger speech than weaker speech, causing the recovered weaker speech less
perceptual. A bandwidth of 107.4 Hz is used instead for the weaker speech enhancement.

An IFFT isthen used to reconstruct onetalker’s speech signal using overlap-add synthesis,
which result in an improvement of the perceptual quality of the reconstructed speech.

It is known that when two equal bandwidth signals are added, such a separation is not
possible as one voice may mask the other. Even if the two signals do not have equal bandwidth,
there is till a problem if they have overlapping harmonics. Harmonics overlapping is
illustrated in Figure 4.11. Figure 4.11 (a) is the spectrum of one frame in a linearly added
speech with TIR = 12 dB. Figure 4.11 (b) and (c) is the spectra of same frames in stronger
signal and weak signal. The fundamental frequencies of these two signals are 306.58 Hz and
117.57 Hz, respectively, produced by our YIN pitch estimator. We should note the second
harmonic of the stronger signal is 613 Hz and the five harmonic of the weaker signal is 588 Hz.
Both these harmonics contain more energy than other frequencies. Because their variance is
only 25 Hz, when we sample the harmonics of stronger signal using a bandwidth 50 Hz, we
also retain the energy of the weaker signal. Meanwhile, when the energy associated with these
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frequency bins is removed, both talkers' speech signals lose the energy (remember the original
weaker speech also contains much energy at these frequency bins). Thus the recovered speech
is of less naturalness. Figure 4.11 (d) and (€) illustrate this phenomenon. (d) is the spectrum of
recovered stronger signal and (e) is the spectrum of recovered weaker signal. We can see in (d)
that the information around 600 Hz is lost, which is very strong in original spectrum (c).

To solvethis problem pure signal processing technique might be inadequate. A solution to
this might be considered to require source-specific knowledge, but this is often impossible in
realistic situation. Cooke and Brown (1993) proposed a computational auditory scene analysis
(CASA) (Brown, 1992; Cooke, 1993; Brown and Cooke, 1994) which exploits principles of
perceived continuity. This method uses cues provided by primitive grouping processes such as
harmonicity to restore the missing harmonic fragment. However, at the same time the method
also raises another problem. As it is done according to a principle of pitch contour similarity,
to restore the missing harmonic fragment in the recovered weaker signal we will need the pitch
information of the weaker signal. Wu, et al. (2003) proposed a new multi-pitch tracking
algorithm which uses a hidden Markov model for forming continuous pitch tracks. We could
use this algorithm to get pitch contours of both stronger signal and weaker signal at the
beginning. Our system did not involve these approaches; so we do not know their performance
in the case of cochannel speaker separation. The harmonics-overlapping problem remains
unresolved in our system.
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(a) Spectrum of alinearly added signal with a TIR = 12 dB. (b) Spectrum of the stronger signal.
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45 Speaker Assgnment

Thefinal stage in our system is the speaker assignment algorithm. This algorithm receives
the stronger and weaker recovered signals §.[n] and §,[n] and assigns them to output signals
§[n] and §,[n] . Assignment is driven on a frame-by-frame basis by a binary sequence

denoted as A[n]. Weterm the case when A[n]=0 as the “no swap” state, in which case §[n] is
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assigned to §,[n] and §,[n] is correspondingly assigned to §,[n]. A[n]=1 is defined as the
“swap” state, in which case the assignment is reversed.

Morgan et al. (1997) proposed a Maximum Likelihood Speaker Assignment (MLSA)
algorithm for assigning the recovered signals, which exploits an ML formulation and allows
for error recovery using the Viterbi algorithm. One advantage is that it uses several frames to
make a decision and ties swapping decisions directly to an objective hypothesis testing method.
Thus it is relatively robust to the effects of additive noise and pitch tracking errors. However,
its biggest disadvantage is that when a mistake is made, it is propagated infinitely. For example,
if talker 1 is placed on channel 1, and an assignment error occurs, talker 1 will appear on
channel 2 until another error occurs.

