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In dealing with mathematical problems, specialization plays, as I believe, a still 
more important part than generalization. Perhaps in most cases where we seek 
in vain the answer to a question, the cause of the failure lies in the fact that 
problems simpler and easier than the one in hand have been either not at all 
or incompletely solved. All depends, then, on finding out these easier problems, 
and on solving them by means of devices as perfect as possible and of concepts 
capable of generalization. - David Hilbert 

Logic sometimes makes monsters. During half a century we have seen the rise of 
a crowd of bizarre functions which seem to try to resemble as little as possible 
the honest functions which serve some purpose. No longer continuity, or perhaps 
continuity but no derivatives, etc. Nay, more: from the logical point of view, it 
is these strange functions which are the most general. Those which one meets 
without seeking, no longer appear except as a particular case. - Henri Poincare 

Mathematics belongs to man, not to God. We are not interested in properties 
of the positive integers that have no descriptive meaning for finite man. When 
a man proves a positive integer to exist , he should show how to find it. If God 
has mathematics of his own that needs to be done, let him do it himself. -
Errett Bishop 

He considered, perhaps in his moments of less lucidity, that it is possible to 
achieve happiness on earth when it is not very hot, and this idea made him a 
little confused. He liked to wander through metaphysical obstacle courses. That 
was what he was doing when he used to sit in the bedroom every morning with 
the door ajar, his eyes closed and his muscles tensed. However, he himself did 
not realize that he had become so subtle in his thinking that for at least three 
years in his meditative moments he was no longer thinking about anything. 
Gabriel Garcia-Marquez (novelist) 
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Preface 

ABOUT THE CHOICE OF TOPICS 
Handbook of Analysis and its Foundations - hereafter abbreviated HAF - is a self-study 
guide, intended for advanced undergraduates or beginning graduate students in mathemat
ics. It will also be useful as a reference tool for more advanced mathematicians. HAF 
surveys analysis and related topics, with particular attention to existence proofs. 

HAF progresses from elementary notions - sets, functions, products of sets - through 
intermediate topics - uniform completions, Tychonov's Theorem - all the way to a few ad
vanced results - the Eberlein-Smulian-Grothendieck Theorem, the Crandall-Liggett The
orem, and others. The book is self-contained and thus is well suited for self-directed study. 
It will help to compensate for the differences between students who, coming into a single 
graduate class from different undergraduate schools, have different backgrounds. I believe 
that the reading of part or all of this book would be a good project for the summer vacation 
before one begins graduate school in mathematics. At least, this is the book I wish I had 
had before I began my graduate studies. 

HAF introduces and shows the connections between many topics that are customarily 
taught separately in greater depth: 

set theory, metric spaces, abstract algebra, formal logic, general topology, real 
analysis, and linear and nonlinear functional analysis, plus a small amount of 
Baire category theory, Mac Lane-Eilenberg category theory, nonstandard anal
ysis, and differential equations. 

Included in these customary topics are the usual nonconstructive proofs of existence of 
pathological objects. Unlike most analysis books, however, HAF also includes some chapters 
on set theory and logic, to explain why many of those classical pathological objects are 
presented without examples. 

HAF contains the most fundamental parts of an entire shelf of conventional textbooks. 
In his "automathography," Halmos [1985] said that one good way to learn a lot of math
ematics is by reading the first chapters of many books. I have tried to improve upon 
that collection of first chapters by eliminating the overlap between separate books, adher
ing to consistent notation, and inserting frequent cross-referencing between the different 
topics. HAF's integrated approach shows connections between topics and thus partially 
counteracts the fragmentation into specialized little bits that has become commonplace in 
mathematics in recent decades. HAF's integrated approach also supports the development 

X Ill 
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of interdisciplinary topics, such as the "intangibles" discussed later in this preface. 
The content is biased toward the interests of analysts. For instance, our treatment of 

algebra devotes much attention to convexity but little attention to finite or noncommutative 
groups; our treatment of general topology emphasizes distances and meager sets but omits 
manifolds and homology. HAF will not transform the reader into a researcher in algebra, 
topology, or logic, but it will provide analysts with useful tools from those fields. 

HAF includes a few "hard analysis" results: Clarkson's Inequalities, the Kobayashi
Rasmussen Inequalities, maximal inequalities for martingales and for Lebesgue measure, 
etc. However, the book leans more toward "soft analysis" - i.e. ,  existence theorems and 
other qualitative results. Preference is given to theorems that have short or elegant or 
intuitive proofs and that mesh well with the main themes of the book. A few long proofs 
- e.g. ,  Brouwer's Theorem, James's Theorem - are included when they are sufficiently 
important for the themes of the book. 

As much as possible, I have tried to make this book current . Most mathematical papers 
published each year are on advanced and specialized material, not appropriate for an intro
ductory work. Only occasionally does a paper strengthen, simplify, or clarify some basic, 
classical ideas. I have combed the literature for these insightful papers as well as I could, 
but some of them are not well known; that is evident from their infrequent mentions in the 
Science Citation Index. Following are a few of HAF's unusual features: 

• A thorough introduction to filters in Chapters 5 and 6, and nets in Chapter 7. Those 
tools are used extensively in later chapters. Included are ideas of Aarnes and An
denres [1972] on the interchangeability of subnets and superfilters, making available 
the advantages of both theories of convergence. Also included, in 15. 10, is Gherman's 
[1980] characterization of topological convergences, which simplifies slightly the classic 
characterization of Kelley [1955/1975] . 

• an introduction to symmetric and preregular spaces, filling the conceptual gaps that 
are left in most introductions to T0 , T1 , T2 , and T3 spaces - see the table in 16. 1 .  

• a unified treatment of topological spaces, uniform spaces, topological Abelian groups, 
topological vector spaces, locally convex spaces, Frechet spaces, Banach spaces, and 
Banach lattices, explaining these spaces in terms of increasingly specialized kinds of 
"distances" - see the table in 26. 1 .  

• converses to  Banach's Contraction Fixed Point Theorem, due to  Bessaga [ 1959] and 
Meyers [1967] , in Chapter 19. These converses show that, although Banach's theorem 
is quite easy to prove, a longer proof cannot yield stronger results. 

• the Brouwer Fixed Point Theorem, proved via van Maaren's geometry-free version of 
Sperner's Lemma. This approach is particularly intuitive and elementary in that it 
involves neither Jacobians nor triangulations. It decomposes the proof of Brouwer's 
Theorem into a purely combinatorial argument ( in 3 .28) and a compactness argument 
( in 27. 19) . 

• introductions to both the Lebesgue and Henstock integrals and a proof of their equiv
alence in Chapter 24. (More precisely, a Banach-space-valued function is Lebesgue 
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integrable if and only if it is almost separably valued and absolutely Henstock inte
grable. )  

• pathological examples due t o  Nedoma, Kottman, Gordon, Dieudonne, and others, 
which illustrate very vividly some of the differences between JR.n and infinite-dimen
sional Banach spaces. 

• an introduction to set theory, including the most interesting equivalents of the Ax
iom of Choice, Dependent Choice, the Ultrafilter Principle, and the Hahn-Banach 
Theorem. (For lists of equivalents of these principles, see the index. )  

• an introduction to formal logic following the substitution rules of Rasiowa and Sikorski 
[1963] , which are simpler and - in this author's opinion - more natural than the 
substitution rules used in most logic textbooks. This is discussed in 14.20. 

• a discussion of model theory and consistency results, including a summary of some 
results of Solovay, Pincus, Shelah, et al. Those results can be used to prove the 
nonconstructibility of many classical pathological objects of analysis; see especially 
the discussions in 14.76 and 14. 77. 

• Neumann's [1985] nonlinear Closed Graph Theorem. 

• the automatic continuity theorems of Garnir [1974] and Wright [1977] . These results 
are similar to Neumann's, but instead of assuming a closed graph, they replace con
ventional set theory with ZF + DC + BP. Their result explains in part why a Banach 
space in applied math has a "usual norm;" see 14.77. 

In compiling this book I have acted primarily as a reporter, not an inventor or discoverer. 
Nearly all the theorems and proofs in HAF can be found in earlier books or in research 
journal articles - but in many cases those books or articles are hard to find or hard 
to read. This book's goal is to enhance classical results by modernizing the exposition, 
arranging separate topics into a unified whole, and occasionally incorporating some recent 
developments. 

I have tried to give credit where it is due, but that is sometimes difficult or impossible. 
Historical inaccuracies tend to propagate through the literature. I have tried to weed out 
the inaccuracies by reading widely, but I 'm sure I have not caught them all. Moreover, I 
have not always distinguished between primary and secondary sources. In many cases I 
have cited a textbook or other secondary source, to give credit for an exposition that I have 
modified in the present work. 

EXISTENCE, EXAMPLES , AND INTANGIBLES 
Most existence proofs use either compactness, completeness, or  the Axiom of Choice; those 
topics receive extra attention in this book. (In fact, Choice, Completeness, Compactness 
was the title of an earlier, prepublication version of this book; papers that mention that 
title are actually citing this book. )  Although those three approaches to existence are usually 
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quite different, they are not entirely unrelated - AC has many equivalent forms, some of 
which are concerned with compactness or completeness (see 17.16 and 19.13). 

The term "foundations" has two meanings; both are intended in the title of this book: 

(i) In nonmathematical, everyday English, "foundations" refers to any basic or elemen
tary or prerequisite material. For instance, this book contains much elementary set 
theory, algebra, and topology. Those subjects are not part of analysis, but are pre
requisites for some parts of analysis. 

(ii) "Foundations" also has a more specialized and technical meaning. It refers to more 
advanced topics in set theory (such as the Axiom of Choice) and to formal logic. Many 
mathematicians consider these topics to be the basis for all of mathematics. 

Conventional analysis books include only a page or so concerning (ii ) ;  this book contains 
much more. We are led to (ii) when we look for examples of pathological objects. 

Students and researchers need examples; it is a basic precept of pedagogy that every 
abstract idea should be accompanied by one or more concrete examples. Therefore, when I 
began writing this book (originally a conventional analysis book) ,  I resolved to give examples 
of everything. However, as I searched through the literature, I was unable to find explicit 
examples of several important pathological objects, which I now call intangibles: 

• finitely additive probabilities that are not countably additive, 

• elements of (t'oo)* \ £'1 (a customary corollary of the Hahn-Banach Theorem) ,  

• universal nets that are not eventually constant , 

• free ultrafilters (used very freely in nonstandard analysis! ) ,  

• well orderings for IR, 

• inequivalent complete norms on a vector space, 

etc. In analysis books it has been customary to prove the existence of these and other patho
logical objects without constructing any explicit examples, without explaining the ?mission 
of examples, and without even mentioning that anything has been omitted. Typically, the 
student does not consciously notice the omission, but is left with a vague uneasiness about 
these unillustrated objects that are so difficult to visualize. 

I could not understand the dearth of examples until I accidentally ventured beyond the 
traditional confines of analysis. I was surprised to learn that the examples of these myste
rious objects are omitted from the literature because they must be omitted: Although the 
objects exist, it can also be proved that explicit constructions do not exist. That may sound 
paradoxical, but it merely reflects a peculiarity in our language: The customary require
ments for an "explicit construction" are more stringent than the customary requirements 
for an "existence proof." In an existence proof we are permitted to postulate arbitrary 
choices, but in an explicit construction we are expected to make choices in an algorithmic 
fashion. (To make this observation more precise requires some definitions, which are given 
in 14.76 and 14.77.) 
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Though existence without examples has puzzled some analysts, the relevant concepts 
have been a part of logic for many years. The nonconstructive nature of the Axiom of Choice 
was controversial when set theory was born about a century ago, but our understanding 
and acceptance of it has gradually grown. An account of its history is given by Moore 
[1982]. It is now easy to observe that nonconstructive techniques are used in many of the 
classical existence proofs for pathological objects of analysis. It can also be shown, though 
less easily, that many of those existence theorems cannot be proved by other, constructive 
techniques. Thus, the pathological objects in question are inherently unconstructible. 

The paradox of existence without examples has become a part of the logicians' folk
lore, which is not easily accessible to nonlogicians. Most modern books and papers on 
logic are written in a specialized, technical language that is unfamiliar and nonintuitive to 
outsiders: Symbols are used where other mathematicians are accustomed to seeing words, 
and distinctions are made which other mathematicians are accustomed to blurring - e.g. , 
the distinction between first-order and higher-order languages. Moreover, those books and 
papers of logic generally do not focus on the intangibles of analysis. 

On the other hand, analysis books and papers invoke nonconstructive principles like 
magical incantations, without much accompanying explanation and - in some cases -
without much understanding. One recent analysis book asserts that analysts would gain 
little from questioning the Axiom of Choice. I disagree. The present work was motivated 
in part by my feeling that students deserve a more "honest" explanation of some of the 
non-examples of analysis - especially of some of the consequences of the Hahn-Banach 
Theorem. When we cannot construct an explicit example, we should say so. The student 
who cannot visualize some object should be reassured that no one else can visualize it either. 
Because examples are so important in the learning process, the lack of examples should be 
discussed at least briefly when that lack is first encountered; it should not be postponed 
until some more advanced course or ignored altogether. 

Though most of HAF relies only on conventional reasoning - i.e., the kind of set theory 
and logic that most mathematicians use without noticing they are using it - we come to a 
better understanding of the idiosyncrasies of conventional reasoning by contrasting it with 
unconventional systems,  such as ZF + DC + BP or Bishop's constructivism. HAF explains 
the relevant foundational concepts in brief, informal, intuitive terms that should be easily 
understood by analysts and other nonlogicians. 

To better understand the role played by the Axiom of Choice, we shall keep track of its 
uses and the uses of certain weakened forms of AC, especially 

the Principle of Dependent Choices (DC), which is constructive and is equivalent 
to several principles about complete metric spaces; 

the Ultrafilter Principle (UF) , which is nonconstructive and is equivalent to the 
Completeness and Compactness Principles of logic, as well as dozens of other 
important principles involving topological compactness; and 

the Hahn-Banach Theorem (HB) ,  also nonconstructive, which has many impor
tant equivalent forms in functional analysis. 

Most analysts are not accustomed to viewing HB as a weakened form of AC, but that 
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viewpoint makes the Hahn-Banach Theorem's nonconstructive nature much easier to un
derstand. 

This book's sketch of logic omits many proofs and even some definitions. It is intended 
not to make the reader into a logician, but only to show analysts the relevance of some 
parts of logic. The introduction to foundations for analysts is HAF's most unusual feature, 
but it is not an overriding feature - it takes up only a small portion of the book and 
can be skipped over by mathematicians who have picked up this book for its treatment of 
nonfoundational topics such as nets, F -spaces, or integration. 

ABSTRACT VERSUS CONCRETE 
I have attempted to present each set of ideas at a natural level of generality and abstraction 
- i.e. , a level that conveys the ideas in a simple form and permits several examples and 
applications. Of course, the level of generality of any part of the book is partly dictated by 
the needs of later parts of the book. 

Usually, I lean toward more abstract and general approaches when they are available. 
By omitting unnecessary, irrelevant, or distracting hypotheses, we trim a concept down to 
reveal its essential parts. In many cases, omitting unnecessary hypotheses does not lengthen 
a proof, and it may make the proof easier to understand because the reader's attention is 
then focused on the few possible lines of reasoning that still remain available. For instance, 
every metric space can be embedded isometrically in a Banach space (see 22.14), but the 
"more concrete" setting of Banach spaces does not improve our understanding of metric 
space results such as the Contraction Fixed Point Theorem in 19.39. 

Here is another example of my preference for abstraction: Some textbooks build Haus
dorffness into their definition of "uniform space" or "topological vector space" or "locally 
convex space" because most spaces used in applications are in fact Hausdorff. This may 
shorten the statements of several theorems by a word or two, but it does not shorten the 
proofs of those theorems. Moreover, it may confuse beginners by entangling concepts that 
are not inherently related: The basic ideas of Hausdorff spaces are independent from the 
other basic ideas of uniform spaces, topological spaces, and locally convex spaces; neither 
set of ideas actually requires the other. In HAF, Hausdorffness is a separate property; it is 
not built into our definitions of those other spaces. Our not-necessarily-Hausdorff approach 
has several benefits, of which the greatest probably is this: 

The weak topology of an infinite-dimensional Banach space is an important 
nonmetrizable Hausdorff topology that is best explained as the supremum of a 
collection of pseudometrizable, non-Hausdorff topologies. 

(If the reader is accustomed to working only in Hausdorff spaces, HAF's not-necessarily
Hausdorff approach may take a little getting used to, but only a little. Mostly, one replaces 
"metric" with "pseudometric" or with the neutral notion of "distance;" one replaces "the 
limit" with "a limit" or with the neutral notion of "converges to." ) 

However, a more general approach to a topic is not necessarily a simpler approach. Every 
idea in mathematics can be made more general and more abstract by making the hypotheses 
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weaker and more complicated and by introducing more definitions, but I have tried to avoid 
the weakly upper hemisemidemicontinuous quasipseudospaces of baroque mathematics. It 
is unavoidable that the beginning graduate student of mathematics must wade through 
a large collection of new definitions, but that collection should not be made larger than 
necessary. Thus we sometimes accept slightly stronger hypotheses for a theorem in order to 
avoid introducing more definitions. Of course, ultimately the difference between important 
distinctions and excessive hair-splitting is a matter of an individual mathematician's own 
personal taste. 

Converses to main implications are included in HAF whenever this can be managed con
veniently, as well as in a few inconvenient cases that I deemed sufficiently important. Lists 
of dissimilar but equivalent definitions are collected into one long definintion-and-theorem, 
even though that one theorem may have a painfully long proof. The single portmanteau 
theorem is convenient for reference, and moreover it clearly displays the importance of 
a concept . For instance, the notion of "ultrabarrelled spaces" seemed too advanced and 
specialized for this book until I saw the long list of dissimilar but equivalent definitions 
that now appears in 27.26. To prevent confusion, I have called the student's attention to 
contrasts between similar but inequivalent concepts, either by juxtaposing them (as in the 
case of barrels and ultrabarrels) or by including cross-referencing remarks (as in the case of 
Bishop's constructivism and Gi:idel's constructivism) .  

Although the content is chosen for analysts, the writing style has been influenced by 
algebraists. Whenever possible, I have made degenerate objects such as the empty set into 
a special case of a rule, rather than an exception to the rule. For instance, in this book and 
in algebra books, {S : S <;;;X} is an "improper filter" on X, though it is not a filter at all 
according to the definition used by many books on general topology. 

ORDER OF TOPICS 
I have followed a Bourbaki-like order of topics, first introducing simple fundamentals and 
later building upon them to develop more specialized ideas. The topics are ordered to 
suit pedagogy rather than to emphasize applications. For instance, convexity is commonly 
introduced in functional analysis courses in the setting of Banach spaces or topological 
vector spaces, but I have found it expedient to introduce convexity as a purely algebraic 
notion, and then add topological considerations much later in the book. Most topological 
vector spaces used in applications are locally convex, but HAF first studies topological 
vector spaces without the additional assumption of local convexity. 

Topics covered within a single chapter are closely related to each other. However, in 
many cases the end of a chapter covers more advanced and specialized material that can be 
postponed; it will not be needed until much later in the book, if at all. Most of Part C (on 
topological and uniform spaces) can be read without Part B (logic and algebra) . However, 
most readers should skim through Chapters 5, 6, and 7. Those chapters introduce filters 
and nets - tools that are used more extensively in this book than in most analysis books. 

I have felt justified in violating logical sequencing in one important instance. The real 
number system is, in some sense, the foundation of analysis , so it must be used in examples 
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quite early in the book. Examples given in early chapters assume an informal understanding 
of the real numbers, such as might be acquired in calculus and other early undergraduate 
courses. A more precise definition of the reals is neither needed nor attainable until Chap
ter 10. Much conceptual machinery must be built before we can understand and prove a 
statement such as this one: 

There exists a Dedekind complete, chain ordered field, called the real numbers. 
It is unique up to isomorphism if we use the conventional reasoning methods of 
analysts. (It is not unique if we restrict our reasoning methods to first-order 
languages and permit the use of nonstandard models. )  

The existence and uniqueness of the complete ordered field justify the usual definition of 
R I am surprised that these algebraic results are not proved (or even mentioned! )  in many 
introductory textbooks on analysis. 

A traditional course on measure and integration would correspond roughly to part of 
Chapter 11, all of Chapter 21, and parts of Chapters 22-25 and 29. Integration theory is 
commonly introduced separately from functional analysis, but I have mixed the two topics 
together because I feel that each supports the other in essential ways. All of the usual 
definitions of the Lebesgue space L1 [0, 1] (e.g. , in 19.38, 22.28, or 24.36) are quite involved; 
these definitions cannot be properly appreciated without some of the abstract theory of 
completions or Banach spaces or convergent nets. Conversely, an introduction to Banach 
spaces is narrow or distorted if it omits or postpones the rather important example of LP 
spaces; the remaining elementary examples of Banach spaces are not diverse enough to give 
a proper feel for the subject . 

How TO USE THIS BOOK 
Because students' backgrounds differ greatly, I have tried to assume very few prerequisites. 
The book is intended for students who have finished calculus plus at least four other college 
math courses. HAF will rely on those four additional courses, not for specific content, 
but only for mathematical maturity - i.e . ,  for the student 's ability to learn new material 
at a certain pace and a certain level of abstraction, and to fill in a few omitted details 
to make an exercise into a proof. Students with that amount of preparation will find 
HAF self-contained; they will not need to refer to other books to read this one. Students 
with sufficient mathematical maturity may not even need to refer to their college calculus 
textbooks; Chapters 24 and 25 reintroduce calculus in the more general setting of Banach 
spaces. Proofs are included, or at least sketched, for all the main results of this book except 
a few consistency results of formal logic. For those consistency results we give references in 
lieu of proofs, but the conclusions are explained in sufficient detail to make them clear to 
beginners. 

Parts of HAF might be used as a classroom textbook, but HAF was written primarily 
for individual use. My intended reader will skip back and forth from one part of the 
book to another; different readers will follow different paths through the book. The reader 
should begin by skimming the table of contents to get acquainted with the ordering of 
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topics. To facilitate skipping around in the book, I have included a large index and many 
cross-referencing remarks. Newly defined terms are generally given in boldface to make 
them easy to find. These definitions are followed by alternate terminology in italics if the 
literature uses other terms for the same concept or by cautionary remarks if the literature 
also uses the same term for other concepts. The first few pages of the first chapter introduce 
many of the symbols and typographical conventions used throughout the book; the index 
ends with a list of symbols. A list of charts, tables, diagrams, and figures is included in the 
index under "charts." 

Mathematics textbooks usually postpone exercises until the end of each subchapter 
or each chapter, but HAF mixes exercises into the main text. In fact, HAF does not 
always distinguish sharply between "discussions," "theorems," "examples," and "exercises." 
All such assertions are true statements, with varying degrees of importance, generality, or 
difficulty, and with varying amounts of hints provided. Every student knows that reading 
through any proof in any math book is a challenge, whether that proof is marked "exercise" 
or not. Some computations and deductions are easier or more instructive to do than to 
watch, so for brevity I have intentionally given some proofs as sketches. All the "exercises" 
are actually part of the text; most of them will serve as essential examples or as steps in 
proofs of later theorems. Thus, in each chapter that is studied, the reader should work 
through, or at least READ through, every exercise; no exercise should be skipped. 
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To CONTACT ME 
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that I 've overlooked. I would be grateful for comments from readers, particularly regarding 
errors or other suggested alterations for a possible later edition. I will post the errata and 
other insights on the book's World Wide Web page on the internet . 

Eric Schechter, August 16, 1996 
http://math.vanderbilt.edu/�schectex/ccc/ 
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Chapter 1 
Sets 

MATHEMATICAL LANGUAGE AND INFORMAL LOGIC 

1 . 1. A Jew typographical conventions. Certain kinds of mathematical objects are most 
often represented by certain kinds of letters. For instance, mathematicians often represent 
a point by "x" and a function by "J," and very seldom the other way around. This book 
will usually adhere to the following guidelines, which are consistent with much (but not 
all!) of the literature of algebra, topology, and analysis. The reader is cautioned that there 
is no standard usage, in the literature or even in this book. The guidelines in the following 
list will be helpful, but the guidelines will have exceptions (which should be clear from the 
context) .  There is even some overlap between the categories listed above. For instance, in 
atomless set theory, discussed in 1.46, all sets are sets of sets. 

i, j, k, m, n, p, . . .  
p, q, r, s ,  t ,  . . .  
<C, N, Q, IR,Z 
W, X, Y, Z, fl, r, A, . . .  
A, B, C, L ,  S, T, . . .  
a, b, y, z, a, {3, >.,  f.i, w, . . .  
A, 13, e, . . . 
j, g, p, q, a, {3, >., f.i, n, . . .  
r, b., <1>, w, ... 

integers 
real numbers 
sets of numbers 
main sets - e.g. , linear spaces 
subsets of main sets 
elements of sets 
sets of sets - e.g. , filters, topologies 
functions 
collections of functions 

1 . 2. All letters are variables, but some letters are more variable than others (as George 
Orwell might have put it) . Every high school student has understood at least one example 
of this: 

the solutions of ax2 + bx + c = 0 are X= -b  ± v'b2 - 4ac 
2a 

Here the letters a, b, c are treated as real constants, but they can be any real constants; 

3 
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they vary only slightly less than x does. Usually it should be clear from the context just 
which letters are varying more than others. 

1.3. Notes on "and" and "or. " Although mathematicians base their language on English 
or other "natural" languages, mathematicians alter the language slightly to make it more 
precise or to make it fit their purposes better. Some of the differences between English and 
mathematics may confuse the beginner. 

For instance, there are two different meanings for the English word "or:" 

u 

+ 

vel 
aut 

inclusive or 
exclusive or 

A or B or both 
A or B but not both. 

Latin distinguishes between these two meanings by using two different words: "vel" and 
"aut;" see Rosser [ 1953/1978] . In everyday English, the term "or" is ambiguous; it could 
have either meaning. For clarification in English, "vel" is sometimes called "and/or," and 
"aut" is sometimes called "either/or." In mathematics, "or" generally means "vel, " unless 
specified otherwise. 

Undergraduate mathematics students sometimes confuse "and" and "or" in the following 
fashion: What is the solution set of x2 - 4x + 3 > 0, in the real line? It is 

{x E � : x < 1 } U {x E � : x > 3} {X E � : X < 1 or X > 3} . 

Thus, the appropriate word is "or." However, some calculus students write the solution as 
"x < 1 and x > 3," by which they mean "the points x that satisfy x < 1 ,  and also the points 
x. that satisfy x > 3" - thus they are using "and" for U (union) .  Though such students 
may think that they know what they mean, this usage is not standard in mathematics and 
should be discontinued by students who wish to proceed in higher mathematics. 

Another word for "or" is disjunction; the most commonly used symbol for it is V. 
Another word for "and" is conjunction; the most commonly used symbol for it is /\. 
However, we shall use U and n for "or" and "and," in order to reserve the symbols V and 
1\ for use in some related lattices. 

We shall use "not-A" or "•A" as abbreviations for the statement that "statement A is 
not true;" some mathematicians use other symbols such as rv A. The symbol •, meaning 
"not ," is also called negation. In conventional (ordinary) logic, used throughout most of 
this book, -,-,A = A; that is, not-not-A is equal to A. That equality fails in constructivist 
or intuitionist logic, which is discussed very briefly in Chapters 6 and 13 .  

1 .4. The statement "A implies B" will sometimes be abbreviated as "A ::::} B" or 
"A --+ B;" the latter expression will be used in our chapter on logic. Either of these 
expressions means "if A is true then B is true" - or more precisely, "whenever A is true, 
then B is also true." The usage of "if . . .  then" in mathematics differs from the usage in,. 
English, because the mathematical statement A ::::} B makes no prediction about B in the 
case where A is false. For instance, in everyday English the statement "If it rains, then I 
will take my umbrella" is ambiguous - it could have either of the following meanings: 

(i) If it rains, then I will take my umbrella. If it doesn't rain, then I won't take 
my umbrella. 
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(ii) If it rains, then I will take my umbrella. If it doesn't rain, then I might or 
might not take my umbrella. 

In mathematics, however, (ii) is the only customary interpretation of "if . . .  then." 

5 

The mathematicians' implication also differs from the nonmathematicians' implication 
in this respect: we may have A =? B even if A and B are not causally related. For 
instance, "if ice is hot then grass is green" is true in mathematics, but it is nonsense in 
ordinary English, since there is no apparent connection between the temperature of ice and 
the color of grass. The mathematicians' implication is sometimes referred to as material 
implication, to distinguish it from certain other kinds of implications not commonly used 
in mathematics but sometimes studied by philosophers and specialized logicians. 

The converse of the statement "A =? B" is the statement "B =? A." These two 
statements are not equivalent ; the beginner must be careful not to confuse them. For 
instance, "x = 3" implies "x is a prime number," but "x is a prime number" does not imply 
"x = 3." 

The statement "A if and only if B" may be abbreviated "A iff B;" it is also written 
"A ¢===? B." This statement means that both A =? B and the converse implication 
B =? A are true. 

Statement A is stronger than statement B if A =? B; then we may say B is weaker 
than A. More generally, a property P of objects is stronger than a property Q if every 
object that has property P also must have property Q - i.e. ,  if the statement "X has 
property P" is stronger than the statement "X has property Q." (A related but slightly 
different meaning of "stronger than" is introduced in 9.4 . )  The mathematical usage of the 
terms "stronger" and "weaker" (and of other comparative adjectives such as coarser, finer, 
higher, lower) differs from the common nonmathematical English usage in this important 
respect: In English, two objects cannot be "stronger" than each other, but in mathematics 
they can. Thus, when A ¢===? B, each statement is stronger than the other. In particular, 
a statement is always stronger than itself. To say that 

A implies B and B does not imply A, 

we could say that A is strictly stronger than B. For instance, the property of being equal 
to 3 is strictly stronger than the property of being a prime number. 

In general, "if . . .  then" is quite different from "if and only if." However, in mathematical 
definitions the words "and only if" generally are omitted and are understood implicitly, 
particularly when the defined word or phrase is displayed in boldface or italics. For instance, 
in our earlier sentence 

Statement A is stronger than statement B if A =? B; then we may say B is 
weaker than A. 

the "if" is  really understood to be "if and only if." 

1 .5 .  When A and B are variables taking the values "true" or  "false," then an expression 
such as "A and B" is a function of those variables - that is, the value of "A and B" 
depends on the values of A and B. The truth table below shows how several functions of 
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A and B depend on the values of A and B. In the table, "T" and "F" stapd for "true" and 
"false," respectively. 

A B not-A A or B A and B A =} B A � B 
T T F T T T T 
T F F T F F F 
F T T T F T F 
F F T F F T T 

If a statement A is known to be always false, then the statement "A =? B" is true, 
regardless of what we know or do not know about B; under these circumstances we may say 
that the implication "A =? B" is vacuously true, or trivially true. The term "trivially 
true" can also be used to describe the implication "A =? B" if B is known to be always 
true, since in that case the validity of A need not be considered. 

1 .6.  Exercises. 
a. The statement "A =? B" is equivalent to the statement "B or not-A." Explain. 

b. The contrapositive of "A =? B" is the statement "not-E =? not-A." Show that an 
implication and its contrapositive are equivalent . We shall use them interchangeably. 

c. (De Morgan's Laws for logic.) Explain: 

(not-A) and (not-B) is equivalent to not-(A or B) ;  

(not-A) or  (not-B) i s  equivalent to not-(A and B) .  

1 .  7 .  Duality arguments. Some concepts in mathematics occur in pairs; each member 
of the pair is said to be dual to the other. A few examples are listed in the table below; 
these examples and others are developed in more detail in later chapters. The statements 
about these concepts occur in pairs. In some cases, one of the two statements is preferred, 
because it is more relevant to applications or is simpler in appearance. 

A concept 
Its dual 

Generally there is a simple and mechanical method for transforming a statement into 
its dual statement and for transforming the proof of a statement into the proof of the dual 
statement . For instance, De Mo�gan's Laws for logic (given in 1 .6 .c) can be used to convert 
between ands and ors, by inserting a few nots. Other such conversion rules will be given 
in later chapters. In some cases, for brevity, we state and/ or prove only one of the two 
statements in the pair. The other statement is left unstated and/or unproved, but the 
reader should be able to fill in the missing details without any difficulty. 

1.8. On parsing strings of symbols. In this book, we generally read set-theoretical opera
tions (n, U ,  C, etc. )  first, then set-theoretical relations ( =, �' �' etc. ) ,  then logical relations 
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between statements. For instance, 

A B c n D E 

should be interpreted as 

Generally we omit the parentheses, but we may sometimes use extra spacing to make the 
correct interpretation more obvious: 

A B C n D  E .  
We emphasize that this order of precedence depends on the context - i.e. , the present 

book is concerned with abstract analysis. In a different context , the expression ( * ) could 
be read in an entirely different order. For instance, in some books on logic, n means "and" 
and 2 means "is implied by." Hence all four of the symbols =, <=?, n, and 2 are binary 
operations on statements - i .e . ,  they are operators D with the syntax that if P and Q are 
statements, then PDQ is a statement . Therefore, in a logic book, the displayed equation 
( * ) could make sense with any arrangement of parentheses, and it would have different 
meanings with different arrangements of parentheses. In that context , ( * ) would be highly 
ambiguous; some parentheses would be needed for clarification. 

1.9.  Proof by contradiction is a nonconstructive technique of logic, so widely used 
in mainstream mathematics that it generally goes unremarked. It may be confusing to 
beginning mathematicians who have never seen it explained. The technique is this: 

If we wish to prove A o=? B, we can assume the truth of both A and not
B. From those two assumptions we deduce a contradiction; the contradiction 
demonstrates that indeed A o=? B. 

The justification of this technique is 1 .6.a. 
Proof by contradiction has this advantage: We work from two assumptions (both A and 

not-B) rather than just the one assumption of A; thus we have more statements on which to 
build. Consequently, proofs by contradiction are often easier to discover than direct proofs. 

Proofs by contradiction also have a couple of disadvantages: 

• Proofs by contradiction are often harder to read than direct proofs because they are 
conceptually more complicated. Proofs by contradiction are conceptually complicated. 
A beginning student of mathematics may prefer to assume that A is true and try to 
discover what else is then true - a sort of one-directional approach. But a proof 
by contradiction works simultaneously in two directions, mixing together statements 
(such as A and its consequences) that we take to be true with statements (such as 
not-B) that we temporarily pretend are true but shall eventually decide are false. This 
scheme must seem diabolical, or at least amoral, to beginners: It is not concerned so 
much with "what is true," but rather with "what implies what." 
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• A proof by contradiction is often nonconstructive : It may prove the existence of some 
mathematical object without producing any explicit example of that object. For a 
very vivid example of this lack of examples, see 6.5 .  The availability or unavailability 
of explicit examples is one of the main themes of this book. A proof by contradiction 
may convince us that a statement is true, but it may not give us as much intuitive 
understanding of that statement as a direct proof would. 

1 .10.  The phrase "
we may assume

" is often used in the literature in ways that may 
bewilder the novice. For instance, consider a proposition of this form: 

Proposition A. Let X be a mathematical object satisfying hypothesis H(X) .  
Then X satisfies conclusion C(X) .  

A published proof of  Proposition A might begin something like this: 

( ! )  We may assume that X also satisfies property P(X).  

The reasoning step ( ! )  has several possible meanings; we shall describe three of them below. 
The simplest meaning of ( ! )  would be that 

( 1 )  Hypothesis H(X) actually implies property P(X) ,  by some reasoning that 
should be evident to a sufficiently advanced reader. 

Readers who are not so advanced may spend many hours trying to fill in that reasoning. 
However ,  ( ! )  may not mean ( 1 )  after all. Indeed, if ( 1 )  were true then ( ! )  would probably 
be worded a bit differently - e.g. , the proof might have begun by saying "We first observe 
that, obviously, H(X) =} P(C)." A more likely meaning of ( ! )  is this: 

(2) H(X) and not-P(X) together imply C(X) , by some reasoning that should 
be evident to the reader. Hence, in trying to prove H(X) =} C(X) ,  we may 
concentrate on the case where P(X) holds. 

That is harder but still manageable. Alas, ( ! )  has yet a third meaning, and this one is much 
too subtle for some beginners: 

(3) The text will now give the details of a proof of a slightly easier proposition. 
After reading the proof provided for the easier proposition, the reader is expected 
to figure out the details of how to use that easier proposition to prove Proposition 
A. The easier proposition is as follows: 

Proposition B. Let Y be a mathematical object satisfying hypotheses H(Y) and 
P(Y) . Then Y satisfies conclusion C(Y) . 

The missing details might go as follows: Let any object X be given, satisfying hypothesis 
H(X) but not necessarily property P(X) .  By some clever method (which the reader must 
figure out ) ,  we now construct a collection of related objects Y1 , Y2 , Y3 , . . .  , with each Yk 
satisfying both hypothesis H(Yk ) and property P (Yk ) · Then Proposition B is applicable to 
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the Yk 's, and so we can draw conclusions C(YI ) ,  C(Y2 ) ,  C(Y3) ,  . . . . By some clever method 
(which, again, the reader must figure out ) ,  we may then use that information to help us 
prove C(X) .  

In such an argument , object X does not necessarily satisfy P(X) ,  despite the wording 
of statement ( ! ) .  The effect of statement ( ! )  is to discard the original object X ,  replace it 
with the new object Yk , and relabel Yk to call it X now. Some other relabeling arguments 
will be discussed and used in 2 . 19, 7.2 1 ,  and 16.5. 

1 . 1 1 .  How much formalism do we need? It is not necessary to learn the definitions of 
"noun" and "verb" to become a fluent speaker of English (or any other natural language) .  
One can learn the language quite well just by studying examples; this is the method by 
which toddlers learn their native tongue. 

Similarly, most mathematicians use logic properly without ever knowing its formal rules. 
This book is intended for "most mathematicians," and we shall discuss logic and formal set 
theory as little as possible. The few concepts from logic and set theory that we shall need 
will be developed briefly and informally. For a more complete and formal development , the 
interested reader is referred to more advanced and specialized books and papers. 

Informal reasoning is not always reliable, in part because informal language is not always 
reliable. Natural languages (such as English) evolved to suit the mundane, ordinary, real 
world, but mathematicians often find themselves considering extraordinary ideas. 

For instance, a self-referencing statement such as 

This statement is false 

cannot be true or false. (This is the simplest form of the Paradox of the Liar, also known 
as the Paradox of Epimenides. ) Such statements do not arise in "ordinary" reality, but 
such statements show mathematicians a need for careful rules about language and reasoning. 

The simplest way to deal with self-referencing statements is to simply prohibit them 
and avoid the confusion. We shall follow that policy in this book. However, we remark that 
self-referencing recently has been analyzed in a meaningful and useful way by Aczel [ 1988] 
and Barwise and Etchemendy [1987] . Such analyses are especially useful in the theory of 
computer programs. A computer program may operate on data files that are stored in 
memory; one of those files may be the program that is operating. 

1 . 12. We should mention one more type of self-referencing before we leave the topic. The 
self-referencing in Epimenides's Paradox is very direct: The word "this" in the sentence 
"This sentence is false" points directly to the sentence in which that word is located. But 
Quine's Paradox, below, involves a more indirect type of self-referencing, which has some 
important uses in logic. 

A typical sentence in English consists of a subject followed by a predicate. For instance, 
in each of the sentences 

Jane is a girl. 

Jane runs with the ball. 
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the subject is "Jane" and the predicate is the remainder of the sentence. The subject is 
some "thing" that is being discussed; the predicate says that the subject "is" something or 
"does" something. 

Mathematicians often wish to discuss mathematical objects, so in a mathematics text 
the subject of a sentence can be a mathematical symbol or formula. For instance, 

D is a box symbol. 

" D " is a box symbol. 

x is a variable. 

" x "  is a variable. 

"x = y" is an equation. 

are all acceptable sentences in a mathematics book or paper. Whether we include or omit the 
quotation marks is generally a matter of taste; our main rule is that the intended meaning 
should be clear. In this author's opinion, the last example would become confusing if the 
quotation marks were omitted, but the quotation marks are optional in the other examples. 
(Of course, in a book or paper on logic, the quotation marks may have a more technical 
meaning, and then their use or omission is no longer a matter of taste. )  

We shall now consider sentences that follow the format described above, but in  these 
sentences the subject will be some phrase of the English language - i.e. ,  a sentence frag
ment . Thus, we shall consider sentences that discuss certain sentence fragments. In each 
case, the sentence fragment will consist of a sentence whose subject has been omitted. 

"is a girl" is a sentence fragment composed of three words. 

"runs with the ball" is a sentence fragment composed of four words. 

"is a sentence fragment" is a sentence fragment . 

"is composed of five words" is composed of five words. 

Each of those four sentences is true. The last two sentences have a peculiar structure: they 
consist of a sentence fragment in quotes, followed by the same sentence fragment without 
quotes, followed by a period. In Hofstadter [1979] , the process of forming such a sentence 
from such a fragment is called quining. Thus, the last sentence displayed above is the 
result of starting from the fragment 

is composed of five words 

and then quining that fragment. 
Now, Quine's Paradox consists of the peculiar sentence 

"yields a falsehood when preceded by its quotation" yields a falsehood when 
preceded by its quotation. 
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or, in Hofstadter's terminology, 

"yields a falsehood when quined" yields a falsehood when quined. 

These sentences are paradoxical: they are false if true, and true if false. (Think about it 
for a moment . )  These sentences do not involve direct self-referencing of the sort found in 
Epimenides's Paradox; there is no "this" that points to itself. However, in either formu
lation, Quine's peculiar sentence discusses another sentence that would be formed as the 
result of a quining. Just by coincidence (not really) ,  the sentence being discussed happens 
to be identical to the sentence doing the discussing. Quine formed this paradox in order to 
explain Gi:idel's Proof; see 14.62. 

BASIC NOTATIONS FOR SETS 

1 . 1 3. A set i s  a collection o f  objects. This is not really a definition, since we do not state 
what a "collection" is; we shall rely on the reader's intuition about these terms. A more 
formal approach will be introduced in 1 .44 and the sections thereafter. 

Three common ways to specify a set are by listing the objects in the set , by specifying a 
larger set and a property that determines the subset in question, and by listing a parameter 
set and a way to form some object from each value of the parameter. For instance, the set 
of odd positive integers can be represented in any of these ways: 

{ 1 , 3, 5, 7, . . .  } = {n E N : n is odd} = {2m + 1  m E N} .  

In  the last expression, N i s  used as a index set, or  parameter set. (Some mathematicians 
would write that last expression as {2m + 1 1 m  E N},  but this book will have too many 
other uses for vertical bars . )  

The order of the elements of a set is  not relevant , and repetitions are ignored; for 
instance, { 1 , 2, 3 , 4} = {4, 3 , 1 , 2} = { 1 , 2 , 3 , 1 , 4 } .  To emphasize this we may occasionally 
refer to a set as an unordered set to contrast it with ordered sets, such as those in 1 .32. 
Two sets A and B are defined to be equal (as sets) if they contain the same elements 
i.e . ,  if they satisfy x E A 9 x E B. 

Two mathematical objects may be equal as sets even though they have different addi
tional structures associated with them. For instance, the real number system with its usual 
topology is different from the real number system with the discrete topology - i.e. ,  these 
are different topological spaces. But these topological spaces are equal as sets, since they 
have the same members. 

The term "collection" will usually mean the same thing as "set ," but occasionally "col
lection" may have the more general meaning of "class," discussed in 1 .44. 

1. 14. Here are the two most basic notions of sets: 

"x E S" is read as: x belongs to S, or x is an element of S, or x is a member 
of S. It is occasionally written as " S  :3 x." 
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"A <:;:; B "  means x E A => x E B; that is, each element of A is also an element 
of B .  It is read as: A is a subset of B, or B is a superset of A. It is also 
written as "B :;;? A." 

Unfortunately, the terms "include" and "contain" are ambiguous. As they are commonly 
used in the mathematical literature, 

either of the statements "U includes V" or "U contains V" can have either of 
the meanings "U 3 V" or "U :;;? V." 

When the words "include" or "contain" are used, the reader must determine the intended 
meaning from context. 

The statement "x is not an element of S" can be written x rf_ S; the statement "A is 
not a subset of B" is occasionally written as A Cf:_ B. When S <:;:; X  and S =/= X, we say S is 
a proper subset of X,  or X is a proper superset of S; this is sometimes written S � X  
or X �  S. 

The symbols C and ::J are ambiguous: They are used for <:;:; and :;;? by some mathe
maticians, and for � and � by other mathematicians. We shall not use C or ::J in this 
book. 

1 . 15.  Some sets of numbers. Numbers are the basis of what most analysts consider to be 
"analysis." The list below shows some of the most commonly used sets of numbers. 

N 
z 
Q 
IR 
[-oo, +oo] 
c 
1l' 
F 
A, JB, ]])) 

positive integers (also known as natural numbers) 
integers 
rational numbers (quotients of integers) 
real numbers ( introduced formally in Chapter 10) 
extended reals (introduced in 1 . 17) 
complex numbers (introduced in Chapter 10) 
the circle group (introduced in 10.32.f) 
unspecified field - generally understood to be IR or C 
directed sets ( "generalized numbers;" see 7.3) 

We assum� an informal acquaintance with Q and IR - e.g. ,  techniques of computation, 
such as in college calculus. Relying on that informal acquaintance only for some illustrative 
examples, in later chapters we shall carefully develop basic ideas of orderings, groups, and 
fields, leading up to formal definitions of Q, IR, and C in Chapter 10. 

1 . 16.  In this book, N and Z have their usual, classical meanings, and we assume a familiarity 
with the elementary properties of those sets of numbers. Caution: Many mathematicians 
agree with our definition that N = { 1 ,  2, 3, . . .  } , but many others instead use the symbol N 
to represent the set {0,  1 ,  2, 3, . . .  } . 

Set theorists often find it useful to define the integers (and everything else) in terms of 
sets - see 1 .46. Zermelo defined the nonnegative integers 0, 1 ,  2, 3, . . .  to be the sets 0 ,  
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{0} , { { 0} } , { { { 0 }} } , and so on. Later, von Neumann defined the nonnegative integers to 
be the sets 

0, {0} , {0 ,  {0} } ,  {0 ,  {0} , {0 , {0} }  } , 

and so on, as described in 5.44. Either of these definitions is manageable, but von Neumann's 
more complicated definition has a few advantages for purposes of set theory, and so it is 
now widely used in that field. 

For purposes outside of set theory, however, it is conceptually simpler not to attach 
the labels "0," " 1 ," "2," etc . ,  to particular sets. (This point is discussed further by Hirsch 
[1995] . )  Instead we usually view the integers as indivisible objects, for which we define 
algebraic operations in the usual fashion. Thus N U {0} is a monoid and Z is a ring; these 
notions are discussed in Chapter 8 .  

In dealing with the integers, we shall rely on the reader's intuition, not on a precise 
definition and list of properties. Although it is possible to specify the positive integers 
uniquely by Peano's Axioms (see 14.52) ,  that specification is nontrivial and rests on an 
understanding of conventional language. In nonstandard analysis, language is sometimes 
used in a different fashion, and then the "integers" take on a new meaning, as described in 
14.68 and 14.69. The reader of this book does not need to be familiar with the nonstandard 
integers; we have mentioned them here only to emphasize our reliance on some shared 
intuition about the standard (i .e . ,  conventional) integers. 

1 . 17. Let +oo and -oo be the names given to some two objects that are not real num
bers; the object +oo may also be abbreviated as oo. The extended real line, denoted 
[-oo, +oo] , is the set R U { -oo, +oo} - that is, the real number system R plus these two 
additional points. We extend the ordering of R to this larger set by defining -oo < r < +oo 
for all real numbers r. Addition and multiplication are usually extended to this larger set 
of numbers by the rules indicated in the following tables. In the tables, "undef. ," "pos. ," 
and "neg." are abbreviations for "undefined," "positive real," and "negative real." The 
product of 0 and ±oo is sometimes left undefined, but more often it is defined to be 0. That 
product may come as a surprise to some students and is discussed further in 15 .28.c. 

I TIMES II -oo I neg. I 0 I pos. I +oo I 
PLUS -oo real +oo -oo +oo +oo 0 -oo - 00  

- 00  -oo -oo undef. neg. +oo pos. 0 neg. -oo 
real - 00  real +oo 0 0 0 0 0 0 
+oo undef. +oo +oo neg. -oo neg. 0 pos. +oo 

+oo -oo -oo 0 +oo +oo 

1 .18.  Preview of assorted infinities. The term "infinity" has several different meanings in 
mathematics, and it is important not to confuse these with each other. 

Some older mathematics books sometimes refer to a potential infinity such as limxto � ;  
this i s  a very large finite number that gets larger without bound. Our dealings with potential 
infinities may be simplified if we adjoin to R some ideal points -oo and +oo, as discussed 
in the preceding section. The resulting number system [ -oo, +oo] is algebraically somewhat 
awkward - unlike R, it is not a field; indeed, it is not even an additive monoid. 



14  Chapter 1 :  Sets 

By adding many more ideal points, we obtain a more satisfactory algebraic system. The 
hyperreal line, *IR, is an ordered field strictly larger than IR; it is discussed in 10.18 .  
Among other things, it  contains some numbers that are infinitely large and some numbers 
(besides zero) that are infinitely small. An infinitely large number is a constant that plays 
a role similar to the role played by finite variable such as the number x in the expression 
"limxToo f(x) ." Similarly, an infinitely small but positive constant number plays a role 
similar to that played by the finite variable x in the expression "limxlO f(x) ." 

Yet another kind of infinity is the "number" of elements in an infinite set such as N or 
IR; that "number" is called the cardinality of the set. Some older mathematics books refer 
to it as an actual infinity, in contrast to the potential infinity mentioned above. There 
are several different infinite cardinalities - for instance, the cardinalities of the sets N and 
Q are equal (see 2 .20.f) ,  but the cardinality of the set IR is larger (see 10.44.f) .  In fact , there 
are infinitely many different sizes of infinities; that follows from 2.20.1. Some arithmetic of 
cardinalities is possible - for instance, in later chapters we shall see that card(S x T) = 
max{card(S) , card(T) } when S and T are infinite sets, and card(2x ) > card(X) for any set 
X.  However, this arithmetic should not be confused with the arithmetic of the hyperreal 
numbers; cardinalities do not form a field. Infinite cardinal numbers are sometimes denoted 
by �n ; we consider this notation briefly in 5 .48. Also related are the infinite ordinals, 
introduced in 5.44; the first infinite ordinal is often denoted w. 

Our several notions of the "infinite" are only distantly related. To avoid confusion, think 
of them as entirely unrelated uses of the same strings of letters. 

Yet another unrelated use of "infinity" is that in theology. The beginner is urged to put 
aside any spiritual notions of infinity, for mathematicians have tamed infinity and made 
it entirely a secular matter. (On the other hand, mathematics is not devoid of spiritual 
questions; see particularly 6.8 and 14.71 . )  

1.19.  The set with no elements is called the empty set (or null set ) ;  i t  is denoted by 0 
(or by { } in some books) .  

The word "nothing" i s  used in different ways in English. For instance, i f  we order things 
by our preferences, then "a ham sandwich is better than nothing" can be written 

ham sandwich > 0.  

However, "nothing is  better than true love" should not be written as "0 > true love." 
Rather, it should be written as 

{ x : x > true love} 0. 

Thus, we cannot conclude that "a ham sandwich is better than true love." 

1 .20. A few more sizes of sets. A singleton is a set { x} containing exactly one element . 
The objects x and { x} can never be equal (see 1 .49) ,  and in some contexts the distinction 
between x and { x} is crucial. In some other contexts, however, x and { x} are used in 
substantially different ways, so that no confusion is possible if we find it convenient to write 
x and { x} interchangeably. (For instance, the unique solution of u2 + 2u + 1 = 0 is u = - 1 ,  
and the solution set is { - 1 } ;  generally these two answers are interchangeable . )  
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Examples for beginners to think about. { x, y} is a singleton if and only if x = y, and 
{ { x, y} } is a singleton in any case. The set { 0 }  is a singleton. 

A set S is finite if the number of elements in S is a finite number - i.e. , if S can be 
written in the form {x1 , x2 , X3 , . . .  , Xn} for some n E N  U {0} .  (We permit n = 0; thus, the 
empty set is a finite set. )  A set that cannot be so written is infinite. 

A set S is countable if it is empty or can be written in the form { x1 , x2 , x3 , . . .  } .  We 
emphasize that repetitions are permitted; thus by our definition any finite set is also a 
countable set . A set that is not countable is uncountable. A set S is countably infinite 
if it is countable and infinite - or, equivalently, if and only if it can be written in the form 
{x1 , x2 , x;3 , . . .  } without repetitions. Caution: Some mathematicians use these terms a 
little differently and apply the term "countable" only to the sets of the form { x1 , x2 , x3 , . . .  } 
without repetitions - i.e . , only to the sets that we have called "countably infinite." 

Other sizes of sets will be discussed in 2. 16. 

WAYS TO COMBINE SETS 

1 . 2 1 .  The power set of a given set X i s  { S : S s;; X} ,  the set of all subsets of X.  We 
shall usually write the power set of X as P(X). It is also denoted 2x , for reasons discussed 
in 2 .20.k. 

For instance, the power set of {0, 1 }  is the set P({0, 1 } )  = {0, {0} , { 1 } , {0, 1 } } . The 
power set of the empty set is P(0) = {0} ,  which is a singleton - i.e. , it has one element, 
so it is not empty. 

1 .22. Suppose that S = {S>. : ,\ E A} is a set of sets - i.e . , A is a set, and S>, is a set for 
each A E A. Then the union of the S .\ 's is the set { x : x E S .\ for at least one A} .  It can 
be denoted by any of these expressions: 

Un(S) , us, U{S>. : ,\ E A} ,  u s_\ . .\EA 
Other notations are available in certain special cases: The union of finitely many sets 
S1 , S2 , . . .  , Sn may be written as U�=l Sk or as S1 U S2 U · · · u Sn. The union of a sequence 
of sets S1 , S2 , S3 , . . .  may be written as U�=l Sk or as S1 U S2 u S3 u · · · . Note that if L S: A, 
then u.\EL S>, s;; u.\EA S>, . In particular, u.\E0 S>, is just the empty set. 

1.23. Again suppose that S = { S>. : ,\ E A} is a set of sets. Then the intersection of the 
S>. 's is the set {x : x E S>. for every >-} .  It can be denoted by any of these expressions: 

Int(S) , ns, 
The expressions 

n 
and 
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are interpreted in a fashion analogous to that for unions. 
If L � A and L =I= 0, then nAEL SA 2 nAEA SA . The expression nAE0 SA is not 

meaningful without further specification, but the following convention is often useful: If the 
SA 's are all subsets of a fixed set X whose choice is understood, then we may agree to let 
nAE0 SA mean X .  

1.24. I f  S and X are sets, then the complement (or relative complement) of  S in X is 
the set 

X\S = {x E X :  x EjE S} .  

For example, {a ,  b , c} \ { c, d} = {a, b} . We emphasize that S i s  not necessarily a subset of X.  
Caution: Some mathematicians write the set X \  S instead as X - S .  However, that also 
can be interpreted as { x - s : x E X, s E S} in contexts where subtraction is meaningful -
e.g. , if S and X are subsets of R 

If the choice of X is clear and/or does not need to be mentioned explicitly, and S is a 
subset of X,  then the relative complement of S in X may be written more briefly as CS. 
(Some mathematicians write this as es or sc or S.) The c notation is useful especially when 
we are considering many subsets R, S, T, U, etc. ,  of a single set X;  note then S\T = S n CT. 
The C notation simplifies the appearance of many results - for instance, CCS = S. More 
generally, Cn S = S when n = 0, 2, 4 ,  6, . . . . Here we adopt the convention that C0 S = S, 
and Cn+1s = ccns; this exponential notation will be particularly helpful in 13. 1 1 .  

The symbol C will be given a more general meaning i n  13. 1 ;  see the discussion i n  13.3 .  

1.25.  Also simplified by the C notation are De Morgan's Laws for sets: 

c ( n  sA) 
AEA 

That is: The complement of a union i s  the intersection of  complements, and vice versa. 
The proofs are an easy exercise. 

There is a duality (as in 1 .  7) between statements about any collection of sets and state
ments about the complements of those sets. This duality is order-reversing; i .e . ,  

Cs 2 CT. 

By De Morgan's Laws, the duality transforms unions to intersections, and vice versa. 

1 .26. We say that two sets meet if their intersection is nonempty; otherwise the sets 
are disjoint. Note that 0 and any set are disjoint. A collection of sets is disjoint (or for 
emphasis, pairwise disjoint) if each pair of distinct sets in the collection is disjoint. A 
partition of a set X is a collection of pairwise disjoint sets that have union equal to X. 

A collection of  sets {SA : A E A}  i s  fixed i f  their intersection nAEA SA i s  nonempty; the 
collection is free if its intersection is empty. We emphasize that this does not refer to the 
pairwise intersection. For instance, if a, b, c are distinct objects, then the collection 

S { {a , b} ,  {b, c} , {c, a } } 
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is free but not disjoint. 
A collection { S .\ : A E A} of subsets of a set X is said to be a cover, or covering, of 

X if U.\ A S.\ = X. Note that this condition is satisfied if and only if {CS.\ : A  E A} is free 
(where CO denotes complement in X) .  Thus, "cover" and "free" are dual concepts, in the 
sense of 1 .7. Also note that a partition is the same thing as a disjoint covering. 

Examples. Let X = {a ,  b, c, d, e} consist of five distinct elements. Then the collection of 
sets { {a ,  b} ,  { c } ,  { d, e } }  is a partition of X;  { {a , b} , { c} , { d} } is a disjoint collection but not 
a partition or a cover; { {a ,  b} ,  { b, c} , { c, d, e} } is a free cover. Any disjoint collection of two 
or more sets is free. However, a collection consisting of just one nonempty set is disjoint 
and not free. 

Further definitions. Suppose that S = { S .\ : A E A} is a cover of a set X. Then 

• A subcover is a cover of X that is of the form {S.\ : A E A0 } for some set A0 � A. 

• A refinement of S is a cover 'J = {Til : JL E M} of X with the property that each Til 
is contained in some S .\ . 

• A precise refinement of S is a cover of X of the form 'J = {T.\ : A  E A} (with the 
same set A) , such that T.\ � S.\ for each A. 

Of course, any precise refinement is a refinement . 

1.27. The symmetric difference of two sets S and T is the set 

S 6 T  (S n CT) u (CS n T) (S\T) u (T\S) 
(S U T) \ (S n T) {x x is in S or in T but not both} . 

For instance, {a, b, c} 6 {b, c, d} = {a, d} . Note that S 6 T = T 6 S, that S 6 S = 0, and 
that S 60 = S. Also, for subsets of a given set X,  we have C(S 6T) = S 6 (CT) = (CS) 6T. 
Exercise. Show that 

(R 6 S) 6 T R 6  (S 6 T) 
{ x : x is in exactly one or three of the sets R, S, T} . 

More generally, use induction to show that 

sl 6 s2 6 . . .  6 Sn = {x : X is in an odd number of the sets Sj } · 

1.28.  A Venn diagram is used to indicate the unions, intersections, and complements of 
several sets. Two of these diagrams are shown below. Typically, a Venn diagram is used 
for two or three subsets of a larger set X (which is sometimes called "the universe," or "the 
universal set ," in this context - see 1 .44) .  The set X may be represented by a rectangle, 
and its subsets A, B, and C are represented as disks contained in that rectangle. If no 
assumptions are made about the sets A, B, C, then they are drawn "in general position" -
i.e. , so that each of the eight sets 

A n B n C, A n B n Cc, A n CB n C, A n  CB n Cc, 



18 Chapter 1 :  Sets 

CA n B n C, CA n B n Cc, CA n CB n C, CA n CB n Cc 
is represented by a single nonempty region in the rectangle. (See the first diagram. ) If 
some relationship between the sets is known, then this may be reflected in the diagram; for 
instance, if we know that A r:;; C, then we may draw the disk for A inside the disk for C. 
(See the second diagram. ) 

X 

B 

A 

Shaded region 
is (A 6 B)\C. 

c 

X C B 

~ 
If A r:;; C, then 

(A 6 B)\C = B\C. 

Do not rely too heavily on Venn diagrams or other figures - particularly complicated 
ones - for they can be erroneous in subtle ways. A common error is to attribute to a 
figure more generality than it truly possesses and thus to overlook certain special cases 
not explained by the figure. (In 15 . 19 are some further remarks about the limitations of 
diagrams. ) However, simple diagrams can be trusted if constructed carefully, and, in any 
case, diagrams can be used to help us find other proofs that do not rely on diagrams. 

1 .29. Distributive laws. The following equations occur in dual pairs. In each case it is only 
necessary to prove one equation; the other then follows by duality using De Morgan's Laws 
( 1 .25) . 

a. Intersection and union distribute over each other. That is: 
S n (T u U) (S n T) U (S n U) 

and 
S U (T n U) = (S U T) n (S U U) 

for all sets S, T, U. 

b. In fact , intersection and union are infinitely distributive over each other: 

and 

( U s�) n ( U r,) 
aEA {3EB 

( n So) U ( n T,) 
aEA {3EB 

U U (Sa n Tf3) 
aEA {3EB 

n n (Sa U Tf3) 
aEA {3EB 
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for any index sets A, B and any sets Sa , Tr1 . This notion is generalized in 4.23. 

1.30. Closure under operations. Let S be a collection of subsets of a set X. We say that 
S is closed under some set operation if performing that operation on members of S yields 
another member of S. For instance, S is 

closed under finite union if S1 , S2 E S ::::} S1 U S2 E S 

or equivalently, if S1 , S2 , . . .  , Sn E S ::::} S1 U S2 U · · · U Sn E S for each positive integer n. 

Similarly, S is 

closed under countable union if Sl , s2 , s3 , . . .  E s ::::} u;:l Sj E S; 

closed under arbitrary union if {S-\ : >- E A} � S ::::} U-\EA  S-\ E S. 

We define closures under intersections analogously. A collection S is closed under com
plementation if S E S ::::} CS E S. These "closures" are special cases of Moore closures ; 
see 4.4.d. 

FUNCTIONS AND PRODUCTS OF SETS 

1 . 3 1 .  A function (or map or mapping or operator or operation) from a set X into a set Y 
is a rule that assigns to each argument x E X  a unique value f(x) E Y. This is not really 
a definition; we rely on the reader's intuition about what a "rule" is. However, in 1 .36 we 
give an alternate definition that is less intuitive but more precise, in terms of subsets of 
products of sets. 

We write f : X ----> Y to abbreviate the statement that f is a function from X into Y.  
The set X i s  the domain of f , often abbreviated Domain(!) or Dom(f) . We say f i s  a 
function on X ,  or f is defined on X .  

The set Y is the codomain of f. It should not be  confused with the range of f , which 
is the set {f(x) : x E X} ,  often abbreviated Range(!) or Ran(!) . The function f ' is called 
surjective (or onto, or a surjection) if the range is equal to the codomain. (See also 2 .7 . )  

The distinction between range and codomain may confuse some beginners. The range is 
a very specific set - it is the set of all the values taken on by the function. The codomain 
of the function is a somewhat arbitrary or nominal set; the codomain is any convenient set 
large enough to contain the range of the function. We may choose to describe the function 
in terms of the codomain instead of the range because we do not actually know the range. 
Another reason is so that we can compare several functions that have different ranges . For 
instance, the functions f(x) = x2 and g(x) = x3 (both defined for real numbers x) have 
different ranges, but they can both be viewed as having codomain IR, thus permitting us to 
ask such questions as: Is f(x) always less than g(x)? 

The concept of "function" evolved over several centuries; some earlier definitions are 
listed by Riithing [1984] . 
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1.32. An ordered pair is an ordered list (y1 , y2 )  consisting of two mathematical objects 
y1 , Y2 , which may or may not be different from each other. The ordered pair is then a new 
mathematical object. For some purposes in set theory (discussed in 1 .46) ,  it is convenient to 
view an ordered pair as a special kind of set; the ordered pair (y, z) can be represented by the 
set { {y} , {y, z } } .  This representation (which is not used in most branches of mathematics 
outside of set theory) preserves the essential property of ordered pairs: Two ordered pairs 
(y1 , y2 ) and (z1 , z2 ) are considered to be equal (i .e. , to be representations of the same 
mathematical object) if and only if Y1 = z1 and Y2 = z2 . 

More generally, for any nonnegative integer n,  an ordered n-tuple (or finite sequence, 
with length n) is a list of n objects - i.e . , an object expressed in any of the forms 

where y1 , Y2 , . . .  , Yn are any mathematical objects. The notation (Yj ) can only be used 
if the value of n is understood. There are several ways to represent n-tuples in terms 
of other objects (and we usually do not need to concern ourselves about which of these 
representations is being used) . One representation is as an iteration of ordered pairs: 
(x1 , X2 ,  . . .  , Xn ) = ( (xi , X2 , . . .  , Xn _ I ) , Xn ) · 

Another way to view an ordered n-tuple is as a function with domain { 1 ,  2, 3, . . .  , n } ;  its 
value at the argument j is Yj · Thus, if we represent the same function by J, we will have 
f (j) = Yj · In particular, an ordered pair may be viewed as a function with domain { 1 ,  2 } .  

r y�n� 1 -

An ordered n-tuple can also be written as a column, as in This notation is 

used chiefly when the Y] 's are numbers, but it may be used for other Yj 's as well. 
A sequence (or infinite sequence) is an object of the form 

(yl , Y2 , Y3 ,  . . .  ) = (yj : j E N) = (yj )�l = (yj ) · 
A sequence is a function with domain N. Again, the notation (yj )  can only be used if the 
choice of the domain is understood. A sequence (yk )  is a subsequence of a sequence (xj ) 
if Yk = x'Pk for some positive integers 'PI < 'P2 < 'P3 < · · · . For instance, ( 1 ,  3, 9, 27, 81 ,  . . .  ) 
is a subsequence of ( 1 ,  3, 5, 7, 9, . . .  ) .  

For finite and infinite sequences, i t  is understood that the order of the objects i s  being 
noted. Thus, two finite or infinite sequences ( x j )  and (Yj ) are considered to be equal if and 
only if they have the same length and satisfy Xj = Yj for all j. The unordered sets { 1 ,  2} 
and {2 , 1} are considered to be the same, but the ordered pairs (1 , 2) and (2, 1 )  are different . 

We now generalize. Any function with domain A may be viewed as a "A-tuple" 

where Y>-. is the value of the function at the argument >.. Again, the notation (Y>-. ) can only 
be used if the choice of A is understood. The notation of A-tuples is used mainly when A 
is equipped with some sort of ordering (see especially 7.6 ) ,  but that is not a requirement . 
The object Y>-. is called the >.th component (or element or entry or value) of the A
tuple. In particular, in the ordered pair (x, y) , the objects x and y are the first and second 
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component , respectively. We may sometimes refer to  (Y>.. ) as a parametrized set; then A 
is the parameter set. 

We may occasionally write A =  {a , ;3 , '"f , . . .  } and (y>.. ) = (yo: , Yf3 , y'Y , . . .  ) ,  where the 
indices a, ;3, '"f, . . .  are intended to represent typical elements of A. If interpreted properly, 
this notation is occasionally useful, because it emphasizes the conceptual similarity between 
n-tuples and more general functions. However, this notation is not standard and should 
only be used with caution. It may give some readers the impression that the parameter set 
A is a sequence, but that meaning is not intended. 

Throughout this book, we use braces { } for unordered sets and parentheses ( ) for 
sequences or other parametrized sets. Note that the mathematical literature does not 
always observe this notational convention. 

1 .33. The product of n sets 51 , 52 , . . .  , Sn is the set of ordered n-tuples 

n 
IT si = Sl x S2 x · · · X Sn = { (xl , X2 , · · · , xn) :  Xj E Sj for all j } .  
j= l  

The product o f  a sequence o f  sets S1 , S2 , S3 , . . .  i s  the set o f  sequences 

00 

IT sj = sl X s2 X s3 X . . .  = { (xl , X2 , X3 , . . .  ) : Xj E sj for all j } .  
j=l 

The product of an arbitrary collection of sets (S>.. : ,\ E A) is  the set 

IT S>.. = { (y>.. )>.. EA : Y>.. E S>.. for all .-\ } .  
>..EA 

In other words, it is the collection of all functions f : A ----+ U>..EA S>.. that satisfy f(.-\) E S>.. 
for each ,\ E A. This collection of functions may also be viewed as a collection of A-tuples; 
if we write A =  {a , ;3, '"f, . . .  }, then the product fLEA S>.. may be written as 

Sa X Sr, X s'Y X . . . = { (xa , XfJ , X'Y , . . .  ) : Xa E SO/ , Xf3 E sf3 , x'Y E s'Y , . . .  } .  

This representation should only be used with caution, as noted in 1 .32. 
We emphasize that an ordering on A may or not be present ; it may be stated explicitly 

or may be implied in a particular context ; it may be of great or small importance, in any 
particular context . The set A x  B is not the same as B x A, but for some purposes A x  B 
is "essentially the same" as B x A, and a rearrangement of ordering may be clear in some 
contexts. It is convenient to be able to say that 

is "essentially the same" as 

for some purposes, whenever { A1 , A2 }  is a partition of A ,  but this equation is only valid 
after an obvious rearrangement of the ordering of A and removal of some parentheses. 
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1.34. Associated with any product of sets P = ILEA S>-. is  another collection of mappings. 
For each >. E A, the >.th coordinate projection is the surjective mapping 7r>-. : P -+ S>-. 
given by 

7r>-. (f) = !(>-) or 

depending on whether we view ILEA S>-. as a collection of functions f with domain A or as 
a collection of A-tuples. 

Notations for this mapping vary throughout the literature; the notation 7r>-. will be used 
for coordinate projections throughout most of this book. If A is the set { 1 ,  2, . . .  , n}  or 
N, then the jth coordinate projection will be denoted by 7rj ; it is the map that takes the 
n-tuple (x1 , x2 ,  . . .  , xn) or the sequence (x1 , x2 , x3 , . . .  ) to Xj · 

The term "projection" has other meanings; see for instance 8 .12 and 22.45. 

1 .35. When all the S>-. 's are equal to one set S, then their product ILEA 5>-. may also be 
written as 

SA = {f : f is a function from A into S} .  

It  is  called the Ath power of S. It  is  related to, but should not be confused with, the 
power set of S; see 1 .21  and 2.20.k. 

If A contains just n elements for some positive integer n, then sA may also be written 
as sn . 

1 .36. The graph of a function f :  X -+  Y is the set of ordered pairs 

Graph(!) Gr(f) { (x ,  f (x)) : X E X} c X x Y. 

We sometimes identify a function with its graph; with this viewpoint, a function from X 
into Y is simply a subset of X x Y with the property that each element of X is the first 
component of one and only one of the ordered pairs that are members of X x Y .  

Thus, a function may be viewed as a set of  ordered pairs. On the other hand, we 
noted in 1 .32 that an ordered pair may be viewed as a function with domain { 1 ,  2 } .  To 
avoid confusion or circular reasoning, generally we do not adopt both of these viewpoints 
simultaneously. 

1 .37. Degenerate examples. The empty function is the rule that makes no assignments; 
its domain and graph are both the empty set. 

If S is any set, then 5° = { 0} ,  since the only rule assigning to each element of 0 a 
corresponding element of S is the empty function. The set 5° is also denoted 5° . 

If S is any nonempty set , then 08 = 0, since there is no rule that assigns to each 
element of S a corresponding element of 0.  

We emphasize that 0 =f. { 0} .  

1 .38. An example using products. Any intersection of  unions can be expressed as a union 
of intersections, and conversely: For any sets C and A1 (r E C) and S1,o: (a E A1 ) , we 
have n u 

I E  C a E A1 
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and u n s,,n n U s,Jhl · 
I E  C a E A, 

Note that if C and the A1's are finite sets, then TI,EC A, is also a finite set; hence 

any finite intersection of finite unions can be represented as a finite union of 
finite intersections, and conversely. 

An analogous statement is not true for countable intersections and unions; see the remarks 
in 13. 10. 

1.39. More notations for functions. 
a. The symbol r---+ stands for "maps to," and is sometimes used to indicate by individual 

values the rule that defines a function. For instance, the function defined by f(x) = x2 
could also be written as x r---+ x2 . 

b. In some cases the rule defining a function f is given explicitly (as by x r---+ x2 ) .  In other 
cases the rule is only given implicitly or indirectly, and it may be necessary to verify 
that the function is well defined, i .e . ,  that the description of f does in fact determine 
a function. In some cases we do not specify the rule, but simply postulate its existence; 
this is the effect of the Axiom of Choice - see (AC3) in 6 . 12 .  

c. A function f may also be  denoted by the expression "f ( ·  ) , "  with the raised dot showing 
where the argument should be inserted. This notation is useful in more complicated 
expressions. For instance, if r is a mapping from X X y into z, then 

• for each fixed x E X we obtain a mapping Cf'x = f(x, ·) : Y ---'> Z, defined by 
y f-+ r(x, y) ,  and 

• for each fixed y E Y we obtain a mapping Wy 
x r---+ r(x, y ) .  

r( · ,  y) X ---'> Z, defined by 

Thus the one function r determines two families of functions, { Cf'x : X E X} and 
{ Wy : y E Y} .  The functions in one family have the other family as their domain. We 
may say that these two families are dual to one another since each family determines 
the other. 

It should be noted that the different functions Cf'x , Cf'x' are not necessarily distinct ; 
it is possible for two different points x, x' in X to have the same action on Y, and 
yet differ in some other respect that is not under consideration. Thus the mapping 
x r---+ Cf'x , from X to zY , is not necessarily injective. 

When two families of functions are dual to each other, notations such as ( , ) or 
( , ) are often used. Thus, f(x, y) might be written as (Cf':�: : Wy) ,  or perhaps as (x, y) . 

d. Let f be a function. Some other notations for f (x) are 

• f:r - used as in 1 .32, especially when X = N. However, be aware that fx has 
other meanings as well; for instance, it can mean 8f j8x, the partial derivative of 
f with respect to x. The reader must interpret "fx" from the context . 
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• fx � used especially when f is linear (see Chapter 1 1 ) .  However, this simple 
juxtaposition of symbols also often means composition or multiplication. Again, 
the reader must interpret "fx" from the context. 

1 .40. A binary operation on a set X is a mapping from X x X into X.  It is often 
written in the form (x, y )  �----+ xDy, for some symbol D. Familiar examples are addition (+) 
and multiplication ( · )  on IR, and intersection (n) , union (U) , and symmetric difference (6) 
on P(O) for any set 0. 

A binary operation D is associative if 

x D (yDz) = (xDy) D z for all x, y, z E X. 
When this condition is satisfied, then parentheses are not needed; both sides of the equation 
above can be represented more simply as xDyDz. By repeated uses of this rule, we find 
that parentheses are not needed in an expression such as XI Dx2 D · · · Dxn for any positive 
integer n.  

A binary operation D is commutative, or Abelian, i f  

x D y  = y D x  for all x, y E X. 

If the operation D is both commutative and associative, then the value of an expression 
such as XI Dx2D · · · Dxn does not depend on the order of the xy 's. 

In some instances, when the meaning is clear, the symbol D may be omitted altogether 
� i.e. ,  a binary operation is indicated by juxtaposition of the arguments, thus: (x, y) �----+ xy. 
A function written this way is often called multiplication, although its behavior may differ 
significantly from the behavior of multiplication of real numbers � e.g. , it need not be 
commutative; see for instance 2.3. 

Another symbol commonly used for a binary operation is "+," called addition. Alge
braists occasionally use + for a noncommutative operation, but analysts generally do not. 
In this book addition ( +) will always denote a commutative operation. 

When addition or subtraction are used for binary operations, they customarily are ap
plied last, i .e . ,  after any other operations in the expression. For instance, ax + b - c/d is 
generally interpreted to mean (ax) + b - (c/d) . 

Let D be a binary operation on a set X,  let S be a set, and let f :  S x X ----+ X be some 
function. We say that f distributes (or is distributive) over D if 

f(s , xDy) = f(s , x) D /(s , y )  for all s E S and x, y E X. 
A familiar example is that, in ordinary arithmetic of real numbers, multiplication distributes 
over addition � that is, s (x + y) = (sx) + (sy) . Another example was given in 1 .29.a; 
further examples will be given in later chapters. 

1.4i.  Let X and A be sets. By a A-ary operation on X we shall mean any mapping 
from xA into X.  Such a function may be written as f = f(xa , Xf3 , X-y , . . .  ) ,  where A = 
{a, (3, "'/, . . . } . We may consider the point (X a ,  x f3 ,  x-y , . . . ) E X A as the single argument of 
f, but alternatively we may view f as having many arguments Xa , Xf3, X-y , . . .  E X. We may 
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refer to the ath argument of f, the ;3th argument of f, etc . The set A (or the number of 
elements in A, if it is finite) is called the arity of the operation. 

A binary operation (defined in 1 .40) is the same thing as a 2-ary operation. We note a 
few other important cases: 

• When A is a finite set, with n elements, then a A-ary operation is also called an n-ary 
operation; it may be viewed as a mapping from X x X x · · · x X ( n factors) into X. 
Typically, i t i s written in the form y = f(x1 , x2 , o o . , xn ) · We may consider i t to be 
a function with n arguments in X - the first argument , the second argument , etc. 
Operations that are n-ary for finite n are also called finitary operations. 

• A 1-ary operation on X is a mapping from X into X.  It is also called a unary 
operation. Typical examples are x f-.-> -x (for numbers) or 5 f---> C5 (for subsets of a 
given set ) .  

• I t i s occasionally useful to view a specially selected member of a set X (such as the 
number 0, in IR) as an "operation." Since X0 = X0 = { 0} is a singleton, a 0-ary 
operation on X is a function from a singleton into X - i .e . , it is a constant member of 
X.  In effect , it is a function with 0 arguments. It is also called a nullary operation. 

• The set A does not have to be finite. For instance, an N-ary operation on X is a 
mapping from XN into X - that is, a mapping that takes each sequence of elements 
of X to an element of X.  Let X =  :P(O) for some set 0; then 

00 

(51 , 52 , 53 , 0 0  . )  f-.-> U 5j 
j=1 

and 
DO 

(51 , 52 , 53 , 0 0  . )  f-.-> n 5j 
j=1 

are two N-ary operations on X that are important in measure theory. 

ZF SET THEORY 

1 .42. Remark. This subchapter can be postponed; it will not be needed until much later 
in the book. 

1 .43. How big can sets be? As we remarked in 1 . 1 1 ,  we will attempt to avoid self-ref
erencing statements. We must also avoid certain kinds of self-referencing definitions of sets. 
Defining sets in a self-referencing way can lead to sets that are too "big" to be meaningful. 
This is evident in the following paradox. 

