
1 of 86

University of Sheffield

Department of Computer Science

COM1080: AI Techniques

This module covers a number of computer-based
problem solving methods developed for Artificial
Intelligence.

We are looking at techniques for symbolic rather
than connectionist AI.

We will take a practical approach, showing how
these techniques can be programmed using Java.

1 REFERENCES

There are many AI textbooks covering this material, for example:

• Winston, Artificial Intelligence, Addison Wesley.

• Luger & Stubblefield, Artificial Intelligence and the design of Expert Systems,
Benjamin Cummings.

• Nillson, Artificial Intelligence: a new Synthesis, Morgan Kaufmann.

• Cawsey, The Essence of Artificial Intelligence, Prentice Hall

There is no requirement to buy any of these to follow the course, but you might
find it useful to look at them.

The COM1080 web site is
www.dcs.shef.ac.uk/~pdg/com1080

Java code used in the course is in the java directory on that site and also in
/share/public/com1080/java (unix)

\\holly\public\com1080\java (windows)

2 SEARCH

We look first at problem-solving by search. In the early days of AI it was thought
that this paradigm might prove sufficient to produce generally intelligent behav-
iour. While the modern view is that there is more to it than that, it is still necessary
to be able to conduct a search sensibly.

COM1080

2 of 86 COM1080: AI Techniques

A search-based problem-solver makes decisions based on the likely consequences
of potential actions. The only knowledge used is what actions are available in a
given problem state, how these actions will change the state and, in the general case,
costs associated with these actions.

From an initial problem state, the search engine generates the states which can be
reached by a single action. It then selects one of these states and (if the new state is
not a goal), generates all its successors and so on.

2.1 Examples:

We’ll use three simple search problems as exemplars:

2.1.1 Jugs Problems
A typical jugs problem is:

Suppose you have a 7-pint jug, a 4-pint jug, a water tap and a sink.

You are allowed to fill either jug from the tap, empty either jug into the sink, or
pour from one jug into the other until either the first jug is full or the second jug is
empty.

Show that by a sequence of such moves it is possible to measure any number of
pints between 0 and 7.

We always want to generalise our solutions, so we will consider that our jugs can
be any capacity (not just 7 & 4 pints), and the target amount can be anything we
like.

Note that there may be no solution to some given problem.

2.1.2 8-Puzzle

Rearrange the tiles to the desired pattern by sliding adjacent tiles into the hole.

2.1.3 Map Traversal

• Think of A,B etc. as cities

1
2
3

45

6
7 8

1 2 3
4 5 6
7 8

A

B

C

D

E

F

G
H

I

J

Start

Goal

8 12

10

7

20

20

12

10
15

20 12

15

25

15

18

15

10
20

18

4

COM1080

COM1080: AI Techniques 3 of 86

• The numbers are distances between cities.

• Find the shortest route from Start to Goal.

Later on we will look at how search techniques are adapted for game-playing and
how they are used in speech recognition.

All problem-solvers search to some extent. Effective use of knowledge can make
the search trivial or at least manageable.

2.2 Definitions

We consider that the problem involves moving between a number of problem
states.

State Space contains all allowed problem states. Consists of a graph in which
states are connected by arcs (legal moves from one state to another).

• Jugs: all possible configurations that can be reached from the initial state where
both jugs are empty:

• 8-puzzle: all possible arrangements of tiles.

• Map Traversal: the map.

The expand function takes a given state and returns a list of all the states that can be
reached by a single move from that state.

• Jugs - all possible configurations by one move from a given state

• 8-puzzle - all possible tile configurations from a given one

• Map-Traversal: All cities that can be reached from a given city.

Sometimes it is natural to think of the expand function as invoking operators. An
operator is a function which embodies a 'legal move' from one state to another.

• Jugs: empty j1 to sink, empty j2 to sink, fill j1 from tap, fill j2 from tap, pour
from j1 to j2, pour from j2 to j1.

• 8-puzzle: Move-Up, Move-Down, Move-Left, Move-Right

Not all operators will be applicable to a given state.

The operators/expand-function represent the 'rules of the game'. The process of con-
sidering all the successors of a given state is called developing the state.

(0 0)

(7 0) (0 4)

(7 4) (3 4)

(3 0)

(0 3)

(4 0)

(4 4)

(7 1)

Incomplete state space for jugs with capacities 7 & 4

COM1080

4 of 86 COM1080: AI Techniques

A problem is seen as finding a path through state space from a given initial state
to some goal state.

The solution can be expressed either as the sequence of states traversed, the
sequence of operators used or the goal state, as appropriate.

There may be one or many goal states. In general, we need a goal test that, given a
state, tells us whether it is a goal or not.

It may be sufficient to find any solution, or we may be required to find the 'best'
solution.

• Jugs/8-puzzle: minimum number of moves.

• Map traversal: least costly path.

2.3 Search Trees and the Dynamic Programming Principle

We need to distinguish between the state space and the search tree that is grown
when we explore it.

State-space is generally a graph (i.e. there may be >1 way of reaching a state), but in
the search tree each search_node will have 1 parent.

This is because we only need to remember one way (the best way so far found)
of reaching any state.

This is called the ‘dynamic programming principle’ and is fundamental to search
algorithms. In simple cases, it means that if, in the course of a search, we come
across a node we have already seen, we need do nothing.

Each node in the search tree will be associated with a different state, but may also
contain other information (for instance, a pointer to the parent node):

2.4 AI and the Combinatorial Explosion

The problem of relying on search is the combinatorial explosion. The potential
search tree grows explosively with increasing depth:

(0 0)

(7 0) (0 4)

(7 4) (3 4)

Jugs search for target 3. Solution path in bold

COM1080

COM1080: AI Techniques 5 of 86

If there is a uniform branching factor b and we search the tree to depth n, there
will be bn tip nodes.

Chess:

• b averages around 30

• for a complete game, n will be around 100

• So exploring the whole tree will produce 30100 or around 10145 nodes.

• This is considerably more than the number of atoms in the universe

We therefore have to arrange to stop the search before resources run out, and to
search selectively.

If the state space is large, we may have to trade-off the quality of the solution
against the amount of effort required to find it.

It is important to choose our problem representation so that the search space is not
too large.

We can try to do this by deploying more knowledge (e.g. not all legal chess moves
are useful). We return to this later.

'The more knowledge, the less search'.

Many problem-solving programs can be seen as conducting a state-space search.
Later on we will relate forward-chaining and backward-chaining (rule-based sys-
tems) and structure-matching (frame-based systems) to search.

2.5 Programming a State Space Search

We will need

• A way of representing the states,

• An expand method, perhaps calling operators.

• A method acting as a goal predicate,

• A method implementing a strategy for navigating the State Space.

2.6 Assessing Search Strategies: Criteria

• Is the strategy Guaranteed to find a solution if one exists?

b=3
d=3

COM1080

6 of 86 COM1080: AI Techniques

• Is the strategy Admissible, i.e. guaranteed to find the best solution?, or a solution
of sufficient quality?

• How Efficient is the strategy: i.e. how much effort does it expend in finding a
solution?

The optimal strategy would visit only those nodes which turn out to be on the solu-
tion path.

For an individual search, Efficiency = (Number of nodes on solution path)/
(Number of nodes visited)

Note that admissibility is a property of the algorithm, but efficiency is different for
each different search we perform. To assess the efficiency of a search algorithm in a
particular problem domain we would run the algorithm for a representative set of
problems from that domain & average the efficiency over these trials.

2.7 A Skeleton Algorithm for State Space Searching

Expressed imperatively:

We maintain

• a list of nodes awaiting development. This is called the open list or agenda.

• a list of nodes already developed. This is called the closed list.

Initially,

• we put the start node on open.

• closed is empty

We repeatedly

1. Check if open is empty. If so, exit with failure
2. Use the search strategy to select some node (the current_node) from open for

development.
3. Remove current_node from open.
4. Check if current_node is a goal - if so, exit with success.
5. use expand to find current_node’s successors,
6. add all successors which are not already on open or closed to open.

2.8 Java Implementation

We will develop a generalised search engine in Java, which we can then use in any
search problem domain. The user has to set up what is necessary for her domain: we
specify below how to do this.

This policy of abstracting the problem-solver is typical of AI (and CS in general). It
saves repeated work & forces us to understand what we’re doing.

The baseline version of the search engine is in
www.dcs.shef.ac.uk/~pdg/com1080/java/search1

COM1080

COM1080: AI Techniques 7 of 86

2.8.1 classes and methods

• We need a class which contains a method run_Search implementing the algo-
rithm above. We’ll call this class Search.

• run_Search uses open and closed, so these will be variables in Search.

• run_Search deals with search nodes, so we’ll have another class Search_Node.

• We’ll need to keep track of the current_node, so this will be another variable in
Search.

• To programme a search in a particular problem domain (e.g. Jugs problems), our
‘user’ needs to create a subclass of Search for this domain – e.g. Jugs_Search.

• This subclass will have variables carrying the information needed to define a
search problem in this domain – for jugs, the jug capacities and the target
amount.

• To run a search, we create an instance of the subclass, giving it the defining
information, and call run_Search.

• So we will never make an instance of Search itself – it will be an abstract class.

• The class Search_Node makes the distinction between a node in a search and a
problem state clear: the user is concerned with states. The search engine sees
only nodes.

• Search_Node will have a variable state which contains the state associated with
this node. Later on, we’ll add more variables, e.g. the parent node and the cost of
getting to this node.

• Search_Node will have methods which express what run_Search needs to
know:

is a node a goal (goalP)?,

what are its successor nodes (get_Successors)?,

is its state the same as that of another node (same_State)?.. this is needed for
dynamic programming.

• state will be of type Search_State. This will be another abstract class which we
specialise for a particular problem domain (e.g. Jugs_State).

• Search_State specifies what the user needs to implement for her domain –
goalP, get_Successors and same_State. The corresponding methods in
Search_Node will in turn use these user-defined methods

COM1080

8 of 86 COM1080: AI Techniques

So the (partial) design looks like this:

2.8.2 Search_State.java
Here’s the code for Search_State: an abstract class which specifies what sub-classes
must provide:

/**

* Search_State.java

* State in a state-space search

* abstract class

* concrete sub-classes must implement

* goalP, get_Successors, same_State, toString

*/

import java.util.*; //needed in order to use ArrayLists

public abstract class Search_State {

 /**

 * goalP takes a Search_Node & returns true if it's a goal for the current search

 */

 abstract boolean goalP(Search searcher);

 /** get_Successors returns an ArrayList of states which are successors to

 * the current state in a given search

 */

 abstract ArrayList get_Successors(Search searcher);

 /**

 * same_State: is this state identical to a given one?

 */

 abstract boolean same_State(Search_State n2);

}

SYSTEM

USER

Search
open
closed

run_Search

Search_Node

state

goalP
get_Successors
same_State

Search_State

goalP
get_Successors
same_State

Jugs_Search

target
jug capacities

Jugs_State

goalP
get_Successors
same_State

subclass subclass

COM1080

COM1080: AI Techniques 9 of 86

Note that

• To decide whether a given state is a goal, we will generally need information
which is defined for the current search problem - e.g. the target amount for Jugs.
This is why goalP is given the current instance of Search.

• get_Successors also needs the Search instance, for instance in Jugs we need to
know what the capacities are for the current problem.

2.8.3 Jugs_State.java

Now we can specialise Search_State for the Jugs domain: We have to choose the
internal representation of a state (2 ints j1 & j2) and provide, a constructor, acces-
sors and the methods required by Search_State:
/** Jugs_State.java

* State in a jugs problem

*/

import java.util.*;

public class Jugs_State extends Search_State{

 private int j1; //content of jug1

 private int j2; //content of jug2

The constructor is given the contents of the jugs..
 public Jugs_State(int j1c, int j2c){

 j1=j1c;

 j2=j2c;

 }

 We provide accessors..
 public int get_j1() {return j1;};

 public int get_j2() {return j2;};

goalP picks up the target amount for the current search & checks against the jug
contents. Note that we have to cast the Search passed in to its concrete class
Jugs_Search:
 public boolean goalP(Search searcher) {

 Jugs_Search jsearcher = (Jugs_Search) searcher; //cast as Jugs_Search

 int tar=jsearcher.get_Target(); // get target amount

 return ((j1 == tar) || (j2 == tar));

 }

Get_Successors is a bit complicated for Jugs...

 public ArrayList get_Successors (Search searcher) {

 Jugs_Search jsearcher = (Jugs_Search) searcher;

 int cap1=jsearcher.get_cap1(); //get jug capacities

 int cap2=jsearcher.get_cap2();

 int j1_space=cap1-j1; // work out space in each jug

COM1080

10 of 86 COM1080: AI Techniques

 int j2_space=cap2-j2;

 ArrayList slis=new ArrayList(); //the list of successor states

 if (j1_space > 0) slis.add(new Jugs_State(cap1,j2)); //fill jug1

 if (j2_space > 0) slis.add(new Jugs_State(j1,cap2)); //fill jug2

 if (j1 != 0) slis.add(new Jugs_State(0,j2)); //empty j1

 if (j2 != 0) slis.add(new Jugs_State(j1,0)); //empty j2

 if ((j1 != 0) && (j2_space != 0)) { //pour from j1 into j2

 if (j1 > j2_space)

 {slis.add(new Jugs_State(j1-j2_space, cap2));} //until j2 is full

 else

 {slis.add(new Jugs_State(0, j1+j2));}; //or j1 is empty

 };

 if ((j2 != 0) && (j1_space != 0)) { //similar for pouring from j2 into j1

 if (j2 > j1_space)

 {slis.add(new Jugs_State(cap1, j2-j1_space));}

 else

 {slis.add(new Jugs_State(j1+j2,0));};

 };

 return slis; //now contains the list of successor states

 }

 Same_State compares the jug contents for this state with those of another..
 public boolean same_State (Search_State s2) {

 Jugs_State js2= (Jugs_State) s2;

 return ((j1==js2.get_j1())&& (j2==js2.get_j2()));

 }

Finally we provide a toString method..
 public String toString () {

 return "Jug State: Jug1-> "+j1+" Jug2-> "+j2;

 }

2.8.4 Search_Node.java

Next we look at the Search_Node class.
import java.util.*;

public class Search_Node {

Any instance of a Search_Node will have a corresponding Search_State:
 private Search_State state;

 public Search_State get_State(){ //accessor for state

 return state;

 }

COM1080

COM1080: AI Techniques 11 of 86

The Search_State will be provided when the node is created:
 public Search_Node(Search_State s){

 state= (Search_State) s;

 }

Search_Node has methods goalP, get_Successors & same_State which are used
by Search. goalP just calls the corresponding method for the node’s state:
 public boolean goalP(Search searcher){

 return state.goalP(searcher);

 }

get_Successors gets the list of successor states, then makes a corresponding list of
nodes:
 public ArrayList get_Successors(Search searcher){

 ArrayList slis = state.get_Successors(searcher);

 ArrayList nlis= new ArrayList();

 for (Iterator it = slis.iterator();it.hasNext();){

 Search_State suc_state = (Search_State) it.next();

 Search_Node n = new Search_Node(suc_state);

 nlis.add(n);

 }

 return nlis;

 }

 same_State compares the states in two nodes:
 public boolean same_State(Search_Node n2){

 return state.same_State(n2.get_State());

 }

Finally, toString adds more text to toString for the state:
 public String toString(){

 return "Node with state " + state.toString();