As stated in Section 3.3D, currently the speaker assignment is not included in our system.
This is because the performance of speaker assignment algorithm is not good enough and
largely depends on the pitch tracks of both stronger and weaker talkers. One way to track the
weaker talker’s pitch is to use two-talker pitch tracking algorithms (Zissman and Seward, 1992;
Rosier and Grenier, 2002; Wu et al, 2003). Another way is to estimate the pitch of the
recovered weaker speech, and then consider it as the weaker talker’s pitch. This method is
proposed by Morgan et al (1997) and works not very well because the periodic structure in
recovered weaker speech is often extremely suppressed as the energy of stronger speech is
removed. Whichever method is used, the pitch-tracking task is rather difficult, and causing the
performance of speaker assignment algorithm is very unsteady.

However, we found without the speaker assignment the outputs of our system are still
acceptable. Only if there exist some speech segments where the target speaker is silence and
the interfering speaker is voiced, the speaker assignment is necessary. In final tests, we could
use the prior pitch to provide optimal assignment of the speech.
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Chapter 5 Implementation and Testing

5.1 Matlab Implementation

For easy demonstration, the whole system is implemented in Matlab with signal
processing toolbox. A simple graphic user interface (GUI) is available. Testing is also donein
Matlab. A sample rate of 20 kHz is assumed. Frame size is 400 samples; corresponding to 20
ms. Frame increment is 100 samples. All speech signals are re-sampled to 20 kHz before being
processed. A 4096-point FFT is used, giving a frequency resolution as low as 4.88 Hz.

The cochannel signal is first read into memory and is padded with zeros so its length is
exactly multiple frame sizes. The processing procedure is multi-passed, that is, we finish each
step in a separate pass rather than a same pass. However, in each pass, the signal is processes
frame-by-frame with same frame size and frame increment.

A. Mixing Cochannel Signals
The cochannel signal is linearly added given a TIR. Following codeis used:

function m x = addSi gnal s(s, n, snr)
%ADDS| GNALS adds signal s to signal n at specified SNR If nis not |ong
% enough, replicate it

s =s(:); n=n(:);

while length(n) < length(s)
n=1[n;n];

end

n = n(1l:1ength(s));

es = sum(s.”2); ns=sun(n."2);

k = sqrt((es/ns)*(10.~(-snr/10)));
mx = s+k.*n;

B. Pre-emphasis of Speech

Speech signals have a spectrum that falls off at high frequencies. In our cochannel speaker
separation system, it is desirable that this high-frequency falloff be compensated by “pre-
emphasis’. A simple and widely used method of pre-emphasis is linear filtering by a “first
difference’ filter of theform:

yinl =x{n] -a {n-1]

where X[ n] isthe input speech signal and y[N] is the output “ pre-emphasised speech” and a
is an adjustable parameter.

We can usethe Matlab functionfi | t er () toimplement the pre-emphasisfilter.

y = filter([1 -a],1,x);
where, aisthe adjustable parameter, and x is the input speech signal. We usea = 0.95 in our
system.
C. YIN Pitch Egtimator

We implement the YIN algorithm described in Cheveigne and Kawahara (2002) step by
step. Though our system is just for demonstration, we found Matlab is too slow when
calculating the pitch estimates, especially if we set the pitch search upper limit to a very large
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value (e.g. a quarter of the sample rate). Benefiting Matlab’s powerful functionality, we can
call compiled C code from Matlab (as a dynamic link library). The entire core computing
functions are implemented in C code as Matlab Mex files because of the high cost of
computation. We found the C code is ten times faster than the same Matlab code.

Thefollowing parameters are used in the implementation of YIN pitch estimator:

*  Minimum search frequency = 30 Hz

*  Maximum search frequency 500 Hz

* Apeiodicity ratio threshold = 0.15

e Computation buffer size = 5000 samples

e Window shift = 100 samples

* Integration window size = 25 ms, but at least 300 samples

The meaning of these parameters can be found ether in previous section or in the original
YIN paper (Cheveigne and Kawahara, 2002).
5.2 Testing

A. Human Listening Tests

The goal of the human listening tests was to transcribe a target digit string speech when
jammed by a stronger interfering speech signal, and use these transcriptions to determine the
performance difference between processed and unprocessed cochannel speech. Eight untrained
listeners were asked to transcribe twelve digit strings with different TIR at -12 dB and -18 dB.