Russell's Paradox. It seems that some sets are members of themselves. For 
instance, the collection of all sets that can be described in fewer than 1 00 words 
of English is a set that has just been so described; and the collection of all sets 
that are mentioned in this book is a set that has just been mentioned. Let us 
call such sets "self-inclusive." 
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On the other hand, some sets do not include themselves. For instance, the 
collection of all pages in this book is a set of pages; it is not a page. We shall 
call such sets "non-self-inclusive." 

But now what about the collection of all non-self-inclusive sets? Is it a 
member of itself? It is if it isn't , and it isn't if it is - a contradiction either 
way. 

1.44. A few ways to avoid paradoxical sets. In 1 . 13 we defined a set to be "a collection of 
objects," but that definition leads to Russell's Paradox. A slightly better definition is: A 
set is a collection of already fixed objects - i.e. , the objects must already be fixed before 
the collection is formed (Scott [1974] , Shoenfield [1977] ) .  This precludes self-referencing. 
With this definition, the collection of all sets is not a set. Unfortunately, this "definition" 
is not very precise; we shall give it some precision in 5 .53. 

A safer but more restrictive method for avoiding excessively large collections is by spec
ifying in advance some manageable collection V of sets, and then prohibiting the use of 
any sets outside that collection. The collection V may be smaller than what one ordinarily 
thinks of as "all sets," but it may still be large enough for all the applications one is in
terested in. Thus, without substantial inconvenience, one may replace the term "set" with 
"member of V ." The collection V is then called the universe (or universal set, if it is a set) . 
In many contexts in mathematics, a universe is not specified explicitly or even mentioned; 
one simply assumes that the universe being used is large enough for one's applications. In 
other contexts it is useful to discuss the choice of the universe and even to specify it explic
itly; see for instance 1 .48, 5.53, 5.54, and 9.39. One small, easily manageable universe is the 
"superstructure" over JR., which is commonly used in nonstandard analysis; it is described 
in 14.65. 

The most commonly used universe is the one described by the axioms of conventional 
set theory, ZF + AC. This stands for Zermelo-Fraenkel set theory, as modified by Skolem, 
plus the Axiom of Choice. We shall list the axioms of ZF in 1 .47; we shall introduce AC in 
6 . 12 . Conventional set theory does not permit Russell 's Paradox, and it apparently does not 
lead to any other contradictions either. But we can only say "apparently;" the uncertainty 
of this is discussed further in 14.71 and the sections thereafter. 

1 .45. Although we shall only apply the term "set" to members of our universe V, it 
is grammatically convenient to be able to discuss other, much bigger collections, at least 
informally - e.g. , to discuss as a "collection" those sets that satisfy a certain property. 
Any collection of objects will be called a class, but we shall distinguish between two types 
of classes: 

• A set is a member of the universe V. Intuitively, it is a class of ordinary size. 
• A proper class is a collection that is not a member of V. Intuitively, it is a much 

bigger class, one that is too big for us to safely apply to it the rules for sets. 

A set can be a member of something; a proper class cannot . We refuse to consider proper 
classes as members of anything. 
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Thus, V is the collection of all sets. It is a proper class, but not a set. We cannot form 
the "set of all sets" or the "class of all classes," so Russell 's Paradox does not arise. 

In set theory, it is easy to give examples of proper classes - e.g . , the class of all singletons 
or the class of all ordinals (investigated later in this book) . Outside of set theory, examples 
are harder to produce. The class of all linear spaces and the class of all topological spaces 
are proper classes, but these examples are somewhat contrived - for instance, a theorem 
about topological spaces usually only involves a few topological spaces at a time; it can be 
formulated so that it does not require us to simultaneously consider all topological spaces. 
However, occasionally a proper class really is needed outside set theory. For instance, a 
convergence structure on a set X (see Chapter 7) can be described by a "limit" function 
defined on the collection of all proper filters on X,  or defined on the collection of all nets on 
X.  The net approach has some intuitive advantages - nets are very much like sequences 
- but the net approach must be used with some caution: The collection of all nets on X 
is a proper class, not a set. 

We will need proper classes only a few times in this book, so we shall not develop a 
systematic theory for them. We shall simply use them in an ad hoc fashion, in ways that 
obviously make sense; it should be clear in each context that we are avoiding self-referencing 
arguments such as Russell 's Paradox. The usual operations of sets make sense for classes 
sometimes, but not always, and it is sometimes convenient to apply the terminology of sets 
to a few classes. For instance, it usually makes sense to consider the intersection of two 
classes. By a function of classes we shall mean a mapping f : M ----+ N from one class into 
another - i.e . , a rule that assigns to each M E M some particular f(M) E N; see 1 .50, 
5 .51 ,  5 .53, and 6.23. Generally the graph of such a function f is not a set of ordered pairs, 
but rather a class of ordered pairs. 

1 .46. What are sets made of? A typical set is {0 , 1, 2, -5/3, 1r } ;  this set has five elements. 
For most purposes in "ordinary" mathematics - i.e. , outside of set theory and logic -
we do not think of the individual numbers 0, 1 ,  2, -5/3, 1r as sets that may contain other 
objects. Instead we think of these numbers as indivisible; for this reason we may refer to 
them as atoms (or urelements or individuals or primitive objects) . Likewise, we generally 
do not think of an ordered pair ( -5/3, 1r) as a set. 

A set need not contain just atoms - it may contain other sets for its members. For 
instance, {0, { 1 , 2} , { -5/3, 7r } }  is a set whose members are sets. Such sets arise naturally 
in analysis; for instance, a topology or a a-algebra on a set X is a collection of subsets of 
X (see 5 . 12 and 5 .25) . The set of all topologies on X is a set of sets of sets. "Ordinary" 
mathematicians - i.e. , those not involved in logic or set theory - seldom need to go to 
any levels deeper than this. However, logicians and set theorists quite commonly have sets 
nested arbitrarily deep; for instance, consider the ordinals 0, {0} ,  {0 ,  {0}  } ,  . . .  described 
in 5 .44. 

For most purposes in most branches of mathematics, it does not matter whether "3" is 
an indivisible object or a set containing three objects. What matters is how we use 3. We 
may define "3" in any way we wish, provided we define "+" so that 3 + 3 = 6 .  For most 
mathematicians, it is simpler to view "3" as an indivisible object, and our language reflects 
that viewpoint. The elements of a set are also called its points, whether those elements 
are known to be indivisible or not . The points of the set {0 ,  {0 ,  1 } }  are 0 and {0 ,  1 } .  
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Although atoms seem natural to most mathematicians, they are not really needed, and 
in some studies of set theory it is customary to dispense with atoms altogether. All familiar 
objects can be represented solely in terms of sets, without any other basic building blocks. 
Some details of this representation will be worked out in later chapters, but we can outline 
it now: 

• The nonnegative integers can be built up from the empty set, as in 5.44. 

• An ordered pair (x, y) can be represented in terms of sets and an ordered n-tuple in 
terms of ordered pairs, as discussed in 1 .32. 

• Functions and relations can be represented as sets of ordered pairs; see 3.2 and 1 .36. 

• A product of sets is a set of functions, and a finite or infinite sequence may be viewed 
as a function; see 1 .33. 

• A negative integer can be represented by an ordered pair involving a positive integer. 

• Rational numbers may be represented in terms of pairs of integers (see 8 .22) . 
• Real numbers may be represented in terms of sets of rationals (see 10. 1 5.d and the 

constructions used in that proof) .  

Thus, all familiar objects can be represented as sets. 
However, to assert that 

all objects can be represented as sets 
is to make an additional assumption about our universe of "objects." This is one of the 
assumptions of conventional set theory: All of its "objects" are sets, and all the members of 
sets are sets, so conventional set theory is atomless. If we omit this assumption and permit 
the existence of objects that cannot be represented as sets, we obtain a slightly weaker 
system of axioms, known as set theory with atoms (or set theory with urelements) ;  it is 
occasionally useful in model theory. 

This metaphor may be helpful: Atomless (conventional) set theory is like a great collec
tion of transparent bags, some of which are empty and some of which contain other bags 
- which may in turn contain other bags, and so on; there is nothing in the system except 
bags, and nothing to distinguish between the bags except the different combinations of 
bags-within-bags that they contain. In set theory with atoms, the bags may also contain 
beads. The beads do not contain anything, but can be distinguished by their markings. 

Whether we view certain objects - e.g. , the nonnegative integers - as sets or as atoms 
depends on our viewpoint; different branches of mathematics find different viewpoints ad
vantageous. It is sometimes convenient to label the real numbers or other familiar objects 
as "atoms" and treat them as indivisible, even though those objects could instead be rep
resented as sets. Then the assumptions that underlie our work are really the assumptions 
of conventional, atomless set theory, although "atoms" may enter into our terminology. An 
example of this is given in 1 4.65. (In our metaphor, there is still nothing in the system but 
bags, but we seal some of the bags shut and mark them on the outside, and agree to treat 
them as beads. ) 



ZF Set Theory 29 

1.47. Zermelo-Fraenkel Set Theory. Most of the axioms of ZF are just formal state
ments that correspond to our informal intuition about sets. (An exception is the Axiom of 
Regularity, which will appear at the end of our list of axioms; it is somewhat nonintuitive 
and nonconstructive . ) In the next few paragraphs we shall list the axioms of set theory 
to give a general impression, but later in this book we shall usually rely on the reader's 
intuition rather than on the list of axioms. Further discussions of ZF set theory can be 
found in books on set theory; for elementary treatments see, for instance, Halmos [ 1960] or 
Stoll [ 1963] . 

In some later chapters we shall briefly consider modifications of conventional set theory. 
For that reason, the reader is encouraged to put aside the usual intuitive meaning of "set" 
and view the axioms below as a self-contained theory that does not refer to anything familiar. 
To help put aside familiar intuitive notions of sets, some readers may find it helpful to glance 
ahead to the peculiar example in 1 .48. 

We assume that we are given some collection of objects, which we call "sets." We 
assume that some pairs of these "sets" are related by a relationship, called "is a member 
of," denoted E .  That is, when S and T are "sets," then the statement "S E T " is either 
true or false. We assume that this collection of "sets" and this relationship "E" satisfy 
certain axioms, listed below. We may then explore the consequences of those axioms. 

The statement A <::: B is an abbreviation for the statement that every member of A is 
also a member of B. That is, A <::: B is defined to mean x E A =;. x E B. 

There are at least two different ways to deal with equality of sets. Some books take 
equality ( =) to be a logical symbol with its customary properties, as listed in 14 .27.a. Two 
objects are equal if and only if they are not distinct; thus equals can be substituted for 
equals. In such books, equality ( = ) and membership (E )  are already meaningful before we 
get to the relation between them. The relation between them is taken to be the first axiom: 

Axiom ( called "Extensionality " in some books) . Two sets are the same if and 
only if they have the same members. That is, (A = B) � ( (x E A) � 
(x E B) ) .  

Other books follow a slightly different approach, which we shall follow here. Equality 
of sets is taken, not as a primitive notion, but as a defined notion. We define two sets to 
be equal when they have the same members. Thus, A = B means x E A � x E B. 
With this definition, we cannot automatically assume that equality ( = ) has all of its usual 
properties; we must not be misled by the fact that the symbol we are using ( = ) is a familiar 
symbol. From our definition of equality of sets (and our understanding of the logical symbol 
"¢?" ) ,  it is easy to prove that (i) A = A ,  ( ii) A = B =;. B = A,  and (iii) A = B and 
B = C imply A =  C. However, the last two axioms in 14.27.a - which state that "equal" 
quantities can be substituted for one another in any expression - do not follow directly 
from our definition of equality of sets, and so they will require some assumption about sets. 
One particular instance of the substitution principle is: 

Axiom of Extensionality. If A =  B and A E C, then B E  C. 

It turns out that this is all we need - the general substitution principle (described in the 
last two axioms of 14 .27.a) can be proved from our Axiom of Extensionality, by induction 
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on the length of the formulas involved. We shall omit the proof; it can be found in Takeuti 
and Zaring [1982] . 

The next few axioms are formal restatements of some of our basic rules about permitted 
methods for forming sets, discussed informally earlier in this chapter. 

Axiom of the Power Set. If S is a set, then there exists a set whose members 
consist precisely of the subsets of S. That set is denoted by P(S). 

Axiom of Replacement. Let f be a function defined on a set X - that is, a 
rule that assigns to each element x E X  some set f(x) . Then {f(x) : x E X} is 
a set . 

Axiom of Comprehension (or Separation) . If X is a set, and P(x) is a 
property that is true or false for each x E X ,  then { x E X : P (  x) is true} is a 
set. That is, there exists a set Y such that x E Y {==} [x E X  and P(x) is 
true] . This can also be stated as: The intersection of a set and a class is a set. 

Though the Axiom of Replacement and the Axiom of Comprehension are usually pre
sented as separate axioms, some mathematicians formulate their language in a slightly 
different fashion, so that one of these axioms becomes a consequence of the other; see Bell 
and Machover [ 1977] . Actually, we have skipped over some of the complexity of the last 
two axioms. We shall not explain at this point precisely what is meant by "function" or 
"property;" those terms mean approximately what one would expect them to mean, but for 
axiomatic set theory the function f or property P must be expressed in a formal first-order 
language. (First-order languages are introduced in 14 . 15 and thereafter; see also the related 
comments in 14.67.) This actually gives infinite schemes of axioms - one for each function 
f and one for each property P .  

Axiom o f  the Empty Set. There exists a set that has no members; i t  is 
denoted 0 and called the empty set. 

We could replace this axiom with the assumption that there exists some set, for then the 
existence of the empty set follows from the Axiom of Comprehension by taking P(x) to 
be the property x -=/= x. Note that the empty set is unique, since two sets with the same 
members are equal; thus we are justified in introducing a symbol " 0 " for it. 

Axiom of Unions. If S is a set, then there exists a set Un(S) whose members 
are precisely the same as the members of the members of S. That is, Un(S) has 
the property that [A E Un(S)] {==} [there exists some B E  S with A E B] . 

We call Un(S) the union of the members of S - or more briefly, the union of S. To 
understand this axiom, keep in mind that all the elements of S are sets. Here are a few 
examples: If S = {A}  is a singleton, then Un(S) = A; if S = {A1 , A2 , A3 ,  . . .  } ,  then 
Un(S) = A1 U A2 U A3 U · · · . If we use either Zermelo's or von Neumann's definition of the 
intege�:s (see 1 . 16) ,  then Un(n) = n - 1 for positive integers n, and Un(O) = 0 also. 

Axiom of Pairing. If S and T are sets, then there exists a set whose only 
members are S and T; it is denoted { S, T} .  
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Most books on set theory present the Axiom of Pairing as a separate axiom, but in fact we 
can make it a consequence of the previous axioms, as follows: First, following von Neumann, 
define 0 to be the empty set; define 1 to be the power set of 0; define 2 to be the power set 
of 1 .  Thus 

0 =  0 ,  1 = {0} ,  2 = {0 ,  {0} } .  

Now "2" i s  the name of a set that contains two elements; those elements are "0" and "1 . "  
Define a function f on 2 by taking f (O) = S and f(1 )  = T. By the Axiom of Replacement, 
{S, T} is a set . 

The Axiom of Pairing can be used repeatedly, to define the remaining nonnegative 
integers 3, 4, 5, . . .  , with Zermelo's definition or von Neumann's definition. However, this 
procedure only yields finitely many nonnegative integers, since the ellipsis ( . . .  ) of informal 
mathematics is not permitted in formal set theory. To get all of the nonnegative integers 
at once - i.e. , to get the set w = {0, 1 ,  2, 3, . . .  } - requires something more. The set of 
nonnegative integers can be constructed using 

Axiom of Infinity. There exists a set S with 0 E S, and such that A E S =? 
{A} E S. 

The set S given in the axiom is not quite the set of integers that we're after. However, we 
can construct w = N U {0} this way: Call a set S "infinity-like" if it satisfies 0 E S and also 
satisfies A E S =? {A} E S. The Axiom of Infinity guarantees the existence of at least one 
infinity-like set , So . Let 

P(x) = "for every y, if y is infinity-like, then x E y" . 

The Axiom of Comprehension guarantees that 51 = {x E 50 : P(x)} is a set. Clearly, S1 
is the intersection of all infinity-like sets. It can be shown that S1 is the desired set w; we 
omit the details. 

The preceding axioms merely formalize the intuition about sets that we may have ob
tained from experience with finite sets. The one remaining axiom of ZF set theory is not 
just a formalization of our intuition, however: 

Axiom of Regularity (or Foundation, or Restriction) . If X is a non empty 
set , then X has a member that does not meet X - i.e . , there exists at least one 
set A E X that satisfies A n X = 0.  

The set A whose existence i s postulated by the Axiom of Regularity i s sometimes called an 
E-minimal element of X (or more simply, a minimal element) , for this reason: A is a 
member of X, and there does not exist another set B, also a member of X, that satisfies 
B E  A. 

The Axiom of Regularity precludes the possibility of certain counterintuitive sets; see 
1 .49. It will be clear from the reformulations in 1 .50 and 6.31 that the Axiom of Regularity 
is concerned with sets of sets of sets of sets of . . . . Since such deep nesting does not occur 
outside of set theory, the Axiom of Regularity has little effect on "ordinary" mathematics; 
it is merely a technical convenience that helps set theory work properly. It can be replaced 
with alternative axioms; see Aczel [1988] and Barwise and Etchemendy [1987] . 
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1 .48. Pathological example. Since ZF's axioms are mostly in agreement with our intuition, 
we would not come to understand those axioms better by looking at examples that satisfy 
the axioms. Instead, we shall now present a peculiar little universe that violates most of 
the axioms. This example is a modification of one by Krivine [ 1971] . 

There are seven "sets" in our peculiar little universe, denoted by A, B, C, D, E, F, G. 
The membership relation E is represented by an arrow in the diagram below - we say 
S E T if there is an arrow from S to T. Thus, the only memberships in our miniature 
universe are those listed beside the diagram. 

® ® 

1/ � © @ ® 

l/ 1  ® © 

memberships: 
C E A 

A, D, E E B 
B E c 
c E D 

F, G E E 
D, G E F 

F E G 

As usual, we define S � T to mean that X E S =} X E T. With this definition, the 
only subset relations are: 

A � D, D � A, G � E, 

plus the fact that each set is a subset of itself. Most of the axioms of ZF are violated: 

• "Equality" doesn't mean what we would expect - the sets A and D are distinct, yet 
they have the same members, so they are "equal." 

• The Axiom of Extensionality is violated: The sets A and D are "equal," yet they are 
not members of the same sets - we have D E F but not A E F. 

• The Axiom of the Empty Set is violated: Each of our "sets" has at least one member. 

• The Axiom of Pairing is violated: There is no set whose only members are C and G. 

• The Axiom of the Power Set is violated: The sets that are subsets of D are the sets 
A and D, yet there is no set whose only members are A and D. 

• The Axiom of Unions is violated: The members of B are A, D, E; the sets that are 
members of A, D, or E are the sets C, F, G; yet there is no set whose only members 
are C, F, G. 
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• The Axiom of Comprehension is violated: Let P(X) be the statement "C E X." Then 
the class {S E B :  P(S) } is not a set. 

• The Axiom of Regularity is violated: The only members of E are F and G, yet neither 
of those sets is disjoint from E. 

• The Axiom of Infinity, as stated in 1 .47, only makes sense i f we have already assumed 
the Axiom of the Empty Set . However, it is clear that our universe of seven "sets" 
does not yield an infinite set or an infinite collection of sets. 

1 .49. Consequences of regularity. In ZF set theory, none of the following can occur: 
(i) T E T for some set T. 

(ii) Tn E Tn- 1 E Tn-2 E · · · E T1 E To = Tn for some positive integer n and sets 
T1 , T2 , . . .  , Tn · 

(iii) · · · E T3 E T2 E T1 E T0 for some infinite sequence of sets To , T1 , T2 , . . . . 
Proof. Either of conditions (i) and (ii) implies (iii ) ,  since the sequence in (iii) may repeat 
itself. If T0 , T1 , T2 , . . .  is a sequence as in ( iii) , let X =  {T0 ,  T1 , T2 , . . .  } ;  by the Axiom of 
Regularity some member of X does not meet X - a contradiction. 

1 .50. ( Optional. ) We state without proof two more interesting consequences of the Axiom 
of Regularity. 

Principle of Membership Induction. Suppose P( · )  is a property of sets 
that is E-inductive - i .e . , that has this property: 

Whenever P( · )  is true for all members 
of a set X, then P(X) is also true. 

Then P( · ) is true for all sets. 

Principle of Membership Recursion. Let p be a function of classes, from 
{sets} x {sets} into {sets} . (That is, for any sets S, T suppose some set p( S, T) 
is specified. ) Then there exists a unique map F : {sets} ---+ {sets} satisfying 

F(X) = p( X, {F(A) : A E X}) for each set X.  

( In other words, i t  is possible to define F(X)  for all sets X,  using a rule that 
specifies F(X) in terms of the values of F on the members of X. )  

We omit the proofs. Proofs can be found, for instance, in Johnstone [1987] and Kunen 
[1980] . Actually, Johnstone shows that the Principle of Membership Induction is equivalent 
to the Axiom of Regularity. 
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Functions 

2.1. Functions were defined in 1 .3 1 and in 1 .36; they will be studied in greater depth in 
this chapter. 

SOME SPECIAL FUNCTIONS 

2.2 .  A few numerical functions. We assume the reader has at least an informal familiarity 
with R A formal introduction to � is given in Chapter 10; we shall not use any of the 
deeper properties of � until then. 

a. If Urn , Urn+l , Urn+2 , . . .  Un are real numbers parametrized by consecutive integers m, m+ 

1 , m + 2 , . . . , n ,  then their sum i s 
n 

L Uj = Urn + Um+l + Urn+2 + · · · + Un , 
j=rn 

and their product is 
n II Uj = Um Um+l  Urn+2 · · · Un . 

j=m 

(The letter j may be replaced by any other letter not already in use.) These notations 
will later be applied more generally - not just to sums and products of real numbers, 
but also to sums and products of complex numbers or members of any ring. The 
summation notation will also apply to sums of vectors or sums of members of any 
additive monoid. 

b. Let X be some set . For each subset S �  X we define ls : X -+  {0, 1 }  by 

ls (x) = { � if X E S  
if X E X\S. 

We shall call this the characteristic function of S. Our notation "ls" does not 
reflect the choice of X, which must be understood from context. Note that 

lsnr = Is · lr = min{ls , lr } . 

34 
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Similarly, max{ 1 s ,  1r } is the characteristic function of SUT, and 1 - 15 is the charac
teristic function of CS. Caution: Some mathematicians call 15 the indicator function 
of S or denote it by xs , is ,  Is , or other symbols. Another meaning for the term 
"indicator function" is given in 12 . 18 . 

c. The sign function, sgn : lR --+ { -1, 0, 1} ,  is defined by 

sgn(x) = { � 
- 1  

if X >  0 
if X =  0 
if X <  0. 

It may also be written as sign(x) .  (We mention it again in 15.20.) 
d. For any set X, the Kronecker delta is the characteristic function of the diagonal 

set { (x, x) : x E X} ,  considered as a subset of X x X.  It is usually written with its 
arguments as subscripts. Thus, it is the function 8 : X x X --+ {0, 1 }  defined by 

when x -1- y 
when x = y. 

e. Let r1 , r2 , . . .  , rn be distinct real numbers (or, more generally, distinct elements of any 
field - see 8 . 18) . For k = 1 ,  2 , 3, . . . , n ,  let 

II t - r Lk(t )  = --1 . rk - r j# ] 

Show that L1 , L2 , . . .  , Ln are polynomials of degree n - 1 that satisfy Lk (rj )  = 8jk 
(where 8 i s the Kronecker delta) . These are the Lagrange polynomials. We shall 
use them for a result about linear independence in 1 1 . 15 , which in turn will be used 
for a cardinality proof in 1 1 .35.  

The Lagrange polynomials are commonly used in numerical analysis in the fol
lowing fashion: Let f(t) be any function defined on a set that includes the numbers 

n 
p(t) = L f(rk )Lk (t ) .  

k=l 
Then p( t )  is the unique polynomial of degree at most n that agrees with f on the set 
{ r1 , r2 , . . .  , r n } .  It is called the interpolating polynomial and is used to approximate 
f in various ways. 

2.3. The composition of two functions f : X --+ Y and g : Y --+ Z is the function 
go f :  X --+ Z defined by (go J) (x) = g(J(x) ) .  The symbol "o" may be included for emphasis 
or clarification, but it may be omitted otherwise: g o f may be written "multiplicatively" 
as gf. However, the beginner is cautioned not to assume too much just on the basis of 
notation. For instance, unlike multiplication of real numbers, composition of functions does 
not satisfy the commutative law gf = fg. 

2.4. A self-mapping of a set X is a mapping from X into X.  
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One particularly important self-mapping of X is the identity mapping, denoted i : 
X ---+ X ,  defined by i (x) = x for all x. Of course, the identity maps of different sets X and 
Y are different functions; we may write ix and iy if the distinction needs to be displayed. 
Caution: Some texts - especially on category theory - write the identity map as lx ,  but 
it should not be confused with the characteristic function, defined in 2.2.b. 

For a function f : X ---+ X we may write P = f o J, P = f o f  o J, etc. ;  these are the 
iterates of f. It will sometimes be convenient to also write f1 = f and J0 = ix ; then 
Jm+n = fm o fn for any nonnegative integers m, n. 

If f is a self-mapping of X,  then a fixed point of f is any point x E X such that 
f (x) = x. Note that x is then a fixed point of all the iterates of J, too. Preview: Many 
problems that do not appear to involve fixed points can be reformulated as problems about 
fixed points. For instance, if we are given y and a function f and wish to find a solution 
x of the equation y = f(x) , we may rewrite the equation as g (x) = x, where we define 
g( u) = f ( u) - y + u. This may seem rather contrived, but some problems yield to solution 
in this fashion. Several theorems about fixed points will be developed in later chapters. 

A function f : X ---+ X is idempotent if j2 = f, or equivalently if f ( x) = x for all 
x E Range(!) . Some elementary examples: The absolute value function, the greatest integer 
function, and sgn are idempotent maps from lR into itself. 

An involution of a set X is a function f : X ---+ X that satisfies j2 = ix . Here are 
some examples. The reader should already be familiar with the first few of these; the last 
few are a preview of material in later chapters. 

• f(x) = -x is an involution on lR (or on any additive group) . 
• f(x) = 1/x is an involution on lR \ {0} or on (0, +oo) . 

• S f---7 CS is an involution on P(X) ,  for any set X.  (Later we will generalize this to 
Boolean algebras. ) 

• A f---7 AT i s an involution on certain collections of matrices. 
• a f---7 a is an involution on C; here a denotes the complex conjugate of a. 

2.5. Functions that agree. 
a. If X is a set and S � X, then the inclusion map i : S ---+ X is the map given by 

i (s) = s for each s E S. This arrangement is sometimes abbreviated as i : S � X; for 
emphasis or clarification we may occasionally write it as i : S --L X. Of course, when 
S = X,  then i is simply the identity map, defined in 2.4. 

b. If f : X ---+ Y and S � x-, then the restriction of f to S is the function f IS : S ---+ Y 
that takes the value f(s) at each point s E S. A function f is an extension of a 
function g if g is a restriction of f; note that this occurs if and only if g = f o i for 
some inclusion i .  

c. Two functions h : X1 ---+ Y1 and h : X2 ---+ Y2 with overlapping domains are said to 
agree at a point Xo E xl n x2 if h (xo) = h(xo) .  They are said to agree on a set 
S � X1 n X2 if they agree at every point in S. Two functions differ at a point if they 
do not agree there. 
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Let fr : X ----> YI and h : X ----> Y2 be two functions with the same domain and 
different codomains. (See the following diagram.) Then fr and h agree on all of X 
if and only if ii o fr = i2 o h for some inclusions ii : YI � Y and i2 : Y2 � Y; 
here Y can be any set that contains YI U Y2 . When that is the case, then we usually 
disregard formality and consider fr and h to be the "same" function; but occasionally 
the formal distinction between two such functions is useful. See the related discussions 
in 9.4 and 9.20. 

Two functions fr , h that 
agree on their domain X 

d. A function vanishes at a point or on a set if that function agrees there with the 
constant function 0, where "0" has any of its usual meanings - i.e. , the empty set, 
the real number 0, the vector 0 in some linear space, etc. 

2.6. Recall from 1 .3 1  that a function f : X ----> Y is surjective if its codomain Y is equal to 
its range f(X) .  

A function f : X ----> Y i s injective (or one-to-one, or an injection) i f i t has the property 
that XI -!=- x2 =? f(xi ) -!=- J(x2 ) .  (See the following diagram. )  More generally, a collection 
<I> of mappings defined on X (possibly with different codomains) is said to separate the 
points of X if for each pair of distinct points XI , x2 in X there exists at least one f E <I> 
satisfying f(x i ) -!=- f(x2) · 

If a function f : X ----> Y is injective, then we may define its inverse, a function 
f- I : Range(!) ----> X ,  as follows: for each y E Range(!) , let f- I (y) be the unique x E X  
that satisfies f ( x) = y .  

We say a function f : X ----> Y is bijective (or a bijection of X onto Y, or a one-to-one 
correspondence between X and Y) if it is both injective and surjective. It then follows that 
f- I is also a bijection from Y onto X.  A set S � X x Y is the graph of a bijection from X 
onto Y if and only if S is a set of ordered pairs such that each x E X is the first coordinate 
of exactly one of the pairs and each y E Y is the second coordinate of exactly one of the 
pairs. Of course, whenever f : X ----> Y is injective, then f acts as a bijection from X onto 
Range(!) . 

A bijection from a set X onto itself is called a permutation of X .  
Exercise. Any involution (defined in 2.4) is a permutation. 

2. 7. Let f : X ----> Y be a function. The image (or forward image) under f of any set 
S � X is the set f(S) = {f(x) : x E S} � Y.  Thus the same symbol "f" is also used for 
a mapping from P(X) into P(Y) ; in general this does not lead to any confusion. (In a few 
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X y 

�-----1+- • 
Hf-----1+- • 
�f-------1+- e 

surjective but 
not injective 

X y 

• 
• 

�-----1+- • 
H--1+- • 
�-----1+- • 

injective but 
not surjective 

Chapter 2: Functions 

X y 

• 
• 

-+------1• • 
-+------1• • 
-+------1• • 

bijective 

Examples with Finite Sets 

./t • • 

self-mapping but 
not permutation 

• • 

0�! 
permutation but 
not involution 

• • 

0 0 
involution but 

not identity map 

unusual contexts it can cause difficulty, however; see 14.65. Some mathematicians use a 
slightly different notation, such as f [S] or f : :  S, for the forward image; we shall not follow 
that practice here. ) 

The forward image map preserves some of the basic set operations: 

and U F(S>.) = F (u S>.) 
>.EA >.EA 

The forward image map extends the given mapping f : X --+ Y if we identify each 
singleton in X or Y with its unique member. The range of J, defined in 1 .31 ,  is just the set 
f(X) - i .e . , the image of the domain. 

The notation of forward images can also be applied in one or more arguments of a 
function of several variables. Thus, for a function f : X x Y --+ Z we may write 

f(x, T) = f({x} x T) = f({x} , T) = {f(x, t) : t E T} 
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and similarly 
f(S, T) = f(S x T) = {f(s , t )  : s E S, t E T} 

for sets S <;;; X and T <;;; Y. This notation can also be combined with the notation of 
binary operators. Thus we may write S D T = { s D t : s E S, t E T} .  In particular, 
S - T = { s - t : s E S, t E T} ,  as noted in 1 .24. 

2.8. Let f : X ----+ Y be any function. The inverse image (or preimage) under f of any 
set T <;;; Y is the set f- 1 (T) = {x E X  : f(x) E T} .  If f is injective, then f- 1 (T) is also 
equal to {f- 1 ( t) : t E T} - that is, the forward image of T n Range(!) under the mapping 
f- 1 : Range(!) ----+ X . 

Whether f i s  injective or not, r1 i s  a mapping from :P(Y) into :P(X) .  I t i s somewhat 
better behaved than the forward image - it preserves all the basic set operations: 

r1 (Y) = X, 
For any point y E Y, the set r 1 ( {y}) can also be abbreviated as f- 1 (y) . 

2.9. Further properties of forward and inverse images. Let g : X ----+ Y be some function. 
Then for all sets S, T <;;; X and A, B <;;; Y we have: 

a. g- 1 (g(S)) :2 S. 
b. g(g- 1 (A) ) = A n  Range(g) <;;; A. 
c. Suppose g i s surjective. Then g(g- 1 (A)) = A. Also, A <;;; B ¢==} g- 1 (A) <;;; g- 1 (B) ;  

hence A =  B ¢==} g- 1 (A) = g- 1 (B) .  

DISTANCES 

2 . 1 0 .  For later reference we note this form of the Cauchy-Bunyakovskii-Schwarz in
equality: 

X1Y1 + X2Y2 + · · · + xnyn :0::: Jxi + x� + · · · + x;, VYr + y� + · · · + y; 

for any real numbers XJ , X2 , . . .  , Xn and Y1 , Y2 , . . .  , Yn . Hint for the proof: 0 :0::: L;,h (x;yj -
.T.JY ; ) 2 . A more general form of the CBS inequality will be given in 22.33. 

An important consequence (which will be used in 2 . 12 .a) is: 

J(xJ + YJ F + · · · + (xn + Yn)2 :0::: Jxi + · · · + x?, + VY? + · · · + y; . 

To prove this inequality, multiply both sides of the CBS inequality by 2, then add '£7=1 (x] + 
YJ ) to both sides, then take square roots on both sides. 
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2 . 1 1 .  Definitions. A quasipseudometric on a set X is a mapping d :  X x X ----+ [0, +oo) 
that satisfies d(x, x) = 0 and 

d(x, y) ::; d(x, u) + d(u, y) (triangle inequality) 

for all x, y, u E X.  The number d(x, y) is called the distance from x to y. The name 
"triangle inequality" stems from the fact that in Euclidean geometry, the length of one side 
of a triangle is less than or equal to the sum of the lengths of the other two sides. 

Note that many different distance functions can be defined on any one set X.  For real
world examples, note that distance as the crow flies is different from distance as the taxicab 
drives. For an asymmetric example, consider a taxicab in a city that has some one-way 
streets; the distance from x to y is not necessarily equal to the distance from y to x. 

Except for a few brief remarks in 5 . 15 . i , all of the quasipseudometrics which we shall 
consider in this book also satisfy 

d(x, y) = d(y, x) ;  (symmetry) 

they are then called pseudometrics. A pseudometric that also satisfies 

d(x, y) > 0 when x =I- y (positive-definiteness) 

is called a metric. 
In this book we shall sometimes discuss the positive-definite case and the not-neces

sarily-positive-definite case simultaneously, by writing "pseudo" in parentheses. Any such 
discussion should be read once with the "pseudo" and once without it. This convention 
also applies to G- (semi)norms, F- (semi)norms, and (semi)norms, which are special types of 
(pseudo)metrics introduced in later chapters. 

A (pseudo)metric space is a pair (X, d) consisting of a set X and a (pseudo)metric 
d on X.  We may refer to X itself as a (pseudo )metric space, if d does not need to be 
mentioned explicitly. 

A map p : X ----+ Y ,  from one (pseudo)metric space (X, d) into another (pseudo)metric 
space (Y, e) ,  is called distance-preserving or isometric if it satisfies e (p(xi ) , p (x2 )) = 

d( x1 , x2) for all x1 , x2 E X.  It then preserves all the (pseudo )metric structure of X. If it is 
also injective (always true for metric spaces) , then by a change of notation we may view p 
as an inclusion map that makes X a subset of Y. 

2.12.  Basic examples and properties of metrics and pseudometrics. 
a. The usual metric on IR is d(x, y) = lx - y l , where I I is the usual absolute value 

function. 
For any positive integer n, the most commonly used metrics on IRn (or on en) are 

d1 (x, y) 
d2 (x, y) 

doo (x, y) 

lx1 - YI I + lx2 - y2 l + · · ·  + lxn - Yn l , 
Jlx1 - Y1 l 2 + lx2 - Y2 l 2 + · · · + lxn - Yn l 2 , 
max { lxl - YI I , lx2 - Y2 l , · · · , lxn - Yn l } ,  

for any points x = (xi , x2 , . . .  , Xn) and y = (Yl , y2 , . . .  , Yn) · It is easy to verify that 
these are indeed metrics; for d2 use 2 . 10. 
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The metrics d1 and d2 are special cases of the metric 

where p E [1 ,  oo) ;  that dp is a metric will be proved in 22. 1 1 .  The metrics dp for 
1 ::; p ::; oo may be referred to as the usual metrics on JR.n . They are equivalent, in a 
sense discussed in 22.5, and therefore they are interchangeable for most purposes . 

b. A point x in a metric space (X, d) is isolated if there is some number r > 0 (which 
may depend on x) such that all other points have distance from x at least equal to r . 
A discrete metric on a set X is a metric that makes every point isolated. There are 
many such metrics on a set X,  and some of them have substantially different properties 
- see 5.34.a and 19. 1 l .e. The simplest discrete metric is the following one, which we 
shall call the Kronecker metric: 

d(x, y) { � if X =  y, 
if X -=f. y 

(where 8 is the Kronecker delta) . Some mathematicians call this the discrete metric. 
c. (This example assumes some familiarity with calculus. ) Let X be the set of all Riemann 

integrable (or more generally, Henstock or Lebesgue integrable) real-valued functions 
defined on some interval J <:;; JR. - say on [0, 1 ] ,  for instance. Define 

d(p, q) = i lp(t) - q(t ) l  dt. 

This is a pseudometric on X, but it is not a metric. For instance, d(p, q) = 0 if 
{ t E J : p( t) -=J q( t ) }  is a finite set. The pseudometric d becomes a metric if we restrict 
it to the continuous functions on J.  

d. We may define a metric on the extended real line [-oo, +oo] by taking d(x, y) = 

l f(x) - f(y) l where f is some injective function from [-oo, +oo] into R Three such 
functions f(u) are given by 

arctan(u) , tanh(u) , u 
1 + lu i 

with values of f(u) at u = ±oo defined by taking limits in the obvious fashion. Assorted 
other functions f will also suffice for this purpose. We do not think of I f ( x) - f (y) I as 
actually being the "distance" between x and y, but the metric is nevertheless useful for 
defining convergent sequences and other metric concepts. The three choices of f given 
above yield metrics that are equivalent in the sense that they yield the same topologies 
and the same uniformities, and consequently agree on many other structures - e.g. , 
they have the same convergent sequences; these notions are discussed in later chapters. 
(See 18.24.d.) Any of these metrics, or any other equivalent metric, may be referred 
to as the usual metric on [-oo, +oo] .  

e .  l d(x, y) - d(u, v) l ::; d(x, u) + d(y, v )  for x ,  y ,  u ,  v E X, if d is a pseudometric on X.  
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f. ( Optional. ) An ultrametric is a metric that satisfies the following strengthened ver
sion of the triangle inequality: 

d(x, y) ::; max{d(x, u ) ,  d(u , y ) } .  
Show that this inequality implies the triangle inequality. Show that the Kronecker 
metric (in 2 . 12 .b) is an ultrametric. 

2.13. Definitions. By a gauge on a set X we shall mean a collection of pseudometrics on 
X.  A gauge space is a pair (X, D) consisting of a set X and a gauge D on X. We may 
refer to X itself as a gauge space, if D does not need to be mentioned explicitly. 

As we develop the theory of gauges, we shall devote special attention to the case of a 
gauge D = { d} consisting of just one pseudometric d. We shall often write "{ d}" and "d" 
interchangeably, discuss d itself as a gauge, and develop some properties of pseudometrics 
as a special case of properties of gauges. Conversely, a gauge space (X, D) often can be 
analyzed in terms of the simpler pseudometric spaces { (X, d) : d E  D} . 

A gauge D on a set X is separating if it has the property that 

for each pair of distinct points x and y in X,  there exists at least one d E D 
satisfying d(x, y) > 0. 

Most gauges used in applications are separating. Some mathematicians make the separation 
condition a part of their definition of "gauge," but we shall not follow that practice. 

Note that a singleton gauge D = { d} is separating precisely when the pseudometric d is a 
metric. Thus, most pseudometrics used by themselves in applications are metrics. However, 
some important separating gauges D used in applications consist of large collections of 
pseudometrics that are not metrics; for instance, see 28. 1 l .b. 

We caution that the term "gauge" is used in a wide variety of inequivalent ways in the 
literature. Our own usage follows that of Reilly [1973] ; that usage works particularly well 
with the concepts in this book. Another, entirely unrelated meaning of the term "gauge" 
is given in 24.6 . 

2. 14. Remarks/example. A single pseudometric is not adequate to describe the structure 
of some spaces; sometimes large collections of pseudometrics are needed. For instance, let 
X = JRIR = {functions from lR into JR.}. For each t E JR., define a pseudometric dt on X 
by: dt (p, q) = IP( t )  - q (  t )  I · The resulting gauge D = { dt : t E lR} is separating, but no 
proper subset of it is separating. We shall see in 9. 18 and 18.9 .f that the gauge D yields 
the product topology and product uniformity on JRIR . 

2.15.  Examples and exerdses about separation. 
a. If f :  X ---. lR is any real-valued function on any set, then d(x, y) = I J(x) - f(y) l is 

a pseudometric on X.  It is a metric if and only if the function f is injective - i.e . , 
satisfying x =/= y =? f ( x) =/= f (y) . A special case of this construction was given in 
2 . 12 .d. 

More generally, let <P = {f>.. : >. E A} be a collection of real-valued functions on a set 
X .  Then a gauge can be defined by D = { dx : >. E A} ,  where d.x (x, y) = lf>.. (x) - f>.. (y) l . 
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This gauge is separating if and only if the collection <I> separates points of X (in the 
sense of 2.6) . 

b. A gauge D on a set X is separating in the sense of 2 . 1 1  if and only if the collection 
of functions <I> = Ux,d : x E X, d E D} defined by fx.d (Y) = d(x, y) is a separating 
collection in the sense of 2.6 . 

CARDINALITY 

2. 16. The cardinality of a finite set is the number of distinct elements in that set; thus 
it is a nonnegative integer. 

The "cardinality" of a not-necessarily-finite set is a bit harder to define; we shall post
pone that concept until 6.23. However, it is much easier to define the comparison of car
dinalities of two sets. This notion is due to Georg Cantor and is the foundation of mod
ern set theory. We say that two sets X and Y have the same cardinality - written 
card(X) = card(Y) - if there exists a bijection between X and Y. More generally, we write 
card( X) � card(Y) if X has the same cardinality as some subset of Y - i.e. ,  if there exists 
an injection from X into Y. Similarly, we write card(X) < card(Y) if X and Y satisfy 
card( X)  � card(Y) but do not satisfy card( X) = card(Y) - i.e. , if there exists an injection 
from X into Y but there does not exist a bijection from X onto Y. (Cantor invented these 
ideas while investigating Fourier series; see 26.48 . )  

With this convention, we can now restate some of  the definitions given in 1 .20 and add 
a few more definitions. A set S is 

finite if card(S) = card( { 1 ,  2, . . .  , n} ) for some nonnegative integer n (in which 
case we call n the cardinality of the set and write card(S) = n) ;  

infinite if i t  is  not finite; 

cofinite if it is being considered as a subset of some set X and its complement 
X \ S is finite; 

countable (or denumerable) if card(S) � card(N) ; 

uncountable if it is not countable; 

countably infinite if card(S) = card(N). 

Caution: Some mathematicians apply the term "countable" or the term "denumerable" 
only to the sets that have the same cardinality as N. Also, some mathematicians use a 
slightly different definition of "infinite" - see the remark in 6.27. 

The cardinality of a set X is sometimes abbreviated lX I .  
Much of our presentation of cardinality i s  based on Dalen, Doets, and Swart [1978] and 

Kaplansky [ 1977] . 
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2.17. Further remarks. Throughout the mathematical literature, the letter a (a Greek 
lowercase sigma) is often used to indicate countable sums or unions � e.g. , in a-ideals, 
a-algebras, a-additive measures, a-convex sets, Fa sets. Similarly, 15 (delta) is often used to 
indicate countable products or intersections � e.g. , in G15 sets. We shall define these terms 
separately in their appropriate contexts. 

2.18.  Remarks. It is customary to use the familiar symbol :S for comparison of cardinal
ities. Do not assume too much on the basis of this notation, however; the comparison of 
cardinalities is not quite like the comparison of real numbers. Some familiar properties of 
real numbers are also valid for cardinalities, and some are not. For instance, it is quite easy 
to prove that for any sets X, Y, Z we have 

card(X) :S card(Y) and card(Y) :S card(Z) imply card(X) :S card(Z) . 

(The reader should show this now, as an exercise. )  It is rather harder to prove that 

card(X) :S card(Y) and card(Y) :S card(X) imply card(X) = card(Y ) ;  

that is the content of the Schroder-Bernstein Theorem in  2 .19 .  Thus, comparison of car
dinalities is a preordering; comparison of distinct cardinalities is a partial ordering. Still 
stronger properties about the comparison of cardinalities will be proved in 6.22, but the 
proof is deeper and also requires that we assume the Axiom of Choice. 

2.19.  Schroder-Bernstein Theorem. Let X and Y be sets. If there exist injections 
e : Y ---+ X and f : X ---+ Y, then there exists a bijection from X onto Y. In other words, if 
card(Y) :S card(X) and card(X) :S card(Y) ,  then card(X) = card(Y) . 

Proof This presentation follows Cox [1968] . We may assume that Y � X  and that we are 
given an injection f : X ---+ Y. (More precisely, since we have an injection e : Y ---+ X, 
by relabeling we may identify each point of  Y with its image under e ; see 1 . 10 . )  In  the 
following diagram, the big box represents the set X.  

X \ Y  f(C) j2 (C) !3 (C) j4 (C) . . .  
= C  

-- -[-+- -1-+- -1-+- -1-+-

X \ S  

Let C = X\Y. Since f is injective and has range contained in Y,  the sets C, f(C) , 
P(C) , f3 (C) , . . .  are disjoint. (Here r is the nth iterate of f. )  Let s =  u:=O r(c) ; note 
that f(S) = S \ C � S. (See the diagram above. )  Define a function h :  X ---+ Y by taking 
h(z) = f(z) when z E S and h(z) = z when z E X \  S. Verify that the function h takes 
each r (C) bijectively to r+ 1 (C) , and hence h is a bijection from X onto Y .  

2.20. Exercises and examples. 
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a. card(0) = 0 and card({0})  = 1 .  

b .  card(0) < card({ 1 } )  < card( { 1 , 2} )  < card( { 1 , 2, 3} )  < · · · < card(I"1} 

c. In N, the subset { n : n > 4} is cofinite. 

d. The sets N, N U {0} ,  Z, and {even positive integers} all have the same cardinality. 
Hint : See diagram below. 

N { 1 ,  2 ,  3 ,  4 ,  5, 6, 7, . . .  } 

1 1 1 1 1 1 1 
N u {0} { 0, 1 ,  2, 3, 4, 5, 6, . . .  } 

1 1 1 1 1 1 1 
z { 0, 1 ,  - 1 ,  2, -2, 3 ,  -3, . . .  } 

1 1 1 1 1 1 1 
{even positive integers} { 2, 4, 6, 8, 10, 12 ,  14 ,  . . .  } 

e. Cantor's Theorem on pairs. N x N is countably infinite. Hint :  By tracing along 
the diagonals in the diagram below, we obtain the sequence ( 1 ,  1 ) ,  (2, 1 ) ,  ( 1 ,  2 ) ,  (3, 1 ) ,  
(2, 2 ) ,  ( 1 ,  3 ) ,  (4, 1 ) ,  . . .  , which is an enumeration of N x N .  

( 1 ' 1 )  (2, 1 )  (3, 1 )  ( 4 ,  1 )  (5 ,  1 )  
/ / / / 

( 1 , 2) (2, 2) (3, 2) ( 4, 2) (5, 2 )  
/ / / / 

( 1 ,  3) (2, 3) (3, 3) ( 4, 3) (5, 3) 
/ / / / 

( 1 ,  4) (2 , 4) (3, 4) (4, 4)  (5, 4) 
/ / / / 

( 1 ,  5) (2, 5) (3 , 5) ( 4, 5) (5, 5) 

f. card(Q) = card(N) . Hint: Use the preceding result, together with the Schroder
Bernstein Theorem. 

Remark. Later we will show card(IR) = card(NN) = card(2N ) > card(N) .  See 
10.44.f. 

g. If card(X) 2:: card(N) and u is any object, then card(X U { u} ) = card( X) .  Hints : This 
is trivial if u E X. If u tt X, use 2.20.d. 

h. If X and Y are finite sets, then card(X x Y) = card(X)card(Y) and card(XY ) = 

card(X)card(Y ) (with the conventions r0 = 1 for r 2:: 0 and or = 0 for r > 0) .  

i .  For any set X ,  we have card(X x X) 2:: card(X) .  Hint :  Treat separately the cases of 
X =  0 and X of. 0.  

Remarks. We have card(X x X) > card(X) when X is  a finite set containing more 
than one element. We have card(X x X) = card(X) when X is empty or a singleton. 
In 6.22 we shall see that card(X x X) = card(X) when X is an infinite set; however, 
the proof of that result will require the Axiom of Choice. 
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j .  If X , Y, and Z are any sets, then there is a natural bijection between zxx Y and 
(ZY )x .  Indeed, f E zx xY means that (x, y) f-+ f (x, y) is a map from X x Y into 
Z, while f E (ZY)X means that x f-+ f(x, · ) is a map from X into zY . It is easy to 
see that this correspondence between zx xY and (zY)x is no more than a change of 
notation. 

k. The set {0, 1 }  is often called "2." Let X be a set; we can identify each subset S �  X 
with its characteristic function 1s  : X ---> {0, 1 } ,  defined in 2.2.b. Thus there is a 
natural bijection between the power set of X, 

P(X) = {subsets of X} ,  

and the X th power of the set 2 ,  
2x = {functions from X into 2} . 

These two objects are often used interchangeably. 
If X is a finite set , then card(P(X)) = 2card(X) is the number of subsets of X. 

Exercise for beginners. List the eight subsets of X = {0, 1, 2}. Hint : Don't forget 0 
and X. 

l. Theorem (Cantor) . card(P(X)) > card(X) for every set X. 
Hints : Easily card(P(X) ) ;::: card(X) . Now suppose that there exists a bijection 

f : X ---> P(X). Define R = {x E X : x � f(x) } ,  and let r = f-1 (R) .  Show that 
r E R {==} r � R, a contradiction. Note : This contradiction is not paradoxical, but 
it is similar to Russell's Paradox ( 1 .43 ) .  

m. Example. card(2�'� ) > card(N). 
n. Example. card(2�'�) = card(N�'�) .  Hints: 

card(N�'�) :::; card((2�'�)�'�) = card(2NxN ) = card(2�'�) :::; card(N�'�) . 

2.21.  How many kinds of infinity are there? By Cantor's Theorem (in 2.20.1) , 

card(N) < card(P(N)) < card(P(P(N)) )  < card(P(P(P(N) ) ) ) < · · · 

(where P denotes the power set) .  Thus there are infinitely many different kinds of infinity. 
We can get still more infinities, as follows: Let S be the union of all the sets N, P(N) , 
P(P(N) ) ,  P(P(P(N)) ) ,  . . . . Then S is bigger than any one of those sets. We can go further: 
We have 

card(S) < card(P(S) ) < card(P(P(S) ) ) < card(P(P(P(S) ) ) ) < · · · 

and we can continue this process again and again, infinitely many times. 
Are there still more infinities? Perhaps there are some even bigger than anything op

tained in the "list" suggested above; or perhaps there are some lying between two consecu
tive elements of that list. 

An inaccessible cardinal (also known as a strongly inaccessible cardinal) is, roughly, 
a set too big to be in the list given above; i .e . , it is an uncountable set that is bigger than 
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anything obtainable from smaller sets via power sets and unions. We shall not make this 
precise; refer to books on set theory and logic (e.g. , Shoenfield [1967] ) for details. It is not 
intuitively obvious whether such enormous cardinals exist. Their existence or nonexistence 
is taken as a hypothesis in some studies in set theory. Surprisingly, such assumptions about 
enormous sets lead to important conclusions about "ordinary" sets such as lR; see 14. 75. 

In applicable analysis one seldom has any need for infinite cardinalities other than 
card(N) or card(2N ) = card(JR) .  The Continuum Hypothesis (CH) asserts that there 
are no other cardinalities between those two. The Generalized Continuum Hypothesis 
(GCH) asserts that for any infinite set X, there are no other cardinalities between card(X) 
and card(2x ) .  Cantor spent a large part of his last years trying to prove that CH was true 
or false. The question remained open for decades. Finally, Godel and Cohen developed 
new methods to show that neither the truth nor the falsehood of CH can be proved from 
the usual axioms of set theory; thus CH is independent of those axioms. This is explained 
briefly in 14 .7, 14.8 , 14 .53, 14 .73, and 14 .74. 

INDUCTION AND RECURSION ON THE INTEGERS 

2.22. We assume the reader is familiar with the basic properties of the natural numbers N = 
{ 1 ,  2, 3, . . .  } .  ( Caution: Some mathematicians use the symbol N for the set {0, 1 ,  2, 3, . . .  } ,  
but in  this book 0 tJ_ N . )  

Following are two basic principles about the natural numbers. Induction i s  a method 
for proving statements about objects that have already been defined; recursion is a method 
for defining new objects. 

Principle of Countable Induction. Suppose 1 E T � N and T has the 
property that whenever n E T  then also n + 1 E T. Then T = N. 

This principle can also be formulated as a method for proving that a statement P(x) is  true 
for every x E N - -- just take T = {x E N :  P(x) } .  (Note: To logicians, this reformulation is 
not quite equivalent . It is usually understood that the statement P(x) must be expressed 
using finitely many symbols from a language with only countably many symbols, so there 
are only countably many possible P's - but there are uncountably many sets T � N. )  

For our second principle, we shall agree that the empty sequence - the sequence with 
no components, or the sequence of length 0 -- is a finite sequence and hence a member of 
the domain of p. 

Principle of Countable Recursion. Let T be a set, and let p be some map
ping from {finite sequences in T} into T. Then there exists a unique sequence 
( t1 , t2 , t3 , . . .  ) in T that satisfies t, = p(t 1 , t2 , . . .  , tn -d for all n. 

In other words, our definition of t, may depend on all the preceding definitions. 
Both of these principles are generalized to sets other than N in 1 .50, 3.39.f, 3.40, and 

5.51 ; they are then referred to as transfinite induction and recursion. For now, we note a 
few elementary applications of the countable case. 
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2.23. Examples in countable induction and recursion. 
a. Factorials are defined recursively: 0! = 1 ,  and (n + 1 ) !  = (n + 1 )  · (n ! )  for n 

0, 1 ,  2, 3 , . . .  . (We read "n!" as "n factorial." ) The first few factorials are 0! = 1 ,  
1 !  = 1 ,  2 !  = 2 ,  3! = 6 ,  and 4 !  = 24. 

b. The binomial coefficient G) (read "n choose k" ) can be defined directly by a formula: 

(n) n! 
k - k ! (n - k) !  (n = 0, 1 , 2, 3 , . . . ; k = 0, 1 , 2, . . . , n) 

or it can be defined by recursion on n :  we take (Z) = (�) = 1 for n = 0, 1 ,  2, 3, . . .  , and 
then 

(O :::; k < n) .  

Show by induction that the two methods of defining (�) yield the same values. Also, 
using the second method, show that the (�) 's are the numbers in Pascal's Triangle. 

1 
Pascal's Triangle: 1 1 

Each number is 1 2 1 
the sum of the two 1 3 3 1 
numbers above it. 1 4 6 4 1 

By convention, we define G) = 0 when n ?:  0 and k E Z \ {0, 1 ,  2, . . . , n } .  
c .  B y  induction on n ,  prove the Binomial Theorem: 

(n = 1 , 2 , 3, . . .  ) .  

An example is (x + y)4 = y4 + 4xy3 + 6x2y2 + 4x3y + x4 . 
d. A prime number is an integer greater than 1 that is not divisible by any positive 

integer except itself and 1 .  The first few prime numbers are p1 = 2, p2 = 3, p3 = 5 , 
P4 = 7, and p5 = 1 1 .  The following induction argument proves that there are infinitely 
many prime numbers and also gives us a crude but easy upper bound on Pn ·  

Assume that p1 , p2 , . . .  , Pn have already been found, for some positive integer n. 
Then q = P1P2 · · · Pn + 1 i s  g�eater than Pn , and it  is not divisible by any of Pl , P2 , . . .  , Pn . 
Hence either q is a new prime, or it is divisible by a new prime. In any case, Pn+l < 
q :::; 2PlP2 · · · Pn · Use induction to show that Pn :::; 22n . 

e. Joke. Every positive integer has some remarkably interesting property. 
"Proof" If not, let no be the first uninteresting number. Then n0 has the property 

that it is the first uninteresting number - but isn't that an interesting property? 
Exercise. Carefully explain what has gone wrong here. Hint :  See 1 . 1 1 .  
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Relations and Orderings 

3 .1 .  Preview. The chart below shows the connections between some kinds of preorders 
that we shall study in this and later chapters. Lattices and order completeness are studied 
in greater detail in Chapter 4; directed orderings are studied further in Chapter 7; Boolean 
algebras and Heyting algebras are covered in Chapter 13 . 

preordered set 

set with / I � "���:�:��'" /PI' /i,ectcd eet 

/ lattice 

Dedekind / � 
complete poset distributive lattice 

� s�i-infinitely distributive lattice 
com�lete / � latti\ce Heyrng algebra /nfinitely distributive lattice 

/ 

Boolean lattice � (algebra of sets) lattice group I (P(n) , <;;; ) chain 

well ordered set� �ered field 

49 
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RELATIONS 

3.2. A relation (or binary relation) on a set X is  simply a set R � X x X, but with 
this change in our notation: instead of writing (x, y) E R, we may write xRy. We may 
sometimes refer to the subset of X x X as the graph of the relation; we may even denote it 
by Graph(R) or Gr(R). Other symbols may be used in place of R. Some familiar symbols 
used in this fashion are = ,  -/=- (relations on any set X) ,  :::; , < (relations on IR) ,  and �' � 
(relations on a collection of sets) .  

3.3.  Examples and special kinds of relations. 
a. Equality (=) is a relation; its graph is the diagonal set I =  { (x, x) : x E X} .  

b .  The largest relation on a set X is 

the universal relation: xRy for all x, y E X. 

Its graph is X x X.  Trivial though it may be, this relation is occasionally useful. When 
it is viewed as an ordering, we shall call it the universal ordering. 

c. The smallest relation on X is the empty relation; its graph is the empty set. 

d. The inverse of a relation R is the relation R- 1 defined by xR-1y ¢? yRx. For instance, 
the inverses of =,  -/=-, � ' �' :::; , < are the relations =, -/=-, ;;;:> , � '  ;::: , > ,  respectively. 
Note that (R- 1 )- 1 = R. 

If =:;: and >,:= are relations that are inverses of each other, then there exists a duality 
between =:;: and >,:=; each statement about either of these relations can be converted to 
a statement about the other relation. See 1 .7. 

e. The composition of any two relations Q and R on a set X is the relation defined by 

Q o R  = { (x, y) E X x X : xRu and uQy for at least one u E X} .  

This definition generalizes that in 2.3 - i .e . ,  i f  Q and R are in fact functions, then 
the composition defined in this fashion is the same as the composition defined in 2.3. 
Exercise. Verify that the compositions of relations satisfy (P o Q) o R =  P o  (Q o R) .  

f. I f  R is a relation on X and Y � X, then the restriction of R to  Y (or trace of R on 
Y) is the relation R I y defined by 

if and only if u, v E Y and uRv. 

In other words, Graph(R I
Y

) = Graph(R) n (Y x Y) .  By a slight abuse of notation, we 

often denote R I
Y 

simply by the same symbol R - for example, a restriction of any of 

the relations =, -/=-, � ' �' :::; , < is still denoted by the same symbol. 
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3.4. Let R be a relation on a set X, and let I be the diagonal set of X (see 3.3.a) . Many 
relations of interest to us satisfy the condition of 

transitivity: R o R <;;; R. That is, xRy and yRz imply xRz. 
Most relations of interest to us also satisfy either 

reflexivity: R :2 I. That is, xRx for all x E X, or 
irreflexivity: R n I =  0. That is, xRx for no x E X. 

Also, most satisfy either 

symmetry: R-1 = R. That is, xRy implies yRx, or 
antisymmetry: R n R-1 <;;; I .  That is, xRy and yRx imply x = y. 

Some examples are given in 3.6. 

3.5.  More symbols for relations. A familiar symmetric relation is equality ( = ) . For other 
symmetric relations, we often use the symbols � or =:. 

Inequality (:S )  and inclusion (<;;; ) are familiar relations that are not symmetric. For other 
relations that are not symmetric, or that are not known to be symmetric, we shall often use 
the symbols � and -< .  Occasionally we may also use [;;; and C:: . 

Some mathematicians prefer to use the symbols :S and < for any relation that is not 
necessarily symmetric because these symbols are more familiar and therefore easier to draw. 
However, beginners sometimes inadvertently attribute to those symbols some familiar prop
erties of the ordering of the real numbers - e.g. , they may implicitly assume that :S is a 
chain ordering (defined in 3.23) .  To reduce the frequency of this type of error, we will 
usually reserve the symbols :S ,  < for chain orderings, and use � ,  -< for a more "generic" 
ordering. This makes it easier for beginners to disassociate themselves from the familiar 
properties of JR. and start over with a fresh perspective. Admittedly, � is difficult to draw 

on a blackboard; perhaps ;S._, or � could be used as a blackboard substitution. 
In this book the symbols � and -< will always denote, respectively, a reflexive relation 

and an irreflexive relation, which are connected as follows: 

x � y  
x -< y  

means that either x -< y or x = y holds; 

means that both x � y and x =/=- y hold. 

In other words, the sets I = { (x, x) : x E X} and Graph(-<) form a partition of the set 
Graph(�) .  Because � and -< are connected in this fashion, we can usually state our results 
just in terms of � ' without explicitly mentioning corresponding results for -<. A similar 
convention will apply to the pair [;;; , c .  

Inverses (see 3.3.d) of � ' -< ,  [;;; , C:: will be  denoted respectively by � ' � '  ;;;) , ::::J . 
The symbols � and [;;; may be read as precedes, is smaller than, is littler than, is 

less than, is earlier than. Their inverses (� and ;;;J ) may be read as succeeds, is larger 
than, is bigger than, is more than, is later than. 

The symbols -< and C:: may be read as strictly precedes, etc . ,  and the symbols � and 
::::J may be read as strictly succeeds, etc. 
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3.6.  Examples and exercises. 
a. If R is a relation on X that is transitive and irreflexive, then R is also antisymmetric 

- but vacuously so: there cannot be x, y satisfying xRy and yRx simultaneously. 

b. Six familiar relations are = , of,, � ,  �, ::::; , < .  Among these examples, = , � ,  �, ::::; , < 
are transitive, = , �,  ::::; are reflexive, of,, �, < are irreflexive, =, of. are symmetric, and 
� ,  �, ::::; , < are antisymmetric. 

c. Show that R = { ( 1 ,  2) ,  (2 , 3 ) ,  (2 , 2 ) ,  (3, 2) } is a relation on the set X = { 1 ,  2, 3} that 
has none of the properties listed in 3.4 - i.e . ,  R is not transitive, reflexive, irreflexive, 
symmetric, or antisymmetric. 

d. Let R be a relation that is both symmetric and antisymmetric. Then (i) R is reflexive 
if and only if R is equality (=) ,  and (ii) R is irreflexive if and only if R is the empty 
relation. 

e. Let =:;< be a reflexive relation on a set X and let --< be the corresponding irreflexive 
relation. Then (i) =:;< is symmetric if and only if --< is symmetric, and (ii) =:;< is transitive 
if and only if --< is transitive. 

PREORDERED SETS 

3 .  7. A preorder on a set X is a relation =:;< that is both 

transitive ( x =:;< y and y =:;< z imply x =:;< z) and 
reflexive ( x =:;< x) . 

A preordered set is a pair (X, =:;<) consisting of a set X and a preorder =:;< on X; we may 
refer to X itself as the preordered set if =:;< does not need to be mentioned explicitly. A 
similar syntax will be used for special kinds of preordered sets - partially ordered sets, sets 
with equivalence relations, directed sets, chains, well ordered sets, lattices, etc. 

3.8.  We note a few important special types of preorders. Let (X, =:;<)  be a preordered set. 
Then =:;< is a 

partial order - and (X, =:;<)  is a partially ordered set , or poset - if =:;<  is 
antisymmetric (x =:;< y and y =:;<  x imply x = y) ;  

equivalence relation if i t  is symmetric (x =:;< x for all x) ; 
directed order - and (X, =:;<)  is a directed set - if for each XI , x2 E X there 
exists some y E X satisfying XI =:;< y and x2 =:;< y. 

3.9. Basic properties and examples. 
a. In a set X equipped with a relation =:;< , we say that two elements x, y are comparable 

if at least one of the relations x =:;< y or y =:;< x holds. (This terminology is mainly used 
in posets. )  
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b. The only partial order that is also an equivalence relation is equality ( = ) .  

c .  If � is an equivalence relation, then so is its inverse, � -

d .  If � is a partial order, then so is its inverse, � -

e .  Trivially, the empty set i s  directed. Any singleton { x} is directed, when equipped with 
the relation { ( x, x) } . 

f. Example (from McShane [1952] ) .  A stream or river, together with its tributaries, is 
directed by the relation "is upstream from." Indeed, if x, y are any two locations in 
the system, then there exists a third location z that is downstream (i .e . ,  later in the 
water flow) from both x and y. 

g. Most directed orderings of interest to us are antisymmetric. However, the universal 
ordering (defined in 3.3.b) is a directed ordering that we shall find useful and that is 
not antisymmetric. By calling the universal ordering and similar orderings "directed," 
we shall achieve a few simplifications in the development of the theory. 

Caution: Some mathematicians make antisymmetry part of their definition of "di
rected set . '' Though we shall not follow that practice, we remark that adding an
tisymmetry to the definition of "directed set" does not greatly affect the ultimate 
applications. A not-necessarily-antisymmetric directed set can usually be replaced by 
a (perhaps more complicated) antisymmetric directed set, as in 7. 12 .  

h. If e is  any collection of subsets of a set X ,  then ( e, �) is  a poset. Actually, this example 
is as general as we could ask for :  Every poset can be represented isomorphically in this 
form: see 3 . 16.d. 

i. Subsets of ordered sets. Define restrictions as in 3 .3.f. Verify that if the relation 
� on X has the following property, then its restriction to any set S � X has the 
same property: reflexive, irreflexive, symmetric, antisymmetric, transitive, preorder, 
equivalence, or partial order. 

The restriction of a directed order is not necessarily directed. For instance, 7!} with 
the product ordering is directed (in fact, a lattice) , but its subset { ( x, y) E 'Z'} : x + y = 
0} is not directed. 

j. For each ,\ in some index set A, let �>.  be a relation on some set X>. . Then the product 
of the �-\ 's is the relation � on the product of the X>. 's, defined thus: 

f � g in IT X>. means that f (,\) �>. g(,\) for every ,\ E A. 
-\EA 

It may also be called the componentwise ordering or coordinatewise ordering since it 
acts separately on each component or coordinate. We shall use the product relation 
on fLEA X>. unless some other arrangement i s  specified. 

Verify that if all the �>. 's have one of the following properties, then the product 
ordering � has the same property: reflexive, symmetric, antisymmetric, transitive, 
preorder, equivalence, directed order, or partial order. 

k. There are many ways to define an ordering on a collection of functions. One commonly 
used method is the product ordering, defined above. Another common method is by 
inclusion of graphs - i.e. , let f � g mean that Gr(f) � Gr(g) .  The resulting relation 
� is a partial ordering; this is a special case of 3 .9 .h.  
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MORE ABOUT EQUIVALENCES 

3.10.  An equivalence relation i s  a relation � that is 

symmetric (x � y ::::} y � x) ,  
reflexive ( x � x for all x) ,  and 
transitive (x � y, y � z ::::} x � z) .  

If  some equivalence relation � has been specified, two objects x and y satisfying x � y 
are said to be equivalent . The student is cautioned that the term "equivalent" is highly 
context-dependent : That one word is used for many different relations in different parts 
of mathematics. Our language would be more precise if we gave slightly different names 
to different equivalence relations - e.g. ,  if we distinguished between "a-equivalence" and 
"1'-equivalence" - but unfortunately that is not customary. 

Here are a few examples of ways that equivalence relations can arise: 

a. On any set X ,  the smallest equivalence relation is equality ( =) . The largest equivalence 
relation is the universal relation, defined in 3.3.b; that is, x � y for all x and y in X.  

b.  Let 1r be a function with domain X.  Define x1 � x2 i f  1r(x l )  = 1r (x2) ;  we easily verify 
that this makes � an equivalence relation on X .  Actually, every equivalence relation 
can be expressed in this form, as shown in 3 . 1 1 .  

c .  Let S = { S >. : A E A} be a partition of a set X - that is, the sets S >. are disjoint and 
their union is the set X. Call two elements of X equivalent if they belong to the same 
S >. .  It is easy to see that this is an equivalence relation on X .  The S >. 's are then called 
the equivalence classes of the relation. Actually, every equivalence relation can be 
represented in this form, as shown below. 

3 . 1 1 .  Let � be any equivalence relation on a set X. 
For each x E X, let 1r(x) = {y E X :  y � x} .  We easily verify that, for any x, x' E X  

the sets 1r(x) and 1r(x') are either identical or disjoint; hence the distinct sets of the form 
1r(x) form a partition S of the given set X. Moreover, the given equivalence relation � can 
be retrieved from this partition, as in 3 . 10.c. 

The surjective mapping 1r : X --+ S is called the quotient map or quotient projection. 
The given equivalence relation � can be retrieved from this mapping, as in 3. 10.b. 

The collection S of equivalence classes is called the quotient set. Represented in many 
ways, it is most often represented by an expression of the form X/8, where 8 is any device 
used to define the equivalence relation. Thus, the quotient set may be represented by 

x; � 
X/K 

x;s 
X/1' 

X/'J 

where � is the equivalence relation, 

if � is determined by a mapping 1r as in 3 . 10.b, 

if � is determined by some subgroup S, as in 8. 14, 

if � is determined by a filter 1', as in 9.41 ,  

if � i s  determined by an ideal 'J ,  as in  9 .41 .  
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3. 12. Let >::; be an equivalence relation on a set X; let Q be the resulting quotient set and 
let 1r : X -+ Q be the quotient mapping. 

A function f defined on X is said to respect the equivalence >::; if the value of f(x) 
is unchanged when x is replaced by an equivalent element of X - that is, if x1 >::; x2 =? 
f(xl ) = f(x2 ) .  Another way to say this is that each set of the form f� 1 (z) is a union of 
equivalence classes. Similarly, a relation R on X is said to respect the equivalence >::; if the 
validity of the statement u R v is unaffected when u, v are replaced by equivalent elements 
of X - that is, if 

u � u' ,  v � v' ,  u R v  u' R v' .  
Show: 

a. Let f : X -+ Y be some function. We can define a corresponding function f : Q -+ Y 
by the rule f(1r(x)) = f(x) if and only if f respects >::; , We then say that the function J 
is well defined. The hat over the f is sometimes omitted; if no confusion will result , 
we sometimes use the same symbol f again for the new function defined on Q. 

b. Let R be some relation on X .  We can define a corresponding relation R on Q by the 
rule 

1r(u) R 1r(v) u R v 
if and only if R respects the equivalence relation >::; , We then say that the relation R 
is well defined. The hat over the R is sometimes omitted: If no confusion will result, 
we sometimes use the same symbol R again for the new relation defined on Q. 

c. Example. Let � be a preordering on a set X, and define x >::; y to mean that x � y 
and y � x. Show that >::; is an equivalence relation on X ,  and that � respects this 
equivalence relation. Show that the resulting relation ;;; is a partial ordering on the 
quotient set Q. 

d. Let (X, d) be a pseudometric space (defined in 2 . 1 1 ) .  An equivalence relation >::; on X 
can be defined by: x >::; y if and only if d(x, y) = 0. Then d acts as a metric on the 
quotient space X/ >::; , More precisely, let 1r : X -+ X/ >::; be the quotient map; then a 
metric D on X/ >::; can be defined by D (1r(x ) ,  1r(y)) = d(x, y) . 

More generally, let (X, D) be a gauge space. Define an equivalence relation on X 
by: x >::; y if and only if d( x, y) = 0 for all pseudometrics d E D.  Then D acts as a 
separating gauge on the quotient space X/ >::; , 

3 . 13. The term "equivalent" also has some common uses that are implicit in our mathe
matical language: 

Two words , phrases, or definitions are equivalent if they have the same meaning. This 
is an equivalence relation on the set of all words, phrases, or definitions in our vocabulary. 

Similarly, two statements are equivalent if each implies the other via some set of rules of 
inference. This is an equivalence relation on the set of all statements that can be expressed 
in our mathematical language. Since different rules of inference may be used, there are 
actually several meanings for "equivalent statements." Here are two main interpretations: 

• Many mathematicians call two statements "equivalent" if each implies the other easily 
- i.e. ,  by a fairly short and elementary proof. Of course, "elementary" is a subjective 
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term here; what is elementary for one mathematician may not be elementary for 
another. Most mathematicians do not make any restriction on the use of the Axiom of 
Choice; it may be used freely as a "rule of inference." An example: The mathematical 
literature sometimes refers to Caristi 's Fixed Point Theorem I9.45 and Bri::insted 's 
Maximal Principle ( (DC4) in I9.5 I )  as "equivalent" because each implies the other 
easily; see I9 .51 .  Strictly speaking, the relation "each implies the other easily" is not 
really an equivalence relation, for it is not transitive: If 

(AI )  � (A2) ,  (A2) � (A3) , (A99) � (AIOO) 

by 99 easy proofs, then (AI) � (AIOO) by a proof that is not necessarily easy. 

• Logicians sometimes give the Axiom of Choice special status and treat it as a statement 
rather than as a rule of inference. When this system is followed, then the Axiom of 
Choice or its consequences can only be used when stated explicitly as hypotheses. 
This system � which will be followed in parts of this book � enables us to trace 
the effects of the Axiom of Choice. For emphasis, statements equivalent in this sense 
are sometimes called effectively equivalent. See 6 . I8. With this interpretation, 
Caristi 's Fixed Point Theorem and Bri.insted's Maximal Principle are not equivalent ; 
see the discussion in 19.51 .  

MORE ABOUT POSETS 

3.14. Definitions. Recall that a partial order is a relation � that is 

reflexive ( x � x for all x) ,  
transitive (x � y,  y � z =;. x � z) , and 
antisymmetric (x � y and y �  x imply x = y) .  

A set equipped with such an ordering is a partially ordered set, or poset . 
Let (X, � )  be a partially ordered set. An order interval in X is a subset of the form 

for some a, b E  X. 

[a, b] = {x E X  : a � x � b} 

In IR or [-oo, +oo], slightly different terminology is commonly used. An interval is any 
set of one of the following types: 

[a, b] {x E [-oo, +oo] a :::; x :::; b} , 
[a, b) {x E [-oo, +oo] a :s; x < b} ,  
( a ,  b] {x E [-oo, +oo] a < x :s; b} ,  
( a ,  b) {x E [-oo, +oo] a <  x < b} , 
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for any extended real numbers a, b. In particular, the extended real line is the interval 
[ -oo, +oo] (thus justifying our notation) ,  and the real line lR is the interval ( -oo, +oo ) . Two 
other important sets are [0, +oo) = {x E lR :  x � 0} and [0, +oo] = {x E lR :  x � O }U {+oo} .  

An interval of the form [ a ,  b ]  i s sometimes called a closed interval; an interval of the 
form (a, b) is an open interval. This terminology reflects the topological structure of lR or 
[-oo, +oo] , introduced in 5 . 15 .f. 

3.15 .  Let X be a poset. A set S � X is order bounded if it is contained in an order 
interval. It is simply called "bounded" if the context is clear, but be aware that the term 
"bounded'' has other, possibly inequivalent meanings - see 4 .40, 23. 1 ,  27.2, and 27.4. 
Fortunately, all the usual meanings of "bounded" coincide at least for subsets of JRn. 

Note that any subset of an order bounded set is order bounded. 
Although the statement "S is bounded" does not mention the set X explicitly, bound

edness of a set S � X depends very much on the choice of X.  For instance, Z is unbounded 
when considered as a subset of lR (with its usual ordering) ,  but Z is bounded when con
sidered as a subset of the extended real line [-oo, +oo] ( introduced in 1 . 1 7) .  In fact, every 
subset of [-oo, +oo] is bounded, since [-oo, +oo] itself is bounded. 

3 . 16.  Let (X, � )  be a poset. A lower set in X is a set S � X  with the property that 

X � s ,  X E X, s E s X E S. 

Some older books refer to lower sets as initial segments or order ideals. 
Special examples and properties. 

a. Clearly, X is a lower set in itself. Any other lower set is called a proper lower set. 

b. One lower set is the set of predecessors of w, defined by 
Pre(w) = {x E X  : x -<  w} .  

It is proper. I t is empty i f and only i f w = min( X) .  
c .  The principal lower set determined by any w E X is the set { x E X : x � w} .  It is 

sometimes denoted by lw. It is nonempty. It is improper if and only if w = max(X) . 
Exercise. A lower set is equal to the union of all the principal lower sets that it 

contains. 
d. The mapping w f-+ lw, sending each element to its principal lower set, is an order 

isomorphism from (X, � )  onto a subset of the poset (::P(X) ,  � ) .  Thus any poset can 
be represented isomorphically in the form (e , �) for some collection e of sets. 

Lower sets are discussed further in 4.4 . b. 

3. 17. Let (X, � )  and (Y, [;;; ) be partially ordered sets. A mapping p :  X ---> Y is 
increasing ( isotone, order-preserving) if x1 � x2 =? p(x l )  [;;; p(x2 ) ;  

decreasing ( antitone, order-reversing) i f  x1 � x2 =? p(xl ) ;;;) p(x2) ;  
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monotone if it is increasing or decreasing; 

strictly increasing or decreasing or monotone if it is injective and (respectively) 
increasing or decreasing or monotone; 

an order isomorphism if it is a bijection from X onto Y such that both p and 
p- 1 are increasing. 