 }

2.8.5 Search.java

Now for the search engine…
/**

* Search.java - abstract class specialising to Jugs_Search etc

*/

import java.util.*;

import Search_Node;

import Search_State;

import sheffield.*; //for i/o

COM1080

12 of 86 COM1080: AI Techniques

public abstract class Search {

We need to set up variables for open, closed, the current node etc. These will be
protected - available only in instances of Search and its sub-classes:
 protected Search_Node init_node; //initial node

 protected Search_Node current_node; // current node

 protected ArrayList open; //open - list of Search_Nodes

 protected ArrayList closed; //closed -

 protected ArrayList successor_nodes; //used in expand & vet_successors

 protected EasyWriter scr; //output to console window

The search algorithm is implemented by the run_Search method. This takes an ini-
tial search_State from the user and (for the moment) returns a string indicating suc-
cess or failure. The first thing to do is create an initial search_Node for the initial
state:
 public String run_Search (Search_State init_state) {

 init_node= new Search_Node(init_state); // create initial node

run_Search will generate a commentary as the search proceeds:
 scr=new EasyWriter();

 scr.println("Starting Search");

The initial conditions are that open contains the initial node and closed is empty:
open=new ArrayList(); // initial open, closed

open.add(init_node);

closed=new ArrayList();

We’ll also count how many nodes have been expanded:
int cnum = 1;// counts the iterations

Now we’re ready to start the search. Each iteration of the while loop expands 1
node. We stop either when the search succeeds (within the while) or open is empty.
while (!open.isEmpty()) {

 // print contents of open

 scr.println("-------------------------");

 scr.println("iteration no "+cnum);

 scr.println("open is");

 for (Iterator it = open.iterator();it.hasNext();){

 Search_Node nn = (Search_Node) it.next();

 String nodestr=nn.toString();

 scr.println(nodestr);

 }

 select_Node(); // select_Node selects next node,

 // makes it current_node & removes it from open

 scr.println("Current node "+current_node.toString());

COM1080

COM1080: AI Techniques 13 of 86

 //- is current node a goal? - must pass current search to goalP

 if (current_node.goalP(this)) return "Search Succeeds"; //success, exit

 //current_node not a goal

 expand(); // find successors of current_node and add to open

 closed.add(current_node); // put current node on closed

 cnum=cnum+1;

}; //end of the while controlling the search

return "Search Fails"; // out of the while loop - failure

}

Expand has to find the current node’s successors and put them on open, unless
they’ve been seen before. A method vet_Successors checks that:
 private void expand () {

 // get all successor nodes - as ArrayList of Objects

 // pass search instance to get_Successor of current_node

 successor_nodes = current_node.get_Successors(this);

 vet_Successors(); //filter out unwanted - DP check

 //add surviving nodes to open

 for (Iterator i = successor_nodes.iterator(); i.hasNext();)

 open.add(i.next());

 }

vet_Successors removes any node if its state is the same as that of a node already
on open or closed: (the DP check):
 private void vet_Successors() {

 ArrayList vslis = new ArrayList();

 for (Iterator i = successor_nodes.iterator(); i.hasNext();){

 Search_Node snode = (Search_Node) i.next();

 if (!(on_Closed(snode)) && !(on_Open(snode))) vslis.add(snode);

 };

 successor_nodes=vslis;

}

vet_Successors uses the following:
 //on_Closed - is the state for a node the same as one on closed?

private boolean on_Closed(Search_Node new_node){

 boolean ans = false;

 for (Iterator ic = closed.iterator(); ic.hasNext();){

 Search_Node closed_node = (Search_Node) ic.next();

 if (new_node.same_State(closed_node)) ans=true;

 }

COM1080

14 of 86 COM1080: AI Techniques

 return ans;

}

//on_Open - is the state for a node the same as one on closed?

private boolean on_Open(Search_Node new_node){

 boolean ans = false;

 for (Iterator ic = open.iterator(); ic.hasNext();){

 Search_Node open_node = (Search_Node) ic.next();

 if (new_node.same_State(open_node)) ans=true;

 }

 return ans;

}

select_Node embodies the search strategy. For the moment, we take the last node
added to open. This becomes the current_node & is removed from open:
private void select_Node() {

 int osize=open.size();

 current_node= (Search_Node) open.get(osize-1); // last node added to open

 open.remove(osize-1); //remove it

}

2.8.6 Jugs_Search.java

Now we can specialise Search for Jugs problems. This just sets up the search
parameters (jug capacities and target) and provides a constructor and accessors for
the parameters.
/**

* Jugs_Search.java

* search for jugs problems

*/

import Search;

import Search_Node;

import java.util.*;

public class Jugs_Search extends Search {

 private int cap1; //capacity of jug1

 private int cap2; //........... jug2

 private int target; //target

 public Jugs_Search (int c1, int c2, int tar) {

 cap1=c1;

COM1080

COM1080: AI Techniques 15 of 86

 cap2=c2;

 target=tar;

 }

 public int get_cap1(){

 return cap1;

 }

 public int get_cap2(){

 return cap2;

 }

 public int get_Target(){

 return target;

 }

}

2.8.7 Run_Jugs_Search..java

Here’s a top-level programme to try all this out:

import sheffield.*;

import java.util.*;

import Search;

import Search_Node;

import Search_State;

import Jugs_Search;

import Jugs_State;

public class Run_Jugs_Search {

public static void main(String[] arg) {

 // create an EasyWriter

 EasyWriter screen = new EasyWriter();

 // create the searcher

 Jugs_Search searcher = new Jugs_Search(7,4,2);

 // create the initial state, cast it as Search_State

 Search_State init_state = (Search_State) new Jugs_State(0,0);

 //go!

 String res = searcher.run_Search(init_state);

 screen.println(res);

}

}

COM1080

16 of 86 COM1080: AI Techniques

2.8.8 Some Results

A: Capacities 7,4: Target 2

java Run_Jugs_Search

Starting Search

iteration no 1

open is

Node with State Jug State: Jug1-> 0 Jug2-> 0

Current node Node with State Jug State: Jug1-> 0 Jug2-> 0

iteration no 2

open is

Node with State Jug State: Jug1-> 7 Jug2-> 0

Node with State Jug State: Jug1-> 0 Jug2-> 4

Current node Node with State Jug State: Jug1-> 0 Jug2-> 4

iteration no 3

open is

Node with State Jug State: Jug1-> 7 Jug2-> 0

Node with State Jug State: Jug1-> 7 Jug2-> 4

Node with State Jug State: Jug1-> 4 Jug2-> 0

Current node Node with State Jug State: Jug1-> 4 Jug2-> 0

iteration no 4

open is

Node with State Jug State: Jug1-> 7 Jug2-> 0

Node with State Jug State: Jug1-> 7 Jug2-> 4

Node with State Jug State: Jug1-> 4 Jug2-> 4

Current node Node with State Jug State: Jug1-> 4 Jug2-> 4

iteration no 5

open is

Node with State Jug State: Jug1-> 7 Jug2-> 0

Node with State Jug State: Jug1-> 7 Jug2-> 4

Node with State Jug State: Jug1-> 7 Jug2-> 1

Current node Node with State Jug State: Jug1-> 7 Jug2-> 1

COM1080

COM1080: AI Techniques 17 of 86

iteration no 6

open is

Node with State Jug State: Jug1-> 7 Jug2-> 0

Node with State Jug State: Jug1-> 7 Jug2-> 4

Node with State Jug State: Jug1-> 0 Jug2-> 1

Current node Node with State Jug State: Jug1-> 0 Jug2-> 1

iteration no 7

open is

Node with State Jug State: Jug1-> 7 Jug2-> 0

Node with State Jug State: Jug1-> 7 Jug2-> 4

Node with State Jug State: Jug1-> 1 Jug2-> 0

Current node Node with State Jug State: Jug1-> 1 Jug2-> 0

iteration no 8

open is

Node with State Jug State: Jug1-> 7 Jug2-> 0

Node with State Jug State: Jug1-> 7 Jug2-> 4

Node with State Jug State: Jug1-> 1 Jug2-> 4

Current node Node with State Jug State: Jug1-> 1 Jug2-> 4

iteration no 9

open is

Node with State Jug State: Jug1-> 7 Jug2-> 0

Node with State Jug State: Jug1-> 7 Jug2-> 4

Node with State Jug State: Jug1-> 5 Jug2-> 0

Current node Node with State Jug State: Jug1-> 5 Jug2-> 0

iteration no 10

open is

Node with State Jug State: Jug1-> 7 Jug2-> 0

Node with State Jug State: Jug1-> 7 Jug2-> 4

Node with State Jug State: Jug1-> 5 Jug2-> 4

Current node Node with State Jug State: Jug1-> 5 Jug2-> 4

iteration no 11

open is

Node with State Jug State: Jug1-> 7 Jug2-> 0

Node with State Jug State: Jug1-> 7 Jug2-> 4

Node with State Jug State: Jug1-> 7 Jug2-> 2

Current node Node with State Jug State: Jug1-> 7 Jug2-> 2

COM1080

18 of 86 COM1080: AI Techniques

Search Succeeds

Process Run_Jugs_Search finished

B: Capacities 4,3: Target 2
java Run_Jugs_Search

Starting Search

iteration no 1

open is

Node with State Jug State: Jug1-> 0 Jug2-> 0

Current node Node with State Jug State: Jug1-> 0 Jug2-> 0

iteration no 2

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 0 Jug2-> 3

Current node Node with State Jug State: Jug1-> 0 Jug2-> 3

iteration no 3

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Node with State Jug State: Jug1-> 3 Jug2-> 0

Current node Node with State Jug State: Jug1-> 3 Jug2-> 0

iteration no 4

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Node with State Jug State: Jug1-> 3 Jug2-> 3

Current node Node with State Jug State: Jug1-> 3 Jug2-> 3

iteration no 5

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Node with State Jug State: Jug1-> 4 Jug2-> 2

Current node Node with State Jug State: Jug1-> 4 Jug2-> 2

COM1080

COM1080: AI Techniques 19 of 86

Search Succeeds

Process Run_Jugs_Search finished

C: Capacities 4,3: Target 5

java Run_Jugs_Search

Starting Search

iteration no 1

open is

Node with State Jug State: Jug1-> 0 Jug2-> 0

Current node Node with State Jug State: Jug1-> 0 Jug2-> 0

iteration no 2

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 0 Jug2-> 3

Current node Node with State Jug State: Jug1-> 0 Jug2-> 3

iteration no 3

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Node with State Jug State: Jug1-> 3 Jug2-> 0

Current node Node with State Jug State: Jug1-> 3 Jug2-> 0

iteration no 4

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Node with State Jug State: Jug1-> 3 Jug2-> 3

Current node Node with State Jug State: Jug1-> 3 Jug2-> 3

iteration no 5

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Node with State Jug State: Jug1-> 4 Jug2-> 2

Current node Node with State Jug State: Jug1-> 4 Jug2-> 2

COM1080

20 of 86 COM1080: AI Techniques

iteration no 6

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Node with State Jug State: Jug1-> 0 Jug2-> 2

Current node Node with State Jug State: Jug1-> 0 Jug2-> 2

iteration no 7

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Node with State Jug State: Jug1-> 2 Jug2-> 0

Current node Node with State Jug State: Jug1-> 2 Jug2-> 0

iteration no 8

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Node with State Jug State: Jug1-> 2 Jug2-> 3

Current node Node with State Jug State: Jug1-> 2 Jug2-> 3

iteration no 9

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Node with State Jug State: Jug1-> 4 Jug2-> 1

Current node Node with State Jug State: Jug1-> 4 Jug2-> 1

iteration no 10

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Node with State Jug State: Jug1-> 0 Jug2-> 1

Current node Node with State Jug State: Jug1-> 0 Jug2-> 1

iteration no 11

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Node with State Jug State: Jug1-> 1 Jug2-> 0

COM1080

COM1080: AI Techniques 21 of 86

Current node Node with State Jug State: Jug1-> 1 Jug2-> 0

iteration no 12

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Node with State Jug State: Jug1-> 1 Jug2-> 3

Current node Node with State Jug State: Jug1-> 1 Jug2-> 3

iteration no 13

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Node with State Jug State: Jug1-> 4 Jug2-> 3

Current node Node with State Jug State: Jug1-> 4 Jug2-> 3

iteration no 14

open is

Node with State Jug State: Jug1-> 4 Jug2-> 0

Current node Node with State Jug State: Jug1-> 4 Jug2-> 0

Search Fails

Process Run_Jugs_Search finished

2.9 Implementing State-Space Search for a new Problem Domain

This is a summary of what we have to do for a new domain:

• Define a subclass of Search_State which

Represents a problem state in whatever way we choose.

Provides a constructor

Provides accessors for the state representation

Implements goalP, get_Successors and same_State as specified.

• Define a subclass of Search with variables for the search parameters and a con-
structor.

We then initiate a search by

Creating an instance of our search class

Calling run_Search for this instance, giving it the initial state.

Note that

• The algorithm terminates as soon as the first goal node is selected from open.

• It doesn't (yet) return a solution path, just an indication of success or failure.

COM1080

22 of 86 COM1080: AI Techniques

2.10 Reconstructing the Solution path

If it is necessary to reconstruct the solution path (as in the map-traversal problem,
for instance), we must keep a record of how we reached each node that we close:
together with each node we remember its parent node. To do this:

• A parent variable is added to the Search-Node class. For the start node, there
will be no parent: in Java, its parent will have value null (i.e. not initialised).

• The expand method in Search is modified so that when new nodes are added to
open their parent is set to current_node.

When a search succeeds we need to reconstruct the solution path. Starting with the
current_node and working with closed, we follow the chain of parents until we
come to a node with parent null. We need to print out or return the states on the
solution path in order from the start node. Here is a method of Search to do this: it is
called when the search succeeds and returns the solution path as a string. It also
reports the efficiency of the search:
 private String report_Success(){

 Search_Node n = current_node;

 StringBuffer buf = new StringBuffer(n.toString());

 int plen=1;

 while (n.get_Parent() != null){

 buf.insert(0,"\n");

 n=n.get_Parent();

 buf.insert(0,n.toString());

 plen=plen+1;

 }

 scr.println("=========================== \n");

 scr.println("Search Succeeds");

scr.println("Efficiency "+ ((float) plen/(closed.size()+1)));

scr.println("Solution Path\n");

return buf.toString();

 }

For example, with capacities 7 & 4 and target 2 we get:
Search Succeeds

Efficiency 1.0

Solution Path

node with state Jug State: Jug1-> 0 Jug2-> 0

node with state Jug State: Jug1-> 0 Jug2-> 4

node with state Jug State: Jug1-> 4 Jug2-> 0

node with state Jug State: Jug1-> 4 Jug2-> 4

node with state Jug State: Jug1-> 7 Jug2-> 1

COM1080

COM1080: AI Techniques 23 of 86

node with state Jug State: Jug1-> 0 Jug2-> 1

node with state Jug State: Jug1-> 1 Jug2-> 0

node with state Jug State: Jug1-> 1 Jug2-> 4

node with state Jug State: Jug1-> 5 Jug2-> 0

node with state Jug State: Jug1-> 5 Jug2-> 4

node with state Jug State: Jug1-> 7 Jug2-> 2

2.11 Elementary Search Strategies

How do we choose which node on open to expand next?