Two sentences were selected from the TIMIT database as interfering speech. One is
uttered by a male speaker and the other is uttered by a female speaker. The whole sentences
are

Female: Don't ask meto carry an oily rag like that

Male She had your dark suit in greasy wash all year

Twelve digit strings were selected from the TIDIGITS database, which are uttered by
different male speakers. Each TIDIGITS string was considered as a target signal and the
TIMIT sentences were considered as interferers. They were linearly added at -12 dB, -18 dB
TIR's, forming 48 different cochannel speech signals. Speech was presented to each listener in
the following order: two repetitions of the interferer’s clean speech to let the tester get familiar
with the interferer. Three unprocessed cochannel signals followed by three processed signals at
-12 dB TIR are then presented. Each time the listener was asked to input the heard digits into
thetesting program. The valid input is “1234567890z", in which ‘Z’ means zero. After that, the
other three unprocessed and three processed signals at -18 dB are played to the listener.

The testing program will save the testing result to hard disk. The result consists of two
columns: one for the listener’s transcript and the other for the correct answers. The result is
then passed to a scoring program for analysis. The scoring program compares the listener’s
transcript with correct answers to get its accuracy. There are three types of error a tester can
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make: insertion (ins), substitution (sub), and deletion (del). The correct transcribed digit is
counted as hits. The accuracy is calculated according following formula:

accuracy =100x (hists—ins) /(hits + dels + subs)

B. Pitch Estimation Tests

The pitch estimate of cochannel speech was compared with the estimated pitch of the
stronger speech within appropriate regions. The appropriate regions are defined as following:
pitch estimate between 50 — 400 Hz is considered as voiced. Only the regions where the pitch
estimates of both speech signals are voiced are considered as appropriate regions. At each
frame if the pitch variance between target and cochannel speech signals is less than 2% of
target pitch value, the pitch of cochannel speech is considered correct. Since the TIR’s vary
significantly between different frames, and the pitch detector has its own error, there cannot be
100% correct pitch estimate.

C. Voiced/Unvoiced Detection Tests

In order to make our voiced/unvoiced detector work, a training set of data is required to
obtain the mean vector and the covariance matrix for each class (Silence, Unvoiced and
Voiced). The raw training set was pre-processed (e.g., high-pass filters and data/shift
windows). The training set is then analyzed by manually segmenting natural speech into
regions of silence, unvoiced speech, and voiced speech. The speech segments are sub-divided
into 10-ms blocks (i.e., 200 samples in each block on speech of 20K sampling rate), and the set
of 5 different measurements defined in previous section is made on each block of data.
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Chapter 6 Resultsand Discussion

6.1 YIN Pitch Estimation

To examine how close the correct pitch estimate of the cochannel speech is to the target
one, we also produced the average variance between them. Table 6-1 and Table 6-2 show the
results. The test results are also showed in Figure 6.1, where the pitch track for the cochannel
speech is superimposed on the one for the target speech. The pitch contour for the target digit
string (0806255a.wav) is drawn in solid line, and the pitch contour for the mixed speech (with
the femal e spoken sentence) is drawn in dashed line.

Table6-1 The Accuracy of YIN Pitch Detector for Cochannel Pitch
Tracking in Voiced Region. Interferer is afemal e spoken sentence n8.

Target/ n8.Z Average Variance of Correct Pitch / Average 2% Variance (Hz)

(male) 0dB 5dB 10dB 15dB 20dB
0806255a.wav 031 218 | 023 218 | 017 217 | 010 217 | 0.06 216
1871986a.wav 027 292 (021 291|012 29 | 011 291 | 0.08 291
19z96z8a.wav 024 28 (019 280|018 282 | 013 283 | 008 283

19974a.wav 035 229|024 227|017 228|018 232 | 012 233
2567184a.wav 030 307|026 305|019 303 ]| 014 301 | 007 3.00
27984a.wav 028 239|023 239|027 239|011 242 | 010 245
34187a.wav 027 218 (020 215|014 213|015 211 | 012 210
42045a.wav 025 209 (023 206 | 020 203 ]| 017 205 | 012 205
4379315a.wav 034 28 | 024 287 | 020 287 | 017 286 | 012 287
7551322a.wav 032 230|023 231|018 231|015 233|012 234
9006043a.wav 028 226|024 229|017 230 | 011 227 | 009 232
9201648a.wav 031 232|023 230|015 228 | 011 227 | 008 226
Average 029 247 | 022 246 | 018 246 | 013 246 | 0.09 246

Table6-2 The Accuracy of YIN Pitch Detector for Cochannel Pitch
Tracking in Voiced Region. Interferer is afemal e spoken sentence n9.