(The terms "isotone" and "anti tone" are used especially if X and Y are collections of sets, 
ordered by inclusion. ) The relationships between these kinds of mappings are explored 
in the next few exercises; a chart below summarizes the results. The chart also includes 
sup-preserving and inf-preserving, as a preview of notions that will be introduced in 3.22. 

strictly 

monotone 

/ �  
increasing decreasing 

sup- inf-

order isomorphism 

Caution: Some mathematicians use the terms nondecreasing or weakly increasing where 
we have used the term "increasing;" some of these mathematicians use the term "increasing" 
where we have used the term "strictly increasing." Analogous terminology is used for 
decreasing. 

3.18. Basic properties and examples. 
a. A sequence of real numbers ( r1 , r2 , r3 , . . .  ) is increasing if r1 :::; r2 :::; r3 :::; · · · . 

b. S f---+ CS is an antitone mapping from (P(X) ,  s;:;) into itself, for any set X. 

c.  The inverse of an increasing bijection need not be increasing. For instance, let :::; be 
the usual ordering on Z, and let � be the partial ordering on Z defined by 

X � y if y - X E {0, 5 ,  10 ,  15, 20, 25, . . .  } .  
Then the identity map x f---+ x is increasing from (Z, � )  into (Z, :::; ) ,  but not from (Z, :::; ) 
into (Z, � ) .  

d .  Let f : X ----+ Y be any function. Then the forward image map f : P(X) ----+ P(Y) 
and the inverse image map f- 1 : P(Y) ----+ P(X) ,  defined in 2. 7 and 2.8, are both 
order-preserving - that is, 
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MAx, SuP,  AND OTHER SPECIAL ELEMENTS 

3. 19. Definitions. Let (X, �) be a partially ordered set, and let y, z E X  and S <;;; X . 

a .  We say z is an upper bound for S i f s � z holds for each s E S ; we then say S is 
bounded above. We emphasize that z is not required to be an element of S. 

Dually, z is a lower bound for S if s � z holds for each s E S; we then say S is 
bounded below. 

A set is order bounded (as defined in 3. 15) if and only if it is bounded both above 
and below. 

b. z is a maximum element of S (also known as a greatest, largest, biggest, highest, or 
last element of S) if z E S and z � s for all s E S. Clearly, a subset of a poset has at 
most one maximum. If it exists, it is denoted by max( S) . 

Dually, z is a minimum element of S (also known as a least, smallest, littlest, 
lowest, or first element of S) if z E S and z � s for all s E S. Again, a subset of a 
poset has at most one minimum; it may be denoted by min(S) . 

c. If S <;;; X is bounded above and the set of upper bounds of S has a least element, then 
that element is called the least upper bound, or supremum or sup of S. (Among 
algebraists, it is also known as the join of S.) It is denoted l .u .b . (S) or sup(S) or V S. 
If the elements of S are represented by subscripted notation, as in S = { x, : a E A} ,  
then V S may also be denoted by V nEA Xu · The sup of two elements x and y is also 
written as x V y. To be precise, the value sup(S) may be referred to as the supremum 
of S in X, for reasons indicated in 3.20.e. 

Dually, if S <;;; X is bounded below and the set of lower bounds of S has a greatest 
element , then that element is called the greatest lower bound, or infimum or inf 
of S. (Among algebraists, it is also known as the meet of S.) It is denoted g.l.b . (S) 
or inf(S) or 1\ S. The infimum of a set S = {xu : a E A} may also be denoted by 
/\uEA Xu · The inf of two elements x and y is also written as x 1\ y. 

d. A maximal element of S is any s0 E S with the property that no element of S is 
strictly greater than s0 .  

Dually, a minimal element of S is any s0 E S with the property that no element 
of S is strictly less than s0 .  

3.20. Further remarks and notational conventions. 
a. We emphasize that "max" and "min" are the abbreviations for "maximum" and "min

imum," not "maximal" and "minimal." 
It may be helpful to think of maximal elements and suprema as two kinds of "almost 

maximums" - i.e. , objects with most of the properties one would find in a maximum. 
They can often be used in place of a maximum, in situations where a maximum is 
not available. (For instance, if we are trying to generalize some known theorem by 
modifying a known proof, we may at some point replace a maximum with a maximal 
element or a supremum. ) 

Analogously, a minimal element or an infimum is an "almost minimum." 
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b. We write "�-upper bound," "�-maximal," "�-max(S)," "max� (S)," etc . , if we wish 
to emphasize or clarify which partial ordering is being used. 

c. When the terms "max," "sup," etc . , are applied to a collection of sets and no ordering 
is specified, then it is generally understood that � is the ordering being used. Thus, 
for instance, a maximal element of a collection � of sets is an element of � that is not 
a subset of any other element of �- Similarly, a largest element of � is an element of � 
that is a superset of every other element of T Note that a collection � of sets can only 
have a largest element if the union of all the elements of � is itself an element of � -

in which case that union is the largest element . Similarly, if � has a smallest member, 
that smallest member is equal to the intersection of all the members of �-

There are some slight similarities between our language for (X, �) and our language 
for (:P(S), � )  that may help in learning the vocabulary: x Vy is the join of two objects, 
while the union A U  B of two sets is obtained by "joining" them together. Also, x 1\ y 
is the meet of two objects; two sets A and B are said to "meet" (in the sense of 1 .26) 
if and only if their intersection A n B is nonempty. 

d. If f is a mapping from a set S into a poset , the expressions max f(S) and maxsES f(s) 
both mean max{f(s) : s E S} . Expressions for min, sup, and inf are interpreted 
analogously. 

e. Context dependence of the definitions. The notation "sup(S)" does not mention X 
explicitly, but the value of sup(S) depends very much on the choice of the poset (X, �) 
in which S is a subset . For instance, let I denote the interval [0, 1 ] ,  and let 

C(I , I) 
s 

{functions from I into I} , 
{continuous functions from I into I} , 
{! E C(I, I) : f (O) = 0} . 

Then S � C(I, I) � II . Let II be given the product ordering, and let C(I , I) be given 
the restriction of that ordering. Then the supremum of S in C(I, I) is the constant 
function 1 ,  whereas the supremum of S in I I is the characteristic function of the interval 
(0, 1 ] .  

3.21.  Elementary examples and properties. Let (X, � )  be a partially ordered set . Let 
z E X and S � X. Then: 

a. z = max S if and only if z is both an element of S and an upper bound for S. 
b. z = min S if and only if z is both an element of S and an lower bound for S. 
c. If max(S) exists, it is also the supremum of S and the only maximal element of S. 
d. If min(S) exists, it is also the infimum of S and the only minimal element of S. 
e. X itself is bounded (in its own ordering) if and only if it has both a maximum and a 

mm1mum. 
f. Let x, y E X. Then 

max{x, y} = y sup{x, y} = y. 
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g. Suppose that sup( S) exists in X. Then 

z � sup(S) {=:=} z � s for every s E S. 

til 

h. Degenerate example. 0 is a bounded subset of X. Indeed, every element of X is an 
upper bound and a lower bound for the empty set, since the requirement involving 
s E S is vacuously satisfied when there are no s's. 

The set 0 has a least upper bound if and only if X has a first element , in which 
case those objects are the same. Similarly, 0 has a greatest lower bound if and only if 
X has a last element , in which case those objects are the same. 

Clearly, 0 has neither a maximum nor minimum element, nor a maximal or minimal 
element, since it does not have any element . 

i. A subset of a poset can have at most one maximum and at most one supremum. 
However, a subset of a poset may have more than one maximal element . For instance, 
let 0 be any set containing more than one element , and let X = {proper subsets of 0} 
be partially ordered by inclusion. Then each complement of a singleton (i .e. , each set 
of the form 0\ { w}) is a maximal element of X. 

j .  A subset of a poset may have an upper bound without having a maximum. For instance, 
let X = 71} have the product ordering. Then the subset S = { ( 0, -1 ) ,  ( - 1 ,  0) } has no 
maximum element , but it has (0, 0) as an upper bound. 

k. A subset of a poset need not have any maximal elements. For instance, let X be the 
real line with its usual ordering. Then the set S = { x E IR : x < 0} has no maximal 
element , but it has 0 as a supremum. The set IR, considered as a subset of itself, has 
no maximum, no maximal element , and no supremum. 

I. Let (X, �) be a poset. Then sup is an isotone map, and inf is an antitone map, from 
their domains into X. That is: 

sup A � sup B, inf A �  inf B 

whenever those sups and infs exist . 
m. Proposition. Suppose that {Sa : o: E A} is a collection of nonempty subsets of X and 

inf(S01) exists for each o:. Then inf{inf(S01) : o: E A} exists if and only if inf(UnEA Sa ) 
exists, in which case they are equal. (Analogous results hold for sups.) 

Hint :  Show that p is a lower bound for {inf(Sn ) : o: E A} if and only if p is a lower 
bound for UnEA Sa . 

n. Let P = TI.xEA X.x be a product of posets, with the product ordering (see 3.9.j ) .  Let 
<I> be a nonempty subset of P.  Verify that sup <I> exists in P if and only if the set 
{!( ..\) : f E <I>} has a supremum in X.x for each ..\ - in which case sup <I> is a function 
defined on A by 

(sup <!>)( ..\) = sup{!(..\) : f E <I>} for each ..\ E A. 
Thus, the supremum in P is defined coordinatewise. We shall call it the pointwise 
supremum, or sometimes simply the supremum, of the set <I> in P.  We emphasize 
that sup <I> is a member of P but not necessarily a member of <I>. Analogous notations 
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are used for inf, max, and min. Iri particular, when !!> contains just two functions, we 
obtain 

(x V y) (>.) = x(>.) V y(>.) ,  (x /1. y) (>.) = x(>.) /1. y(>.) . 

3.22. Let (X, � )  and (Y, �) be partially ordered sets. A mapping p : X ---> Y is 
sup-preserving if, whenever S is a nonempty subset of X and CY = sup(S) 
exists in (X, � ) ,  then sup{p(s) : s E S} exists in (Y, �) and is equal to p(CY) ; 

inf-preserving if, whenever S is a nonempty subset of X and L = inf(S) exists 
in (X, � ) ,  then inf{p(s) : s E S} exists in (Y, �) and equals p(t) . 

These are special kinds of increasing maps; see 3. 17. Some basic properties follow. 
a. Any order isomorphism is sup- and inf-preserving and strictly increasing. 
b. Any sup- or inf-preserving map is also increasing. Hint: 3.21 .f. 
c. Examples. The inclusion maps C(J, I) � I1 in 3.20.e, V � IR.3 in 4.2 1 ,  and 

ba(A) � IR.A in 1 1 .47 are order-preserving, but they are not sup-preserving or inf
preserving. The inclusion 'J � P(X) given in 5.21 is sup-preserving but not inf
preserving. 

CHAINS 

3.23. Definition. Let (X, �) be a poset. Then the following conditions are equivalent. If 
any, hence all, are satisfied, we say that (X, �) is a chain (or � is a total order or linear 
order or chain order) .  

(A) Any two elements of X are comparable (defined in 3.9.a) . 
(B) Each two-element subset of X has a first element . 
(C) Each two-element subset of X has a last element . 
(D) Each nonempty finite subset of X has a first element. 
(E) Each nonempty finite subset of X has a last element. 
(F) (X, �) satisfies the Thichotomy Law: for each x, y E X, exactly one of the 

three conditions 
X -<  y, y -<  x, x = y  

holds. In other words, the sets Graph(-<) ,  Graph(::- ) ,  and I form a partition 
of X x X. 

3.24. Some important examples. The number systems N � Z � Q � JR. �  [-oo, +oo] play 
a major role in analysis. We shall give formal introductions to Q and JR. in later chapters, 
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but for now we assume that the reader is already familiar with these number systems at 
least informally. The reader should understand arithmetic and inequalities in R 

All of the number systems N, Z, IQ, lR are chains. Indeed, lR is a chain, and all the 
inclusions N � Z � IQ � lR are order-preserving. 

3.25. Elementary properties. 
a. Any subset of a chain is a chain. 
b. If (X, �) is a chain, then (X, � ) is a chain. 
c. A product of chains , with the product ordering (from 3.9 .j ) ,  is not necessarily a chain. 

For instance, N2 is not a chain. 
Certain other orderings on a product may be chains or well orderings; see 3.44 . 

d. Suppose (X, :::; ) i s a chain and S � X with CJ = sup(S) . Then for each x E X with 
x < CJ there exists some s E S with x < s :::; CJ. 

3.26. A total preorder on a set X is a preorder � (i.e. , a reflexive, transitive relation) 
that also has this property: 

Any two elements x, y E X are comparable - i.e . , at least one of the relations 
x � y or y � x holds. 

Observe that a total preorder is in fact a total order if and only if it is antisymmetric. 
Let � be a total preorder on X; then: 

a. An equivalence relation is given on X by this rule: x ;:::::; y if both x � y and y � x. 

b. � defines a total order on the equivalence classes, i .e . , on the quotient set X/ ;:::::; , 
c. � can be extended to a total order :::; on X (so that Graph(�) :;2 Graph(:::; ) )  by this 

natural method: Define a chain ordering ::; arbitrarily within each of the equivalence 
classes. When x and y are not equivalent, say x :::; y if and only if x � y. 

3.27. The reader may be better able to appreciate transitivity and chains after considering 
Condorcet's Paradox: 

Even if we assume that each individual voter's preferences are ranked in a chain 
ordering, the preferences of a collection of voters (determined by majority rule) 
are not necessarily a chain ordering - they need not be transitive! 

For instance, a recent presidential election in the United States had three main candidates: 
Bush, Clinton, and Perot, hereafter represented by B, C, P. (For those readers who are not 
interested in politics, ask which fruit is preferred: banana, cherry, or peach; the mathematics 
is the same. ) Before the election, I took a "straw poll" and asked my students which 
candidate they preferred . The class preferred Clinton over Bush; the class preferred Bush 
over Perot ; but the class preferred Perot over Clinton! How is this possible? The following 
chart shows the details. 

Each individual voter's preferences are given by a chain ordering of the three candidates. 
There are six possible chain orderings of the candidates. For instance, one ordering is: Bush 
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B B c c p p 
c p B p B c Sum 
p c p B c B Result 

3-way 1 5 6 1 2 7 22 
C > B  6 1 7 14 Clinton 
C < B  1 5 2 8 beats Bush 
B > P  1 5 6 12 Bush 
B < P  1 2 7 10 beats Perot 
P > C  5 2 7 14 Perot 
P < C  1 6 1 8 beats Clinton 

is first choice; Clinton is second choice; Perot is third choice. That ordering is represented 
by "B C P," in the first column. The row labeled "3-way" shows how many members of 
the class have that chain ordering; thus, that row shows the votes that would be cast in a 
contest between all three candidates. For instance, just one of the 22 voters had a "B C P" 
preference, so the number 1 appears in the "B C P" column, in the "3-way" row. 

Below the "3-way" row are rows showing the results of contests between any two candi
dates. The totals for each contest are in the column with the heading "sum." For instance, 
in a contest between Bush and Clinton, 14 voters preferred Clinton over Bush, while 8 
voters preferred Bush over Clinton. Thus we obtain the result "C > B." 

Of course, this situation can arise with other numbers of voters and other numbers of 
candidates. 

Exercise. The simplest case of Condorcet 's Paradox involves 3 candidates and 3 voters. 
Work out the details. 

This type of paradox was first published by Condorcet in 1785. A characterization of the 
combinations of numbers that yield Condorcet's paradox, and further references, were given 
by Weber [1993] . A generalization to infinite sets of voters (with majority rule replaced by 
other kinds of rule) were studied be Haddad [1989] ; further considerations about finite or 
infinite sets of voters can also be found in Kirman and Sondermann [1972] . 

VAN MAAREN ' S  GEOMETRY-FREE SPERNER 
LEMMA 

3.28. Discussion and preview. The main result of this subchapter is a technical combina
torial result about preordered sets: 

Van Maaren's Theorem. Let C :  X _,  P be some given function, where P 
and X are nonempty sets and P is finite. For each p E P, assume �P is a total 
preordering of X.  Then there exists a function a from some nonempty subset 
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of P into X, satisfying: 

• a-(q) �q a- (r ) for all q, r E Dom(a- ) . 
• There is no x E X that satisfies a- ( q) -<q x for all q E Dom( a- ) . 
• Dom (a- ) = e(Ran(a- ) ) . 

This theorem is due to Maaren [1987] ; our presentation is based on the exposition given 
by van de Vel (see Vel [1993] ) .  The proof will take several pages and will require several 
more definitions and preliminary results. We complete the proof of the theorem in 3 .36, 
and follow it with a corollary about approximate fixed points in 3.37. 

This material may be postponed. It is rather specialized and will not be used until 
27. 19, where we use it to prove Brouwer's Fixed Point Theorem and related results. We 
include van Maaren's argument this early in the book mainly in order to emphasize how 
elementary it is - i.e. , to show that it does not depend on topology or geometry. For an 
abridged treatment , readers who are willing to skip some proofs may proceed directly to 
3.37; the other ideas in this subchapter will not be needed elsewhere in this book. 

The literature contains many different proofs of Brouwer's Theorem. Some of the proofs 
may appear short or elementary, but that is only because they have concealed some of the 
difficulty - usually by using some well-known but nontrivial theorem, about measures and 
Jacobian determinants or about the algebraic topology of simplicial triangulations. Those 
proofs, when carried out in detail, are ( in this author's opinion) non-intuitive; they involve 
n-dimensional diagrams that are hard to visualize and that seem to have little to do with 
the central ideas of Brouwer's Theorem. Van Maaren's proof, though not shorter or simpler 
than the other proofs, avoids such drawbacks. Our presentation separates the proof of 
Brouwer's Theorem into two main components: a purely combinatorial result in 3.37 and a 
compactness argument in 27. 19 . 

3.29.  Notations and definitions. The cardinality of a set S will be denoted l S I .  The 
symmetric difference of two sets S, T will be denoted S D T. The domain and range of a 
function a- will be denoted, respectively, by Dom( a-) and Ran( a- ) . 

Throughout this subchapter, we assume some nonempty sets P and X are given, with 
P finite. Also, we assume some mapping e : X -> P is given; we shall call this function the 
labeling. An assignment will mean a function 

a- : Dom(a- ) -> X, where Dom(a-) is a nonempty subset of P. 

Note that any assignment has a finite domain, hence also a finite range. An assignment a
is complete (with respect to e) if Dom ( a-) = €(Ran( a- ) ) . An assignment a- will be called 
almost complete if IDom (a- ) \ €(Ran (a-) ) l <::: 1 .  Two assignments a-1 , a-2 will be called 
neighbors if either 

Dom(a-1 ) = Dom(a-2 ) and IRan(a-1 ) D Ran (a-2 ) l  = 1 ,  or 

Ran (a-1 ) = Ran (a-2 ) and IDom(a-1 ) D Dom(a-2 ) l = 1 .  
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3.30. Observations. For any assignment cr, 
a. 1£(Ran(cr)) l :::; IRan(cr) l :::; IDom(cr) l .  Since lS I - IT I = IS \ Tl - IT \ Sl for any finite 

sets S and T, we have 

0 < IDom(cr) l - I£(Ran(cr) ) l 
I Dom(cr) \ £(Ran(cr)) l - 1£(Ran(cr)) \ Dom(cr) l 

:::; I Dom(cr) \ £(Ran(cr) ) l .  

b .  If IDom(cr) \ £(Ran(cr)) l = 0 then cr is complete. 
c.  If cr is almost complete, then 0 :::; 1Dom(cr) I - I£(Ran(cr) ) l :::; 1 .  
d. Let u s abbreviate iS = IDom(cr) l ,  R = IRan(cr) l , R = I£(Ran(cr) ) l .  The almost com

plete assignments can be classified into the complete assignments and three types of 
noncomplete assignments: 

Is cr injective? 
£ injective on Ran(cr)? 

D, R, £ : 

1£(Ran(cr)) \ Dom(cr) l = 

Complete 
yes 
yes 

D = R  
= €  
0 

Type (i) 
no 
yes 

D - 1 = 
R = £  

0 

Type (ii) Type (iii) 
yes yes 
no yes 

D = R = D = R 
£ + 1  = £  
0 1 

3.31. If cr is an almost complete assignment that is not complete, then Dom( cr) \ £(Ran( cr)) 
contains exactly one element . We shall call it the extraneous element for cr. 

Proposition. Suppose that cr and cr' are assignments that are almost complete but not 
complete and they are neighbors. Then they have the same extraneous element . 

Proof. Suppose that cr and cr' have extraneous elements p and p' , respectively, where p -/=- p'; 
we shall arrive at a contradiction. 

Since Dom(cr) and Dom(cr') differ by at most one element, one must contain the other; 
say Dom(cr) � Dom(cr' ) .  Since p E Dom(cr) \ £(Ran(cr) ) ,  we have p E Dom(cr' ) .  Since p 
is not the extraneous element of cr', we have p E £(Ran(cr' ) ) .  Since p � £(Ran(cr) ) ,  the 
sets Ran(cr') and Ran(cr) are different , and therefore Dom(cr') = Dom(cr) . Since the sets 
Ran(cr') and Ran(cr) differ by at most one element , we have £(Ran(cr)) � £(Ran(cr' ) ) .  Then 

p' E Dom(cr' ) \ £(Ran(cr' ) ) � Dom(cr) \ £(Ran(cr) ) , 

and so p' is an extraneous element of cr - a contradiction. 

3.32. More assumptions and definitions. In the remainder of this subchapter we assume 

P is the index set for a collection { �P : p E P} of total preorderings of X. 

(Recall from 3.26 that a preordering of X is total if it makes every two elements of X 
comparable. In several of the next few sections we make the additional assumption that 
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all the �p's are antisymmetric - i.e . , they are chain orderings - but in 3.36 we drop that 
restriction. )  

An assignment CJ will be called a crystal if it satisfies these two conditions: 

(CR-1 )  

(CR-2) 

CJ(q) �q CJ(r) for all q, r E Dom(CJ) . 

There is no x E X  that satisfies CJ(q) -<q x for all q E Dom(CJ). 

Let e be the set of almost complete crystals. A crystal CJ with I Dom( CJ) I = k will be called 
a k-crystal. 

3.33. Observations. Assume all the �p 's are antisymmetric. Then: 
a. Condition (CR-1 ) in 3.32 can be restated as: 

CJ(q) is the �q-smallest member of Ran(CJ). 

Thus, a crystal is uniquely determined by its domain and range. 
b. Any 1-crystal is almost complete. 
c. Let CJ be an assignment whose domain is a singleton - i.e., Dom(CJ) = {p} for some 

p E P. Then CJ is a crystal if and only if CJ(p) is the �P-largest member of X.  
d .  A 1-crystal i s  uniquely determined by its domain. 
e. Suppose that CJ1 , CJ2 E e with Ran(CJI ) <;;; Ran(CJ2 ) · Then CJ1 , CJ2 agree (i .e . , take the 

same values) on Dom(CJI ) n CJ21 (Ran(CJI ) ) .  
Hint :  Let q E Dom(CJI ) n CJ21 (Ran(CJI ) ) .  By (CR- 1 ) ,  CJ1 (q) is the �'1-smallest 

member of Ran(CJ1 )  for j = 1 ,  2. 
f. A special case of the preceding result is as follows: Suppose that CJ1 , CJ2 E e with 

Ran(CJI ) = Ran(CJ2 ) .  Then CJ1 , CJ2 agree on Dom(CJI ) n Dom(CJ2 ) · 
g. Suppose that T and T1 are neighboring almost complete crystals. Then one of T, T1 is 

injective and the other is not. If T is injective and T1 is not, then T and T1 must be 
related in one of these two ways: 
(a) Ran(T') = Ran(T) and Dom(T') � Dom(T) . In this case T and T1 agree on Dom(T) . 
(b) Dom(T) = Dom(T') and Ran(T) � Ran(T' ) .  In this case T and T1 agree at all but 

one point of Dom(T) . 
Hints : Use 3.30.d, 3.33.e, and 3.33.f. 

3.34. Proposition. Assume all the �p's are antisymmetric. Then any noncomplete 1-crystal 
T has precisely one neighbor T1 in e .  
Proof Any 1-crystal T is injective. Clearly T1 cannot have empty range, so 3.33.g(b) is not 
possible. Thus we must have Ran(T') = Ran(T) and Dom(T') � Dom(T) . Say T has graph 
{ (q, b) } ;  then Graph(T') = { (q, b) , (q', b) } for some q' of. q. For T1 to be almost complete, 
it must satisfy IDom(T' ) \ l'(Ran(T' ) ) I :::; 1 ;  that is, l {q , q' }  \ {l'(b) } l :::; 1 .  Therefore at least 
one of q, q' must equal l'(b) . By assumption (q, b) is not complete, so l'(b) of. q. Thus we 
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must have q' = £(b) . Finally, we easily verify that T1 = { (q, b) , (£(b) , b) } is indeed a member 
of e. 

3.35. Proposition. Assume all the �p 's are antisymmetric. Then for k ;::: 2 , a noncomplete 
k-crystal a E e has precisely two neighbors in e. 
Proof We analyze the possible values for a neighbor a'. We consider several cases, according 
to the type of a (with types as listed in 3.30.d) . 

(j is of Type (i) .  In this case a is not injective. There is one and only one pair of elements 
Pl , P2 in Dom(a) such that p1 # P2 and a(p l ) = a(p2 ) .  We shall obtain one neighbor of a 
from each of these two points. 

Let p be one of p1 , p2 . We shall obtain a neighbor by either modifying or removing a(p) 
- i.e. , by either changing the definition of the function at p or removing p from the domain. 
We do this in two cases, according to whether there does or does not exist a solution x E X 
to this problem: 

(* ) a(q) -<q x for all q E Dom(a) \ {p} . 
If (* ) has any solutions, let v be the �P-largest of those solutions. Note that v �P a(p) , 
since otherwise a and v would contradict (CR-2) . Now a neighbor a' can be defined with 
Dom(a' ) = Dom(a) , by taking 

a'(q) = { a(q� when q -::J p 
when q = p. 

On the other hand, if (* ) has no solution, then a neighbor a' can be defined by just restricting 
a to a smaller domain - i.e . , taking Dom(a') = Dom(a) \ {p} and taking a' equal to a on 
Dom(a' ) .  It is tedious but straightforward to verify that the function a' defined in either 
of these fashions is a neighboring almost complete crystal. 

Thus we obtain one neighbor by either modifying or removing a(pl ) and another by 
either modifying or removing a(p2 ) .  Now we shall show that there are no other neighbors 
possible besides those two. 

Let a' be a neighbor of a in e; what form can a' take? By 3.33.g, a' is injective, and 
there are two cases to consider: 

( 1 )  Ran( a) = Ran( a') and Dom(a) = {p} U Dom(a') for some p � Dom(a' ) ,  and a' and 
a agree on Dom( a') . Since a' is injective, p must be one of p1 , p2 . Since a' is a crystal, by 
( CR-2) we know that there is no x E X satisfying a( q) -<q x for all q E Dom( a' ) .  Thus 
there is no solution of problem ( *) ,  and the function a' can only be the one obtained by 
removing a (p) . 

(2) Dom(a) = Dom(a') = D and Ran(a' )  = Ran(a) U {a' (p) } for some p E D with 
a'(p) � Ran(a) , and a and a' agree on D \ {p} .  Since Ran(a) s;:; Ran(a' ) ,  we have a(p) = 
a'(ql ) for some q1 E D. Since a(p) belongs to Ran(a) and a' (p) does not, we know a' (p) -::J 
a(p) = a'(ql ) ,  and therefore p # q1 . Since a and a' agree on D \ {p} , we have a(ql ) = 
a'(ql ) = a(p) . Thus p and q1 are distinct members of D that are mapped to the same value 
by a. Therefore the set {p, q1 } is equal to the set {Pl , P2 } .  Hence p is one of Pl , P2 . Since 
a' satisfies (CR- 1 )  and a' is injective, we have a'(q) -<q a'(p) for all q E Dom(a') \ {p} . 
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That is, cr(q) --<q a' (p) for all q E Dom(a') \ {p} , so a' (p) is a solution of (*) .  To see that 
a' (p) must be the �P-largest solution of ( * ) ,  suppose that x is a �p-larger solution. Then 
a(q) --<q :.r for all q E Dom(a) \ {p} ,  and a'(p) --<p x as well . That is, a'(q) --<q x for all 
x E Dom(a' ) ,  contradicting the fact that a' must satisfy (CR-2) . Thus, we have established 
that there is a solution of problem ( * ) ,  and the function a' can only be the one obtained 
by modifying a(p) . 

a is of Type (ii ) .  In this case a is injective, but C is not injective on Ran(a) . Thus 
IDom(a) l = IRan(a) l > l t'(Ran(a)) l . There is a unique pair of distinct elements w1 , w2 E 
Ran( a) that get mapped by {' to the same value. There are unique elements p1 , p2 E Dom( a) 
with a(pJ ) = WJ . We shall obtain one neighbor of a from each of these two points. 

If Dom(a') � Dom(a) and Ran( a') = Ran( a) , then we have IDom(a' ) l - 1  2 I Dom(a) l 2 
l t'(Ran(a) ) l + 1 = l t'(Ran(a' ) ) l  + 1 ,  contradicting 3.30.c. Thus 3.33.g(a) cannot hold. 

Therefore Dom(a) = Dom(a') and Ran(a) = Ran(a') U {a(p) } for some p with a(p) r:j. 
Ran(a' ) ,  and a and a' agree on the set S =  Dom(a) \ {p} .  Since Ran(a') � Ran(a) , we 
must have a' (p) E a(S) . 

If p r:j. {p1 , p2 } ,  then Pl , P2 are distinct members of S with t'(a'(pl ) )  = t'(a'(p2 ) ) ,  and 
t'(a' (p) ) E P(a'(S) ) ,  too. It follows that lt'(Ran(a' ) ) l ::; IDom(a') l - 2, contradicting 3 .30.c. 
Thus we must have p E {pl , P2 } · 

For each of those two choices of p, the value of a' (p) is determined uniquely: By 3.33.a, 
a'(p) must be equal to the �p-lowest member of Ran(a') . 

We have shown that only two functions (one with p = p1 , the other with p = p2) could 
possibly be almost complete crystals that neighbor a. It is easy to verify that both of those 
two functions are, indeed, such crystals. 

a is of Type (iii ) .  In this case a is injective, and {' is injective on Ran(a) . We shall 
obtain one neighbor of a from the unique member of t'(Ran( a)) \ Dom( a) and another from 
the unique member of Dom(a) \ L'(Ran(a) ) .  By 3.33.g, we can obtain a neighbor only by 
enlarging the domain or decreasing the range; we shall show that each of these two methods 
yields precisely one neighbor. 

( 1 )  Enlarging the domain: In this case Dom(a') = Dom(a) U {p} for some p r:j. Dom(a) , 
and Ran(a') = Ran(a) = R, and a and a' agree on Dom(a) . Since p r:j. Dom(a) , p is not 
the extraneous element of a, and therefore p is not the extraneous element of a'. Hence 
p E L'(Ran(a' ) )  = L'(R) = t'(Ran(a) ) .  Thus p is the unique member of C(R) \ Dom(a) . By 
3.33.a, a' (p) must be the �P-least member of R. Thus we have specified a' uniquely. It 
is easy to verify that the function a' defined in this fashion is indeed an almost complete 
neighboring crystal. 

(2) Decreasing the range: In this case Dom(a) = Dom(a') = D and Ran( a') = Ran( a) \ 
{a(p) } for some p E D, and a and a' agree on D \ {p} . Since {' is injective on the range of 
a, we have L'(a(p)) E t'(Ran(a)) \ £(Ran( a' ) ) .  Since t'(a(p) ) E £(Ran( a) ) ,  we have P(a(p) ) r:j. 
Dom(a) \ t'(Ran(a) ) .  That is, t'(a(p) ) r:j. Dom(a') \ £(Ran( a' ) ) ,  since a and a' have the same 
extraneous point. But t'(a(p) ) r:j. P(Ran(a' ) ) ,  so we conclude t'(a(p)) r:j. Dom(a') = Dom(a) . 
Thus we have identified P(a(p) ) uniquely: it is the unique member of C(Ran(a) ) \ Dom(a) . 
Since C and a are injective, we have determined p uniquely: I t i s the unique member of 
Dom(a) that satisfies t'(a(p) ) r:j. Dom(a) . The functions a and a' agree on D \ {p} , and the 
value of a' (p) is determined uniquely by 3 .33.a. Thus we have defined a' uniquely. It is a 
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tedious but straightforward exercise to verify that the function 0"1 defined in this fashion is 
indeed an almost complete crystal that neighbors O". 

3.36. Van Maaren's Theorem. Suppose that P and X are finite sets and for each p E P 
we are given a total preorder �P on X (not necessarily antisymmetric) . Let any labeling 
i! : X --+ P be given. Then (X, P) has at least one complete crystal with respect to £. 

Diagram for 
proof of 3.36 

Proof. A preliminary first step is this: We can replace each total preorder �P with a 
total order, hereafter denoted �P ' by arbitrarily choosing a total ordering on each of the 
equivalence classes of �p · This replacement results in fewer crystals. Thus, it suffices to 
prove the theorem under the additional assumption that each preordering �P is a total 
ordering. 

Since X is a finite set, e is finite also. By 3 .33.c, there exists a 1-crystal O"o , with a 
singleton domain Dom(O"o ) = {p0 } .  In e, each incomplete 1-crystal has exactly one neighbor, 
and each incomplete 2-crystal has exactly two neighbors. Follow a path, starting at O"o , going 
from each crystal to its neighbor. If we do not encounter any complete crystals along the 
path, then our route is uniquely determined; it must begin and end at distinct 1-crystals 
(see the preceding diagram) .  However, at each step the extraneous point is preserved, by 
3 .31 ; thus the beginning and ending 1-crystals must have the same extraneous point -
contradicting the fact that they are distinct. This proves that the path must include at 
least one complete crystal. (Incidentally, we have given a constructive algorithm for finding 
a complete crystal: just follow the path until one is encountered. )  

3.37. The first theorem below is included only for motivation; we give references for it in 
lieu of a proof. The second theorem, though more complicated to state, is easier to prove, 
and we shall do so below. It will be used to prove Brouwer's Theorem in 27. 19 . For both 
theorems, let !Rn be metrized by d(x, y) = max { lxj - Yj l : 1 :::; j :::; n} . 

First Approximate Fixed Point Theorem. Let n be a positive integer, 
let f = (JI , f2 , . . .  , fn ) : [0, 1]n --+ [0, 1]n be a function, and let any number 
E: > 0 be given. Then there exists a set S � [0, 1]n with diameter less than E:, 
with the following property: For each j E { 1 ,  2 , . . .  , n} there exist some points 
x = (x1 , x2 ,  . . .  , xn ) and x' = (x� , x� ,  . . .  , x� ) in K such that Xj :::; fJ (x) and 
xj 2 fj (x' ) .  

Second Approximate Fixed Point Theorem. Let n be a positive integer. 



Van Maaren 's Geometry-Free Sperner Lemma 

Let � be the standard n-simplex ; that is, the set 

{ n E II<" ' u, u, , . . . , u,. :> 0 and 

Let any function f : � ----+ � and any number E > 0 be given. Then there exists 
a set S t:;; � that acts as an approximate fixed point of f, in the following sense: 

• diam(S) � E 
• For each i = 1 ,  2, . . .  , n, there is some u E S such that ui - E � f (u) i . 
• There exists some point v E S satisfying 2::::7= 1 Vi + E 2 2:::::� 1 f ( v k 
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Remarks. We emphasize that f is not assumed to be continuous or even measurable. Aside 
from the domain and codomain, we make no assumption at all about f. Thus, these 
theorems are not really "about" f; they are theorems about the combinatorial structure of 
lR11 • An analogous theorem about infinite dimensional vector spaces will be given in 27.19 . 

A similar argument in two dimensions, more geometrical and elementary in presentation, 
was given by Shashkin [199 1] .  Theorem 2 of Baillon and Simons [1992] is also very similar. 

The First Approximate Fixed Point Theorem can be proved by methods similar to 
those below, using Wolsey's [1977] Cubical Sperner Lemma instead of our 3.36. It would 
be interesting to know if the First Approximate Fixed Point Theorem can also be proved 
by some short argument using 3.36; no such argument is presently known to this author. 

Proof of the Second Approximate Fixed Point Theorem. By writing Un+1 = 1 - 2::::;'= 1 Uj , 
we may rewrite 

The (n + l )st coordinate will be treated just like the other coordinates in the following 
argument . 

Let M be an integer large enough so that 2 (n + 1 ) /M < E. Let X consist of the 
collection of all points u E � for which all of Mu1 , A1u2 , . . .  , A1un , A1un+ 1 are integers. Let 
P = { 1 ,  2, 3, . . .  , n, n + 1 } .  For 1 � j � n + 1 define a preordering of X by taking u �j v 
when u.i � v1 . 

Let a be a crystal, and let S be its range. If 

L a(i) i 
iEDom(a) 

n + l  < 1 - -
M '  

then there exists a member x E X that satisfies a ( i ) i < Xi for all i E Dom( a) , contradicting 
(CR-2) in 3.32. Thus the inequality above does not hold . 
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For any i , j E Dom(a) , we have a(i ) ; :::; a(j ) ; ,  and therefore 

n + 1  
1 - � < L a(i); < 

iEDom(a) 
L a(j); < 1 

iEDom(a) 

from which it follows that 0 :::; a(j); - a(i); :::; ni[l for each i , j  E Dom(a). Therefore 
ia (j) ; - a(k) ; l :::; 2 (n + 1 ) /M whenever i , j, k E Dom(a) . Hence iu; - v; l :::; c for all u, v E S 
and i E Dom(a) . 

On the other hand, since 2::�:/ a(j); = 1 ,  we must have l::i$Dom(a) a(j); :::; ni[l for 
j E Dom(a) and, in particular, a (j ) ; :::; nifl for each i t/:. Dom(a) . Thus 0 :::; u; :::; c/2 for 
all u E S and i tJ. Dom(a) . Therefore diam(S) :::; c. 

Define a labeling £ : � --""* { 1 , 2, . . .  , n, n + 1} as follows: let £( u) = i if i is the first 
coordinate that satisfies u; :::; f( u); .  By 3.36 there exists a complete crystal a with respect 
to that labeling. When i E Dom(a) = C(Ran(a) ) ,  then i = C(u) for some u E S, so 
u; :::; f (u) ; .  On the other hand, we noted earlier in this proof that when i tJ. Dom(a) and 
u E S, then u; :::; c; hence f ( u ); 2:: u; - c. This completes the proof. 

WELL ORDERED SETS 

3.38. Definition. Let (X, � ) be a poset. We say � is a well ordering if each nonempty 
subset of X has a first element . Then X is a well ordered set , or a woset. 

Examples. The set N is well ordered. Also see 3.43 and 5.44. 
Remark. Well ordered sets are only used infrequently in analysis. This subchapter may 

be postponed or omitted if the reader is concerned only with the usual topics of analysis. 

3.39.  Basic properties of wosets. 
a. Any woset is a chain. 
b. Any subset of a woset is a woset . 
c. Let S be a subset of a woset X. Then S is a proper lower set in X if and only if 

S = Pre(b) for some b E  X, with notation as in 3. 16 .b. 
Hint for the "only if" part : Let b be the first element of X \  S. 

d. Let X be a woset . Then the lower sets of X form a woset X, when ordered by 
� - The last element of X is X . If X is not empty, then the first element of X is 
0 = Pre(min(X) ) ,  where min(X) is the first member of X . 

e .  Any woset X is a proper lower set of some larger woset Y.  Indeed, one way to form 
such a larger set is by adjoining some new element - call it 0 - that is not already 
present in X and defining 0 to be larger than all the elements of X . 

f. Induction on Wosets. Let (X, � )  be a woset, and let S be a subset of X with the 
property that Pre(b) � S =? b E  S. Then in fact S = X. 

Hint :  I f not, let b be the first element of X \  S. 
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3.40. Notation. For the result below, if (X, � ) is a well ordered set and T is a nonempty 
set, then an X -based sequence in T will mean a function whose domain is some proper lower 
set of X and whose range is contained in T. As a degenerate case, we may view the empty 
function (with graph equal to the empty set) as an X-based sequence in T. 

Theorem of Recursion on Wosets. Let (X, � ) be a woset and let T be a nonempty set. 
Let any function 

p : {X-based sequences in T} ----+ T 
be given. Then there exists a unique function F : X ----+ T satisfying 

for each x E X. 

Here F 1 ( ) denotes the restriction of F to the set Pre( x) = { w E X : w -< x} . Thus, the Pre x 
value of F at any x is determined, via the rule p, by the values of F at all the predecessors 
of x . 

Remark. Compare this result with 2.22. 

Proof of theorem. First we prove uniqueness. Suppose F1 , F2 are two such functions, and 
F1 =/= F2 . Let x be the first member of X that satisfies F1 ( x) =/= F2 ( x) . Then F1 ( w) = F2 ( w) 
for all w E Pre( x) - that is, the restrictions F1 1 ( ) and F2 1 ( ) are the same function Pre x Pre x 
zp. But then F1 ( x) = p( zp) = F2 ( x) , a contradiction. This proves uniqueness. 

We now turn to the existence proof. It will be convenient to replace X with a slightly 
larger set. Let Y = XU { q } ,  where q is some object not belonging to X. Extend the ordering 
of X to an ordering on Y by setting x -<  q for all x E X; then Y is also a woset . Note that 
for each y E Y, the set Pre(y) is a lower set in X; in particular, Pre(q ) = X. 

We shall prove that for each y E Y there is a function Fy : Pre(y) ----+ T satisfying 

for each x E Pre(y) . 

(Once this is established, we simply take F = Fq to prove the theorem. )  First note that 
for each y, we may unambiguously use the notation "F,;" because there is at most one such 
function Fy ; that is clear by a uniqueness argument similar to the one at the beginning of 
the proof of the theorem. 

The proof of the existence of Fy 's is by induction on y. Assume, then, that some ry E  Y 
is given and that Fy 's exist for all y -< ry; we are to demonstrate the existence of Fry . We 
demonstrate that in two different ways, according to the nature of ry: 

First , suppose ry has an immediate predecessor � - that is, suppose ry is the first member 
of Y after some member �· Then Pre(ry) = {0 U Pre(�) , and Ff, : Pre(�) ----+ T is a function 
of the sort described above. Define a function Fry : Pre( ry) ----+ T by 

F (x) = { Ff, (x) ry p (Ff. )  
when x E Pre(�) 
when x = �· 

It is easy to verify that Fr1 has the required properties. 
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On the other hand, suppose 7) has no immediate predecessor in Y. Then Pre( 7)) = 
UY-<'7 Pre(y) . Also, Graph(Fy )  is an increasing function of y - that is, 

y -< y' -< 7) Graph(Fy ) � Graph(Fy' ) .  

Verify that Graph( Fry) = UY-<'7 Graph(Fy )  defines Fry with the required properties. 

3.41.  Comparability Theorem. If (X, -::; ) and (Y, �) are wosets, then exactly one of 
these three conditions holds: 

• There exists an order isomorphism between X and Y. 

• There exists an order isomorphism from X onto a lower set of Y. 

• There exists an order isomorphism from Y onto a lower set of X. 

Furthermore, in each case the isomorphism is uniquely determined. 

Proof. For each proper lower set L � X  and each function 'P :  L ----+ Y, define 

( ) = { min(Y \ Range( 'I?)) p 'P min(Y) 
if Range( 'P) -1- Y 
if Range( 'P) = Y. 

Now define F :  X ----+ Y by recursion, as in 3.40. Then F(Pre(x) ) is an increasing function 
of x, so X0 = {x E X :  F(Pre(x) )  -1- Y} is a lower set in X .  Show that F(Xo ) is a lower set 
in Y and F gives an order isomorphism from X0 onto F(X0 ) .  If F(X0 ) -1- Y, then X0 = X. 
This establishes the existence of at least one isomorphism. 

If f and g were distinct order isomorphisms from X onto a lower set of Y , then we could 
take x0 to be the first element of X satisfying f(x0 ) -1- g(xo ) ;  show that this leads to a 
contradiction. This proves uniqueness in either direction. 

Suppose f is an order isomorphism from X onto a lower set of Y and g is an order 
isomorphism from Y onto a lower set of X. Then g o f is an order isomorphism from X 
onto a lower set of X - but by the uniqueness result of the previous paragraph, g o  f must 
then be the identity map of X. 

3.42. Corollaries. 
a. If X and Y are wosets, then card(X) -::; card(Y) or card(Y) -::; card(X) .  
b.  If X is an infinite woset , then card( X) 2: card(N) , and for any � tj_ X we have card( X) = 

card (X U { 0) .  

3.43. Canonical Well Ordering Theorem. Let X be a set, and let some mapping 

p : {proper subsets of X} ----+ X 

be given that satisfies p(S) E X \  S for each S. Then there exists a unique well ordering � 
on X with the following property: 

x = p ({u E X : u -< x}) for each x E X. 
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(In other words, to find the next term in the ordering, just apply p to the set of all the 
terms that have already been ordered. Contrast this with (AC4) in 6.20. ) 

Proof (modified from Malitz [1979] ) .  Consider well orderings of subsets of X.  When =;< 
is such a well ordering, let S� be the subset of X that it well orders, and let its sets of 
predecessors be denoted by 

Pre� (x) = { s E S� : s =;< x, s � x} 
for points X E s� . Say =;< is a p-well ordering if it also satisfies 

for each x E S� .  
Let X be the set of all p-well orderings. It is clear that X is nonempty, since the empty 
relation is a p-well ordering of the empty set. We are to show that X has a unique member 
=;< satisfying S� = X. As a preliminary step, we shall show that 

( * * ) Whenever =;< 1 and =;<2 are p-well orderings, then one of the wosets ( 5 � 1 , =;< 1 ) , 
(5�2 , =;<2 ) is a lower set of the other, whose ordering is just the restriction of the 
other's ordering. 

Indeed, by 3 .41 , we know that there exists an order isomorphism between one of the wosets 
(5�, , =;< 1 ) ,  (5�2 , =;<2 ) and a lower set of the other. Say p :  5� , ---+ 5�2 is an order isomorphism 
from (5� 1 , =;< 1 )  onto a lower set of (5�2 , =;<2 ) .  Then p (Pre� 1 (u)) = Pre�2 (p (u)) for any 
u E 5� , .  To prove ( * *  ) ,  it suffices to show that this isomorphism is actually an inclusion 
map - i.e . , that p(x) = X  in X for all X E 5� , .  If (3 = p (a ) � a  for some a E 5� , ' choose the =;<1-first such a in 5� , and the corresponding (3. Then p acts as the identity map on 
Pre�, (a) . Thus 

Pre�1 (a) = p (Pre� 1 (a)) = Pre�2 (p(a)) = Pre�2 (,B) , 

and therefore a =  p (Pre� 1 (a)) = p(Pre�2 (f3)) = (3, a contradiction. This proves the 
claim ( * *  ) .  

Each member of X is a relation on X,  which may be  viewed as a subset of X x X .  From 
( * * ) it follows easily that the union of the elements of X is itself a member of X. Hence it 
is the largest member of X; let us denote it by (;;; . If 5� is not equal to X,  then [;;; extends 
to a strictly larger p-well ordering on 5� u {p (5d } , by defining p (5d to be larger than 
all the members of 5� - contradicting the maximality of [;;; . Thus 5� = X. Uniqueness 
follows from ( * * ) . 

3.44. Products of wosets. A product of wosets, with the product ordering, is not necessarily 
a woset ; an example is given by N2 . Other orderings on a product may be well ordered, 
however: 

a. Let (A, S) be a woset, and for each ,\ E A let (XA ,  S) be a chain. (The S 's may 
represent different orderings. )  Let P = fLEA X A .  The lexicographical order (or 
dictionary order) on P is defined as follows: p < q in P if p(v) < q(v) where v E A is 
the first component in which p and q differ. Show: 
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(i) The lexicographical ordering is a chain ordering on P .  
(ii) I f  each (X>. ,  :S)  is well ordered and A i s  a finite set , then the lexicograph

ical ordering is a well ordering on P. 
(iii) In general, the lexicographical ordering on an infinite product is not a 

well ordering. Indeed, if A is an infinite woset with no last element and 
each X>. is a woset containing at least two elements, then P is not well 
ordered. To see this, let � be the function whose value at .A is the smallest 
member of X>. ; show that P \ {0 has no smallest element . For a more 
concrete special case, show that {x E {0, l }N  : x =/= (0, 0, 0, . . .  ) }  has no 
first element in {0, l }N .  

b.  (This construction will be used in 3.45 . ) Let (X, :S )  be a well ordered set. Define an 
ordering [;;;; on X x X, as follows: For (x, y) and (u, v) in X x X, say (u, v) c::: (x, y) 
means that 

• max{u, v} < max{x, y} , or 
• max{u, v } = max{x, y} and u < x, or 
• max{u, v } = max{x, y} and u = x and v < y. 

Verify that this is a well ordering on X x X. 

3.45. Theorem on card(X2 ) .  Let X be an infinite set, and suppose that X can be well 
ordered. Then card(X x X) = card(X) .  

Remarks. The present result does not require the Axiom of Choice, which tells us that every 
set can be well ordered; see 6 .20 and 6.22. 

Proof of theorem. Let I I denote cardinality. Clearly, lXI ::; IX x XI .  Suppose lX I < IX x X I 
for some infinite woset (X, :S) ;  we shall obtain a contradiction. Clearly, we can replace X 
by any other woset with the same cardinality; by 3.39.d we may replace X with the first 
lower set in X that is infinite and satisfies lX I < IX x X I .  Observe that if K is any proper 
lower set in X ,  then either K is finite or IK I = IK x K l ;  hence IK I  =/= lX I ,  hence (since 
K � X) we have IK I  < lX I .  In particular, X does not have a last element - for, if X were 
an infinite woset with last element �, then X \ { 0 would be a proper lower set with the 
same cardinality as X, a contradiction. 

Define a well ordering [;;;; on X x X as in 3.44.b. Since X and X x X are well ordered, one 
of these sets is uniquely order isomorphic to a lower set of the other. Since lX I < IX x XI ,  
the order isomorphism must be from X onto a set L that i s  a proper lower set of X x X. 
Then IL l  = lX I i s  an infinite cardinal. 

Let ( uo , vo) be the [:;-first member of (X x X) \ L. Let w0 be the maximum of uo and 
v0 in (X, ::; ) .  Let M = {x E X  : x ::;  w0} .  Then M is a lower set in X . Since X does not 
have a last element , M is a proper lower set in X, and therefore IM I < lX I .  Observe that 

(u, v) E L =} (u, v) C::: (uo , vo )  =} max{u, v } ::; wo =} u, v E M, 
and thus L � M x M. Hence IL l  ::; IM x MI .  Since L is an infinite set, M must be infinite, 
too. By our choice of X ,  then, IM x Ml = IM I . Now lX I = IL l :S IM x Ml = IM I < lX I ,  a 
contradiction. This completes the proof. 
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3.46. Definition. A collection :J of subsets of a set X is said to have finite character if 
for each set S <;;; X ,  

S is a member of :J if and only if each finite subset of S is a member of :J. 

Example. If (X, �) is a poset, then { S <;;; X : S is chain ordered by � }  has finite character. 
Other examples will be given in 5.7.e, 1 1 . 10, 12 . 17 .f, and 14.3 1 .  

We shall now prove the following theorem: 

Finite Character Theorem (canonical choice version) . Let X be a set 
that can be well ordered and let :J be a collection of subsets of X that has finite 
character. Then :J has a <;;;-maximal element . 

Remark. Contrast this with (AC5) in 6.20. The present theorem does not require the Axiom 
of Choice, which would tell us that every set can be well ordered. 

Proof of theorem. Let � be a well ordering of X. We shall determine a maximal set M E  :J 
by defining its characteristic function 1M : X ----+ {0, 1 } ,  by transfinite recursion. At the o:th 
step, we have defined 1M on all of Pre(o:) , and thus we have determined which elements 
of Pre(o:) should be members of M - i.e . , we have determined the set Pre(o:) n M. Now 
define 1M (o:) , by taking it to be 1 if the set (Pre( a) n M) U {o:} is a member of :J and 0 
otherwise. Verify that the resulting set M is a <;;;-maximal member of :J. 



C hapter 4 
More about Sups and Infs 

4. 1 .  Chapter overview. Sups and infs were introduced briefly in Chapter 3. This chapter 
investigates sups and infs further and introduces the related notions of Moore closures and 
order completeness. A Moore collection is a collection of sets that is closed under arbitrary 
intersection - i.e . , under arbitrary infimum with respect to the ordering given by inclusion. 
Order completeness of a poset refers to the existence of sups and infs in that poset. Order 
completions can be constructed most easily using polars, a special type of Moore closure. 

MOORE COLLECTIONS AND MOORE CLOSURES 

4.2.  The term "closure" has several different meanings in mathematics. Most of the 
meanings of "closure" are specializations of the Moore closure, defined below. (An exception: 
the "pretopological convergence closures" introduced in 15 .4 need not be Moore closures; 
see the example in 15 .6 . ) 

Many mathematicians write the closure of a set S as S. However, that notation has 
certain disadvantages: (i) It is used for other purposes (e.g. , complex conjugation) .  (ii) It 
becomes awkward if one wishes to work simultaneously with two or more closures (e.g. , 
from two different topologies) .  In this book we shall write a closure of a set S as cl(S) . We 
shall use subscripted notation, such as dr( S) and clu ( S) , if we need to distinguish between 
several different closures. 

4.3. Let X be a set, and let e be a collection of subsets of X .  We shall say e is a Moore 
collection of sets if: 

(i) X E e ,  and 
(ii) e is closed under arbitrary intersection - i.e. , if {S,\ : .A E A} � e ,  then 

n,\EA S,\ E e .  
(If we adopt the convention that the intersection of no subsets of X is just X ,  then condition 
(i) can be omitted; it follows from (ii) by taking A =  0.)  In the present context, members 
of e will be called Moore closed sets, or just closed sets if the context is understood. 

Now, let any set S � X (not necessarily a member of e )  be given. Then there exist 
closed sets that are supersets of S - for instance, X itself is such a set. Among all the closed 

78 
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supersets of S, there is a smallest - namely, the intersection of all the closed supersets of 
S. We shall call it the Moore closure (or more simply, the closure) of S, relative to the 
collection e, and we shall denote it by cl(S) . (It is easy to see that a set T � X is closed if 
and only if cl(T) = T. ) 

In this fashion we define a mapping cl : P(X) ____, e, called the Moore closure operator 
associated with the collection e. In some cases ( i .e . , for some choices of X and e )  we can 
also give some other, equivalent description of cl(S) that may be more convenient - e.g. , a 
characterization directly in terms of S, which does not mention the collection of all closed 
supersets of S. 

The Moore closure of S is also known as the member of e that is generated by S; we 
may call S a generating set for cl(S) . This terminology is particularly common when the 
elements of X and S are themselves subsets of some set n - i .e . , when S is a collection of 
sets, and cl (S) is the collection of sets generated by S. (Of course, from the viewpoint of 
axiomatic set theory, all sets are sets of sets, but most mathematicians do not share that 
viewpoint . ) 

Though Moore closures appear in many parts of mathematics, the terminology varies 
greatly. In most applications of the concept, the "closed" I "closure" terminology is com
monly used, or the "generated" I "generating" terminology is commonly used, but not both. 
Another term sometimes used for a Moore closed set is saturated set; other terms some
times used for a Moore closure are hull, saturation, or saturated hull. The following 
table previews a few kinds of Moore closures that will be studied later. We shall introduce 
appropriate terminology separately in each context . The top part of the table deals with 
sets of points; the bottom part of the table deals with sets of sets. 

Moore closed set Moore closure 
sublattice sublattice generated 

full (order convex) set full hull 
upper set up closure 

max closed gauge max closure 
saturated set saturation 

topologically closed set topological closure 
ideal (in a variety) ideal generated by a set 

convex set convex hull 
balanced set balanced hull 

linear subspace linear span 
filter of sets filter generated 
ideal of sets ideal generated 
( IJ-)algebra ( IJ- )algebra generated 
topology topology generated 

monotone class monotone class generated 
Moore collection Moore collection generated 
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Further remarks about the terminology. Most Moore closures of interest are either algebraic 
(introduced in 4.8) or topological (introduced in 5. 16 .b and 5 . 19 ) . Very few closures of 
interest are both algebraic and topological; that is clear from 16.8 .b . 

The term "closure" by itself is commonly used by algebraists to refer to any Moore 
closure (as defined above) ,  but the term "closure" usually is used by analysts to refer only 
to topological closures. We shall follow the analysts' convention in some parts of this book 
since this book is largely devoted to the foundations of analysis. 

The basic property given in 4.5 .a is due to Moore [1910] ,  although the notation certainly 
has changed since then. Most properties of closures in this chapter are taken from Cohn 
[1965] , Evers and Maaren [1985] , McKenzie, McNulty, and Taylor [ 1987] , and Tsinakis 
[1993] . 

4.4. A few examples of Moore closures. 
a. Let (X, � )  be a preordered set. For a, b E  X let [a, b] = {x E X  : a  � x � b} .  A set 

S � X is called full (or order convex) if a, b E S =? [a, b] � S. (For example, in 
[-oo, +oo] ,  any interval [a, b] or [a, b) or (a , b] or (a , b) is full . )  Show that the full subsets 
of X form a Moore collection. Hence any set T � X is contained in a smallest full 
superset, called the full hull of T. Show that the full hull of T is equal to Ua,bET [a, b] .  

For later applications we note some further properties of full subsets of chains. Let 
(X, :::; ) be a chain. Show: 

(i) If sl , s2 are full sets that are not disjoint, then sl u s2 is full. 
(ii) For any T � X and p E T, let C(p, T) be the union of all the full 

sets S that satisfy p E S <;: T. Show that C(p, T) is a full subset of T 
and that C(p, T) is maximal for that property - i.e. , C(p, T) is not a 
proper subset of some other full subset of T. Show that the sets C(p, T) 
form a partition of T - that is, any two sets C(p1 , T) , C(p2 , T) are 
either identical or disjoint. We may refer to the C(p, T) 's as the full 
components of T. This will be used in 15 .35.c and 17.24. 

b. Let (X, � )  be a partially ordered set, and let S � X. We say that S is 
up-closed, or an upper set, if x >,:= y, y E S =? x E S; 

down-closed, or a lower set, if x � y, y E S  =? x E S; 

sup-closed if, whenever A is a nonempty subset of S and a =  sup(A) exists 
in X,  then a is a member of S; 

inf-closed if, whenever A is a nonempty subset of S and L = inf(A) exists 
in X,  then L is a member of S. 

(Lower sets were defined in 3 . 16 . ) Show that the collections of such sets are Moore 
collections, with resulting Moore closures as follows: 

up-cl(S) 
down-cl(S) 

{ x E X x >,:= s for some s E S} , 
{x  E X  x � s for some s E S} ,  
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sup-cl(S) 
inf-cl( S) 

Show also that 

{x E X  x = sup(A) for some nonempty A �  S} , 
{x E X  x = inf(A) for some nonempty A �  S} . 

( i ) Any up-closed set is sup-closed; any down-closed set is inf-closed. 
(ii) A set S is up-closed if and only if X \  S is down-closed. 
(iii) Any union of up-closed sets is up-closed; any union of down-closed sets 

is down-closed. (This property is not shared by most Moore collections. )  
( iv) 0 i s  up-closed and down-closed. 
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c.  I f P = { d1 , d2 , . . .  , dn } i s a finite collection of pseudometrics on a set X (defined in 
2 . 1 1 ) ,  then another pseudometric, VP, can be defined by 

(v P) (x, y) max {d1 (x, y ) ,  d2 (x, y ) ,  . . .  , dn (x, y ) } . 
Clearly, V P is the supremum of P in the family of all pseudometrics - i.e . , it is the 
smallest pseudometric that is larger than or equal to all the d1 's . We may also denote 
it by d1 V d2 V · · · V dn . When P contains just a single pseudometric, then V P equals 
that pseudometric. 

Let D be a gauge on X - that is, a collection of pseudometrics. We shall say that 
D is max-closed if d1 , d2 E D :::} d1 V d2 E D or, equivalently, if d1 , d2 , . . .  , dn E 
D :::} d1 V d2 V · · · V dn E D. (In the wider literature, another name for max-closed is 
saturated. )  Clearly, this determines a type of Moore closure on the collection of all 
pseudometrics on X; the max closure of a gauge D is the gauge 

max-cl(D) {v  P : P i s a finite subset of D } . 
Similarly, a gauge D is closed under addition, or sum-closed, if d1 , d2 E D :::} 

d1 + d2 E D. This also determines a Moore closure, which we shall call the sum 
closure. 

A gauge D is directed if for each finite set P � D, there exists some pseudometric 
d E D such that V P <::: d. Note that if D is max-closed or closed under addition, then 
D is directed. 

Preview. In 5 . 15 .h we shall see that any gauge D is topologically equivalent to its 
max closure and its sum closure; in 18 . 13 we shall see that any gauge D is uniformly 
equivalent to its max closure and its sum closure. Hence, for many purposes, D may be 
replaced with its max closure or sum closure - i.e. , D may be replaced by a directed 
gauge. For some theorems, this replacement will not affect the hypotheses, but may 
simplify the proofs. 

d. If JVC, ,  Mr1 ,  M, , . . .  are collections of subsets of X, each of which is closed under finite 
union, then n.\E {a.{:l., , . . .  } M.x is also closed under finite union. Thus, the collection 
{M � P(X) : M is closed under finite union} is a Moore collection of subsets of :P(X) .  
The resulting Moore closure may be described as follows: I f S i s  a collection of subsets 
of X, then the smallest collection that is closed under finite union and contains S is 

U-cl(S) = {M � X  : M is the union of finitely many members of S} .  
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Similarly, the other "closures" defined in 1 .30 are also Moore closures. 
In particular, the closure under arbitrary intersections is a Moore closure. Thus 

the collection of all Moore collections of subsets of X is a Moore collection of subsets 
of :P(X). 

e. Let � be an equivalence relation on a set X; let Y be the quotient set; let 1r : X ----+ Y 
be the quotient map. Say that a set S <;;; X is 1r-saturated, or :::::i-saturated, if it is 
closed under this equivalence - i.e . , if 

- that is, if S is a union of equivalence classes. 
The collection of saturated subsets of X is a Moore collection - i.e. , it is closed 

under intersection. Hence we can define the corresponding Moore closure: The 7r
saturation, or 1r-saturated hull, of a set A <;;; X is the smallest 1r-saturated set that 
contains A; it is the intersection of the 1r-saturated sets that contain A. Show that 

u {x E X :  x � a} 
aEA  

the 1r-saturation of A.  

The forward image mapping S f----+ 1r( S)  = { 1r ( x) : x E S} i s  usually defined as 
a mapping from :P(X) into :P(Y) (see 2.7) ; but if we restrict it to a smaller domain, 
we get a bijection from { 1r-saturated subsets of X} onto P(Y ) ,  whose inverse is given 
by the inverse image mapping T f----+ 1r- 1 (T) = {x E X : 1r(x) E T}. This bijection 
preserves the basic set operations: complementations, intersections, and unions. That 
is, 

1r(X\S) = Y\1r(S), 

for any 1r-saturated sets S and Sa . 

4.5. Some basic properties of Moore closures. 
a. Axioms for a Moore Closure Operator. Let X be a set , and suppose we are given 

a function cl : P(X) ----+ P(X). Show that "cl" is the Moore closure operator for 
some Moore collection of subsets of X (as defined in 4.3) if and only if "cl" satisfies 
these three rules: 

S c cl(S) 

cl( cl(S) ) cl(S) 

S <;;; T :::::;,. cl(S) <;;; cl(T) 

(extensive) 

(idempotent) 

(isotone) 

for all sets S, T <;;; X. Of course, if "cl" does satisfy these axioms, then the correspond
ing Moore collection e <;;; P(X) is uniquely determined by "cl:" it consists of those sets 
S <;;; X that satisfy cl(S) = S. 
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b. Note that any Moore closure on X is an isotone mapping from :P(X) into :P(X) ; hence 
it satisfies the conclusions of 4.29.c . It also satisfies 

cl ( U cl(Sa )) 
nEA 

for any sets Sa � X  (a E A) .  
c.  Let e be a Moore collection of subsets of X .  Then each subset of e has a sup and an 

inf in e .  (Thus (e , �) is a complete lattice; see the definition in 4. 13 . ) 
Indeed, let any collection S =  {SA : A E A} � e be given. Then A =  nAEA SA is 

the largest member of e that is contained in all the SA 's; thus it is the infimum of the 
SA 's. Also, B = cl(UAEA SA) is the smallest member of e that contains all the SA 's; 
thus it is the supremum of the SA 's. 

SOME SPECIAL TYPES OF MOORE CLOSURES 

4.6. Many Moore closures used in applications are formulated as closures with respect to 
some sort of operations. Let X be a set, and let 1)1 be a collection of A-ary operations on 
X (defined as in 1 .4 1 ) .  Different members of 1)1 may have different A's, and we permit the 
A's to be empty or nonempty, finite or infinite. We shall say that a set E � X is closed 
under the operations 1)1 if it has this property: 

Whenever 1/J is a A-ary operation in 1)1, with index set A =  {a, /3, /', . . .  } ,  and 
e a , ef0 , e'Y ,  . . .  are members of E, then 1/J(ea , ef3 , e"! ,  . . .  ) E E also. 

Here the notation is as in 1 .32; it is not intended to imply that the index set A = {a, ;3, 'Y, . . .  } 
is a countable or ordered. 

It is easy to see that the sets that are "closed" in this sense satisfy Moore's axioms 4.3(i) 
and (ii) . Hence they are the closed sets for a Moore closure operator, cl, defined as in 4.3. 
The closure obtained in this fashion is called the closure with respect to the operations 
1)1 .  Here is an elementary example: A collection S of subsets of a set X is closed under finite 
union if and only if S is closed under the binary operation U : :P(X) x :P(X) __, :P(X) .  

Observation. The empty set is closed under the operations 1)1 i f  and only i f none of the 
operations in 1)1 is nullary. 

4. 7. Exercise ( optional) . Actually, every Moore closure can be represented as a closure 
under operations (although such a representation is not necessarily helpful) . 

Hints : Let cl be a Moore closure on a set X - that is, let cl : :P(X) __, P(X) be a given 
mapping satisfying the axioms in 4.5 .a. For each set A �  X and each point z E cl(A) , define 
a A-ary operation 1/J A ,z : X A __, X by taking 

if x A = A for every A E A 
otherwise. 
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(In particular, when A is the empty set, then we form a nullary operation 7/J0,z ( )  = z for 
each z in cl(0) , if there are any such z's . ) Let W be the collection of all operations formed 
in this fashion; verify that closure under the operations W is the same as the given Moore 
closure. 

4.8. Theorem and definition. Let X be a set, let X be a Moore collection of subsets of 
X,  and let cl : P(X) --+ X be the resulting Moore closure operator. Then the following 
conditions are equivalent. If one, hence all, of these conditions are satisfied, we say that 
X is an algebraic closure system and cl is an algebraic closure operator. (For some 
important examples, see 9 .21 .d and 12 .3 . See also the related exercise in 16.8 .b. ) 

(A) cl is the closure with respect to some collection W of finitary operations on X 
- that is, A-ary operations, where the A's are finite sets. 

(B) Whenever e is a subset of X that is directed by inclusion, then the union of 
all the members of e is a closed set. In other words, if e � X and the union 
of any two members of e is a subset of a member of e ,  then the union of all 
the members of e is a member of X. 

(C) Whenever ']) is a collection of subsets of X that is directed by inclusion, then 
cl (UDE'D D) � UDE'D cl(D) . 

(D) For set S � X we have cl ( S) = U{ cl( F) : F i s a finite subset of S } . 
Proof. (A) ==> (B) is an easy exercise. For (B) ==> (C) , let e = {cl(D) : D E  'D} .  For (C) 
==> (D) , take ']) =  {F � S :  F is finite} .  

I t remains only to prove (D ) ==> (A) . Let W be the collection of all finitary operations 
f :  xn --+ X (for nonnegative integers n) that satisfy 

!( K X K X . . .  X K 
n times 

c K for each K E X. 

Let £., be the collection of subsets of X that are closed under the operations W .  We shall 
show that X = £.,. It is easy to see that X � £., .  

Now let any S E £., be given; we wish to show that S E X. Thus, i t  suffices to show that 
cl(S) � S. We may assume cl(S) is nonempty and let any u E cl(S) be given; it suffices to 
show that u E S. By (D) , there is some finite set F � S such that u E cl(F) .  

We rnay write F = { ui , u2 , . . .  , Un} for some nonnegative integer n (which is 0 if F is 
the empty set) .  Now define J :  xn --+ X  by 

if n = 0 or (xi , X2 , . . .  , xn ) = (ui , u2 , . . .  , un ) 
otherwise. 

Here it is understood that if n = 0, then f is a nullary operation - i.e . , a constant function. 
In that case the list of arguments XI , x2 , . . .  , Xn is empty; that is, f(xi , x2 , . . .  , Xn ) = J( ) .  

·we claim that f E W .  Indeed, let any K E X be given and any x1 , x2 , . . .  , Xn E K; we are 
to show that J(xi , x2 , . . .  , Xn ) E K. This is clear in the case where f(x1 , x2 , . . .  , Xn ) = XI · 
In the remaining case, we have F � K and, therefore, 

u E cl(F) C cl(K) K. 
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Thus f E IJ!. By assumption S E ,C, and so the set S is closed under the operation f. 
Hence u = f(ul , u2 , . . .  , un) is a member of S. 

4.9.  Definitions. Let X and Y be sets. A polar from X to Y is a mapping p : P(X) ----> P(Y) 
that satisfies 

p (u A;) = n p(A; ) 
iE /  iE /  

for any collection {A; : i E I }  of subsets of X. The dual of p is the mapping q :  P(Y) ----> 
P(X) defined by 

q(B) = u{s s;; X : B s;; p(S) } or, equivalently, q( B) = {X E X : B s;; p (  {X} ) }  0 

We shall also write p( A) = A <J and q( B) = Br> . (In many books, one symbol is used for 
both <J and 1> .  Typically it is o or j_ or T.)  
Exercises /basic properties : 

a. Any polar is antitone - i.e. , if A1 s;; A2 in X,  then p(AI ) ;2 p(A2 ) in Y.  
b.  The dual of a polar i s also a polar. Moreover, i f  q i s  the dual of p ,  then p i s  the dual 

of q. Thus we may speak of p, q as a polar pair between X and Y. 
Examples of polars will be given in studying Dedekind cuts (see 4 .34) and topological vector 
spaces (see 28.25) ; several other examples are also mentioned in 4. 12 . 

4. 10. Let X and Y be sets, and let p :  P(X) ----> P(Y) and q : P(Y) ----> P(X) be some given 
functions. Then the following four conditions are equivalent. 

(A) p and q are a polar pair. 
(B) p(A) = {y E Y :  A �  q({y} ) }  and q(B) = {x E X :  B s;; p({x}) }  for all 

A s;; X and B s;; Y. 
(C) p and q are antitone (as in 4.9.a) , and q o p and p o q are extensive: 

A s;; q(p(A)) ,  B s;; p(q(B) )  for all A s;; X, B s;; Y. 

(D) There exists a set r s;; X x Y such that, for all A s;; X and B s;; Y, 

p(A) = {y E Y : A x {y} s;; r } ,  q(B) = {x  E X  : {x }  x B � r} .  

This condition can be restated in the triangle notation as: 

A<J = {y E Y : A x {y} s;; r} ,  Br> = {x E X  : {x} x B s;; r} .  

4. 1 1 .  Further properties of polars. Suppose p : P(X) ----> P(Y) and q : P(Y) ----> P(X) are a 
polar pair. Then: 

a. p o q o p = p and q o p o q = q. Hint. This follows easily from 4 . 10(C) . 
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b. q o p and p o q are Moore closure operators in X and Y, respectively. The resulting 
closed subsets of X or Y are the sets A or B that satisfy A =  q(p(A) ) or B =  p(q(B) ) ,  
respectively. 

c. Applied to just the collections of closed sets, the polar maps A f---7 p(A) and B f---7 q(B) 
are inverses of each other; they give a bijection between the closed subsets of A and 
the closed subsets of B . 

d.  Let c l = q op. Then c l (niEJ A) = niEJ cl(Ai) for any collection {Ai : i E I} of subsets 
of X - that is, the closure of an intersection equals the intersection of the closures. 
An analogous result also holds in Y for p o q. 

This result does not generalize to all Moore closures. For a simple counterexample, 
let cl be the usual topological closure when IR is equipped with its usual topology. Let 
A1 = {rational numbers} and A2 = {irrational numbers} .  Then A1 n A2 = 0, but 
cl(Al )  = cl(A2 ) = JR. Consequently, cl(A1 n A2) = 0 but cl(A1 )  n cl(A2 )  = JR. 

4.12.  Generalized orthogonality. We now describe a special type of polar pair. Assume X 
is a set, 0 is some special member of X, and l_ is a relation on X with these properties: 

(i) l_ is symmetric; that is, x l_ y {==} y l_ x. 
(ii) O _l x for all x E X. 
(iii) X l_ X {==} X = 0. 

If x _l y, usually we say that x and y are orthogonal (or perpendicular) .  
We now apply the results of the preceding sections, using 4 . 10(D) with r = { (x, y) E 

X x X : x l_ y} .  Then the polars p(S) = S<l and q(S) = S'> are the same; we shall 
denote them both by sl_ . Thus, sl_ = {y E X : X l_ y for all X E S} . This set is called the 
orthogonal complement of S. Let us first restate, in the present notation, some of the 
conclusions already reached in the preceding sections: 

S <;: T =} Sl_ ;;;? Tl_ . (Thus the mapping S f---7 Sl_ is anti tone. ) 

S f---7 S1_1_ is a Moore closure operator on X. We shall denote it by cl , at 
least for the moment. Caution: This operator is not called a "closure" in most 
specialized contexts where it is applied. Instead it is given other names, such as 
"closed linear span." 

(UAEA S>, ) j_ = nAEA (Sf) and (n>-EA SA ) j_ = cl (UAEA (st) ) . 

cl(n>-EA s>- ) = n>-EA cl(s>- ) · 
We also have a few new conclusions, which do not apply to all polar pairs. Show: 

01_ = {O}j_ = X  and Xl_ = {0} . Hence cl(0) = {0} . Thus the empty set is not 
a closed set. (Hence this Moore closure is not a topological closure; see 5. 19. ) 
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Examples. 
a. Let X = JR0 for some set n, and let X l_ y mean that x(w)y(w) = 0 for all w E n. Show 

that a set S � X  is closed (in the sense of the Moore closure) if and only if it is of the 
form eM =  {x E X : X I

M = 0} for some set M � n. Show also that (CM )j_ = Cn\M · 

b. (This example requires some familiarity with analytic geometry from college calculus. ) 
Let X = 1R2 and define x l_ y to mean x · y = 0 - that is, X1Y1 + x2y2 = 0. Represent 
X by points in the plane. When x and y are both nonzero, show that x · y means that 
the line segment from the origin to x is perpendicular (in the usual geometric sense) to 
the line segment from the origin to y. Show that a subset of X is closed (in the sense 
of this Moore closure) if and only if it is either {0} ,  X ,  or a straight line through 0. 
For an example of a set S that is not closed, let S be the line segment from the point 
( 1 , 0) to the point (2, 0 ) ;  show that the closure of S is the entire line { (x, y) : y = 0} .  

More examples will be given later in this book, in Riesz spaces (see 1 1 .59) and in Hilbert 
spaces (see 22.50) .  In 13.4.f we shall see that the collection of closed sets obtained in the 
fashion indicated above is a complete Boolean lattice. 

LATTICES AND COMPLETENESS 

4. 1 3. Definitions. Let (X, � )  be a poset. We say that 

(X, � )  is a Dedekind complete poset if either of the following equivalent 
conditions holds. (Exercise. Prove the equivalence. ) (A) Whenever S � X 
is nonempty and bounded above, then S has a least upper bound in X.  (B ) 
Whenever S � X  is nonempty and bounded below, then S has a greatest lower 
bound in X.  

(X, � )  is a lattice i f  every two-element subset of X has a sup and an inf in X.  

(X, � )  is complete (or order complete, or a complete lattice ) i f  every 
subset of X has a sup and an inf in X . 

Examples are given later in this chapter. 

4. 14. Remarks. The term "complete" generally means "not missing any parts," or "not 
having any holes or gaps," but this has several different meanings in different parts of 
mathematics. We also caution that the term "complete poset" has a more specialized and 
technical meaning among some algebraists - e.g. , in domain theory. 

Uniform completions will be studied in later chapters. There are some strong analogies 
between the theories of order completions and uniform completions. It is possible to develop 
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those analogies into a unifying theory, 1 but that theory is rather technical and complicated 
and not recommended for beginners. Readers of this book are urged to instead view order 
completeness and uniform completeness as two entirely unrelated concepts that, just by 
coincidence, use some of the same words and have slightly analogous meanings. 

Formal logic also uses the term "complete" to mean "without holes," but the precise 
meaning is not closely related to order or uniform completeness. See 14 .58. 

4.15. Relations between types of posets. 
a. If � has any of the following properties, then >,:= has the same property: lattice ordering; 

Dedekind complete; order complete. 
b. Any well ordered set is Dedekind complete. 
c. Every chain is a lattice. 
d. Any lattice is both a poset and a directed set. 
e. A poset (X, � )  is order complete if and only if it is order bounded and Dedekind 

complete. 
f. If (X, � )  is a Dedekind complete poset and both � and >,:= are directed, then (X, � )  is 

a lattice. 

4.16. Observations on products. With the product ordering 3.9 .j ,  a product of lattices is a 
lattice; a product of complete lattices is a complete lattice; a product of Dedekind complete 
posets is a Dedekind complete poset. In each case the supremum or infimum in the product 
is defined pointwise; see 3 .2l .n. 

See also the corollary in 4.28. 

MORE ABOUT LATTICES 

4 .17 .  I f (X, � )  i s a lattice, then the binary operation 1\ : X  x X ---> X i s both 

commutative: 
associative: 

x2 1\ x1 and 
X1 1\ (x2 1\ X3) .  

It follows that the operations in x1 1\ x2 1\ x3 1\ · · · 1\ Xn can be evaluated in any order -
left to right, right to left , center to outside, etc. - and thus parentheses are not necessary. 
The value of the expression is the same as inf{x1 , x2 ,  . . .  , xn } · (Hint :  3.21 .m. ) Analogous 
conclusions apply for V's and sups. 

An equivalent definition of lattice is: A poset in which every finite nonempty subset has 
a sup and an inf. 

1 See "reflective subcategories," in books on category theory, for other examples besides order completions 
and uniform completions. 
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4.18.  Lattices, particularly finite ones, can be illustrated with lattice diagrams. Elements 
of the lattice are indicated by vertices - i.e. , dots. In these diagrams, we have x >,:= y if 
there is a downward path from x to y. Two examples are given below. 