2.11.1 Depth-First Search

The select_node method of Search which we’ve been using up to now:

 private void select_Node() {

 int osize=open.size();

 current_node= (Search_Node) open.get(osize-1); // last node added to open

 open.remove(osize-1); //remove it

 }

Implements depth-first search:

Each iteration expands one of the successors of the node expanded on the previous
iteration, until a goal is reached or a dead end (node with no successors) is found. In
this case, search will resume at the last level in the search tree where there is an
alternative. This is sometimes called Backing Up.

open behaves as a stack.. last in, first out.

Depth-first is guaranteed to find a solution, but not admissible.

2.11.2 Breadth-First Search

Expands all nodes at level l before moving to level l+1.

(0 0)

(7 0) (0 4)

(7 4) (3 4)

(3 0)

(0 3)

(7 3)

(6 4)

(6 0)

(2 4)

backing up
Depth-first search for jugs
with capacities 7 & 4
Target 2

COM1080

24 of 86 COM1080: AI Techniques

select_node selects that node which has been on open the longest.

If nodes are added to the head of open, then select_node should take the last node.

open behaves as a Queue..first in, first out.

Guaranteed to find a solution.

Admissible in case of uniform costs.

The following implements breadth-first search:
private void breadth_first(){

 current_node= (Search_Node) open.get(0); //first node on open

 open.remove(0);

}

2.11.3 Compromises

• Depth-Bounds: Search depth-first to some depth-limit N. Enforce backup from
this level, but keep a list l of the nodes found at level N. If open becomes empty
(i.e. searched completely to depth N without finding a solution), increase N, set
open to l, and resume.

• Beam Search: Like breadth-first, but only expand from the best few nodes at
each level. Assumes we have some way of deciding which they are.

Generally, we want to allow our user to choose which search strategy to use, by
naming the select_node function to use in the call of run_Search: this is the next
part of the project.

2.11.4 Adding these improvements

The code in
www.dcs.shef.ac.uk/~pdg/com1080/java/search2

reconstructs the solution path, returning it as a string, and allows the user to choose
either a breadth-first or a depth-first search. The strategy is specified as an addi-
tional argument in the call to run_Search:
Jugs_Search searcher = new Jugs_Search(7,4,2);

Search_State init_state = (Search_State) new Jugs_State(0,0);

(0 0)

(4 0)(0 3)

(4 3)(3 0) (1 3)

(3 3) (1 0)

(4 2) (0 1)

Breadth-first jugs search
Capacities 3 and 4
Target 2

Nodes closed in numerical
order

1

2 3

4 5 6

7 8

9

COM1080

COM1080: AI Techniques 25 of 86

String resb = searcher.run_Search(init_state, "breadth_first");

screen.println(resb);

String resd = searcher.run_Search(init_state, "depth_first");

screen.println(resd);

Now select_node chooses which of depth_first and breadth_first to call by com-
paring with the given string. The default is breath_first. The old select_node is
renamed depth_first.

2.12 Branch-and-Bound search

We now turn to the more general case of search, where each move has a variable
cost associated with it. Our exemplar is map-traversal:

Branch-and-Bound is a generalisation of breadth-first.

Whereas breadth-fist chooses the node at minimum depth into the search tree from
Start, branch-and-bound chooses the node with minimum accumulated cost from
Start.

Branch-and-Bound explores on contours of increasing cost from Start:

select-node chooses that node from open with minimum cost from start.

Reduces to Breadth-First when costs are uniform.

Branch-and-Bound is admissible. Since it explores on contours of increasing cost,
the goal node chosen from open must be that one at minimum cost from Start.

This is why we don’t stop the search as soon as a goal node appears during expand.

A

B

C

D

E

F

G
H

I

J

Start

Goal

8
12

10

7

20

20

12

10
15

20
12

15

25

15

18

15

10
20

18

4

St
A

B
C

D
E

F
G H

Circles represent cost contours at 5, 10,15..(approx)

COM1080

26 of 86 COM1080: AI Techniques

2.12.1 Implementing Branch-and-Bound Search

Code implementing map search is in

www.dcs.shef.ac.uk/~pdg/com1080/java/search3

The user can choose breadth-first, depth-first or branch-and-bound search.

In search3,

• The class Carta implements a map1. A map is represented by a HashSet of city
names and an ArrayList of MapLinks. An instance of the class MapLink repre-
sents an individual link between 2 cities, and its cost.

• Carta has methods to read a map from a file (mapFromFile2), find all the cities
in a given map (findcities), get the cost between 2 cities connected by a link
(costbetween) and find all the links to a given city (get_Links).

• For variable-cost problems, Search_State needs a variable localCost for the cost
of reaching a state from its parent in the search tree (the state in the
current_Node). The subclass of Search_State for map-traversal problems is
Map_State. The get_Successors method of Map_State now has to fill in these
localCosts for each successor.

• Search_Node needs variables localCost (copied from its state) and globalCost
(the total cost from the start - 0 for the node representing the initial state)

• globalCost can be set either in get_Successors for Search_Node or in expand
in Search3. It is the sum of the node’s localCost and current_node’s global-
Cost.

• It is necessary to implement the dynamic programming principle: that we only
need to remember the best (i.e. minimum cost) route to a given state, e.g.

• When we find a successor which has the same state as one we’ve already seen,
but not yet closed (i.e. there is a search_node N with this state on open) , we
need to compare the globalCost of this search_node (cost of the old route, c)
with c’.

• This can be done within vet_successors: For any successor Search_Node N
with globalCostt c,

1. It’s not called Map to avoid confusion with the Map interface
2. The map we’re using as an example is in map1.txt
3. The latter is coded in search3.

P

Q

R

S

10
15

20

get_successors P

should return Map_States with
city Q localCost 10
city R localCost 15
city S localCost 20

X

K

L

total cost 50 15

total cost 55
8

Here there are two routes to X
The route through K will be opened first
When the route through L is found,
we should forget about the one through K

COM1080

COM1080: AI Techniques 27 of 86

If x is not on open or closed, add a search_node for it to open.
If x is on closed, ignore it (exercise: why is this safe?).
If x is on open, then

if c <= c’, ignore x (old route cheaper)
if c > c’, (new route cheaper)

change the globalCost of N to c’
change the parent of N to the current_node

• The branch_and_bound select-method then chooses that node on open with
minimum cost.

• The class Run_Map_Search tries all this out on the example map.

2.12.2 Performance of Branch-and-Bound
A branch-and-bound search for the best path from St to Gl in map1 should give
something like:

OPEN-LIST

state parent cost

st nil 0

expanding st

OPEN-LIST

state parent cost

c st 10

b st 12

a st 8

expanding a

OPEN-LIST

state parent cost

d a 28

c st 10

b st 12

expanding c

OPEN-LIST

state parent cost

g c 30

b st 12

d a 28

expanding b

found better route to g

COM1080

28 of 86 COM1080: AI Techniques

OPEN-LIST

state parent cost

f b 22

e b 32

d a 28

g b 27

expanding f

OPEN-LIST

state parent cost

h f 26

g b 27

d a 28

e b 32

expanding h

OPEN-LIST

state parent cost

gl h 44

j h 46

g b 27

d a 28

e b 32

expanding g

OPEN-LIST

state parent cost

d a 28

e b 32

gl h 44

j h 46

expanding d

OPEN-LIST

state parent cost

e b 32

gl h 44

j h 46

expanding e

OPEN-LIST

COM1080

COM1080: AI Techniques 29 of 86

state parent cost

i e 47

gl h 44

j h 46

expanding gl

Solution is (st b f h gl)

Cost 44

Effficiency 0.5

The efficiency of 0.5 exemplifies the problem with branch-and-bound: it is undi-
rected and so will waste effort on paths which are getting no nearer to the goal.
Here half the states expanded aren’t on the eventual solution path...and we’re using
an unrealistic map which only has links going roughly in the St-->Gl direction.

If we have no more knowledge to deploy, Branch-and Bound is the best algorithm
to use if we want to preserve admissibility.

However, there may be other knowledge to use...

2.13 Best-First Search

To improve on the efficiency of Branch-and-Bound, we need some knowledge
about the topology of the state space...are we going in the right direction?

Suppose we have available estimates of the remaining cost from any node n to a
goal node, i.e. a Search_State has a variable est_rem_cost which the user fills in
in her get_Successors.

This is reasonable in many search problems e.g. in map traversal, if the map is a
road map, the estimates could be ‘as the crow flies’ distances between cities.

Exercise: It’s difficult to think of a way of getting estimates for jugs problems, but
what about the 8-puzzle? or equaliser?

Best-first search selects from open that node with minimum estRemCost, i.e. the
node that seems closest to the goal.

This is great when the estimates are good, but dangerous when they are not: it is not
admissible.

2.14 The A* Algorithm

A combination of Branch-and-Bound and Best-First.

Suppose we have estimates of remaining costs as above.

A* selects that node n from open with minimum estimated total cost of a path
from start to goal through n.

This estimate is obtained by adding the globalCost (branch-and-bound) and the
estRemCost (best-first).

A* is admissible provided all the estRemCosts are guaranteed to be underesti-
mates.

COM1080

30 of 86 COM1080: AI Techniques

Informal Proof: The known distance along a complete, non-optimal path cannot be
less than an underestimate of the distance along the incomplete, optimal path.
Hence the wrong path cannot be selected from open.

Limiting cases:

• If all the estimates are accurate, A* is optimal.

• If all the estimates are 0 (or identical), A* reduces to Branch-and-Bound.

• The better the estimates are, the more efficient A* is.

2.14.1 Converting branch-and-bound to A*

Changes to the search engine:

• The user supplies estRemCosts for each Search_State

• Search_Node also has an estRemCost variable, copied from the state, and an
estTotalCost which is globalCost+estRemCost.

• The A* select_node function chooses from open using this field.

• vet_successors has to change because it’s now possible (if we have a serious
underestimate of remaining cost) to find a better route to a node which is already
on closed.

• When this happens (which should be rarely if the estimates are good), the node
(X in the example above) should have its parent, globalCost and estRemCost
changed, then it should be taken off closed and put back on open.

Code for the A* algorithm is in

/share/public/com1080/java/search4

2.15 Things to try

In

/share/public/com1080/java/search_usa

is a map of the USA you can use to get a better feel for more realistic search prob-
lems. Using the search4 code, explore the behaviour of the different search strage-
gies in this map. How much gain in efficiency for A* versus branch-and-bound?

Gl

X

A

B

cost-sofar 10

cost-sofar 30

cost-sofar 35

25

est-remaining-cost 10

est-remaining-cost 30

5

X will be placed on open with parent A and estimated total cost 45.
This will be preferred to B, (estimated total cost 60).
X will therefore be closed.
Later on, the better route through to X through B will emerge.

COM1080

COM1080: AI Techniques 31 of 86

2.16 Search in Automatic Speech Recognition

An example of state-space searching in a larger scale application.

Automatic Speech Recognition (ASR) aims to provide voice input to computers.

Consider the simplified ASR problem of isolated word recognition, with a small
vocabulary (e.g. voice telephone dialling). Given a new word, which of the words
we know about is it most likely to be? We outline the Dynamic Time Warping
(DTW) method.

• Information in speech is represented by the distribution of energy through time
and frequency. Conventionally, this is portrayed in a spectrogram:

• Think of the spectrogram as an image in which each pixel codes the energy at
that frequency at that time. We might typically have around 100 time frames &
64 frequency channels.

• In DTW, we store an example of the spectrogram for each word in the vocabu-
lary. These are called templates. We thus have a template library.

• Along comes a new word - the pattern. Here’s another ‘eight’:

• We need a way of comparing the pattern with each template and picking the clos-
est match.

• The problem is that two different utterances of the same word will vary in length,
and the time-scale distortions will not be linear.

• We can compute a local distance measure for the similarity of a single time-
frame of data in the pattern with a frame in the template.

Frequency

Time

Spectrogram for a spoken ‘eight’

COM1080

32 of 86 COM1080: AI Techniques

• These distance measures are plotted in a ‘time-time’ plane below:

• What we need is the minimum-cost path from bottom-left to top-right in the
time-time plane - the total cost is the sum of the local costs of the cells on the
path.

• We can impose constraints on path movements:

• If we have the total cost to each of the predecessors, we can select the minimum,
to find the best route to (i,j) and add the local cost at (i,j) to get its total cost.

• This is just the Dynamic Programming Principle again.

• We do this for each template and select that one with minimum total cost.

• DTW only works well only for small vocabularies of isolated words by a single
speaker.

• For more difficult recognition problems we need to compare the incoming data
with statistical models rather than templates, but the search principle is the same.

Pattern

Template

Minimum
cost
path

(i, j)

(i-1,j)
(i-1,j-1)

(i,j-1)

COM1080

COM1080: AI Techniques 33 of 86

3 Game Playing

3.1 Why Program Computers to Play Games?

Because

• Skilled game-playing seems to involve important problem-solving abilities:
look-ahead, planning, strategy, judgement.

• Games are well-defined, providing a tractable micro-world.

• Games provide an opportunity to test programs against each other, and against
humans.

• There's money in it (in recent years).

• It's fun.

3.2 What kind of Games?

We will only consider

• 2-opponent games

• with no chance element

• where both players have complete-knowledge of the state of the game

e.g. tic-tac-toe (noughts & crosses), drafts, chess, go, reversi....

There is also a body of work on other types of game, e.g. bridge, poker and back-
gammon. In the latter, the world champion was beaten by a machine in about 1980.

3.3 Formulating Game Playing as State-Space Search

As before, our problem will be completely expressed by an internal structure called
a state, e.g. the positions of the pieces on the board & a note of who is to move. A
state completely defines the game position.

From a given state S1, the rules of the game will allow us to move to one of a
number of successor states S11, S12...

We begin in some initial state Si. We have to find a route through state space that
leads us to a goal state. In game-playing a goal state represents a win (e.g. row/
column of 3 Xs, checkmate...).

3.4 Game Trees

In game playing by state-space search, we consider our moves from a given state,
the opponent's possible replies to each of these moves, our possible replies to his/
her replies etc. The resulting exploration of state-space is called a game tree. The
exploration process is called look-ahead.

Terminal nodes (leaves) in the game tree represent board positions where the
result of the game is known for certain, i.e. win, lose or (if allowed) draw.

The fundamental components of a game-playing program will be

• A way of representing board positions (states),

COM1080

34 of 86 COM1080: AI Techniques

• A 'legal move generator' which embodies the laws of the game; given a board,
return a list of new boards - like get_successors in the search code.

• A means of detecting terminal board positions; given a board, return win/lose/
draw/unknown.

• A program which explores the game tree.

3.5 MiniMaxing

Suppose we take a game which is simple enough for us to grow the complete game
tree (complete look-ahead), for instance

The Game of Piles (ako Grundy’s game).

Start with 1 pile of tokens. A move consists of taking a pile and dividing it into 2
unequal piles. The last player who is able to move wins

Here is the state space if we start with 7 tokens:

We can decide on the move to make as follows:

• Label the terminal nodes as win if the player to move next will win, loss if the
player to move next will lose. In piles they will all be labelled loss.

Backtrack up the tree starting from the level above the terminals:

• If all the successors of a node are labelled win then label this node loss.

• Otherwise label it win.

Terminate when the root has been labelled.

If it has been labelled win then find a successor of the root labelled loss and play
that.

So in this case (see over) the original board position is a losing position - the second
player can force a win.

(7)

(6 1) (5 2) (4 3)

(5 1 1) (4 2 1) (3 2 2) (3 3 1)

(4 1 1 1) (3 2 1 1) (2 2 2 1)

(3 1 1 1 1) (2 2 1 1 1)

(2 1 1 1 1 1)

COM1080

COM1080: AI Techniques 35 of 86

3.6 Java Implementation

Growing a game tree is similar to the search processes we have already seen. At the
end we have to do the backtracking rather than report success.