Target/ n9.Z Average Variance of Correct Pitch / Average 2% Variance (Hz)
(female) 0dB 5dB 10dB 15dB 20dB
0806255a.wav 025 218 (020 219 ( 012 220 | 007 217 | 0.05 216
1871986a.wav 033 297 (033 298|022 294] 015 294 | 010 294
19796z8a.wav 024 273|017 277 (013 280 | 015 281 | 012 279
19974awav 042 224 (038 227 (033 231|018 231 ] 013 231
2567184a.wav 039 302|019 302|011 300 ]| 013 304 | 0.09 3.03
27984awav 033 238 (026 238|018 238 | 011 239 | 009 242
34187awav 014 210 (| 018 213|024 215|010 212 ] 012 211
42045a.wav 025 207 (016 209 ( 0.09 208 | 007 205 | 006 205
4379315a.wav 039 276|023 28 (014 282 ] 009 282 | 007 283
7551322a.wav 036 230 (03 230 (030 230|018 233|014 234
9006043a.wav 034 225|037 232|022 232]015 234|010 235
9201648a.wav 027 235|020 234|014 231 ] 010 230 | 008 230

Average 030 244 | 025 246 | 017 246 | 012 246 | 0.09 246
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The result showed YIN is robust in noisy conditions and capable to estimate the pitch
period of the stronger talker from the cochannel speech. When the TIR is high (e.g., above 6
dB), YIN is ableto exactly estimate the pitch of the stronger talker. Whenthe TIR islow (e.g.
below 6 dB), YIN tends to track the pitch of either the target talker or the interfering talker.

This phenomenon is expected and desired, but requires a robust speaker assignment algorithm
asthe sametime.

6.2 Voiced/Unvoiced Detection

Table 6-3 shows the means, and the normalized covariance matricesfor the three classes
for a typical set of training data. The columns in Table 6-3 correspond to the five feature
measurements discussed in Section 4.2. The off-diagonal terms of the covariance matrices are
a measure of the correlation between the different parameters. If the measurements were all
independent and uncorrelated, then all off-diagonal el ements would be 0. It can be seen that
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the magnitudes of the off-diagonal elements vary from 0.18 to 0.94, indicating varying degree
of correlations between the different parameters.

Table6-3 Meansand Covariance matrices for the three classes for the training data

LEL O Log Enerzy First LPC LPCleog First Auto-
Crossings Error cotrelati on
1) Silence
Mean 26613 -38. 1601 05084 -10. 8084 09489
Covariance 1.0000 06760 -0.1904 07208 077077
matrix 06760 1.0000 02918 -0.9425 06933
(normalized) 0.7 06933 03275 08426 1.000
-0.1904 02918 1.0000 02122 03275
07208 -0.9425 -0.2122 1.0000 -0.8426
2) Unvoiced
Iean 10,4286 -36.7536 05243 -10.90746 09598
Covariance 1.0000 06059 04648 -0.4603 -0.406%
m atris 06059 1.0000 01916 -0.9337 -0.1713
(normalized) -0.4069 -0.1713 01590 -0.1685 1.0000
04648 01914 1.0000 0212 01990
-0.4603 -0.9337 -0.2121 1.0000 -0. 1685
2) Voiced
Mean 291853 -18 3327 11977 -11.1256 09826
Covariance 1.0000 -0.21446 -0.3362 03608 -0.8393
matrix -0.2144 1.0000 06564 077129 01793
(normalized) -0.83593 01793 03416 -0.5002 1.0000
03362 06564 1.0000 -0.4850 03414
03608 -07129 -0.4830 1.0000 -0.5002

The algorithm has been tested on training data and testing data respectively. The speech
data in the training set consisted of utterance "Don't ask me to carry an oily rag like that"
spoken by a female speaker. The testing set was used to evaluate the performance of the
algorithm. The speech data in the testing set consisted of utterance "She had your dark suit in
greasy wash al year" spoken by a male speaker.

The confusion matrix was used to evaluate how well the algorithm performs with the speech
data. The algorithm was first run on the training set itself and then was used on the speech data
in the test set. The confusion matrices for the two cases are presented in Table 6-4 and
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Table 6-5. Most of the identifications are correct, a few errors occurred at the boundaries
between the different classes. Since the classification was made on the basis of consecutive 10-
ms long speech segments, a segment at the boundary often included data from two classes.