{a ,  b} 

{a¢ {b} 

0 

Lattice 
diagrams 

0 

The first diagram shows the inclusion relation between the subsets of a two-element set. 
This lattice is known (among some lattice theorists) as 22 . 

The second diagram shows a lattice containing five members; 0 is the smallest member 
and 1 is largest . This lattice is sometimes known as M3 .  

4.19.  Miscellaneous properties. 
a. In a lattice, the union of two order bounded sets is order bounded. (Hence, in a lattice, 

the order bounded sets form an ideal of sets, in the sense of 5.2 . )  

b. Not every subset of a lattice is a lattice; not every subset of a directed set is directed. 
For instance, ';2} with the product ordering is a lattice but its subset { (x, y) E 'Z} : 
x + y = 0} is not directed. 

4.20. Meet-join characterization of lattices. We have defined "lattice" in terms of 
its ordering � ' but we shall now show that "lattice" can be defined instead in terms of the 
binary operations 1\ and V. Show that these laws are satisfied, for all x, y, z in a lattice: 

and 

L1 (commutative) : x 1\ y = y 1\ x and x V y = y V x, 

L2 (associative):  x 1\ (y 1\ z) = (x 1\ y) 1\ z and x V (y V z) = (x V y) V z, 

L3 (absorption) :  x 1\ ( x  V y )  = x and x V ( x  1\ y )  = x ,  

(* ) x � y  ¢::::::} x l\ y = x  ¢::::::} x V y = y. 
Conversely, suppose X is a set equipped with two binary operations /\, V that satisfy Ll-L3. 
Show that x 1\ y = x ¢::::::} x V y = y. Define � by (*) ;  then show that (X, � ) is a lattice. 
(Hint :  First use L3 to prove that x V x = x 1\ x = x. ) 

4.21.  Let (X, � ) be a lattice. Then a sublattice of X is a subset S that is closed under 
the lattice operations V, 1\ - i.e . , that satisfies 
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It then follows that S is also a lattice, when equipped with the restrictions of V, /\ .  
I f (X, � )  is a lattice, S is a subset, and S is a lattice when equipped with the restriction 

of the ordering � ' it does not follow that S is necessarily a sublattice of X. 
The collection of all sublattices of a lattice X is a Moore collection of subsets of X. The 

closure of any set S � X is the smallest sublattice containing S; it is called the sublattice 
generated by S. 

Example. Let V = { (x1 , x2 , x3) E �3 : x1 + x2 = x3 } . Then V is a subset (in fact , a 
linear subspace) of �3 . We shall order V by the restriction of the product ordering; that is, 

means Xj ::::; YJ for all j. 

Then V is a lattice (in fact , a vector lattice) , but the lattice operations V, 1\ determined on 
V by the ordering � are not simply the restrictions of the lattice operations on �3 . Rather, 
the reader should verify that 

(x V y) I 
(x v y)2 
(x V y)3 

max{x 1 ,  yi } ,  
max{x2 , y2 } ,  
[(x V y) I + (x v y)2J 

and 1\ is computed analogously with minima. 
For instance, let x = ( 1 ,  2, 3) and y =  (3, - 1 ,  2) . Then the lattice operations of �3 yield 

x V y = (3, 2, 3) , which is not a member of V; the lattice operations of V (defined by the 
formulas above) yield x V y = (3, 2, 5 ) .  

This example may seem somewhat contrived, but i t i s actually quite typical of the 
behavior one sees in lattices of measures, which are discussed in later chapters. 

4.22. Example. The set N = {positive integers} is a lattice when ordered by this rule: 
x � y if x is a divisor of y - that is, if xu = y for some u E N. With this ordering, u V v and 
u 1\ v are the least common multiple and greatest common divisor of u and v, respectively. 

A sublattice of N is given by {divisors of m} , for any positive integer m. 

4.23. Definition. For a lattice (X, �) ,  the following two conditions are equivalent: 
(A) x 1\ ( y V z) = ( x 1\ y) V ( x 1\ z) for all x , y, z E X. 
(B) x V (y l\ z) = (x V y) l\ (x V z) for all x , y, z E X. 

If these conditions are satisfied, we say (X, �) is a distributive lattice. 

4.24. Definition. We shall say that a lattice (X, �) is semi-infinitely distributive if it 
satisfies either of the following conditions: 

(A') x 1\ sup(S) = supsEs (x 1\ s) , 

(B') x V inf(S) = infsEs (x V s) ; 

where the equations are to be interpreted in this sense: If the left side of the equation exists, 
then so does the right side, and they are equal. If both of these two conditions are satisfied, 
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the lattice X is infinitely distributive. I t i s clear that any semi-infinitely distributive 
lattice is distributive. In 5.21 we shall give an example of a semi-infinitely distributive 
lattice that is not infinitely distributive; thus the two laws (A') and (B') are not equivalent 
to each other. 

Exercise. Let X be a lattice. Show that conditions (A') and (B') are respectively 
equivalent to the following two conditions: 

(A") sup(R) 1\ sup(S) = sup{r 1\ s r E R, s E S} , 

(B") inf(R) V inf(S) = inf{r V s : r E R, s E S} , 

for any nonempty sets R, S � X. Again, each equation is to be interpreted in this fashion: 
If the left side of the equation exists, then so does the right side, and they are equal. Hint :  
See 3.2l .m. 

4.25. Examples. 
a. If 0 is any set, then (:P(O), � ) is an infinitely distributive lattice. (See 1 .29.b . ) 

b. The five-element lattice M3 is not distributive. (See 4. 18 . ) 
c. Every chain is an infinitely distributive lattice. 

Further examples of infinitely distributive lattices will be given in 8.43. 

4.26. A lattice homomorphism is a mapping f :  X ---+ Y, from one lattice into another, 
that satisfies f (xl V x2 ) = f(xt ) V j(x2) and j (x1 1\ x2) = f (xl )  1\ j(x2) for all x1 , X2 in X. 
Lattice homomorphisms will be studied further in 8.48 and thereafter. 

MORE ABOUT COMPLETE LATTICES 

4.27. Some important examples. In Chapter 10, in our formal development of IR, we shall 
show that lR is Dedekind complete. (More precisely, we shall prove that there exists a unique 
Dedekind complete ordered field and then define lR to be that field.) For now, however, we 
shall "borrow" that result from Chapter 10 : We shall accept the fact that lR is Dedekind 
complete and use that fact in some examples below. 

The extended real line, [-oo, +oo] , was introduced in 1 . 1 7. Recall that it is obtained by 
adjoining two new objects, -oo and +oo, to the real number system and defining -oo < 
r < +oo for all real numbers r. It follows that [-oo, +oo] is a chain that is order complete. 

4.28. Observation. Let A be any nonempty set. Then JRA = {functions from A into JR} 
is Dedekind complete, and [-oo, +oo]A = {functions from A into [-oo, +oo] } is a complete 
lattice, when these products are equipped with the product ordering. 
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4.29. Miscellaneous properties. 
a. For any set X, the ordering <:;:; makes 'Y(X) into a complete lattice; hence it is both a 

directed ordering and a partial ordering. It is not a chain ordering if X contains more 
than one element . 

b. Not every subset of a complete lattice is a complete lattice; not every subset of a 
Dedekind complete poset is Dedekind complete. For instance, [0, 1] (with its usual 
ordering) is order complete, but Q n [0, 1 J is not Dedekind complete. 

c. Let X and Y be complete lattices, and suppose f : X ----+ Y is an order-preserving 
function - that is, x1 � x2 =? f(xl ) � j(x2 ) .  Then 

and 

for any set {x>. : >. E A} <:;:; X.  Neither of these � 's is necessarily equality; that is 
evident from an example in 15 . 1 1 .  

4.30. Tarski's Fixed Point Theorem. Let (L, �) be a complete lattice, and suppose 
f : L ----+ L is isotone. Then f has at least one fixed point - i.e . , there exists at least one 
point p E L such that f(p) = p. 

Furthermore, among the fixed points there is a largest one. In fact , that largest fixed 
point is also the largest member of the set S = { x E L : x � f ( x)} .  
Hints : S is nonempty, since i t includes the first member of L.  Let p = sup(S) ; show that 
p E S; show that f(p) = p. 

ORDER COMPLETIONS 

4.31 .  Definitions. A set D <:;:; X  is sup-dense in X if X is the sup closure of D - i . e . , if 
each point � in X is the sup (in X) of some nonempty subset of D. It is easy to see that in 
this case 

Lr; = {d E D : d � 0 is nonempty, and � = sup(Lr;) .  
X 

Dually, a set D <:;:; X is inf-dense in X if X is the inf closure of D - i .e . , if point � in X 
is the inf (in X) of some nonempty subset of D.  It is easy to see that in this case 

Ur; = {d E D : d � 0 is nonempty, and � = inf(Ur; ) .  
X 

4.32. Proposition. Let (X, � ) be a poset, and let D <:;:; X. Let D be ordered by the 
restriction of the ordering � ;  let this restriction be denoted again by � .  Then: 

(i) If D is inf-dense in (X, � ) ,  then the inclusion map D ---S X is sup-preserving 
from (D ,  � )  to (X, � ) .  
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(ii) If D is sup-dense in (X, � ) ,  then the inclusion map D ---S X is inf-preserving 
from (D,  �) to (X, � ) .  

Outline of proof We shall only prove (i) ; then (ii) follows since it is dual to ( i ) . 
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We shall use " supD" and "supx" to denote the supremum in D or in X, respectively; 
denote an infimum analogously. 

Let S <;;; D be nonempty, and assume that a =  supD (S) exists. Then a is also an upper 
bound for S in X; we wish to show that it is the least upper bound in X .  Let (3 be any 
upper bound for S in X; we wish to show that a �  (3. 

Define L� , U� as in 4 .31 . Consider any d E  Uf3 . Then d >,::o (3 >,::o s for every s E S. Hence 
d is an upper bound for S, and d lies in D. Since a is the least of all the upper bounds for 
S that lie in D, it follows that a � d. Thus d E  Uu - i.e . , we have shown that Uf3 <;;; Ua . 
Since the infimum operation is antitone (see 3 .21 . 1 ) , it follows that infx (U(3 ) >,::o infx (Uu ) 
that is, (3 >,::o a. 

4.33. The literature contains many different kinds of order completions. (A survey of 
different kinds of completions applicable to lattice groups was given by Ball [ 1989] . )  The 
following notion of completion seems to be best suited for the purposes of this book. 

Definition. Let D and X be posets, with partial orderings both denoted by � - We shall 
say that X is a Dedekind completion of D if 

(i) D <;;; X, and the ordering of D is the restriction to D of the ordering of X; 
(ii) D is both sup-dense and inf-dense in X; and 
(iii) (X, � ) is Dedekind complete. 

Note that the inclusion D ---S X is then sup-preserving and inf-preserving, by 4.32. 
This type of completion might be more precisely named a "generalized Dedekind com

pletion," since the term "Dedekind completion" usually refers to chains. See also 4 .36.c . 

4.34. Existence Theorem. Every poset has a Dedekind completion. 

Proof Let (D,  �) be the given poset. Define r = { (u , v) E D  x D : u � v} , and define 
a polar pair between D and itself as in 4. 10(D) . By a cut we shall mean an ordered pair 
(A ,  B) such that 

( 1 )  A and B are nonempty subsets of D, and 

(2) A =  Br> and B = A<J  in the sense of 4.9 . 

Note that condition (2) can be restated as: 

(2a) A is the set of lower bounds of B, and 

(2b) B is the set of upper bounds of A .  

It follows that A is down-closed and B is up-closed. 
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Let X be the set of all cuts. Show that any cuts (A1 , Bl )  and (A2 , B2) satisfy A1 C 
A2 � B1 :;:2 B2 ; hence we may define a partial ordering [;;; on X by: 

For each d E D define 

j (d) ( { e E D : e � d}, { e E D : e )r d}) . 
It is easy to verify that j (d) is a cut and that the mapping j : D ---+ X is injective; hence 
we may view D as a subset of X by identifying each d E  D with its image j (d) . Verify that 
d1 � d2 � j (dl ) [;;; j(d2 ) ;  thus the ordering of D is the restriction of the ordering of X. 

To show that (X, [;;;) is Dedekind complete, let S =  { (A.x, B;.. ) : >. E A} be a nonempty 
subset of X. Verify that 

if S has a [;;;-lower bound, then the [;;;-inf of S is the pair (A- , B- ) ,  where 
A_ = n>.EA A;.. and B_ = p(A_ ) ; and 

if S has a [;;;-upper bound, then the [;;;-sup of S is the pair (A+ , B+ ) ,  where 
B+ = n>.EA B;.. and A+ = q(B+ ) · 

Use those two facts to show that D is inf-dense and sup-dense in X; verify that any cut 
(A, B) is the [;;;-infimum of {j(b) : b E  B } and the [;;;-supremum of {j(a) : a E A} .  

4.35. Example. Let <Q = {rational numbers} have its usual ordering. Let 

L = { q E <Q : q < 0 or q2 < 2} , U = { q E <Q : q > 0 and q2 > 2} .  

Then the pair (£ , U) i s a cut in <Q, i n the sense of the proof in 4 .34 . We shall see in 
Chapter 10 that the order completion of <Q is the real number system IR;  the cut (L ,  U) 
described above corresponds to the number y'2 i n R 

4.36. Further properties of the Dedekind completion. Let X be a Dedekind completion of 
a poset D. Then: 

a. X has a first element if and only if D has a first element , in which case they are the 
same. Similarly for last elements. 

b. If D is a lattice, then X is a lattice. Hint: 4. 15 .f. 
c. Let (D, �) be any poset. Then there exists a complete lattice (X, � ) with D ---S X, 

such that the inclusion i s both sup- and inf-preserving. (Such a complete lattice X is 
sometimes called a MacNeille completion of D. ) 

Hint :  Adjoin a lowest element and a highest element , and then take the Dedekind 
completion. (Or take the Dedekind completion first if you prefer; the result will be t�e 
same. )  

4.37. Remarks. In the theorem below we shall consider Dedekind completions only for 
chains. The theorem can be extended to a more general setting, but it then becomes more 
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complicated; we shall not need the greater generality later in this book. We are mainly 
concerned with completing Q to obtain R Most other Dedekind complete structures used 
in analysis can be obtained by putting together copies of � in various ways. 

4.38. Theorem on completions of chains. 

(i) (Linear ordering.) If X is a Dedekind completion of a chain D, then X is 
also a chain. 

(ii) (Extension of mappings. )  If X is a Dedekind completion of a chain D, 
and Q is another chain that is Dedekind complete, and f : D --+ Q i s a sup
preserving mapping, then f extends uniquely to a sup-preserving mapping 
F :  X --+  Q. In fact , F must be defined by this formula: 

F(O sup{f(d) : d E  Ld, 
where Lr; = { d E D : d :S 0.  

(iii) (Uniqueness o f  completions.) The Dedekind completion of a chain D is 
unique up to isomorphism over D, in the following sense: If X 1 ,  X 2 are two 
Dedekind completions of D, then there exists an order isomorphism from X1 
onto X2 that maps each member of D to itself. 

Proof of linear ordering. Define Lt; , Ur; as in 4 .31 . Suppose X is not a chain. Then there 
exist two distinct elements x, y E X that are not comparable - i.e . , such that neither x � y 
nor y � x is valid. Consider any a E Lx and b E  Uy .  Then we cannot have a �  b, since that 
would imply x >,:= a >,:= b >,:= y. Since D is a chain, it follows that a < b. Hold a fixed, and let 
b vary over all of Uy; thus a is a lower bound for Uy , so a E Ly . This reasoning is applicable 
for every a E Lx ,  so Lx c:;; Ly . Since x = sup(Lx) and y =  sup(Ly ) ,  it follows that x � y. 

Proof of extension of mappings. Define Lt; , Ut, as in 4 .31 .  For each x E X,  the set Lx is 
nonempty and is bounded above in D by any d1 E Ux . Therefore f(dl )  is an upper bound 
for the set f(Lx) = {f(d) : d E L, } .  Since Q is Dedekind complete, sup f(Lx )  exists in Q. 
Hence a function F : X --+ Q can be defined by ( **) .  

It is easy to see that this function is increasing and is an extension of f, since f is 
sup-preserving on D. If f has a sup-preserving extension F :  X --+ Q, that extension must 
satisfy ( **) ,  since x = sup(Lx ) .  

It suffices to show the function F defined by ( **) is indeed sup-preserving. Let S be a 
nonempty subset of X, and suppose u = sup(S) in X; we are to show that q = sup{F(s) : 
s E S} exists in Q and equals F(u) . 

For simplicity of notation, we may replace S with the set { x E X : x :S s for some 
s E S}; this does not affect our hypotheses or desired conclusion . Thus we may assume S 
is down-closed in X. Hence S n D = UsES L8• For each s E S we have s = sup(Ls ) ,  and 
therefore 

u = sup(S) = sup {sup(Ls ) :  s E S} = sup (u Ls) 
sES 

sup(S n D) 

by 3.2l .m. Also, from 3 .25.d we see that Lu c:;; S U { u } .  
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For each s E S we have s ::::; CJ and hence F(s) ::::; F(CJ); thus the set {F(s) : s E S} 
is bounded above by F(CJ) . Since Q is Dedekind complete, it follows that q = sup{F(s) : 
s E S} exists in Q and that q ::::; F(CJ) . It remains to show the reverse of this inequality. If 
CJ tt D,  then La s;:; S, and so F(CJ) = sup{f(d) : d E  La } ::::; sup{F(s) : s E S} = q. On the 
other hand, if CJ E D, then (since f is sup-preserving on D) 

f(CJ) = f (sup(S n D) )  = sup(f(S n D) )  < sup(F(S)) = q. 

Proof of uniqueness of completions. For k = 1, 2 ,  let fk : D ___s Xk be the inclusion 
map. Using the Extension Property with X = Xj (for j = 1 ,  2) and Q = Xk , we see that 
fk extends uniquely to a sup-preserving mapping Fjk : Xj ____, Xk . Thus Fjk is the only 
sup-preserving mapping from Xj into Xk that leaves elements of D fixed. 

Since the identity map of X1 is a sup-preserving map that leaves elements of D fixed, 
it follows that F11 is the identity map on X1 and that this is the only sup-preserving map 
from X 1 into itself that leaves elements of D fixed. Analogous statements are valid for F22 
and x2 . 

The compositions F21 o F12 : X1 ____, X1 and F12 o F21 : X2 ____, X2 are sup-preserving 
maps that leave elements of D fixed. Hence these maps are the identity maps on X 1 and 
X2 , respectively. Therefore F12 : X1 ____, X2 is an order isomorphism. 

4.39. ( Optional remarks. ) Although the "Dedekind completion" defined in 4.33 is probably 
the simplest for the purposes of this book, some mathematicians may prefer a different sort 
of completion. 

Let (X, � ) be a poset. Let S <:;;; X be partially ordered by the restriction of � .  We shall 
say that (X, � ) is a sup completion of (S, �) if these further properties are satisfied: 

(i) (X, � ) is Dedekind complete. 

(ii) The inclusion map S ---S X is sup-preserving, from (S, �) to (X, � ) .  
(iii) I f (Q ,  [;;; ) i s  any Dedekind complete poset and f : (S, � ) ____, (Q ,  [;;;) is any 

sup-preserving function, then f extends uniquely to a sup-preserving function 
F :  (X, � ) ____, (Q, [;;; ) .  

This definition is slightly more complicated than the one in 4.33. However, it has the 
following advantages: Every poset S has a sup completion X that is unique, in the sense that 
any two sup completions X1 , X2 are order isomorphic via a map that acts as the identity on 
members of S. Moreover, S is sup-dense in its sup completion X; X is bounded if and only 
if S is bounded, in which case the two posets have the same maximum and same minimum; 
X is a chain if and only if S is .a chain, in which case the sup completion agrees with the 
Dedekind completion (defined in 4.33) . The Dedekind complete posets form a reflective 
subcategory of the category of posets, if we use sup-preserving maps for morphisms; this 
notion is developed in books on category theory. We shall not prove these results, but for 
the ambitious reader we provide a hint : To prove existence of a sup completion of S, let 
X =  {C s;:; S :  C is nonempty, bounded above, down-closed, and sup-closed} ;  then partially 
order X by s;:;.  
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SUPS AND lNFS IN METRIC SPACES 

4.40. Let (X, d) be a pseudometric space (defined in 2. 1 1 ) ,  let S � X be a nonempty 
subset , and let x E X. Then the distance from x to S and the diameter of the set S are 
the numbers 

distd (x, S) = inf d(x, s ) ,  
sES 

diamd(S) = sup d(u, v) 
u,vES 

in [0, +oo] . We may omit the subscript d if no confusion is likely. By convention, we define 
diam(0) = 0. 

(The existence of these infs and sups follows from the fact that [0, +oo] is order complete 
- a fact that will not be established rigorously until we investigate the real numbers care
fully in Chapter 10. We shall "borrow" that result now, to give some important examples 
of sups and infs; we promise not to engage in any circular reasoning. )  

A set S is bounded (or, more specifically, metrically bounded) i f  i t  has finite diameter. A 
function is sometimes called bounded if its range is a metrically bounded set . Caution: The 
term "bounded" has several other meanings (see 3. 19.a, 23. 1 ,  27.2, and 27.4) . Fortunately, 
most meanings of "bounded" coincide, at least when applied to subsets of JR. 

4.41. Basic properties and examples. Let (X, d) be a pseudometric space. Then: 
a. d(x, y) = dist (x, {y} ) .  
b.  l dist(x, S) - dist(y , S) I :::; d(x, y) for any nonempty set S �  X .  
c .  Any subset of a bounded set is bounded, and the union of finitely many bounded sets 

is bounded. Thus, the bounded subsets of X form an ideal of sets, in the sense of 5.2 . 
d. In a metric space, a set with diameter 0 contains at most one point. 
e. Show that d(x, y) = lx - Yl and e(x, y) = min{ 1 ,  lx - y l } are metrics on lR that yield 

different collections of bounded sets. In most other respects, however, these metrics are 
equivalent - they yield the same topological structure and the same uniform structure 
(see 18 .14) . 

f. Let A be any set. Then p(f, g) = sup{ lf(>.) - g(>.) l : >. E A} is a metric on B(A) = 

{bounded functions from A into IR} .  
Suppose d is a metric on the given set A . Then we may embed the metric space 

(A, d) in the metric space (B(A) , p) , as follows: Fix any point in A; we shall· denote 
it by "0" (although we do not assume any additive structure here) . For each JL E A 
define a function f'" E B(A) by 

d(>., JL) - d(>., 0) (>. E A) .  

Verify that p(f'" ,  fv) = d(JL, v) . Thus JL �---+ f'" is a distance-preserving map from A into 
B(A) , and so we may view A as a subset of B(A) . 

The space B(A) has certain special properties that will be of interest later: It is a 
Banach space. Thus the example above shows that every metric space can be embedded 
isometrically in a Banach space. See 19. 1 1 .£ and 22. 14 . 
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4.42. Let X be a set, and let f :  X x X ----+ [O, +oo) be some function satisfying f (x, y) = 

f(y, x ) .  Then we can define a pseudometric d on X by 

d(x, y) inf {t, f(a;_ , , a; )  
here the infimum i s  over all nonnegative integers m and all finite sequences ( aj )j=o i n  X 
that go from x to y. The existence of the infimum follows from the fact that [0, +oo] is 
order complete. We permit m = 0 in the case when x = y; then the sum is interpreted to 
be 0. This construction can be summarized informally as "the distance between two points 
is the shortest route connecting them." It is not hard to show that d(x, y) ::::; f(x, y) and 
that in fact d is the largest pseudometric that is less than or equal to f. 

4.43. More generally, the formula above defines a pseudometric d if the function f is merely 
defined on a subset D <;;; X x X,  provided that subset is large enough that for each pair 
(x, y) E X  x X there exists at least one finite sequence (aj )�0 from x to y satisfying 

(ao , al ) ,  (a1 , a2 ) ,  (a2 , a3 ) ,  . . .  , (am- 1 , am )  E D. 
We then define d to be the infimum of the sums over all such sequences. Again, we permit 
m = 0 when x = y. This more general construction will be used in 19.48. 

4.44. Weil's Pseudometrization Lemma. Let V0 , V1 , V2 , V3 , . . .  be a sequence of re
flexive symmetric relations on a set X,  satisfying Vn_1 ;;2 Vn o Vn o Vn for all n E N,  with 
V0 = X x X. Then there exists a pseudometric d on X that satisfies 

{ (x, y) E X2 : d(x, y) < Tn} <;;; Vn <;;; { (x, y) E X2 : d(x, y) ::::; 2-n } 
for n = 0, 1 ,  2, . . . . In fact ,  d may be selected as follows: Define 

f(x, y) inf{Tn : (x, y) E Vn} 

and then define d as in 4.42. 

if (x, y) E Vn \ Vn+1 
if (x, y) E n:=o Vn , 

Remark. The literature contains several variants of this lemma. Some other formulations 
may be simpler, but the present formulation - which follows Murdeshwar [ 1983] - has 
the advantage that it can be applied directly in the settings of uniform spaces, topological 
groups, topological vector spaces, and locally solid vector lattices; see 16 . 16 ,  26.29, and 
26.57. 

Outline of proof We begin by observing that 

Indeed, if 2-n = max{f(u1 , u2 ) ,  j(u2 , u3) ,  j(u3 , u4 ) } ,  then (u1 , u2) ,  (u2 , u3) ,  (u3 , u4) are all 
in Vn , SO (u1 , u4) E Vn o Vn o Vn <;;; Vn- 1 · 



Sups and Infs in Metric Spaces 99 

Next, by induction on m, we shall show that 
m 

f(xo , Xm) ::::; 2 L f(xi- 1 ,  Xi ) for any m E N  and xo , x1 ,  . . .  , xm E X. (2) 
i=1 

To see this, let b = L.:;:':1 f(xi_ 1 , xi ) ;  we are to show f(x0 , xm) ::::; 2b. If b = 0, then 
( Xi- 1 ,  Xi ) E Vn for all i and n, hence ( x0 , Xm) E Vn for all n, and we are done. Thus we may 
assume b > 0 .  Choose j as large as possible satisfying L.:;{=1 f(xi- 1 ,  xi ) ::::; b/2. Then j < m 
and L.::I�i f(xi- 1 ,  xi ) > b/2; hence L.:::':J+2 f(xi- 1 ,  xi ) <  b/2. By two uses of the induction 
hypothesis we have 

f(xo , xj ) ::::; b and 

Also f(xj , Xj+l ) ::::; b by our definition of b. By ( 1 )  we have f(x0 , Xm) ::::; 2b, completing the 
induction proof of (2) . 

Now define d as in 4.42. Then d is a pseudometric and d ::::; f. From (2) we have 
f ::::; 2d. The second inclusion in ( * * *) is obvious, since d ::::; f. For the first inclusion in 
(* * *) , suppose d(x, y) < 2-n .  By the definition of d, then, there exists a finite sequence 
ao , a1 , . . .  , am E X, with ao = x and am = y and L.:;'J'=1 f(aj-1 ,  aj ) < 2-n .  By (2) , then, 
f(x, y) < 2-n+1 . Since f takes on only the values 2° , 2- 1 , 2-2 , . . . , and 0, we must have 
f(x, y) ::::; 2-n ,  and hence (x, y) E Vn . 



Chapter 5 
Filters, Topologies, and Other Sets of 

Sets 

FILTERS AND IDEALS 

5.1 . Let 3" be a nonempty collection of subsets of a set X.  We say 3" is a filter on X i f 
( i ) S E 3" and S <;;; T <;;; X imply T E 3", and 
(ii) S, T E 3" =} S n T E 3". 

(For clarification or emphasis we may sometimes call 3" a filter of sets.) Note that any 
such collection 3" necessarily satisfies X E 3". Clearly, P(X) is a filter on X;  we shall refer 
to it as the improper filter. Any other filter on X will be called a proper filter. It is 
easy to see that a filter 3" is proper if and only if 

(i i i ) 0 1- 3". 
Our terminology here follows that of algebraists. However, we remark that many math

ematicians - particularly topologists - use the term "filter" to refer only to collections 
satisfying all of ( i ) , ( ii ) ,  and ( iii ) . We prefer the algebraists' terminology because in later 
chapters we shall use the duality between filters and ideals. 

Elementary examples of filters and ideals are given in 5.5, and further examples (par
ticularly of interest to analysts) are previewed in 5 .6 . An intuitive discussion is given in 
5.3. 

5.2. A nonempty collection � of subsets of a set X is an ideal on X if 
(i) S E � and S ;2 T imply T E � ' and 
(ii) S, T E � =} S U T  E � -

If the context is not clear, we might say that � is an ideal of sets, to distinguish it from 
the "ideal in an algebra" introduced in 9.25. We can also avoid ambiguity by referring to 
� as an ideal in the Boolean algebra P(X) because in that setting the two notions of 
"ideal" coincide (see 13 . 17.a) . '' 

For any ideal �' we have 0 E �' by ( i ) . Clearly, P(X) = {subsets of X} is an ideal on 
X; we shall call it the improper ideal. Any other ideal on X is called a proper ideal. It 

100 



Filters and Ideals 

is easy to see that an ideal :J is proper if and only if 

(iii) X rt :J. 
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A o--ideal is an ideal :J that is  closed under countable unions - i.e . ,  such that S1 , S2 , S3 , . . .  E 
:J =;. s1 u s2 u s3 u . . .  E :J. 

There is a simple correspondence between filters and ideals. Let :J be a collection of 
subsets of X, and let :J = {CS : S E :J} , where C denotes complementation in X;  then :J is a 
filter (proper filter, improper filter) if and only if :J is an ideal (proper ideal, improper ideal 
respectively) .  We say that :J and :J are dual to each other. Any statement about :J can be 
translated into a statement about :J, and vice versa, but some concepts can be expressed 
more simply in terms of filters or in terms of ideals. 

Caution: The dual ideal {CS : S E :J} should not be confused with the other comple
mentary set, P(X) \ :J = {T <:;; X : T rfc :J} . In general, P(X) \ :J is neither a filter nor an 
ideal. However, under special circumstances {CS : S E :J} is equal to the ideal P(X) \ :J; 
see 5 .8 .  

5.3. To better understand the definitions of filter and ideal, suppose :J is a nonempty 
collection of subsets of a set X,  and let :J be the dual collection {X \ S : S E :J} .  Say that 
a set S <:;; X is "small" if S E :J, or "large" if S E :J (i .e . ,  if X \  S is small) .  

Then :J is an ideal and :J is a filter if and only if 

(i) any subset of a small set is small, and 

(ii) the union of two small sets (or finitely many small sets) is small. 

The ideal and filter are proper if and only if also 

(iii) not every set is small. 

If this third condition is satisfied, then a set S <:;; X cannot be both small and large. Can a 
set be neither small nor large? That depends on what :J and :J are; see 5.5.d and 5.8(B) .  

Our three rules (i) , (ii ) ,  and (iii) are compatible with common nonmathematical usage 
of the words "small" and "large." However, different rules would also be compatible with 
the nonmathematical usage of those words, since nonmathematical usage deals only with 
finite sets; the mathematical usage also covers infinite sets. We have drawn this connection, 
not so much to explain small and large, but rather to explain ideal and filter. 

Different ideals give us different collections of small sets. A set may be small with respect 
to one ideal while large with respect to another ideal; see the example in 24.39. Other words 
sometimes used in place of small are negligible and null (although the latter term also 
sometimes refers to the empty set ) .  

Other words sometimes used in place of large are residual or generic - especially 
in the context of directed sets or in the context of Baire category theory. Also, a large 
subset of X is almost all of X.  We might also say that a condition K on points x E X is 
satisfied almost everywhere or almost always, or is :J-true or almost true, if the set 
{ x E X : K is satisfied at x} is a member of :J. 

This interpretation of "true" preserves some, but not all, of the usual features of that 
word - for instance, the conjunction of finitely many :J-true statements is :J-true (as with 
ordinary truth) , but the conjunction of infinitely many :J-true statements is not necessarily 
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�-true (unlike ordinary truth) . This slightly unusual interpretation of "truth" is occasionally 
useful to logicians. 

5.4. We have noted that P(X) is a filter on X, and we can easily verify that the intersection 
of any collection of filters on X is another filter on X. Thus, the collection of all filters on 
X is a Moore collection of subsets of P(X) .  Similarly, the collection of all ideals on X is a 
Moore collection. 

Hence, given any 9 � P(X) ,  there exists a smallest filter (or ideal) that contains 9 -

namely, the intersection of all the filters (or ideals) that contain 9 .  We call it the filter 
(respectively, the ideal) generated by 9; we say that 9 is a generating set for it . (This is 
a special case of the Moore closure, introduced in 4.3, but the terms "closed" and "closure" 
are generally not used for filters and ideals. )  

We shall say that � is a superfilter of 9 whenever � is a filter and � ;;;? 9. With this 
terminology, the filter generated by 9 is simply the smallest superfilter of 9. 

Show that the filter generated by a collection 9 � P(X) is 

F :l G1 n G2 n · · · n Gn 

for some finite set {G1 , G2 , . . .  , Gn} � 9 } · 
Dually, the ideal generated by a collection 9 � P(X) is 

{ r � x I C G1 U G2 u · · · U Gn 

for some finite set {G1 , G2 , . . .  , Gn} � 9 } · 
We permit n = 0 in both formulas, with the conventions that the intersection of no subsets 
of X is just X and the union of no subsets of X is just 0. 

5.5.  Examples and elementary properties. Let X be a set. 

a. Degenerate examples: The singleton {X} is the smallest filter; the singleton { 0} is the 
smallest ideal. These are dual to each other; they both are generated by the empty 
set. 

b. Let A be a nonempty subset of X, and let � be a filter on X. Then the following 
conditions are equivalent : 

(A) � is fixed (i.e. , has nonempty intersection - see 1 .26) and the intersection 
of its members is. A. 

(B) � is the filter generated by the singleton {A}. 

(C) � = {S  � X :  S ;;;? A} . 

Assume that those conditions are satisfied. Then the filter � is dual to the ideal 
P(X\A) .  
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c. We note an important special case of the preceding example: Let p E X, and take A 
to be the singleton {p} .  Thus we obtain the filter 

:J'p {S c;::; X : S :;::? {p} }  { S  c;::; X : p E S} .  

It is the fixed filter generated by the singleton { {p} } .  It is actually an ultrafilter 
(defined in 5.8) ; hence it is called the ultrafilter fixed at p. 

d. The ideal of finite sets is { S c;::; X : S is finite} .  It is generated by the collection of all 
the singletons in X.  The filter that is dual to this is the cofinite filter, { S c;::; X : CS 
is finite} ,  also known as the Fhkhet filter. This ideal and filter are proper if and only 
if the set X is infinite. 

Example. If subsets of N are classified as small or large as in 5.3, using the ideal of 
finite sets and the cofinite filter, then the set { 1 ,  3, 5, 7, . . .  } is neither small nor large. 

e. Let :J' and :J be a filter and ideal on X, dual to each other. Show that the following are 
equivalent : 

(A) :J' is free (i .e. ,  has empty intersection) .  

(B) :J' contains the cofinite filter. 

(C) :J is a cover of X. 
(D )  :J contains the ideal o f  finite sets. 

f. Let 91 and 92 be filters on X.  We shall say that 91 meets 92 if every member of 
91 meets (i .e . ,  has nonempty intersection with) every member of 92 .  Show that there 
exists a proper filter J{ :;::? 91 U 92 if and only if 9 1  meets 92 .  

g. Let :J' be a filter on X, and suppose Y c;::; X .  Then :J'y = {Y n F :  F E  :J'} is a filter on 
Y, sometimes called the trace of :J' on Y. It is a proper filter if and only if X \ Y tf. :J'. 

h. Kowalsky's filter. (Optional; this will be used in 15 .10 . )  Let I and X be sets, let 9 
be a filter on I, and for each i E I let :I'; be a filter on X. Then UcE9 niEG :I'; is a 
filter on X. 

i .  How to enlarge a filter. Let :J' be  a proper filter on X, and let K c;::; X; suppose 
that neither K nor CK is an element of :f. Then { F n L : F E :J' and K c;::; L c;::; X} is 
a proper filter that contains { K}  U :f. 

5.6. Preview of more examples. Other important filters studied later are the collec�ion of 

• absorbing subsets of a vector space (see 12.8) ; 

• neighborhoods of a point in a topological space (see 5 . 16.a) ; 

• eventual sets of a net (see 7.9) .  

Other important ideals studied later are the collection of 

• relatively compact subsets of a Hausdorff topological space (see 17.7.c) ; 

• equicontinuous sets of maps between two uniform spaces (see 18.30.e) ; 
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• bounded subsets of a lattice (4. 19 .a) , a metric space (4.4l .c) ,  or a topological vector 
space (27.3.b) ; 

• precompact or totally bounded subsets of a uniform space (see 19 . 15 .f) ; 

• nowhere-dense subsets of a topological space, and meager subsets of a topological 
space - the latter is in fact a a-ideal (see Chapter 20) ; 

• null sets with respect to a positive charge - i.e. , a finitely additive, positive set 
function; this is in fact a a-ideal if the measure is countably additive (see 2 1 . 15) .  

• shy sets of a Banach space; this is in fact a a-ideal - see 21 . 2 1 .  

5. 7 .  We consider several useful generalizations of the notion of a proper filter. Let 9 be  a 
nonempty collection of subsets of X ;  then 9 may or may not satisfy the following conditions: 

(i) 9 is a proper filter on X .  

(ii) Every member o f  9 i s  nonempty, and 9 i s  closed under finite intersection. 

(iii) 9 is a filterbase on X - that is, each member of 9 is nonempty, and for 
each pair of sets A, B E 9 there exists some C E 9 with C s;;; A n B.  

(iv) 9 i s  a filter subbase on X ,  or  9 has the finite intersection property 
that is, the intersection of finitely many elements of 9 is always nonempty. 

Clearly, (i) :::} (ii) :::} (iii) :::} (iv) . Show the following further results: 

a. Let 9 be a collection of subsets of X. Show that the filter generated by 9 is a proper 
filter if and only if 9 is a filter subbase. 

b. If 3" is a filter subbase on X and S1 , S2 , . . .  , Sn are disjoint subsets of X ,  then at most 
one of the S; 's is an element of 3". 

c. If 9 is a filterbase, then the filter generated by 9 is the proper filter 

{S s;;; X S ;2 G for some G E 9} .  

We then say that 9 i s  a base for the filter 3". 

d. If S is a filter subbase, then 13 = { intersections of finitely many members of S}  satisfies 
condition (ii) above, and it generates the same filter as S does. 

e. Let X = P(O) for some set 0. Then the set of all filter subbases on 0 is a collection 
of subsets of X that has finite character (defined in 3.46) . 

5.8. Definition and exercise. Let 3" be a nonempty collection of subsets of X .  Show that 
the following conditions on 3" are equivalent . If any (hence all) of them are satisfied, we say 
3" is an ultrafilter. Hint :  For 5.8(C) :::} 5.8(B) , use 5.5 . i .  

(A) 3" is a proper filter, and the complementary set P( X) \ 3" = { S S: X : S tf. 3"} 
is an ideal. (This is the special circumstance mentioned in the cautionary 
remark at the end of 5 .2 . )  
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(B) :J is a proper filter on X that also satisfies: for each set K � X, either K E :J 
or CK E :f. (In the terminology of 5.3, every subset of X is either large or 
small. Thus, the dual ideal {CS : S E :J} is equal to P( X) \ :J.) 

(C) :J is a maximal filter on X (or more precisely, a maximal proper filter) . That 
is, :J is a proper filter on X,  and no other proper filter on X contains :f. 

(D) :J is a maximal filter subbase on X - i .e . ,  :J is a filter subbase on X ,  and no 
other filter subbase contains :f. 

(E) :J is a proper filter on X ,  and whenever S1 U S2 U · · · U Sn E :J, then at least 
one of the S; 's is an element of :J. 

(F) :J is a proper filter on X ,  and whenever S1 U S2 E :J, then at least one of 
sl ' s2 is an element of :J. 

5.9. Let U be an ultrafilter on X. Then one of the following two cases must hold: 
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( 1 )  U is a fixed ultrafilter ( i .e . ,  having nonempty intersection - see 1 .26 and 5.5 .b) . In 
this case U is also known as a principal ultrafilter. Show that in this case U is the 
ultrafilter UP fixed at some point p E X  (defined in 5.5 .c) .  

(2) U is a free ultrafilter (i .e . ,  having empty intersection - see 1 .26) .  In this case U is 
also called a nonprincipal ultrafilter. Show that in this case U is a superset of the 
cofinite filter and no element of U is a finite set. In particular, this case cannot occur 
if X itself is a finite set. 

5. 10. Remarks. Free ultrafilters will play an important role in some later parts of this 
book. A free ultrafilter on a set X can be described as a classification of subsets of X into 
small sets and large sets, satisfying conditions 5 .3 ( i ) ,  ( ii ) ,  and (iii) and also satisfying 

(iv) every set is either small or the complement of a small set, and 

( v) every finite set is small. 

Our description of fixed ultrafilters in 5 .5 .c is quite constructive: It tells us explicitly how 
to form such objects. In contrast , our description of a free ultrafilter is indirect , and we find 
it difficult to visualize such an object. Before continuing to the next sentence, the reader is 
urged to try to give a completely explicit example of a free ultrafilter. 

Surprisingly, free ultrafilters do exist, but explicit examples of free ultrafilters do not 
exist! Thus, free ultrafilters are our first intangibles. This bizarre situation will be explained 
in 14 .76 and 14 .77. Basically, it arises because the customary criteria for "explicit examples" 
are somewhat stricter than the customary criteria for existence proofs. 

5 . 1 1 .  Remarks. Ultrafilters will be studied further in the last part of Chapter 6 and 
thereafter. For purposes of convergences, filters can be used interchangeably with nets; this 
concept is developed in 7.9 and 7 .14 ,  and used extensively thereafter . 
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TOPOLOGIES 

5.12.  Definition. A topology on a set X is  a collection 'J of subsets of  X satisfying these 
three axioms: 

(i) 0, X E 'J, 

(ii) S1 , S2 E 'J =* S1 n S2 E 'J, and 

(iii) {S.x : A E A} s;:; 'J =} U.xEA S.x E 'J. 

That is, 'J contains 0 and X,  and 'J is closed under finite intersections and arbitrary unions. 
A topological space is a pair (X, 'J) consisting of a set X and a topology 'J on X ;  we may 
refer to X itself as the topological space if 'J does not need to be mentioned explicitly. The 
members of 'J are called the open subsets of X .  

A point x i s  called isolated i f  i t  i s  the only member o f  some open set; the topological 
space X is disconnected if it can be partitioned into two disjoint nonempty open sets. If 
no such partition exists, the space X is connected. 

Topological spaces can be described in other ways - in terms of closed sets (5. 13) ,  
convergences ( 15.8.b and 15 . 10), closure or interior operators (5. 19, 5.20, and 15 .7) ,  neigh
borhood systems (5.22 and 15.8.a), bases ( 15.36.b) , or distances (5. 15.i) . 

Topological spaces will be studied briefly in the next few sections and in Chapter 9, and 
then in much greater detail in Chapter 15  and thereafter. 

5. 13.  More definitions. Let (X, 'J) be a topological space. The complements of the open 
sets are the closed subsets of X.  

Closed sets are dual to  open sets (in the sense of  1 .7) . Although i t  i s  customary to  define 
a topological space in terms of its open sets, we could as easily define it in terms of the 
closed sets, as follows. Let X be a set, and let X be a collection of subsets of X ;  then X is 
the collection of closed sets for a topology on X if and only if X satisfies these conditions: 

(i) 0, X E X, 
(ii) S1 , S2 E X =* S1 U S2 E X, and 

(iii) {S.x : A E A} s;:; X =*  n.xEA S.x E X. 
That is, X contains 0 and X, and X is closed under finite unions and arbitrary intersections. 

5. 14. Remarks and more definitions. In common nonmathematical English, "open" and 
"closed" are opposites. This could lead beginners to expect that every subset of a topological 
space X must be either open or closed, but that expectation is incorrect. Some sets may 
be neither open nor closed. In fact, in topological spaces commonly used, most subsets are 
neither open nor closed. We shall demonstrate this in 15 .37.c in the case where X is the-' 
real line, a space typical of the topological spaces used by analysts. 

Also, some sets may be both open and closed. Such sets are called clopen. Indeed, in 
any topological space X, both 0 and X are clopen. Exercise. The space X is connected 
(as defined in 5 . 12)  if and only if it has no other clopen subsets besides 0 and X .  
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5.15.  Elementary examples of topologies. Let X be any set. Then: 

a. The indiscrete topology (also called chaotic topology) is {0,  X} ;  it is the smallest 
topology on X.  

b. The discrete topology i s  P(X)  = {subsets of  X} ;  i t  i s  the largest topology on X .  It 
is the only topology that makes every subset of X clopen. It is also the only topology 
that makes every point of X isolated. 

Finite sets are usually equipped with the discrete topology. The set 2 = {0, 1 }  will 
be used in many different contexts; we shall understand it to be equipped with the 
discrete topology unless some other arrangement is specified. 

Z = {integers} is also usually equipped with the discrete topology. (That topology 
can be described another way; see 5 . 15.f.) 

c. The cofinite topology is { S � X : either S is empty or CS is finite} .  The cofinite 
topology coincides with the discrete topology when X is a finite set, but the two 
topologies are different when X is an infinite set. 

The cofinite topology is the smallest topology on X that makes every singleton { x} 
in X a closed set. That is, a topology on X makes every singleton a closed set if and 
only if that topology contains the cofinite topology. 

d. Lower set topology (optional) .  The set N is most often equipped with its discrete 
topology. However, another interesting topology on N is given by 

ll {0, { 1 } ,  { 1 , 2} ,  { 1 , 2 , 3} ,  { 1 , 2 , 3 , 4} ,  . . .  , N} . 

More generally, let (X, � )  be a preordered set, and let 'J = { lower sets of X} .  Show 
that 

(i) 'J is a topology on X .  We shall call it the lower set topology on X.  

(ii) The preorder � can be recovered from the topology 'J. Thus, the mapping 
� f-.> 'J is injective (i .e . ,  different preorders determine different lower 
set topologies) ,  so we may view {preordered spaces} as a subclass of 
{topological spaces} .  

(iii) Analogous properties are easily verified for the upper set topology, 
which is defined to be {upper sets of X} .  (Indeed, if � is a preorder on 
X ,  then >,:= is another preorder. ) 

Example. The upper set topology on N is 

v { { 1 , 2 , 3 , . . .  } ,  {2 , 3 , 4 ,  . . .  } ,  {3 , 4 , 5, . . .  } ,  . . .  , 0} . 

e. Let X be a subset of a topological space (Y, 'J) . Verify that {X n T : T E 'J} is a 
topology on X .  It is called the relative topology, or subspace topology, induced 
on X by Y. Any subset of a topological space will be understood to be equipped with 
its relative topology, unless some other arrangement is specified. Show that 

(i) A subset of X is open in the relative topology if and only if it is of the 
form X n G for some set G � Y that is 'J-open. 
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(ii) A subset of X is closed in the relative topology if and only if it is of the 
form X n F for some set F s;;; Y that is 'J-closed. 

(iii) Suppose X itself is 'J-open. Then a subset of X is open in the relative 
topology if and only if it is 'J-open. 

(iv) Suppose X itself is 'J-closed. Then a subset of X is closed in the relative 
topology if and only if it is 'J-closed. 

(v) Suppose W s;;; X s;;; Y. Then the relative topology induced on W by Y is 
the same as the relative topology induced on W by the relative topology 
induced on X by Y. 

f. Let (X, :S:) be  a chain. Let 'J be  the collection o f  all sets T s;;; X that satisfy the 
following condition: 

For each p E T, there exists some set J of the form { x E X a < x} or 
{x E X :  a <  x < b} or {x E X :  x < b} such that p E J s;;; T. 

Then 'J is a topology on X, called the order interval topology. 
The usual topologies on IR and [-oo, +oo] are their order interval topologies. These 

sets will always be understood to be equipped with these topologies, unless some other 
arrangement is specified. The topology of IR is in many ways typical of topologies used 
in analysis. In fact , most topological spaces used in analysis are built from copies of 
IR, in one way or another. 

Any subset of IR is a chain, but such sets are not always equipped with their 
order interval topologies. Rather, they are usually equipped with the relative topology 
induced by IR (as defined in 5 . 15.e) . That topology does not always agree with the 
order interval topology; we shall compare the two topologies in 15.46. 

g. Definitions. Let (X, d) be a pseudometric space (defined as in 2 . 1 1 ) .  For any z E X 
and r > 0, we define the open ball centered at z with radius r to be the set 

{x E X : d(x, z) < r}.  

(We may omit the subscript d when no confusion will result. )  A set T s;;; X is  said to 
be open if 

for each z E T, there exists some r > 0 such that Bd(z ,  r) s;;; T. 
The reader should verify that the collection of all such sets T is a topology 'Jd on X; 
we call it the pseudometric topology (or the metric topology, if d is known to 
be a metric) . Any pseudometric space will be understood to be equipped with this 
topology, unless some other is specified. 

The reader should verify that Bd(z, r) is an open set in the topological space (X, 'Jd) ,  
thus justifying our calling i t  the open ball. We also define the closed ball with center 
z and radius r to be the set 

{x E X :  d(z, x) ::; r} .  

The reader should verify that this is a 'Jd-closed set. 
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The usual metric on IR is that given by the absolute value function - that is, 
d(x, y) = lx - Y l · The set IR is always understood to be equipped with this metric, 
unless some other arrangement is specified. 

Exercise. Show that the resulting metric topology on IR is the same as the order 
interval topology on R (This result will be easier to prove later; see 15 .43. )  

Two of the usual metrics on the extended real line [-oo, +oo] are 

d(x, y) = I arctan(x) - arctan(y) l and d(x, y) = J 1 : I x l -
1 : 1Y 1 J · 

(It follows easily from 2 . 15.a that these are both metrics. )  In fact , there are many 
usual metrics on [ -oo, +oo] , all of them slightly more complicated than one might 
wish. Fortunately, they are interchangeable for most purposes: They all yield the 
same topology, and in fact we shall see in 18.24 that they all yield the same uniformity. 

Exercise. Show that the two metrics given above both yield the order interval 
topology on [-oo, +oo] . (This exercise may be postponed; it will be easier after 15 .43. )  

Further examples of pseudometric topologies are given i n  5.34 and elsewhere. 

h. For many applications we shall need a generalization of pseudometric topologies: 
Let D be a gauge (i .e . ,  a collection of pseudometrics) on a set X. For each d E  D 

let Bd be the corresponding open ball, as in 5 . 15.g. Let 'J D be the collection of all sets 
T � X having the property that 

for each x E T, there is some finite set Do � D and some number r > 0 such 
that ndEDo Bd (x , r) � T. 

Then ( exercise) 'J D is a topology on X.  We may call it the gauge topology determined 
by D. Any gauge space (X, D) will be understood to be equipped with this topology 
unless some other arrangement is specified. We may write 'J, omitting the subscript 
D, if the choice of D is clear or does not need to be mentioned. 

Exercises. If D is a gauge and E is its max closure or its sum closure (as defined in 
4.4.c) , then D and E determine the same topology. If D is a directed gauge (as defined 
in 4.4.c) ,  then we can always choose Do to be a singleton in the definition of 'J D given 
above. 

Remarks continued. Whenever convenient, we shall treat pseudometric spaces as 
a special case of gauge spaces, with gauge D consisting of a singleton { d} . When no 
confusion will result, we may write d and { d} interchangeably and consider d itself as a 
gauge. Conversely, in 5.23.c we shall see that any gauge topology 'J D can be analyzed 
in terms of the simpler pseudometric topologies {'Jd : d E  D} .  

Different gauges on a set X may determine the same topology or different topologies. 
Two gauges D and E are called equivalent (or topologically equivalent) if they 
determine the same topology. This terminology is discussed further in 9.4. 

A topological space (X, 'J) is metrizable (or pseudometrizable ) if there exists at least 
one metric d on X (respectively, at least one pseudometric d on X)  for which 'J = 'Jd; 
the topological space is gaugeable if there exists at least one gauge D on X for which 
'J = 'J D .  This (pseudo )metric or gauge is not necessarily unique. When we state that a 
topological space is (pseudo )metrizable or gaugeable, we do not necessarily have some 



1 10 Chapter 5: Filters, Topologies, and Other Sets of Sets 

particular (pseudo )metric or gauge in mind. We say that a topology 'J and a gauge D 
are compatible if 'J = 'J D i this term also applies to topologies and pseudometrics. 

Most topologies used in analysis are gaugeable. In 16 . 18 we present some examples 
of topologies that are not gaugeable, but these examples are admittedly somewhat 
contrived. 

Actually, the term "gaugeable" is seldom used in practice. We shall see in 16 . 16 
that a topology is  gaugeable if and only if i t  is  uniformizable and if and only if i t  is 
completely regular; the terms "uniformizable" and "completely regular" are commonly 
used in the literature. 

Exercise. If (X, D) is a gauge space and S � X, then the relative topology on S is 
also gaugeable; it can be given by the restriction of D to S. 

i. ( Optional.) We can generalize the notion of pseudometric topologies still further. Let 
D be a quasigauge on X - i.e. ,  a collection of quasipseudometrics on X (which are 
not necessarily symmetric; see 2 . 1 1 ) .  We can use D to define a quasigauge topology 
'J v in a fashion analogous to that in 5 . 15.h. That is, 'J v is the collection of all sets 
T � X that have the property that 

for each x E T, there is some finite set Do � D and some number r > 0 such 
that {u E X :  maxdEDo d(x, u) < r} � T. 

(This is the supremum of the topologies 'Jd determined by the individual quasipseudo
metrics d E  D; see 5 .23.c.) 

Reilly 's Representation. Actually, every topology 'J on a set X can be determined 
by a quasigauge D. Show this with D = {de :  G E 'J} , where 

dc (x, x' ) { � if x E G and x' tJ_ G 
otherwise. 

Consequently, many of the ideas that we commonly associate with gauge spaces -
uniform continuity, equicontinuity, completeness, etc. - can be extended (in a weaker 
and more complicated form) to arbitrary topological spaces. 

This presentation follows Reilly [1973] . Similar ideas have been discovered inde
pendently in other forms; for instance, see Kopperman [1988] and Pervin [ 1962] . 

5. 16.  Definitions. Let (X, 'J) be a topological space, and let S � X. 

a. We shall say that S is a neighborhood of a point z if z E G � S for some open set 
G. Then N( z) = {neighborhoods of z} is a proper filter on X ,  which we shall call the 
neighborhood filter at z or the filter of neighborhoods of z .  

Caution: Some mathematicians define neighborhood as we have done, but other 
mathematicians also require the set S to be open, as part of their definition of a neigh
borhood of a point. With the latter approach, the neighborhoods of a point generally 
do not form a filter. The two definitions yield similar results for the main theorems 
of general topology, but the open-neighborhoods-only approach is not compatible with 
the pedagogical style with which general topology is developed in this book: We shall 
use filters frequently. 
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b. There exist some closed sets that contain S (for instance, X itself) ,  and among all 
such sets there is a smallest (namely, the intersection of all the closed supersets of S) . 
The smallest closed set containing S is called the topological closure of S; we shall 
denote it by cl(S). It is a special case of the Moore closure. It is probably the type of 
closure that is most often used by analysts. It may be called simply the closure of S, 
if the context is clear. 

c. There exist some open sets that are contained in S (for instance, 0) ,  and among all 
such sets there is a largest (namely, the union of all the open subsets of S) . The largest 
open set contained in S is called the interior of S; we shall denote it by int (S) . 

d. Let X and Y be sets, and suppose some element of Y is designated "0" - e.g. , if Y 
is a vector space, or if Y � [-oo, +oo] . Let f : X ___... Y be some function. If X is a 
topological space, then the support of f means the set 

supp(f) cl ( {x E X  : f(x) # 0} ) . 

If X is not equipped with a topology, then the support of f usually means the set 
{x E X : f(x) # 0} .  Note that these two definitions agree if X has the discrete 
topology. 

5.17. Elementary properties. 
a. int (S) � S � cl(S). A set S is open if and only if S = int(S) , and a set S is closed if 

and only if S = cl(S) . 

b. The notions of closure and interior are dual to each other, in the sense of 1 .7. Show 
that 

C cl(S) = int(C S), 

where C A = X \ A. 
C int(S) = cl(C S) ,  

c. A set S � X is open if and only if S is a neighborhood of each of its points. 

d. z E cl(S) if and only if S meets every neighborhood of z .  

e. I f  G is open and cl(S) n G i s  nonempty, then S n G i s  nonempty. 

5.18. Closures and distances. Let (X, d) be a pseudometric space. The diameter of a set 
and the distance from a point to a set were defined in 4.40. Let S be a nonempty subset of 
X ,  and let z E X. Then: 

a. dist(z, S) = dist(z, cl(S)) ,  and dist (z, S) = 0 {:==:;. z E cl(S) . 

b. diam(cl(S)) = diam(S) . 

c. cl(B(z, r)) � K(z, r ) ,  where B and K are the open and closed balls, defined as in 
5. 15.g. 

Show that cl(B(z, r)) � K(z, r) may sometimes occur, by taking X = IR and 
d(x , y) = min{ 1 ,  lx - Y l } .  (See 26.4.a for a further related result . )  
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d. ( Optional.) Assume (X, d) is a metric space. Let X = {nonempty, closed, metrically 
bounded subsets of X } .  For S, T E X, let 

h(S, T) max { sup dist(s , T) ,  sup dist(t , s) } . 
sES tET 

(See example in the figure below.) Show that h is a metric on X; it is called the 
Hausdorff metric. 

Example. Hausdorff distance h 
between a circle and a rectangle 

5. 19.  Kuratowski's Closure Axioms. Let X be a set, and let cl : P(X) ---+ P(X) be 
some mapping. Show that cl is the closure operator for a topology on X if and only if cl 
satisfies these four conditions: 

cl(0) = 0,  S <;;; cl(S) , cl(cl(S)) = cl(S) , cl(S u T) = cl(S) u cl(T) 

for all sets S, T <;;; X.  Of course, if these conditions are satisfied, then the corresponding 
topology is uniquely determined by cl; its closed sets are those sets S <;;; X that satisfy 
S = cl(S) . 

5.20. The dual of Kuratowski's axioms follows easily; we include it here for convenient 
later reference. 

Let X be a set, and let int : P(X) ---+ P(X) be some mapping. Then int is the interior 
operator for a topology on X if and only if int satisfies these four conditions: 

int(X) = X, S ::2 int(S) ,  int (int(S)) = int(S) ,  int(S n T) = int(S) n int(T) 

for all sets S, T <;;; X. Of course, if these conditions are satisfied, then the corresponding 
topology is uniquely determined by int; its open sets are those sets S <;;; X that satisfy 
S = int(S) .  

5.21.  The lattice of open sets ( optional ) .  Let (X, 'J) be a topological space. Then ('J, <;;; ) 
is a complete lattice. Indeed, for any open sets G>. E 'J (>.. E A), the smallest open set 
containing all the G >. 's is u a).. , >.EA 
while the largest open set contained in all the G >. 's is 

int ( n c)..) . 
>.EA 



Topologies 1 13  

Note that when the index set A i s  finite, then n.\EA G.\ i s  an open set, and so 1\.\EA G.\ 

generally is equal to n.\EA G.\ . Hence the inclusion 'J L P(X ) preserves finite sups and 
infs; thus it is a lattice homomorphism. However, when the index set A is infinite, 1\.\EA G.\ 

generally is not equal to n.\EA G,\ . Thus the inclusion 'J L P(X ) i s  sup-preserving, but it 
generally is not inf-preserving. 

It is easy to verify that ('J, c;;;: ) satisfies one of the infinite distributive laws: 

H A V G.\ V (H A G.\ ) ·  ( 1 ) 
.\EA .\EA 

(See also the related results in 13.28.a. ) However, ('J, c;;;: ) does not necessarily satisfy the 
other infinite distributive law, 

H V  f\ G.\ f\ (H v G.\) · (2) 
.\EA .\EA 

For instance, that law is not satisfied in the following example, taken from Vulikh [1967] : 
Let 'J be the usual topology on the real line. Let H = (0, 1 ) , A =  N, and Gn = ( 1 - � ,  2) 

for n = 1 ,  2, 3 , . . . . Verify that /\nEN Gn = ( 1 ,  2) , hence the left side of equation (2) is 
(0, 1 ) U ( 1 ,  2) . On the other hand, H V Gn = (0,  2) , hence the right side of equation (2) is 
(0,  2) . 

It is possible to study at least some properties of a topological space purely in terms 
of its lattice of open sets; one can disregard the individual points that make up those sets. 
(See the related result in 16.5.d and the related comments in 13.3. ) An introduction to 
this "pointless topology" was given by Johnstone [1983] . However, this pointless topology 
is seldom useful in applied analysis, which is greatly concerned with points. 

5.22. Neighborhood Axioms. Let X be a set. For each x E X, suppose N(x) is some 
filter on X ,  such that x is a member of every member of N(x) . Let 

'J {G c;;;: X : G E N(z) for every z E G} . 

(In particular, 0 E 'J, since there is no z E G in that case. ) Then the following three 
conditions are equivalent : 

(A) There exists a topology on X for which {N(z) : z E X } is the system of 
neighborhood filters. 

(B) For each z E X ,  the collection of sets 'J n N( z) is a base for the filter N( z) . 
That is, every member of N(z) contains some member of N(z) n 'J. 

(C) For each z E X  and each S E N(z) , there is some G E N(z) with the property 
that u E G =;. S E N(u) . 

Moreover, if (A) , (B) ,  (C) are satisfied, then the topology in (A) must be 'J. 

Hints : Let us first restate (B) as follows: 

(B') For every S E N(z) , there is some G E N(z) n 'J such that G c;;;: S. 
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For (A) ::::} (B' ) ,  let int be the interior operator of the given topology; show that G = int(S) 
is a member of the collection of sets 'J described above. For (B') ::::} (C), note that 
u E G ::::} G E N(u) ::::} S E N(u) since S 2 G. For (C) ::::} (A), define an operator 
int : 'Y(X) --+ 'Y(X) by int(S) = {z E X : S E N(z) } ;  then verify that this operator int 
satisfies the conditions of 5.20. 

5.23. Here are a few more ways to make topologies: 

a. If { 'J >. : .>. E A} is a collection of topologies on a set X, then 

{ S � X : S E 'J >. for every .>.} 

is also a topology on X. It is sometimes called the infimum of the 'J.x 's, since it is 
their greatest lower bound - i.e. ,  it is the largest topology that is contained in all the 
'J.x's. 

b. From the preceding result we see that the collection of all topologies on X is a Moore 
collection of subsets of 'Y(X) . Thus, if 9 is any collection of subsets of X, then there 
exists a smallest topology 'J containing 9 - namely, the intersection of all the topologies 
that contain 9. The topology 'J obtained in this fashion is the topology generated 
by 9; the generating set 9 is also called a subbase for the topology 'J. (The topology 
generated is a special case of the Moore closure, but the terms "closed" and "closure" 
generally are not used in this context .)  

Example. The order interval topology on a chain X (defined in 5 . 15 .f) is the topol
ogy generated by the sets that can be expressed in either of the forms 

Sa = {x E X  : a <  x} or Sb 
= { x E X : X < b} 

for points a, b E X. 
Exercise. Let 9 be a collection of subsets of a set X. A set T � X is a neighborhood 

of a point x E X with respect to the topology generated by 9 if and only if T has the 
following property: 

There is some finite set { G1 , G2 , . . .  , Gn} � 9 such that x E n;=l Gj � T. 

(We permit n = 0,  with the convention that the intersection of no subsets of X is all 
of X.)  

c. I f  {'J.x : .>. E A}  i s  a collection of  topologies on a set X, then the topology generated by 

9 { S � X : S E 'J >. for some .>.} 

is called the supremum of the 'J.x 's, since it is their least upper bound - i.e., it is the 
smallest topology that contains all the 'J.x 's. 

The collection of all topologies on X is a complete lattice when ordered by � since 
each subcollection has an inf (see 5.23.a) and a sup. 

Important example. On any gauge space (X, D), the gauge topology 'J D is the 
supremum of the pseudometric topologies {'Jd : d E  D} (defined as in 5 . 15.g) . 
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5.24. Remarks. The theory of topological spaces will be developed a little further in 
Chapter 9. It will be continued in much greater detail in Chapter 15 and thereafter. 

ALGEBRAS AND SIGMA-ALGEBRAS 

5.25. Let X be  a set, and let C denote complementation i n  X. An algebra (or field) of 
subsets of X is a collection S s;;; P(X) with the following properties: 

( i ) X E S, 
(ii) S E S =? Cs E S, and 

(iii) S, T E S =? S U T E S. 

In the terminology of 1 . 30, that says: S contains X itself and S is closed under complemen
tation and finite union. It follows that 0 E S and that S is closed under finite intersection 
and relative complementation: S, T E S implies S n T, S\T E S. 

Caution: The term "algebra" has many different meanings in mathematics; several 
meanings will be given in 8.47 and one more in 1 1 .3 .  When we need to distinguish the 
algebra defined above from other kinds of algebras, the algebra defined in the preceding 
paragraph will be called an algebra of sets. 

A u-algebra (or a-field) of subsets of X is an algebra that is closed under countable 
umon: 

(iii' ) S1 , S2 , S3 , · · ·  E S =? U;:1 Sj E S. 

It follows immediately that any a-algebra S is also closed under countable intersection: 
81 , 82 , S3 , . . . E S =? n;:1 Sj E S .  

A measurable space i s  a pair (X, S ) ,  where X i s  a set and S is a a-algebra of subsets 
of X .  The elements of S are referred to as the measurable sets in X .  We may refer to X 
itself as a measurable space if S does not need to be mentioned explicitly. Measurable spaces 
(X, S)  should not be confused with measure spaces (X, S, J.l) , introduced in 21 .9, or with 
spaces of measures {f.la } ,  introduced in 1 1 .47, 1 1 .48, and 29.29.f. Somewhat impre.cisely, 
we may say that a measure is device for measuring how big sets are; a measurable space is 
a space that is capable of being equipped with any of several different measures; a measure 
space is a space that has been equipped with a particular measure; and a space of measures is 
a collection of measures that is equipped with some additional structure (linear, topological, 
etc. )  that leads us to call it a "space." 

5.26. Examples of (a-) algebras. In the following examples, any statement involving a- in 
parentheses should be read once with the a- omitted and once with it included. Let X be 
any set; then: 

a. { 0, X} is the smallest (a-)algebra on X; we shall call this the indiscrete (u-)algebra. 
b. P(X) = {subsets of X}  is the largest (a-)algebra on X.  We shall call it the discrete 

( u-)algebra. 
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c .  Let J s;;; lR be an interval (possibly all of JR) . Let A be the collection of all unions of 
finitely many subintervals of J (where a singleton is considered to be an interval and, 
by convention, 0 E A also) . Show that A is an algebra of subsets of J. 

d. Let { S, : a E A} be a collection of (a-)algebras on X. Then 

{T s;;; X T E S, for every a E A} 

is also a (a-)algebra on X. 
e. In view of the preceding exercise, the collection of all (a-)algebras on X is a Moore 

collection of subsets of 1'( X) .  Hence, given any collection 9 of subsets of X,  there 
exists a smallest (a-)algebra that contains 9 - namely, the intersection of all the 
(a-)algebras that contain 9 .  We call it the ( u-)algebra generated by 9; we say 
that 9 is a generating set for that (a-)algebra. (The (a-)algebra thus generated is 
a special case of the Moore closure, introduced in 4.3. However, the terms "closed" 
and "closure" generally are not used in this context. ) The a-algebra generated by 9 is 
sometimes denoted by a (9) . 

f. { S s;;; X : S or CS is finite} is the algebra generated by the singletons of X.  
g .  { S s;;; X : S o r  CS  i s  countable} is the a-algebra generated by the singletons of X.  

(The proof of this result assumes some familiarity with the most basic properties of 
countable sets; see particularly 6.26. ) 

h. Let 9 be a collection of subsets of X.  Then: 

( i) The algebra generated by 9 is equal to the union of the algebras generated 
by finite subsets of 9 .  

( ii) The a-algebra generated by 9 i s  equal to  the union of  the a-algebras 
generated by countable subcollections of 9 .  

i . Some of the most important a-algebras are determined in one way or another by 
topologies. 

Let (X, 'J) be a topological space. The Borel u-algebra is the a-algebra generated 
by 'J - that is, the smallest a-algebra containing all the open sets. Its members are 
called the Borel sets. (Remark. In 15.37.e we shall see that when X is any subinterval 
of the real line, equipped with its usual topology, then the Borel a-algebra is generated 
by the algebra in 5.26.c. ) 

Some other a-algebras based on topologies are 

• the almost open sets, also known as the sets with the Baire property, studied in 
20.20 and thereafter; 

• the Baire sets, mentioned in 20.34; and 

• in JRn , the Lebesgue measurable sets, studied in Chapters 21 and 24. 

Caution : The "Baire sets" are not the same as the "sets with the Baire property," and 
the "Lebesgue measurable sets" are not the same as the "Lebesgue sets" ( introduced 
in 25 .16) . 
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j .  The clopen subsets o f  a topological space X form an algebra o f  subsets o f  X .  

5.27. More definitions ( optional ) .  Let n be  a set. A ring of  subsets of n (also known as 
a clan) is a collection � of subsets of n that satisfies 0 E � and also 

A, B E � A U B, A \ B  E �. 

A u-ring (also known as a tribe) is a ring � that also satisfies 

Clearly, a collection � <;;; :P(r.!) is an algebra (or a-algebra) if and only if it is a ring (or 
a-ring) in which n is a member. 

Most treatments of measure theory use either a-algebras or a-rings. The a-algebra 
approach has the advantage that it is more algebraic - i.e. ,  the algebraic structure of a 
a-algebra is simpler than that of a a-ring. On the other hand, a-rings are more general, 
and more useful in the study of regular measures on locally compact Hausdorff spaces -
see the remarks in 20.35 - but we shall not study such measures in this book. 

5.28.  Exercise. If A is a (a-)algebra on X and :J is a (a-)ideal, then 

A 6 :J  {A 6 I : A E A and I E  :J} 

is a (a-)algebra on X .  It is the smallest (a-)algebra of sets that contains both A and :J .  
(See hint in diagram below. This result will be used in 20.21  and 2 1 . 16 . )  

H 

X 

Hint for exercise on A 6 :J: 
Show that a set S <;;; X 
is an element of A 6 :J 
if and only if there exist 
sets G, H, and T such that 
G <;;; S <;;; H, G <;;; T <;;; H ,  
T E A, and H\G E :J .  

5.29. Let n be a set. A monotone class of subsets of n is a collection M of subsets of n 
with both of these properties: 

(i) If (A1 )  is a sequence in M and A1 <;;; A2 <;;; A3 <;;; · · · then U�=1 An E M. 
(ii) If (A1 ) is a sequence in M and A1 :2 A2 :2 A3 :2 · · · then n�=l An E M. 

It is easy to see that the monotone classes form a Moore collection - i.e. ,  any intersection 
of monotone classes is a monotone class. Hence, given any collection A of subsets of n, 
there exists a smallest monotone class containing A; we shall call i t  the monotone class 
generated by A. 
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Monotone Class Theorem. Let A be an algebra of subsets of !1. Then the monotone 
class generated by A is equal to the a-algebra generated by A. 

Proof Let M and S be, respectively, the monotone class and the a-algebra generated by A. 
Thus A � M n S. Temporarily fix any M E M,  and let 

NM { N E M  : M n N, CM n N, M n CN all belong to M } . 

Verify that 

a. :NM is a monotone class. 

b. If A E A, then A � NA; hence NA = M (by the minimality of M among monotone 
classes that contain A) .  

c. If  A E A and M E M, then M E NA; hence A E :NM . Thus A � :NM . Therefore 
NM = M (by the minimality of M again) . 

d. M is an algebra of sets. (Indeed, if L, M E  M, use the fact that L E M =  :NM.)  

e. M is  a a-algebra. 

f. M ;;;? S, by minimality of S among a-algebras containing A. 
g. S is a monotone class containing A; hence S ;;;? M by minimality of M.  

5.30. Remarks. Measurable spaces will be  studied a little more in  Chapter 9. Algebras of 
sets will be related to Boolean algebras in Chapter 13. Algebras of sets and a-algebras will 
be used in measure theory in several later chapters. 

UNIFORMITIES 

5.31.  Definitions. Let X be a set; its diagonal is the set I =  { (x, x) : x E X} .  Define 
inverses and compositions as in 3.2. Then a preuniformity on X is a collection U of 
subsets of X x X that satisfies: 

(i) U E U :::::} U ;;;? I (i .e . ,  each U E U is reflexive) ;  

(ii) for each U E U, there is some V E U with V � u-\ and 

(iii) for each U E U, there is some V E U with V o V � U. 
We say U is a uniformity on X if, in addition, 

(iv) U is a filter on X x X. 
(It i s  necessarily a proper filter since each U E U contains I and i s  therefore nonempty. ) 

An element of U is called an entourage (or a vicinity) . A uniform space is a pair 
(X, U) consisting of a set X and a uniformity U � P(X x X). We may refer to X itself as 
a uniform space if U does not need to be mentioned explicitly. 

Caution: The definitions of "uniformity" and "uniform space" vary slightly in the liter
ature. (See 16. 17 . )  Also, the "preuniformity" defined above is related to, but not the same 
as, the "subbase for a uniformity" defined in some books. 
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5.32. Uniformities constructed from distances. Let d be a pseudometric on a set X (defined 
as in 2. 1 1 ) .  For each number r > 0, let 

Ur { (x , x' ) E X  x X : d(x, x' ) < r} .  

Then let lid = { V � X x X : V :;2 Ur for some r > 0} .  Then ( exercise) lid  i s  a uniformity 
on X. We shall call it the uniformity on X determined by d. A uniformity that can be 
determined by a pseudometric (or a metric) in this fashion is called a pseudometrizable 
uniformity (or a metrizable uniformity) . Some uniformities are not pseudometrizable; 
an example of this is given in 18.20. 

More generally, let D be a gauge on a set X.  Let liD be the collection of all sets 
U � X x X that have this property: 

There is some number r > 0 and some finite set F � D such that { (x, x') E 
X x X :  maxdE F d(x , x') < r} � U. 

(The set F can be taken to be a singleton, if D is directed, as in 4.4.c.) Then ( exercise) 
liD is a uniformity on X. We shall call it the uniformity for X determined by D. Any 
gauge space (X, D) will be understood to be equipped with this uniformity unless some 
other arrangement is specified. 

Two different gauges D and E on a set X may determine different uniformities liD , liE 
or the same uniformity. We say D and E are uniformly equivalent if they determine 
the same uniformity. This is an equivalence relation on the set of all gauges on X; the 
terminology is discussed further in 9.4. We say that a uniformity li and a gauge D are 
compatible if li = liD ; this term also applies to uniformities and pseudometrics. 

Exercise. If D is a gauge and E is its max closure or its sum closure (as defined in 4.4.c) ,  
then D and E determine the same uniformity. 

It would be natural to say that a uniformity li is "gaugeable" if li = liD for some gauge 
D. However, it turns out that every uniformity is gaugeable; see 16. 16. 

5.33. Topologies constructed from uniformities. Let (X, li) be a uniform space, and let 
x E X. Then 

U[x] 
li [x] 

{y : (x, y) E U} 
{U [x] : U E li} 

is a subset of X ,  for each U E li, and 
is a filter on X. 

It is an easy exercise to verify that the system of filters {li [x] : x E X} satisfies condition 
5.22(C) ,  and hence it is the system of neighborhood filters for a topology 'J on X. That 
topology is called the uniform topology determined by li. We may sometimes denote it 
by 'Jli . 

A topology that can be represented in this fashion is said to be uniformizable. Most 
topologies in applications are uniformizable. Some examples of nonuniformizable topologies 
- admittedly, rather artificial - are given in 16. 18. 

Different uniformities may determine different topologies or the same topology; we do 
not necessarily have a particular uniformity in mind when we say that a topology 'J is 
uniformizable. We say that a topology 'J and a uniformity li are compatible if 'J = 'J li. 
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Exercise. Let D be a gauge on X. Then the gauge topology 'J D determined by D as 
in 5 . 15.h is the same as the uniform topology 'J11 determined as above from the uniformity 
11 = 11D defined from the gauge D as in 5.32. 

5.34. Examples. 
a. {U  � X x X : U � I} is the largest uniformity on X ;  we shall call it the discrete 

uniformity. The topology that it determines is the discrete topology. The discrete 
uniformity is determined by some discrete metrics - for instance, by the Kronecker 
metric 1 - 8  (see 2 . 12.b) . 

Any discrete metric (defined in 2 . 12.b) yields the discrete topology (defined in 
5 . 15 .b) .  However, not every discrete metric yields the discrete uniformity; an example 
is given in 19. 1 1 .e. 

b. Let d : X x X ---+ lR be the constant function 0. Then d is a pseudometric. The 
uniformity it determines is the singleton {X x X} .  This is the smallest uniformity on 
X ;  we shall call it the indiscrete uniformity. It determines the indiscrete topology 
(defined in 5. 15 .a) .  

c. Let X be a non empty set, and let � be some particular specified element of X ;  we may 
refer to � as the "knob" of X. Let S = X \ { 0 .  Define a pseudometric on X by 

d(u, v) = { � if both or neither of u, v are equal to � 
if exactly one of u ,  v is equal to � 

for u, v E X .  A set X equipped with this pseudometric will be called a knob space. 
The resulting uniformity is 

11 {U � X x X : U � S x S and (�, �) E U} 

and the resulting topology is  {0 ,  {0, S, X} .  Knob spaces will be important in 
certain arguments concerning the Axiom of Choice, in 17.20 and 19 .13 ,  using "Kelley's 
choice" (see 6.24) . 

5.35. Some basic properties of uniformities. Let (X, 11) be a uniform space. Show that 

a. U E 11 ::::} u-1 E 11. (This property is not always satisfied by a preuniformity.) 

b. If u is an entourage, then v = u n u-1 is a symmetric entourage (i.e. , an entourage 
satisfying V = v-1 ) contained in U. 

c. If U is an entourage and k is a positive integer, then there exists an entourage V 
satisfying 

vk v o v o v o . . .  o v c u. 
k of the V's 

.Moreover, we may choose V symmetric. 
In particular, if U is an entourage then there exists a symmetric entourage V such 

that V3 
= V o V o V � U. We shall use that fact in our proof of 16. 16. 
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5.36. Pathological example. An intersection of  uniformities i s  not necessarily a uniformity. 
(In this respect , uniformities are not like IT-algebras or topologies. ) 

For instance, take X = IR x R Let 1r1 , 1r2 : X ---+ IR be the coordinate projections � that 
is, 7ri (XI , X2 ) = x1 and 1r2 (x1 , x2) = x2 . Define pseudometrics d1 , d2 on X by 

for x and y in X.  Let li 1 and li2 be the resulting pseudometric uniformities on X ,  and 
let W = li 1 n li2 . Show that W is not a uniformity. Use that fact to show also that, al
though there do exist uniformities that contain W, there does not exist a smallest uniformity 
containing W. 