Again we can write a domain-independent engine which can be specialised for par-
ticular games. implements this. This can be based on the search2 code - we don’t
need variable costs. The major changes will be

Abstract class GameSearch can be adapted from the Search class:

method run_GameSearch, derived from run_Search, grows a tree of
GameSearch_Nodes, either breadth-first or depth-first.

Instead of goalP we have resultP, which tells us whether a node is a termi-
nal. If it is, we don’t look to expand it, but put it on closed and select the next
node.

The search terminates when open is empty - we search the whole tree.

When this happens run_GameSearch calls a method minimax - see below.

Class GameSearch_Node is adapted from Search_Node:

It now has additional variables children (the successor nodes), level (the
depth of this node in the tree) and a String outcome (whether this node repre-
sents a “win” or “loss” for the player to move, or whether the outcome is
“unknown”.

It has a resultP method rather than a goalP method, which calls the result
method of the subclass of GameSearch_State. This returns “win”, “loss” or
“unknown”. resultP returns true for “win” or “loss”.

Its same_state method includes a check that the 2 nodes being compared are
at the same level (the same board at different levels implies different out-
comes).

Abstract class GameSearch_State is adapted from Search_State & just specifies
that its subclasses must have methods result, get_Successors and same_state.

The minimax method of GameSearch works as follows:

(7)

(6 1) (5 2) (4 3)

(5 1 1) (4 2 1) (3 2 2) (3 3 1)

(4 1 1 1) (3 2 1 1) (2 2 2 1)

(3 1 1 1 1) (2 2 1 1 1)

(2 1 1 1 1 1)

level

2

3

4

5

6loss

win loss

loss win loss

win
loss win loss

win win win

1
1

COM1080

36 of 86 COM1080: AI Techniques

1. Work through the tree -i.e. through closed - filling up the children slots, i.e. for
each node n (except the root) with parent p, add n to p’s children (alternatively
you can do this within expand).

2. Work back up the tree through the levels, starting at the maximum depth - 1.
3. For each node at the current level that hasn’t already been labelled, label it “win”

unless all its children are “win”.
4. When the root (the single node at level 1) has been labelled, return its label and,

if it’s a “win”, the first node in its children labelled “loss” - this is the move to
make.

3.7 Evaluation Functions.

Because of the combinatorial explosion, in practice we can only afford to
explore a small part of the complete game tree, and we can't expect to reach
the terminal nodes.

If we can't search to terminal positions, we have to have a way of assessing the
positions we can reach.

If we call the 2 players MAX and MIN.

An evaluation function E(b) takes a board position b and returns a number which
expresses the merit of the position: the larger E(b), the more the position is judged
as favouring the player MAX, the smaller it is the better for MIN.

A popular form for E(b) is a weighted polynomial:
E(b) = w1f1(b) + w2f2(b) +

Where

f1, f2 ... are functions which measure features of the board position which seem to
be important, e.g. piece advantage, control of centre, mobility...

w1, w2... are 'weights' which express the relative importance of the fi.

NOTE:

1. It is arguable whether it is really legitimate to reduce a board position to a single
number.

2. E(b) is a static evaluation function. It does not try to take account of the dynam-
ics of a game, e.g. a threat building up.

3. E(b) is likely to be more accurate for simpler positions, e.g. when there are
few pieces around. Its unlikely that E(b) will say much about the first move in
chess, for instance.

4. A polynomial form assumes that f1, f2 ... are essentially independent pieces of
evidence. This may be unjustified.

5. There will be a trade-off between how far we can search and how complex E(b)
is, because it must be computed for each leaf node.

3.8 Partial Look-ahead

Given an evaluation function we can proceed as illustrated below:

• Grow the tree as far as we can (typically to a fixed depth or ‘ply’).

• Compute v = E(b) for each leaf node.

COM1080

COM1080: AI Techniques 37 of 86

• 'Traceback' or 'back-up' or 'backtrack' through the tree as follows:

• A node at a maximising level is given a backed-up value v' which is the maxi-
mum value of its children.

• A node at a minimising level is given a backed-up value v' which is the mini-
mum value of its children.

• Eventually the root node will have backed-up values for all its children. If we are
MAX, we make the move with maximum v', vice-versa if we are MIN.

NOTE:

1. We could have applied E(b) to the original children of the given board posi-
tion and used these immediate estimates to decide our move. The argument for
look-ahead and backtrack is that E(b) should be able to produce more accurate
estimates later on, when board positions are 'simpler'.

2. There is an implicit assumption that the opponent is 'thinking in a similar way
to us', i.e. has a similar evaluation function, and always chooses on this basis.

3.9 ALPHA-BETA Pruning.

There is a way of conducting a minimax backtrack without backing up all the
nodes.

For each MAX node we keep a 'provisional-backed-up-value', ? , whose value
may rise but will never decrease.

COM1080

38 of 86 COM1080: AI Techniques

i.e. we may find another child which is better for max, but any worse case can be
discarded.

For each MIN node we keep a provisional-backed-up-value, ? , whose value may
fall but will never increase.

The pbvs become vs when all children have been explored.

This is another version of the dynamic programming principle: forget everything
except the best (or worst) path so far found.

The procedure is illustrated below:

• Work from left to right, starting by diving down to the depth limit.

• Discontinue work below any node which won't be chosen by its parent.

COM1080

COM1080: AI Techniques 39 of 86

Here is a larger example: only the circled leaf nodes get evaluated:

COM1080

40 of 86 COM1080: AI Techniques

NOTE:

1. Alpha-beta is guaranteed to return the same value as a full minimax.
2. Alpha-beta is an example of the 'dynamic programming principle' - in a state-

space search you only need to remember the best route to a given node so far
found.

3. Alpha-beta may postpone the combinatorial explosion, but it doesn't remove
it: in the best case the number of static evaluations, s, needed to find the best
move is given by

s = 2b(d/2) - 1 if d is even

COM1080

COM1080: AI Techniques 41 of 86

 = b(d+1)/2 + b(d-1)/2 -1 if d is odd.

 Where d is the search depth and the tree has uniform branching factor b.

This is illustrated below for d=3 and b=3.

The following compares full minimax with best-case alpha-beta:

COM1080

42 of 86 COM1080: AI Techniques

3.10 Adaptations of Brute-Force Search

3.10.1 Heuristic Pruning

Compared to skilled human play, a brute-force search spends most of its time
considering 'rubbish' - positions a good player would never bother with. In heu-
ristic pruning, moves from each node are ordered by their plausibility, and search
effort is expended according to that ranking. Low plausibility moves are never con-
sidered. The tree takes on a 'tapered' look (see below).

Note that we may make a mistake - this is a heuristic method, not guaranteed.

The general name for this sort of technique is 'beam search'.

3.10.2 Book Moves

Serious computer game-playing programs make much use of libraries of standard
positions, with sometimes millions of entries. If a node represents a board position
which is in the library, we have effectively already done the search below that
node.

A more powerful version of this would suggest whole sequences of moves to fol-
low until play diverts from a standard pattern - e.g. classic chess openings.

The difficult problem is to recognise not when a situation is identical to one pre-
viously met, but which has a’ similar pattern’, differing only in unimportant
respects. Skilled human players are very good at this intelligent pattern matching.
This ability is (in my opinion) closely-linked to human powers of perception. It has

COM1080

COM1080: AI Techniques 43 of 86

been shown that expert chess players can memorise and recall board positions more
readily than novices.

3.10.3 Combating the Horizon Effect.

If we search to a fixed depth, we can wind up choosing moves which delay but do
not prevent disasters, e.g.

The disaster is 'beyond the horizon'. The program can seem to be throwing mate-
rial away, only postponing the inevitable.

One way of reducing the horizon effect is to continue search past situations
which are considered to be dynamic, e.g. check, imminent loss of a piece, pawn
about to queen.

Another idea is to back-up and chose a prospective move m, then grow a small, sec-
ondary tree below the position p which m is expected to lead too. If the backed-up
value for p is much worse than E(p), think again.

3.10.4 Learning

In his classic work on Checkers or draughts (1959-67), Samuels attempted to get a
program to learn to play better by adjusting both the features fi(b) and their weights
wi in E(b).

The idea was to reward a win by increasing the wi for those fi which contributed
to the good moves, and punish a defeat in a similar way. If some wi became very
low, the corresponding fi was removed from E(b) and replaced by a new feature
chosen from a pool.

COM1080

44 of 86 COM1080: AI Techniques

The learning regime was to have 2 computer players A and B play each other. A
used a fixed E(b), the best found so far. B starts with this polynomial, perhaps with
some random adjustments. B's polynomial is modified by punishment-and-
reward, as above. If B consistently beats A, B's polynomial is moved to A.

Samuels achieved some success with this learning technique. His program eventu-
ally reached world-class performance (but most games are drawn).

In general the problem is to devise a learning technique which will converge -
which is guaranteed to find an optimum solution. I don't know of any such 'training
theorems' for game-playing.

3.11 Comparison of Human and Machine Play

3.11.1 Strategy

A program using search techniques as described above would consider the situa-
tion afresh on each move. It has no long-term plan or strategy. This is initially dis-
concerting to a human opponent - the machine 'jumps around' rather than pursuing
some logical line of play.

3.11.2 Adaptability

Good game players vary their play according to who (or what) the opponent is.
They know the opponents strengths and weaknesses. The dumb machine would
make exactly the same response every time it was in a particular position.

COM1080

COM1080: AI Techniques 45 of 86

Commonly the human struggles when first playing a particular program, but soon
learns to beat it. David Levy (who issued a challenge in 1968 that no computer
would beat him for 10 years) advocates making unusual opening moves so that the
program can't 'use its book'.

3.11.3 Search in Human Play

Overt search does play a part in expert-level play, but it often has the secondary
role of checking out a promising move that has been identified in some other way.
The search is very selective - very ‘depth-first’.

3.11.4 Expert Systems for Game Playing

Search-based techniques don't 'understand' the problem in any human sense.
They cannot, for instance, provide explanations. The only ‘knowledge’ is in the
legal move generator and the evaluation function, where it’s implicit rather than
explicit.

Can human knowledge about how to play a game be captured in a program?
Michie (1980) reported work on an ‘expert system’ for chess end-games in which
he was able to demonstrate theoretically-correct play for some classic problems.
Knowledge-based systems are coming later...

3.11.5 Really Brute Force

Computer Chess has developed into a world of its own, and is no longer seen as
central to AI. Modern programs, still search-based but with specialist hardware and
massive libraries, now play at international master level. Programmes are widely
available which can beat all but the best few hundred humans. Kasparov was beaten
by IBM’s ‘deep blue’ in 1996. The following (from the San Francisco Chronicle)
summarises the match..

 Speed, Not Artificial Intelligence, Is How IBM Won

 By DAVID EINSTEIN

 1997 San Francisco Chronicle

For all its historic significance, Deep Blue's victory over world chess champion Garry Kasparov
wasn't really much of a scientific breakthrough, computer experts said Monday. In fact, the
consensus was that the 6-foot-5, 1.4-ton IBM computer depended less on artificial intelligence
than on raw computing power to dispatch Kasparov in their six-game series that finished Sun-
day.

``The Deep Blue team used heavy computing to make up for a lack of cleverness in the algo-
rithms themselves,'' said John McCarthy, professor of computer science at Stanford University.

It may not have been quite that simple. IBM worked hard to improve Deep Blue's chances this
year, giving it a better grasp of chess openings and end games than it had in 1996, when
Kasparov won the first meeting.

IBM also hired chess grandmaster Joel Benjamin as a consultant this year. ``They sat down
with the grandmaster and fine-tuned the knowledge of how the computer judged some of the
positions,'' said David Wilkins, a senior computer scientist (and chess expert) at SRI in Menlo
Park. ``So it did have more and better chess knowledge this time.''

In the end, however, he said the real difference probably was Deep Blue's calculating speed,
which was doubled this year. It could analyze 200 million possible moves a second -- 50 billion
board positions in the three minutes given for each move. That kind of power, said Wilkins,
``will get you to human champion performance.'' Deep Blue employed searching and logic
techniques based in early artificial intelligence theory. But research into A.I. has now gone far
beyond chess-playing computers. Today, to have true artificial intelligence, a machine must be
able to respond to outside stimulus such as light, sound and movement.

COM1080

46 of 86 COM1080: AI Techniques

If Deep Blue were able to actually ``look'' at the chessboard and decide how to play, it might
qualify. Right now, though, it's just a powerful computer whose real talent is to wear out its
opponent. Kasparov proved to be a case in point. After winning the first game of the match, the
champ surrendered in game two, even though experts said he could have gained a draw. The
next three games ended in draws, and in the finale on Sunday, Kasparov was practically a bas-
ket case, botching his opening and losing in just 19 moves.

History will record this as the first time man was beaten by a machine, but that's not quite right.
``I don't think this is a story about mano a silicio,'' James Bailey, author of ``After Thought: The
Computer Challenge to Human Intelligence,'' wrote in Harper's magazine recently. ``It's about a
bunch of guys at IBM who by themselves had no chance of ever getting into an international
chess tournament, and therefore chose to collaborate with a computer.

``The computer by itself also didn't have a chance of making it into an international chess
game. But together they were able to go where neither of them could go alone.''

The real winner in the match, of course, was IBM itself, which owns and operates Deep Blue
the way George C. Scott managed Paul Newman in ``The Hustler.''

IBM gave the rematch a lot of hype, which entailed a risk, because if Deep Blue had lost badly
-- worse than last year -- all the buildup would have been for nothing. With Deep Blue's tri-
umph, however, IBM has polished its image as a maker of fabulously fast computers.

COM1080

COM1080: AI Techniques 47 of 86

4 Pattern Matching and Knowledge-based
Systems

Problem solving techniques in symbolic AI which go beyond blind searching
depend on the use of knowledge about the problem domain.

This knowledge must somehow be matched with the current problem-state: What
do we know which applies to the situation we are in?

Internally, we will be comparing data structures representing the problem state with
data structures which represent the knowledge. We need a knowledge representa-
tion scheme (sometimes called an ontology).

There are various knowledge representation schemes but they all involve patterns
and their use is based on pattern matching.

This is the methodology of expert systems. The knowledge is confined to some
restricted problem domain.

In an expert system shell, the idea is to provide a general mechanism for this kind
of problem-solving, which the user can then adapt to her domain (like our search
engine):

4.1 Programming a pattern matcher

Fundamental to pattern matching is the idea of ‘wild cards’. You may be familiar
with this from the operating systems MS-DOS and/or Unix:
chortle{pdg}41: cd /home/pdg/public/com1080/java/search1/simplejava

chortle{pdg}42: ls

Coordinates.class SimpleReader2.class SimpleCanvas.class

SimpleReaderException.class SimpleGraphicsWindow.class

SimpleWriter.class SimpleReader.class

chortle{pdg}43: ls Simp?eCan?as.class

SimpleCanvas.class

chortle{pdg}44: ls Simple*.class

SimpleCanvas.class SimpleReader2.class

SimpleGraphicsWindow.class SimpleReaderException.class

SimpleReader.class SimpleWriter.class

chortle{pdg}45: ls C*.*

Coordinates.class

problem

knowledge
base

inference
engine solution

COM1080

48 of 86 COM1080: AI Techniques

So the wild cards are ?, which is allowed to match with any single character and *,
which matches against one or more characters. They can be used alone or in combi-
nation. We only need to think about the equivalent of ?.