Table6-4 Matrix of incorrect identifications for the
three classes for the speech datain thetraining set.

Identifie('jA\aC;ual e Silence Unvoiced Voiced
Silence 61 3 0
Unvoiced 2 56 1
Voiced 0 0 253
Total 63 59 254
Table6-5 Matrix of incorrect identifications for the
three classes for the speech datain the testing set
Identifie('jA\aC;ual e Silence Unvoiced Voiced
Silence 23 1 0
Unvoiced 2 35 1
Voiced 0 0 190
Total 25 36 191

6.3 Cochannel Speaker Separation

The human listening test result is listed in Table 6-6. Before being present to listeners, the
twelve digit strings are randomly sorted to ensure the digit strings that have been presented to
the listener are not repeated again to the same listener. The results show that cochannel
processing is helpful at very low TIR’s for linearly added speech. We should note the listener
expressed a very good ability to catch the digits. Although the results show the accuracy of
processed speech transcription is a little higher than that of unprocessed cochannel speech, the
tested reported that the processed signal is of less naturalness than the original signal. We
believed this is because some useful periodic information of the weaker (target digit string)
signal was removed when we removed the energy associated with the stronger talker’s
harmonics. Thisis the harmonics-overlapping problem.

Table6-6 Human Listening Test Result

Test data Acc Hit Sub Ins Del
Cochannel Speech-12 dB TIR 94.6% 144 4 4 0
Cochannel Speech-18 dB TIR 85.5% 132 18 2 2
Processed Speech —12 dB TIR 97.4% 148 4 0 0
Processed Speech —18 dB TIR 88.5% 136 11 5 1

We also present the listeners some cochannel speech signals made by linearly adding a
mal e utterance and a femal e utterance as well as both the recovered stronger signal and weaker
signal. They were asked to give their opinions on whether the recovered signals are easier to
catch. The results are showed in Table 6-7. The result showed the recovered stronger signal is
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very good and the weaker interfering signal is strongly eliminated. But the recovered weaker
signal was reported of less naturalness again.

Table6-7 Intelligibility Test Result

Target Interferer Female Male
TIR Female Better / Worth Better / Worth
6dB Male Better / Worth ~ Better / Worth
TIR Female Better / Worth Better / Worth
12.dB Male Better / Worth Better / Worth

When the TIR is 0 dB, the requirement for a speaker assignment step is obvious. We can
hear that the target speech signal occurs in both recovered stronger signal and weaker signal.
After manually assigning the recovered speech signals according to a prior pitch track, the
result appeared much better.
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Chapter 7  Conclusion

This dissertation has presented an automatic cochannel speaker separation system designed
to operate on two-talker cochannel speech in both clean and noisy environments. The system
has been shown to improve human recognition of processed clean cochannel speech at -12 and
-18 dB TIR. The result showed our cochannel speaker separation system is helpful when the
TIR isrdative high.

While the system has demonstrated its effectiveness for two-talker cochannel enhancement
applications, it nonetheless has some inherent problems. When both talkers have the same
instantaneous pitch, or have overlapping harmonics, the algorithm will place both talkers on
one output and neither talker on the other output. The problem of automatic speaker
assignment also remains a significant obstacle to completely “hands-free” operation.

To solvethis problem pure signal processing technique might be inadequate. A solution to
this might be considered to require source-specific knowledge, but this is often impossible in
realistic situation. Cooke and Brown (1993) proposed a computational auditory scene analysis
(CASA) (Brown, 1992; Cooke, 1993; Brown and Cooke, 1994) that exploits principles of
perceived continuity. This method uses cues provided by primitive grouping processes such as
harmonicity to restore the missing harmonic fragment. However, at the same time the method
also raises another problem. As it is done according to a principle of pitch contour similarity,
to restore the missing harmonic fragment in the recovered weaker signal we will need the pitch
information of the weaker signal. Wu, et al. (2003) proposed a new multi-pitch tracking
algorithm which uses a hidden Markov model for forming continuous pitch tracks. We could
use this algorithm to get pitch contours of both stronger signal and weaker signal at the
beginning.

Although considerable work remains in developing cochannel algorithms, system achieves
an effective balance between processing capability, low delay, reatively low computational
complexity, and operation without a priori information that makes it attractive for many
cochannel speech separation problems.
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