5.37. It will sometimes be useful to "generate" a uniformity li from a smaller collection 
S of sets. However, we saw in 5.36 that an intersection of uniformities is not necessarily a 
uniformity. Given a collection S of sets, we cannot simply look for the "smallest uniformity 
li that contains S;" such a uniformity li need not exist. The smaller, "generating" collection 
S cannot be chosen arbitrarily, but preuniformities (defined in 5.31) will serve quite well for 
this purpose. 

Suppose that S is a preuniformity on X. Then S is a filter subbase on X x X, by 5 . 31 (i) . 
Hence S generates a proper filter on X x X; that filter is 

li {u � X  x X U :J 51 n 52 n · · · n 5n 
for some finite set {51 , 52 , . . .  , 5n } � s} . 

It is easy to show that li is a uniformity on X ,  and i n  fact li is the smallest uniformity 
containing S. We shall call li the uniformity generated by S. Caution: Despite the similar 
language, this is not a special case of a Moore closure. 

5.38. Here are some further noteworthy properties of a preuniformity S on X and the 
uniformity li it generates: 

a. The union of any family of pre uniformities on X is a preuniformity on X.  

b. In  many cases of  interest , the preuniformity S has the property that i t  i s  closed under 
finite intersection � i .e . ,  51 , 52 E S ==> 51 n 52 E S. In this case, we can simplify our 
formula for the uniformity li generated by S; the formula becomes 

li {U  � X X X 

Moreover, in this case let us denote 

5[x] = {y : (x, y) E 5} and 

U :2 5 for some 5 E S } . 

S [x] = {5[x] 5 E S} ; 

then S [x] is a neighborhood base at x for the uniform topology. 

Most of these ideas are from Kelley [ 1955/1975] , although that book does not use the term 
"preuniformi ty." 

5.39. Remarks. The theory of uniform spaces will be developed a little further in Chapter 9 
and in 16 .16 .  It will be continued in much greater detail in Chapter 18 and thereafter. 
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IMAGES AND PREIMAGES OF SETS OF SETS 

5.40. Let g : X ----+ Y be  some function. Show that 

a. Forward image of a filter subbase. If S is a filter subbase or a filter base on X,  then 

g (S) {g (S) : S E S } 

is a filter subbase or a filter base, respectively, on Y.  

b. Sets with suitable inverse images. Let S be a collection of subsets of X, and let 

'J {T � Y : g- 1 (T) E S} . 

If S is closed under complementation in X, under finite or countable or arbitrary union, 
or under finite or countable or arbitrary intersection, then 'J is closed under the same 
operation in Y. If S is a filter subbase, a filter, an ultrafilter, a fixed ultrafilter, or a 
collection of nonempty subsets of X, a topology, or a a-algebra on X, then 'J has the 
same property on Y .  

I f  S is a filter generated by a filterbase � on X, then g (S) and g(� ) (defined as in  
5 .40.a) are filter bases on Y,  both of  which generate the filter 'J (defined as above) . 

c. Inverse image of a collection. Let 'J be a collection of subsets of Y ,  and let 

If 'J is closed under complementation in Y, under finite or countable or arbitrary union, 
or under finite or countable or arbitrary intersection, then g- 1 ('J) is closed under the 
same operation in X. If 'J is a topology or a (a-)algebra, then g- 1 ('J) is, too. 

If g is surjective and 'J is a filter subbase or filter base on Y, then g- 1 ('J) has the 
same property on X. 

d. Define g X g : X2 ----+ Y2 by (g X g) (x1 , x2 ) = (g(xt ) , g(x2 ) ) . I f  li C Y X Y is  a 
preuniformity on Y, then 

is a preuniformity on X (regardless of whether g is surjective) . 

TRANSITIVE SETS AND ORDINALS 

5.41.  Remark. The ideas in the remainder of this chapter are mainly needed for set theory 
and logic; they can be skipped if one is only concerned with the traditional topics of analysis. 

5.42. Definitions and remarks. Let X be a set. Then the following conditions are 
equivalent . If one (hence all) are satisfied, we say X is transitive (or more precisely, 
E-transitive) . 
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(A) Whenever A E S and S E X, then A E X. 

(B) Each member of X is also a subset of X - that is, A E X =? A � X. 
That can also be restated as X � P(X) .  

(C) Un(X) � X, where Un(X) is the union of the members of X ,  as defined with 
the Axiom of Unions in 1 .47. 
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Remarks. As Doets [1983] points out, the notion of transitive sets is slightly alien to 
most mathematicians - i.e. , those not actively involved in set theory. After all, for most 
mathematicians, it is enough to consider sets of sets and occasionally sets of sets of sets. 
But if X is transitive, then each member of X is a subset of X, and so each member of each 
member of X is a subset of X ,  and so on. For some purposes in set theory, this process 
must be continued to an infinite depth; see 5.44. 

5 .43. Basic properties of transitive sets. 
a. Examples. The sets 0 and { 0} and { 0, { 0}} are transitive; the set { { 0}} is not. 

b. The intersection of any nonempty collection of transitive sets is a transitive set. 

c. If S is any set , then S is a subset of some transitive set. For instance, 

cl(S) S u Un(S) u Un(Un(S)) u Un(Un(Un(S)) )  u · · · 

is a transitive set with cl(S) ;;;? S. In fact, cl(S) is the smallest transitive superset of S; 
it is the intersection of all the transitive supersets of S. We shall call it the transitive 
closure of S. It is a special case of Moore closures (discussed in 4.3) , except that in 
this case the domain of cl is a proper class, not a set. 

d. If S is any set, then S is a member of some transitive set. For instance, one such set 
is the transitive closure of the singleton { S}. 

5.44. Preview/examples. Because the definition of ordinals is  somewhat abstract and 
complicated, we shall precede that definition with a few examples. Of course, the assertions 
that we now make about these examples cannot be proved until a few pages later. 

The first few ordinals are the finite ordinals. Set theorists find it convenient to attach 
the labels "0," "1 ," "2," etc. to these sets. (See the related discussions in 1 . 16 and 1 .46.) 
The nonnegative integers are thus defined to be the sets 

0 0, 
1 {0} , 
2 {0 , {0} } , 
3 {0, {0} , {0 , {0} } } , 

and so on. Thus the set n = {0, 1 ,  2, . . .  , n - 1 } contains exactly n elements, and n + 1 = 

n U { n } is the successor of n. 



1 24 Chapter 5: Filters, Topologies, and Other Sets of Sets 

After the finite ordinals come the countably infinite ordinals. The first few of these are 

w 
w + 1  
w + 2  

2w 
2w + 1 
2w + 2  

3w 

{0, 1 , 2 , 3, . . .  } ,  
{0, 1 , 2, 3, . . .  , w} ,  
{0, 1 ,  2 ,  3 ,  . . .  , w , w  + 1 } ,  

{0, 1 , 2 , 3 , . . .  , w, w  + 1 ,w  + 2 ,  . . .  } ,  
{0, 1 ,  2 ,  3 ,  . . .  , w ,  w + 1 ,  w + 2 ,  . . .  , 2w} 
{0, 1 ,  2, 3, . . .  , w, w + 1 ,  w + 2, . . .  , 2w, 2w + 1 }  

{0, 1 , 2 , 3 , . . .  , w, w  + 1 , w  + 2 ,  . . .  , 2w, 2w + 1 , 2w + 2 ,  . . .  } 

and so on. Again, note that the successor of any ordinal S is the ordinal S U { S} .  The 
ordinal w is an ordered version of the unordered set N U { 0 } .  

After the countable ordinals come the uncountable ordinals. They are a bit harder to 
visualize, but we can easily sketch a proof of their existence. Consider any uncountable 
set - for instance, 2N - and give it a well ordering (see (AC4) in 6.20). Then find the 
ordinal that is order isomorphic to it (see 5 .46.f) .  Among the uncountable ordinals that are 
isomorphic to subsets of 2N , there is a first one, by 5.46.g. The first uncountable ordinal is 
equal to the set of all countable ordinals. 

5.45. Before proceeding further, the reader may find it helpful to briefly review the theory 
of well ordered sets developed in Chapter 3 .  

Definitions. In the discussion below, the expression A � B will mean "A E B or A = B." 
Let X be a set. Then the following conditions are equivalent . If one (hence all) are 

satisfied, we say X is an ordinal. 

(A) X is a transitive set, and the relation � is a chain ordering of X .  

(B) X is a transitive set, and the relation � is a well ordering of X .  

(C )  X i s  a transitive set, and all the members o f  X are transitive sets. 

Proof of equivalence of conditions. The implication (B) =? (A) is trivial, and the implica
tion (A) =? (C) is a fairly easy exercise. For (A) =? (B) use the Axiom of Regularity in 
1 .47: If S is a nonempty subset of X,  it is easy to show that any E-minimal element of S 
is also a �-minimum element of S. 

It remains to prove (C) =? (A) . Suppose (A) is false; thus there exist sets A, B E X 

that are not �-comparable. Using the Axiom of Regularity, let A0 be a E-minimal element 
of the nonempty set 

50 {A E X  : some B E  X exists such that A, B are not �-comparable} .  

Then let B0 be some E-minimal element of the nonempty set 

T0 { B E X : Ao and B are not �-comparable} .  
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E 
Then A0 and B0 are not =-comparable. Both A0 and B0 are members of X,  hence they 
are transitive sets. 

We first show that B0 <;;;; A0. Indeed, let Co E Eo ; we shall show Co E Ao . Since Bo is 
an E-minimal element of T0 , it follows that Co is not a member of To . Since Co E Eo E X 
and X is transitive, we have Co E X.  If A0 � Co E B0 , it would contradict the fact that A0 
and B0 are not �-comparable; thus we do not have A0 � C0 . Since C0 E X \ T0 , it follows 

that A0 and C0 are �-comparable; thus we must have C0 E Ao . This proves B0 <;;;; A0 . 
Since A0 and B0 are not �-comparable, they are not equal; thus Ao \ Eo is nonempty. 

Let Do be some member of A0 \ B0 . Since Ao is a E-minimal element of So and Do E Ao, it 
follows that Do � S0 . Thus Do is �-comparable with every member of X, and in particular 
Do is �-comparable with B0 . By our choice of Do we know that Do � Eo ; thus we must 
have B0 � Do . But then B0 � D0 E A0 , contradicting the fact that Ao and Eo are not 
�-comparable. (This argument follows Shoenfield [1967] . )  

Remarks. In recent years the definitions above (due to von Neumann) have become stan
dard. However, some of the earlier literature used slightly different definitions of "ordinal." 
To some mathematicians an ordinal meant any well ordered set . To others it meant any 
equivalence class of well ordered sets, where two well ordered sets are considered to be 
equivalent if there exists an order isomorphism between them. The latter definition may 
cause some difficulties, since that equivalence class is a proper class, not a set . The von 
Neumann definition removes these difficulties by specifying a natural representative from 
that equivalence class, as we shall see in 5.46.£. 

5.46. Basic properties of ordinals. 
a. If X is an ordinal, then we understand X to be equipped with the ordering given by 

�' which makes X a well ordered set. Note that with this ordering, if a E X,  then the 
set of predecessors of o: is Pre( o:) = { x E X : x E o:} = o: .  

b. If X i s  an ordinal, then X =  {proper lower sets of X}. Hint :  3.39.c. 

c. All the members of an ordinal are ordinals. 

d. If X and Y are ordinals, then Y � X � Y E X.  
Hints : Y E X =? Y � X since X i s  transitive. Conversely, suppose Y � X .  Let 

o: be the first member of X \ Y .  Show that Pre( o:) = Y .  
e .  The only order isomorphism from an ordinal onto an ordinal is the identity map from 

an ordinal to itself. Hint :  Induction on lower sets. 

f. If (X, �) is a well ordered set, then there is one and only one mapping that is an order 
isomorphism from X onto an ordinal. (Hint : Induction on lower sets. )  That ordinal 
is sometimes referred to as the ordinal type of X. 

g .  I f  e i s  any nonempty subclass of the class of  ordinals, then the intersection of  all the 
members of e is an ordinal, and furthermore that ordinal is a member of e - in fact , 
it is the smallest member of e. 

If X and Y are ordinals, then X E Y or X = Y or Y E X.  Thus, � is  a chain 
ordering on the class of all ordinals . 
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In fact , it is a well ordering: If e is any nonempty subclass of the class of all ordinals, 
then e has a smallest member - namely, the intersection of all the members of e. 

(Later we shall show that the class of all ordinals is a proper class - i.e. , it is not 
a set . )  

h. The union of any set of ordinals is an ordinal. 

i. If X is an ordinal, then so is X U  {X} .  It is called the successor of X ;  it is sometimes 
written x+ or X +  1 .  It is the smallest ordinal greater than X - i.e. ,  it is the first 
ordinal after X .  Any ordinal that can be written in the form x+ for some X is called 
a successor ordinal. 

Note that any successor ordinal x+ has a largest element - namely, X .  Conversely, 
show that any ordinal with a largest element is a successor ordinal. Thus, we may 
equivalently define a successor ordinal to be an ordinal that has a largest element . 

j. A limit ordinal is an ordinal that does not have a largest element. 
Show that if X is a limit ordinal, then UsEX S = X .  
Examples. Refer t o  5.44. The ordinals w,  2w, 3w, . . .  and the first uncountable 

ordinal are limit ordinals. The ordinals 1 ,  2, 3, . . .  and w + 1 ,  w + 2, w + 3, . . .  and 
2w + 1 ,  2w + 2, 2w + 3, . . .  , etc. are successor ordinals. By our definition, the empty 
set is a limit ordinal - but some mathematicians use a slightly different definition for 
limit ordinal that excludes the empty set. 

5.47. Note that different ordinals may have the same cardinality. For instance, it is easy 
( exercise) to give bijections between the ordinals w and w + 1 and 2w. (Of course, such 
bijections cannot be order preserving. )  

An initial ordinal, also known as a cardinal or a cardinal number, is an ordinal 
X with the property that no earlier ordinal has the same cardinality as X .  (Note: Some 
mathematicians add the restriction that the set be infinite as part of the definition of initial 
ordinal, but we shall not impose that restriction . )  

It  follows from 3 .42.b that any infinite cardinal must be a limit ordinal. 
Examples. Refer to 5 .44. All the finite ordinals are cardinals; w is a cardinal; the first 

uncountable ordinal is a cardinal. The ordinals w + 1 and 2w are not cardinals, since they 
have the same cardinality as w .  

Preview. I t  will follow from (AC4) in 6.20 that any set S can be well ordered, and hence 
we can assign a cardinal number to each set. See further remarks in 6.23. 

5.48. ( Optional. ) The infinite cardinals are also called alephs; they are written 

"Aleph" is the name of N, the first letter of the Hebrew alphabet. 
The first infinite ordinal is w = N0 ; it is countable. The first uncountable ordinal is N1 . 

The Continuum Hypothesis is tile statement that 2�0 = N1 . 
We have these inclusions: 

{alephs} c 
7= {ordinals} c 

7= {sets} .  
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We saw in 1 .45 that {sets} is a proper class, not a set ; likewise we shall show in 5.50 that 
{ordinals} is a proper class. The class of all alephs is also a proper class, but we shall not 
prove that; a proof is given by Krivine [1971] . 

THE CLASS OF ORDINALS 

5.49. Definition. For any set X ,  the Hartogs number of X is  defined to be the smallest 
ordinal o: that satisfies card( o:) 1:_ card( X)  - i .e. , the smallest ordinal o: that does not 
satisfy card(o:) � card(X) .  (It is a cardinal number. )  

We do not require that card( a) > card(X) .  That slightly stronger statement will follow 
as a consequence only if we assume the Axiom of Choice - see 6.22. The Hartogs number 
is mainly useful if one wishes to avoid using the Axiom of Choice - e.g. , to study its 
alternatives, as we shall do briefly in this book. 

Exercise. Prove that the definition of the Hartogs number makes sense - i.e . ,  prove that 
there do exist ordinals o: satisfying card(o:) 1:_ card(X) ,  and among such ordinals there is a 
smallest. 

Hint: Let o: = {,13 : ,8 is an ordinal with card(,B) � card(X) } .  The only hard part is showing 
that o: is actually a set. (After all, the collection of all ordinals is not a set; we shall prove 
this below. )  First use the Axiom of Comprehension in 1 .47 to show that 

A S <;;;; X, R <;;;; S x S, and R is a well ordering of S} 
is a set. Then use 3 .41 ,  5 .46.f, and the Axiom of Replacement to prove o: is a set. Finally, 
show that a is an ordinal, and a is the Hartogs number of X. 

5.50. Theorem. Let (') = {ordinals} .  Then (') is a proper class, not a set. 

We offer two slightly different proofs, because both are interesting. The first proof is more 
elementary in that it does not use the Hartogs number; the second proof may be preferable 
to some readers because it does not use the Axiom of Regularity. 

First proof Suppose that (') is a set. Show that (') is then an ordinal and hence a member 
of itself, contradicting 1 .49. (This is the Burali-Forti Paradox. ) 
Second proof Suppose (') is a set. Let ,8 be the Hartogs number of (').  Then ,8 is an ordinal, 
hence ,8 <;;;; (') , hence card(,B) � card((')) , contradicting the definition of the Hartogs number. 

5.51.  The collection of all ordinals is a proper class - i.e. ,  a "very big" collection, much 
like the collection of all sets. Nevertheless, the ordinals have some interesting structure; 
they are well ordered by �' as we noted in 5.46.g. Consequently we have the following two 
principles: 

Induction on the Ordinals. Suppose e is a class of ordinals, such that 



128 Chapter 5: Filters, Topologies, and Other Sets of Sets 

whenever X is an ordinal whose members all belong to e, then X also belongs 
to e. Then e contains all the ordinals. 

Recursion on the Ordinals. By an ordinal-based map we shall mean a func
tion from some ordinal into some set. Let JY( be the class of all ordinal-based 
maps. Let p be some function of classes, from JY( into {sets} .  Then there exists 

a unique function F :  {ordinals} ----+ {sets} that satisfies F (X) = p (F ix) for 

each ordinal X .  

I n  the last line above, F ix 
is the function F restricted t o  X. The members of its domain 

are the members of X - i.e. ,  the preceding ordinals - and not X itself. Note that any 
ordinal X is equal to its own set of predecessors. 

Proofs. If the induction principle does not hold, then there is some ordinal M � e. Let X 
be the first member of M+ that does not belong to e; then X is the first ordinal that does 
not belong to e, a contradiction. The recursion principle can be proved by an argument 
similar to 3.40; we omit the details. 

5.52. Zermelo's Fixed Point Theorem. Let (X, � )  be a nonempty poset, with the 
property that each �-chain in X has a �-supremum in X. Suppose f : X ----+ X is a function 
that satisfies f (x) >,:= x for all x. Then f has at least one fixed point. 

Proof Suppose not - i.e. suppose f(x) >-- x for all x E X. Then u(C) = f (sup C ) defines 
a function 

u : {chains in X}  ----+ X, satisfying u(C) >-- c for all c E C. 

We shall show that such a function yields a contradiction. Let JC be either the Hartogs 
number of X or the class of all ordinals, according to the reader's taste - the rest of 
the argument will work with either JC. Recursively define a strictly increasing mapping 
'ljJ :  JC ----+ X by 

'1/J(S) 'P ( u{'l/J(T) : T E A } ) . 

To see that this definition makes sense, note that if 'ljJ is strictly increasing on some ordinal 
S E JC, then C(S) = {'1/J(T) : T E S} is a chain, and so u(C(S)) exists and is an upper 
bound for C(S) . Hence f(u(C(S)) )  exists and is strictly greater than every member of 
C(S) - hence 'ljJ is defined and strictly increasing on s+ = S U {S} .  This completes the 
definition of '1/J. However, since 'ljJ : JC ----+ X is strictly increasing, it is injective, and therefore 
card(JC) ::; card(X),  a contradiction. 

Remarks. The proof above is from Howard [1992] . Slightly longer proofs that avoid the use 
of ordinals are given by Fuchssteiner [1986] and Manka [1988] . None of these proofs requires 
the Axiom of Choice or any of its consequences. Thus Zermelo's Fixed Point Theorem is 
occasionally useful in the study of set theory without the Axiom of Choice, as in 19.45. If 
we permit the use of the Axiom of Choice and its equivalents, then Zermelo's Fixed Point 
Theorem is a trivial corollary of Zorn's Lemma, which is (AC7) in 6.20. 
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5.53. The class of all sets specified by the ZF axioms is often denoted by V, because an 
interesting and useful description of it was given by von Neumann. This scheme is also 
known as the cumulative hierarchy. Using recursion on the ordinals (in 5.51 ) ,  we define 
a function of classes 

Stage {ordinals} ---+ {sets} 

by this rule: 

Stage( a) U P ( Stage(/3)) . 
f3Ea 

In other words, the ath stage is the collection of all subsets of all sets that have already been 
formed in previous stages. (The literature contains minor variants on this definition. Some 
mathematicians prefer to define Stage( a) by two slightly different formulas when a is a limit 
ordinal or when a is a successor ordinal. However, the ultimate effect is the same. Also, 
some mathematicians use the term "rank" instead of "stage." ) Von Neumann's universe is 
the class 

v u Stage( a) . 
aE {ordinals} 

Although each Stage(a) is a set , V is a proper class. 
In 1 .44 we stated, somewhat imprecisely and intuitively, that a set is a collection of 

"already fixed" sets. We have not used that statement in our formal development of ZF 
set theory; instead we have simply assumed that the class of all sets is some collection of 
objects that satisfies the ZF axioms. However, we are now ready to use the ZF axioms to 
prove a precise version of that earlier intuitive statement . 

Theorem. In ZF set theory, every set is in some stage - that is, the von Neumann class 
V is the class of all sets. 

Proof (following Shoenfield [1967] ) .  Let X be any given set; we wish to show X E V.  
By 5.43.d, let T be a transitive set with X E T. If  T � V, then we are done. Assume, 
then, that T \ V is nonempty. Note that the class T \ V is actually a set, by the Axiom 
of Comprehension. By the Axiom of Regularity, let M be a E-minimal member of the set 
T \  V. 

Let A be any member of the set M. Then A E T by transitivity of T, but A tJ_ (T \ V) 
by minimality of M. Thus A E V.  Therefore A E Stage(aA ) for some ordinal a.  

Now, {a A : A E M}  is a set of ordinals. Its union is an ordinal /3, which has some 

successor f3+ . For every A E M, we have aA � /3; hence A E Stage(/3) . Thus M � Stage(/3) , 
so M E Stage(/3+ ) - contradicting our choice of M as a set that does not belong to V. 

5.54. By a slight modification of von Neumann's cumulative construction, we shall obtain 
Godel 's constructible universe, L. This will appear briefly in our discussions in Chapter 14. 
The idea is that instead of taking arbitrary subsets of Va to get Va+ 1 ,  we shall use describable 
subsets. 

Define ordered pairs and ordered triples in terms of sets, at> in 1 .46; define the product 
of two sets as a set of ordered pairs. Then the Godel operations are defined as follows. 
First, for any sets X and Y, let 
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!r1 (X, Y) = {X, Y} , 

!r2 (X, Y) = X\Y, 

Chapter 5: Filters, Topologies, and Other Sets of Sets 

!Y3(X, Y) = X  x Y = { (x, y) : x E X, y E Y} .  

Also, for any set X,  let 

!r4(X) = Dom(X ) = {u : (u, v) E X  for some v} ,  

!r5 (X) = { (u, v) E X  x X : u E v} , 

9'"6 (X) = { (u, v, w) : (v, w, u) E X} ,  

!r7(X) = { (u, v, w) : (w, v, u )  E X},  

!rs (X) = { (u, v, w) : (v, u, w ) E X} .  

Now, for any set X, define 

9 (X) = X U {!Yi (u, v) : u, v E X, 1 :::; i :::; 3} U {!ri (u) : u E X, 4 :::; i :::; 8} .  

Let 92 (X) = 9(9(X)) ,  etc. ,  and define 

cl(X) = X U 9(X) U 92 (X) u 93 (X) U . . . . 

Then cl(X ) is the smallest set that contains X and is closed under the Godel operations. 
We now recursively define 

(i) L0 = 0,  

( ii) La+l = P(La ) n cl(La u {La})  for ordinals o: ,  

(iii) La = Uf3<a L13 when o: is a limit ordinal, 
and finally L = UaEordinals La . Of course, L is a proper class, since Ord is not a set. The 
members of L are said to be Godel constructible, or constructible relative to the 
ordinals. For further discussion we refer to Jech [1973] , Manin [1977] , or other books on 
logic and set theory. 

Is every set in von Neumann's universe "constructed" at some stage of Godel's hierarchy? 
Or are there some other sets in V that cannot be so "constructed?" In other words, is L 
equal to V ,  or are these classes different? This question cannot be answered either way 
except by making additional assumptions beyond those of conventional set theory. Tht; 
statement V = L is called the Axiom of Constructibility; it is discussed further in 14. 7. 

Godel's constructions may take uncountably many steps. They are quite different from, 
and should not be confused with, Bishop's constructions, introduced in 6.2 ,  which permit 
only countably many steps. 



Chapter 6 

Constructivism and Choice 

6 .1 .  Preview. Conventional set theory is ZF + AC; that is, Zermelo-Fraenkel set theory plus 
the Axiom of Choice. ZF was introduced in 1 .47; for the most part , it is just a formalization 
of our intuition about sets. 

This chapter introduces the Axiom of Choice (AC) and a few weakened forms of Choice. 
Some relations between these principles are summarized in the chart below, which is based 

AXIOM OF CHOICE (AC) 
Vector Basis Theorem, DC + BP + LM (Solovay) 
Tychonov's Theorem 1 I \ DC + BP (Shelah) 

UF ( comractness) / I 
ACR � DC (comple�eness) Garnir-Wright 

Continuity Theorem 
(Choice 1 for IR) Hahn-

ACF Banach Banach's Closed Theorems 

WUF 
/I Graph Theorem 

� CC Uniform Boundedness 
� Thl eorems 

(t'oo)* #- £1 
I Banach 

-Tarski Uniform Boundedness n�mp. Theo<em" fm Nonru; 

not-LM 
HB for separable spaces 

partly on a chart of Pincus [1974] . All assertions in the chart are understood to be in 
conjunction with ZF. Implications in the chart are downward, and we shall prove most of 
these implications. For instance, in this chapter we include proofs of AC =;. DC =;. CC 
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and AC =? UF =? ACF. That DC + BP implies the Garnir-Wright Theorem is proved in 
27.45; a proof of (£00) *  -:f: £1 =? not-BP is given in 29.38. The proof of WUF =? not-LM 
is somewhat complicated and is not included in this book; it was given by Sierpinski [1938] . 

Most of the implications are known to be irreversible - for instance, it is known that 
HB =fo UF and UF =fo AC - but proofs of these irreversibility results are beyond the scope 
of this book. Most of them can be found in Jech [1973] or Pincus [1974] or in references 
cited therein. An enormous survey of the weak forms of Choice, including implications and 
irreversibility results ,  is given by [Howard and Rubin, in preparation] . 

For our purposes, the most important principles are AC (the Axiom of Choice) , DC 
(Dependent Choice) , UF (the Ultrafilter Principle) ,  and HB (the Hahn-Banach Theorem) . 
These four principles appear in many equivalent forms in later chapters. 

Most interesting consequences of AC actually follow from either DC or UF. One might 
almost think of those principles as the "constructive component" and the "nonconstructive 
component" of AC. However, that description would be slightly misleading, for it is known 
that ZF + DC + UF does not imply AC; see Pincus [1977] . 

Particular attention will also be devoted to the principles 

BP = "every subset of � has the Baire property," and 

not-BP = "there exists a subset of � that lacks the Baire property." 

The topological meaning of the Baire property will be discussed in Chapter 20, but its 
foundational significance must be mentioned now. The statement not-BP is the weakest 
nonconstructive consequence of AC that we shall consider as such in this book; thus BP is 
our strongest negation of the Axiom of Choice. Shelah's Theorem, 

Con(ZF) ==> Con(ZF + DC + BP) ,  

is a remarkable accomplishment ; it gives us a unified method of proving the intangibility of 
many of the pathological objects that arise in analysis - i.e. , of proving that those objects 
have no explicitly constructible examples. This is discussed in greater detail in 14.76 and 
14 .77. 

EXAMPLES OF NONCONSTRUCTIVE MATHEMATICS 

6.2 .  Most of  this book follows mainstream mathematics, which i s  not constructivist. How
ever, a brief discussion of constructivism will be helpful. 

The terms "construct" and "construction" are used loosely by most mathematicians; 
these terms may be applied to any argument that builds something complicated from seem
ingly simpler things. However, the terms "constructive" and "constructivist" are used more 
narrowly. An existence proof is constructive if the proof actually finds the object in ques
tiort by a procedure involving just finitely many steps - or, in some cases, if the proof 
approximates the object arbitrarily closely by a procedure involving just countably many 
steps. Constructivists are mathematicians who study such proofs and/or who prefer such 
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proofs; constructivism is the study of such proofs. To be more specific, we might call this 
constructivism in the sense of Errett Bishop. Actually, the literature now contains many 
schools of constructivism that differ slightly from Bishop's view. The survey given in the 
next few pages is too superficial to distinguish between these different schools; Bridges and 
Richman [1987] give a much more detailed survey. (Bishop's constructibility should not be 
confused with Godel constructibility, indicated in 5.54, which permits uncountably many 
steps and is very different in nature. )  

Most mathematicians are part-time informal constructivists, i n  this respect: In  teaching 
or learning mathematics, we try to follow any abstract idea with one or more concrete 
examples. Indeed, new teachers of mathematics probably hear that pedagogical practice 
recommended more often than any other. We follow that pedagogical practice - i.e. ,  of 
giving examples - whenever possible, but we must depart from that practice at times, 
for some mathematical ideas are inherently nonconstructive. Indeed, some of the objects 
studied in this book are intangible: We shall see that the objects "exist," but that explicitly 
constructible examples of these objects do not exist. By this we do not mean merely 
that no examples have been found yet ; rather, we mean that it can be proven that no 
explicit examples can ever be given. We shall see that this peculiar status is shared by 
free ultrafilters, nontrivial universal nets, subsets of lR that lack the Baire property, well 
orderings of JR, finitely additive probabilities that are not countably additive, certain kinds 
of linear maps, and diverse other objects. Although intangibles can be avoided in applied 
mathematics, they are conceptually useful in pure mathematics and appear frequently in the 
literature (usually without much explanation) .  The lack of examples may be disconcerting 
to students. We shall give some explanation of the lack of examples, here and later; see 
especially 14. 77. 

6.3. Some examples of nonconstructive mathematics. Two of the axioms of conventional set 
theory are nonconstructive. The Axioms of Regularity and Choice postulate the existence of 
certain sets without giving any indication of how to find those sets. The Axiom of Regularity 
(introduced in 1 .47) is largely a formality, included in set theory for convenience; it has little 
effect on mathematics outside of set theory. Indeed, for most purposes it can be replaced by 
the Principle of E -lnduction (in 1 .50) , which is in some sense constructive - or, perhaps 
more precisely, it is not nonconstructive. In contrast , the Axiom of Choice (introduced 
later in this chapter) has enormous effects on many branches of mathematics, and cannot 
be replaced so easily with a constructive variant. 

Different mathematicians have different interpretations for the term "constructive," and 
attach different degrees of importance to that notion as well. It is ironic that Bairel Borel, 
and Lebesgue, three of the founders of this century's analysis, were philosophically opposed 
to any uses of arbitrary choices, and yet Countable Choice - a mildly nonconstructive 
principle involving a sequence of arbitrary choices (introduced in 6.25) - was crucial to 
their work. They used it without noticing it; only later was this use pointed out explicitly 
by Sierpinski. See Moore [1983] . 

6.4. The Axiom of Choice is a highly visible form of nonconstructive reasoning. Some 
mathematicians are not aware of other kinds of nonconstructive reasoning, and consequently 
they use the term "constructive" simply to mean "not using the Axiom of Choice." However, 
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that is an erroneous usage. There are other kinds of nonconstructive existence proofs, one 
of which we shall now describe. 

Proof by contradiction was introduced in 1 .9; it can be stated as --,--,p ::::;.. P, where 
--, means "not ." In some constructive frameworks (e.g. , in intuitionist logic � see 14.35) ,  
the principle of proof by contradiction is equivalent to the Law of the Excluded Middle: 

For every proposition P, either P holds or not-P holds 

(or more briefly, P V •P) . For example, we don't yet know whether Goldbach's Con
jecture1 is true or false, but most mathematicians would agree that surely it is one or 
the other. Thus, most mathematicians are in wholehearted agreement with the Law of the 
Excluded Middle and might have trouble seeing how the constructivists could reject it. 

However, formal constructivists use language a bit differently from mainstream math
ematicians. For constructivists, Goldbach's Conjecture is not yet true or false, although 
someday it may attain one of those states. Interpreted in the language of constructivists, 
the expression "P or Q" means "we have a constructive proof of P, or we have a constructive 
proof of Q ,  or both." With this convention, the Law of the Excluded Middle becomes: 

For every proposition P, either P holds or not-P holds, and we can determine 
which one. 

Of course, with this interpretation, the Law of the Excluded Middle is blatantly false; 
constructivists and mainstream mathematicians agree on that. But why do constructivists 
use language in this fashion? The example below may help us to understand why; another 
explanation will be given in 14.36. 

6.5 .  An example with irrationals. The following example is taken from Troelstra and Dalen 
[ 1988] . We shall prove the following proposition. 

(P) There exist positive, irrational numbers a and b such that ab is rational. 

A quick, easy, nonconstructive proof is as follows: Either 

(i) J2 v'2 is rational � then take a =  b = J2; or 

(ii) J2 v'2 is irrational � then take a =  J2 v'2 and b = J2. 
1 In 1742, Goldbach conjectured that every even integer greater than 2 can be written as the sum of 

two prime numbers. This is one of the most famous unsolved problems of mathematics: As of the time 
of this writing, no one has yet proved or disproved Goldbach's Conjecture, though many mathematicians 
have spent much time trying and have proved slightly weakened versions of the conjecture. Goldbach's 
Conjecture was part of Problem 8 in Hilbert's famous list of 23 problems for the twentieth century. See 
Yuan [1984] for a survey of Goldbach's Conjecture. 

For the purposes of this book, Goldbach's Conjecture is of interest not because of what it would tell us 
about prime numbers, but rather because it is a simple example of an unsolved problem that could be solved 
if we could carry out a countable infinity of steps. Any other unsolved problem that can be solved in that 
fashion will do as well for the discussions in this section and in 10.46 and 15.48. If Goldbach's Conjecture 
gets proved or disproved between the time this book is written and the time this book is read, simply replace 
it with some other such problem. (An earlier draft of this book used Fermat's Last Theorem, a more 
famous problem that went unsolved for 300 years. However, shortly before this book was finished, a proof 
of Fermat's Last Theorem was finally completed by Taylor and Wiles [1995] . )  
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However, this proof does not tell us which of the two possibilities (i) or ( ii) is valid, so we 
have not found a particular explicit example of a pair (a , b) satisfying (P) . This proof could 
not be used as a subroutine in a numerical computer program: It yields not one answer, 
but two possible answers with no method of choosing between them. 

Actually, (ii) is true and can be proved constructively, by a much longer argument. By 
a theorem of Gelfond and Schneider, if a and b are positive algebraic numbers, a -:f. 1, and 
b is irrational, then ab is transcendental. See page 106 of Gelfond [ 1960] ; related results are 
surveyed by Tijdeman [ 1976] . 

FURTHER COMMENTS ON CONSTRUCTIVISM 

6.6. Making mathematics constructive. Nonconstructive arguments often can be replaced 
by constructive ones. Sometimes this is only with difficulty, as in the preceding example with 

v'2 v'2. Sometimes it is easier. For instance, the Trichotomy Law for Real Numbers: 

for all real numbers x and y, either x < y or x = y or x > y 

is not constructively provable; there is no algorithm that takes constructive descriptions of 
x and y and yields the assertion of one of those three relations. We shall illustrate and 
demonstrate this unprovability in two ways in 14.9 and 10.46. However, Bishop [ 1973/1985] 
points out that in most applications, the Trichotomy Law is not needed in its full strength; 
it can be replaced by the following weaker law. 

Comparison Law. For any real numbers u ,  v, and y, if u < v then at least 
one of u < y or y < v must hold. 

This law is constructively provable. 
The alterations one makes while translating classical mathematics to constructive math

ematics generally have little or no effect on the ultimate applications. For instance, one 
of the fundamental theorems of classical functional analysis is the Hahn-Banach Theorem; 
we shall study several versions of this theorem in later chapters. Some versions assert the 
existence of a certain type of linear functional on a normed space X. The theorem is inher
ently nonconstructive, but a constructive proof can be given for a variant involving normed 
spaces X that are separable - i .e . ,  normed spaces that have a countable dense subset ; see 
Bridges [ 1979] . Little is lost in restricting one's attention to separable spaces, for in applied 
math most or all normed spaces of interest are separable. The constructive version of the 
Hahn-Banach Theorem is more complicated, but it has the advantage that it actually finds 
the linear functional in question. 

6.7. Constructivists and mainstream mathematicians use the same words in different ways; 
in fact ,  different schools of constructivists use the same words in different ways. 

A basic example is in the meaning of "real number." Mainstream mathematicians have 
several different equivalent definitions of real numbers (see Chapter 10) . One way to define 
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a real number is as an equivalence class of Cauchy sequences of rational numbers (see 
19.33.c) . But constructivists prefer to indicate a real number by a Cauchy sequence that is 
accompanied by some estimate of the rate of convergence - e.g. , a sequence (rn) of rational 
numbers that satisfies l rm - rn l ::; max{ ,k , � } .  Of course, in mainstream mathematics, 
every real number can be represented as the limit of such a sequence, but such sequences 
are not essential to our way of thinking about real numbers. In constructivist mathematics, 
all computations about real numbers are expressed, either directly or indirectly, in terms of 
such sequences. (Constructivist "real numbers" are discussed further in 10.46. ) 

Here is a more complicated example of the differences in language: 
In constructive analysis, the continuous functions that are of chief interest are the uni

formly continuous ones. Indeed, it is hard to constructively establish that a function is 
continuous except by giving a modulus of uniform continuity - and thus establishing that 
the function is indeed uniformly continuous. Of course, in mainstream mathematics, any 
continuous function on a compact interval is uniformly continuous, but that fact is not 
provable in constructive mathematics. 

In the terminology of Bishop and Bridges [1985] , a function on a compact interval 
is continuous if it has a modulus of uniform continuity - i.e. ,  that book's definition of 
"continuity" is the usual definition of uniform continuity, but the context is one where the 
two notions are classically equivalent anyway. 

Among some constructivists, the only functions that can really be called "functions" are 
the representable ones. Moreover, it is a theorem ( in certain axiom systems of constructive 
mathematics) that every representable function is continuous. Thus, under certain uses of 
the language, the following is true: 

Ceitin's Theorem. Every function is continuous. 

A proof of this startling result can be found on page 69 of Bridges and Richman [1987] . The 
result is slightly less startling when we consider that, even in mainstream mathematics, any 
function with certain "good" properties is continuous; theorems to this effect are given in 
24.42, 27.28.c, and 27.45. 

The introduction to constructivism given by Bridges and Mines [1984] also discusses the 
importance of language. 

6.8. Constructivism versus mainstream mathematics. This book, which is intended to intro
duce the reader to the literature, is frequently nonconstructive, since much of the literature 
is nonconstructive. Indeed, the constructivist viewpoint is foreign to most mathematicians 
today; we are so used to nonconstructive proofs that we tend to believe one cannot do 
much interesting mathematics constructively. And, until a few decades ago, we would have 
been right . Brouwer's intuitionism was more a matter of philosophy than mathematics, 
and Heyting extended the matter from philosophy to formal logic. But then, finally, Bishop 
[1967] showed how to develop a large portion of analysis constructively. (See also the re
vised version, Bishop and Bridges [1985] .) Since then, several other mathematicians have 
extended Bishop's style of reasoning and written constructive versions of many other parts 
of mathematics. In particular, the reader may refer to Bridges [1979] for functional analysis, 
to Beeson [1985] for foundations ( i.e. , logic and set theory) , and to Bridges and Richman 
[1987] for a recent survey of the several different schools of constructivism. 
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Despite its growing literature, constructivism remains separated from the mainstream 
of mathematics. This may be largely because constructivism's finer distinctions necessitate 
a use of language quite different from, and more complicated than, that of the mainstream 
mathematician. For instance, among some constructive analysts, x -j. y simply means 
the negation of x = y, while x # y means2 the slightly stronger condition of apartness: 
We can find a positive lower bound for the distance between approximations to x and 
y. Thus, constructivists distinguish between notions that the classical mathematician is 
accustomed to viewing as identical. Consequently, a mainstream mathematician can only 
learn constructivism by relearning his or her entire language - a sizable undertaking. 

Some philosophical questions deserve at least a brief mention here, although we shall not 
address them in any depth. Bishop [1973/1985] suggested that mainstream mathematicians, 
in pursuit of form, have lost track of content ; Bishop exhorted mathematicians to return to 
a more meaningful mathematics. Perhaps the contentless mathematics that he condemned 
would include the intangibles studied elsewhere in this book (free ultrafilters, etc . ) ,  which 
lack examples and do not seem to be a direct reflection of anything in the "real world." 
However, an argument can be made for the conceptual usefulness of such objects. For 
instance, free ultrafilters provide a basis for nonstandard analysis, which yields new insights 
into calculus and other limit arguments. Moreover, we may be surprised by just what kinds 
of mathematics can reflect the real world; for instance, Augenstein [1994] suggests that 
the Banach-Tarski Decomposition may be a useful model of some interactions of subatomic 
particles. 

Both constructive and nonconstructive thinking have their advantages. A constructive 

proof may be more informative (e.g. , it tells us that v'2 v'2 is irrational - see 6.5) , but a 
nonconstructive proof is often quicker and simpler. Extending a metaphor of Urabe: To 
feed one's family, it is not enough to prove that a certain pond contains a fish; ultimately 
one must catch the fish. On the other hand, it would be helpful to have an inexpensive 
device that quickly and easily determines which ponds contain fish. 

6.9. Much of this book is concerned with nonconstructive mathematics. Moreover, to better 
understand some of the nonconstructible objects studied in this book, we shall sometimes 
find it helpful to vary the amount and kind of nonconstructiveness that we are willing to 
accept . In particular, we may compare results requiring the Axiom of Choice with results 
that only require a weakened form of the Axiom of Choice. At first glance, that looks like 
a rather strange notion; after all, either we can find a certain mathematical object , or we 
can't. How we can say that one object is harder to find than another object, when in fact 
we can't find either of them? 

The metaphor of "oracles" was introduced in recursion theory by Turing [1939] (see 
the discussion by Enderton [1977 recursion theory] ) ;  a similar metaphor may be helpful in 
the present context . Imagine we have access to an oracle, who has frequent conversations 
with some deity. We present the oracle with various questions that we have been unable to 
answer by merely mortal, human methods. The oracle is able and willing to answer some, 
but not all, of these questions. For instance, the oracle might tell us whether Goldbach's 

2Caution: Some constructive analysts use x f y to denote apartness and use �(x = y) to denote 
inequality. 
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conjecture is true, but refuse to comment on the Riemann Hypothesis. In some of the 
literature, such an oracle is referred to as a "limited principle of omniscience." 

Now, in some cases, if the oracle gives us an answer to question A ,  we may use that 
information to deduce an answer to question B - even if the oracle has not given us an 
answer to B. Thus, one answer may be stronger than another. Similarly, two answers may 
be considered equivalent to each other if each is stronger than the other - i.e. ,  if either 
answer would enable us to deduce the other. 

It must be emphasized that when we use the oracle's answer to A to deduce an answer 
to B ,  then we are using human, mortal reasoning - i.e. ,  the oracle is not helping in such 
deductions. Thus, our relation - of one answer being stronger than another - is deter
mined without the aid of the oracle; this relation does not depend on our actually having 
answers to either of the questions A or B .  It is these relations between the answers, not the 
actual answers themselves, that will concern us later, when we compare different levels of 
nonconstructiveness. Since the oracle is not actually used to determine and compare those 
different levels, we may now dispense with the oracle altogether. 

6.10. Proposition. The Axiom of Regularity implies the Law of the Excluded Middle, if 
interpreted in the language of constructivism. (Hence the Axiom of Regularity is noncon
structive . )  

Proof The following proof is modified from Beeson [1985] . Since most readers of this book 
probably are not familiar with constructivist language, we shall restate the proof in terms 
of the oracle metaphor of 6.9. 

Interpreted in constructivist terms, the Axiom of Regularity says that we have an oracle 
of the following type: 

We may describe to the oracle some nonempty set S, in terms that do not 
necessarily give a clear understanding of the set but that do at least uniquely 
determine the set. Then the oracle will specify to us some element x E S such 
that x n  S = 0. 

Let P be a proposition (such as Goldbach's conjecture) that we can state precisely, but that 
we do not necessarily know to be true or false. Now define 

s - { {0, {0}}  -
{ {0} }  

i f  P is true 
if P is false. 

Then S is nonempty, since {0}  E S. The oracle will tell us either "0 is a member of S that 
does not meet S" - in which case P is obviously true - or "{ 0} is a member of S that 
does not meet S" - in which case we can deduce that P is false. Thus, the oracle can be 
used to deduce the truth or falsehood of any proposition P. 

Remark. The Axiom of Choice, if interpreted in constructivist terms, can also be shown 
to imply the Law of the Excluded Middle. The proof of this implication, though short, 
depends on a deeper understanding of constructivist language; it does not translate readily 
into the language of mainstream mathematicians. We omit it here; it is given by Beeson 
[1985] and Bridges and Richman [1987] . 
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6.11 .  Constructivism (in the sense of Errett Bishop) will be discussed further in 6 .13 ,  
10.46, and 15.48. 

Logicians have another notion that is similar to constructibility. An object xo is said to 
be definable if there exists a proposition P(x) in first-order logic for which x = x0 is the 
unique element for which P(x) is true. See Levy [1965] . 

Constructibility in the sense of Bishop, constructibility in the sense of Godel, and defin
ability in the sense of Levy are far outside the mainstream of thinking of most analysts. In 
14.76 we shall introduce "quasiconstructibility," which is (in this author's opinion) closer 
to the way that most analysts think. 

THE MEANING OF CHOICE 

6.12 .  Conventional set theory i s  Zermelo-Fraenkel set theory plus the Axiom of Choice, 
abbreviated ZF + AC. We described Zermelo-Fraenkel set theory in 1 .47. 

The Axiom of Choice has many equivalent forms; we shall study several in this and 
later chapters. (A much longer list of equivalents is given by Rubin and Rubin [1985] . )  We 
shall denote our equivalents of Choice by (AC1 ) ,  (AC2) , (AC3) ,  (AC4) , etc. ;  collectively 
we shall refer to them as AC. Most of these equivalents are discussed in next few pages. A 
few more equivalents are the Vector Basis Theorem in 1 1 .29, and Tychonov 's Theorem and 
similar results on product topologies in 15 .29, 17 .16 ,  and 19. 13.  

Here are three of the simplest forms of Choice: 

(AC1)  Choice Function for Subsets. Let X be a nonempty set. Then for 
each nonempty subset S <:;; X it is possible to choose some element s E S. That 
is, there exists a function f that assigns to each nonempty set S <:;; X some 
representative element f(S) E S. 

(AC2) Set of Representatives. Let {X>. : A E A} be a nonempty set of 
nonempty sets that are pairwise disjoint. Then there exists a set C containing 
exactly one element from each X>. . 

(AC3) Nonempty Products. If {X>. : A E A} is a nonempty set of non
empty sets, then the Cartesian product TI>.EA X>. is nonempty. That is, there 
exists a function f : A ---+ U>.EA X>. satisfying j (A) E X>. for each A. 

A function f that specifies choices, in this or similar contexts, is called a choice function. 
We postpone until 6 . 19  the proof of equivalence of these three principles. 

The Axiom of Choice is "obviously true," in that it agrees with the intuition of most 
mathematicians. For instance, consider (AC1 ) .  Each nonempty set S <:;; X certainly con
tains some element s ,  and thus to define f(S) it suffices to "just pick any such s.

" It 
requires only a small stretch of the imagination to make all such choices simultaneously and 
thus to define the function f. 

In fact , AC is so much a part of the way of thinking of most mathematicians that it 
can easily sneak into a proof unnoticed; then we say AC is used unconsciously or implicitly. 
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Cantor and other mathematicians used Choice implicitly in their early work in set theory 
in the late 19th century; only in 1908 did Zermelo become aware of this assumption in their 
work and explicitly formulate it as an axiom. (See Moore [1982] . )  

AC i s  so  very "obviously true" that the reader may wonder why i t  i s  considered to  be 
an axiom, rather than just a consequence of definitions. To see why, let us consider the 
choice function f in (ACl ) .  If a choice function can be given explicitly, by some completely 
describable procedure or rule, then the choices are said to be canonical; otherwise the 
choices are said to be arbitrary. Canonical choice functions are sometimes available. For 
instance, if X = N = { 1 , 2 , 3, . . .  } ,  then we can satisfy (ACl )  by taking f(S) to be the 
smallest (i .e . ,  first) element of S. 

However ,  in other cases we cannot find f explicitly. For instance, one specialization of 
AC is this principle: 

(ACR) Axiom of Choice for the Reals. There exists a function f that 
assigns to each nonempty set S � JR. some element f(S) E S. 

Such a function is, for analysts, perhaps the simplest intangible i .e . ,  the simplest 
instance of an object that exists but that we cannot illustrate with a specific example. 
The reader is urged to try for a moment to think of an explicit choice function f for R 
Some partial solutions suggest themselves - e.g. , when S is a bounded nonempty interval, 
then let f(S) be the midpoint of that interval. More complicated answers will choose points 
from larger collections of sets; for instance, let (rn ) be an enumeration of the rationals; then 
every set S with nonempty interior contains some rational number and so we may take f (S) 
to be the first rational number in S. But what about a choice function that works for all 
nonempty subsets of JR.? No explicit choice function has ever been found3 for JR., and, in 
fact , it can be proved that no explicit choice function ever will be found for JR. (see 14.77 
and 6 .34) . Hence we need to assume a principle such as AC or ACR to tell us that such a 
function f exists. 

The Axiom of Choice makes selections for us that we do not know how to make for our
selves; Sah [1990] calls it a "mathematicians' Maxwell demon." Bertrand Russell illustrated 
it with this example: 

To select one sock from each of infinitely many pairs of socks requires the Axiom 
of Choice; but for shoes the Axiom is not needed. 

For instance, one way to choose shoes canonically would be to take all the left shoes. 
(Actually, socks do not require the full strength of the Axiom of Choice; we can choose the 
socks using a slightly weakened form of Choice discussed in 6 . 15 . )  

In  situations where we need the Axiom of  Choice, usually there are infinitely many 
choices available. However, we cannot establish the existence of infinitely many choices, or 
even the existence of one choice, except by giving an example or applying some noncon
structive principle such as AC. This is discussed further in 14.  77. 

3Logicians and set theorists may have a slightly different view of this matter, for they are more com
fortable with the Axiom of Constructibility V = L (introduced in 5.54) . Without assuming V = L or the 
Axiom of Choice or any of its relatives such as DC, CC, UF, etc., we can write down a formula <p that has 
the following property: When we assume V = L, then <p becomes a well ordering of JR.. Thus, <p provides 
an "explicit example" of a well ordering of JR. and hence an "explicit example" of a choice function for JR.. 
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6.13. A defective "proof" of Choice. The reader may find it instructive to consider the 
following "proof" of (AC3) . If each X.x contains exactly one element x.x , then we can con
clude ILEA X.x is nonempty without using any existential axiom: We know that ILEA X.x 
contains the function x that assigns to each coordinate >. the value x_x . If we make all the 
X.x 's larger, then this could only make fLEA X.x larger, and so it would still be nonempty; 
thus the Axiom of Choice is "proved." 

The flaw in this reasoning is a subtle one: By what method do we "make all the X.x 's 
larger?" If the enlarged set X.x still contains the original member x_x , and if we still know 
which of the elements of X.x is that original member x.x , then indeed the original function 
x would still be available to us; we can make a canonical choice. But if we lose track of 
the x.x 's when we enlarge the X.x 's and all we know about the enlarged sets is that they 
are nonempty, then we no longer have an explicit formula or rule for choosing one element 
from each X_x . We have no way to "construct" the function x except via some additional 
assumption such as (AC3) . 

Of course, intuitively it is obvious that ILEA X.x is nonempty - in fact, in most cases 
of interest , ILEA X.x contains infinitely many elements. But we may be unable to find any 
particular element of ILEA X_x . 

VARIANTS AND CONSEQUENCES OF CHOICE 

6. 14. To understand better what the Axiom of  Choice i s  really assuming, let us  contrast 
AC with several related principles, some of which are much weaker. The weakest of these 
IS:  

Finite "Axiom" of Choice. If n is a positive integer and S1 , S2 , • . .  , Sn are 
nonempty sets, then S1 x S2 x . . .  x Sn is nonempty. 

Although this principle is sometimes called an axiom, it really is not an axiom, for it follows 
"for free" from conventional logic and the axioms of ZF set theory without any additional 
assumptions. Indeed, ordinary mathematical logic permits us to apply an operation finitely 
many times. Each S; is nonempty, hence it contains (and we can choose from it) some 
element s; . Repeat this operation n times; then ( s 1 , s2 , . . .  , sn ) is a member of the product. 

We only need the Axiom of Choice, or some form of the Axiom of Choice, when we need 
to make infinitely many arbitrary choices. 

6.15. Following are two variants of Choice that do not follow "for free" from logic and ZF 
set theory: 

(ACF) Axiom of Choice for Finite Sets. Let e be a set whose members are 
nonempty finite sets. Then it is possible to choose some member s from each 
set S E e. 

(MC) Multiple Choice Axiom. Let e be a set whose members are nonempty 
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sets. Then it is possible to choose some nonempty finite subset F from each set 
s E e. 

The Axiom of Choice for Finite Sets must not be confused with the Finite Axiom of Choice, 
although the names are similar. 

It can be shown that ACF implies the Law of the Excluded Middle ( introduced in 6.4) . 
A short proof of this implication is given by Goodman and Myhill [ 1978] , but we shall not 
reproduce it here because it does not translate readily into the language of mainstream 
mathematics (see 6 .8) .  

ACF, though weaker than the Axiom of Choice, is  still strong enough to act as a math
ematical "Maxwell's demon," making choices for us that we cannot make for ourselves. For 
instance, ACF is strong enough to choose Bertrand Russell's socks (see 6 . 12 ) .  

Obviously AC is  equivalent to ACF + MC.  Actually, it can be proved that the Multiple 
Choice Axiom by itself is equivalent to the Axiom of Choice. However, the proof is too long 
to include here; it can be found in Jech [1973] or in Rubin and Rubin [1985] . The proof 
requires the Axiom of Regularity, unlike most other proofs mentioned in this book. 

6.16. Pathological consequences of A C. The Axiom of Choice is a nonconstructive assertion 
of existence: It postulates the existence of certain objects without giving any indication of 
how to find those objects. There may not even be a way to find those objects. We shall see 
in 14.77 that many of the objects generated by AC are intangibles - i.e . ,  objects for which 
no constructive examples can ever be given. 

Moreover, some of the intangible consequences of the Axiom of Choice are pathological 
- i.e . ,  they are so very different from familiar, constructible examples that they are contrary 
to our intuition. Perhaps the most dramatic of these pathologies is: 

Banach-Tarski Decomposition. The closed unit ball in three dimensions, 

can be partitioned into finitely many pieces, which can be rearranged by rigid 
motions (i .e . ,  rotations and translations) and recombined to form two closed 
unit balls, each identical to the original ball B. 

At first glance, the Banach-Tarski Decomposition seems preposterous. It blatantly contra
dicts our intuition about the conservation of mass or volume. In fact, the theorem above 
is often called the "Banach-Tarski Paradox." In mathematics, the term "paradox" usually 
refers to an impossibility. 

However, the Banach-Tarski Decomposition only appears impossible at first; its para
doxical appearance can be explained away. The ordinary "volume" of a subset of �n is its 
n-dimensional Lebesgue measure. That number is defined if the set is Lebesgue measurable, 
but - as we shall see later in this book - not all subsets of �n are Lebesgue measurable. 
In particular, the pieces in the Banach-Tarski Decomposition are not Lebesgue measurable. 

Thus, the Banach-Tarski Decomposition does not actually violate any rules concern
ing volume. It simply tells us that, if we accept the Axiom of Choice, then the rules of 



Variants and Consequences of Choice 143 

volume are more complicated than we might like. The intuition about volumes that we 
have obtained from our experience with everyday macroscopic objects in the real, physical 
world is only applicable to some, not all, subsets of the mathematical world IR3 . (In fact, 
that intuition is not even applicable to submicroscopic objects in the real world; Augen
stein [ 1994] suggests that the Banach-Tarski Decomposition is a possible model for some 
kinds of interactions of subatomic particles. )  Most mathematicians have learned to live 
with such pathological consequences of the Axiom of Choice, feeling that the pathological 
consequences are outweighed by the advantages of AC. 

We shall not prove the Banach-Tarski Decomposition Theorem in this book - a proof 
and much related material are given by Wagon [ 1985] - but in 21 .22 we shall give Vitali's 
classical short proof of the existence of a Lebesgue nonmeasurable set. The existence of 
Lebesgue nonmeasurable sets is the chief reason that measure theory is generally developed 
for an algebra or 0'-algebra S of subsets of a set X, rather than in the simpler setting of 
::P(X) .  

Actually, the Banach-Tarski Decomposition does not require the full strength of AC. A 
recent proof of Pawlikowski [1991] shows that the Banach-Tarski Theorem is implied by the 
Hahn-Banach Theorem, a weakened form of Choice that will be studied extensively later in 
this book. We shall not give Pawlikowski's proof, but a crucial ingredient of that proof is 
Luxemberg's Boolean reformulation of the Hahn-Banach Theorem, which we shall prove in 
23. 19. 

6.17. What makes AC true or false? When we accept the Axiom of Choice, we declare 
that we intend to treat certain mathematical objects as if they exist, regardless of whether 
we can find examples of those objects. This implies a particular interpretation of some 
words, such as "choose," "exist ," "set ," and "function." 

Constructivist mathematics and classical (mainstream) mathematics give us two intu
itive interpretations of language, which make the Axiom of Choice either false or true. 
Axiomatic set theory takes a more rigorous approach that does not rely on intuitive in
terpretations. Axiomatic set theory divests symbols and words such as E , <:;; , and "set" of 
their usual meanings and investigates how certain relations between the meaningless sym
bols and words imply certain other relations. In axiomatic set theory, one is not concerned 
with "true" or "false" (because ultimately these things are unknowable) ,  but only with 
"implies." With this viewpoint, AC is simply another axiom that we may accept or reject. 

Alternative axiom systems are also possible, and some of them are just as consistent as 
conventional set theory. Although we shall use AC freely throughout most of this book, 
in a few brief discussions we shall also consider some of its alternatives, which have im
portant consequences in functional analysis. Even if the reader is a "firm believer" in the 
Axiom of Choice, nevertheless there are strong reasons for considering its alternatives: Such 
considerations will improve our understanding of the consequences of Choice. Some of the 
alternatives to Choice, though not compatible with AC itself, are at least compatible with 
weakened forms of AC; thus we shall also study such weakened forms. 
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SOME EQUIVALENTS OF CHOICE 

6.18. To clarify the role played by Choice, we shall keep track o f  its uses in  some parts 
of this book. A proof is effective if it does not use AC or consequences of AC except as 
explicitly stated hypotheses. Two statements are equivalent (or effectively equivalent) if 
each can be proved effectively from the other. The oracle metaphor in 6.9 may be helpful 
in understanding these "effective" proofs. 

6.19.  The preceding discussions may have made clear just what the rules are that govern 
proofs of equivalence. The reader may now try to prove the equivalence of (ACl ) ,  (AC2) ,  
and (AC3) . 

Hint for (AC2) =} (ACl ) :  See 1 . 10. Relabel copies of the subsets of X so that they are 
all disjoint. For instance, S x { S} is a bijective copy of S, since { S} is a singleton and the 
sets S x { S} are disjoint subsets of X x P(X) .  

6.20. Maximal principles. The following statements are equivalent t o  the Axiom of Choice. 

(AC4) Well Ordering Principle (Zermelo). Every set can be well ordered. 

(AC5) Finite Character Principle (Tukey, Teichmuller). Let X be a 
set, and let J'" be a collection of subsets of X; suppose that J'" has finite character 
(as defined in 3.46) . Then any member of J'" is a subset of some �-maximal 
member of J'". 

(AC6) Maximal Chain Principle (Hausdorff) .  Let (X, � )  be a poset. 
Then any �-chain in X is included in a �-maximal +chain. 

(AC7) Zorn's Lemma (Hausdorff, Kuratowski, Zorn, others) . Let 
(X, � )  be a poset. Assume every �-chain in X has a �-upper bound in X. 
Then X has a �-maximal element. 

(AC8) Weakened Zorn Lemma. Let (X, � )  be a poset . Assume every 
subset of X that is directed by � has a �-upper bound in X.  Then X has a 
�-maximal element . 

Hint for (ACl )  =} (AC4) : Use 3.43, with r(S) = f(X\S). 

Hint for (AC4) =} (AC5) : Use .the theorem in 3.46. 

Hint for (AC5) =} (AC6) :  The �-chains form a collection of finite character. 

Hint for (AC6) =} (AC7) : Use the upper bound of the maximal chain. 

Hint jor (AC7) =} (AC8) :  Any chain is a directed set. 

Proof of (AC8) =} (ACl ) .  Let n be a nonempty set. By a "partial choice function" 
for n we shall mean a function f whose domain is some collection of nonempty subsets of 
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D,  satisfying f (S) E S for each S E Dom(J) .  Let X be the collection of partial choice 
functions; partially order X by taking f � g if Graph(!) <:;; Graph(g) . It follows from the 
Finite Axiom of Choice (see 6. 14) that X is nonempty and that any maximal element of 
X must be a function f with domain P(D) \ { 0} ;  thus it suffices to show that X has a 
maximal element. Verify that the hypotheses of (ACS) are satisfied. 

6.21 .  We ask again: Is the Axiom of Choice "true?" According to Bona [1977] , 

The Axiom of Choice is obviously true; the Well Ordering Principle is obviously 
false; and who can tell about Zorn's Lemma? 

The joke is that the three principles are equivalent, as we have just seen. Still, there is a 
point to the jest : Our intuition isn't reliable here. 

In fact, Bona's aphorism does agree with most mathematicians' intuition. The Axiom 
of Choice seems true, because the Axiom of Choice is worded in such a way that the 
simultaneity of the choices has little psychological impact. Indeed, as we noted in 6 .12 ,  
(AC1 )  seems true because we can "just pick any s E S."  In contrast, the Well Ordering 
Principle seems false, since the simultaneity of choices is built into the well ordering. Well 
orderings are quite difficult to find. Indeed, a partial ordering chosen "at random" generally 
is not a well ordering, and we are altogether unable to find an explicit well ordering for R 
Finally, Zorn's Lemma is too complicated to seem "obviously true" or "obviously false" to 
most mathematicians, although of course those who use it repeatedly become accustomed 
to it and begin to think of it as "true." 

6.22. Choice and cardinality. For this section, let IA I denote the cardinality of a set A. 
The Axiom of Choice and its equivalents deal with infinite sets. We understand finite 

sets fairly well, but it is difficult to extrapolate from finite sets and describe how infinite sets 
should behave; several different descriptions seem equally plausible. Our first few results 
about cardinality - the Schri:ider-Bernstein Theorem, Cantor's Theorem, etc. - did not 
depend on the Axiom of Choice and may have given the impression that every set has some 
definite "size," definable in some absolute way. Thus it may be surprising that some basic 
properties of cardinality are actually equivalent to the Axiom of Choice. 

(AC9) Well Ordering of Cardinals. Comparison of cardinalities is a well 
ordering. That is, if S is a set whose elements are sets, then there is some So E S 
that satisfies ISo l :::; ITI for all T E S .  

(AClO) 'Irichotomy of Cardinals. Comparison of cardinalities is a chain 
ordering. That is, for any two sets S and T, precisely one of these three condi
tions holds: lS I < IT I ; lS I = ITI ; lS I > ITI .  

(ACll ) Comparability of the Hartogs Number. If H(S) is the Hartogs 
number of a set S, then IH(S) I and l S I are comparable - i.e . ,  one is bigger 
than or equal to the other (and hence I H ( S) I > IS I ) . 

(AC12) Squaring of Cardinals. If X is an infinite set, then IX x X I = lX I . 
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(AC13) Multiplication of Cardinals. If X is an infinite set, Y is a 
nonempty set, and lX I  ;::: IY I ,  then IX x Y l  = lX I .  

(AC14) If X and Y are disjoint sets, lXI ;::: IN I ,  and Y is nonempty, then 
IX U Y I  = IX X Yl .  

(AC15) If X is an infinite set, then the cardinality of X is equal to the 
cardinality of U:=l xn = {finite sequences in X} .  

Proofs. We shall first prove that (AC4) , (AC9) , (AClO) ,  and (ACl l )  are equivalent . For 
a proof of (AC4) ==? (AC9) , use 5 .46.g. The implication (AC9) ==? (AClO) is obvious. 
The proof of (AC10) ==? (ACl l )  is immediate from the definition of the Hartogs number. 
Finally, for a proof of (ACl l )  ==? (AC4) ,  note that we have an injection from any set X 
into a well ordered set H(X);  use 3.39.b. 

Next we shall prove that (AC12) ,  (AC13) ,  and (AC15) are equivalent. For a proof of 
(AC12) ==? (AC13) ,  use relabeling; thus we may assume X and Y are disjoint . Choose any 
Yo E Y. Then 

lX I  = IX x {Yo} l :S IX x Y l  :S IX x X I = lX I . 

For a proof of (AC13) ==? (AC15) ,  show by induction that IXn l = lX I  for all positive 
integers n. Hence U:=l xn has the same cardinality as the union of N disjoint copies of X 
- i.e. ,  the same cardinality as X x N. Finally, (AC15) ==? (AC12) is obvious. 

A proof of (AC4) ==? (AC12) is immediate from 3.45. 
To prove (AC13) ==? (AC14) ,  pick any yo E Y and any object v that is not in X.  Then 

lX I  = IX U {v} l  by 2 .20.g. Hence 

IX U Y I I (X x {yo } )  U ({v}  x Y) l  

< I (X u {v} ) x YI IX x Y I < I (X U Y) x YI 

where the last equation follows from (AC13) since IX U Y l  � IY I · 

IX U Y I ,  

Finally, we shall show that (AC14) ==? (ACl l ) ;  this proof takes a bit longer but it will 
complete our cycle of equivalences. Let any set S be given; let H = H(S) be its Hartogs 
number; we wish to show that IH I  and lS I  are comparable. We may assume S is not finite. 
It follows easily that H is infinite also. Since H is an infinite ordinal, we have IH I  ;::: IN I  by 
3.42.b. By relabeling, let Y be a copy of S (i.e. , a set with the same cardinality as that of 
S) that is disjoint from H. By (AC14) , we have IH U Y l  = IH  x Y l .  Therefore there exists 
a bijection (3 : H U Y ----> H x Y. Thus H1 = (3(H) and Y1 = f3(Y) are disjoint sets whose 
union equals H x Y and such that IH1 I  = IH I  and IY1 I = IY I · 

We now consider two cases. In the first case, there exists some y E Y such that H x {y} � 
Y1 . In that case, the mapping h f---> (h, y) is an injection from H into Y1 , proving that 
IH I :::; IYI I = IY I  = lS I .  

In the second case, there i s  no such y .  Hence for every y E Y there exists at least one 
h E  H such that (h, y) � Y1 - i.e. ,  such that (h, y) E H1 . Since H is well ordered, let o:(y) 
be the first such h. Thus y f---> (o:(y) , y) is an injection from Y into H1 , and therefore 
lS I = IY I :::; IHI I = IH I .  
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6.23. In 2 . 16 ,  we defined the cardinal number of a finite set, but for infinite sets we merely 
indicated how to compare cardinalities. How can we define the "cardinal number" of an 
infinite set? We would like to define an object "card(S)" separately for every set S in such 
a way that our definition of "card(S) :::; card(T)" in 2 . 16 remains valid. 

One naive approach would be to observe that equality of cardinality is an equivalence 
relation; thus it would seem that we can define the "cardinal number" of a set to be the 
equivalence class to which that set belongs. However, this approach involves an equivalence 
relation on the class of all sets, which is a very large proper class - perhaps too large for 
some purposes. 

If we assume the Axiom of Choice, then we can make a canonical selection from each 
equivalence class, as follows: Every set can be well ordered, and hence has the same car
dinality as some ordinal; see 5.46.f. There may be many such ordinals - for instance, w, 
w + 1 ,  w + 2, . . . all have the same cardinality - but we can choose canonically among such 
ordinals, by taking the first such ordinal. It is a cardinal number, as defined in 5 .47. Thus, 
for any set S, let card(S) be the first ordinal that has the same cardinality as S. With this 
definition, "card" is a function of classes, from the collection of all sets (a proper class) to 
the collection of all ordinals (another proper class) .  Note in particular that if S is a cardinal 
number (i .e. , an initial ordinal) , then card(S) = S. 

The preceding definition uses the Axiom of Choice but not the Axiom of Regularity. 
Some mathematicians may prefer the following alternate definition, which uses Regularity 
but not Choice; it follows Enderton [1977 set theory] . Given any set S, there is some stage 
in which S occurs, as defined in 5 .53. Say S E Stage(a) . Recall that each stage is a set, 
not a proper class. Let (3 be the first ordinal with the property that some set T E Stage((]) 
satisfies card(T) = card(S) - i.e. ,  the first ordinal with the property that there exists a 
bijection between S and some member of Stage((]) . Now let 

kard(S) {T E Stage((]) : card(T) = card(S) } .  

Then kard(S) is a set (not a proper class) , uniquely determined by S, and two sets have 
the same "kardinality" if and only if they have the same cardinality. However, when S is 
an initial ordinal, it is not equal to kard( S) .  

6.24. Kelley's Choice. In later chapters, the Axiom of Choice will be used to prove 
certain important topological principles. Some of these principles also imply AC and thus 
are equivalent to it. We shall now sketch a general argument , which will be used several 
times in later chapters to prove that certain topological principles imply (AC3) .  This type 
of argument apparently was first used by Kelley [1950] , in a proof we present in 17.16.  

Let {SA : A  E A} be a nonempty set of nonempty sets; we wish to show that TIAEA SA 
is nonempty. 

For each A, let 6 be some object that is not an element of SA . (For instance, we could 
take 6 = SA , since SA tf_ SA . Thus, the 6 's can be selected without making any arbitrary 
choices. However, it is probably better not to think of 6 as being equal to SA , for such an 
assignment is an irrelevant distraction. It does not really matter what we choose for 6 ,  so 
long as it is not a member of SA . )  

Let YA = SA U {6} ,  let X = TIAEA YA , and let 1rA : X ----+ YA be the Ath coordinate 
projection. Obviously the function ( defined by 1rA (() = ((A) = 6 is an element of X = 
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TI.xEA Y.x , which is therefore nonempty. 
Now let M be any finite subset of A. By the Finite Axiom of Choice (see 6 . 14) , TI.xEM S.x 

is nonempty. Then the set 

( II s.x) x ( II Y.x) 
.AEM .XEA\M 

is a nonempty subset of X ,  as it includes (TI.xEM S.x) x (TI.xEA\M{6}) . Observe that 

TM n TN = TMuN; hence the collection of sets J' = {TM : M is a finite subset of A} is a 
filter base on X.  

The remainder of the argument i s  topological and takes a different form for different 
topological principles. The details cannot be given here, but will be given in 15.29, 19 . 13 ,  
and 17 . 16 .  In brief: We equip each Y.x with some simple topology - e.g . ,  the discrete 
topology, the indiscrete topology, or the "knob" topology - and let X = TI.xEA Y.x be 
equipped with the product topology. Some assumed topological principle is then used to 
prove that Il.xEA S.x = nM TM is a nonempty subset of X. 

COUNTABLE CHOICE 

6.25. An important weakened form of  Choice is: 

( CC) Axiom of Countable Choice. We can choose representative elements 
from a sequence of nonempty sets. In other words, if S1 , S2 , S3 , . . .  is a sequence 
of nonempty sets, then TI:=l Sn is nonempty - i.e. ,  we can choose a sequence 
(x1 , X2 , X3 , . . .  ) with Xn E Sn for each n. 

Countable Choice is strong enough for many applications - for instance, Garnir, De Wilde, 
and Schmets [ 1968] develop a sizable portion of functional analysis using this axiom rather 
than the Axiom of Choice. However, Countable Choice is strictly weaker than the Axiom 
of Choice (see Jech [ 1973] ) .  In fact , CC is so weak that the reader may again ask why this 
is an axiom, rather than just an-"obviously true" statement or a consequence of definitions. 
To answer that question, we shall contrast CC with countable recursion (see examples in 
2 .23) . Using either CC or recursion, one constructs a· sequence (xn) · A recursive definition 
only allows one possible value for each Xn , and so no choices need to be made; the resulting 
sequence (xn )  is uniquely determined. In contrast , the sequence described in CC is not 
uniquely determined (unless all the Sn 's are singletons) , and so some arbitrary choices must 
be made. Of course, if the Sn 's have some sort of known structure - e.g. , if each Sn is a 
nonempty subset of N - then it may be possible to make canonical choices. But when we 
do not know of any structure, the axiom of Countable Choice still permits us to make an 
infinite sequence of arbitrary choices. (Contrast this also with AC, which permits arbitrarily 
many arbitrary choices. ) 

Countable Choice will now be used to prove two very basic properties of cardinality; our 
presentation follows that of Jech [ 1973] . 
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6.26. (Assume CC. Then: )  The union of countably many countable sets is countable. 

Discussion and hints. Let { S .x : ,\ E A} be a countable collection of countable sets; we are 
to prove that S = U.xEA S.x is countable. Since A is countable, by relabeling we may assume 
that A =  N or A =  { 1 ,  2, . . .  , N} for some positive integer N. To reflect this relabeling, let 
us replace the ,\ 's with n's. We wish to show that S = UnEA Sn is countable. 

For each n E A, the set Sn is countable, and so there exists at least one injection from 
Sn into N. For each n, let us choose some injection Ln : Sn ----> N. Since there are countably 
many n's, we are making countably many choices; it is at this step that we need the Axiom 
of Countable Choice. (If the Sn 's were given to us with some sort of listing already provided, 
so that we could choose the in 's canonically, then CC would not be needed.) 

Now, for each x E S, let n(x) be the first integer n that satisfies x E Sn , and let 
p(x) = Ln(x) (x) . Then the mapping x f---7 (n(x) , p(x)) is an injection from S into N x N, 
which is countable by 2.20.e. 

6.27. (Assume CC. Then: )  A set X is infinite (i .e. , not finite) if and only if it contains a 
countably infinite set - i.e. , if and only if card(X) ::0: card(N) . 

Proof It is clear that card(X) ::0: card(N) implies X is not finite; that implication does not 
require the Axiom of Countable Choice. 

Conversely, assume X is an infinite set. We claim that 

( *) for each nonnegative integer j, the set X contains a subset Ai having exactly 
j elements. 

Indeed, take A0 = 0. If ( *) is false for some j > 0, consider the smallest such j .  Then A1 _ 1 
is finite and X is not, so A1_ 1  � X. Thus X \  Aj_ 1  is nonempty; let x be any element of 
X \  Ai_ 1 .  Now take Ai = Aj_ 1  U {x} . This contradiction proves ( *) .  Then U:o Aj is a 
count ably infinite subset of X. 

Remarks. A set is Dedekind infinite i f it has the same cardinality as some proper subset of 
itself; otherwise it is Dedekind finite. Some mathematicians take Dedekind infiniteness, 
or the condition card(X) ::0: card(N) , as a definition of X being infinite. If we assume 
Countable Choice, then the three notions of "infinite" coincide. 

DEPENDENT CHOICE 

6.28. Between the Axiom of Choice and Countable Choice lies an important but more 
complicated principle, the Principle of Dependent Choice (DC) .  We shall give two 
versions of this principle now and a few more versions in Chapters 19 and 20. 

(DCl) Dependent Choice (version without history) . Let any nonempty 
set S and any function f : S ----> { nonempty subsets of S} be given. Then there 
exists a sequence (xn ) in S such that Xn+ 1 E f(xn ) for each n. 
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(DC2) Dependent Choice (version with history) . Let SI , 52 , 53 , . . .  be 
nonempty sets. For each n :::: 1 ,  let fn be a mapping from SI x 82 x · · · x Sn 
into { nonempty subsets of Sn+l } . Then there exists a sequence (XI , x2 , X3 , . . .  ) 
such that Xn+I E fn (xi ,  x2 , . . .  , Xn) for each n. 

In either formulation, the idea is that we can choose some XI ;  with it  in mind we can then 
choose some x2; with XI and x2 (or just x2 ) in mind we can then choose some x3 , etc. 

Remarks. It is known that AC is strictly stronger than DC, and DC is strictly stronger 
than CC. Recently, Howard and Rubin [1996] have shown that UF + CC does not imply 
DC. (The Ultrafilter Principle, UF, is discussed in 6.32 and thereafter.)  

The Axiom of Dependent Choice (DC) should not be confused with the Axiom of Deter
minacy (AD) .  Though the two names sound similar, the two axioms are entirely different. 
We shall not study AD in this book; a good introduction to it is given by Dalen, Doets, 
and Swart [ 1978] . 

6.29. Exercise. (DC1 )  {=} (DC2) , and (AC4) ::::} (DC2) ::::} CC. 

Hint for (DC1 )  ::::} (DC2) : Let 

00 

S U (SI X 82 X · · · X Sn) 
n=I 

6.30 .  Optional exercise. Assume Dependent Choice. Let (X, :S)  be a chain ordered set. 
Show that :S is a well ordering of X if and only if there does not exist an infinite sequence 
XI > x2 > X3 > · · · in X .  

6.31. Optional exercise (from Johnstone [1987] ) .  If we assume Dependent Choice, then 
the Axiom of Regularity is equivalent to the following principle. 

No Infinite Regress. There does not exist an infinite sequence of sets So , SI , 
82 , 83 , . . .  that satisfies · · · E 83 E 82 E SI E Sa . 