In general, we can think of the wild cards as matching variables, and pattern
matching means ‘find a suitable set of substitutions for matching variables which
makes one pattern identical to another’. Another name for pattern matching is uni-
fication.

The Java API doesn’t supply pattern matching as part of the language, so we need to
provide our own facilities. The languages you’ll learn at level 2, Haskell and Pro-
log, have pattern matching as a central feature. In Lisp, pattern matching is not part
of the language itself, but there are packages for it. Lisp data structures (lists) are
well-suited to pattern matching.

Code for the matching classes we need is available in
/share/public/com1080/java/pmatch

Which can be imported as a package pmatch.

We’ll represent our patterns by Strings, using single spaces as delimiters between
elements in the pattern, so for instance if we are matching against “colour apple
red” we should get

4.1.1 Bindings for pattern variables

When a match is successful, it is useful to remember what the wild cards matched
against. We’ll do this by giving the wild cards names that start with a ?, e.g. ?col. A
successful match establishes bindings for the pattern variables. The set of bindings
thus created is called a context:

Where <= means ‘is bound to’.

Pattern to match Result

“colour apple red” true

“colour apple green” false

“colour apple red size small” false

“colour apple ?” true

“colour orange ?” false

“? apple ?” true

Pattern to match Result Context

“colour apple red” true null

“colour apple green” false null

“colour apple ?col” true ?col <= red

“colour orange ?col” false null

“?prop apple ?val” true ?prop <= colour

?val <=red

COM1080

COM1080: AI Techniques 49 of 86

4.1.2 The MString class

We need a class MString to implement pattern matching between Strings. We
can’t implement this in the obvious way, as a subclass of String, because String is
a ‘final’ class - it can’t be subclassed. Instead we make it a subclass of Object
whose constructor takes a String as argument.

We use the StringTokeniser class to split this string, and the string we are match-
ing against, into words separated by delimiters e.g. spaces, returns. You can then
iterate over the tokens. For instance
 StringTokenizer st = new StringTokenizer("this is a test");

 while (st.hasMoreTokens()) {

 println(st.nextToken());

 }

Prints
this

is

a

test

We also need to decide on how we are going to represent contexts. A context is a
table whose items associate variables (keys) with values (data). Java provides a
HashMap class which allows us to create tables, add items to them (method put),
retrieve items (get) etc.

We’ll allow pattern variables to appear in either (or both) patterns p1 and p2 we are
matching. To simplify things,

• Each pattern variable can only appear once,

• We can’t have variables in the same position in p1 and p2 (e.g. p1 = “size apple
?s” , p2 = “size apple ?t”).

We should really check that these conditions hold, but to save time we won’t.

Here’s the start of MString.java:

public class MString extends Object {

 private String str; //the string to be matched against

 public String getStr() {return str;}; //accessor

 private HashMap context; //the matching context

 public HashMap getContext() {return context;} //accessor

 //constructor

 public MString(String s){ str=s;}

 // match against given string

 public boolean match(String d){

COM1080

50 of 86 COM1080: AI Techniques

 StringTokenizer ptok = new StringTokenizer(str); //tokenise the MString

 StringTokenizer dtok=new StringTokenizer(d); //& the string it will match
against

 boolean result; // the final result - success or failure

 if (ptok.countTokens() != dtok.countTokens())

 result=false; //number of tokens must be equal

 else {

 result=true;

 context=new HashMap();

 while (ptok.hasMoreTokens()&& result){

 String nextp=ptok.nextToken();

 String nextd=dtok.nextToken();

 if (!nextp.equals(nextd)){

 if (pvar(nextp))

 context.put(nextp,nextd);

 else {

 if (pvar(nextd))

 context.put(nextd,nextp);

 else result=false;

 }

 }

 }

 }

 return result;

 }

pvar here is a predicate telling us whether a string is a pattern variable:
 private boolean pvar(String v){return(v.startsWith("?"));}

We can now use MString like so:

MString n1=new MString("one two three four");

boolean n1res=n1.match("one ?too ?free" four);

will return true and
 screen.println(n1.getContext());

Will print
{?too=two, ?free=three}

COM1080

COM1080: AI Techniques 51 of 86

4.1.3 Additions to MString

Matching with an existing context

Often we want to do matches in sequence, using contexts from earlier matches:

MString m1 = new MString(“I want to go from ?start to ?dest”);

m1res=m1.match(“I want to go from Sheffield to London”);

MString m2=new MString(“The train from Sheffield to London leaves at 0930”);

m2res=m2.match(“The train from ?start to ?dest leaves at ?time”, m1.getCon-
text())

... will match & set the context of m2 to

{?start=Sheffield, ?dest=London, ?time =0930}

This is done by

• Defining a second constructor for MString which takes an additional argument,
the initial context.

• Whenever a pattern variable appears in the match, we look in the context to see if
it has a binding. If so, we use this binding in the match.

Substituting back

The method msubst is the inverse of matching: given an MString and a context,
return the MString with pattern variables in the context replaced by their bindings:
MString m3=new MString(“Return from ?dest to ?start”);

String sres=m3.msubst(m1.getContext());

returns
Return from London to Sheffield

Forward and Backward Contexts

It is sometimes important to be able to distinguish between matches for variables in
the given MString instance and matches for variables in the String we are matching
against. The method match_2_way performs a match as before but returns two con-
texts, one for the mvars in the mString instance which is called (pcon) and one for
the mvars in the String it’s matched against (dcon). e.g.
MString m4=new MString(“?x weight heavy”)

m4.match_2_way(“feather weight ?y”)

m4.getPcon ==>{“?x”,”feather”}

m4.getDcon ==>{“?y”,”heavy”}

We’ll use this in backward-chaining later on. In this case we are allowed to have
mvars in the same place, and pcon takes precedence, e.g.
MString m5=new MString(“?x parent of Fred”)

m5.match_2_way(“?z parent of ?y”)

m5.getPcon ==>{“?x”,”?z”}

m5.getDcon ==>{“?y”,”Fred”}

COM1080

52 of 86 COM1080: AI Techniques

4.1.4 MStringVector.java: matching against a Vector of Strings

In the ‘train’ example above we’d want to try matching our pattern

“The train from ?start to ?dest leaves at ?time”,

in the context
{?start=Sheffield, ?dest=London}

against a whole train timetable, searching through the timetable until we find some-
thing that matches. Rather than a single pattern we need to match against each pat-
tern in a Vector of patterns, until we find one that matches (we’ll stop at the first
match found) or the Vector runs out . This facility is provided by the MStringVec-
tor class.

MStringVector extends Vector. Like MString it has

• a match method (two versions, with and without an initial context),

• an msubst method,

• a variable context which is updated by a successful match.

Their behaviour is illustrated below:
 MStringVector v = new MStringVector(“PDG phone 21828| MPC phone 21822
|GJB phone 21817”); //in the constructor, | separates MStrings

 boolean res=v.match("MPC phone ?m");

returns true & v.getContext() returns {m=21822}

MStringVector w = new MStringVector(“Robbie at ?x|Suzie at ?y”);

boolean res = w.match(“Suzie at home”)

returns true & w.getContext() returns {?y home}
HashMap con=new HashMap();

con.put(“?x work”);

con.put(“?y play”);

Vector res=w.msubst(con);

returns a vector with elements “Robbie at work”, “Suzie at play”.

4.1.5 Additions to MStringVector
Sometimes we want to find all the matches for a given String against a given
MStringVector, not just one. The matchall method does this. As usual, there are 2
versions, with & without an initial context. If it succeeds, matchall sets up an
ArrayList of the details of individual matches, which is accessed with getMatchDe-
tails. Each item in this list is an instance of the MatchDetails class, and contains
the pattern which matched, the rest of the MStringVector and the matching context.

4.2 Other Matching Facilities

We won’t need the following in our programming but it’s worth discussing them

COM1080

COM1080: AI Techniques 53 of 86

4.2.1 Restricting the match

We may wish to put restrictions on what is allowed to match against a variable, for
instance by specifying a predicate that must return true if the binding is allowed.

e.g. we may want “arriving at ?x” to match against “arriving at Sheffield” but
not against “arriving at 0930”. We need to define a predicate which must hold if
the match is to succeed. This is natural in a functional language because you can
pass functions as arguments. In Haskell you’d say something like
match [“arriving”, “at”, (“?x”, townP)]

 [“arriving”, “at”, “Sheffield”]

where townP is a predicate returning True if its argument is a member of a list of
town names.

4.2.2 Matching sequences
We may want variables which are allowed to match against sequences of forms,
rather than a single form. These are conventionally introduced with a *:

e.g. matching “*pre arrives at *post” against “the train arrives at Sheffield at
1100” would succed & bind

{*pre=the train,*post=Sheffield at 1100}

4.2.3 Duplicating matching variables
We may want variables which occur more than once in the same pattern. In that
case, the first appearance establishes the binding, the remainder have to bind to the
same:

e.g. matching “go from ?x to ?y and back to ?x”

would succeed against “go from Sheffield to London and back to Sheffield”

but not against “go from Sheffield to London and back to York”.

COM1080

54 of 86 COM1080: AI Techniques

5 Rule-based systems

Here the knowledge is expressed in rules. This is the most common type of expert
system.

A rule looks if
If a1 and a2 and a3.... then c1 and c2 and....

• The ai are the antecedents.

• The cj are the consequents.

• If all the ai are met we can deduce all the cj.

• We can restrict ourselves to rules with a single consequent, without loss of gen-
erality (if there are n consequents we can have n rules, each with the same ante-
cedents).

 Rule-based systems create new knowledge from old by performing deduction
rather than induction or abduction (the other ‘modes of inference’).

Deductive systems are related to formal logic, and generally implement parts of
first-order predicate calculus. They usually do not have all of PC's expressive
power. More about this in year 2.

The antecedents and consequents are patterns containing pattern variables, for
instance we might have a rule

Grandfather rule

 Antecedents: (?x is a grandparent of ?y)

 (?x is male)

 Consequent: (?x is a grandfather of ?y)

In LISP the lists would be written as above. In Java we are going to use strings, but
for simplicity we can drop that for now.

• Note that a fact is a special case of a rule - one with no antecedents.

• The pattern variables play much the same role as quantifiers (for all, there
exists) in logic.

• This kind of formalism is the basis of the programming language Prolog.

5.1 Forward and Backward Chaining

The inference engine can do its deduction in two ways. Suppose in addition to the
grandfather rule we have

Father-is-parent rule

 Antecedent: (?x is the father of ?y)

 Consequent: (?x is a parent of ?y)

Father-is-male rule

 Antecedent: (?x is the father of ?y)

 Consequent (?x is male)

Grandparent rule

 Antecedents: (?x is the parent of ?y)

COM1080

COM1080: AI Techniques 55 of 86

 (?y is the parent of ?z)

 Consequent: (?x is a grandparent of ?z)

5.1.1 Forward Chaining

Moves from antecedents to consequents:

If we are given the fact
(henry7 is the father of henry8)

The antecedents of the father-is-parent rule are triggered and the rule ‘fires’,
deducing
(henry7 is a parent of henry8)

and the father-is-male rule adds the deduction
(henry7 is male)

now if we are given
(henry8 is the father of Elizabeth)

The parent rule adds
(henry8 is a parent of Elizabeth)

and the antecedents of the grandparent rule are matched giving
(henry7 is a grandparent of Elizabeth)

finally the grandfather rule fires giving
(henry7 is a grandfather of Elizabeth)

• Forward chaining is data-driven.

• Rules used in this way are sometimes called demons.

5.1.2 Backward Chaining

Moves from consequents to antecedents. Look for a rule that will allow us to make
the deduction we want, then try to prove its antecedents.

Suppose we want to find a grandfather of Elizabeth & we are given the same facts
to begin with.

We look for a rule whose consequent matches the pattern (our ‘hypothesis’).
(?x is a grandfather of Elizabeth)

& come up with the grandfather rule. We therefore try to prove its antecedents,
given what we know already:
(?x is a grandparent of Elizabeth)

 (?x is male)

We check to see if any antecedents match directly with a fact. If not, we look for
rules whose consequents match. The grandparent rule leads us to look for
(?x is the parent of ?y)

(?y is the parent of Elizabeth)

COM1080

56 of 86 COM1080: AI Techniques

Taking the second of these first, and using the father-is-parent rule we find that we
can satisfy this using the fact
(henry8 is the father of Elizabeth)

This gives us a value for ?y. We now look for
(?x is the parent of henry8)

and find a match through ?x -->henry7.

We’re now back in the grandfather rule having deduced
(henry7 is a grandparent of Elizabeth)

Finally we prove, using the father-is-male rule that
(henry7 is male)

NOTE

• Backward chaining is hypothesis-driven.

• We are performing a blind search of the space of possible deductions. We may
get a combinatorial explosion. We may have to backtrack.

• The deduction process is inherently recursive: forward chaining stops when no
more deductions can be made. Backward chaining stops when we can match
against a known fact, or when there are no rules whose consequents match what
we are trying to prove.

• Substitutions must be correctly retained through the stages of a proof.

• Both forward and backward chaining are forms of monatonic reasoning. A fact
always remains true: once asserted, it is never withdrawn.

5.2 Rule-based systems in Java

see

www.dcs.shef.ac.uk/~pdg/java/FChain

www.dcs.shef.ac.uk/~pdg/java/BChain

For both forward and backward chaining we need a class Rule to represent individ-
ual rules and RuleSet to represent a collection of Rules. Rule has variables

 private Vector antes;

 private String conseq;

and corresponding accessors. RuleSet has
private ArrayList rules;

the following (in TestFChain) creates a small RuleSet:
 Vector gfantes= new Vector();

 gfantes.add("?gf father of ?p");

 gfantes.add("?p parent of ?c");

 Rule gfrule = new Rule (gfantes, "?gf grandfather of ?c");

 Vector fpantes = new Vector();

 fpantes.add("?f father of ?c");

 Rule fprule = new Rule (fpantes, "?f parent of ?c");

COM1080

COM1080: AI Techniques 57 of 86

 ArrayList rset = new ArrayList();

 rset.add(fprule);

 rset.add(gfrule);

 RuleSet rs = new RuleSet(rset);

5.2.1 Forward Chaining in Java
The class FChain implements forward chaining through a method run_FC. When
we create an instance of FChain (in TestFChain) we give it the RuleSet to use.

 FChain fc=new FChain(rset);

We call run_FC giving it the initial facts:
 Vector facts = new Vector();

 facts.add("H7 father of H8");

 facts.add("H8 father of E");

 Vector res=fc.run_FC(facts);

run_FC makes all the deductions it can & returns a Vector of the given facts and
the deduced facts.

run_FC works as follows:

Keep a record of all the known_facts and the ones which have not yet been ‘pur-
sued’ i.e. we haven’t yet tried to make further deductions on the basis of them. Ini-
tially known_facts and to_pursue are both set to the given facts.

Iterate the following until to_pursue is empty:

Remove the first fact f from to_pursue and make all possible deductions from it:

Iterate the following over all the rules in the RuleSet

For each rule r, find all the matches for f against its antecedants (using match-
all).

Each success constitues a partial match, in which there will be a matching
context and (in general) more antecedants to be satisfied. matchall supplies
this information by returning a list of MatchDetails instances.

Iterate the following until the list of partial matches is empty:

Remove the first partial match p and develop it:

If p has no more antecedants, we have a deduction:

Substitute p’s context in r’s consequent (using msubst) and add this
new fact to known_facts and to_pursue.

otherwise,

Take the first of p’s antecedants and use matchall to find all the matches
for it against known_facts, given p’s context.