Proof In 1 .49 we proved that the Axiom of Regularity implies No Infinite Regress. Con
versely, suppose that the Axiom of Regularity is false. Say 50 is a nonempty set that meets 
each of its elements. If Sn meets 50 , then there is some Sn+l E Sn n Sa . Use DC to form a 
sequence (.So , SI , 82 , . . .  ) .  

THE ULTRAFILTER PRINCIPLE 

6.32.. (We assume some familiarity with filters, which were introduced in Chapter 5 . )  
Midway between the Axiom of Choice (AC) and the Axiom of Choice for Finite Sets (ACF) 
is a more complicated but very important principle, the Ultrafilter Principle (also known 
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as the Ultrafilter Theorem) .  Like the Axiom of Choice, the Ultrafilter Principle has many 
important equivalents in many branches of mathematics. The equivalents discussed in this 
book will be denoted (UF1 ) ,  (UF2) ,  (UF3) ,  etc. ;  collectively we shall refer to them as UF. 
They can be found in the paragraph below, and in 6.35, 7.24, 9.54, 13.22, 14.57, 14.59, 
14 .61 ,  17.4, 17.22, 17.42.£, 19 . 17, and 28.29. 

The version of greatest use for purposes of this book is 

(UFl) Ultrafilter Principle (Cartan). Any proper filter is included in 
an ultrafilter. That is, if � is a proper filter on a set X, then there exists an 
ultrafilter ll on X with ll 2 �-

This result follows easily from (AC5) or (AC7),  in 6 .20. The Ultrafilter Principle is strictly 
weaker than the Axiom of Choice; that was proved by Halpern and Levy [1971 ] ,  but the 
proof is beyond the scope of this book. 

This book contains nearly two dozen equivalents of the Ultrafilter Principle; the wider 
literature contains many more. The equivalents have not all been collected into one source. 
A few more equivalents are given by Jech [1973] , Morillon [1986] , Rav [1977] , and Rubin 
and Rubin [1985] . Mathematicians who wish to study equivalents of UF are urged to 
search not only under "ultrafilter" but also under "Compactness Principle," "Boolean Prime 
Ideal Theorem," and "Stone Representation Theorem;" those equivalents of UF (considered 
later in this book) are less essential to analysts but are more famous among logicians and 
algebraists. 

6.33. Existence of free ultrafilters. Recall that an ultrafilter on an infinite set is free if and 
only if it contains the cofinite filter (see 5.5.d) . Hence, using (UF1 )  to extend the cofinite 
filter is one method of "constructing" free ultrafilters. Thus we obtain this corollary of 
(UF1 ) :  

On every infinite set there exists a free ultrafilter. ( * * ) 
A special case of this result is important enough to have its own name: 

(WUF) Weak Ultrafilter Theorem. A free ultrafilter exists on N. 

Actually, WUF plus CC implies statement ( * * ) above. (Proof CC tells us that X contains a 
countably infinite set X0 ; see 6 .27. Show that if 3" is a free ultrafilter on X0 , then { S � X : S 
contains some member of �} is a free ultrafilter on X. )  

Neither of  the implications AC =? UF =? WUF is  reversible; this i s  proved in  Jech 
[1973] . Thus, UF is strictly weaker than the Axiom of Choice, and WUF is weaker still. 

Free ultrafilters - on N or on any infinite set - are intangibles, in the sense of 14.76 
and 14.77: They exist in conventional set theory, but we cannot prove their existence using 
just ZF + DC. This result was proved by Pincus and Solovay [1977] ; see the discussion in 
14.74. It also follows from Shelah's result Con(ZF + DC + BP) , via an argument of WUF 
=? not-BP given later in this book. 

Although the free ultrafilters are harder to illustrate or imagine than the fixed ones, 
they are also far more numerous. A theorem of Tarski states that if X is an infinite set, 
then card{free ultrafilters on X} = card{:P(:P(X) ) } .  This is in contrast with card{fixed 
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ultrafilters on X }  = card( X) .  The proof, which uses the Axiom of Choice, is too long to be 
included here. Proofs can be found in Tarski [1939] , Bell and Slomson [1974] , and Giihler 
[1977] . 

6.34. Show that ACR (in 6 . 12)  implies WUF. 
Hints : We may replace lR with :P(N) , by 10.44.£. By 3.43, the subsets of N can be well 

ordered. The collection e of filter subbases on N is a collection with finite character; hence 
by the theorem in 3 .46 the cofinite filter can be extended to a maximal member of e. 

6.35. (UF2) Cowen-Engeler Lemma. Let A and X be sets. Let <I> be a collection of 
functions from subsets of A, into X.  Assume that 

(i) <I>(>.) = {!(>.) : f E <I> with >. E Dom(f)}  is a finite subset of X ,  for each 
>. E A; 

( i i )  each finite set S � A is the domain of at least one element of <I>; and 

(iii) <I> has finite character; i .e . ,  a function f from some subset of A into X is a 
member of <I> if and only if each restriction of f to a finite subset of Domain(!) 
is a member of <I>. 

Then A is the domain of at least one element of <I>. 

Remarks. The proof of (UF2) =? (UF1 )  will be given via several other propositions in 13.22. 
Actually, (UF2) remains equivalent if we make the further stipulation that X = {0, 1 }; that 
will be evident from the argument in 13.22. 

The principle (UF2) is very similar to several principles that are known as Rado's 
Selection Lemma; the reader is cautioned that those principles are not all known to be 
equivalent to each another. For a few results on Rado's Lemma(s) see Howard [1984] and 
[1993] , Jech [ 1977] , Rav [1977] , and Thomassen [1983] . 

The Cowen-Engeler Lemma, particularly with X =  {0, 1 } ,  is in many respects similar 
to the Compactness Principle of Propositional Logic, which is (UF16) in 14.6 1 .  In fact, as 
Rav [1977] points out, the Cowen-Engeler Lemma is a sort of combinatorial, non-logicians' 
version of (UF16) ;  the Cowen-Engeler Lemma can often be used in place of (UF16) but 
does not require any knowledge of formal logic. 

Proof of (UF1 )  =? (UF2) . This proof is modified from arguments of Rav [1977] and 
Luxemburg [1962] . Let Fin(A) = {finite subsets of A} .  For each S E Fin(A) ,  let fs = {f E 
<I> : Dom(f) 2 S}.  Then fs is nonempty, by hypothesis (ii ) .  Since fs n fr = fsur ,  the 
collection of sets {r s : S E Fin( A ) }  has the finite intersection property. By (UF1 ) ,  there 
exists a (not necessarily unique) ultrafilter 11 on <I> that includes {fs : S E Fin(A) } .  

To define rp : A ----+ X ,  temporarily fix any >. E A. Note that <I>(>.) = {!(>.) : f E fp} } · 
The sets {f  E fp, } : f(>.)  = x} (for x E <I>(>.))  are disjoint and their union is fp} , which is 
a member of the ultrafilter 11. By 5.7.b and 5.8(E) , precisely one of the x's in <I>(>.) satisfies 
{f E f {A }  : f(>.) = x} E 11. Let that X be denoted by rp(>.) . 

Thus, we define a function rp : A ----+ X, satisfying 

{f E fp} : f(>.) = rp(>.) } E 11 for all >. E A. 
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It suffices to show that rp E <I>. Let any S E Fin(A) be given. Since <I> has finite character, 
it suffices to show that rp agrees on S with some f E <I>. The set 

W = n {f E rp} : f(>.) = r..p (>.) }  
>.ES 

is also an element of li, hence a nonempty subset of <I>. Now any f E Ill will do. 

6.36. Exercise. Show that (UF2) implies the Axiom of Choice for Finite Sets, which was 
stated in 6 . 15 as (ACF).  

Hint :  Use the Finite Axiom of Choice (6 . 14) . 

6.37. Marriage Theorems. Let {S1 : 1 E r} be a collection of sets. Assume either 

(i) r is finite (for P. Hall's Theorem) , or 

(ii) each S, is finite (for M. Hall's Theorem) .  

Then the following two conditions are equivalent : 

(A) there exists an injective function x E Il,Er S, . 

(B) card(U,EF S,) 2: card( F) for each finite set F <:;; r. 
Remarks. In both cases, the implication (A) =? (B) is obvious; it is (B) =? (A) that we 
must prove. We cannot omit hypotheses (i) and (ii ) .  For instance, the sets { 1 ,  2, 3, . . .  } ,  
{ 1 } ,  {2} , {3} , . . .  satisfy (B) but not (A) . 

The theorem above gives necessary and sufficient conditions for the solvability of the 
"marriage problem" of combinatorics: Let r be a collection of heterosexual people of one 
gender, and let S, be the set of suitors (of the other gender) of person 1; then condition 
(A) says that all the elements of r can be married simultaneously to suitors. 

We have attributed the two theorems above to Phillip Hall and Marshall Hall, respec
tively, because they were apparently the earliest publishers of those theorems - see Hall 
[ 1935] and Hall [ 1948] - but both theorems have been subsequently rediscovered many 
times. P. Hall's Theorem is also equivalent to several other important combinatorial match
ing theorems, including theorems of Konig and Menger in graph theory, Dilworth's Theorem 
on partially ordered sets, and the Ford-Fulkerson Max-flow Min-cut Theorem of network 
theory. (By "equivalent" we mean in this instance that each theorem implies the others 
easily. ) Surveys of related material are given by Mirsky [ 1971 ] and Reichmeider [ 1984] . 

Our proof of M. Hall's Theorem will use (UF2) ;  later we shall use M. Hall's Theorem to 
prove Lowig's Theorem in 1 1 .3 1 .  It is not yet known whether M. Hall's Theorem or Lowig's 
Theorem is equivalent to UF. 

Proof of P. Hall 's Theorem - i .e . ,  assuming (i). This proof follows Halmos and Vaughan 
[ 1950] . Let r = { 1 ,  2, 3, . . .  , n} ; we proceed by induction on n. For n = 1 the result is 
trivial. For larger n we consider two cases: 

• First, suppose that each union of k S; 's ( 1  ::; k ::; n - 1 )  contains at least k + 1 
elements. In this case we may choose any Xn E Sn and then apply the induction 
hypothesis to the n - 1 sets S1 \{xn } ,  S2\{xn } ,  . . .  , Sn- 1 \{xn } · 
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• On the other hand, suppose that some union of k of the 8i 's contains exactly k 
elements, for some k with 1 :::; k :::; n - 1 .  By relabeling we may assume that these are 
the sets 81 , 82 , . . .  , 8k . Let their union be T. Clearly the inductive hypothesis can 
be applied to the k sets 81 , 82 , . . .  , 8k . It suffices for us to show that the inductive 
hypothesis also can also be applied to the n - k sets 8k+l \T, 8k+2 \T, . . .  , 8n \T. To 
see that, note that for 1 :::; r :::; n - k, the union of any r of these n - k sets contains at 
least r elements, since the union of those r sets together with T is the union of k + r 
of the original 8i 's , and hence contains at least k + r elements. 

Proof of M. Hall 's Theorem - i. e. , assuming (ii). This proof is modified from Mirsky 
[1971] . Let <t> be the collection of all injective functions f defined on subsets of r that 
satisfy f ('y) E 81 for each 'Y E Domain(!) .  It is easy to see that <t> has finite character, 
in the sense of (UF2) (iii ) .  Also, each set <t>('y) = {f ('y) : f E <t>, 'Y E Domain(!) } is finite, 
since it is contained in the finite set 8, . By P. Hall's Theorem, each finite subset of r is 
the domain of at least one member of <t>. Thus, (UF2) is applicable, and r is the domain of 
at least one member of <t>. 



Chapter 7 

Nets and Convergences 

I centered isotone I 

I Hausdodf( 
� first countable 

7.1 .  An elementary special case. A sequence (xn ) m a metric space (X, d) is said to 
converge to a limit x E X if 

for each number s > 0, there exists an integer N = N(s) such that n ;:=:: N =? 
d(x, Xn ) < c. 

We then write Xn ----> X or x = limn�oo Xn . 

7.2. Chapter overview. Much of analysis can be formulated in terms of convergence of 
sequences in metric spaces, but occasionally we need greater generality. 

Nets are a generalization of sequences. A sequence is a function whose domain is N; a 
net (or "generalized sequence" ) is a function whose domain is any directed set D. Most of 
this chapter can be postponed; it will not be needed until much later in this book. 

A convergence space is a set X equipped with some rule that specifies which nets 
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- or equivalently, 1 which filters - converge to which "limits" in X .  Analysts who are 
already familiar with convergent sequences in metric spaces should have little difficulty 
with convergent nets, for - as we shall see in this chapter - nets and convergence spaces 
are natural generalizations of sequences in metric spaces. 

The chart at the beginning of this chapter shows the relations between some of the 
main types of convergences we shall consider in this book. In later chapters we shall be 
primarily concerned with topological convergences - and, to a much smaller degree, order 
convergences. The other kinds of convergences - Hausdorff, pretopological, first countable, 
etc. - are introduced here mainly to give a clearer understanding of the basic properties 
of topological and order convergences. 

Nets are particularly helpful for understanding topologies that are known to be non
metrizable - e.g . ,  the weak topology of an infinite-dimensional normed vector space - or 
understanding topologies that are not known to be metrizable. But nets are also occasion
ally useful in metric spaces; two examples of this are the proof of Caristi 's Theorem given 
in 19.45 and the explanation of Riemann integrals given in 24.7. 

One very important order convergence that is not topological is the convergence almost 
everywhere of [-oo, +oo]-valued random variables over a positive measure; this topic is 
considered briefly in 21 .43. Other nontopological order convergences are important in the 
study of vector lattices, but that subject is not studied in great depth in this book. We 
are more concerned with order convergences that are topological. For instance, the order 
convergence and the topological convergence in � are identical, but the order viewpoint and 
the topological viewpoint yield different kinds of information about that convergence. 

Nets are an aid to the intuition and to the process of discovery, but they are not always 
essential; many proofs involving nets can be rewritten so that nets are not mentioned. Some 
researchers prefer to rewrite their proofs in that fashion: The original insight may thereby 
be obscured, but the result becomes readable by a wider audience since familiarity with 
nets is no longer required. 

Although nets are used mainly for convergences, it is conceptually simpler to first study 
nets without regard to convergences - i.e . ,  as devices for a modified sort of "counting," 
without any regard to limits. That is the subject of the first half of this chapter. 

7.3. Review of directed sets. Before reading this chapter, it may be helpful to briefly review 
the introduction to filters in Sections 5 . 1  through 5 . 1 1 .  

Also, recall from 3 . 8  the definition of directed set: It i s  a set X equipped with a relation 
=<- that is reflexive (x =<- x for all x) and transitive (i .e. , if x =<- y and y =<- z, then x =<- z) and 
that also satisfies this condition: 

for each x, y E X, there exists u E X such that x, y =<- u. 

We review a few basic properties of directed sets from Chapter 3: 

• The universal ordering (x =<- x for all x E X) is a directed ordering that is not 
antisymmetric. 

1 To make the convergence of nets equivalent to the convergence of filters simplifies our theory substan
tially, but it imposes a mild restriction on the kinds of net convergences that we shall consider. This is 
discussed further in 7.31. 
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• Any product of directed sets, with the product ordering, is  directed. 

• A subset of a directed set (when equipped with the restriction ordering) is not neces
sarily directed. 

Directed sets will be used as generalizations of N or JE., so this book will often denote 
directed sets by A, IB, C, IIJJ , etc. (The reader must determine from context whether C means 
a directed set or the complex numbers. ) In accordance with much of the literature, we shall 
usually denote elements of a directed set by lowercase Greek letters (a, (3, 'f, . . .  ) . 

7.4. Let � be a nonempty collection of nonempty subsets of a set X. Then (�,  :2) is a 
directed set if and only if � is a filter base on X .  We refer to :2 as the ordering by reverse 
inclusion. 

Since every filter is also a filterbase, we see in particular that reverse inclusion is a 
directed ordering on any filter. Reverse inclusion is the most common directed ordering 
used on filters. It will be understood to be in use whenever we use a filter as a directed 
set, except when some other ordering is specified. Note that, unfortunately, larger sets are 
"smaller" in this ordering, and smaller sets are "larger" - i.e . ,  S <:;;; T -<===? S >,:= T. 

Ordinary inclusion (<:;;; ) is also a directed ordering on any filter, but that ordering is 
seldom useful. 

NETS 

7.5. Before turning to generalized sequences, let us first review the notation of sequences. 
Recall that a sequence in a set X is a mapping from N into X ,  where N = { 1 ,  2, 3, . . .  } has 
its usual ordering. A sequence can be viewed as a function, with values x( l ) ,  x(2) ,  x(3) ,  . . .  , 
and when it is helpful we shall adopt that notation. However, it is more common to view 
a sequence as a set parametrized by N; then a sequence is written as (x1 , x2 , x3 , . . . ) or 
(xn : n E N) or (xn ) ·  Subscripts i , j, k , m, n generally will mean elements of N if no other 
index set is indicated. If we disregard the ordering of (xn ) ,  we obtain the count.able set 
{xn } = {x1 , x2 , x3 ,  . . .  } ,  which is the range of the sequence; note the use of braces instead 
of parentheses. 

7.6. Nets are a generalization of sequences - in fact , they are also sometimes called 
generalized sequences or Moore-Smith sequences. 

A net in a set X is any function from a nonempty directed set into X. Thus, in the 
notation of Chapter 1 ,  a net in X is any function x : IlJJ ---+ X,  where IlJJ is any nonempty 
directed set; the values of a net may sometimes be written as x(a) , x((3) , . . . . However, it 
is more common to view a net as a set parametrized by a directed set IIJJ; thus we usually 
represent such a net by the expression (x0 : 8 E !DJ) . We may abbreviate this as (x0) if 
(!DJ, � )  does not need to be mentioned explicitly, but the set IlJJ and its ordering � are still 
understood to be part of the structure of the net. If we disregard the order on (x0 ) ,  we 
obtain the set {x0 : 8 E !DJ} ,  which is the range of the net (xb ) ;  again note the use of braces 
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instead of parentheses. 
Sequences are a special case of nets, and so most statements we shall make about nets 

will apply to sequences as well. Of course, sequences are conceptually simpler than nets, 
and so whenever possible we prefer to use sequences. However, for some purposes (e.g. , the 
study of convergence in nonmetrizable topological spaces) nets are a more natural tool. 

Remark. The word "net" is perhaps unfortunate - it does not have any intuitive 
justification, as far as this author knows. The alternate term "stream" was suggested by 
McShane [1952] , for reasons indicated in 3.9 .f, but "net" is the standard word. 

7.7. Let x :  ID -+  X be a net, and let S �  X. We shall say that 

S is a tail set of the net if S is of the form { x0 : t5 � t50} for some t50 E ID; 

S is an eventual (or residual) set of the net if S contains some tail set - i.e . ,  
if there is some t50 E ID such that {x0 : t5 � t50 } � S. In this case we say that 
x6 E S happens eventually, or that x0 E S happens for all 6 sufficiently 
large. 

S is a frequent (or co final) set of the net if S meets every tail set - i.e. , if for 
each t50 E ID there is some t5 � t50 such that x0 E S. In this case we say that 
x6 E S happens frequently, or that x6 E S happens for arbitrarily large 
values of 6. 

S is infrequent if it is not frequent . 

Of course, these definitions all depend on the directed set (ID, � ) , the codomain X ,  and the 
net (x0 : t5 E ID) .  

These terms can also be applied to subsets of  a directed set ID, by viewing the identity 
map i : ID -+ ID as a ID-valued net (with i6 = b ) .  Thus, a subset § � ID is a tail set if 
§ is of the form { t5 E ID : t5 � t50} ,  an eventual set if § contains some set of the form 
{ t5 E ID : t5 � t50} ,  or a frequent set if § meets every set of the form { t5 E ID : t5 � bo } .  

Caution: The term "tail set" has another, unrelated meaning; see 20.31 .  

7.8. Examples and basic properties. 
a. A set is eventual if and only if its complement is infrequent . 

b. Let N have its usual ordering, and consider the identity map i : N -+ N as a net. Then 
i6 is eventually greater than 5, and i0 is frequently a multiple of 17. A subset of N is 
eventual if and only if it is cofinite (i .e . ,  has finite complement) ,  and frequent if and 
only if it is an infinite set. 

c. Let N be partially ordered by m � n if m is a factor of n. Then (N, � )  is a directed 
set. Let i : N -+ N be the identity map; then i0 is eventually a multiple of 17. 

7.9. Correspondence between nets and filters. Let any net (x0 : t5 E ID) in a set X be given. 
Then � = {tail sets of the net ( x6) }  is a filter base on X;  the proper filter that it generates 
is � = {eventual sets of the net ( x6) } .  We shall call these the filter base of tails and the 
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eventuality filter of (x0 ) , respectively. (Some mathematicians call :f the filter of tails of 
( xo ) . )  

The proper ideal that is dual to the filter :f is the collection of all infrequent subsets 
of X . In other words, a set S s;; X is eventual if and only if X \  S is infrequent . Using 
this duality, we can convert statements about frequent sets to statements about eventual 
sets, and vice versa. Referring to the discussion in 5.3 ,  the reader may find it helpful to 
think of "eventual" as meaning "large," "infrequent" as meaning "small," and "frequent" 
as meaning "not small." 

7.10. Further properties and examples. 
a. The constant net at z - i.e. ,  the net satisfying Xo: = z for all a - has eventuality 

filter equal to the ultrafilter fixed at z. 

b. If X is a set directed by the universal ordering - that is, x <- y for all x, y E X -
then the identity map i : X ____, X is a net whose eventuality filter is the singleton {X} .  

c. Any eventual set i s  frequent . 

d. Any superset of a frequent set is frequent; any superset of an eventual set is eventual. 

e. If n is a positive integer and S1 u S2 u · · · u Sn is frequent , then at least one of the Si 's 
is frequent. 

f. Let (lDl, <-) be a directed set, and suppose § S: ][)) is frequent . Then § is itself a directed 
set , when ordered by the restriction of the given ordering. 

g. Let p :  X ____, Y be a mapping from one set into another. Let (x8 : 8 E lDl) be a net in a 
set X; then ( x0 ) has tail filter base equal to � = { { x0 : 8 )r 1} : 1 E ][))} and eventuality 
filter :f = { S S: X : S :2 B for some B E �} .  Show that 

(i) p(�) = {p(B) : B E �} is the tail filterbase for the net (p(x8 ) : 8 E lDl) 
in Y. 

(ii) p(:f) = {p(F) : F E  :f} is also a filterbase on Y .  

(iii) 9 = {S S: Y :  p-1 (S) E :f} i s  the eventuality filter of the net (p(x8) : 8 E 
lDl) in Y. 

( iv) p(�) S: p(:f) S: 9, and 9 is the filter generated by both p(�) and p(:f) .  
(Refer to 5.40.b. ) 

7.11 .  In 7.9 we saw how each net determines a proper filter, which we call the eventuality 
filter. Conversely, now let � be a proper filter on a set X; we wish to construct a net ( x8 ) 
in X whose eventuality filter is � .  Many such nets are available, but we shall describe one 
that is canonical - i.e. ,  one that can be constructed from � by a straightforward algorithm 
without any arbitrary choices. This construction is taken from Bruns and Schmidt [1955] ; 
it was independently rediscovered by Wilansky [1970] . 

Let � be any proper filter - or more generally, any filter base - on a set X.  
Let X have the universal ordering (as in 3.9.g), let � be ordered by reverse 
inclusion (as in 7.4) , and let X x � have the product ordering. Show that 
][)) = { (x, S) E X x � : x E S} is a frequent subset of X x �' and hence is a 
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directed set by 7. 10.f. Then show that the map (x, S) �----* x, from ][)) into X, is a 
net whose filterbase of tails is 'B ;  its eventuality filter is 'B if that filterbase is a 
filter. 

We shall call this net the canonical net of 'B.  
This canonical construction is  admittedly a bit complicated. We shall use it  occasionally, 

but more often we shall merely need to use the fact that some canonical construction exi�ts 
- i .e. , that there is some canonical way to construct a net with a given eventuality filter; 
the specific details of the construction will not enter into most applications. 

7 .12 .  ( Optional. ) If 'B is any filter base on a set X, then there also exists a net ( Xn : a E A) 
whose filterbase of tails is 'B and such that the directed set A is antisymmetric - i .e . , it 
is also a poset. (Consequently, our applications would not be greatly affected if we made 
antisymmetry a part of our definition of directed set. )  

Construction: Let 

{ ( u, n, B) E X x N x 'B u E B} 
Order i t  as follows: ( u ,  n, B) -< ( u' , n ' ,  B' )  i f  and only i f  either ( i )  B � B' or (ii) B = B' 
and n < n' . Define X(u,n,B ) = u .  Verify that (A, �)  is a directed poset and that {xn : a �  
( u0, no , Bo) }  = Bo for each ( uo, n0 , B0) E A - hence 'B is the filter base of tails for the net. 
This construction is also from Bruns and Schmidt [1955] . 

7.13. Remarks: nets versus filters. Filters have many other uses - in set theory, logic, 
algebra, etc. - but filters can also be used to study convergences. In fact , nets and filters 
yield essentially the same results about convergences. Some mathematicians prefer nets or 
prefer filters, and use only one system or the other. It is this author's opinion that the 
ideas of nets and filters complement each other; they should not be viewed as two separate 
systems of ideas. In 7.9 we showed how to switch back and forth between nets and filters, so 
that each system can be used to its best advantage. That interchangeability is strengthened 
by the ideas of Aarnes and Andenms; see especially 7 .15(C) .  This book will make frequent 
use of nets and filters and of their interchangeability. 

For any proper filter �' the eventuality filter of the canonical net of � is �- This gives us 
a bijection between the proper filters on X and a certain collection of nets in X. However, 
this bijection is not onto the class of all nets in X. "Most" nets are not canonical nets. In 
fact , the class of all nets in X is a proper class (see 1 .44) - it is far too big to be a set , 
since we make no restriction on the choice of the underlying directed set. In contrast , the 
collection of all filters on X is a set of ordinary size - clearly, {filters on X}  s;;; P(P(X)) .  

Nevertheless, the correspondence between filters and nets i s  quite good, and so we may 
use the two tools interchangeably, thereby gaining the advantages of each. Nets are a 
natural generalization of sequences, so they may be intuitively appealing to analysts, who 
are already familiar with sequences. On the other hand, many proofs are easier in terms of 
filters, since filters are always "canonical." For instance, the filter N(x) of all neighborhgods 
of a point - studied in 15 .2 and 15 .7 and thereafter - plays a useful special role in many 
proofs, since it is the smallest filter that converges to the point x. It can be replaced by a 
net, as in 7. 1 1 ,  but that replacement is somewhat complicated and artificial, and removes 
much of the available intuition; we may prefer to work with N(x) .  
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SUBNETS 

7.14. Preview and historical remarks. In the following pages we shall compare several 
types of subnets. In order of increasing generality, they are 

{subsequences} � { ����:�: } � { :���� } C { s���:�s } C { su��ts } · 
The last three types - Willard, Kelley, and AA - are our main types of subnets. Any 
one of these by itself would make a good definition of "subnet ," and has been used as 
such elsewhere in the literature. Although the three definitions require slightly different 
proofs of theorems, they yield essentially the same statements of theorems; their near
interchangeability will follow from results in 7.19 and 15.38. The Kelley definition is oldest 
and is most widely used in the literature, but the other two definitions are simpler. The AA 
definition is the most general and yields the simplest proofs. For those reasons and other 
reasons indicated below, this book will use the term "snbnet" to mean "AA snbnet" except 
where noted explicitly. For an abridged treatment , the reader may skip over Willard and 
Kelley subnets. 

Frequent subnets ( introduced in 7. 16.c) are important enough to deserve mention, but 
they are much more specialized. In general, they cannot be used interchangeably with the 
other three kinds of subnets; this will be shown in 17.29. 

Subnets are a generalization of subsequences. Recall that (Yp : p E N) is a subsequence 
of (xn : n E N) if we can write Yp = x'P(P) or Yp = x'Pv for some positive integers cp( 1 ) < 
cp(2) < cp(3) < · · · . Analogous ideas for nets were gradually developed by Moore, Smith, 
Birkhoff, Tukey, and Kelley. The theory was popularized by Kelley's textbook [1955/ 1975] . 
We shall say that (Y# : j3 E !B) is a Kelley snbnet of (xn : a  E A) if we can write YfJ = Xcp(!3) 
or Yr1 = x'Pf! for a function 'P : IB ---+ A satisfying certain technical conditions discussed in 
7. 15.b below. A slight variant on Kelley's definition was given by Willard [1970] ; we present 
it in 7.1 5.c. 

While Kelley et al. were investigating nets, several other mathematicians - notably 
Cartan and Bourbaki -- were developing an analogous theory of filters. Soon it became 
clear that the two systems of ideas yielded the same kinds of conclusions about uniform 
convergence, compactness, weak topologies, etc. Each system offered certain advantages: 
Nets look more like sequences and thus appeal more to the intuition of analysts; filters are 
amenable to arguments involving elementary set-theoretic operations and the Ultrafilter 
Principle. However, the two systems were not easily interchangeable; there was some awk
wardness in the translation . Most mathematicians in convergence theory ended up using 
either nets or filters, but not both. 

The difficulty is removed by a more general approach to subnets that has been suggested 
independently by several mathematicians (Smiley [1957] , Aarnes and Andenres [1972] , Mur
deshwar [1983] , and perhaps others) but which, nevertheless, seems not to be widely known 
yet . We shall name this approach after Aarnes and Andenres, because they investigated 
it in greatest depth. The Aarnes and Andenres (AA) approach moved further away from 
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the original notion of subsequence, and dispensed altogether with the connecting function 
rp : lB --+  A. Kelley's definition related two nets x : A --+ X and y : lB --+ X by their behavior 
in the domains A and JB, but the AA approach relates the nets by their behavior in the 
codomain X .  This approach makes nets and filters easily interchangeable, thus offering 
mathematicians the advantages of both systems. 

7.15 .  Definitions. Let (xa : a:  E A) and (y(3 : {3 E !B) be nets in a set X, with eventuality 
filters :J' and 9 ,  respectively. Then: 

a. The following conditions are equivalent. If any (hence all) of them are satisfied, we 
shall say that (y(3) is a subnet of (xa) (or more precisely, an AA subnet, or a subnet 
in the sense of Aarnes and Andenres) . 

(A) Every (Y(3 )-frequent subset of X is also (x0 )-frequent. That is, if Yf3 E S 
for arbitrarily large values of {3, then Xa E S for arbitrarily large values 
of a:. 

(B) Every (xa )-eventual subset of X is also (Yf3 )-eventual. That is, if Xa E S 
for all sufficiently large values of a:, then Yf3 E S for all sufficiently large 
{3. 

(C) 9 2 :F. (In other words, an AA subnet corresponds to a superjilter. ) 
(D) Each (x0 )-tail set contains some (y(3)-tail set. In other words, for each 

a:o E A there is some f3o E lB such that {Yf3 :  {3 ?= {30} � {xa : a: ?=  a:o} .  

(E) For each eventual set § �  A, the set y- 1 (x(§) ) is eventual i n  lB. 
b. We shall say (y(3) is a Kelley subnet of (xa) if there exists a function rp : lB --+ A such 

that 

(i) y = x o rp - that is, Yf3 = x'P(f3) for all {3 E lB and 

(ii) for each eventual set § �  A, the set rp- 1 (§) is eventual in lB. 

Condition (ii) can be restated in either of these equivalent forms: 

(ii' ) For each a:o E A, there is some f3o E lB such that {3 ?= f3o ==> rp({J) ?= a:o. 

(ii") The A-valued net rp : lB --+ A is an Aarnes-Andenres subnet of the 
identity map i;. : A --+ A. 

c. Willard [ 1970] modified Kelley's definition slightly, adding a requirement of monotonic
ity; this may make the definition more palatable to many readers. We shall say (Yf3 )  
i s  a Willard subnet of  (xa ) i f  there exists a function rp : lB --+ A such that 

(i) y = x o rp - that is, Yf3 = x'P(f3) for all {3 E !B; 
(ii) rp is monotone; that is, {31 � {32 ==> rp({Jl ) � rp({J2 ) ;  and 

(iii) for each a:0 E A there is some {30 E lB such that rp (f3o) ?= a:0 . 
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7.16. Comparison of the definitions. 
a. Show that any Kelley subnet is also an Aarnes-Andenres subnet. 

The converse is not valid. For instance, each of the sequences (0, 5, 6, 7, 8, . . .  ) and 
( 1 ,  5 ,  6, 7, 8, . . .  ) is an AA subnet of the other, but neither is a Kelley subnet of the 
other. 

b. Show that any Willard subnet is also a Kelley subnet . 
The converse is not valid. For instance, each of the sequences (2, 1 ,  4, 3, 6, 5, . . .  ) 

and ( 1 ,  2, 3, 4, 5, 6 ,  . . .  ) is a Kelley subnet of the other, but neither is a Willard subnet 
of the other. 

c. Suppose (xa : a  E A) is a net in a set X and lF is a frequent subset of the directed set 
A. Then lF is a directed set (see 7 .10 .f) ,  and so (xa : a E JF) is a net. We shall say 
that it is a frequent subnet of the net (xa : a E A) .  (In some of the literature, this 
is called a cofinal subnet . ) 

Show that any frequent subnet is a Willard subnet (by using the inclusion map 

i :  lF __f_. A for the map cp in definition 7.15 .c) .  
The converse is not valid. For instance, show that (1 ,  1 ,  2 ,  2, 3 ,  3, . . .  ) is a Willard 

subnet , but not a frequent subnet, of the sequence ( 1 ,  2, 3, . . .  ) .  
Frequent subnets cannot be  used interchangeably with Willard, Kelley, or AA sub

nets; see 17.29. 

d. Frequent subnets are a generalization of subsequences. 
Let (xm : m E N) and (Yn : n E N) be two sequences. Show that (Yn )  is a 

subsequence of (xm ) if and only if (yn )  is a frequent subnet of (Yn) · 
7.17. Further elementary properties. 

a. Composition of subnets. If (z1 ) is a subnet of (Yf3 ) ,  and (Yf3 )  is a subnet of (x0 ) , then 
(z1 )  is a subnet of (x0 ) .  

If the two given subnets are Kelley subnets, Willard subnets, or frequent subnets, 
then then ( z1 ) is the same type of subnet of (X a ) . 

b. Suppose that (xa : a E A) is a net in a set X and (xa ) is eventually in some set of 
the form E =  E1 U E2 U · · · U En � X. Then there is at least one j such that (xa ) is 
frequently in Ej . Thus (X a ) has a frequent sub net that takes all its values in E1 . 

c. Definition. Two nets have the same eventuality filter if and only if each net is a subnet 
of the other. We shall then say the nets are AA-equivalent , or simply equivalent . 

7.18. Lemma on Common Subnets. Let (ua : a  E A) , (v{3 : f3 E Iffi) ,  and (w1 : 'Y E C) 
be three nets taking values in a set X. Say the nets have eventuality filters :J, 9 ,  and JC, 
respectively. Then the following conditions are equivalent: 

(A) F n G n H is nonempty, for every F E  :J, G E 9, H E  JC. 

(B) J\1 = {S � X  : S :;;::> F n G n H for some F E  :J, G E 9, H E  JC} is a proper 
filter. 

(C) The three filters have a common proper superfilter - i.e. ,  there exists a proper 
filter which contains all three given filters. 
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(D) The three nets have a common AA subnet - i.e. , there exists a net (P.x ) which 
is an AA subnet of each of the given nets. 

(E) The three given nets have a common Willard subnet - i.e. ,  there exists a net 
(p.x : >. E lL) which is a Willard subnet of each of the three given nets. (It is 
understood that three different functions are used for the monotone mappings 
cp from lL into A, IB, and C . )  Furthermore, that net can be chosen so that it 
is a maximal common AA subnet of the three given nets - i.e . ,  so that 
if (qJL )  is any common AA subnet of the three given nets, then ( q1J is also an 
AA subnet of (p_x ) .  

Note. We have stated the lemma in terms of three nets and three filters to display a typical 
case. The number 3 may be replaced by any positive integer. 

Proof of lemma. The equivalence of (C) and (D) is immediate from our correspondence 
between AA subnets and superfilters. The implications (C) =} (A) =} (B) =} (C) are 
easy; the implication (E) =} (D) is trivial. It suffices to show that (A)-(D) together imply 
(E) . Note that the filter M in condition (B) is a a minimum common superfilter - i.e. , 
it is the smallest filter containing all of the given filters. Any net corresponding to it is a 
maximal common AA subnet of the three given nets. It suffices to exhibit a net (P.x : >. E lL) 
whose eventuality filter is M, such that (p.x : ,\ E lL) is a Willard subnet of each of the three 
given nets. 

For each (a,  b, c) E A x  IB x C, define 

Ta,b,c { Un : 0: � a} n { V,6 : (3 � b} n { w, : r � c} 
{x E X  : x = Un = Vf3 = w1 for some a �  a, (3 � b, r � c} . 

Then Ta,b,c is nonempty, by condition (A) . Hence 

lL { (a, f3, r) E A X !B x C Ua = V,13 = w1} 

is a frequent subset of A x IB x C, when A x IB x C is given the product ordering. For each 
>. = (a, (3, r) in lL, define p_x = Un = Vf3 = w1 ; the remaining verifications are easy. For the 
monotone mappings cp from A x IB x C into A, IB, C, use the coordinate projections. 

7. 19. Corollary on equivalent subnets. If (y13 )  is an AA subnet of (xa ) , then (y13 )  is 
equivalent (in the sense of 7. 17.c) to a Willard subnet of (xa ) · 
Hints : The two given nets have a common AA subnet - namely, (y,13 ) .  As in 7 .18(E) ,  let 
(p.x ) be a common Willard subnet and also a maximal common AA subnet of the two given 
nets. Since (y,13) has the property for which (p.x ) is maximal, (y,13 )  is an AA subnet of (p_x ) .  
Thus (y,13 )  and (p.x )  are subnets of each other. 

Remarks. A similar result is given by Giihler [1977] . 
We have seen that every Willard subnet is a Kelley subnet , every Kelley subnet is an 

AA subnet, and every AA subnet is equivalent to a Willard subnet . Consequently, the three 
types of subnets can be used interchangeably in many contexts. See especially 15.38. 
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7.20. Though AA subnets are simpler than Kelley subnets in most respects, Kelley subnets 
do have at least one advantage, which we now present in two formulations: 

( 1 )  Suppose that f : X ---> V is some function, (x0 : a E A) is some net in X ,  and 
(Yf3 : (3 E B) is some Kelley subnet of the net (f(xa ) : a E A) in V. Then (xa : a E A) 
has a Kelley subnet (sf3 : (3 E B) in X such that f(sf3) = Yf3 for each (3. (Indeed, if 
Yf3 = f(x'P(f3) ) ,  take Sf3 = x'P(f3) · )  

(2) Suppose that ( (ua , va ) : a E A) is a net in some product of sets U x V; then (va 
a E A) is some net in V. Suppose that (Yf3 : (3 E B) is some Kelley subnet of the net 
(va : a E A) in V. Then ( (u0 , va ) : a E A) has a Kelley subnet ( (pf3 , qf3) : (3 E B) 
such that qf3 = Yr> for each (3. (Indeed, if qf3 = Yf3 = v'P(f3) ' take Pf3 = u'P(f3) · )  

These are actually two formulations of the same principle. To see this, observe that if 
j, (xa ) ,  (Yf3 )  are given as in ( 1 ) ,  then we can reformulate the problem as in (2) by taking 
X =  U and (ua , va ) = (xa , f (xa ) ) .  Conversely, if we are given (ua , v0 ) as in (2) , then we 
can reformulate the problem as in ( 1 )  by taking X =  U x V and Xa = (ua , va ) ,  and letting 
f : X ---> V be the projection onto the second coordinate. 

7.21. Some properties of nets are subnet hereditary, in the sense that if a net has the 
property, then so does every subnet. For instance, we shall see in later chapters that in a 
topological space, every subnet of a convergent net is convergent . 

Likewise, some properties are supernet hereditary, in the sense that if a net has the 
property, then so does every supernet . For instance, in a topological space, the property of 
not being convergent is supernet hereditary. 

Many proofs with nets involve such hereditary properties. Consequently, in many proofs 
it is possible to replace a given net with any convenient subnet, or with any convenient 
supernet. 

Some proofs use the phrase "we may assume," particularly in connection with hered
itary properties. In many cases, what this means is that by relabeling, we may replace the 
given net with some subnet or supernet that has an additional property of interest . See the 
related discussion in 1 . 10. 

UNIVERSAL NETS 

7.22. Definition. A universal net (also occasionally known as an ultranet) in  a set X is 
a net (x6 ) with the property that for each set S � X, either (i) eventually x0 E S or (ii) 
eventually x0 E X\S. 

7.23. Example. Let (x6 ) be a net in X. Assume (x6 ) is eventually constant; i .e . ,  assume 
there exists some z E X  such that eventually x0 = z. Then (x6 ) is a universal net. 

Although other universal nets exist, other explicit examples of universal nets do not 
exist! That is explained below. 
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7.24. Observations. A net (x0) is universal if and only if its eventuality filter is an ultrafilter. 
If a net is universal, then any AA-equivalent net is also universal; by 7. 19 ,  therefore, in the 
discussions below it does not matter whether we use Willard subnets, Kelley subnets ,  or 
AA subnets. A net (x6 ) is eventually equal to some constant x if and only if its eventuality 
filter is the fixed ultrafilter at x. 

Thus, the theory of universal nets is simply a reformulation of the theory of ultrafilters. 
The Ultrafilter Principle, introduced in 6 .32, can be reformulated as 

(UF3) Universal Subnet Theorem (Tukey, Kelley). Every net has a 
subnet that is universal. 

Likewise, the Weak Ultrafilter Theorem, presented in 6 .33, can be reformulated as 

(WUF ' ) Weak Universal Subnet Theorem. There exists a universal net 
in N that is not eventually constant. 

As we remarked in 6.33, free ultrafilters are intangibles. The same is therefore also true 
of universal nets that are not eventually constant. Though we have no explicit examples of 
these peculiar nets, nevertheless they are useful conceptual tools for some kinds of reasoning. 

7.25. Further properties of universal nets. 
a. If (xa ) is a universal net, then any subnet of (xa ) is AA-equivalent to (xa ) and is also 

universal. 

b. If (X a )  is a universal net in X and X a is frequently in some set 5 <;;; X,  then X a is 
eventually in 5. 

c. If a net (xa : o: E A) is not universal, then A has two disjoint frequent sets A1 , A2 such 
that the resulting frequent subnets (X a : o: E A1 ) have disjoint ranges. 

d. If (x6 ) is a universal net in a set X = 51 U 52 U · · · U 5n , then there is at least one j 
such that eventually x0 E 51 . Hint :  5.8(E) . 

e. If (x0 ) is a universal net in a finite set X, then (x0 ) is eventually constant . 

f. If (xn )  is a universal net that is a sequence, then it is eventually constant. Hint : If 
(xn) has infinite range, then that range can be partitioned into two disjoint infinite 
sets. Then what? 

g. If (x0) is a universal net in a set X and f : X --+ Y is any function, then (f (x0 ) )  is a 
universal net in Y.  

h. Let ( x0 : t5 E [])) be a net in some set X, and consider its range R = { x0 : t5 E [])} .  
Show that (x6 ) i s  a universal net in  X if and only i f  (x0) i s  a universal net in  R. Thus, 
the universality of a net (x6 ) in a set X does not depend on the choice of X, as long 
as X is large enough to contain all the points of that net . 
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MORE ABOUT SUBSEQUENCES 

7.26. Lemma. Let (vm) and (Ym) be sequences in a set X.  Then v is an AA subnet of y 
if and only if these two conditions are satisfied: 

(i) Range(v) \ Range(y) is a finite subset of X, and 

(ii) for each r E X, if y- 1 (r) is a finite subset of N, then v- 1 (r) is also a finite 
subset of N. 

Proof This argument is from Aarnes and Andenres [ 1972] . First, suppose that v is an AA 
subnet of y. Then y is eventually in the set Range(y), hence v is eventually in that set, 
hence Vj ¢:. Range(y) for only finitely many values of j; this implies (i) . For condition (ii ) ,  
suppose that y-1 (r) i s  a finite set; then y i s  eventually in  X \  {r } ;  then v is also eventually 
in that set; hence v- 1 (r) is also a finite set. 

Conversely, suppose conditions (i) and (ii) are satisfied. Let S be a subset of X such that 
eventually y E S; we are to show that eventually v E S. For each r E X \ S, the set y-1 (r) 
is finite; hence the set v- 1 (r) is finite. The sets Range(y) \ S and Range(v) \ Range(y) are 
finite; hence the set Range( v) \ S is finite, and it is a subset of X \ S. Therefore the set 
F = UrERange(v) \S v- 1 (r) is finite. For k sufficiently large, we have k ¢:_ F. For all such 
k, we have Vk E S. 

7.27. Theorem on equivalent subsequences. Let (xi ) and (yj )  be sequences in a set 
X ,  and assume that (yj ) is an AA subnet of (xi ) · Then (Yj ) is AA-equivalent to some 
subsequence of (xi) · 

Proof This argument is from Aarnes and Andenres [ 1972] . Since Range(x) is an eventual set 
for y( · ) ,  by discarding the first few terms of (y1 ) we may assume without loss of generality 
that y(N) � x(N). For each r E y(N) , the set y- 1 (r) is nonempty; hence the set x- 1 (r) is 
nonempty. For such r, define a set Ar � N as follows: 

• If y-1 (r) is an infinite set, then x- 1 (r) is also an infinite set; in this case let Ar = 
x- 1 (r) . 

• If y- 1 (r) is a finite set, let Ar be some nonempty finite subset of x- 1 (r) . (Any such 
set will do for the purposes of this proof. If the reader desires a canonical choice of 
An let Ar be the singleton whose sole member is the first member of x- 1 (r) . )  

In  either case we obtain x(Ar) = {r} .  Now let A =  UrEy(N) Ar ; then A is an infinite subset 
of N. Say its members are, in increasing order, 

Define Vk = Xak ; then ( vk )  is a subsequence of (xi ) .  It is clear from the definitions above 
that v(N) = x(A) = y(N) .  Also, for each r E y(N) , the sets v- 1 (r) and y- 1 (r) are both 
finite or both infinite. By 7.26, v and y are AA subnets of each other. 



168 Chapter 7: Nets and Convergences 

7.28. ( Optional. ) There are a few minor differences between Aarnes-Andenres subnets and 
Kelley subnets; here is one of them. Let X be a given nonempty set. Does every net in X 
have at least one subnet that is a sequence? 

a. No, if we use Kelley subnets. Indeed, take A = NN with the product ordering, and 
take x to be any function from A into X; then no Kelley subnet of (xa : a E A) is a 
sequence. 

Hint : If (a1 , a2 , a3 , . . .  ) is a sequence in A, then each aj is itself a sequence of 
positive integers. Say aj = (m1j , m2j , m3j ,  . . .  ) .  Then there is no j for which aj >;= 
(ml l  + 1 ,  m22 + 1 ,  m33 + 1 ,  . . .  ) . 

b. Yes, if we use Aarnes-Andenres subnets and X is a finite set. Indeed, by 7. 10.e there 
is at least one x0 E X such that frequently X a = x0 . Then the constant sequence 
(xo , xo , xo ,  . . .  ) is an AA subnet of (xa ) · 

c. No, if X is an infinite set, regardless of which type of subnets we use. Indeed, let ll be 
any free ultrafilter on X. (The existence of such an ultrafilter was established in 6.33.) 
Let (xa) be a corresponding net; thus (xa ) is a universal net that is not eventually 
constant . If some sequence (Ym ) is a subnet of (xa ) ,  then (Ym ) has the same eventuality 
filter ll, hence (Ym ) is universal and not eventually constant - contradicting 7.25.f. 

7.29. Theorem. Let X be a chain ordered set (e.g., the real line) . Then any sequence in 
X has a monotone subsequence. 

Proof (Thurston [1994] ) .  By a maximal element of a sequence we shall mean a maximal 
element of the range of that sequence. It is easy to see that if s is a sequence that has no 
maximal element , then s has an increasing subsequence. 

Now let s =  (x1 , x2 , x3 , • . .  ) be a given sequence; we may assume that every subse
quence of s has a maximal element. Let Xn(l ) be a maximal element of s. Let Xn(2) 
be a maximal element of (xn(l )+l , Xn(l )+2 , Xn( l )+3 > . . .  ) .  Let Xn(3) be a maximal element 
of (xn(2)+ l , Xn(2)+2 , Xn(2)+3 , . . .  ) .  Continuing in this fashion, we obtain positive integers 
n( 1 )  < n(2) < n(3) < · · · satisfying Xn(l ) 2 Xn(2) 2 Xn(3) 2 · · · . 

CONVERGENCE SPACES 

7.30. By a convergence space (or limit space) we shall mean a set X equipped with a 
function 

lim {proper filters on X} --+ {subsets of X} .  

Any function can be  used for lim in  this definition, but in most cases of interest the function 
is determined by some structure already given on X - a topology, an ordering, a measure, 
etc. 

We emphasize that the value of lim is a subset of X. In some convergence spaces (e.g. , 
the one used in college calculus) ,  the set lim :1 contains at most one point of X ;  such 
convergence spaces are discussed further in 7.36. 
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7.31. Whenever (X, lim) is a convergence space, then we shall extend the function lim in 
the following ways: 

(a) If '13 is a filter base on X, then lim '13 = lim J"_ where J" is the filter generated by '13.  
(b) I f  (xa ) i s  a net in X, then lim(xa ) = lim J" where J" i s  the eventuality filter o f  (xa ) 

Note that the resulting "function" lim : {nets in  X}  ----+ {subsets o f  X}  i s  not a function 
strictly in the sense of 1 .3 1 ,  since {nets in X}  is a proper class, not a set. Note, also, that 
this function satisfies the following condition: 

(*)  if (xa ) and (y(3) are nets with the same eventuality filter (i .e. ,  if (xa ) and (yf3) are 
AA-equivalent) ,  then the set of limits of (xa ) is equal to the set of limits of (Yf3 ) -

Conversely, we have this alternate definition: 

A convergence space is a set X that is equipped with some function 
lim : {nets in X}  ----+ {subsets of X} that satisfies (* ) .  

Indeed, if (* )  i s  satisfied, then (b)  defines a corresponding limit function on the collection of 
all proper filters on X. (In many applications, we verify (*)  by verifying a stronger property 
described below in 7.34.b. )  

Thus, in convergence spaces we may use nets and their eventuality filters interchangeably 
(and use AA subnets and superfilters interchangeably, as well) . Each type of object has its 
advantages, as we noted in 7.13. 

Remarks. For more general theories of convergences than those considered in this book, 
see: Bentley, Herrlich, and Lowen-Colebunders [1970] for categories of convergence spaces; 
Dolecki and Greco [1986] for algebraic properties of collections of convergence structures; 
and Gahler [1984] for "convergence spaces" that are more general than "filter convergence 
spaces." In Kelley's [1955/ 1975] book, net convergences are considered in great generality, 
without condition (* )  being imposed a priori; see the remarks in 15. 10. 

7.32. More notations. If J" is a proper filter or a net, the expression z E lim J" will be read 
as "z is a limit of J"." It may also be written as J" ----+ z and read as "J" converges to z. " 
The statement "J" does not converge to z" may be written as z � lim J", or as J" f+ z. 

Many variants on these notations can be used for clarification. For instance, for a net 
(xa : o: E A) , the expression Xa ----+ z may also be written as "xa ----+ z in X as o: increases in 
A." When two or more convergences are being considered, we may use a prefix or subscript 
or superscript to distinguish them; for instance, we may write 

z E 'J- lim Xa or z E lim Xa 
'J 

'J 
or Xa ----+ Z 

to indicate that z is a limit of the net (xa ) when we use the convergence function determined 
by some structure 'J, rather than some other structure S. Other variants on the notation 
should be clear from the context; we shall not attempt to list them all here. 

7.33. Let p : X ----+ Y be a mapping from one convergence space into another. We shall say 
p is convergence preserving if it has this property: 
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whenever (X a )  is a net converging to a limit x in X ,  then the net (p( X a ) )  
converges to p (  x )  in Y 

or, equivalently, 

whenever � is a filter converging to a limit x in X ,  then the filter { S � Y 
p- 1 (S) E �} converges to p(x) in Y .  

(Exercise. Prove the equivalence.)  Observe that the composition of  two convergence pre
serving maps is convergence preserving; this is discussed further in 9. 7. 

7.34. Definitions. Most convergence spaces of interest satisfy both of the properties below; 
in fact , these properties are satisfied by all the convergence spaces that we shall consider 
in this book. (Some mathematicians make one or both of these properties a part of their 
definition of convergence space. )  

a.  A convergence space i s  centered i f  i t  has the property that 

if Uz is the ultrafilter fixed at z, then Uz ____, z ,  
or, equivalently, 

if (xa ) is a net such that eventually Xa = z, then Xa ____, z.  
b. A convergence space is isotone if it has this property: 

if 9 is a superfilter of �' and � ____, z, then 9 ____, z 
or, equivalently, 

if (y13) is a subnet of (xa ) ,  and Xa ____, z, then Y/3 ____, z .  
In the last sentence, it does not matter which type of subnet we use - Willard, Kelley, or 
AA - since we have built condition (* ) of 7.31 into our definition of convergence space. 
On the other hand, for AA subnets the isotonicity condition above implies condition (* ) of 
7.31 .  

7.35. Exercise. Let X be  an isotone convergence space. I f  (xa ) i s  a universal net and some 
subnet of (xa ) converges to z, then Xa ____, z also. 

7.36. A convergence space (X, lim) is Hausdorff if each net or proper filter F has at most 
one limit - i.e. , if each set of the form lim F contains at most one member. 

When (X, lim) is a Hausdorff convergence space, then z E lim F may be rewritten as 
z = lim F ;  we say that z is the limit of F.  (Now the notation should begin to look more 
like that of college calculus . )  In effect , our original limit function - which took values in 
{subsets of X } - is replaced by a new function, again denoted by "lim," which takes values 
in X.  Thus, we are not asserting that z = { z} . The distinction between the two different 
lim functions should be clear in most contexts and should not cause any confusion. 

Most convergence spaces or topological spaces in applications are Hausdorff, and so 
some mathematicians incorporate the Hausdorff condition into other definitions - e.g. , 
they make it a part of their definition of convergence space, compact space, gauge space, 
completely regular space, topological linear space, or locally convex space. We shall not 



Convergence in Posets 171 

follow that practice, for many of the concepts in this book are revealed more clearly if 
Hausdorffness is treated as a separate property. It is often helpful to analyze Hausdorff 
spaces in terms of other, simpler spaces that are not Hausdorff (see 15 .25.d) .  Throughout 
this text, Hausdorffness will be assumed only when stated explicitly. 

More notation. If X and Y are convergence spaces and Y is Hausdorff, then the equation 

lim f(x) = Yo 
x ---+ xo 

is a condition on x0 , y0 , and J,  with the following meaning: Whenever (xa ) is a net in 
X \ { x0 } that converges in X to xo , then f (X a) -+ Yo in Y .  Most limits in college calculus 
are of this form - in some cases with xo or Yo equal to oo. Making oo a member of our 
convergence space is not particularly difficult; see the discussions in 5 . 15.f, 5 . 15.g, 18 .24. 

CONVERGENCE IN POSETS 

7.37. Remarks. The two most important kinds of convergences are the topological con
vergences, studied in Chapter 15 ,  and the order convergences, studied in the remainder 
of this chapter. The most important type of order convergence needed by analysts is the 
order convergence in JR; that special case should be kept in mind by the reader at all times 
throughout the remainder of this chapter. However, many of the basic properties of order 
convergence in lR generalize readily to other settings that are occasionally useful. Thus, we 
begin our study of order convergence in a setting that has as few hypotheses as possible: 
the setting of partially ordered sets. 

7.38. The literature contains several different , inequivalent definitions of convergence in 
partially ordered sets. The following one works best for our purposes, despite its complexity. 
It can be restated in other ways that are sometimes more convenient; see 7.40.d and, in 
special contexts, 7.41 and 7.45. 

Definition. Let (X, � )  be a poset. Let z E X , and let (xa : o: E A) be a net in X. We 
shall say that (xa ) is order convergent to z (sometimes written Xa � z) if 

there exist nonempty sets S, T � X such that (S, �) and (T, >;=) are directed 
sets, sup(S) and inf(T) both exist in X and are equal to z, and for each fixed 
s E S and t E T we have eventually s � Xa � t . 

(We emphasize that T is to be a directed set when we reverse the restriction of the given 
ordering. Thus, each finite subset of S must have an upper bound in S, and each finite 
subset of T must have a lower bound in T.)  

7.39. Definitions. Let (xa : o: E A) be a net taking values in a partially ordered set (X, �) . 
We say that (xa ) is increasing if 
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This may be abbreviated Xn r. We say that (xn ) increases to a limit z ,  denoted Xn l z ,  
i f  in  addition z = sup{xn : a E A} .  

Analogously, a net (xn : a E A) i s  decreasing (written x"' 1 )  i f  a � {3 ==? Xn � Xf3 i the 
net decreases to a limit z (written Xn 1 z) if in addition z = inf { Xn : a E A}. 

A net is  monotone if i t  is increasing or decreasing. 

7.40. Exercises. Let (xn : a E A) be a net in a poset (X, � ) ,  and let z E X. Then: 

a. Xn l z if and only if (xn ) is increasing and Xn � z (in the sense of 7.38) .  

b. Xn 1 z i f  and only i f  (xn ) is decreasing and Xn � z (in the sense of  7.38 ) .  

c. In  a complete lattice, any monotone net converges. 

d. Order convergence in terms of monotone convergence: Xn � z (defined as in 7.38) if 
and only if 

there exist nets ( Uf3 : {3 E JE) and ( v"f : "( E C) such that Uf3 l z and v"f 1 z , 
and for each fixed {3 and "( we have a-eventually Xn E { x : u13 � x � v"f} .  

Hints : For the "if" part, let S and T be the ranges of those nets (u13) and (v"' ) .  For 
the "only if" part, let ( Uf3) and ( v"f) be given by the identity maps on the sets lE = S 
and C = T. 

e. Order convergence is centered and isotone. 

f. Convergence preserves inequalities. Suppose (xn : a E A) and (Yn : a E A) are nets 
based on the same directed set, satisfying Xn � Yn for all a .  If Xn � X00 and 
Yn � Yoo , then Xoo � Yoo · 

Hint : Let sx and yx be two sets that satisfy the conditions in 7.38 that define the 
convergence Xn � x00• Also, let SY and TY be two sets that satisfy the conditions 
in 7.38 that define the convergence Yn � Y= · Fix any sx E sx and tY E TY ; then 
we have eventually sx � Xn � Yn � tY , and thus sx � tY .  Use that fact to prove that 
sup(Sx) � inf(TY ) .  

g .  Order convergence is Hausdorff. Thus, the statement Xn  � z may be rewritten as 
z = o- lim Xn . Hint :  Apply the preceding result with Xn = Yn · 

h. Let (X, � )  and (Y, � )  be posets. (Here we use the same symbol � for two different 
partial orderings.) Let f : X ---> Y be some function that is sup-preserving and inf
preserving (see 3.22 ) .  Then f is also convergence-preserving (see 7.33 ) ,  if X and Y are 
equipped with their order convergences. 

,. 

Hint :  First show that f preserves the convergence of monotone sequences - i.e. ,  
the convergences described in 7.39; then use 7.40.d. Remark: The assumptions cannot 
be weakened substantially; in 15 .45 we give a partial converse. 

i. The "squeeze theorem." Suppose (xn : a  E A) , (Yn :  a E A) ,  (zn : a  E A) are nets 
based on the same directed set, satisfying Xn � Yn � Zn for all a. If Xn � w and 
Zn � w, then also Y= � w. (Remark. Compare with 26.52(E) . )  
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7.41. Theorem on convergence in chains. Let (X, :::; ) be a chain. Let (xa : o: E A) be 
a net in X, and let z E X. Then X0 __::__, z (that is, order convergence, as defined in 7.38 or 
characterized in 7 .40.d) if and only if these two conditions are satisfied for all cr and T in X :  

(i) i f  z > cr , then eventually Xa > cr , and 

(ii) if z < T, then eventually Xa < T. 

Remarks. Note that condition (i) is satisfied vacuously (i .e . ,  for free) if z happens to be the 
largest element of X, for then there is no element T that satisfies z < T. Likewise; condition 
(ii) is satisfied vacuously if z happens to be the smallest element of X. Considering the 
examples of [�oo, +oo] , [0, +oo) ,  IR, we see that some chains have both a largest and smallest 
element , some chains have one or the other, and some chains have neither. 

Proof of equivalence. It is an easy exercise that order convergence implies conditions (i) and 
(ii ) ;  we omit the details. Conversely, assume that (xa ) and z satisfy condition (i) above; we 
shall find a set T satisfying the conditions of 7.38. (Forming S from (ii) is similar . )  If the 
net (X a ) satisfies eventually X a :::; z, then the singleton T = { z} satisfies the requirements 
for 7.38, and we are done. Assume, therefore, that the net (xa ) does not satisfy eventually 
Xo: :::; z. Let T = { t E X : t > z } ;  we shall show that this set satisfies the requirements. 
We have frequently Xn E T, and so T is nonempty. From condition (i) we see that for each 
t E T, eventually Xa < t .  It suffices to show that z = inf(T). Clearly z is a lower bound for 
T; we must show that it is larger than any other lower bound. Suppose, on the contrary, 
that z' is a lower bound for T and z' > z. Then z' is actually a member of T, and thus z' 
is the smallest element of T. That is, z and z' are adjacent in the ordering - i.e . ,  there 
is no other element of X between z and z' . Since z' E T, we have eventually Xn < z' and 
thus eventually Xa :::; z, a contradiction. This completes the proof. 

7.42. Proposition ( optional) .  Suppose X is an infinitely distributive lattice (as defined in 
4 .23) . Then the lattice operations V, 1\ are "jointly continuous," in the following sense: If 
( (x, , x;, ) : o: E A) is a net in X x X with Xa __::__, x and x� __::__, x' , then Xa V x� __::__, x V x' 
and x a 1\ x;, __::__, x 1\ x' . 
Proof This argument follows Vulikh [1967] . We shall show x0 V x� __::__, x V x' ; the result for 
meets is proved analogously. By assumption, there exist nets (u:>.. : ,\ E L) ,  (v11 : p, E Ivf) ,  
(u� : cr E S) , (v� : T E T )  such that 

U;>.. T x, u� T x' , v� l x' , 

and for each fixed ,\ , p,, cr, T we have a-eventually 

and 

Let L x S and AI x T have the product orderings. Define 
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Then for each fixed A, /-1, a, T we have a-eventually ih,,a =<- Xa v X� =<- v/L,T ' Furthermore, 
the net (u.x,a : (A , a) E L x S) is increasing and (v11,7 : (J.L, r) E M  x T) is decreasing. Then 

sup u.x,a = sup ( u.x V u�) = (sup u.x) V (sup u�) = x V x' 
(.A,a) EL x S  AEL ,aES .AEL o-ES 

by 3.2l .m. Use the infinite distributivity of the lattice to prove the middle equality in this 
string of equations: 

inf �,7 = inf (v11 V v�) = ( inf v11) V ( inf v�) = x V x' . 
(�L,T)EM xT 11EM,TET 11EM TET 

Thus U>.,a I (x v x') and v/L,T l (x v x') ,  so Xa v X� � X v x' . 

CONVERGENCE IN COMPLETE LATTICES 

7.43. Remarks on applicability of the theory. When (X, =<-)  i s  a complete lattice, then 
the preceding characterizations of order convergence can be restated in other forms that 
are sometimes more convenient . �xamples of complete lattices to keep in mind are the 
extended real line [-oo, +oo] and the space [0, 1 ]8 = {functions from S into [0, 1 ] }  with the 
product ordering (for any set S ) .  

In  applications, one may wish to  apply the following results to  other posets (X, =<- )  
that are not order complete - e.g. , the real line � or a space such as C[O, 1 ] = {continuous 
functions from [0, 1] into �} .  Here are two commonly used methods for extending the theory 
to such spaces: (i) We may work in some larger set Y :2 X that is order complete. For 
instance, � can be embedded in [-oo, +oo] , and C[O, 1] can be embedded in [-oo, +ooJ [O, lJ . 

(ii) Alternatively, we may find some subset of X that is order complete and arrange our 
applications so that everything of interest stays in that subset. For instance, although � is 
not order complete, the interval [a, b] is, for any real numbers a, b with a < b. More generally, 
if (X, =<- )  is Dedekind complete, then any set of the form [a, b] = {x E X  : a =1- x =1- b} is 
order complete. Thus, the theory of convergences in order complete sets is applicable to a 
Dedekind complete poset, provided that we restrict our attention to nets that are eventually 
bounded. 

7.44. Definitions. Let (xa : a E A) be a net in a complete lattice (X, =<- ) .  Then we may 
define the related objects 

inf Xf3 {3';;;a 
Observe that Sa =1- Xa =1- ta . 

and sup Xf3· 
{3';;;a 

The net (sa : a  E A) is increasing; hence it increases to a limit. That limit is called the 
liminf of the given net (X a ) ,  since it is the limit of the infs; it is also called the lower limit 
of the net (xa ) · The liminf of the xa's is denoted lim inf Xa , or sometimes lim Xa. Note 
that if the given net (xa ) is a sequence, then (sa) is also a sequence. 
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The net (ta : a E A) is decreasing; hence it decreases to a limit. That limit is called 
the limsup of the given net (xa ) , since it is the limit of the sups; it is also called the upper 
limit of the net (X a ) .  The limsup of the X a 's is denoted lim sup X a ,  or sometimes lim X a .  
Note that i f  the given net (xa ) i s  a sequence, then (ta )  is also a sequence. 

Also note that lim inf X a � lim sup X a .  

7.45. Theorem on convergence in lattices. Let (X, � )  be a complete lattice. Let 
z E X, and let (xa : a  E A) be a net in X. Then the following conditions are equivalent .2 

(A ) Xa __!!____., z (as defined in 7.38 or as equivalently characterized in 7.40.d) . 

(B) The net 's eventuality filter :J contains a family of intervals { [s>. ,  t>.] : ,\ E A} 
such that n>.EA [s>., t>.] = {z} .  

(C )  lim inf Xa  = z = lim sup Xa· 

(D) There exist nets (sa : a E A) and (ta : a E A) (based on the given directed 
set A) such that sa j z and ta l z, and Sa � Xa � ta for all a. 

Proof For (C) =} (D) , define sa and ta as in 7.44. It is obvious that (D) implies the 
condition given in 7.40.d; thus (D) =} (A ) . To prove (A) =} (B) , suppose (xa ) and z 
satisfy the conditions in 7.38; then take A = S x T - that is, consider the collection of 
order intervals { [s ,  t] : s E S, t E T} .  

To prove (B) =} (C) , let Ua = inf,13)pa x,13 and Va = sup/3)pa x,13 for each a E A. Then 
Ua � Xa � Va · Let U = lim inf Xa and V = lim sup x,13; then Ua j U and Va l V. 
Temporarily fix any ,\ E A. Since [s>., h] E :J, we have x,13 E [s>., t>.] for all {3 sufficiently 
large. Therefore ua , Va E [s>. ,  h] for all a sufficiently large. It follows that U, V E [s>. ,  t>.] . 
This is valid for every ,\.  Hence u and v both lie in n>.EA [s>. , h] = {z} .  

7.46. Remarks. In a complete lattice, when a net has a limit, that limit is equal to the 
liminf and limsup. However, the liminf and limsup exist in any case, whether the limit 
exists or not. In cases where the limit does not exist or is not known to exist, the liminf and 
limsup serve as "almost limits," or "pseudo-limits." They possess many of the properties 
one associates with a limit, and they can be used in place of a limit in many arguments. 

For a very different sort of generalized limit, see 12 .33. 

7.47. Further properties. Let (X, � )  be a complete lattice. 

a. Suppose (y,13 : {3 E lll\) is a subnet of (xa : a E A) in X. Then 

lim inf Xa � lim inf Y/3 � lim sup Y/3 � lim sup Xa . 

Hints : Fix any a E A, and let ta = supa)pa Xa . Show that eventually Xa � ta ; hence 
eventually Y/3 � ta ; hence lim sup Y/3 � ta . Then what? 

2Some of these conditions make sense in a more general setting - e.g.,  if we merely assume that (X, �)  
i s  a poset - and the literature sometimes uses one o f  these conditions as a definition o f  order convergence 
in such a setting. However, in such a setting the several conditions listed here are not all equivalent. 
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b. Suppose (xa : a E A) and (Ya : a E A) are nets based on the same directed set A, and 
X a � Ya for all a (or for all a sufficiently large) . Then 

lim inf X a � lim inf Ya and lim sup X a � lim sup Ya ,  

and i f  both nets possess limits then lim X a � lim Ya .  

7.48. Convergence of sets. Let (Sa )  be a net whose elements are subsets of a set n ,  
and let S <:;;; D also. What does Sa ----+ S mean? There are many different definitions in 
the literature, not all equivalent. The simplest of these, and perhaps the most frequently 
useful, is in terms of the ordering in which S � T means that S <:;;; T. That ordering makes 
P(D) a complete lattice. Then for any net (Sa ) ,  we have 

lim sup Sa {w E D  : frequently w E  Sa } ,  

lim inf Sa {w E D  : eventually w E  Sa } · 

Then it is always true that lim inf Sa <:;;; lim sup Sa , and we define Sa ----+ S to mean that 

lim inf Sa s lim sup Sa , 

or equivalently that 

S <:;;; lim inf Sa and lim sup Sa <:;;; S. 

That convergence can also be restated in terms of the characteristic functions of the sets; 
it says 

for each w E n, eventually 1sa (w) = 1s (w) .  

See also the related result in  15 .26.e. 
Note that if S is a a-algebra of subsets of n ,  and (Sn) is a sequence in S ,  then lim sup Sn 

and lim inf Sn both lie in S. 

7 .49. Remarks. Although convergence of nets of sets is most often defined as in 7.48 (or 
equivalently, as in 15 .26.e) , other definitions are occasionally useful, particularly when the 
sets have some additional structure: 

• A positive charge determines a pseudometric on an algebra of sets, as in 21 .9. That 
pseudometric determines a convergence. 

• The Hausdorff metric, defined in 5 . 18.d, determines a convergence for the nonempty, 
closed, metrically bounded subsets of a metric space. 

• Several different topologies on the collection of closed subsets of a metric space are 
surveyed by Beer and Lucchetti [1993] . Each topology determines a convergence. 
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Chapter 8 

Elementary Algebraic Systems 

MONOIDS 

8.1 .  Definitions. A monoid i s  a triple (X ,  D ,  i) consisting of  a set X ,  a binary operation 
D ,  and a special element i E X  (called the identity element of X) ,  satisfying these rules: 

(xDy)Dz = xD(yDz) 

xDi = X  = iDx 

(associative law) 

( identity law) 

for all x, y, z E X. The fundamental operations of the monoid are D (binary) and i 
(nullary) .  We may refer to X itself as a monoid if i and D do not need to be mentioned 
explicitly. When we disregard i and D ,  and just consider X as a set, it is called the 
underlying set of the monoid. 

Different monoids X and Y generally have different identity elements and different binary 
operations, but we may use the same symbols i and D in different monoids if no confusion 
will result; we may use subscripts ( ix , iy ,  Ox ,  Oy )  for clarification if necessary. 

If (X, D ,  ix )  and (Y, o, iy )  are monoids, a homomorphism from X to Y is a mapping 
f : X ---+ Y that preserves the fundamental operations - i.e. ,  a mapping such that 

f(ix ) = iy ,  f(xDx') = f (x) o f(x') 
for all x, x' E X .  If f : X ---+ Y is a bijective homomorphism, we call f an isomorphism of 
monoids; it is easy to see that f- 1 : Y ---+ X is then a homomorphism as well. 

In a monoid (X, D ,  ix ) ,  a submonoid is a subset S s;; X that is closed under the 
fundamental operations of X - i.e . ,  that satisfies ix E S and also satisfies s, t E S => 
sOt E S. Thus, it is a subset S that becomes a monoid in its own right when the monoid 
operations of X are restricted to S. 

8.2. Exercise. The identity element i in a monoid is uniquely determined. In fact , we 
don't even need the associative law for that result ;  if D is a binary operation on a set X 
and i1 , i2 E X  both satisfy the identity law in 8 . 1 ,  then i 1 = i2 . 

8.3. More definitions. A monoid (X, D ,  i) is commutative (or Abelian) if it also satisfies 

xDy = yDx (commutative law) 

179 
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for all x, y E X. 
For many commutative monoids, in  place of D we use the symbol + ,  known as addition. 

Then we say that the operation is written additively, and X is an additive monoid. In that 
case the identity element is denoted by "0" and known as zero or the additive identity. 
For nonempty subsets S, T of an additive monoid, we write x + S = { x + s : s E S} and 
S + T = { s + t : s E S, t E T} , as in 2. 7. The definition of homomorphism can be restated 
for additive monoids thus: 

f(x + x') = f(x) + f(x' ) ,  f(O) = 0 .  

When these conditions are met we shall say f i s  an additive map. The last equation 
can be written f(Ox ) = Oy if some clarification is needed, but usually it is not. Caution: 
Algebraists occasionally use + for a noncommutative operation, but analysts generally do 
not. In this book addition will always represent a commutative operation. 

For some monoids - not necessarily commutative - the symbol used in place of D 
is a raised dot ( · ) ,  known as multiplication. Then we say that the operation is written 
multiplicatively, and the monoid is a multiplicative monoid. In that case the identity 
element is denoted by "1" and known as one or the multiplicative identity. The symbol 
for multiplication may also be omitted altogether; i .e . ,  we may write x · y instead as xy. 
Although this looks just like multiplication of real numbers, the reader is cautioned not to 
assume that it is commutative - see 8.4.e. 

8.4. Examples of monoids. 
a. (:P(X) ,  0, U) and (:P(X) ,  X, n) are commutative monoids for any set X. 

b. lR is an additive monoid, as are certain subsets of lR - for instance, 

[0, +oo),  Z, N u {0} . 

c. Measure theory will be introduced briefly in 1 1 .37 and studied in much greater depth 
in Chapter 2 1 .  A measure, or more generally a charge, is a particular type of mapping 
taking values in a monoid X. In most cases of interest , that monoid X is either [0, +oo] 
or a vector space. The choice of X is discussed further in 1 1 .38. 

d. Arithmetic in the extended real number system [-oo, +oo] was defined in 1 . 17. The 
set [ -oo, +oo] is not an additive monoid, for there is no suitable way to define ( -oo) + 
( +oo). However, any other sum of two elements in [-oo, +oo] is defined. Consequently, 
certain subsets of the extended real line are additive monoids - for instance, 

( -oo, +oo] , [-oo, +oo),  [0 ,  +oo] , N U {O} U {oo} .  

In  [0, +oo] we can define not only finite sums x1 + x2 + · · · + Xn , but also infinite sums 
x1 + x2 + X3 + · · · ; see 10.39. 

e. Let X be a set. Then xx = {functions from X into X} is a monoid, with the binary 
operation being the composition of functions, defined as in 2.3. The identity element 
of xx is the identity map ix : X --t X defined in 2.5 .a. Composition of functions 
is often written "multiplicatively" - i.e. , f o g  is often written simply as fg - but 
composition of functions generally is not commutative. 
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Actually, if (X, D, i) is any monoid, then X is isomorphic to a submonoid of X x 
via the mapping u ,_. fu , where fu : X  ----+ X is the mapping defined by fu (x) = uDx. 

f. Let X be a set. Then P(X x X) = {subsets of X x X} is a monoid, with the binary 
operation being the composition of relations, defined as in 3.3.e. The identity of this 
monoid is the diagonal set I = { ( x, x) : x E X} .  Identifying functions with their 
graphs, we find that xx (discussed in 8.4.e) is a submonoid of P(X x X) .  

g. Let A be  an alphabet - i .e . ,  a collection of symbols that can be  distinguished from 
one another. Let X be the set of all finite strings of symbols made from members 
of that alphabet - for instance, if a, b, c E A, then abc and abac and cab are three 
different members of X.  For a binary operation we use concatenation - for instance, 
abc o abac = abcabac. The empty string - i.e. , the string containing no symbols -
will also be considered as a member of X; then it is the identity element and X is a 
monoid. More complicated algebraic systems that are similar to this one are the basis 
of formal logic, studied in Chapter 14. 

GROUPS 

8.5. Let (X, i , D) be  a monoid, with identity element i . I f  xDy = i , we say that x i s  a 
left inverse for y and that y is a right inverse for x; these are one-sided inverses. 
If xDy = yDx = i, we say that x and y are inverses of each other (or, for emphasis, 
two-sided inverses) . 
Exercises and examples. 

a. A monoid element may have many left inverses (or just one, or none) . Similarly for 
right inverses. 

For instance, let D = {sequences of real numbers} ,  and let X = Dn = { functions 
from D into D} ,  with composition for the binary operation. Define x(r1 , r2 , r3 ,  . . .  ) = 
(r2 , r3 , r4 , . . .  ) . Also, for each real number p, define Yp(r1 , r2 , r3 , . . .  ) = (p, r1 , r2 , r3 , . . .  ) . 
Then x o Yp = i ,  so x has many right inverses. The element x has no left inverses; this 
can be proved directly or using 8.5 .b. To reverse this example, use the same set X,  
but use binary operation D defined by uDv = v o u. 

b. Suppose that (X, i ,  D) is a monoid, x E X, Ut is a left inverse of x, and Ur is a right 
inverse of x. Then u1 = Ur , and x has no other left or right inverses. 

Proof Ut = Ut o i  = Ut o (x our )  = (ut ox) o ur = i o ur = Ur · The same reasoning can 
be applied if Ur is replaced by any other right inverse of x; thus all the right inverses 
of x are equal to U[ . Similarly, all the left inverses of x are equal to Ur · 

c. Any element of a monoid has at most one inverse. If x has an inverse, that inverse 
may be denoted x- 1 . In an additive monoid, that inverse may be denoted -x. 

8.6. Definitions. A group is a monoid in which each element has an inverse. We shall 
restate this definition more directly: 
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A group is a quadruple (X, D ,  -1 , i) consisting of a set X and three fundamental 
operations that obey certain axioms. The three fundamental operations are a binary 
operation (x, y) f-t xDy, a unary operation x f-t x-I , and a nullary operation i - that is, 
a specially selected element i E X. The axioms are 

(xDy)Dz 
xDi X 

xDx- 1 

xD(yDz) 
iDx 
x- 1 ox 

(associative law) 
(identity law) 

(law of inverses) 
for all x, y, z E X. The group is commutative (or Abelian) if it also satisfies 

for all x, y E X .  
xDy yDx (commutative law) 

A subgroup of a group (X, D ,  - 1 , i) is a set S � X that is closed under the group's 
fundamental operations - i.e. , that includes the identity element and also satisfies 

x, y E 5 xDy, x-1 E 5. 