Each successful match forms a new partial.

COM1080

58 of 86 COM1080: AI Techniques

Results
kf= [H7 father of H8, H8 father of E]

tp= [H7 father of H8, H8 father of E]

pursuing H7 father of H8

match for rule with antes [?f father of ?c]

Deduced H7 parent of H8

match for rule with antes [?gf father of ?p, ?p parent of ?c]

matching ?p parent of ?c

in context {?p=H8, ?gf=H7}

result = false

kf= [H7 father of H8, H8 father of E, H7 parent of H8]

tp= [H8 father of E, H7 parent of H8]

pursuing H8 father of E

match for rule with antes [?f father of ?c]

Deduced H8 parent of E

match for rule with antes [?gf father of ?p, ?p parent of ?c]

matching ?p parent of ?c

in context {?p=E, ?gf=H8}

result = false

kf= [H7 father of H8, H8 father of E, H7 parent of H8, H8 parent of E]

tp= [H7 parent of H8, H8 parent of E]

pursuing H7 parent of H8

match for rule with antes [?gf father of ?p, ?p parent of ?c]

matching ?gf father of ?p

in context {?p=H7, ?c=H8}

result = false

kf= [H7 father of H8, H8 father of E, H7 parent of H8, H8 parent of E]

tp= [H8 parent of E]

pursuing H8 parent of E

match for rule with antes [?gf father of ?p, ?p parent of ?c]

matching ?gf father of ?p

in context {?p=H8, ?c=E}

result = true

Deduced H7 grandfather of E

kf= [H7 father of H8, H8 father of E, H7 parent of H8, H8 parent of E, H7 grandfa-
ther of E]

tp= [H7 grandfather of E]

COM1080

COM1080: AI Techniques 59 of 86

pursuing H7 grandfather of E

Result: [H7 father of H8, H8 father of E, H7 parent of H8, H8 parent of E, H7
grandfather of E]

5.2.2 Backward Chaining in Java
We’ll implement backward chaining as a search technique: we are searching the
space defined by all the links between the antecedants of one rule and the conse-
quents of another rule.

We could have done this for forward chaining too, rather than implementing it
directly.

Since we have uniform costs we’ll make use of the Search2 code.

We need a subclass of Search for backward chaining - BChain _Search. This class
has a variable rules containing the ruleset (using the same classes as forward chain-
ing). TestBChain sets this up for the usual problem...
BChain_Search bc=new BChain_Search(rs);

We need to define a subclass of Search_State representing a state in the backward
chaining search:

BChain_State

A state will contain a Vector of goals gl. A goal will be a String which may have.
matching variables.

In addition we will keep an answer-variable-list (avl) in each state. This is used to
record values found for the variables in the original goal. The search succeeds when
a state is found with values for all the answer-variables, and no remaining goals.

For instance, this code (in TestBChain) creates the initial state in the search for
Elizabeth’s grandfather:
Vector goals = new Vector(); //initial goals

goals.add("?X grandfather of E");

HashMap avl = new HashMap(); //initial ans var list

avl.put("?X",null);

BChain_State bstate = new BChain_State(goals, avl);

BChain_State must implement goalP, getSuccessors and same_State

goalP returns true if there are no more goals to satisfy & we have values for all the
answer variables:
 public boolean goalP(Search searcher) {

 if (gl.isEmpty()&&!avl.containsValue(null)) {return true;}

 else {return false;}

 }

same_State returns true if the two states have the same gl & avl. The action is in
get_Successors:

get_Successors

COM1080

60 of 86 COM1080: AI Techniques

Create an empty successsor list

Iterate the following for goal g in gl:

Iterate the following for each rule r:

Match the conseq of r against g, using match_2_way

If there is a match, we are going to create a successor s..

Create the goal-list for s from the antecedants of r plus the other goals in gl

Use msubst to substitute in this goal-list for mvars in the pcon and dcon
returned by match_2_way.

Create the avl for s from the avl for this state by substituting any values for
answer vars that have emerged in dcon.

add s to the successor list

Results

This is the depth-first search tree for the ‘Elizabeth’s grandfather’ problem:

Goals [?X grandfather of E]
 AVL {?X=null}

 Goals [?X father of ?p, ?p parent of E]
 AVL {?X=null}

Goals [H8 parent of E]
 AVL {?X=H7}

 Goals [E parent of E]
 AVL {?X=H8}

Goals [?X father of ?p, ?p father of E]
 AVL {?X=null}

Goals [H8 father of E]
 AVL {?X=H7}

Goals [E father of E]
 AVL {?X=H8}

Goals [?X father of H8]
 AVL {?X=null}

Goals []
 AVL {?X=H7}

matches [H7 father of H8]

matches [H8 father of E] matches [?p parent of ?E]

matches [H7 father of H8]
matches [H8 father of E]

matches [H8 father of E]

COM1080

COM1080: AI Techniques 61 of 86

5.2.3 Things to try
Add some more ‘family tree’ rules (there are some in 5.4 below). Compare forward
and backward chaining for the same problem. How much repeated work is there?

5.3 Production Systems

Unrestricted forward and backward chaining are prone to the combinatorial explo-
sion: they thrash around in the search space without progressing towards a solution.

Production Systems implement forward chaining but provide a way in which the
behaviour of the deduction process can be controlled. Many expert system shells
resemble production systems. They have also been used to model human learning.

We keep a data structure called the short-term memory (STM). This consists of a
list of facts, like the initial facts and deductions in forward chaining. The difference
is that we are allowed to delete items from the STM, to keep things under control1

Instead of rules we have productions. A production contains

• a name

• a number of antecedants, which will contain pattern variables, as before

• a predicate on the pattern variable bindings, i.e. a function which is given the
context resulting from a successful match of the antecedants and returns true or
false. The production can only fire if the predicate returns true.

• a modify_context function which takes the context after a successful match and
modifies it, for instance to compute the value of a new matching variable. Exam-
ples below.

In some productions the predicate &/or modify_context may not be needed.

• a number of actions which are carried out if the production fires, in the context
returned by modify_context. There are three kinds of actions:

additions are patterns to be added to the STM (after substituting from the
context).

deletions are patterns to be deleted from the STM (after substituting from the
context).

remarks are patterns to be printed out (after substituting from the con-
text).They are used to supply commentary and results.

A production system interpreter repeatedly

• Scans through the productions in order until one is found whose antecedants
match the STM,

• Checks the predicate for this prodn in the resulting context and, if this returns
true,

• Runs the production’s modify_context fn,

• ‘Fires’ the production, i.e. performs its actions in the resulting context.

This continues until no production fires.

1. In work modelling human learning, the maximum size of the STM is limited, to reflect the
characteristics of human memory.

COM1080

62 of 86 COM1080: AI Techniques

5.3.1 Example: bagging
Robbie the robot has a job in a supermarket. As shopping items are passed through
the checkout, Robbie must put them into bags. A good bagging system will make
sensible decisions about what goes where, based on factors such as

• How much space there is left in each unfilled bag,

• The size of the items,

• The weight of the items,

• How fragile each item is.

Bagging is an everyday example of the kind of problem solved by one of the most
successful expert systems, R1, which configured DEC mainframe computers.

Here is a very simple production system for bagging, called bagger1. It makes the
following simplifications:

• all bags are 100 units high

• items are stacked one on top of the other

• we don’t care about item fragility, weight etc.

Bagger1 simply takes each item in turn & tries to fit it in the current bag. If it won’t
go, a new bag is started.

The initial STM will tell us what is in the trolley, how much space each item needs
and a note that will trigger the production which starts things off:
step is start bagging

trolley contains bread space 30

trolley contains spuds space 50

trolley contains cornflakes space 40

The ‘step’ trick is commonly used to restrict the productions which are ‘active’ at a
given time.

THE BAGGER1 PRODUCTIONS

Prodn No 1 Name: START_BAGGING

Antecedants: step is start bagging

Predicate: none Modify_Context: none

Actions:

deletions: step is start bagging

additions: step is get next item

 current bag no 1 space 100

remarks: starting to bag

--

Prodn No 2 Name: GET_NEXT_ITEM

Antecedants: step is get next item

 trolley contains ?I space ?S"

COM1080

COM1080: AI Techniques 63 of 86

Predicate: none Modify_Context: none

Actions:

deletions: step is get next item

 trolley contains ?I space ?S

additions: step is bag item

 item to bag ?I space ?S

remarks: bagging ?I

--

Prodn No 3 Name: BAG_IN_CURRENT

Antecedants: step is bag item

 item to bag ?I space ?S

 current bag no ?N space ?BS

Predicate: ?BS>=?S

Modify_Context: add ?RS <== ?BS-?S

Actions:

deletions: step is bag item

 item to bag ?I space ?S

 current bag no ?N space ?BS

additions: step is get next item

 bag ?N contains ?I

 current bag no ?N space ?RS

remarks: ?I in bag no ?N

Prodn No 4

Name: START_NEW_BAG

Antecedants: step is bag item

 current bag no ?N space ?BS

Predicate: none

Modify_Context: add ?NB <== ?N+1

Actions:

deletions: current bag no ?N space ?BS

additions: current bag no ?NB space 100

remarks: Starting bag ?NB

COM1080

64 of 86 COM1080: AI Techniques

Notice that the order of the productions is important: START_NEW_BAG only
fires if BAG_IN_CURRENT doesn’t: i.e there isn’t enough space in the current
bag.

In general this isn’t good enough, and attention has to be paid to the problem of
conflict resolution: if more than one rule has its antecadents and predicate satisfied,
which should fire?

5.3.2 Java Implementation
see

/share/com1080/java/Prodn_Systems

Java makes life difficult in this case, for reasons which expose its limitations for AI
programming:

• The natural thing is to have each production as an instance of a Prodn class, as
we did with rules.

• But we need to specify different predicates and modify_contexts for different
productions, i.e. different code.

• The only way we can do this is to write them as methods (as far as I know).

• But we can’t have different methods for different instances of the same class.

• Therefore each production has to be coded as a different class. Prodn becomes
an abstract class which individual productions are subclasses of.

Here’s the code for the Prodn class:

public abstract class Prodn {

String name;//production name

String[] antes;//antecedants

String[] adds;//additions to stm

String[] dels;//deletions from stm

String[] remarks; //printouts on firing

//can't give the accessor code here, otherwise don't get val from concrete
class

 abstract String getName();

 abstract String[] getAntes();

 abstract String[] getAdds();

 abstract String[] getDels();

 abstract String[] getRemarks();

 abstract boolean pred(HashMap context);

 abstract HashMap modify_context(HashMap context);

}

and here’s the code for BAG_IN_CURRENT

COM1080

COM1080: AI Techniques 65 of 86

public class b1_bag_in_current extends Prodn {

final static String name = "BAG-IN-CURRENT";

final static String[] antes = {"step is bag item",

 "item to bag ?I space ?S",

 "current bag no ?N space ?BS"};

final static String[] adds = {"step is get next item",

 "bag ?N contains ?I",

 "current bag no ?N space ?RS"};

final static String[] dels = {"step is bag item",

 "item to bag ?I space ?S",

 "current bag no ?N space ?BS"};

final static String[] remarks = {"?I in bag no ?N"};

//must define accessors here

public String getName(){return name;}

public String[] getAntes() {return antes;}

public String[] getAdds() {return adds;}

public String[] getDels() {return dels;}

public String[] getRemarks(){return remarks;}

public boolean pred(HashMap c){

Integer space_left = Integer.valueOf((String) c.get("?BS"));

Integer space_needed = Integer.valueOf((String) c.get("?S"));

return (space_left.intValue()>=

 space_needed.intValue());}

public HashMap modify_context(HashMap c){

Integer space_left = Integer.valueOf((String) c.get("?BS"));

Integer space_needed = Integer.valueOf((String) c.get("?S"));

c.put("?RS", String.valueOf(space_left.intValue()-space_needed.intValue()));

return c;}

}

The problem is that part of the knowledge that we wish to put into a production -
simply by writing it down - is in fact code that we want to execute at the appropriate
time. Java isn’t set up for this.

In functional languages like Haskell (which you’ll learn in COM2010) life is easier
because we can create objects which represent functions and use them just like
other objects. For the pred fn in BAG_IN_CURRENT you’d write something like
pred :: HashMap -> Boolean // pred is a fn that takes a HashMap

 // & returns a Boolean

pred c = (get c ?BS)>=(get c ?S) // the code

COM1080

66 of 86 COM1080: AI Techniques

In lisp it’s even easily because there is no distinction between code and data & you
don’t have to mess around with type declarations. In your data structure for
BAG_IN_CURRENT you’d say that the pred is

(>= ?BS ?S)1

and the code for checking any predicate would be
(eval (msubst pred context))

... where the world’s most useful function eval takes its textual argument as code
and evaluates it.

ProdSys.java is the class for running production systems. It contains a method
run_PS which implements a production system interpreter as described above.

TestPS.java runs bagger1 for the trolley contents above, producing

RUNNING PRODUCTION SYSTEM

--

STM= [step is start bagging, trolley contains bread space 30, trolley contains
spuds space 50, trolley contains cornflakes space 40]

Firing START-BAGGING

 in context {}

START-BAGGING remarks:

 starting to bag

--

STM= [trolley contains bread space 30, trolley contains spuds space 50, trolley
contains cornflakes space 40, step is get next item, current bag no 1 space
100]

Firing GET-NEXT-ITEM

 in context {?I=bread, ?S=30}

GET-NEXT-ITEM remarks:

 bagging bread

--

STM= [trolley contains spuds space 50, trolley contains cornflakes space 40,
current bag no 1 space 100, step is bag item, item to bag bread space 30]

Firing BAG-IN-CURRENT

 in context {?N=1, ?RS=70, ?BS=100, ?I=bread, ?S=30}

BAG-IN-CURRENT remarks:

 bread in bag no 1

--

STM= [trolley contains spuds space 50, trolley contains cornflakes space 40,
step is get next item, bag 1 contains bread, current bag no 1 space 70]

1. To perform a computation in lisp you form up a list of the function name followed by its
arguments, & then evaluated it, e.g. (+ 1 2) evaluates to 3.

COM1080

COM1080: AI Techniques 67 of 86

Firing GET-NEXT-ITEM

 in context {?I=spuds, ?S=50}

GET-NEXT-ITEM remarks:

 bagging spuds

--

STM= [trolley contains cornflakes space 40, bag 1 contains bread, current bag
no 1 space 70, step is bag item, item to bag spuds space 50]

Firing BAG-IN-CURRENT

 in context {?N=1, ?RS=20, ?BS=70, ?I=spuds, ?S=50}

BAG-IN-CURRENT remarks:

 spuds in bag no 1

--

STM= [trolley contains cornflakes space 40, bag 1 contains bread, step is get
next item, bag 1 contains spuds, current bag no 1 space 20]

Firing GET-NEXT-ITEM

 in context {?I=cornflakes, ?S=40}

GET-NEXT-ITEM remarks:

 bagging cornflakes

--

STM= [bag 1 contains bread, bag 1 contains spuds, current bag no 1 space 20,
step is bag item, item to bag cornflakes space 40]

Firing START-NEW-BAG

 in context {?NB=2, ?N=1, ?BS=20}

START-NEW-BAG remarks:

 Starting bag 2

--

STM= [bag 1 contains bread, bag 1 contains spuds, step is bag item, item to
bag cornflakes space 40, current bag no 2 space 100]

Firing BAG-IN-CURRENT

 in context {?N=2, ?RS=60, ?BS=100, ?I=cornflakes, ?S=40}

BAG-IN-CURRENT remarks:

 cornflakes in bag no 2

--

STM= [bag 1 contains bread, bag 1 contains spuds, step is get next item, bag 2
contains cornflakes, current bag no 2 space 60]

RUN TERMINATED

final STM

[bag 1 contains bread, bag 1 contains spuds, step is get next item, bag 2 con-
tains cornflakes, current bag no 2 space 60]

5.3.3 Things to try
Write a better bagger

COM1080

68 of 86 COM1080: AI Techniques

5.4 Rule Networks and Token-Passing

Implementing forward (and backward) chaining as above is hopelessly inefficient
because it duplicates work.There are two reasons for this:

1. Within cycle repetition

In large rule sets it is common to find rules which share some antecedents, e.g.
Rule 1: if A and B and C and D then X

Rule 2: if A and B and C and E then Y

If we are matching antecedants independently for these 2 rules we repeat the work
of checking A,B and C.

We need to make use of the relationships between the rules by creating a rule net-
work. Then we can (automatically) create an intermediate node which captures
what these rules have in common: A and B and C.

2. Between cycle iteration

Consider these 2 rules again. At a given time we might be able to match A,B and C
but go no further. Later on D is added to our facts. We don’t want to go back
through the work of matching A,B & C again.

What we need to do is remember partial matches. These are called tokens. A
token holds the remaining antecedants and the context formed from those that have
matched.

5.4.1 Rule Networks
 Let’s add a few more ‘family rules’ to our rule-set:

Rule Name Antecedents Consequent

father-is-parent (?f is the father of ?c) (?f is a parent of ?c)

father-is-male (?f is the father of ?c) (?f is male)

mother-is-parent (?m is the mother of ?c) (?m is a parent of ?c)

mother-is-female (?m is the mother of ?c) (?m is female)

grandparent (?gp is a parent of ?p)

(?p is a parent of ?c)

(?gp is a grandparent of ?c)

grandfather (?gp is a grandparent of ?c)

(?gp is male)

(?gp is a grandfather of ?c)

grandson (?gp is a grandparent of ?c)

(?c is male)

(?c is a grandson of ?gp)

grandmother (?gp is a grandparent of ?c)

(?gp is female)

(?gp is a grandmother of ?c)

granddaughter (?gp is a grandparent of ?c)

(?c is female)

(?c is a granddaughter of ?gp)

COM1080

COM1080: AI Techniques 69 of 86

The rules are related like so: a link means that the consequent of one rule might
match with an antecedent of another rule (a successor rule).

We can create such a net automatically, given the rules. Each rule will have a suc-
cessor slot containing a list of successor rules

5.4.2 Tokens and forward-chaining
We are going to implement forward chaining: we supply facts, one at a time, to the
net. Every time a fact is supplied we make all the deductions we can.

Associated with each rule we maintain a list of tokens. Each token represents a par-
tial match for the antecedents of the rule we can make on the basis of what we
already know. Each token is a pair : the remaining antecedents and the context
formed by those antecedents that have already matched. Initially, each rule has a
single token, with all the antecedents and an empty context.

Whenever a fact becomes known that completes the match for a token, i.e. there are
no remaining antes, we can make a deduction. We report it (and maybe add it to a
list of known facts) and propagate it to all the successors of the rule (which may in
turn lead to other deductions....). This is called token-passing. Note that it ensures
that a deduction is only passed on to rules which might be able to make use of it.

Initially, the token-list for each node is set to contain a single token, with all the
rule’s antecedents and an empty context. So for the father-is-parent rule we have a
token

token

 remaining-antecedents ((?p is the father of ?c))

 context: ()

Whenever a new fact is supplied from the outside world, we propagate it to all the
rules. The fact is checked against all the tokens for each rule.

For instance, if we supply
(henry7 is the father of henry8)

This will match against the token in the father-is-parent token-list, producing a
new token
token

 remaining-antecedents ()

 context: (?p henry7 ?c henry8)

The token which matched remains on the token list - we want to pick up later facts
or deductions which match it, e.g. (henry8 is the father of Elizabeth).

Whenever a token has no remaining antecedents, we

Father-is-parent Father-is-male

Mother-is-parent

Mother-is-female

Grandparent

Grandfather

Grandson

Grandmother

Granddaughter

COM1080

70 of 86 COM1080: AI Techniques

• remove it from the token-list

• use the context to substitute in the consequent and make a deduction (e.g print it
out or add it to a list of deduced facts)

• propagate the deduction to all the rule’s successors.

So in this case (henry7 is a parent of henry8) is propagated to the grandparent
rule. There it creates 2 new tokens, because it will match with either antecedent
token

 remaining-antecedents (?p is a parent of ?c)

 context (?gp henry7 ?p henry8)

token

 remaining-antecedents (?gp is a parent of ?p)

 context (?p henry7 ?c henry8)

Similarly, the father-is-male rule will fire, deducing (henry7 is male) and propa-
gating to the grandfather-rule and the grandson rule.

Now if we add the fact (henry8 is the father of elizabeth)

• The father-is-parent rule will deduce (henry8 is a parent of elizabeth) and
propagate this to the grandparent-rule.

• This will match with the first of the 2 tokens created above for that rule, deduc-
ing (henry7 is a grandparent of elizabeth)

• and so on: this printout is from my lisp implementation:
 propagating to grandfather-rule

 deduction: (henry7 is a grandfather of elizabeth)

 propagating to grandson-rule

 propagating to grandmother-rule

 propagating to granddaughter-rule

 deduction: (henry8 is male)

 propagating to grandfather-rule

 propagating to grandson-rule

• finally, if we add (Elizabeth is female), the granddaughter-rule will deduce
(elizabeth is a granddaughter of henry7)

This kind of algorithm is common in applications which involve deductive rule-
sets, for instance parsing in natural language processing and speech recognition. It
was originally developed in the context of the expert system R1, where it was called
the RETE match algorithm.

5.4.3 Object-Oriented implementation of Token-Passing
How would we implement this in and object-oriented language like Java or Lisp?
(Lisp is basically a functional language but has an object system CLOS).

• Create a class rule-node for rules which are part of a net.

• rule-node has slots
 rule-name
 antecedents

COM1080

COM1080: AI Techniques 71 of 86

 consequent
 successors - a list of rule-nodes
 tokens

• Create a class rule-net which has a slot rules - a list of the rule-nodes in the net.

• The rule-net class has two methods
 initialise-net sets up the initial tokens for each rule
 add-fact takes a fact from the outside world and propagates it to every rule.

• propagate is a method of a rule-node which is given a fact. It implements for-
ward chaining by

checking each token in the rule-node’s token slot for possible matches against
remaining antecedents.

If any token completes, the deduction is reported and propagate recurses for
the node’s successors.

Any new, but still incomplete, tokens are added to the token-list.

So the state of the net is maintained by the contents of the token slot for each rule.

COM1080

72 of 86 COM1080: AI Techniques

6 PLANNING

6.1 Planning v. Search

In state-space search we find a sequence of actions which will transform an initial
state into a goal state. We do this by exploring state space starting from the initial
state and moving gradually away from it. If the information is available, we control
and guide the search using costs from the initial state and estimates of remaining
costs.

In planning, the problem is the same but the approach to finding the solution path is
different. Planning systems make use of knowledge about the potential actions (or
operators) that might be used, how each operator will change the problem state and
what preconditions each operator has, i.e. what is requires before the operator can
be used.

For instance, suppose I’m planning a journey from home to a workshop in Patras,
Greece.

• I know about various operators to do with transport: walk, drive, take-taxi,
take-train, take-plane,

• I know that walk is good for short distances, take-plane for long distance and so
on.

• I know that take-plane requires that I’m at an airport and have a ticket, take-taxi
requires that I’m at a taxi rank and I have local currency etc.

To plan the solution to a problem

• Compare the current state with the goal state, to find what it is that must be
changed. e.g. a difference in location of around 2000 miles.

• Examine the potential actions, looking for something which is capable of making
the change. take-plane fits the bill

• Having found a promising action, try to apply it. This means meeting its precon-
ditions: I need to be at the airport with a ticket.

• Each unfulfilled precondition leads to a new problem: plan a way of meeting it.
How am I going to get to the airport?

• These new problems are handled (recursively) in the same way.

Notice that we may find that some plan doesn’t work out - I might try fly-to Thessa-
loniki but then discover that there’s no train or coach service from there to Patras.
I have to backtrack and consider fly-to Athens instead.

So planning involves looking ahead to consider what we might be able to do in
some future state. In search, we only look at what is possible from the current state.

6.2 Planning with STRIPS

The classic work on planning was done by Newell et al. and led to a scheme called
GPS (General Problem Solver). GPS introduced the planning scheme above, which
the authors called means-end analysis.

STRIPS (Fikes, Hart & Nilsson 72) is essentially an implementation of GPS with a
particular representation scheme for knowledge about operators. This is what we’ll
look at.

COM1080

COM1080: AI Techniques 73 of 86

As with search, we separate the planning mechanism from problem-specific knowl-
edge, so that we can solve planning problems in different problem domains. A falli-
ble Java implementation is available in
/home/pdg/public/com1080/java/strips

This directory also contains the pmatch package.

6.2.1 Representing Operators

The example we’ll take is

I’m in my living room and I want my friendly robot to get me a beer. The beer is in
the kitchen. To go from living room to kitchen the door has to be open.

Code for this problem is in beerStrips.java in the strips directory.

The operators involved are carry, move, open-door and close-door. In STRIPS
each operator has

• an act_list, specifying what will be added to the plan if the operator is used (or
applied) - the action to take.

• an add_list, specifying what will be added to the current state if the operator is
applied.

• a del_list, specifying what will be removed from the current-state on operator
application

• a list preconds of preconditions which must be satisfied (by changing the current
state) before the operator can be applied.

We’ll have a class Strips_op to represent operators. It will have private variables
act_list, add_list, del_list and preconds, together with their accessors. For the beer
problem the operators are

Each of these variables will be an MStringVector. There is a constructor which
takes them as Strings, using the character ‘|’ to separate the list items.

The act_list is the pattern for the action which will (with the appropriate substitu-
tions) go into the plan which is our final result. A plan is a list of actions. So for the
beer problem strips will return the plan
open door from living room to kitchen

 move from living room to kitchen

Oper
ator act_list add_list del_list preconds

open open door from ?r1 to ?r2 door open ?r1 ?r2 door closed ?r1 ?r2 Robbie in ?r1

door closed ?r1 ?r2

close close door from ?r1 to ?r2 door closed ?r1 ?r2 door open ?r1 ?r2 Robbie in ?r1

door open ?r1 ?r2

move move from ?r1 to ?r2 Robbie in ?r2 Robbie in ?r1 Robbie in ?r1

door open ?r1 ?r2

carry carry ?obj from ?r1 to ?r2 Robbie at ?r2

?obj in ?r2

?obj in ?r1

Robbie in ?r1

?obj in ?r1

Robbie in ?r1

door open ?r2 ?r1

COM1080

74 of 86 COM1080: AI Techniques

 carry beer from kitchen to living room

For the beer example the initial state is another MStringVector
"Robbie in living_room|beer in kitchen|door closed living_room kitchen"

and the goal list is an MStringVector with one element
"beer in living_room"

6.2.2 A Functional Design for STRIPS

In a functional language, STRIPS can be coded in three mutually-recursive func-
tions Strips1, Strips2 and Strips3. We start the system by calling Strips1, which
takes a list of goals, the current state and a list of operators e.g.
Strips1 goal_list init_state beer_oplis

The STRIPS functions are related roughly as follows:

All the functions take the current-state and the list of operators oplis as arguments.
They have additional arguments as described below.

• Strips1 is given a goal_lis and has the job of finding a plan to reach a state in
which all the goals in goal_lis are met. It does this by finding differences
between the goal_lis and the current_state and calling Strips2 to deal with
them.

• Strips2 is given a difference and looks for an operator which can do something
about it (‘reduce’ it). Having found an operator, it calls Strips3 to try to apply it.

• Strips3 is given an operator and a context in which to apply it (see below). It
tries to meet the operator’s preconditions. If a precondition is not met in the
current_state, Strips1 is called with the goal of finding a plan to satisfy it.
When the preconditions have been met, the operator is applied, producing a plan
and a new_state which will result if the plan is applied.

When they succeed, Strips1, Strips2 and Strips3 all return these two values - a
plan and a new_state which results from applying the plan. They may fail, how-
ever..

6.2.3 An OOP design for STRIPS
see

/share/com1080/java/strips

In Java, Strips1, Strips2 and Strips3 will be separate classes. Since they have
many variables in common we’ll make them subclasses of an abstract class
StripsFn:

STRIPS1 STRIPS2 STRIPS3
goal diff

opstate state
state

state
goal new-state

plan

new-statenew-state
plan plan

context

COM1080

COM1080: AI Techniques 75 of 86

import simplejava.*;

import java.util.*;

public abstract class StripsFn{

 //variables

 protected Vector oplis; //operators

 protected MStringVector goalstate; //goal state

 protected MStringVector initstate; //initial state

 protected MStringVector newstate; //state after carrying out plan

 protected Vector plan; //final plan

 protected boolean result; //success or failure

 //accessors

 public Vector getOplis(){return oplis;}

 public MStringVector getGoalstate(){return goalstate;}

 public MStringVector getInitstate(){return initstate;}

 public MStringVector getNewstate(){return newstate;}

 public Vector getPlan(){return plan;}

}

The Strips functions become methods called run in the classes Strips1, Strips2 and
Strips3. The run methods return a boolean, representing success or failure. If they
succeed, they set their variables newstate and plan appropriately.

Whenever we need to call Strips1, Strips2 or Strips3 on a new problem, we create
a new instance. This is necessary because of the way they present their results, by
setting newstate and plan. In a functional implementation we wouldn’t do this,
we’d just call the function..which would return its results in a suitable data struc-
ture.