Thus, it is a subset 5 that becomes a group in its own right when the fundamental operations 
of X are restricted to 5. 

The subgroup generated by a set B � X is the smallest subgroup that includes B -
i.e. , the intersection of all the subgroups that include B; it is the closure of B (in the sense 
of 4 .6) under the fundamental operations of the group. 

8. 7. Exercise ( optional) .  There is some redundancy in our list of axioms for a group - a 
shorter list would suffice: 

Suppose X is a set equipped with a binary operation D ,  a unary operation x f-t x- 1 , 
and a special element (i .e . ,  a nullary operation) i, satisfying these axioms: 

D is associative, iDx = x, and 

for all x E X .  Show that the set and operations must also satisfy 

xDx- 1 = i, xDi = x, 
for all x. 

Hint: [(x- 1 ) - 1 ox- 1J D (xox-1 ) = (x-1 ) - 1 o [(x- 1 Dx)ox- 1 ] .  

8.8. More notation. An additive group or multiplicative group is a group in which 
the binary operation is written as + or · , respectively. 

In a multiplicative, commutative group, the product x · (y- 1 ) is also written xjy or � 
In this book + will only be used for a commutative operation. In an additive group, 

the inverse of an element x is written as -x, and the sum x + ( -y) is abbreviated x - y. 
For a nonempty subsets 5, T of an additive group we write -5 = { -s : s E 5} and 
5 - T = { s - t : s E 5, t E T},  as in 2.7. 

8.9. More definitions. A homomorphism between groups (X, D, - 1 , ix )  and (Y, o ,  - I , iy ) 
is a mapping f : X � Y satisfying 

f (xDx') = f(x) o f(x') ,  f( ix ) = iy , 
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for all x, x' E X. Actually, the second and third equations can be omitted from this 
definition, for they follow as consequences of the first equation; the proof of this is an easy 
exercise. Thus, if X and Y are groups, then a mapping f : X ____, Y is a homomorphism of 
groups if and only if it is a homomorphism of monoids. An isomorphism of groups is a 
bijective homomorphism. 

When X and Y are additive groups, the last two equations can be rewritten as f( -x) = 
-f(x) and f(O) = 0. A mapping f : X ____, Y between additive groups is a homomorphism 
if and only if it satisfies f(x1 + x2) = f(xl )  + j(x2) for all x1 , x2 E X; we may then call it 
an additive mapping. 

8.10. Elementary properties and examples of groups. 
a. Degenerate examples. The smallest group is a singleton, with obvious operations. All 

one-element groups are isomorphic to each other. In any group, the subgroup generated 
by the empty set is the singleton consisting of just the identity element . 

The next smallest group contains just two elements, again with obvious operations. 
All two-element groups are isomorphic to each other. One convenient representation 
is this: { 1 ,  - 1 }  is a multiplicative group. 

b. Let (X, D ,  i )  be a monoid, and let G = { x E X : x has an inverse} .  Then G is a 
submonoid of X ,  and in fact G is a group. A particular example of this is given in 
8. 10.i. 

c. In any group (X, D, - 1 , i), we have 

( - 1 )- 1 X = X , 

d. The singleton {0} ,  the integers Z, the rational numbers Q, the real numbers JR;., and 
the complex numbers C are additive groups, when equipped with their usual addition 
operation. In fact, {0} <;;; Z <;;; Q <;;; JR;. <;;; C; each is a subgroup of the next. The set Z 
is the subgroup of Q, JR;., or C generated by the set { 1  } .  

e .  Let r be  a positive number. (The values o f  r most commonly used here are 1 and 
27r. )  The interval [O, r) can be viewed as an additive group, referred to as the reals 
modulo r. The addition operation for this group is addition modulo r, defined as 
follows: Give x + y its usual meaning when x + y E [0 , r ) , and let x + y be replaced by 
x + y - r when x + y E [r, 2r) . The identity element is 0. This group is isomorphic to 
the circle group, discussed in 10.32; consequently [0, r) itself is sometimes referred to 
as the circle group. 

f. The positive reals, (0, +oo) , may be viewed as a commutative group whose binary 
operation is ordinary multiplication ( - ) and whose identity element is the number 1 .  
Some subgroups are the positive rational numbers and the set {2k : k E Z} .  The 
multiplicative group of positive real numbers is isomorphic to the additive group of 
real numbers, by the mapping x f---> In x. 

g. Let X be a set. Then (P(X) ,  6, ip(X) ' 0)  is a commutative group, where P(X) denotes 
the power set of X and 6 denotes symmetric difference. Note that in this group, the 
inverse operation is the identity map - that is, each member of P(X) is its own inverse. 
Hence (A 6 C) 6 (B 6 C) = A 6 B .  



184 Chapter 8: Elementary Algebraic Systems 

Any algebra of subsets of X (defined in 5.25) is a subgroup of P(X) .  

h.  Let X be  an additive group. For x E X we define 

Ox = 0, lx = x, 2x = x + x, 3x = x + x + x, . 0 .
' 

and for n E N  we also define ( -n)x = -(nx) . In this fashion we define a "multiplica
tion" operation (n, x) �----+ nx, from Z x X into X .  By induction or any other convincing 
argument , show that 

(mn)x = m(nx) , m(x + y) = (mx) + (my) , (m + n)x = (mx) + (nx) 

for all m, n E Z and x, y  E X. Also show that Zx = {nx : n E Z} is a subgroup of X ;  
i t  i s  the subgroup generated by the singleton { x} .  

i. A bijection from a set X onto itself i s  a permutation of  X.  I f  X i s  any non empty 
set, then Perm( X)  = {permutations of X} is a group, with the binary group operation 
given by the composition of functions and with the identity element of the group being 
the identity function of X .  In fact, this is the group of invertible elements obtained from 
the monoid xx (see 8.4.e and 8 .10.b) . If X contains more than two elements, then the 
group Perm(X) is not commutative. If n is a positive integer, then the permutation 
group on a set X containing n elements is also called the symmetric group of order 
n; it is written Sn . 

If X is the underlying set of a group (X, i , D ) ,  then an isomorphism from X onto a 
subgroup of Perm( X)  is given by u �----+ fu , where the permutation fu : X --.  X is given 
by fu(x) = uDx . 

SUMS AND QUOTIENTS OF GROUPS 

8.11 .  Let 51 , 82 , . . .  , Sn be  finitely many subgroups of  an additive group X. Then the 
sum of the sj 's is the set 

More generally, let { S ,x : >. E A} be a collection of subgroups of an additive group 
X .  Their sum, L.-\EA S,x , is defined to be the set of all sums of finitely many elements of 
U.-\EA S,x . In other words, it is the set of all sums of the form 

where n is a nonnegative integer and each Sj is a member of some S,x . Show that 

(i) L.-\EA S,x is the union of sums of finitely many of the S,x 's. 

(ii) L.-\EA S,x is the subgroup of X generated by the set u,\EA S,x . 
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8.12. Let S = S1 + S2 + · · · + Sn be a sum of finitely many subgroups. The set S is called 
the internal direct sum of the Sj 's if it has this further property: Each s E S can be 
expressed in one and only one way as s =  s1 + s2 + · · · + sn , where Sj E Sj . We then write 
s = sl EB s2 EB 0 0 0 EB Sn or s = EB;'= l  si 0 Such a decomposition may be helpful, because it 
may express a complicated object S in terms of simpler Sj 's. 

More generally, let S = I:AEA SA be  a sum of  arbitrarily many subgroups. We say S is 
the internal direct sum of the SA 's, and write S = EBAEA SA , if each s E S can be written 
in one and only one way as a sum s =  I:AEA sA ,  where each sA  i s  a member of SA and only 
finitely many of the sA 's are nonzero. (The internal direct sum is often called the "direct 
sum," but it should not be confused with the external direct sum described in 9.30 . )  

I f  S = EBAEA SA , then we can define mappings cpA : S ----+ SA by the rule that s = 
I:AEA cpA (s ) ;  we may call cpA the projection onto SA . (The term "projection" also has 
other meanings; see 1 .34 and 22.45 . )  

Some basic properties of direct sum decompositions are 

a. S is an internal direct sum of the subgroups {SA : ,\ E A} if and only if S = I:AEA SA 
and s/1 n I:A#/1 SA = {0} for each f-L E A. 

b. Each mapping cpA, considered as a map from S into itself, is idempotent (defined in 
2 .4) ;  it has range SA . 

c. Each cpA , considered as a map from S into either S or SA , is additive. 

8.13. An important special case is that in which an additive group X itself is the internal 
direct sum of two subgroups - say S and T. Then we write X =  S EB T. This means that 

each x E X can be written in one and only one way in the form s + t, where 
s E S and t E T, 

or, equivalently, that 

S + T = X and S n T = {0} .  

We shall then say that the subgroups S and T are additively complementary, or that 
they are additive complements of each other. (Some mathematicians would simply call 
these sets "complements" of each other, but in this book we have too many other uses for 
that term. )  

Exercises. Suppose X = S EB T .  Let cps : X ----+ S and cpr : X ----+ T be  the projections, 
defined as in 8 . 12 - that is, x = cps(x) + cpr(x) for each x. Show that 

a. cps + cpr = ix (where ix is the identity map of X) 

b. Range( cps) = Ker( cpr) = S and Range( cpr) = Ker( cps) = T. 

c. cpscpr = cprcps = 0 .  

d. Conversely, suppose X is  an additive group and p : X ----+ X is an idempotent homomor
phism. Let q = ix - p. Show that q is also idempotent , and X =  Range(p) EB Range(q) . 
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8.14. Let G be an additive group, and let H be a subgroup. Define sums of sets as in 8.3. 
The cosets of H are the sets x + H  = {x + h  : h E  H}.  Note that any two cosets are either 
identical or disjoint; thus they form a partition of G. Show that 

(x + H) +  (y + H) = (x + y) + H, - (x + H) = (-x) + H. 

Let G I H be the set of all cosets of H; show that G I H is an additive group with identity 
element 0 + H and with other operations defined as above. 

Since the cosets of H form a partition of G, they define an equivalence relation on G by: 

g1 , g2 belong to the same coset 

The cosets of H are the equivalence classes for this equivalence relation, and G I H is the 
quotient set (as in 3. 1 1 ) .  Consequently, the group G I H is called the quotient group. The 
quotient map 1r : G ----+ G I H (defined as in 3 . 1 1 )  is given by 1r(g) = g + H. It is a group 
homomorphism from G onto G I H. Note that it satisfies 

7r(7r-1 (B)) = B for any B � GIH, whereas 

Jr-1 (1r(A)) = A +  H for any A �  G. 

Algebra books contain a more general theory of quotients, applicable to groups that are 
not necessarily commutative. However, that theory is more complicated and will not be 
needed for our purposes. 

8.15. Not every quotient group G I H is isomorphic to a subgroup of G. 
Example. The circle group [0, 1 ) ,  introduced in 8. 10.e, can also be described as the 

quotient of the additive group � by the subgroup Z. The circle group is not isomorphic to 
a subgroup of R One easy way to show this is to note that 0 and � are distinct solutions 
of x + x = 0 in [0, 1 ) .  In the group �' the equation x + x = 0 has only one solution. 

8.16. Not every subgroup of every group has an additive complement . (Contrast 1 1 .30.f.) 
Example. Z is a subgroup of �' but there is no subgroup G � � satisfying � = Z EB G. 

Indeed, show that if G were such a group, it would be isomorphic to JRIZ, and hence 
isomorphic to [0, 1 ) ,  contradicting the result in 8 .15 .  

8.17. Let f :  X ----+ Y be an additive mapping - i.e. ,  a homomorphism of additive groups. 
Then the kernel of f is the set 

Ker(f) {x E X :  f(x) = 0} .  

A few of its basic properties are: 

a. Ker(f) is a subgroup of X; hence 0 E Ker(f) .  

b. Ker(f) = {0} i f  and only if f is  injective. 

c. (Isomorphism Theorem.) Let 7r : X ----+ XIKer(f) be the quotient map. Then 
F(1r(x)) = f(x) defines a group isomorphism F :  XIKer(f) ----+ Ran(!) . 

d. Degenerate examples. Let X be any additive group. Then the identity map i : X ----+ X 
has kernel {0} , and the constant map x f---> 0 (from X into any additive group) has 
kernel X.  
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RINGS AND FIELDS 

8.18. Definitions. A ring i s  an additive group (R ,  0, +) equipped with another associative 
binary operation ( · ) ,  called multiplication, which distributes over addition on both the 
left and right : 

for all w, x, y E R. 

w · (x + y) 
(x + y) · w 

(w · x) + (w · y) 
(x · w) + (y · w) 

and 

A ring with unit also has a special element 1 (one) , such that ( R, 1 ,  · )  is a monoid. 
Caution: Some mathematicians work only with rings with unit, and then they may refer to 
those objects simply as "rings." For a trivial example of a ring without unit, consider the 
even integers, with the usual operations of addition and multiplication. For a less trivial 
example of considerable interest to analysts, see 1 1 .4.e. 

(Most of the rings used by analysts have additional structure: They are linear algebras, 
as explained in 1 1 .3. However, Z is an important commutative ring that is not a linear 
algebra.) 

By our definitions, the addition operation in any ring is commutative. A commutative 
ring is a ring in which the multiplication operation is also commutative. 

A field is a commutative ring with unit, in which 0 of. 1 and in which every nonzero 
element has a multiplicative inverse. Consequently, in fields we are able to perform "ordinary 
arithmetic" computations. For instance, the student should prove (and explain) that in a 
field, 

w y - + 
X Z 

wz + xy 
xz 

Examples. Some fields with which most readers are informally acquainted are Q and IR; 
these are introduced formally in 8.22, 10. 10 ,  10.8, and 10 . 15 .  

The fundamental operations of a ring with unit or a field are those of its additive 
group (the binary operation +, the unary operation - ,  and the nullary operation 0) and 
those of its multiplicative monoid (the binary operation · and the nullary operation 1 ) .  
When we talk about fundamental operations and related concepts, then a field will simply 
be viewed as a particular type of ring with unit. (See the related remarks in 8.54.) 

A homomorphism of rings with unit is a mapping f : R ---+ S from one ring into 
another; which preserves the fundamental operations - i.e . ,  which satisfies 

f(xl + x2 ) = f(x i )  + !(x2 ) ,  !( -x) = -f(x) , 
f(O) = 0, J(x1x2) = f(xi )f(x2 ) ,  / ( 1 )  = 1 

for all x, x1 , x2 E R. All of these conditions are conceptually relevant , but some of them 
ar� redundant , i .e . ,  implied by some of the other conditions. A homomorphism of fields will 
simply mean a homomorphism f : R ---+ S of rings with unit, where R and S happen to 
be fields; no additional requirement is imposed on f for this case. However, ( exercise) it 
follows from our definition that if f : R ---+ S is a homomorphism of fields, then f is injective 
and f(x- 1 ) = f(x) - 1 for all x of. 0. 
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8.19. Some elementary properties. For all w, x, y, z in a ring R with unit, we have 

a. 0 · X = 0 = X • 0. 

b. (-x) · y = x · (-y) = -(x · y) .  
c .  ( - 1) · x  = -x. That is, the additive inverse of 1 times any ring element x is the additive 

inverse of x. 
d. There is a unique homomorphism from Z into the ring R. 
e. If 0 = 1 ,  then R = {0} .  This is the smallest ring. 

8.20. Example: finite rings and fields. Let m be an integer greater than 1 .  For integers 
x, y E Z, write x = y (mod m) if x - y is a multiple of m - that is, if x - y = km for some 
integer k. We then say that x and y are congruent modulo m. It is easy to verify that = 
is an equivalence relation on Z. The arithmetic operations make sense on the equivalence 
classes, since 

The equivalence classes are most often represented by their smallest nonnegative mem
bers - i.e. , the numbers 0, 1 ,  2, . . .  , m - 1. Thus we obtain arithmetic operations on the 
set 

Zm = {0, 1 , 2, 3, . . .  , m - 1 } ,  

which can b e  described more directly as follows: to add or multiply two numbers x ,  y in 
Zm, take their ordinary sum or product in Z, and then subtract a suitable multiple of m 
to obtain an element of {0, 1 ,  2, . . .  , m - 1 } .  With these operations, Zm is a commutative 
ring with unit, called the integers modulo m. As an illustrative example, below are the 
addition and multiplication tables for Z6 . Note that, considered as an additive group, Zm is 
the subgroup generated by { 1 }  in the group [0, m) of reals modulo m, introduced in 8. 10.e. 

+ 0 1 2 3 4 5 0 1 2 3 4 5 
0 0 1 2 3 4 5 0 0 0 0 0 0 0 
1 1 2 3 4 5 0 1 0 1 2 3 4 5 
2 2 3 4 5 0 1 2 0 2 4 0 2 4 
3 3 4 5 0 1 2 3 0 3 0 3 0 3 
4 4 5 0 1 2 3 4 0 4 2 0 4 2 
5 5 0 1 2 3 4 5 0 5 4 3 2 1 

Recall that a prime number is one of the numbers 2, 3, 5, 7, 1 1 ,  etc. - that is, an 
integer greater than 1 that can only be written as a product of two positive integers if one 
of those factors is 1 .  It is an easy exercise to show that the finite ring Zm is a field if and 
only if m is a prime number. In particular, Z2 = { 0, 1 }  is the smallest field; it will be of 
some importance in the study of Boolean algebras. 
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Related exercises. 
a. In the ring 2:6 , we have 2 · 3 = 0; thus the product of two nonzero elements is zero. In 

the ring z4 ' we have 22 = 0. 

b. The ring :Z.4 is not a field, but there does exist a field F 4 containing exactly 4 elements; 
it is unique up to isomorphism. Find its addition and multiplication tables. 

c. In the field :Z.5 , the squares of the numbers 0, 1 ,  2, 3, 4 are the numbers 0, 1 ,  4, 4, 
1. More generally, show that if m is an odd prime number, then exactly half of the 
nonzero members of Zm are squares of members of :Z.rn . 

Remarks. Finite fields are not often useful in analysis; we have mentioned them only because 
they offer very easily understood illustrations of the concept of "field ." We shall now state 
without proof a few more results about finite fields; the proofs of these additional results 
are beyond the scope of this book, but can be found in more specialized books - see for 
instance, Lidl and Niederreiter [1983] . Let q be an integer greater than 1 .  Then there exists 
a field F q containing exactly q elements if and only if q is of the form q = pn for some 
prime number p and some positive integer n - in which case the field F q is unique (up 
to isomorphism) .  Considered as a linear space over :Z.P (see Chapter 1 1 ) ,  the field F q is 
isomorphic to (:Z.p)n . The multiplicative group Fq\{0} is isomorphic (as a group) to the 
additive group Zq- l · The explicit formation of such finite fields - i.e. ,  the computation 
of their addition and multiplication tables - is a somewhat complicated matter. However, 
when p is an odd prime, then it is fairly easy to form a field with p2 elements; a simple 
method is given in 10.23.b. 

8.21.  Example : products. Suppose that (R>. : ,\ E A) is a collection of rings. Then 
we can make the Cartesian product P = fLEA R>. into a ring, by defining operations 
coordinatewise: 

(J + g) (>.) = !(>-) + g(>.) , (!g) (>.) = !(>-) g(>.) , 

etc. The additive identity Op is the function that takes the value 0>. at the ,\th coordinate. 
If the R>. 's are rings with unit, then so is P, with multiplicative identity 1p equal to the 
function that takes the value 1 >.  on the >.th coordinate. 

The product of two or more fields is not a field, when operations are defined in this 
fashion, since any element of P with a 0 in at least one component has no multiplicative 
inverse. However, a different method can sometimes be used to make a product of fields 
into a field; see 10.22. 

8.22. The reader is undoubtedly quite familiar with the field of rational numbers, Q = 
{ m/n : m, n E :Z., n i=- 0} .  Nevertheless, we shall give a formal construction of it ; the same 
method of construction will subsequently be used to form another, less familiar field. 

An integral domain is a commutative ring D with the property that 

whenever x, y E D with xy = 0, then at least one of x, y is 0. 
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Of course, any field is an integral domain. The ring Z = { integers} is an example of an 
integral domain that is not a field; another example will be given in 8.24. The finite rings 
z4 and z6 are not integral domains. 

Let D be an integral domain. For pairs (x, m) and (y, n )  in D x (D\{0} ) , define (x, m) ::::::: 
(y, n) to mean that xn = ym. Verify that this is an equivalence relation on D x (D\{0} ) .  
Define lF' t o  be  the set of equivalence classes. Addition and multiplication i n  lF' are defined 
by 

(x, m) + (y, n) = (xn + ym, mn), (x, m) · (y, n) = (xy, mn) . 
The reader should verify that these operations are well-defined - i.e. ,  that the definitions 
above do not depend on the particular choice of representations for the equivalence classes. 
That is, if (x1 , mi ) ::::::: (x2 , m2 ) and (y1 , n1 ) ::::::: (y2 , n2 ) ,  verify that 

With operations so defined, verify that lF' is a field. It is called the field of fractions of 
D, or field of quotients. The mapping x f---t ( x, 1 )  is an embedding of D in lF' - that is, 
an injective ring homomorphism - and so we may view the ring D as a subset of the field 
JF'. 

Having completed our construction of JF', we now switch to conventional notation: The 
equivalence class containing (x, m) is represented by xjm or � .  Of course, the representa
tion is not unique, since any pair in the equivalence class can be used to form this expression. 
We urge the reader not to switch to this notation until after completing the construction of 
lF' and the verifications that it requires. The artificiality of the unfamiliar notation (x, m) 
will make it less likely that we will inadvertently assume some familiar property of lF' that 
has not yet been proved. 

In the particular case where the integral domain D is the ring Z, the resulting field of 
quotients is the field of rational numbers; it is denoted by Q. 

8.23. Exercises about Q. 

a. Show that card(Q) = card(N) .  Hint :  2.20.e. 

b. There is no x E Q satisfying x2 = 2. Hint : If x = pjq, consider how many factors of 
2 there are in p or in q. (We assume familiarity with basic properties of the integers, 
e.g. , the uniqueness of prime factorization. )  

c. If lF' is a field, there is a unique ring homomorphism from Q into JF'. 
d. Example. There is a unique ring homomorphism h : Q ---+ Z5 . With that ring homo

morphism, evaluate h( � ) .  Explain. (Thus we obtain a member of { 0, 1 ,  2, 3, 4} which 
is in a sense "congruent modulo 5" to the fraction 2/3 . )  

8.24. Example : the ring of polynomials and the field of rational functions. Let lK be any 
integral domain (for instance, the integers or the rationals or the reals) . Let S =  { s ,  t ,  u ,  . . .  } 
be a nonempty (finite or infinite) set of distinct symbols not already used in our description 
of lK or elsewhere in our language. We write S as { s, t ,  u, . . .  } to display a few typical 
elements, but we do not require that S be countable or ordered in any fashion. (For the 
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simplest examples, take S to  be  just a singleton: S = { s } .  However, later we shall have 
some uses for much larger collections S as well . )  

A monomial with variables in S and coefficients i n  lK is any expression such as as3t2uv, 
where a E lK and s ,  t ,  u ,  v E S - that is, an element of lK multiplied by finitely many 
members of S. If the coefficient a is not zero, then the degree of the monomial is the sum 
of the exponents of the variables - for instance, the monomial as3t2uv = as3t2u1v1 has 
degree 3 + 2 + 1 + 1 = 7. 

A polynomial with variables in S and coefficients in lK is a sum of finitely many 
monomials - i.e . ,  any expression such as as3 +bst2 + ct2 +duv+e, where a, b, c, d, e E lK  and 
s ,  t ,  u, v E S. The degree of the polynomial is the highest degree of any of its monomials; for 
instance, as3 + bst2 + ct2 + duv + e has degree 3. A homogeneous polynomial of degree 
k is a sum of several monomials of degree k; for instance, as3 + bs2t + cstu + dtu2 + ev3 is 
a homogeneous polynomial of degree 3. 

Addition, multiplication, and equality of polynomials are defined by the usual algebraic 
rules; we omit the details. The set of all polynomials with variables in S and coefficients in 
lK is easily seen to form a commutative ring with unit, which we shall denote by JK[S] . 

Note that each a E lK may be viewed as a constant polynomial - i.e. , a polynomial of 
degree 0; thus each member of lK may be viewed as a member of JK[S] . This mapping from 
lK into JK[S] is an injective ring homomorphism; thus we may view lK as a subset of JK[S] . 

When S consists of just one variable - say s - then the ring JK[S] = JK[ { s }] may be 
written more briefly as JK[s] . Then any polynomial may be written in the form 

p(s) ansn + an-l sn- l + · · · + a1 s + ao 
where the coefficients aj are members of JK. If p(s) is not the constant function 0, then by 
dropping any leading zero terms we can choose the representation so that an "/=- 0. Then n 

is the degree of the polynomial, and an is called the leading coefficient . 
If the ring lK is an integral domain, then so is the ring JK[S] . Hence we can form its field 

of quotients, as in 8.22. That field is called the field of rational functions with variables 
in S and coefficients in IF ;  we shall denote it by JK(S) . A member of that field is a rational 
function with variables in S and coefficients in IF - i .e . ,  a quotient of two polynomials. A 
typical rational function is 

as3 + bst2 + ct2 + duv + e 
bt3 + dst + fuv3 + g 

Equality between such rational functions and arithmetic operations with such functions are 
defined in the usual fashion; we omit the details. If S consists of just a single variable s ,  
then the field JK(  S) = JK( { s} )  may be written more briefly as JK( s ) .  

8.25. Blass 's Subfield ( optional) .  Define JK(S) as above. Let 'B = {pjq E JK(S) : p and 
q are homogeneous polynomials of the same degree} .  (For instance, if S = { s ,  t ,  u} a9d 
lK = ffi., then 

3s3 + V'is2t + �stu + 1rsu2 
17  stu - V'sst2 + 6 . 179t3 

is a typical member of 'B . )  Show that 'B is a subfield of JK(S) .  This field will be mentioned 
again in 1 1 .  29. 
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MATRICES 

8.26. Matrix notation. Let IK be a ring, and let m and n be positive integers. An m-by-n 
matrix over IK is a rectangular array 

a1 1  a12 a,,. l a21 a22 a2n 
A 

aml am2 amn 
with m rows and n columns, where each aij is an element of IK. We say aij is the element 
(or component) in row i and column j .  The matrix A given above may be represented 
more briefly as A = ( aij : 1 :::; i :::; m; 1 :::; j :::; n) ,  or still more briefly as ( aij ) if no confusion 
will result. 

The transpose of an m-by-n matrix A is the n-by-m matrix AT obtained by flipping 
A over diagonally, so that the kth row becomes the kth column and vice versa. Obviously, 
(AT )T = A. An m-by-n matrix is called a column matrix if n = 1 (i .e. , if it consists 
of just one column) ,  a row matrix if m = 1 (i.e. , if it consists of just one row) ,  and a 
square matrix if m = n. Note that the transpose of a row matrix is a column matrix, 
and vice versa. For any positive integer p, it is customary1 to consider elements of JKP as 
column matrices when matrices are to be used at all, but to save space on the printed page 
they are often represented as the transposes of row matrices. Thus the ordered p-tuple 
(b1 , b2 , . . .  , bp) can also be written as [b1 b2 · · · bp] T ;  we emphasize that the representation 
with parentheses requires commas while the representation with brackets requires that the 
commas be omitted. 

8.27. Matrix multiplication has slightly complicated dimensional requirements. If A is 
an m-by-n matrix and B is an n-by-p matrix, then we can form their product AB = R, an 
m-by-p matrix: 

au a12 aln l l bu bl2 blp l ru r12 r1p l a21 a22 a2n b21 b22 b2p r21 r22 r2p 

aml am2 amn bn l  bn2 bnp Tml Tm2 Tmp 
m-by-n n-by-p m-by-p 

defined by this formula: rik = ail bl k  + ai2b2k + · · · + ainbnk · 
In general, multiplication of matrices is not commutative. In fact , when the product 

AB is defined, the product BA is not necessarily defined. For instance, for the matrices 
above, we can only define BA if m = p, and in that case AB is an m-by-m matrix while 
BA is an n-by-n matrix. Thus, AB = BA can only hold if A and B are square matrices of 

1 Some older algebra books represent members of ]f(P as row matrices, but column matrices seem to be 
the prevailing convention since sometime around 1960. 
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the same dimension. Even then, AB = BA only holds in an occasional coincidence; it does 
not hold in general, even if the underlying ring lK is commutative. For instance, if 

and 

then AB =/= BA, provided lK is a ring with unit in which 0 =/= 1 .  However, we do have 
(AB)T = BT AT if the ring lK is commutative. 

It is an easy exercise to show that multiplication of matrices is associative : (AB)C = 

A(BC) whenever the dimensions of the matrices match up - i.e . ,  A is an m-by-n matrix, 
B is an n-by-p matrix, and C is a p-by-q matrix. Hence we may omit the parentheses and 
write the product simply as ABC. The element in row h, column k of that product is 

I::I I:�=I ahibijCjk · 
8.28. Matrices as functions on columns. An important special case of matrix multiplication 
is the following: Let A be an m-by-n matrix. Represent elements of ocm and ocn by column 
matrices - i.e. ,  by m-by-1 matrices and by n-by-1 matrices, respectively. Then the mapping 
v f---+ Av is an additive map from ocn into ocm . This type of map plays an important role 
in the theory of finite-dimensional vector spaces, discussed further in Chapter 1 1 .  It is so 
important that we shall write it out more explicitly here: 

an a i2 a In VI l a2I a22 a2n v2 !f A �  [ . and v = 

ami am2 amn Vn 

then Av � [ anv1 + a 12V2 + · · · + a1nVn l a21 VI + a22v2 + · · · + a2n Vn 

am1V1 + am2V2 + · · · + amnVn 
In particular, the n-by-n matrices act as mappings from ocn into itself. If lK is a ring with 
unit, then the n-by-n matrices form a monoid, under the operation of matrix multiplication. 
The invertible elements of that monoid form a group. An interesting subgroup consists of 
the permutation matrices of order n; these are the n-by-n matrices A that have the 
following property: Each row contains n - 1 zeros and 1 one; each column also contains 
n - 1 zeros and 1 one. For example, there are six permutation matrices of order 3 :  

[ � 
[ � 

0 
1 
0 

0 
0 
1 

n [ �  
n [ � 

1 
0 
0 

1 
0 
0 

! ]  [ !  
n [ � 

0 
0 
1 

0 
1 
0 

� l 
� l 
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Such a matrix is called a permutation matrix for the following reason: If n distinct 
members of the ring lK are arranged in a column matrix v, then the mapping v f-+ Av 
permutes those n members - i.e . ,  the column matrix Av consists of the same n members, 
arranged in some other order (or in the same order, if A = I ) . The group of permutation 
matrices of order n is isomorphic (as a group) to the symmetric group of order n, introduced 
in 8. 10. i .  

8.29. 

[ 
The ring of matrices. Addition of m-by-n matrices is defined componentwise: 

au 

aml 

a 1n l [ bu 
: + : . . 

amn bml 

bin l [ au + bu aln + bln l b�n 
= 

aml � bml amn + bmn 
Thus, we can only add two matrices if they have the same dimensions. 

With multiplication and addition defined as above, the set Mat ( n; JK) = { n-by-n matrices 
over JK} is a ring; it has additive and multiplicative identities given by 

and 

Here In is an n-by-n matrix that has ls along its main diagonal and Os elsewhere; it may be 
written more briefly as (8;j ) ,  where 8 is the Kronecker delta. In general the ring Mat (n; JK) 
is not commutative. 

ORDERED GROUPS 

8.30. In  this book an ordered monoid will mean an additive monoid X that i s  equipped 
with a partial ordering � that is translation-invariant - i.e. ,  that satisfies 

x + u � y + u  
for all x, y, u E X. If X is also a group, we shall call it an ordered group. 

Most of the ordered monoids used by analysts have a great deal more structure - in 
fact , most of them are Riesz spaces. However, [0, +oo] is an important ordered monoid that 
is not even a group. 

8.31. Arithmetic in ordered monoids. Let S and T be nonempty subsets of an ordered 
monoid (X, � ) .  For each of the following equations, show that if the left side exists, then 
the right side also exists and the two sides are equal: 

max(S) + max(T) = max(S + T) , min(S) + min(T) min(S + T). 
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Also show that each of the following inequalities holds if both sides exist: 

sup(5) + sup(T) � sup(5 + T) , inf(5) + inf(T) � inf(5 + T) . 
(Compare with 8.33.a. )  

8.32. Proposition. The sup of a directed family of additive maps is additive. More precisely: 
Let M be an additive monoid, and let (Y, �) be an ordered monoid. Let <I> be a collection 

of additive maps from M into Y. Assume <I> is directed by the product ordering on yM � 
that is, for each h , h E <I> there exists f E <I> such that 

f(x) � h (x) and f(x) � h(x) for all x E M. 

Assume that h(x) = sup/E<I> f(x) exists in Y for each x E M. Then the function h :  M ----> Y 
is also additive. (This result will be used in 1 1 .57.) 
Hints : The proof of h(x + x') � h(x) + h(x' ) is easy � it does not require <I> to be directed; 
we leave the details as an exercise. For the reverse inequality, show that 

h(x) + h(x' )  = sup [h (x) + h(x')] ::::; sup [f(x) + f(x' )] = h(x + x' ) .  
!J ,f2 E<I> /E<I> 

8.33. Arithmetic in ordered groups. Let (X, � )  be an ordered group. Let 5 and T be 
nonempty subsets of X, and let x, y E X. Show that 

a. For each of the following equations, if the left side exists, then the right side exists and 
the two sides are equal: 

sup(5) + sup(T) sup(5 + T),  inf(5) + inf(T) inf(5 + T) . 
b. X � y <==? -X � -y. 
c .  Duality in ordered groups. For each of the following equations, the left side exists if 

and only if the right side exists, in which case they are equal: 

max(x + 5) = x + max(5), 

min(x + 5) = x + min(5), 

- max(5) = min( -5) , 

sup(x + 5) = x + sup(5) , 

inf(x + 5) = x + inf(5) ,  

- sup(5) = inf( -5) .  

When 5 contains just two elements, the last equation becomes 

-(u v v) = (-u) !\ (-v) or, equivalently, - (p !\ q) = (-p) V (-q) .  
From all of  these equations i t  follows that any statements about maxima or suprema can 
be translated into statements about minima or infima, and vice versa. Such statements 
occur in pairs; the members of such a pair are said to be dual to each other. For brevity, 
in many cases we mention only one of the two statements. See also 1 .7. 

d. Let D be a subgroup of X. Then D is sup-dense in X if and only if D is inf-dense in 
X.  Hint :  - sup(5) = inf(-5) ,  etc. 
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e. Let f : X � Y be a group homomorphism, where Y is another ordered group. Then 
f is sup-preserving if and only if f is inf-preserving. 

Hint for the "if" part : If IJ = sup(S) for some S �  X,  then 

-f(iJ) = -f(sup(S))  = f(- sup(S)) 

= f(inf(-S))  = inf(J(-S))  = inf(-J(S) ) = - sup(J(S) ) .  

8.34. More definitions. I f  X is an ordered group, then the positive cone of X is the set 

X+ {x E X :  x )r 0} .  
Note that the ordering can be recovered from the positive cone: We have x )r y {::=:::} 
x - y E X+ . 

Caution: Elements of the positive cone are not necessarily called "positive." In particu
lar, when X =  JR, then X+ is the set of all nonnegative real numbers. Thus, 0 is a member 
of the "positive cone" but it is not a positive number. 

8.35. Exercise ( optional) .  Let (X, � )  be an ordered group. Then the following conditions 
are equivalent : 

(A) (X, � )  is a directed set. 

(B) X+ generates the group - that is, X+ - X+ = X. 
(C) For each x E X, there is some p E X+ with p )r x. 

8.36. In an ordered group, we use the notation [a, b] = {x E X :  a � x � b} . Note that 

in any ordered group. For some examples of the property described below, see 8.37 and 
8.38. 

Theorem. Let (X, � )  be an ordered group. The following conditions are then equivalent. 
If one, hence all, are satisfied, we say X has the Riesz Decomposition Property. 

(A) [0, u] + [0, v] = [0, u + v] whenever u, v E X+ . 
(B) If PI , P2 , . . .  , Pm E X  and q1 , q2 , . . .  , qn E X  with Pi � qj for all i , j ,  then there 

exists some r E X with p; � r � qj for all i, j .  
(C) [x1 , yi ] + [x2 , Y2] + · · · + [xn , Yn] = [xl + X2 + · · · + Xn , Yl + Y2 + · · · + Yn] 

whenever n is a positive integer and the xi 's and y/s are members of X with 
X; � Yi for all i. 

(D) If X1 , x2 , . . .  , Xm E X+ and YI , Y2 , . . .  , yn E X+ with X1 + X2 + · · · + Xm = 
Y1 +Y2 + · · · +yn , then there exist some Zij E X+ for 1 :::; i :::; m and 1 :::; j :::; n ,  
such that 

n 
x; = 2::: Z;j for all i 

j=l 

and 
m 

YJ = 2::: Zij for all j. 
i=l 
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Proof of (A) =;. (B ) .  It suffices to prove (B) for m = n = 2; then higher values of m, n 

follow by induction. Assume, then, that p; � qj for i, j = 1 ,  2. We know that q2 - P1 
lies in [0, (q1 - pl ) + (q2 - P2 )] = [0, q1 - pl ] + [0, q2 - P2] · Hence q2 - P1 = a1 + a2 for 
some a1 E [O, qJ - PJl · Let r = a1 + P1 = -a2 + q2 . Then r = ai + PI E [p1 , q1 ] and 
r = q2 - a2 E [p2 , q2] .  
Proof of (B) =} (C ) .  It suffices to prove this for n = 2 ;  higher values of n then follow by 
induction. Let z E [x i +  x2 , YI + Y2] · We know z - YI � Y2 and x2 � Y2 and z - YI � z - XI 
and x2 � z - XI . Hence there is some r with z - YI � r and x2 � r and r � Y2 and 
r � z - XI · Hence z - r E [.1: I , yl ] and r E  [x2 , Y2] · 
Proof of (C) =} (D) . It suffices to prove (D) for m = 2; then higher values follow by 
induction. If XI +x2 = YI + ·  · · +Yn = s, then XI E [0, Y1 J + · · · + [0, YnL so XI = Z1 1 + · · · +Zin 
with Zij E [0 , Y.i ] . Now let Z2j = YJ - ZIJ . 
Proof of (D) =} (A) .  Let p E [0 , u + v] . Then p + q = u + v for some q � 0. Decompose 
both sides of that equation as in (D) . 

8.37. A degenerate example. Any group X can be ordered by this relation: x � y if and 
only if x = y. We shall refer to this as the trivial ordering. Despite its simplicity, this 
ordering will play an important role in our theory; see 12.32 and 26.53.  

Here are a few of its basic properties: 

a. It is not a lattice ordering, if X contains more than one element . 

b. The positive cone X+ is just {0} . 
c. The set [a, b] is a singleton if a =  b, or empty if a -/=- b. 
d. The trivial ordering has the Riesz Decomposition Property. 

LATTICE GROUPS 

8.38. A lattice group i s  an ordered group whose ordering i s  a lattice ordering - i.e. ,  an 
ordered group X that satisfies both of the following conditions: 

(i) x V y exists for all x, y E X. 

(ii) x 1\ y exists for all x, y E X. 

Actually, in an ordered group, these statements are dual to each other, and so either implies 
the other; hence either one of these implies X is a lattice group. Since the ordering of �n 
ordered group is translation-invariant , an even weaker hypothesis is sufficient : 

If X is an ordered group and sup{ x, 0} exists for each x E X ,  then X is a lattice 
group. 

Some examples of lattice groups are given in 1 1 .45 and 1 1 .46 . 
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It is easy to see that any lattice group has the Riesz Decomposition Property - indeed 
if p/s and qj 's satisfy the hypotheses of 8.36(B) , then P1 V P2 V · · · V Pm � q1 1\ q2 1\ · · · 1\ qn . 
However, we note that the Riesz Decomposition Property is also enjoyed by some other 
ordered groups that are not lattice groups; for instance, see 8.37. 

8.39. If (X, � )  is a lattice group, then for any x E X we can define 

x+ = x V 0, x- = (-x) V O, 

These three objects are elements of the nonnegative cone X+ . They are called the positive 
part of x, the negative part of x, and the absolute value of x, respectively. 

Caution: We have two notions of "absolute value" - the group element lxl defined 
above, and the nonnegative real number lx l  defined in 10.31 .  Neither of these is a special 
case of the other. However, the two notions coincide when X =  JR. 

Here our notation is slightly unconventional. In the wider literature, it is customary 
to represent both kinds of absolute values by the expression lx l .  However, that convention 
causes some difficulties for some beginners who are already familiar with the real-valued 
absolute value of real or complex numbers; they may accidentally attribute some of its 
properties to this new, unfamiliar "absolute value" of members of a lattice group - e.g. , 
they may inadvertently assume that any two absolute values lxl ,  IYI are comparable in 
order. (Those absolute values are not necessarily comparable; a simple counterexample is 
given in 8.41 . ) Our use of the notation I xI will serve as a constant visual reminder that the 
"absolute value" being considered is, like x+ and x- , a member of some lattice group, not 
necessarily a member of JR. This book will reserve the notation lx l  for real-valued absolute 
values and norms, which are discussed in 10.31 and in Chapter 22. This book's unusual 
practice may prevent confusion in contexts where both types of absolute values are needed 
- e.g. , in 26.55. 

8.40. Examples. When X is the real line with its usual ordering, then x+ = max{x, O}  
and x- = max{ -x ,  0 } ,  and lxl i s  just the usual absolute value lx l .  

More generally, let A be  any set. Then the product 

JRA {functions from A into lR}  

i s  a Dedekind complete lattice group (actually a vector lattice) , when given the product 
ordering - that is, when ordered by 

if x(A) � y(A) for every A E A. 

The nonnegative cone is then 

{x E JRA : x(A) :2: 0 for all A E A} .  

The lattice operations V,  1\ are defined pointwise on A,  as in  1 1 .45 . We also have the 
functions 

x+ (>,) = max{x(A) , O} ,  x-(A )  = max{ -x(A) ,  0} ,  lxi(A) = lx(A) I ,  
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where the last expression is the usual (real-valued) absolute value of the real number x(.X. ) .  
We emphasize that lxl = lx ( - ) 1 i s  an element of  JRA - that is, a function from A into IR 
- whereas lx (.X.) I is a real number. The pointwise formulas given above for x V y, x 1\ y, 
sup(S) , inf(S) , x+ , x- , lxl remain valid in many important subsets of JRA ; some of these 
are given in 1 1 .46. 

However, the pointwise formulas for the lattice operations are not valid in some other 
subsets of IRA . Some vector lattices have appreciably more complicated formulas for the 
sup, inf, absolute value, etc. See for instance 4 .21 and 1 1 .47. 

8.41. If x and y are members of a lattice group X, we do not necessarily have lxl � IYI 
or IYI � lxj. 

Example. Let X = IRIF. , with the product ordering. Then for any function x, the 
function lxl is defined by lxl(t ) = lx (t ) l . Observe that if x(t) = t and y(t )  = t - 1, then 
lxi(O) < IYI(O) and lxl ( 1 )  > IYI( 1 ) .  Thus, neither lxl � IYI nor IYI � lxl is valid. 
(Here we use � to compare members of X and :::; to compare members of JR.) 
8.42. Arithmetic in lattice groups. Let X be a lattice group, and let x, y, z E X. Show 
that 

a. V and 1\ are translation-invariant . That is, 

(x + z) V (y + z) 
(x + z) l\ (y + z) 

(x V y) + z, 
(x l\ y) + z. 

This can also be described as: Addition distributes over V and /\ .  
b .  Sum decomposition. x + y = (x V y) + (x  1\ y ) .  Hint : Use translation-invariance and 

8.33.c. 

c. x- = (-x)+ = - (x /\ 0) and x+ = ( -x)- . 
d. X � 0 {===? x+ = X  {===? X- = 0 {===? lxl = X. 
e. lxl = x+ + x- = I - xl = x+ V x- = x V ( -x) V 0. 

Remark. In 1 1 .50 we'll see that if X is a vector lattice, then lxl = x V ( -x) .  
f. Jordan Decomposition. x = x+ - x- . Hint :  Sum decomposition and 8.33.c. 

g. x+ 1\ x- = 0 . Hint: By translation invariance, 

h. Uniqueness of the Jordan Decomposition. If x = u - v where u 1\ v = 0, then u = x+ 
and v = x- . 

Hints : Show u = x+v � x and u � 0, hence u � x+ . Then p = u-x+ = v-x- � 0. 
On the other hand, u = p + x+ � p and v = p + x- � p, hence 0 = u 1\ v � p. 

i . lxl = 0 {===? x = 0. 
j .  -lxl � - (x- ) � x � x+ � lx/. 
k. I xI � y if and only if both -y � x � y and y � 0 . 

Remark. In 1 1 .50 we'll see that if X is a vector lattice, then lxl � y {===? -y � 
X �  y. 
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l. 2(x V y) = x + y + lx - Yl and 2 (x 1\ y) = x + y - lx - yj. 
Hint: Immediate from 8.42.b. Remark. In a vector lattice, it follows immediately 

that x V y = � ( x + y) + !/ x - y I and x 1\ y = � ( x + y) - !/ x - y f . 
m. (x + y)+ � x+ + y+ and (x + y)- � x- + y- . 
n. Triangle Inequality. lx + Yl � lxl + IYI· 
o. lu+ - v+ I � lu - vi and lu- - v- I � lu - vi, and likewise 

I lui - I vi I � lu - vi. 

Hint: Let f(t) be any of the functions t+ , C ,  or It I. By the preceding exercises, 
f(x + y) - f(x)  � f(y) . Apply this once with x = v, y = u - v and once with x = u, 
y = v - u, to prove lf(u) - f(v)l � lu - vi. 

p. If x E X and n is a positive integer, then 

0 V x V ( 2x) V ( 3x) V · · · V ( nx) x+ + x+ + · · ·  + x+ 
n summands 

(Here it is understood that Ox = x and nx = x + x + x + · · · + x is the sum of n x 's, 
as in 8. 10 .h . )  Hint :  Use induction on n, with 

n+l n n ( n ) 
J

'!a (jx) = 
j
'!a[(j + l )x V jx] = 

1
'fo

[jx + (x V 0)] = 
J
'!a (jx) + (x V 0) . 

Remark. In a Riesz space this formula simplifies to n(x+ ) = (nx)+ ; see 1 1 . 50. 
q. A set S � X is said to be solid if it satisfies: 

I xI � I Y I and y E S X E S. 

(In particular, the empty set is solid. )  Note that the union of any collection of solid 
sets is solid. Thus solid sets are "Moore open sets," i .e . ,  their complements form a 
collection of Moore closed sets in the sense of 4.3. 

For any set T � X, let sk(T) be the union of all the solid subsets of T. Show that 
sk(T) is solid; it is called the solid kernel of T. It is the largest solid set contained in 
T; thus it is a sort of "Moore interior" (dual to a Moore closure) . Show also that 

sk(T) {X E X : [-I X I ' I X ll � T
} 

U [-u, u] . 
[-u,u] <;;T 

8.43. Theorem on distributivity. Let X be a lattice group. Then X is distributive; 
that is, 

x 1\ (y V z) = (x 1\ y) V (x 1\ z) and x V (y 1\ z) = (x V y) 1\ (x V z) 
for every x, y, z E X.  In fact, we can make a stronger assertion: X is infinitely distributive. 
That is, for any x E X and any non empty set S � X,  
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(i) x 1\ sup(S) = sup{x 1\ s :  s E S} and 
(ii) x V inf(S) = inf{x V s :  s E S} 
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where each equation is interpreted in this sense: Whenever the left side of the equation 
exists, then the right side also exists and the two sides are equal. 

Proof. It suffices to prove ( i ) ;  then (ii) will follow by duality. To prove (i) , assume a =  sup(S) 
exists, and let T = { x 1\ s : s E S}; we are to show that x 1\ a is the supremum of T. It is 
certainly an upper bound for T, since x 1\ s � x 1\ a for each s E S. To show that it is the 
least upper bound, let T be any upper bound for T; we are to show T >,:= x 1\ a. For each 
s E S we know T >,:= x 1\ s = ( x + s )  - ( x V s ) ,  hence 

T + (x v a) - x  >,:= T + (x V s) - x  >,:= s .  
Take the supremum on the right ; thus T + (x V a) - x >,:= a. Add x - (x V a) to  both sides 
to prove T >,:= x 1\ a .  

8.44. Convergence in lattice groups. Let (X, � )  be  a lattice group. Since X i s  infinitely 
distributive, the conclusions of 7.42 are applicable. Show also that 

a. Xa __<>___, x (as defined in 7.38 and 7.40.d) if and only if there exists a set S s;;; X with 
these three properties: 

(i) S is directed downward - i.e. ,  for each s 1 , s2 E S there exists s E S with 
8 � 81 1\ 82 . 

(ii) 0 = inf(S) .  
(iii) For each 8 E S, we have eventually /xa - xj � 8. 

b. The lattice group operations are continuous, in the following sense: Suppose (X a , Ya )  
is a net in X x X, with X a __<>___, x and Ya __<>___, y. Then 

() -xc:l:' -----+ -x, Xo: + Ya _!'___, X + Y ·  

If  X i s  a vector lattice, then we can also conclude cxa __<>___, ex for every real number c. 

8.45. Proposition. Let X and Y be lattice groups, and let f : X ----> Y be a group 
homomorphism - i .e . ,  an additive map. Then the following conditions are equivalent : 

(A) f is a lattice homomorphism -- that is, f( u V v) = f( u) V f( v) and f( u 1\ v) = 
f(u) 1\ f(v) for all u, v E X . 

(B) f(x+ ) = (f(x) )+  for all x E X. 
Proof. For (A) =? (B) ,  note that x+ = x V 0 and f(O) = 0. For (B) =? (A) ,  compute 

f(u v v) = f ( (u - v) V O + v) = f ((u - v)+ ) + f(v) 
= (f(u - v) )+ + f(v) = (f(u) - f(v) ) V 0 + f(v) = f(u) V f(v) . 

Thus f preserves sups. By duality (8 .33 .c) ,  since f is a group homomorphism, it also 
preserves infs .  
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8.46. Observation. Any lattice homomorphism is order-preserving. (Hint :  3.2l .f. ) 
However, an order-preserving group homomorphism between lattice groups is not nec

essarily a lattice homomorphism. Example. Let X = C[O, 27r] = {continuous functions from 
[0, 27r] into IR} ,  and let Y = R Define f :  X -->  Y by f(x) = J0

2rr x(t) dt. Now consider the 
function u(t ) = sin(t) . We have f(u) = 0, hence (f(u) )+  = 0. On the other hand, 

max{O, u( t ) }  

hence f(u+ ) = forr sin(t) dt = 2. 

{ sin
0
(t) when 0 ::; t ::; 7l' 

when 7l' ::; t ::; 27!', 

UNIVERSAL ALGEBRAS 

8.47. We shall now study certain ideas that can be  applied simultaneously to  lattices, 
monoids, groups, Abelian groups, rings, lattice groups, etc. This material is taken from 
McKenzie, McNulty, and Taylor [1987] and other books on varieties or universal algebras. 

An arity function, or type, for algebraic systems is a function T, defined on any 
nonempty set J, taking values in {0, 1 ,  2, 3 ,  . . .  } .  That function's domain, J, may be finite 
or infinite; both cases will be important in our applications. 

Concerning the range of T: In most examples in the literature and in all examples in this 
book, the arity function T actually maps the set J into the set {0, 1 ,  2 } ,  but that restriction is 
not required for the theory; in principle other values are possible. (Some algebraists permit 
T to also take infinite values; an algebraic system is then called infinitary. However, we 
shall only consider finitary algebraic systems - i.e. , those in which each T(j) is finite. 
Some of our results will use this assumption.) 

Let T be an arity function. An algebraic system of arity r is a set X equipped with a 
collection of functions <Pj : xr(j) --t X (for j E J) . Thus the jth function, <Pj , is a T (j )-ary 
operation on X (see 1 .40) . The functions rpj are called the fundamental operations of 
X.  Another term for "algebraic system" is universal algebra. 

To be precise, we should denote the system by an expression such as (X, J, T, { <Pj }) -
i.e. ,  the fundamental operations are part of the definition of the algebraic system; different 
algebraic systems may be built from the same underlying set X by attaching different 
fundamental operations. However, in practice we often refer to X itself as the algebraic 
system, with the choices of J, T, { <Pj } understood. The notation involving T, rpj 's, etc. ,  is 
helpful for our present purposes - i.e. ,  developing an abstract theory of algebraic systems 
- but it is seldom used in the context of individual algebraic systems; see the remarks at 
the end of 8.53. 

If X and X' are algebraic systems with the same arity function T, then their jth funda
mental operations rpj and rpj may be quite different, but at least they have the same arity 
i.e . ,  they are both T(j)-ary operations; thus they behave alike in certain important respects. 
When no confusion will result, we may drop the primes, and use one symbol for both rpj and 
rpj - for instance, we commonly use the same symbol + in different commutative groups. 



Universal Algebras 203 

On the other hand, in some introductory discussions such as this one it will be helpful to use 
different symbols (such as r.p j , r.pj or +, EB) to distinguish between the operations of different 
algebraic systems. 

8.48. (For examples see 8.52.) Let X and X' be algebraic systems with the same arity 
function T and corresponding fundamental operations 'Pj and cpj . A homomorphism from 
X into X' is a mapping f :  X ---> X' that preserves the fundamental operations - i.e . ,  that 
satisfies 

for all j E J and all x1 , x2 , . . . E X.  We may call this a homomorphism of arity r 
to emphasize the particular arity being used. This generalizes the definitions of lattice 
homomorphism, monoid homomorphism, group homomorphism, and ring homomorphism, 
given in 4.26, 8 . 1 ,  8.9, and 8. 18 .  

Note that this definition does not involve any additional properties that may be enjoyed 
by the algebraic systems X and X'. For instance, cp1 is commutative if it is a binary opera
tion satisfying cp1 (x1 , x2 ) = cp1 (x2 , xl ) ,  but this additional information is not relevant in de
termining whether f is a homomorphism. A function f :  X ---> Y, from one monoid into an
other, is a monoid homomorphism if and only if it satisfies f(x1 Ox x2 ) = f(xl ) Oy f(x2) ,  
regardless of whether one or both monoids are commutative. 

8.49. Exercise. If f : X ---> Y is an isomorphism (i .e . , a bijective homomorphism) from 
one algebraic system of arity T onto another, then f- 1 : Y ---> X is also a homomorphism. 

8.50. Let T be an arity function. Our main interest lies not in all algebraic systems of 
type T, but just in those algebraic systems that satisfy a given collection of identities, as 
explained below. 

Let X be an algebraic system of arity T. A term in X is an n-ary operation on X that 
is formed by composing finitely many of the fundamental operations, finitely many times. 
For instance, if cp1 is a 1-ary operation and cp2 is a 2-ary operation, then the function 

p(w, x, y , z ) 

i s  a term in the algebraic system. Note that the right side does not depend on w; this 
illustrates that a term is not required to depend on all of its arguments. The identity map 
x f--+ x will be considered a term; it is the composition of no fundamental operations. 

Note that our method of specifying a term depends only on the arities of the cpj 's (i .e. , 
the values of T(j)) and on the order of composition of the cpj 's, not on other information 
about X or the cpj 's. For instance, if T ( 1 )  = 1 and T(2) = 2, then we can define a term 
by cp2 (x, cp1 (z ) )  but not by r.p2 (x, r.p1 (z ) , w) - regardless of other properties that may or 
may not be enjoyed by the functions cp1 and cp2 . Hence corresponding compositions of 
fundamental operations can be used to define corresponding terms in different algeb�;aic 
systems, provided they are of the same arity T .  By a "term of arity T" we shall mean a 
method of specifying a term. The method does not refer to any particular algebraic system 
X; it specifies a corresponding term for each algebraic system of arity T .  
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An equational axiom, or identity, for algebras X of arity T is a condition on X of 
the form 

where p and q are terms of arity T. Such a condition is satisfied by some algebraic systems 
of arity T and not by others. 

For instance, let T be an arity function such that T( 1 )  = 2 - i.e. ,  such that rp1 is a 
binary operation. Then the commutative law for rp1 is the equational axiom rp1 (x 1 , x2) = 
rp1 ( x2, x 1 ) .  This equational axiom is satisfied by the binary operation of a commutative 
group such as (lR, +) ,  but not by the binary operation of a noncommutative group such as 
Perm(X) - see 8 . 10 . i .  

Let T be an arity, and let :J be a collection of identities compatible with T. By an 
algebraic system of variety ( r, :J) we shall mean a algebraic system X of arity T that 
satisfies all the identities in :J. Examples will be given starting in 8.52. 

8.51. Proposition (optional) .  The equational variety ( T, :J) is a complete theory, in the 
following sense: Let n be a nonnegative integer, and let p and q be any terms of arity T, 
each taking n arguments. Consider the equation 

(not necessarily belonging to :J ) .  Then 

equation ( *) is a semantic theorem in ( T, :J ) ,  in the sense that it is satisfied 
by every algebraic system of type ( T, :J) ,  

i f  and only if 

equation ( * ) is a syntactic theorem in ( T, :J) , in the sense that it can be deduced 
from the identities that belong to :J by using finitely many substitutions. 

Remarks. Thus, for any equation ( *) , we can find either a proof (as in 8. 7) or a counterex
ample (as in 8.27, which shows by example that not every ring is commutative) .  

Sketch of proof. We shall omit most of the proof, since it is not needed later in this book; 
it can be found in more detail in Johnstone [1987] and in other textbooks. Obviously, any 
syntactic theorem is also a semantic theorem. To prove any semantic theorem is a syntactic 
theorem, the main idea is this: Call two terms a and 

{3 
"equivalent" if the equation a = 

{3 

is a syntactic theorem in ( T, :J) ;  this is an equivalence relation on terms. The quotient set 
- i.e . ,  the set of all equivalence classes - can be made into an algebraic system 3 of type 
( T, :J) in a natural way. Since p = q is a semantic theorem, it is satisfied by 3; hence p = q 
is a semantic theorem. 

Optional exercise. Carry out this argument in detail for some particularly simple variety 
- e.g. , the variety of monoids, described in 8.53. Related discussion: see 14.58. 
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EXAMPLES OF EQUATIONAL VARIETIES 

8.52. Let 7 be defined on the set J = { 1 ,  2} by the values 7 ( 1 )  = 7(2) = 2. Then an 
algebraic system of arity 7 means a set X equipped with two binary fundamental operations. 

Let X and Y be two such algebraic systems, with fundamental operations denoted by V 
and /\. Then a mapping f : X ----+ Y is a homomorphism (of arity 7) if and only if it satisfies 

for all x1 , x2 E X.  
A lattice i s  an algebraic system with this arity function 7, which also satisfies the equa

tional axioms L1-L3 of 4.20. Thus, lattices make up the equational variety ( 7, {L1 ,  L2, L3} ) . 
Some algebraic systems of arity 7 are lattices, and some are not. A lattice homomorphism 
is a homomorphism of arity 7 between two lattices. 

In many contexts we describe a lattice in terms of its ordering �' but for purposes of 
this chapter we must instead describe a lattice in terms of its fundamental operations V, /\.  
Most other kinds of ordered sets - posets, chains, directed sets, etc. - cannot be described 
in an analogous fashion, and so they do not form equational varieties. 

8.53. Let 7 be the function defined on J = {0, 1 }  by the values 7(0) = 0 and 7 ( 1 )  = 2. 
Then an algebraic system of arity 7 is a set X equipped with one nullary operation rp0 (i .e. , 
a specially selected constant member of X) and one binary operation rp1 . A homomorphism 
from one algebraic system of this arity to another is a mapping f : X ----+ X' that satisfies 

f (rpo) = rp� and 

for all x1 , x2 E X . 
A monoid is an algebraic system with this arity 7 whose two fundamental operations 

rpo , 'Pl satisfy these three axioms: 

'{'1 ( x, 'Pl (y, z)) 
'Pl ('f!o , x) = x, 'Pl (x ,  rpo ) = x. 

(associative law) 

(identity laws) 
A group is an algebraic system of arity a defined on {0, 1 ,  2} by 7(0) = 0, 7 ( 1 )  = 2, 

7(2) = 1 - that is, with the same fundamental operations as monoids, plus a unary 
operation rp2 - and that satisfies the equational axioms above and also these two equations: 

(inverse laws) 

A homomorphism of arity a means a homomorphism f : X ----+ X' of arity 7 that also 
satisfies j(rp2 (x)) = rp� (f(x) ) ,  regardless of whether X, X' satisfy the equational axioms 
for a group. A monoid or group is commutative if it satisfies the equational axioms listed 
above plus this axiom: 

(commutative law) 
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Of course, the various properties of monoids and groups take a simpler appearance if we 
use the notations introduced earlier in this chapter: 

'Po = i ,  

Thus, we prefer those notations when we are working solely with monoids or groups. The 
notation 'Po , 'Pt ,  'P2 is advantageous only when we are trying to see how monoids and groups 
fit into a more general theory of algebraic systems. 

8.54. Rings with unit were introduced in 8.18 .  A ring with unit is an algebraic system 
with arity function given by the table below and satisfying certain identities that we shall 
not list here. Rings with unit form an equational variety. Attaching one more equational 
axiom, we obtain commutative rings with unit , another equational variety. 

j 0 1 2 3 4 
T (j )  0 2 1 0 2 
'{Jj 0 + - 1 

Boolean rings will be studied in 13 . 13 and thereafter. A Boolean ring is a ring with 
unit, in which each element satisfies x2 = x. Thus, Boolean rings form an equational 
variety; we simply add one more identity to the list of identities for rings with unit. The 
fundamental operations of a Boolean ring are the fundamental operations of a ring with 
unit: (0, 1 ,  - , · , + ) . 

Boolean lattices are another equational variety, described in 13. 1 ,  with rather different 
fundamental operations 0, 1 ,  C, V, /\, satisfying rather different equational axioms. However, 
in a certain sense, Boolean rings and Boolean lattices are different views of the same ob
jects: Boolean rings and Boolean lattices can be transformed into each other, as described 
in 13. 14.  The terms "Boolean ring," "Boolean lattice," and "Boolean algebra" are used 
interchangeably in some of the literature, but in this book we distinguish between the ring 
and lattice viewpoints. 

A field X has a multiplicative inverse operation x f-+ x- 1 ,  but that operation is only 
defined on X \  {0} ,  not on all of X.  Consequently we cannot view fields as an equational 
variety (unless we replace our definitions with much more complicated definitions, as some 
mathematicians do) .  Instead we shall simply view a field as a particularly interesting 
member of the variety of commutative rings with unit. 

8.55. Let lF be a field. In Chapter 1 1  we shall introduce lF-linear spaces. These form an 
equational variety, but their arity is a little more complicated to describe. The operations 
of an lF-linear space X are the operations of an additive group, together with the operation 
of scalar multiplication. In most contexts, scalar multiplication is thought of as a mapping 
m : (c, x) f-+ ex, from lF x X into X. However, to fit scalar multiplication into our theory 
of universal algebras, we prefer to think of scalar multiplication as a collection of many 
unary operations me : x f-+ ex. We have one mapping from X into X for each c E lF. If lF 
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is an infinite field (such as the real numbers IR or the complex numbers C) ,  then we have 
infinitely many of these unary operations. 

We obtain the equational variety of lF-linear algebras (defined as in 1 1 .3) by adding one 
more fundamental operation (vector multiplication) governed by a few more identities. 

8.56. Lattice groups were introduced in 8.38. They are an equational variety, with the 
fundamental operations of additive groups plus the fundamental operations of a lattice, and 
with appropriate equational axioms. 

Part of our definition of a lattice group was the translation-invariance of the ordering, 
x � y =? x + z � y + z, introduced in 8.30. However, an implication is not an equational 
axiom, and a partial ordering is not a binary operator; the condition x � y =? x + z � y + z 
is not permitted as an ingredient in our theory of universal algebras. How can the condition 
be reformulated? We can dispense with �' replacing statements of the form x � y with 
corresponding statements of the form x V y = y. Thus, the translation-invariance of the 
ordering can be restated as the equational axiom (x + z) V (y + z) = (x V y) + z (introduced 
in 8.42.a) . 

Vector lattices and lattice algebras will be introduced in 1 1 .44. They are equational 
varieties, with the fundamental operations of vector spaces or algebras together with V, /\. 

Ordered monoids, ordered groups, and ordered vector spaces, introduced in 8.30 and 
1 1 .44, are not equational varieties, since their orderings cannot be described in terms of 
fundamental operations. 



Chapter 9 
Concrete Categories 

lattices 
(lattice homom. )  

lattice groups 
(additive lattice 

homomorphisms) 

vector lattices 
(linear lattice homom. )  

mono ids 
(monoid 
homom. )  

additive groups 
(additive maps) 

TAG 
(contin. 

additive) 
metric spaces 
( unif. contin.) 

I 
G-normed spaces 
(con tin. additive) 

F-normed spaces ( contin. linear) 

9.1 .  Preview. The chart above shows some of the most basic categories that we shall 
consider in this book. (An additional chart at the beginning of Chapter 22 shows some more 
advanced categories. )  The components of a category are (i) its objects - sets with additional 
structure - and (ii) its morphisms - mappings between those sets, which (in most cases 
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of interest) preserve that additional structure in at least one direction. Morphisms are 
indicated in parentheses in the chart ; for instance, "topological spaces (continuous)" is 
included in the chart to indicate the category whose objects are topological spaces and 
whose morphisms are continuous maps between those spaces. 

Precise definitions will be given in 9.3,  and examples will be given in some detail starting 
in 9.6. Some of the categories mentioned in this chapter are not introduced formally until 
later; this chapter may be considered as a preview of those categories. The line segments 
in the chart indicate natural relations between categories via forgetful functors (discussed 
in 9 .34) .  Some, but not all, of these forgetful functors are given by the inclusion of a 
subcategory in a category (discussed in 9.5) . 

The category theory being introduced here is based loosely on the theory of Eilenberg 
and Mac Lane. It should not be confused with Baire category theory, an unrelated topic 
introduced elsewhere in this book. The Eilenberg-Mac Lane theory was originally developed 
mainly for applications in algebraic topology (discussed briefly in 9.33); recently it has also 
been useful in the abstract theory of computer programs. However, most theorems of 
Eilenberg-Mac Lane category theory are irrelevant to the purposes of this book and will 
be omitted. The language of the Eilenberg-Mac Lane theory is useful to us, but we shall 
take the liberty of modifying that language slightly to make it more useful for the purposes 
of analysts; thus some of our definitions differ slightly from the definitions to be found in 
books on category theory. 

Some other introductions to category theory can be found in Herrlich and Strecker 
[1979] , Mac Lane [1971 ] ,  and Mac Lane and Birkhoff [1967] . 

9.2. Introductory discussion. We say that two objects X and Y are isomorphic if there is a 
correspondence between them that preserves (in both directions) all the structure currently 
of interest. Such a mapping is then called an isomorphism. Different branches of mathe
matics, being concerned with different kinds of structures - order, algebraic, topological, 
uniform, etc. - have different meanings for the terms "isomorphic" and "isomorphism." 
(This multiplicity of meanings may confuse some beginners. )  However, most meanings of 
isomorphic and isomorphism can be subsumed by one abstract meaning developed in this 
chapter; see particularly 9. 14 . 

If two objects A and B are isomorphic, then they differ only in their labeling and are 
essentially two different representations of the same object .  They can be used interchange
ably, provided that we are willing to relabel everything else that they interact with. The 
"essence" of the objects is the part of them that does not depend on the particular choice 
of representation. This interchangeability is the heart of mathematics (and, indeed, of all 
abstract thinking) ; for instance, the "essence" of the number 4 does not depend on whether 
we are dealing with four apples or four airplanes. 

When two objects X and Y are isomorphic, we may sometimes identify X and Y, and 
treat them as equal, because for most practical purposes they are the "same" set. We rp.ay 
even write X = Y, if this will not cause confusion. More generally, suppose X is isomorphic 
to a subset of a set Y; then we may identify X with that subset and write X <:;;; Y. A 
structure-preserving map from one set into another is sometimes called an embedding, 
although this term has more specific meanings in some contexts. 

Different categories - groups , topological spaces, etc. - have different properties, so 
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ultimately they must be studied separately. However, there are analogies between the 
most elementary properties of these different categories - e.g. ,  between subgroups and 
topological subspaces, or between products of groups and products of topological spaces. 
These analogies may help the beginner through the unavoidable plethora of definitions and 
elementary propositions. 

DEFINITIONS AND AXIOMS 

9.3 .  Following are precise definitions. Some readers will find it  helpful to glance ahead to 
the examples, which begin in 9.6. 

A concrete category consists of a collection of objects and a collection of morphisms. 
An object is a pair (X, S) consisting of a set X and some additional structure S on X 

(such as a preordering or a a-algebra) ; then X is called the underlying set of the object 
(X, S) .  The nature of the "additional structure" will vary from one category to another, 
but the meaning of this term will be clear in particular categories. We will often refer to 
X itself as the object if the choice of S is clear or does not need to be mentioned explicitly, 
but it is understood that S is still part of the object. One set X may give rise to several 
different objects, by being equipped with several different structures - for instance, two 
different preordered sets may contain the same points. Two objects (X, S) and (Y, 'J) are 
considered equal (as objects) if X = Y and S = 'J. 

To define morphisms, consider triples 

(X, S) f 
--+ (Y, 'J) 

consisting of two objects of the given category and a function f : X ---> Y whose domain 
and codomain are the underlying sets X and Y of those two objects. The collection of all 
such triples forms a class that is usually larger than what we want . Some subclass will 
be specified as the collection of morphisms for the category; the specified subclass must 
satisfy two axioms noted below. When f : (X, S) ---> (Y, 'J) is a morphism, we call (X, S) 
and (Y, 'J) its domain and codomain, respectively. A morphism is also sometimes known 
as an arrow. 

The collection of morphisms must satisfy these two axioms: 

(i) (Compositions) Any composition of two morphisms is a morphism. In other words, 
if A, B, C are objects and f : A ---> B and g : B ---> C are morphisms, then go f : A ---> C 
is a morphism. 

(ii) (Identity) For each object A =  (X, S) ,  the identity map ix on the underlying set X 
is a morphism from A to A. 

In most categories of interest, the class of morphisms is chosen so that the morphisms 
preserve the structure of the objects in at least one direction, but that preservation is not 
explicitly built into the two axioms listed above. In principle, it is possible to create a 
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category in  which the morphisms are entirely unrelated to the additional structure - but 
that would not be a particularly interesting category. 

The literature of category theory sometimes refers to categories by their objects. For 
instance, when topological spaces are used for objects, continuous maps are almost invari
ably used for morphisms, so we may refer to the "category of topological spaces. "  However, 
in general, a particular choice of objects does not force upon us a particular description of 
morphisms, nor vice versa. Thus, we may refer to the "category of metric spaces with con
tinuous maps," or the "category of metric spaces with uniformly continuous maps;" these 
are two different categories. 

Whenever we discuss two or more objects and/or morphisms together, it should be 
understood that all the objects and/or morphisms being considered are in the same category, 
unless specified otherwise. 

9.4. A set X may be made into an object in more than one way, by equipping it with dif
ferent structures S1 , S2 - for instance, different topologies or different orderings. Whether 
or not a function f : X ---+ Y is a morphism depends on what structures S, 'J we attach to X 
and Y;  the function f may be a morphism for one choice of structures but not for another 
choice. 

If the identity map ix is a morphism from (X, S) into (X, 'J) , we say that S is stronger 
(or finer) than 'J, or that 'J is weaker (or coarser) than S. Thus any structure is stronger 
than itself. Here mathematical language differs from everyday English, which would prohibit 
anything from being stronger than itself; see 1 .4 .  

Clearly, the relation "stronger than" is a preordering (i.e . ,  transitive and reflexive) on 
the collection of all structures on X .  In many categories of interest (but not all) , this 
preordering is also antisymmetric and thus a partial ordering - i.e . ,  in many categories of 
interest , if the identity map ix : X ---+ X is a morphism in both directions between (X, S) 
and (X, 'J) ,  then S = 'J. For instance, if two topologies are both stronger than each other, 

then they are equal; see the last paragraph of 9.8. In some categories, if either structure is 
stronger than the other, then they are equal; see the last paragraph of 9. 1 1 .  

This terminology - "stronger," "weaker," etc. - will also be  applied to any devices 
(metrics, gauges, etc. )  that are used to define the structure of a category. For instance, let 
d and e be metrics that determine topologies 'Jd and 'Je and uniformities Ud and Ue on a set 
X .  We shall say that d is topologically stronger than e if 'Jd is stronger than 'Je (that 
is, if 'Jd ::2 'Je ) ;  we shall say that d is uniformly stronger than e if Ud is stronger than Ue.  
Two metrics are topologically equivalent or uniformly equivalent i f  they determine 
the same topology or the same uniformity. 

This syntactic convention also applies to other devices than metrics - e.g. , it also applies 
to gauges. It even applies to uniformities: one uniformity U is topologically stronger than 
another uniformity U' if it determines a stronger topology - i .e . ,  if 'Ju ::2 'Ju, ,  where the 
topologies are defined as in 5.33. 

If the context is understood, then we may omit mentioning the category - e.g. , we may 
simply say d is stronger than e or d is equivalent to e .  This omission is made most often 
for topological structure - i.e . ,  if no other meaning is evident, then "stronger" usually 
means "topologically stronger." 
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9.5. Let 6 and .ft be categories. We say that 6 is a subcategory of .ft if these two 
conditions are satisfied: 

(i) {6-objects} � {.ft-objects} .  More precisely, every 6-object can also be viewed 
as a .ft-object � perhaps via some change of description, as in 9 . 10 � and 
the mapping from 6-objects to .ft-objects is injective. 

(ii) Whenever A and B are objects of 6 (and hence also objects of .ft) ,  then every 
6-morphism from A into B is also a .ft-morphism from A into B.  

We say 6 is  a full subcategory of .ft if  condition ( i )  is  satisfied, as well as the following 
strengthened version of condition (ii) : 

(ii' ) Whenever A and B are objects of 6 (and hence also objects of Jt) , then the 6-
morphisms from A into B are the same as the .ft-morphisms from A into B .  

Examples will be  given below; see particularly 9. 10. 

EXAMPLES OF CATEGORIES 

9.6. The simplest category is  the category of sets, in which the objects are sets (without 
any additional structure specified) and the morphisms are functions. 

For an isomorphism in this category, we might use a bijection between two sets. Then 
two sets are isomorphic if they have the same cardinality. 

9. 7. A category can be formed by taking convergence spaces for objects and convergence 
preserving maps for morphisms; see 7.33. 

9.8. Inverse image categories. The categories of measurable spaces, topological spaces, 
and uniform spaces differ in their deeper properties, but they are quite similar in their most 
elementary properties. In each of these categories, an object is a pair (X, S) consisting of a 
set X and a collection S of specially designated sets � a O"-algebra or topology S � P(X) ,  
or a uniformity S � P(X x X) .  I n  each of these categories, a morphism is a mapping with 
respect to which the inverse image of a specially designated set is also a specially designated 
set. This is explained in greater detail below. 

Topological spaces form the objects of a category. In this category, a morphism f : 
(X, S) ---+ (Y, 'J) is a map f :  X ---+ Y with the property that T E 'J =? f- 1 (T) E S � 
i.e. ,  for which the inverse image of an open set is an open set. Such functions are called 
continuous maps. Some elementary examples of continuous maps are given in 15. 17. 

Measurable spaces form the objects of a category. In this category, a morphism f : 
(X, S) ---+ (Y, 'J) is a mapping f :  X ---+ Y with the property that T E 'J =? r1 (T) E S 
� i.e. ,  for which the inverse image of a measurable set is a measurable set. Such functions 
are called measurable mappings. In some contexts the choices of S and 'J are understood 
and do not need to be mentioned � one may refer to a measurable mapping from X to Y 
� but we emphasize that the meaning of "measurable mapping" does nevertheless depend 
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very much on the choices of S and 'J. In most of  the theory developed in later chapters, 
the codomain Y is a topological space and 'J is the O"-algebra of Borel subsets of Y, but no 
such restriction will be imposed in the more general theory developed in this chapter. (We 
remark that even greater restrictions are imposed in applied mathematics. In that context, 
a "measurable mapping" usually means a measurable mapping from an open subset of !Rm 

equipped with its Lebesgue measurable subsets to an open subset of !Rn equipped with its 
Borel subsets. This class of mappings is not closed under composition; thus, the "measurable 
mappings" of applied mathematics do not form the morphisms of a category. ) 

Uniform spaces form the objects of a category. In this category, a morphism f : (X, S) --+ 
(Y, 'J) is a mapping f : X --+ Y with the property that 

T E 'J =;. 

- i.e. ,  for which the inverse image of a vicinity is a vicinity. Such functions are called 
uniformly continuous mappings. Such functions are studied further, and examples are 
given, in Chapter 18. 

It will sometimes be convenient to adopt a notation that makes these three categories 
look more alike. For any set X,  let us define 

X for measurable or topological spaces 
if we are working with uniform spaces. 

For any mapping f : X --+ Y, define a mapping f : X --+ Y by taking 

f 
for measurable or topological spaces 
if we are working with uniform spaces, 

where (! x f) : (X x X) --+ (Y x Y) is defined by (! x f) (x1 , x2 ) = (!(x i ) ,  f(x2 ) ) .  With these 
conventions, an object (in any of the three categories) consists of a pair (X, S) where S is a 
collection of subsets of X satisfying certain axioms, and a morphism f : (X, S) --+ (Y, 'J) 
is a mapping f : X --+ Y with the property that 

T E 'J =;. j- 1 (T) E S.  

It  is  easy to verify that if  a mapping f : X --+ Y satisfies 

T E 9  

for some generating collection of sets 9 � 'J, then f is a morphism; here "generating 
collection" is defined as in 5.23.b, 5.26.e, and 5.37. 

For each of our inverse image categories, a structure S on a set X is stronger than 
another structure 'J on the same set X precisely when S :2 'J. Thus, the stronger structure 
is represented by the larger set. 

We note a few important examples of subcategories that will be studied in later chap
ters: Use metric spaces for objects, and use uniformly continuous maps for morphisms; the 
resulting category is a subcategory of either the topological spaces or the uniform spaces. 
Further subcategories are obtained by further restricting the choice of morphisms: Use 
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Holder continuous maps, Lipschitzian maps, or nonexpansive maps; we shall see in later 
chapters that these classes of maps are closed under composition. 