6.2.4 Strips1.java

To run Strips, we start (in beerStrips.java) by creating the operators:
 Strips_op open = new Strips_op("open door from ?r1 to ?r2",

 "door open ?r1 ?r2",

 "door closed ?r1 ?r2",

 "Robbie in ?r1|door closed ?r1 ?r2");

 Strips_op closed = new Strips_op("close door from ?r1 to ?r2",

 "door closed ?r1 ?r2",

 "door open ?r1 ?r2",

 "Robbie in ?r1|door open ?r1 ?r2");

 Strips_op move = new Strips_op("move from ?r1 to ?r2",

 "Robbie in ?r2",

 "Robbie in ?r1",

 "Robbie in ?r1|door open ?r1 ?r2");

 Strips_op carry = new Strips_op("carry ?obj from ?r1 to ?r2",

COM1080

76 of 86 COM1080: AI Techniques

 "Robbie in ?r2|?obj in ?r2",

 "?obj in ?r1|Robbie in ?r1",

 "?obj in ?r1|Robbie in ?r1|door open ?r2 ?r1");

& then form them into a Vector:
 Vector beerops = new Vector();

 beerops.add(open);

 beerops.add(closed);

 beerops.add(move);

 beerops.add(carry);

 Then we create an instance of Strips1, giving it the operators, initial state and goal
list.
 Strips1 str=new Strips1(beerops,

 new MStringVector("Robbie in living_room|beer in kitchen|door closed
living_room kitchen"),

 new MStringVector("beer in living_room"));

Then we start the planning by
boolean res=str.run();

Here’s Strips1:

import java.util.*;

import StripsFn;

public class Strips1 extends StripsFn{

//constructor given oplis, initstate, goal state

 public Strips1 (Vector opl,MStringVector is, MStringVector gs){

 oplis=opl;

 initstate=is;

 goalstate=gs;

 }

 //run problem solver

 public boolean run(){

 //commentary

 System.out.println("-----------------");

 System.out.println("Strips1");

 System.out.println(initstate);

 System.out.println(goalstate);

 //look for a difference

 boolean diffound=false; //set to true when diff found

 String g=new String(); //where the diff found will go

COM1080

COM1080: AI Techniques 77 of 86

 Iterator git=goalstate.iterator();

 while(git.hasNext()&& !diffound){ //iterate over goals

 g=(String)git.next();

 //try to match goal g within state - initstate is an MStringVector

 diffound=!initstate.match(g); //becomes true if goal not matched

 }

 //end of the while...was a difference found?

 if (!diffound){

 result=true; //no difference found - trivial success

 newstate=initstate; //end state same as initstate

 plan=new Vector(); //empty plan

 return result;

 }

 else{ //found a diff, use Strips2

 Strips2 strips2=new Strips2(oplis,initstate, goalstate,g); //make instance

 //Strips2 needs oplis, initstate, goalstate and difference - the goal not met

 boolean s2res=strips2.run(); //run it

 if (!s2res){ //did Strips2 succeed?

 result=false; //no, failure

 return result;

 }

 else { //strips2 succeeded - call Strips1 again with state returned

 //must be a new instance - state will have changed

 Strips1 nstrips1=new Strips1(oplis, strips2.getNewstate(),goalstate);

 boolean nstrips1res=nstrips1.run(); //run the new Strips1

 if (!nstrips1res){ //did it succeed?

 result=false; //no, failure

 return result;

 }

 else { //success

 result=true;

 //complete plan is strips2 plan + strips1 plan

 plan=strips2.getPlan();

 plan.addAll(nstrips1.getPlan());

 newstate=nstrips1.getNewstate();//final state is that returned by nstrips1

 return result;

 }

 }

 }

 }

}

COM1080

78 of 86 COM1080: AI Techniques

6.2.5 Strips2.java

import java.util.*;

import StripsFn;

public class Strips2 extends StripsFn{

 String diff; //difference to reduce

 //constructor

 public Strips2 (Vector opl,MStringVector is, MStringVector gs, String d){

 oplis=opl;

 initstate=is;

 goalstate=gs;

 diff=d;

 }

 //run problem solver

 public boolean run(){

 //commentary

 System.out.println("------------------");

 System.out.println("Strips2");

 System.out.println(“working on “+diff);

 result=false; //set to true when diff dealt with

 Iterator opit=oplis.iterator();

 //search for an operator to reduce the diff, then call strips3 to apply it

 while (opit.hasNext()&& !result){ //try ops till one succeeds or none left

 Strips_op op= (Strips_op)opit.next();

 boolean matchres=op.getAdd_list().match(diff); //match diff against addlist

 if (matchres){ //op can deal with diff

 HashMap con=op.getAdd_list().getContext(); //in this context

 System.out.println("calling Strips3 to apply operator "+op.getAct_list());

 //call strips3 to attempt to apply op

 //Strips3 needs the context

 Strips3 strips3 = new Strips3(oplis, initstate, goalstate,op,con);

 boolean strips3res=strips3.run(); //run Strips3

 if (strips3res){ //strips3 succeeded

 plan=strips3.getPlan(); //Strips2 plan is Strips3 plan

 newstate=strips3.getNewstate(); //new state is Strips3 new state

COM1080

COM1080: AI Techniques 79 of 86

 result=true;

 }

 }

 }

 return result; //will be false if no op succeeded

 }

}

6.2.6 Strips3

• The run method of Strips3 has the task of applying an operator. Strips3’s con-
structor looks like

 public Strips3 (Vector opl,MStringVector is, MStringVector gs, Strips_op o,

 HashMap con){

 oplis=opl; //operators

 initstate=is; //initial state

 op=o; //operator to apply

 context=con; //incoming context

 }

• The first job is to meet op’s preconditions. We’ll have a separate method
meet_preconditions to do this. It will return a boolean, true if the preconds
have been met. If meet_preconditions returns false, Strips3 returns false

• if meet-preconditions succeeds it will produce a plan, preplan which will result
in a new state, prestate. It will also establish a new context, pcon. These will be
private variables of Strips3. For example, if we are trying to apply move in the
context {?r2= kitchen} and current_state contains “Robbie in living_room”
we’ll satisfy the precondition “Robbie in ?r1” in the context {?r1=living_room,
?r2= kitchen}

• we can now at last apply the operator. A separate method apply_op is called to
do this, given op, pre_state and pre_con.

• to apply an operator to a state given a context, we use the op’s del_list to find
what needs to be deleted from the state, the add_list to find what must be added
and the act_list to work out the 1-action plan (aplan) for applying the operator.
For all these, we use the msubst method (they are MStringVectors) to replace
?vars with their matching values in the context after meeting the preconditions,
precon. There are addAll and removeAll methods of Vector which will do the
job of establishing the state after applying the operator, newstate - the state after
Strips3 has done its job.

• The final plan after applying the op is the concatenation of the plan returned by
meet_preconditions, preplan, and the plan returned by apply_op, aplan.

6.2.7 Meet-preconditions

• meet_preconditions iterates through op’s preconds trying to meet each one.
Stopping conditions are when no preconds remain (success) or we fail to meet
one (failure).

• Before starting this iteration, we need to set up the following:
 prestate=initstate; //state having met some preconds

COM1080

80 of 86 COM1080: AI Techniques

 pcon=context; //context after having matched some preconds

 preplan=new Vector(); //plan for preconds, initially empty

• For a given precond p, we call the match method of initstate, giving it the cur-
rent context:

 boolean matchres=initstate.match(p,pcon)

• If matchres is true, we update pcon & move on to the next precondition.

• If matchres is false, we need to invoke a new instance of Strips1 and use it to
solve the new problem of meeting this precondition.

• To specify what the goal is for this new Strips1, we need to substitute for the
context in p (e.g. we are trying to apply carry in the context {?r2=kitchen}.
We’ll need to satisfy the precondition “Robbie in ?r2”. For the new call of
Strips1 we need to make the goal “Robbie in kitchen”.

• The new Strips1 will either succeed or fail. If it fails then Strips3 fails. If it suc-
ceeds, its plan is added to preplan and its newstate becomes prestate.

6.3 The beer example

Here we go... printouts from my lisp version...

STRIPS1

 goal-list ((BEER IN LIVING-ROOM))

 current-state ((ROBOT in LIVING-ROOM)

 (BEER IN KITCHEN)

 (DOOR-CLOSED LIVING-ROOM KITCHEN))

 --> calling STRIPS2 to deal with (BEER IN LIVING-ROOM)

STRIPS2

 diff (BEER IN LIVING-ROOM)

 current-state ((ROBOT in LIVING-ROOM)

 (BEER IN KITCHEN)

 (DOOR-CLOSED LIVING-ROOM KITCHEN))

 --> calling strips3 to try op (CARRY ?OBJ FROM ?R1 TO ?R2)

STRIPS3

 op (CARRY ?OBJ FROM ?R1 TO ?R2)

 context (?R2 LIVING-ROOM ?OBJ BEER)

 current-state ((ROBOT in LIVING-ROOM)

 (BEER IN KITCHEN)

 (DOOR-CLOSED LIVING-ROOM KITCHEN))

 calling STRIPS1 to meet precondition (ROBOT in KITCHEN)

STRIPS1

COM1080

COM1080: AI Techniques 81 of 86

 goal-list ((ROBOT in KITCHEN))

 current-state ((ROBOT in LIVING-ROOM)

 (BEER IN KITCHEN)

 (DOOR-CLOSED LIVING-ROOM KITCHEN))

 --> calling STRIPS2 to deal with (ROBOT in KITCHEN)

STRIPS2

 diff (ROBOT in KITCHEN)

 current-state ((ROBOT in LIVING-ROOM)

 (BEER IN KITCHEN)

 (DOOR-CLOSED LIVING-ROOM KITCHEN))

 --> calling strips3 to try op (MOVE FROM ?R1 TO ?R2)

STRIPS3

 op (MOVE FROM ?R1 TO ?R2)

 context (?R2 KITCHEN)

 current-state ((ROBOT in LIVING-ROOM)

 (BEER IN KITCHEN)

 (DOOR-CLOSED LIVING-ROOM KITCHEN))

 calling STRIPS1 to meet precondition (DOOR-OPEN LIVING-ROOM KITCHEN)

STRIPS1

 goal-list ((DOOR-OPEN LIVING-ROOM KITCHEN))

 current-state ((ROBOT in LIVING-ROOM)

 (BEER IN KITCHEN)

 (DOOR-CLOSED LIVING-ROOM KITCHEN))

 --> calling STRIPS2 to deal with (DOOR-OPEN LIVING-ROOM KITCHEN)

STRIPS2

 diff (DOOR-OPEN LIVING-ROOM KITCHEN)

 current-state ((ROBOT in LIVING-ROOM)

 (BEER IN KITCHEN)

 (DOOR-CLOSED LIVING-ROOM KITCHEN))

 --> calling strips3 to try op (OPEN DOOR FROM ?R1 TO ?R2)

STRIPS3

 op (OPEN DOOR FROM ?R1 TO ?R2)

 context (?R2 KITCHEN ?R1 LIVING-ROOM)

 current-state ((ROBOT in LIVING-ROOM)

COM1080

82 of 86 COM1080: AI Techniques

 (BEER IN KITCHEN)

 (DOOR-CLOSED LIVING-ROOM KITCHEN))

 op applied with plan ((OPEN DOOR FROM LIVING-ROOM TO KITCHEN))

 giving state ((DOOR-OPEN LIVING-ROOM KITCHEN)

 (ROBOT in LIVING-ROOM)

 (BEER IN KITCHEN))

 --> dealt with (DOOR-OPEN LIVING-ROOM KITCHEN) - try STRIPS1 again

STRIPS1

 goal-list ((DOOR-OPEN LIVING-ROOM KITCHEN))

 current-state ((DOOR-OPEN LIVING-ROOM KITCHEN) (ROBOT in LIVING-
ROOM) (BEER IN KITCHEN))

 op applied with plan ((MOVE FROM LIVING-ROOM TO KITCHEN))

 giving state ((ROBOT in KITCHEN)

 (DOOR-OPEN LIVING-ROOM KITCHEN)

 (BEER IN KITCHEN))

 --> dealt with (ROBOT in KITCHEN) - try STRIPS1 again

STRIPS1

 goal-list ((ROBOT in KITCHEN))

 current-state ((ROBOT in KITCHEN) (DOOR-OPEN LIVING-ROOM KITCHEN)
(BEER IN KITCHEN))

 op applied with plan ((CARRY BEER FROM KITCHEN TO LIVING-ROOM))

 giving state ((ROBOT in LIVING-ROOM)

 (BEER IN LIVING-ROOM)

 (DOOR-OPEN LIVING-ROOM KITCHEN))

 --> dealt with (BEER IN LIVING-ROOM) - try STRIPS1 again

STRIPS1

 goal-list ((BEER IN LIVING-ROOM))

 current-state ((ROBOT in LIVING-ROOM) (BEER IN LIVING-ROOM) (DOOR-
OPEN LIVING-ROOM KITCHEN))

((OPEN DOOR FROM LIVING-ROOM TO KITCHEN)

 (MOVE FROM LIVING-ROOM TO KITCHEN)

 (CARRY BEER FROM KITCHEN TO LIVING-ROOM)) ;

((ROBOT in LIVING-ROOM)

 (BEER IN LIVING-ROOM)

 (DOOR-OPEN LIVING-ROOM KITCHEN))

>

COM1080

COM1080: AI Techniques 83 of 86

6.4 Limitations

Strips as implemented above is pretty crude: you should try to break it.

• The operators have to come in the right order

• It’s possible to satisfy goal A, then work on goal B and in doing so undo goal A -
goal conflict.

• It’s thus possible to get into an endless recursion.

• There’s no attempt to decide which goal it’s best to work on next.

• The representation scheme is pretty unwieldy.

Later work on planning has attempted to address these limitations.

6.5 Things to try

Devise stacking problems which exemplify the limitations above.

7 AI and Perception

References:

• R.L. Gregory, ‘Eye and Brain’

• R.L. Gregory, ‘The Intelligent Eye’

• J.P. Frisby, ‘Seeing’.

In this course we’ve studied AI systems that look like so:

• The knowledge base available to the problem-solver is expressed in data struc-
tures that make use of some knowledge-representation scheme.

• The problem is expressed in a compatible data structure.

• The problem-solver applies the knowledge to the problem by doing symbolic
manipulation using these data structures.

• The result is another data structure.

The data structures representing the knowledge and the problem are provided by
the user.

But ‘real’ intelligent systems have to function without this help:

• Perceptual systems have to make sense of data reaching the system from the
outside world,

• The system acquires knowledge by learning (in a variety of ways),

• Motor systems have to convert decisions made by the system into actions.

problem

knowledge

resultproblem-solver

base

COM1080

84 of 86 COM1080: AI Techniques

7.1 The problem of perception

Perception in living systems works so well that the difficulty of the task isn’t obvi-
ous. We can get a feel for what is happening by driving the system to its limits:

• Here, there are few cues to indicate object boundaries and depth.

• The processing which perceives the object must be active & knowledge-based,
not passive transduction.

• Perception imposes an organisation on the sensory data: it makes features
explicit..

• This example is not so atypical of what happens all the time, and in other modal-
ities besides vision, e.g. we ‘hear’ pauses between words which aren’t physically
there.

• It is often easier to write the ‘problem-solving’ part of an AI system than it is to
provide the system with adequate perception.

7.2 Gregory’s ‘Perceptions as Hypotheses’ Metaphor

We can think of perceptions as being like hypotheses in science:

• perceptions explain the data in terms of arrangements of known objects (in
vision),

• perceptions are used to predict - to hidden parts of objects, to the future..

Perception works so well that it’s difficult to study without devising ways of mak-
ing it malfunction. Psychologists have therefore studied perception through illu-
sions. If the system can be confused, or fooled, what does that reveal about its
properties?

COM1080

COM1080: AI Techniques 85 of 86

7.2.1 Ambiguous figures

7.2.2 Paradoxical Pictures

7.2.3 System error!

Two viable hypotheses.
Perception alternates
Many effects are due to
depth perception

The figures suggest familiar objects.
Though the evidence isn’t consistent,
the system continues to ‘believe’ the
hypothesis.

In these cases, there is a correct but unusual hypothesis, but the system prefers the
more normal one:

Fraser SpiralAmes Room

COM1080

86 of 86 COM1080: AI Techniques

7.2.4 Distortion Illusions

7.2.5 Gestalt Grouping Principles

7.2.6 Perceptual Invention

7.3 Conclusions

• Perception is an intelligent problem-solving activity, involving much of the cor-
tex.

• Perception and reasoning have a rich interaction.

• There is a similar argument for motor activity.

Muller-Lyer Ponzo

Figures are interpreted as 3D scenes. ‘Size constancy’ operates where it shouldn’t.

similarity, continuity, proximity, common fate..

Kanitsa’s figure: why is the illusory triangle perceived as brighter?