Some functional analysis books gloss over the distinction between topological spaces and 
uniform spaces, because in the setting of topological vector spaces � or more generally, in 
the setting of topological Abelian groups � the two kinds of structures are nearly inter
changeable: There is a one-to-one correspondence between topologies and "nice" uniformi
ties, as shown in 26.37. However, we shall maintain a distinction between topological and 
uniform spaces, because this facilitates understanding and because occasionally one wants 
to apply these concepts in some context other than that of topological Abelian groups. 

9.9. A pointed topological space is a topological space X with a particular point 
x0 E X selected; that point is called the base point of the space. A category can be 
formed with objects consisting of pointed topological spaces, and with morphisms consisting 
of continuous maps that preserve the base points. This category will be important in 9.33. 

9.10. Categories of ordered sets can be formed in many ways. Perhaps the simplest 
way is to use preordered sets for objects and to use increasing mappings for morphisms. 
Many important subcategories of this category can be obtained by using a smaller collection 
of objects � e.g. ,  chains or complete lattices � and/or by using some smaller collection of 
morphisms � e.g. ,  sup-preserving maps. 

In the category of preordered sets with increasing mappings, the statement "� is stronger 
than !;;;;" (as defined in 9.4) means that x � y =} x !;;;; y; equivalently, it means 
Graph(�)  <;;; Graph(!;;;; ) .  Thus the stronger preordering is represented by the smaller set, 
in contrast with the situation described in the last paragraph of 9.8. 

Exercise (optional) . Let X and Y be preordered sets, equipped with their lower set 
topologies (defined as in 5 . 1 5 .d) . Show that a function f :  X ----+ Y is increasing if and only 
if it is continuous (defined in 9.8) . Conclude that preordered sets (with increasing mappings 
for morphisms) are a full subcategory of topological spaces (with continuous mappings for 
morphisms) . 

Caution: Although we may view each preordered set (X, �)  as a topological space (X, S ) ,  
note that the ordering i s  not equal to  the topology. Indeed, the ordering � (or its graph) 
is a subset of X x X,  whereas the topology S is a subset of P(X) .  Thus, we change our 
description of the object when we go from (X, � )  to (X, S ) .  

9 .11 .  Algebraic categories. Let T be an arity function (defined in  8.47) .  The universal 
algebras of type T can be used for the objects of a category, with the homomorphisms of 
type T (defined in 8.48) for the morphisms. 

However, generally we are interested in a full subcategory of that category, obtained as 
follows: Let :J be a collection of identities compatible with T; then the algebraic systems 
of variety ( T, :J) (defined in 8 .50) can be used as the objects for a category. Examples are 
the category of lattices, the category of monoids, the category of groups, the category of 
Abelian groups, the category of lattice groups, and the category of rings. 

In an algebraic category, 

( * ) if f : X ----+ Y is a bijection and a morphism, then f-1 : Y ----+ X is also a morphism. 
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This invertibility property is  not shared by most other kinds of categories studied in this 
book. 

In an algebraic category, it is not particularly meaningful to discuss whether one struc
ture on a set is "stronger" than another. Indeed, if S and 'J are two structures on a set X, 
and the identity map ix i s  a morphism in  either direction between (X ,  S) and (X ,  'J) , then 
in fact S = 'J. (That follows from ( * ) .  ) Thus, if one structure is stronger than another, then 
they are equal. 

9.12. Remarks: overview of categories. There is some overlap between our general classes 
of categories; for instance, lattices may be viewed as algebraic systems (X, V , /\ )  or as 
preordered sets (X, � ) .  Each viewpoint has its advantages, depending on what properties 
and structures we wish to study. 

Early chapters of this book are devoted to the simplest categories. Later chapters will 
introduce more complicated and specialized categories. Many of these are "hybrid cate
gories," combining structures of two simpler categories and also imposing some condition 
of compatibility between the two structures. For instance, a topological linear space has 
both a topology and a linear structure, which must be compatible in that the vector space 
operations are jointly continuous. 

Viewing an object in different categories may yield different kinds of information about 
that object. Following are a few examples. 

Every metric determines a topology (see 5 . 15.g), but there are also some topologies that 
are not determined by any metric. The topologies that can be determined by a metric are 
called metrizable topologies. Thus, metrizable topological spaces form a full subcategory of 
topological spaces (both equipped with continuous maps for morphisms) .  

O n  the other hand, one topology 'J may be determined by two different metrics d, 
d' . Thus the category of metrizable topological spaces (X, 'J) is slightly different from the 
category of metric spaces (X, d) (both equipped with continuous maps) ,  since (X, d) and 
(X, d') are different objects in the latter category. 

Different questions arise naturally in these slightly different categories. For instance: 

• A theorem of Banach states that any strict contraction self-mapping of a complete 
metric space has a fixed point. This is a statement about metric spaces. If we replace 
the metric with another metric that yields the same topology, the self-mapping may 
no longer be a strict contraction. (Meyers' converse in 19.47 considers the effects of 
such a replacement . )  

• A theorem of Baire states that in a topologically complete space (i.e. , a topological 
space (X, 'J) whose topology can be given by various metrics, at least one of which 
is complete), the intersection of countably many open dense sets is dense. This is a 
statement about metrizable spaces. If we replace a metric with an equivalent metric, 
the open sets and the dense sets are unaffected. 

This kind of distinction is also displayed in a chart in 18. 1 .  

9. 13. Nonconcrete categories ( optional) .  Concrete categories will suffice for the purposes 
of this book, but the reader should be aware that the Eilenberg-Mac Lane theory deals with 
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other kinds of categories as well. A category consists of certain collections of mathematical 
devices called objects (not necessarily sets) and morphisms (not necessarily functions) ,  
satisfying certain rules listed below. Each morphism is represented in the form f :  A ---> B, 
where f is the name of the morphism and A and B are objects called the domain and 
codomain of the morphism, respectively. Morphisms must satisfy these rules: 

(i) If f : A ---> B and g : B ---> C are morphisms, then there exists a morphism 
g o  f :  A ---> C, called the composition of f and g. 

( i i )  Composition of morphisms is associative: f o (g o h ) = (f o g) o h .  
(iii) For each object A,  there exists a morphism iA ,  called the identity morphism 

of A, satisfying 
g o  iA = g for any morphism g with domain A, and 

iA o f =  f for any morphism f with codomain A. 

It  is  an easy exercise to show that the identity morphism is  unique - i.e . ,  i f  iA and i� both 
satisfy condition (iii ) ,  then iA = i� . 

We mention two examples of nonconcrete categories: 
a. Let (S, =::;< ) be any preordered set; for objects take elements of S; for morphisms take 

ordered pairs (x, y) satisfying x =::;< y. Note that in this category, for any two objects x 
and y there is at most one morphism from x to y. 

b. Let X and Y be topological spaces. Let [0, 1] have its usual topology, and let [0, 1] x X 
have the product topology (discussed elsewhere in this chapter and in Chapter 15 ) .  

Let j, g : X ___, Y be continuous mappings. A homotopy from f to g i s  a continuous 
mapping h :  [0, 1] x X ---> Y such that 

h(O, x) = f (x) ,  h ( l , x) = g(x) for all x E X. 

If such a mapping exists, we say f and g are homotopy-equivalent . The reader 
should verify that this is an equivalence relation on the collection of all continuous 
mappings from X into Y .  

A category can be  formed by taking topological spaces for objects and homotopy 
equivalence classes for morphisms. This category is typical of the ones used in algebraic 
topology. See also 9 .33.  

9.14. More definitions. In any category - concrete or not - an isomorphism between 
two objects A and B is a morphism f : A ---> B for which there exists another morphism 
g : B ---> A such that g o f = iA and f o g = i8 .  This makes precise the definition given in 
9.2. 

In a concrete category, this definition can also be restated as follows: An isomorphism 
between two objects A = (X, S) and B = (Y, 'J) is a bijection f : X ---> Y such that both 
f : A ---> B and f- 1 : B ---> A are morphisms. 

In any category, an automorphism of an object A is an isomorphism from A onto A. 
Clearly the identity map of A is an automorphism, but there may be others as well. For 
instance, the translation mapping cp : x r---+ x + 3, from lR into JR, is an automorphism of 
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metric spaces (but i t  is not an automorphism, or even a morphism, of  additive groups, since 
it does not preserve the identity) .  

The inverse of any automorphism is another automorphism. It is easy to see that the 
automorphisms of A form a (not necessarily Abelian) group, with composition of morphisms 
for the group's binary operation. The automorphism group of A is often denoted by Aut( A). 
This notation does not indicate what category is being used. We could indicate it with 
subscripts. For instance, let 1fJ be the translation map mentioned in the previous paragraph; 
then 1fJ E Autmetric spaces (IR) but 1fJ ¢ Autadditive groups (IR). However, usually the choice 
of category is clear from the context , and so the subscripts are not needed. 

INITIAL STRUCTURES AND OTHER CATEGORICAL 
CONSTRUCTIONS 

9.15. Definition. Let X be a set, let { (Y>- ,  'h)  : A E A} be a collection of objects in 
some category, and for each A let ifJ>- : X ----+ Y.>- be some given mapping. Then an initial 
structure determined by the ifJ>- 's and 'I.>-'s is a structure S that makes (X, S) into an object 
with this property: 

Let (W, 9() be any object in the category, and let f : W ----+ X be any func
tion. Then f is a morphism from (W, 9() into (X, S) if and only if each of the 
compositions ifJ>- o f is a morphism from (W, 9() into (Y.>- ,  'I.>- ) 

- or, equivalently, an object with these two properties: 

(i) Each of the mappings ifJ>- : X ----+ Y>- is a morphism. (ii) Let (W, 9() be any 
object in the category, and let f : W ----+ X be any function. Suppose that each 
of the compositions ifJ>- o f is a morphism from (W, 9() into (Y.>- , 'I.>- ) .  Then f is 
a morphism from (W, 9() into (X, S) .  

Exercises. 
a. Prove the equivalence stated above. 
b. If S is an initial structure on X determined by the 1fJ >- 's and 'J >- 's, then S is weaker than 

any other structure on X that makes the 1fJ >- 's into morphisms. (For this reason it is 
sometimes called the weak structure. )  

c. I f  s l  and s2  are two initial structures on X determined by the lfJ.>- 'S and 'J.>- 'S, then each 
of s l '  s2 is weaker than the other. 

Hence there is at most one initial structure determined by the lfJ>- 's and 'J.>- 's, in 
many categories of interest to us - particularly, in our inverse image categories and 
algebraic categories. It is the weakest structure that makes the lfJ>- 's into morphisms. 

Further remarks. Let any X and (Y.>- ,  'J.>- ) 's and lfJ>-'s be given. Then the initial structure 
does not always exist; in our algebraic categories, this will be evident from our discussion 
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in 9 .20. However, the initial structure does always exist in our inverse image categories; we 
shall prove that in 9 . 16. 

The definition of initial structure given above is admittedly rather complicated. Simpler, 
equivalent definitions are available in some categories - e.g. , for topological spaces (see 
15.24) and for uniform spaces (see 18.9 .f) .  

9.16. Proposition. Initial structures exist in the categories of measurable spaces, topological 
spaces, and uniform spaces. 

More precisely: Let { (Y>. ,  'J >.) : ,\ E A }  be a collection of objects in one of those categories. 
Let X be a set, and let some mappings 'P>. : X --+  Y>. be given. Then there exists an initial 
structure S on X, determined by those spaces and mappings. In fact, S is the structure 
generated by the collection of sets 

9 { fX-1 (T) : ,\ E A and T E 'J>. } , 

where mappings fX : X --+ }\ are defined as in 9.8 .  

Proof In the category of measurable spaces or topological spaces, 9 can be used to generate 
a structure, since any collection of sets can be used to generate a structure. In the category 
of uniform spaces, each fX-1 ('J>. ) is a preuniformity, by 5.40.c; hence 9 is a preuniformity, 
by 5 .38.a; hence 9 can be used to generate a structure. 

Let S be the structure on X generated by 9. We shall show that S is an initial structure. 
It is clear that each t.p>. is a morphism from (X, S) into (Y>. ,  'J>.) ,  since S 2 9 2 fX -1 ('J>.) 
Now suppose that (W, 9<) i s  some object and g : W --+ X is  some mapping such that 
each composition 'P>. o g is a morphism; we must show that g itself is a morphism. Let 
E = {S s;; X :  -g- 1 (S) E 9<}; it suffices to show that E 2 S .  

We first show that E 2 9 .  Fix any ,\ E A and fix  any T E 'J>, . Then <{J>. o g : (W, 9<)  --+ 

(Y, 'J>.) is a morphism; hence -g- 1 (fX-1 (T) ) = (fX o g)- 1 (T) is a member of 9<; hence 
fX-1 (T) is a member of E. Thus E 2 9. 

In the category of measurable spaces or topological spaces, E is  a structure on X ,  by 
5.40.b. Since it is a structure containing 9 ,  it also contains the structure generated by 9 ;  
thus E 2 S .  

For the category of uniform spaces, we know 9< is a uniformity on W, hence a filter on 
W x W, hence E is a  filter on X x X by 5 .40.b. Also E contains 9, which is a preuniformity. 
Hence E contains the smallest filter that contains 9 - that is, E contains S .  

9.17. An important special case. Let {S>. : ,\ E A} be a collection of structures on a set 
X ,  in the category of measurable spaces, topological spaces, or uniform spaces. Then the 
supremum of the S>.'s is the smallest structure that contains U>.EA S>.; it is equal to the 
initial structure determined by the identity mappings i>. : X --+ (X, S>. ) -

9.18. Products. Let { (Y>. ,  'J>. ) : ,\ E A} be a collection of objects in  some category, and 
let X = fLEA Y>. be the product of the underlying sets. By a product structure on X we 
shall mean an initial structure (defined as in 9. 15) determined by the coordinate projections 
7r>. : X --+  Y>. . 
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Products always exist in our inverse image categories; this is  just a special case of 9. 16. 
As we noted in 9 . 10 ,  preordered sets (with increasing maps for morphisms) may be viewed 
as a full subcategory of topological spaces; hence products also exist in the category of 
preordered sets. Exercise ( optional ) :  Show that the product of preordered sets, defined in 
this fashion, is the same as the product defined in 3.9.j .  

Although initial structures do not always exist in  our algebraic categories (as we shall see 
in 9 .20) , nevertheless product structures always exist. Fundamental operations are defined 
coordinatewise. For instance, if U, V, W are lattices, then lattice operations are defined on 
U X V  X W by 

This construction generalizes readily to products of any number of factors in any equational 
variety. Say X = Ya x Y13 x Y1 x · · · is a product of algebraic systems of type ( T, :J ) ;  suppose 
T(j) = n; we shall now describe the action of the n-ary operation <I>j of X in terms of the 
n-ary operations 'PnJ , 'P!>J , cp,j , . . . of the factor spaces. The function <I>j acts on n-tuples 
(xl , X2 , . . .  , Xn ) E yn . Say X; = (Y;a , Y;!J , y;, , . . .  ) where Yin E Y;, Yi!J E Y13 , etc. Then 

( Yln [ Y2o 
YlfJ Y2!3 <I>j Y11 Y21 ' . . .  ' 

Ynn 
Yn,B 
Ynr ) 'PnJ (Yln , Y2n , · · · ' Yna )  

'P!3j (Ylf3 , Y2f3 ,  · · · ,  Yn!3) 
'P,j (Yl, , Y2, , · · · , Yr, ) 

We leave it to the ambitious reader to unwind all the notation and verify that this formula 
does indeed satisfy the definition given in 9 . 15 ,  and verify that X is an algebraic system of 
type ( T, :J ) .  It is sometimes called the direct product. 

Some of our "hybrid" categories also have product objects. For instance, if ( (Y.x ,  'J.x ) : 
), E A) is a collection of topological vector spaces, then the product topological structure 
and the product vector space structure on the product set X = ILEA Y.x are compatible 
with each other and thus yield a product topological vector space; see 26.20.a. 

This does not work in some other categories. For instance, a product of finitely many 
normed spaces is a normed space, but a product of infinitely many normed spaces is a 
topological vector space that cannot be equipped with a norm; see 27.7.c. 

9.19. Exercise. A product of morphisms is a morphism. 
More precisely: For each >., suppose that f.x : X.x ---+ Y.x is a morphism. Define a mapping 

f from P = ILEA X.x into Q = ILEA Y.x by taking 

f ( (xa , Xf] , X1 , . . . )) (!a (Xa_ ) ,  f,B (X,B ) ,  f1 (x1 ) ,  . . .  ) 
if A = {a, /), / , . . . } .  Assume that P and Q are equipped with product structures. Then f 
is a morphism. 

c 9.20. Discussion of codomains. Let X be a subset of a set Y; let i : X ---=-. Y be 
the inclusion map. Then any function f : W ---+ X is the "same" as the composition 
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i o f :  W ___, Y,  insofar as it has the same domain and the same values f (w) = i (f(w) ) ;  it 
differs only in our designation of the codomain. See 2.5 .c .  

Of course, if we attach structures 9(, S, 'J to the sets W, X, Y, making them into different 
objects in a category, then the difference between f and i o f may be more substantial: 
perhaps one is a morphism while the other is not. That depends on our choices of the 
additional structures 9(, S, 'J. 
Definition. Let (X, S) and (Y, 'J) be objects in some category. We say that (X, S) is a 
subobject of (Y, 'J) if these two objects are related by this condition: 

Let (W, 9() be any object in the category, and let f : W ___, X be any func
tion. Then (W, 9() ___!___, (X, S) is a morphism if and only if the composition 
(W, 9() !':.L (Y, 'J) is a morphism. 

In other words, S is the initial structure on X determined by the inclusion map i : X ___f_. Y 
and the structure 'J. 

Further remarks. In our inverse image categories, if (Y, 'J) is any object, then every subset 
X � Y has a unique subobject structure S; that is just a special case of 9 . 16 .  In fact , 
it follows easily from 9 . 16  that the subobject structure is S = {X n T : T E 'J}. It is 
sometimes called the trace of 'J on X. In the category of topological spaces, S is the same 
as the relative topology, which we introduced in 5 . 15 .e. 

Subobjects in algebraic categories are studied in more detail below. 

9.21 .  Basic properties of subalgebras. We consider the category consisting of the algebraic 
systems of some type ( T, J ) ,  with homomorphisms of type T. (For examples, think of the 
category of lattices, the category of rings, or the category of lattice groups. )  In this category, 
a subobject is called a subalgebra. Let X be an object. Show that 

a. Y is a subalgebra of X if and only if Y is a subset of X that is closed under the 
fundamental operations of X.  It then follows that Y itself is also an algebraic system of 
type ( T, J ) ,  whose fundamental operations are the restrictions to Y of the fundamental 
operations of X.  

Except i n  degenerate cases, not every subset of X is closed under the fundamental 
operations. Thus, in an algebraic category, initial structures do not always exist. 

b. X is a subalgebra of itself. 
c. The intersection of any collection of subalgebras of X is a subalgebra of X.  Thus, the 

subobjects of an algebraic system Y form a Moore collection. (We mentioned this for 
sublattices in 4 .21 . )  

d. The intersection of all the subalgebras containing some given set T � X i s  the smallest 
subalgebra containing T; it is called the subalgebra generated by T. It is the closure 
of T under the fundamental operations; all of those operations are finitary. Hence 
the closure operator is an algebraic closure operator, as defined in 4.8(A) .  Thus, the 
operator S f---+ cl(S) is an algebraic closure, if cl (S) is the submonoid, subgroup, subring, 
etc . ,  generated by a set S � X, where X is a given monoid, group, ring, etc. 
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e. The empty set is a subalgebra of X if and only if none of the fundamental operations 
of X is nullary. Thus, the empty set is a subalgebra when we consider lattices, but 
that category is atypical. Most of the algebraic systems considered in this book have a 
nullary operation - i.e. ,  a special element , usually denoted 0 or 1 -- and so the empty 
set is not a subalgebra in most algebraic systems considered in this book. 

f. Suppose f :  X ---> Y is a homomorphism of arity T. Then: 
(i) The set f(X) = Range(!) is a subalgebra of Y. 

(ii) More generally, i f  S r;;; X is a subalgebra of X, then f(S) is  a subalgebra 
of Y. 

(iii) f is  uniquely determined by its values on any subset S r;;; X that generates 
X.  

(iv) If T is a subalgebra of Y, then f- 1 (T) is a subalgebra of X.  

(v) If X satisfies identities J ,  then so does the subalgebra f(X) r;;; Y (regard
less of whether Y l:latisfies those identities) .  

g. The product of subalgebras is a subalgebra. That is: Let f1.xEA Y.x be the direct product 
of some algebraic systems Y.x of some variety, and let W.x be a subalgebra of Y.x for 
each >.; then the set f1.xEA W.x is a subalgebra of X. 

Hint : It  is  closed under the fundamental operations, since those act separately on 
each coordinate. 

h. Let f : X ---> Y be a function from one algebraic system to another of the same arity. 
Then f is a homomorphism if and only if Graph(!) is a subalgebra of X x Y. 

VARIETIES WITH IDEALS 

9.22. Remarks. Among the algebraic categories studied in this book, the category of 
lattices is atypical. Most equational varieties of interest to us have an addition operation 
( + ) ,  which plays a special role among the various fundamental operations. It is the basis 
for a theory of ideals and quotients developed below. 

Our presentation is based on Kurosh [1965] ; what we call an object in a "ideal-supporting 
variety" is what Kurosh calls an "D-group." However, we assume that "addition" is com
mutative. Kurosh and other algebraists do not make that assumption; consequently they 
have a slightly more general and more complicated theory of ideals and quotients. 

9.23. Definitions. Let (r, J) be a variety. We shall say that ( r, J) is an ideal-supporting 
variety if the following two further conditions are satisfied : 

(i) Included among the fundamental operations of the category are operations 
of addition ( + ) , minus ( - ) ,  and zero (0) (respectively binary, unary, and 
nullary) ,  satisfying identities that make (X, +, - , 0) into an additive group. 
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(There may or may not also be other fundamental operations and other iden
tities. )  

(ii) Whenever cp i s  one of the fundamental operations of  the algebraic system and 
cp is not nullary, then cp(O, 0, 0, . . .  , 0) = 0. (This is an identity. It may be 
included as a member of :J. However, in many cases of interest it does not 
have to be assumed explicitly, because it follows as a consequence from other 
identities in :J.) 

Some examples: the varieties of additive groups, rings, commutative rings, lattice groups, 
vector lattices, and lF-linear spaces (for any field JF) are all ideal-supporting. The varieties 
of monoids and lattices are not ideal-supporting. 

In an ideal-supporting variety ( T, :J) , when clarification is needed, we may distinguish 
between group homomorphisms (which preserve 0, + , - but not necessarily any other funda
mental operations) and T-homomorphisms (which preserve all the fundamental operations) . 

9.24. Elementary observations. Suppose ( T, :J) is an ideal-supporting variety, and X is an 
object in this variety. Then: 

a. {0} is an object in this category - i.e. , an algebraic system of type ( T, :J) . (However, 
although { 0} is a subgroup of X ,  we do not assert that { 0} is a subalgebra.) 

b. The mapping x f-+ 0, from X into {0}, is a T-homomorphism. 
c. If 0 is the only nullary operation, then the constant mapping 0 : X ---+ Y defined by 

x f-+ 0 is a T-homomorphism from any object X into any object Y. 
d. If f : X ---+ Y i s  a T-homomorphism, then f is  also a group homomorphism. Hence 

we may define the subgroup Ker(f) = f-1 (0) and the quotient group X/Ker(f) as in 
8 . 14 and 8. 17. (However, we do not assert that these additive groups are objects of 
the category (tau, :J ) . )  

9.25. Definition and proposition. Let ( T ,  :J) be an ideal-supporting variety. Let X be an 
algebraic system of the variety ( T, :J) .  Let S � X be an additive subgroup of X. Then the 
following conditions are equivalent. If any (hence all) of them is satisfied, we say S is an 
ideal in X.  

(A) S is  the kernel of some T-homomorphism f : X ---+ Y, for some object Y in 
the category. 

(B) For each integer n 2 0, for each fundamental operation cp that is n-ary, and 
for each x1 , x2 , . . .  , Xn E X,  the set S is closed under the n-ary operation 
'l/Jcp,X! ,X2 , . . .  ,xn : xn ---+ X defined by 

'l/Jcp,X! ,X2 , . . .  ,Xn ( s 1 , 82 , , , ,  l Sn )  
= cp(Xl + 81 , X 2  + 82 , . . .  , Xn + Sn)  - cp(x1 , X2 , . . .  , Xn) · 

(This condition is trivially satisfied for n = 0, since then cp is a constant and 
cp - cp = 0 is a member of the subgroup S.) 
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(C) The quotient group XIS can be made into an object of the variety (T, :J) 
(called the quotient object) ,  and the quotient map 1r :  X ----+ XIS can be 
made into a T-homomorphism, with the fundamental operations ij5 on X IS 
defined in terms of the given fundamental operations IP on X, as follows: 

0(7r(xl ) , 7r(x2 ) ,  . . .  , 7r(xn )) = 1f (ip(xl , X2 , · · · , xn )) , 
if I{J is n-ary. (The quotient object has different names in different categories 
- quotient group, quotient ring, quotient vector space, quotient algebra, etc. )  
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Remarks. In these conditions we do not assert that S is necessarily an object in the category. 
We might say S is an ideal in the algebra X, to distinguish this from the "ideal of sets" 

introduced in 5.2. The two notions of "ideal" coincide in the context of the Boolean algebra 
:P(O) ; see 13 . 1 7.d. 

The last equation in (C) is admittedly complicated. It may be easier to understand if 
we mention a typical example: In the category of rings, addition and multiplication in X IS 
are operations [±] and D defined by 

For both of these equations, some verification is needed: One must show that 1r(x1 +x2) and 
1r(x1 · x2 ) do not depend on the particular choice of representatives x1 , x2 from equivalence 
classes - i.e. ,  one must show that 

1r(xl ) = 1r(x� ) ,  1r(x2 ) = 1r(x; ) ::::;. 
1r(x1 + x2 ) = 1r(x� + x; ) ,  1r(x1 · x2 ) = 1r(x� · x; ) .  

Verifications of this sort follow from the proof of (B) ::::;. (C ) ,  below. 

Proof of (B) ::::;. (C ) .  We must verify that the functions ij5 are well-defined by the formula 
in (C) - i.e. ,  we must show that 

1r(x; ) = 1r(x;) for all i ::::;. 1f (ip(xl , · · · , xn )) = 7r (ip(x� , . . .  , x� )) . 
But that is just a restatement of (B) .  Obviously ij5 is n-ary, and thus XIS is an algebraic 
system of arity T. By our definition of the ij5's, it follows that 1r is a homomorphism of 
algebraic systems. By 9 .2l .f(v) , it now follows that XIS satisfies all the identities :J .  

Proof of (C)  ::::;. (A) .  I f  the quotient map 1r : X ----+ X IS i s  a homomorphism, then S i s  its 
kernel. 

Proof of (A) ::::;. (B) . Assume S = Ker(f) .  Under the hypotheses of (B) we have (x; + 
s; ) - x; E S, and therefore f(x; + s ; )  = f(x; ) .  Now 

0 ip (f(xl + s l ) ,  . . .  , f(xn + sn )) - ip (f(xl ) ,  . . .  , f(xn )) 
f (ip(Xl + 81 , . . .  , Xn + Sn )) - f (ip(Xl , . . .  , Xn )) 
f (ip(Xl + 8 1 , . . .  , Xn + sn ) - ip(Xl , . . .  , xn )) 
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and therefore cp(x1 + s 1 , . . .  , Xn + sn ) - cp(x1 , . . . , Xn ) is in Ker(f ) = S. 

9.26. Further examples. 
a. If X is an object in an ideal-supporting category, then {0} and X are ideals in X. 

Any ideal in  X other than X itself i s  called a proper ideal. A maximal ideal is 
a proper ideal that is not contained in any other proper ideal. 

b. Ideals, subalgebras, and subgroups are all the same thing in the category of additive 
groups. 

c. Let X be a ring with unit. Then the same set X,  with the same addition and 0 
and multiplication, may also be viewed as a ring "without unit" - i.e. ,  an object in 
the category of rings - by forgetting that its member "1" has some special property. 
Observe that X has the same ideals in either category. This may not be entirely 
obvious from definitions 9.25(A) or 9.25(C), but it is easy to see from 9.25(B) .  

d. In the category of rings or in the category of rings with unit, an ideal in a ring X is 
an additive subgroup S � X that satisfies 

s E s, X E X  sx, xs E S. 

In the category of rings with unit, note that a ring X is the only ideal in X that 
contains 1 ;  hence it is the only ideal that is also a subring (i .e . ,  subalgebra in the 
category of rings with unit ) .  

e. The ring Zm (introduced in 8 .20) can also be  described as the quotient of the ring Z 
by the ideal mZ = {mz : z E Z} . 

f. Let IR [x] be the ring of all polynomials in one variable x, with coefficients in IR, with 
multiplication given pointwise - that is, (fg) (x) = f(x) · g(x) . Let JRIR = {functions 
from IR into IR} ; this is also a ring with unit. Then: 

(i) IR [x] is an ideal in itself, but not in JRIR , for the category of rings. The 
inclusion map i : IR [x] L JRIR is a homomorphism. Thus, the homomor
phic image of an ideal is not necessarily an ideal. Contrast this with the 
result for subalgebras noted in 9 .2l .f(i) . 

(ii) The set of all polynomials of degree ::=::; 1 is not an ideal in IR [x] , for the 
category of rings. However, it is an additive subgroup, and thus it is an 
ideal when we consider the category of additive groups. Thus, whether 
a subset S is an ideal in an algebraic system X may depend on what 
category we use in considering S and X .  

g .  Let Q( = ( T ,  :J) and 23 = ( T, o )  b e  two ideal-supporting varieties, with the same arity 
function T - i.e. ,  with the same fundamental operations, but possibly with different 
sets of equational axioms. Suppose X is an algebraic system that satisfies both sets 
of equational axioms - i.e. ,  X is an object in both categories. Then the Qt-ideals in 
X are the same as the 23-ideals in X. (This is may not be obvious from 9.25(A) or 
9 .25(C),  but it is immediately evident from 9.25(B) , since that condition only involves 
the fundamental operations of X, not the other objects of the category. ) 
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Example. A Boolean ring is a ring X with unit, which satisfies x2 = x for all 
x E X.  Show that we obtain the same ideals in a Boolean ring, whether we view it 
in the category of rings or the category of rings with unit or the category of Boolean 
rings. (Boolean rings will be studied further in Chapter 13 and thereafter . )  

9.27. Proposition on ideals in lattice groups. Let X be a lattice group, and let S r:;; X be 
an additive subgroup. Then the following conditions are equivalent . 

(A) S is an ideal in X ,  as defined in 9.25. (Use 9.25(B) here . )  
(B) S is solid - that is, s E S, jxj � jsj =? x E S. 

(C) Whenever s, s' E S and x, x' E X, then [(x + s ) V (x' + s')] - (x V x') E S. 

(D) Whenever t E S and u E X, then (u V t ) - (u V 0) E S. 
(E) Whenever s E S and u E X, then (u + s )+ - u+ E S. 
(F) s E S {::::=:? jsj E S, and moreover, whenever s E S and x E X satisfy 

0 � x � s ,  then x E S. 

Taking x = x' = 0 in condition (C) ,  we note this corollary: In the category of lattice groups, 
any ideal is also a sublattice. 
Proof of equivalence. We begin by considering what 9.25(B) looks like in the category of 
lattice groups. Any additive subgroup is closed under the operation 7/J determined by the 
mappings IP( x) = 0 or IP( x) = -x or IP( x, x') = x + x' . The two remaining fundamental 
operations in a lattice group are V and /\ ; taking these binary operations for IP yields the 
functions 

'I/J1 (s , s') 

1/J2 ( s , s' ) 
[(x + s )  V (x' + s' )] - (x V x' ) , 
[ (x + s )  1\ (x' + s')] - (x 1\ x') . 

Thus, an additive subgroup S is an ideal if  and only if it  is  closed under these two binary 
operations for every choice of x, x' E X.  But after some changes of sign, one of these 
functions is dual to the other, by 8.33.c. This proves (A) {::::=:? (C) .  

Proofs of  (C) {::::=:? (D) {::::=:? (E) follow from translation-invariance of the lattice 
operations, plus the fact that S is an additive group. Proofs of (F) {::::=:? (B) follow from 
elementary considerations about the absolute value function. For (D) =? (F) ,  use u = s to 
show s E S {::::=:? jsj E S. For (F) =? (E) , use 8.42.o. 

9.28. Further properties of ideals. Let X be an object in an ideal-supporting variety. Then: 

a. (Isomorphism Theorem.) If f : X ____, Y is a homomorphism in that category, then 

X/Ker(J) is isomorphic to Ran(!) 

by the mapping F (1r(x) ) = f(x) - thus generalizing 8 . 17.c. 
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b. The ideals are the sets closed under the finitary operations 1/Jy;,x, ,  . . .  ,xn defined in 
9.25(B) . Hence our earlier results about Moore closures in 4.6 and our earlier re
sults about algebraic closures in 4.8 are applicable. Using those results or by a direct 
argument , show that: 

(i) Any intersection of ideals in X is an ideal. 

(ii) For any set B � X, there is a smallest ideal in X that contains B .  It 
is the intersection of the ideals that contain B .  It is called the ideal 
generated by B. 

c. If S;. (>. E A) are ideals in X, then the sum I:>.EA S;. (defined in 8. 1 1 )  is also an ideal; 
in fact, it is the ideal generated by U>.EA S;. . 

d. The intersection of a subalgebra and an ideal is an ideal. 
Proof Let A be an algebraic system in some ideal-supporting variety; let S be a 

subalgebra of A, and let I be an ideal in A. We shall show S n I is an ideal in S. Let 
j : S L A be the inclusion homomorphism; let h : A ____, B be a homomorphism with 
kernel equal to I. Then the composition S __i__. A � B has kernel equal to S n I. 

e. If f :  X ____, Y is a homomorphism and T � Y is an ideal, then f-1 (T) is an ideal in X. 
f. A product of ideals is an ideal. In other words, if E;. is an ideal in X;. for each >., then 

fhEA E;. is an ideal in I1>.EA X;. . 
Hint:  E;. is the kernel of some homomorphism J>. : X;. ____, Y;. . Show that I1>.EA E;. 

is the kernel of the homomorphism f = IT>.EA !>. : IT>.EA X>. ____, IT>.EA Y>. defined as 
in 9. 19 .  

9.29. Let X = IT>.EA  Y;. be  a product of algebraic systems in  some ideal-supporting variety 
( T, :J) ;  let X be equipped with the product structure. Let 9 be a filter of sets on the set A. 
Then r = {9 E X :  9- 1 (0) E 9} i s  an ideal in  the algebra X. 

Proof It is  easy to verify that r i s  an additive subgroup of X. We shall show that r also 
satisfies 9.25(B) . Let 'P>. : Y;.n ____, Y;. (>. E A) and 1> : xn ____, X be corresponding n-ary 
fundamental operations. Let any functions 91 , 92 , . . .  , 9n E r and fi , h ,  . . . , f n E X be 
given; we are to show that the function 

belongs to r. Unwind the notation, as in 9 . 18 ;  then the function h :  A -+  Y is defined by 

From this it follows easily that n;=1 9j1 (0) � h-1 (0) . Now, each set 9j1 (0) belongs to 
the filter 9 ,  hence h - 1 ( 0) belongs to 9. Thus h E f. 

9.30. Corollary. Let X = IT>.EA Y;. be a product of algebraic systems in some ideal-
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supporting variety ( T, :J ) ,  equipped with the product structure. Then the set 

{f E II y,\ 
.\EA 

f(>.) -=/= 0 for only finitely many A's} 
is an ideal in the algebra X;  this is immediate from 9.29 using the cofinite filter. We shall 
call this ideal the external direct sum of the Y>. 's. (In some categories it coincides with 
the coproduct. ) Of course, when A is finite, then the external direct sum is the same as the 
product. 

Further properties. For each ).. E A, an injective homomorphism ]>. : Y>. --+ X  can be defined 
by ]>. ( v) = (0, 0, . . .  , 0, 0, v, 0, 0, . . .  , 0, 0) - that is, put v in the >.th component and zeros 
elsewhere. Then J>. (Y>.)  is a subgroup of X that is isomorphic to Y>. . Also note that 7r>. o ]>. 
is the identity map of Y>. and 1r JL o j >. : Y.\ --+ YJL is the zero map if J-l -=/= >.. Show that 

(where EB represents an internal direct sum, as defined in 8 . 12) .  Thus, the external direct 
sum of the Y>. 's is the internal direct sum of a collection of groups that are isomorphic to the 
Y>. 's. If we gloss over the distinction between isomorphism and equality, then the external 
direct sum of the Y>. 's is "the same as" the internal direct sum of the Y.\ 's. 

Caution: In the wider literature, internal direct sums and external direct sums are often 
used interchangeably; both are referred to simply as direct sums. 

FUNCTORS 

9.31. Loosely speaking, a functor is a morphism in the category of categories. A little more 
precisely, a functor is a mapping from one category into another, sending objects to objects 
and morphisms to morphisms and preserving the "relevant structure." In this context the 
relevant structure involves such things as the compositions of morphisms. 

To be entirely precise, a covariant functor preserves compositions and arrow directions; 
a contravariant functor reverses compositions and arrow directions. Thus, suppose that 

p : X -+ Y  and u = v o w  
are a typical morphism and a typical composition of morphisms in category Qt. Then a 
covariant functor F : Ql --+ 123 yields 

F(p) : F(X) --+ F(Y) and F(u) = F(v) o F(w) 
in category 123, whereas a contravariant functor G : Ql --+ 123 yields 

G(p) : G(Y) --+ G(X) and G(u) = G(w) o G(v) 
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in category !B .  
The reduced power functor S f----4 * S will be  discussed starting in  9 .37; note particu

larly 9 .50.a. This functor is covariant; it is usually represented with an asterisk on the left . 
Do not confuse it with the contravariant exponential functor S f----4 S*, described in 9.55 
below; this functor is usually represented with an asterisk on the right . 

9.32. Some elementary examples of functors. The covariant power set functor is a 
functor from the category of sets to itself. This functor sends each set X to the set 'Jl(X) 
and sends each mapping f :  X ----+ Y to the forward image map f :  'Jl(X) ----+ 'Jl(Y) defined in 
2 .7. 

The contravariant power set functor is another functor from the category of sets 
to itself. This functor also sends each set X to the set 'Jl(X) ,  but it sends each mapping 
f : X ----+ Y to the inverse image map r1 : 'Jl(Y) ----+ 'Jl(X) defined in 2.8. 

9.33. ( Optional. ) We now specialize slightly the notion developed in 9 . 13.b. Let (X, x0) 
be a pointed topological space (defined as in 9. 9 ) .  Consider all paths in X that begin and 
end at x0 - that is, all continuous functions 

f :  [0, 1 ] ----+ X that satisfy f(O) = f ( 1 )  = Xo . 
Call two such paths f, g equivalent if there exists a homotopy from f to g that preserves the 
endpoints - i.e . ,  if there exists a continuous function h : [0, 1 ]  x [0, 1 ]  ----+ X that satisfies 

h(O, t) = f(t ) ,  h ( 1 ,  t )  = g(t ) ,  h ( s ,  0 )  = h ( s ,  1 )  = xo 
for all s, t E [0, 1 ] .  It is easy to verify that the equivalence classes form a group, under the 
operation of "composition" -

• to compose two paths, follow one and then the other; 

• the inverse any path is the same path run backward. 

This group, denoted 1r1 (X, x0) ,  is called the Poincare fundamental group of the pointed 
space (X, xo) .  

I f  'P : (X, x0) ----+ (Y, y0 ) is a morphism of pointed topological spaces (defined as i n  9 .9) ,  
then we can define a mapping between the fundamental groups, 

1r1 (X, xo) ----+ 1r1 (Y, Yo ) ,  
as follows: If f : [0, 1 ]  ----+ X i s  a member of some equivalence class that is, i n  turn, a member 
of 1r1 (X, x0) ,  then 1.p o f : [0, 1 ] ----+ Y is a member of some corresponding equivalence class 
that is a member of 1r1 (Y, y0 ) .  It is not hard to verify that this mapping is well defined -
i.e . ,  that it does indeed preserve equivalence - and furthermore, this mapping is a group 
homomorphism. 

Thus 1r1 is a covariant functor from the category of pointed topological spaces to the 
category of groups. Using this functor, we can transform some questions about topolog
ical spaces into corresponding questions about groups. That is one of the basic ideas of 
algebraic topology. It will not be pursued further in this book, however. 
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9.34. Many covariant functors can be described as forgetful functors. A forgetful functor 
is in use when we go from one category to another by forgetting part of the relevant structure. 
For instance, a lattice is a special type of preordered set, and a lattice homomorphism is 
a special type of increasing map. Any theorem about increasing maps between preordered 
sets can also be applied to the special case of lattice homomorphisms between lattices. 

In forgetting some structure, we permit some change in the description of the objects. 
For instance, we noted in 9 . 10 that any preordered set (X, � )  may be viewed as a topological 
space (X, S) ,  but � is not equal to S. 

If A is a subcategory of 13 ,  then the inclusion A L 13 is a forgetful functor. Not every 
forgetful functor is of this form, however; see the two examples below. 

9.35. Preview. We now describe two especially important forgetful functors that will be 
important in later chapters . 

Every uniform structure determines a topology (5.33) ,  and any uniformly continuous 
map is also continuous ( 18.9 .c) . Thus there is a forgetful functor from uniform spaces (with 
uniformly continuous maps) to topological spaces (with continuous maps) . This forgetful 
functor is not given by the inclusion of a subcategory, since different uniformities on a 
set may determine the same topology - for instance, see 18.9.d and 19. 1 l .e. However, 
this forgetful functor has the interesting property that it preserves the formation of initial 
objects. That is, if li is the initial uniformity determined on a set X by a collection of 
mappings cp;., : X ---> (Y;., ,  li;.,) ,  then the resulting uniform topology 'J(li) is equal to the 
initial topology determined by the maps cp;., : X ---> (Y;., ,  'J(li;., ) ) .  (The proof of that equality 
may be easier to prove in 18 .9.g, after we have developed a few more tools. )  

Every topology determines a Borel u-algebra (see 5.26.e) ,  and i t  i s  easy to  verify that any 
continuous map is measurable when its domain and codomain are equipped with the Borel 
u-algebras (see 21 .2.a) . Thus we obtain a forgetful functor from topological spaces (with 
continuous maps) to measurable spaces (with measurable maps) . This forgetful functor is 
not given by a subcategory inclusion, since different topologies may yield the same u-algebra 
- for instance, the discrete topology on N and the two lower set topologies given in 5 . 15.d 
all yield the discrete u-algebra. The forgetful functor from topological spaces to measurable 
spaces sometimes does not preserve the formation of initial objects; an example of that fact 
is given in 21 .8(iii ) .  

9.36. Other functors. The functors that take any poset to its sup completion, any Tychonov 
space to its Stone-

C
ech compactification, or any separated uniform space to its separated 

uniform completion, are examples of inclusions of reflective subcategories. That topic 
will not be discussed here; it can be found in Herrlich and Strecker [1979] . 

THE REDUCED POWER FUNCTOR 

9.37. Preview. In the next few pages we shall develop a "junior version" of nonstandard 
analysis. This simplified approach is less powerful than the customary treatment, but it 
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avoids the conceptual difficulties of sets of sets of sets and avoids the formal study of 
mathematical languages - a study that is second nature to logicians but may seem quite 
foreign to many analysts .  Our junior version, which may seem more natural to analysts, is 
adequate for a few minor applications including a "construction" of the hyperreal number 
system *JR. in 10 .19 and an explanation of limits in terms of infinitesimals in 10.37; this 
will give the reader a quick taste of what nonstandard analysis is like. In Chapter 14 we 
shall sketch some of the remaining ingredients of the customary approaches to nonstandard 
analysis, but that sketch will rely on some results and intuition developed in the next few 
pages. 

9.38. Preview of the Transfer Principle. In the next few pages we shall show how, given 
any set S, function f, or relation R, we can construct a corresponding set, function, or 
relation * S, * f, * R in a "larger universe." The Transfer Principle states that any suitably 
worded statement without stars is true if and only if the corresponding statement with stars 
is true. For instance, 

if and only if *S = *T, 

and therefore the mapping S f--+ * S is injective. Likewise, we shall show in 9.45.h that 

if and only if *T = *S1 n *S2 n · · · n *Sn 
for any positive integer n. However, the Transfer Principle only applies to "suitably worded" 
statements, not to all statements. For instance, our observation about finite intersections 
does not extend to infinite intersections - see 9.46.a. To make precise this notion of 
"suitably worded statements," we will need to analyze our language; that logical analysis 
will be carried out in part in Chapter 14 .  

In the next few pages we develop some basic properties of the star mapping by purely ad 
hoc methods, without use of the Transfer Principle. These ad hoc methods are sometimes 
a bit tedious; the Transfer Principle would be a helpful shortcut. Some readers may prefer 
to glance through a text on nonstandard analysis, master the Transfer Principle, and then 
proceed through the next few pages. 

9.39. Let A be a nonempty set. For the discussions below we may refer to A as the index 
set , or domain. We shall consider many functions from A to various sets. For simplicity, 
we shall disregard the codomains of these functions. Any two functions that are defined on 
A and agree at every point of A will be viewed as the "same" function, as in 2 .() .c .  The 
particular choice of the codomain does not matter, provided that it is sufficiently large for 
our applications; any larger set will do just as well. Thus, we will be concerned with sets 
such as sA, TA , U A (the functions from A into S, T, or U) for various choices of sets S, T, U, 
but we will not be concerned with a larger set containing all of S, T, U. 

9.40. Let A be the index set, as indicated above. Let 9" be a proper filter on A, and let 
:J be the proper ideal that is dual to 9" - that is, :J = {A \ F : F E 9"} . Our choices of 
A, 9", :J will be held fixed throughout the discussion. For our junior version of nonstandard 
analysis, 9" will usually be a free ultrafilter, but other choices of 9" are also of some interest; 
see for instance 21 . 17 .  (The existence of free ultrafilters was discussed in 6 .33 . )  
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Two functions g, h defined on A will be said to be :7-equivalent , or to agree :7-almost 
everywhere, if the statement g = h is satisfied :7-almost everywhere in the sense of 5.3 -
i.e. , if the set 

{A E A : g(>.) = h(>.)} 
i s  "large" in  the sense that i t  i s  an element of :1 - or, equivalently, i f  the set 

{>. E A : g(>.) -::J h (>. ) }  

i s  "small" in  the sense that i t  i s  a member of  J .  I t  i s  easy to  verify that this i s  an equivalence 
relation on the set nA = {functions from A into 0} ,  for any codomain n. If we do not 
specify a codomain n, then :7-equivalence is an equivalence relation on the proper class of 
all functions that are defined on A. 

For the present discussion, let 1r(g) denote the equivalence class containing a function g. 

9.41. Let A, :1, J be as above, and let S be any set. Then the set of equivalence classes 

*S { 1r(J) : f(>.) E S for almost all >.}  

i s  called the reduced power of S .  (Here "for almost all ).." means for all ).. in  some member 
of :1, as in 9.40 . )  In other words, o: E * S if and only if 

o: is an equivalence class, at least one member of which is a function whose range 
is a subset of S. 

When the choices of A and :1 need to be mentioned explicitly, then the reduced power * S 
can be written instead as sA /:1 or as sA jJ. Usually that notation is not needed, however ,  
for most interesting results are obtained when we hold A and :1 fixed and consider what 
happens as S is varied. 

When the filter :1 is a free ultrafilter, then the reduced power * S is called the ultrapower 
of S. Remark. This notion of "ultrapower" should not be confused with the Banach space 
ultrapower, a related but slightly different object that is often used when techniques of 
nonstandard analysis are applied in the study of Banach spaces. A brief introduction to 
Banach space ultrapowers can be found in Coleman [1987] . 

9.42. For any point s E S, let c.- be the constant function taking the value s - i .e. the 
function defined by c8 (>.) = s for all ).. E A. Then it is clear that 7r(cs ) E *S. Moreover, 
it is easy to see that the mapping s f---7 7r(cs ) is injective - i.e. ,  if s -::J t, then the equiva
lence classes 7r(cs) and 1r(ct ) are distinct. We may identify each point s with the resulting 
equivalence class 7r(cs ) ;  thus we may consider S as a subset of *S. 

We shall see, in exercises below, that *S inherits many of the properties of S, and thus 
it is a sort of "enlarged copy" of S. The reduced power construction is a simplified version 
of the nonstandard enlargement construction used in nonstandard analysis. 

9.43. Remarks. The reduced power construction is used in substantially different ways, 
with different intuition and syntactic conventions, in at least two parts of analysis: 
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(i) Nonstandard analysis will be introduced briefly in 14.63.  In that context, 3" is usually 
a free ultrafilter, and elements of * S are discussed much as though they were elements of S 
- i.e . ,  points in some set slightly larger than S. For instance, elements of *IR are treated 
as some sort of generalized "numbers." 

(ii) In the theory of measure and integration, reduced powers also arise naturally. Let 
:J be the collection of null sets for some complete positive measure J.1 on a set A; this is 
discussed in 21 . 1 7. Then :J is a a-ideal, but it is generally not a maximal ideal, since not 
every subset of A is necessarily a null set or the complement of a null set. Thus, the 
dual filter 3" is generally not an ultrafilter. In this context, members of *IR are sometimes 
called real random variables; more generally, members of * X may be called X-valued 
random variables. In this context, elements of * X are discussed much as though they 
were elements of XA - i .e . ,  functions defined on A. For instance , elements of the Lebesgue 
spaces LP(A, S ,  J.L) are equivalence classes of functions, but they are often discussed as if they 
were functions. This is, admittedly, an abuse of notation - the elements of LP (A, S, J.L) are 
not really functions. Occasionally the distinction between functions and their equivalence 
classes becomes important; then the distinction is pointed out. But the blurring of that 
distinction, quite common in the literature, is convenient and usually harmless because the 
quotient map 1r :  XA ----t *X preserves most (not quite all) of the structures and operations 
that are of interest; see particularly 9.53.  

9.44. Exercise: When are S and *S different? We have seen that S � * S; when do we 
have S -1- * S also? 

a. Suppose 3" is the fixed ultrafilter at some point Ao E A. Then * S = S for all sets S. 
Then the operation S f---7 * S brings us nothing new; this case is of little interest to us. 

b. Suppose 3" is a proper filter, but not an ultrafilter. Show that * S = S if S is the empty 
set or a singleton, but * S -1- S if S contains two or more points. 

Hint : If A ,  CA are nonempty proper subsets of A that do not belong to 3", and x, y 
are distinct members of S, show that 

f(u) { � if u E A 
if u rf- A 

defines a function f : A ----t S that is not equivalent to a constant function. 

c. If 3" is a free ultrafilter and S is a finite set, then * S = S. Hint :  5.8(E) . 
d. If 3" is a free ultrafilter and card(S) 2 card(A) , then *S -1- S. Hint :  There exists an 

injective mapping i : A ----t S; then i is not equivalent to a constant mapping. 

e. Corollary. If A = N and 3" is a free ultrafilter on N, then * S -1- S for every infinite 
set S. Hint :  Here we use the fact (established in 6.27) that any infinite set S satisfies 
card(S) 2 card(N) .  

9.45. Further properties of reduced powers of sets. The list o f  properties below, and much 
of the other material in this subchapter, is based on Robinson and Zakon [ 1969] . 

Assume 3" is a proper filter on A (not necessarily an ultrafilter) . Let S, T, and S1 , S2 , 
S3 , . . .  and Sa (a E A) be sets. Then: 
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a. *0 = 0.  

b. *S <:;; *T ¢===? S <:;; T. 
c. The * mapping is injective: If S -=/=  T, then *S -=/= *T. 
d. If S <:;; T, then S = T n * S. 
e. * (S \ T ) <:;; (*S) \ ( *T) .  
f. I f :1 i s  an ultrafilter, then * (S \ T) = (*S) \ (*T) .  

g. Intersections and unions satisfy these inclusions: 

* ( n Sa) c n (*Sa ) and * ( U Sa) :J U (*Sa) · 
aEA aEA aEA aEA 

h. For any positive finite integer n, 

* (S1 n S2 n · · · n Sn ) *S1 n *Sz n · · · n *Sn . 

i. If :1 is an ultrafilter, then also 

* (S1 u Sz u · · · U Sn )  *S1 U *Sz U · · · U *Sn . 

9.46. Examples. For both of the examples below, let A =  N; define f : N ____, N by taking 
f(n) = n. A filter :1 will be specified below; let n (f) be the equivalence class containing 
the function f .  

a .  Without additional assumptions, the inclusions in 9.45.g cannot be strengthened to 
equalities; we now show this by examples. Let :1 be any filter on N that includes the 
co finite filter. Then 

(compare with 9.54 ) .  Also, 

b. The conclusions of 9.45.f and 9.45.i may not be valid if we do not assume :1 is an 
ultrafilter; we now show this with examples. Let :1 be the cofinite filter. Then 

n(f) E *(N) \ * (Sl ) ,  

n(f) E *(S1 U S2 ) ,  

if s1 = { 1 , 3 , 5 , 7 ,  . . .  } ;  
i f  52 = {2 , 4, 6, 8 , . . .  } .  

9.4 7. Reduced power of a finite products of sets. Let :1 be a filter on A, and let h ,  h ,  . . .  An 
be finitely many functions defined on A. Then an n-tuple of functions (h , h,  . . .  , fn) may 
also be viewed as an n-tuple-valued function. We shall use the two viewpoints interchange
ably. 

Observe that two n-tuple-valued functions f = (h , fz , . . .  , fn )  and g = (g1 , g2 , . . .  , gn ) 
are equivalent in the sense of 9.40 i f and only if the set {A E A : f(>..) = g(>.. ) }  belongs to 
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:J' - that is, if and only if the set nj=1 {A  E A : fJ (>..) = gJ (>..) }  belongs to :.f. Since :J' 
is a filter, this condition holds if and only if each of the n sets {A E A : fJ ( >.. ) = gj ( >.. ) }  
belongs to :.f. In other words, (h , h ,  . . .  , f n )  is equivalent to (g1 , g2 , . . .  , gn) if and only if 
h is equivalent to g1 , h is equivalent to g2 , . . .  , and fn is equivalent to gn . Therefore, an 
equivalence class of n-tuples can be represented as an n-tuple of equivalence classes. It is 
easy to verify that 

for any n sets S1 , S2 , . . .  , Sn · 
9.48. What about an infinite product of sets? Not all of the reasoning in the preceding 
section generalizes readily. Let 's see what goes wrong. 

Let :J' be a filter on A, and let h ,  h ,  !3, . . .  be infinitely many functions defined on 
A. Then a sequence of functions (h , h , !J, . . .  ) may also be viewed as a sequence-valued 
function. We may use the two viewpoints interchangeably. 

Observe that two sequence-valued functions f = (h , h , !J , . . .  ) and g = (g1 , g2 , g3 ,  . . .  ) 
are equivalent in the sense of 9 .40 if and only if the set { >.. E A : f(>..) = g(>.. ) }  belongs 
to :J' - that is, if and only if the set n;:1 {>.. E A : IJ (>..) = gj (>..) }  belongs to :.f. Since 
:.r is a filter, this condition implies, but is not necessarily implied by, the condition that 
each of the sets { A  E A :  fJ (>.. ) = gj (>..) }  belongs to :.f. In other words, if (h , h ,  !J, . . .  ) is 
equivalent to (g1 , g2 , g3 , . . .  ) , then each fJ is equivalent to gj , but not necessarily conversely. 
An equivalence class of sequences is not the same thing as a sequence of equivalence classes. 

For instance, let A = N, and let :.r be the cofinite filter on N. Let fj be the constant 
function 0, and let gj : N ---+ N be defined by gj (k) = bjk , where 6 is the Kronecker 
delta (defined in 2.2.d) . Then for each j ,  we see that fJ is equivalent to gj since they 
agree everywhere on N except at one point. But f = (h , h , !J , . . .  ) is not equivalent to 
g = (g1 , g2 , g3 , . . .  ) since they agree nowhere on N - indeed, f(n) and g(n) differ in their 
nth coordinate. 

9.49. Reduced powers of functions. How do we extend functions? For instance, we would 
like to extend the function sin : lR ---+ lR to a function * sin : *JR ---+ *JR; how is this 
accomplished? 

Let p : X ---+ Y be a function from one set to another. There are a couple of natural 
methods for defining a reduced power *p :  *X ---+ *Y; fortunately they yield the same result . 

(A) One method is to identify a function with its graph. Then a function is a set 
of ordered pairs, no two of which have the same first element. Show that if 
Gr(p) � X x Y is the graph of a function p : X ---+ Y, then * ( Gr(p)) � *X x *Y 
is the graph of a function from * X into *Y, which we shall denote by *p. Thus 
*(Gr(p) ) = Gr(*p) . Note that, since Gr(p) � Gr(*p) , the function *p is an 
extension of the function p - that is, we have X � *X, and *p(x) = p(x) for 
every x E X. 

(B) Another method is by this rule: If p : X ---+ Y is some function, we wish to 
define a function ( *p) : *X ---+ *Y by specifying its value on each � E *X. Any 
� E *X may be written in the form 1r(f) for some function f : A ---+ n (where 
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f2 is some sufficiently large codomain) ,  and 7r : f2A -+ *fl is the quotient 
map taking functions to their equivalence classes, for some sufficiently large 
codomain n. Show that the mapping f f---+ p o f respects the equivalence 
relation on XA - that is, 7r(fi )  = 7r (f2) =} 1r (p o fi )  = 1r(p o f2) (see 3. 12 ) . 
Hence a function (*p) : *X -+  *Y is well defined by the rule 

( *p) ( 7r(j)) 7r(p 0 f) for f E XA . 

Show that these two definitions yield the same function *p. 
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When p is some familiar function, then it is customary to write *p without the star. 
For instance, the extension of sin, which would naturally be written * sin, is customarily 
written sin instead. 

9.50. Further properties of reduced powers of functions. 
a. The taking of reduced powers preserves identity maps - i.e . , if ix is the identity 

map of X, then * ( i x )  is equal to the identity map of the set *X. Also, the taking of 
reduced powers preserves composition of functions; that is, * (p oq) = ( *p) o (*q) for any 
functions q :  W -+  X and p :  X -+  Y. From these two facts it follows that the taking 
of reduced powers is a covariant functor from the category of sets to the category of 
sets; that term was introduced in 9.3 1 .  

b .  The reduced power *p : *X -+ *Y is injective or surjective i f  and only i f  the mapping 
p : X -+ Y has that property. 

c. Let f :  X -+  Y and let S <:;; X and T <:;; Y. If f(S) <:;; T, then (*f) (*S) <:;; *T. 
Hints : The hypothesis can be restated as: Gr(f) n (S x Y) <:;; X x T. Using several 

results of the last few pages, we can show that Gr(* f) n ( *  S x *Y) <:;; *X x *T. 

9.51. Reduced powers of relations. How do we extend relations? For instance, we know 
3 < 5; we would like a corresponding notion for members of *R 

Let R be a binary relation on a set X. There are a couple of natural methods for defining 
a binary relation * R on the set *X; fortunately they yield the same result . 

(A) One method is to identify the relation with its graph - i.e. , to work with 
the set Gr(R) <:;; X x X. Then we can take its reduced power, * (Gr(R)) <:;; 
* (X x X) = (*X) x (*X) . It is the graph of a binary relation on *X, which 
we naturally call *R. Thus *(Gr(R)) = Gr(*R) . 

(B) For functions f, g : A -+ X, say that 1r(j) * R 1r(g) if and only if the statement 
f R g is J'-true in the sense of 5.3 - i.e. , if and only if the set {>. E A : 
f ( ,\) R g(  ,\ ) }  is a member of J'. Show that this makes * R well defined on *X 
- i.e . , show that if1r(JI )  = 1r(h) and 1r (gl ) = 1r(g2) , then 

Show that these two definitions yield the same binary relation * R on the set *X. 

9.52. Further properties of reduced powers of relations. 
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a. The restriction of * R to the set X � *X is precisely R. That is: x R y if and only if 
x, y E X  and x * R y. Hint: Use characterization (A) , above, together with 9.45.d. 

b. If R has any of the following properties, then so does * R: reflexive, irreftexive, transi
tive, symmetric, antisymmetric, preorder, partial order, equivalence relation, lattice. 

c. If p : (X, � )  ---> (Y, [;;; ) is an order-preserving map from one preordered set into another, 
then so is *p : (*X, * �) ---> (*Y, * [;;;) .  

d .  Suppose a, b E  X ,  and S = {x  E X :  aRx and xRb} .  Then 

* S { � E *X : a * R � and � * R b} . 
In particular, the enlargement of an interval (a , b) in IR is the corresponding interval 
(a, b) in *R 

e. If J" is an ultrafilter on A and (S, :::; ) is a chain, then ( *S, * :S:: ) is a chain. 
Hint: If g' h E sA ' then the three sets 

{A  : g(-X) < h (-X) } ,  {A : g(-X) = h(-X) } ,  {A  : g(,\) > h(-X) } 
form a partition of A, so exactly one of them is a member of J". 

f. Example. In the preceding result , we cannot omit the assumption that J" be an ultra
filter. In fact, if S is a chain containing at least two elements and J" is a proper filter 
on A but not an ultrafilter, then *X cannot be a chain. 

Proof There exist sets A and B that partition A, such that neither A nor B is a 
member of J". By relabeling, we may assume that two of the elements of S are called 
0 and 1 ,  and that 0 < 1 .  Then the equivalence classes of the characteristic functions 
of the sets A and B are elements a, (3 E * S such that none of the conditions a * < (3, 
a = (3, or a *> (3 holds. 

g. Remark. The reduced power of a complete or Dedekind complete ordering may inherit 
that completeness property (as in 2 1 .42) , or it may not (as in 10 . 19 ) . 

9.53. Reduced powers of algebraic systems. Let X be an algebraic system of an ideal
supporting type ( r, �) ,  let A be a set, and let J" be a filter of subsets of A. Then by 9.29, 

N {g E XA 

is an ideal in the product algebra XA = {functions from A into X} .  Hence we can form 
the quotient XAIN as in 9.25(C) ; it is another algebraic system of variety (r, J ) .  It is 
easy to verify ( exercise) that this quotient X A IN is the same thing as the reduced power 
*X = X A IJ" defined in 9 .41 , and the fundamental operations of the algebraic system X A IN 
(defined as in 9.25(C)) are the same as the reduced powers *rp of the fundamental operations 
rp of X (defined as in 9.49) . 

We may embed X in *X, by the method described in 9 .41 . (That is, any x E X is 
mapped to the equivalence class of the constant function from A into X whose constant 
value is x. ) The embedding is an injective homomorphism, and so X is a subalgebra of * X . 
For instance, if X i s a ring, then *X i s a ring, X i s a sub ring of *X, and the inclusion map 
X __£ *X is a ring homomorphism. 
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Elements of *X are equivalence classes of functions from A into X. However, as we 
remarked in 9.43, elements of * X are sometimes discussed as if they were elements of XA 
or elements of X. These styles of discussion are feasible largely because each of these maps 
is a homomorphism: 

• the quotient map 7f : X A ---+ X A/ N, 

• the coordinate projections 7f >- : X A ---+ X, and 

• the inclusion X -S *X 

Thus, each of these maps preserves the fundamental operations, and therefore preserves a 
great deal of the relevant structure. 

9.54. The Ultrafilter Principle, introduced in 6.32, is equivalent to the following principle, 
which is similar to a principle of nonstandard analysis: 

(UF4) Enlargement (Concurrence, Idealization) Principle. Let l1 be 
a set . Then it is possible to choose an index set A and a free ultrafilter :f on A, 
such that the resulting ultrapowers * s = sA /:f have this property: Whenever 
c is a proper filter on a subset of n, then nEEC * E is nonempty. 

We emphasize that it is possible to make a single choice of A and U that works for all 
choices of c. It may be helpful to compare this principle with the following characterization 
of compact topological spaces: they are spaces in which, whenever c is a proper filter, then 
nEEC cl(E) is nonempty. The equivalence of (UF1) and (UF4) is similar to a result proved 
by Lutz and Goze [1981 ] .  

Proof of (UFl )  =* (UF4) .  We may assume l1 i s infinte, by replacing it with a larger set if 
necessary. 

Let <I> be the family of all proper filters on subsets of !1. We shall use A = o<I> = 
{functions from <I> into l1} .  For each c E <I> and each E E c ,  consider the set 

>.(C)  E E}. 

It is easy to verify that the collection S = { Ac E c E <I>, E E c}  is a filter subbase - i.e. , 
it has the finite intersection property. Hence, by Cartan's Ultrafilter Principle, there exists 
an ultrafilter :f on A such that :f ::;> S. We shall show that this :f has the required property. 

Indeed, let any proper filter c E <I> be given. Define a function E : A ---+ l1 by taking 
E(A) = >.(c)  for each A E A, and let � E *0 be the equivalence class of the function E. We 
shall show that � E nEEC *E. (The remainder of the proof is just a matter of unwinding 
the notation; the reader may find it easier to proceed on his or her own instead of reading 
further. ) For every E E c ,  we have 

{A E A : c(>.) E E} {A  E A : .>. (£ )  E E} Ac.E E :f. 
Thus the condition c( - )  E E is satisfied "almost everywhere," so � E *E. 
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If � is not a free ultrafilter, then it is fixed - whence *S = S for every set S, by 
9.44.a. But since 0 is infinite, it has some free ultrafilter t:,  by 6.33. Then 0 = nEEC E = 

nEE£ * E =1- 0,  a contradiction. Thus the ultrafilter � must be free. 

Proof of (UF4) ==> (UF 1 ) .  Let E be a proper filter on a set n; we wish to extend it 
to an ultrafilter. Let A and � be as in (UF4) ; let � E nEEC * E; let c : A -+ f2 be any 
function whose equivalence class is �· Let 'D be the filter on n generated by the filterbase 
{ c ( F) : F E �}. It is easy to verify that 'D is an ultrafilter on n and that 'D ;2 E .  

EXPONENTIAL (DUAL ) FUNCTORS 

9.55. A few categories that we shall consider in later chapters have functors that we shall 
now describe, called exponential functors or dual functors. These categories satisfy 
five hypotheses, listed below as (H1 ) ,  (H2), (H3) , (H4) , and (H5) . 

Let I[ be a given category, and let � be some particular object in that category. Some 
commonly used choices of 11: and � are listed in the table below. In the table, 2 stands 
for the set { 0, 1 } ,  lF stands for a scalar field (generally IR or C),  and 1!' stands for the circle 
group (see 10.32) . 

Objects of 11: 
sets 
Boolean algebras 
Boolean spaces 
Tychonov spaces 
vector spaces 
Riesz spaces 
topological vector spaces 
Banach spaces 
Pontryagin groups 

For each object X in 11:, define the set 

Morphisms 
functions 
Boolean homomorphisms 
continuous maps 
continuous maps 
linear maps 
order bounded linear maps 
continuous linear maps 
continuous linear maps 
continuous homomorphisms 

X* {11:-morphisms from X into �} .  

2 
2 
2 
[0, 1] 
lF 
IR 
lF 
lF 
'][' 

For each morphism f : X -+ Y in the category 11:, define a mapping f* : Y* -+ X* by the 
rule f* ( >..) = >.. o f for all >.. E Y*, as in the diagram below. 

f 
X --+ y 

>.. o f =  f*(>..) E X* >.. E Y* 
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We sometimes refer to X* and f* as the duals or adjoints of X and f. For a simple, 
concrete example, see 1 1 .22.d. 

In the categories where duals are useful, the following hypotheses are satisfied: 

(Hl ) For each object X in It, the elements of X* separate the points of X. That is, for any 
two distinct points x1 , x2 E X, there exists at least one morphism f : X --+ � such 
that f(x l ) -=f. j(x2 ) . 

(H2) There is some natural way to attach structures to the dual sets X* , making them 
objects in another category ([*, and making the dual functions f* : Y* --+ X* into 
morphisms in that category. 

It is easy to verify that the rules X f--+ X* and f f--+ f* reverse arrows and compositions; 
thus they define a contravariant functor from ([ into ([*. We may refer to it as the ex
ponential functor, dual functor, or adjoint functor, though each of those terms has 
other meanings as well. 

In the most interesting instances of this theory, the bidual category ([** is identical to 
the original category ([, and that fact is very important in the theory sketched below. 

Actually, in most cases of interest , ([ and ([* are the same category, but that could 
be viewed as mere coincidence; it is actually irrelevant to the theory developed below. 
Moreover, we have ([ -=f.  ([* in at least one important application: The categories of Boolean 
spaces and Boolean algebras are dual to each other. 

Elementary example. If ([ and ([* are both the category of sets and � = { 0, 1 } ,  then 
f f--+ f* is the inverse image functor defined in 9.32. 

9.56. Much of the interest in exponential functors stems from the fact that some properties 
of X and f correspond to dual properties of X* and f* . We can switch back and forth 
between either setting and its dual, working with whichever properties are more convenient. 
For instance, show that 

if one of the functions f : X --+ Y or f* : Y* --+ X* is surjective, then the other 
is injective. 

(Hint :  Use (Hl ) . )  In some categories, though not all, a converse can be proved: 

if one of the functions f : X --+ Y or f* : Y* --+ X* is injective, then the other 
is surjective. 

Exercise. Prove that this converse is valid in the category of sets - i.e. , where any set is an 
object, and any function is a morphism; assume � is a set containing two or more points. 

9.57. Assume ([ is a category that has a dual functor, mapping into some category ([* . 
Suppose that the category ([* also has a dual functor, which maps into some category ([** .  
Also assume that 

(H3) The categories ([ and ([* have special objects � with the same underlying set (perhaps 
with different structures attached) . 
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We shall denote both of these special objects by the same symbol 6. By composing the 
two contravariant, dual functors, we obtain a covariant functor from It into It** , called the 
bidual functor: 

X f-+ X* f-+ X** , f f-+ f* f-+ f** . 
This functor has some further properties of interest, which we now describe. 

Each ,\ E X* was defined as a function with argument x E X  and value (>., x) = >.(x) E 
6. Let now us change our viewpoint, and instead view x as the function, with ,\ for the 
argument . Then x acts as a mapping Tx = ( · , x) : X* -+  6,  called the evaluation map at 
x. In the categories of interest, this further hypothesis is satisfied: 
(H4) If X is an object in It and x E X, then the mapping Tx = ( - , x) : X* -+ 6 is a 

morphism in the category It* , and thus Tx is a member of the set X** . 

By (H1 ) , if x =1- x' then the mappings Tx and Tx' are distinct. Thus x f-+ Tx is an injective 
mapping from X into X** , which we may view as an inclusion - i.e . , we may view the 
underlying set of X as a subset of the underlying set of X** (without regard to the additional 
structures attached to those sets) . The inclusion map T :  X -L X** is sometimes known 
as the canonical embedding of X in its bidual. In many categories, the bidual functor 
has this further property: 

(H5) The categories It and It** are the same, and X is a subobject of X** in that category; 
thus the canonical embedding X -L X** is a morphism. 

9.58. Exercise. If f : X -+ Y is a morphism, then the function f** : X** -+ Y** is an 
extension of f - that is, Graph(!**) ;2 Graph(!) . 

Hint : Let S :  X -L X** and T :  Y -L Y** be the canonical embeddings. What must be 
verified is f**(Sx ) = Tf(x) - or more concretely, [f** (Sx)] (>.) = Tf(x) (>.) for each ,\ E Y* . 

9.59. For some objects X, the canonical embedding x f-+ Tx turns out to be surjective -

i .e . , the inclusion morphism X -L X** is actually an isomorphism X --=-. X**. Such an 
object X will be called reflexive. 

In some categories It, every object is reflexive (and so the term "reflexive" is not com
monly used in those categories) .  In such a category we have X =  X** and f = f** for all 
objects X and morphisms f. The canonical embedding x f-+ Tx , from X to X** , is then 
called the canonical isomorphism. This isomorphism is established: 

• for the category of Hausdorff locally convex topological linear spaces with weak topolo
gies, by 28. 12.e. 

• for the Banach spaces of type LP(J-l) , with 1 < p < oo, by 28.50. 
• for the category of Pontryagin groups (i .e. , locally compact Hausdorff Abelian groups) , 

by the Pontryagin Duality Theorem 26.44. 

• for the categories of Boolean algebras and Boolean spaces, by the topological version 
of the Stone Representation Theorem (see 17.44 and the sections following it) .  
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On the other hand, in some categories we can easily establish that no object is reflexive. 
For instance, in the category of sets (without additional structure) and in the category 
of infinite-dimensional vector spaces (without topology) ,  we can prove that X* is strictly 
larger than X (see 2 .20.1 and 1 1 .36) , and therefore X** cannot equal X. 

In still other categories, some objects are reflexive while others are not, and reflexivity 
may be linked to other, important properties. For instance, a Banach space is reflexive if 
and only if its closed unit ball is weakly compact; see 28.4 1 .  



C hapter 1 0  

The Real Numbers 

10 .1 .  Preview. A significant part of the history of mathematics is the successive extension 
of number systems - especially, the inclusions N s;;; Z s;;; Q s;;; IR s;;; C. 

Our language still reflects the resistance with which some of these extensions originally 
were met. The ancient Greeks were reluctant to admit that the universe could not be 
explained in terms of ratios of whole numbers; even today, the word "irrational" means 
an element of IR\Q but also means "crazy." Other terms occasionally used for an irra
tional number are "radical" or "surd" (an abbreviation of "absurd" ) . Centuries later, when 
mathematicians began to use complex numbers to analyze polynomial equations, they were 
reluctant to admit that - 1  could have a square root. A "real" number could not be such 
a square root; such a square root must be "imaginary," and this name stuck, too. Mathe
matical nomenclature was not so disparaging a few decades ago when nonstandard analysis 
gave a rigorous foundation for the use of infinitesimals; the new numbers in *IR\IR were 
simply called "nonstandard" - a rather neutral term, by comparison. 

Usually, a "number" means an element of a field. The two fields most commonly used in 
analysis are the real number system IR and the complex number system C. We shall intro
duce both of these fields formally in this chapter, though we have assumed some informal 
familiarity with IR in earlier chapters. 

DEDEKIND COMPLETIONS OF ORDERED GROUPS 

10.2. Remarks and definition. I f X i s  an ordered group other than {0} , then X cannot 
have a greatest element ( easy exercise ) .  Hence X cannot be "complete," in the sense of 
3.23. The closest X can come to such a condition is Dedekind completeness. For this reason, 
in the context of ordered groups, a "complete ordered group" generally means a Dedekind 
complete ordered group. 

10.3. Let (X, � )  be an ordered group. For any x E X  and K s;;; Z, let Kx = {kx : k E K} ,  
where the multiplication is defined as in 8. 10.h. Then the following two conditions are 
equivalent to each other. If one, hence both, of them are satisfied, we say X is integrally 
closed. 

(A) Whenever the set Nx is bounded above, then x � 0. 

242 
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(B) Whenever the set Z+x = {0, x, 2x, . . .  } is bounded above, then x � 0. 
Also, the following two conditions are equivalent to each other. If one, hence both, are 
satisfied, we say X is Archimedean. 

(C) Whenever the set Zx is bounded above, then x = 0. 
(D) {0} is the only subgroup of X that has an upper bound. 

Furthermore, conditions (A)(B) imply conditions (C) (D) . If the ordering � on X is a lattice 
ordering, then all four conditions are equivalent . 

Proof To show (A) � (B) , note that the set {x, 2x, 3x, . . .  } is bounded above by (3 if 
and only if the set {0, x, 2x, . . .  } is bounded above by (3 - x. The proof of (C) � (D) 
is easy; we omit the details. To show (B) =? (C) , note that if Zx is bounded above, then 
Z+x and z+ ( -X) are both bounded above, hence X � 0 and -X � 0, hence X = 0. 

Finally, to prove (C) =? (B) when X is lattice ordered, suppose Z+x is bounded above 
by (3. By 8.42.p show that Z+(x V 0) is bounded above by (3 V 0. On the other hand, 
- (x V 0) � 0; by adding show that -n (x V 0) � 0 for n E N. Thus the subgroup Z(x V 0) is 
bounded above. By (C) , then, x V 0 = 0; hence x � 0. 

10.4. Some basic properties and examples. 
a. Any subgroup of an integrally closed group is integrally closed. 
b. Any Dedekind complete, ordered group is integrally closed. 

Hints : Suppose x E X with Z+x bounded above. Let (3 = sup(Z+x) . Show that 
(3 - x is also an upper bound for Z+x; hence (3 � (3 - x. 

c. Examples. The groups Z and JR. are Dedekind complete; Q is not. All three of these 
groups are integrally closed . 

The group Z2 with the lexicographical ordering (see 3.44.a) is an ordered group 
that is not integrally closed. 

Another example of an ordered group that is not integrally closed will be given in 
10. 19 . 

10.5. Theorem: Completion of a Group. Let (D, �) be an ordered group, and let X 
be a Dedekind completion of D (as in 4.33 and 4.34) . Then 

X can be made into an ordered group in which D is a subgroup 

if and only if D is integrally closed. Furthermore, if those conditions are satisfied, then the 
group operationt; on X must satisfy 

sup{x + y  x, y E D, x � �' Y � 7J} ,  (al) 
inf{x + y x, y E D, X � �' y � 7]} , (a2) 

-� sup{ -x X E D, X �  o, (bl) 
inf{ -x X E D, X �  o. (b2) 
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Remarks. Our proof is based on that in Fuchs [1963] . However, we assume D is commu
tative, whereas Fuchs does not impose that restriction. Fuchs mentions Krull, Lorenzen, 
Clifford, Everett, and Ulam as contributors to this theorem. 

Proof of theorem. If D has such a group completion X, then X is Dedekind complete, 
hence integrally closed (by 10.4.b) ; hence D is integrally closed (by 10.4.a) . Equations (al) 
through (b2) follow from 8.33 and the fact that D is sup- and inf-dense in X . 

Conversely, suppose D i s integrally closed. Let X be a Dedekind completion of D . 
Define operations on X by (al) and (bl ) ;  we shall show that these make X into an ordered 
group that has D as a subgroup. At the end of this proof we shall show the validity of (a2) 
and (b2) as well. 

With definition (al) it is easy to see that + extends the addition operation of D, and 
that + is commutative. The beginner is cautioned not to assume too much just on the 
basis of notation: Although we use the symbol "+," our proof must not rely on any as-yet
unestablished properties of addition in X . In particular, we must not yet use associativity 
or subtraction (the existence of additive inverses) in X. However, we can freely use asso
ciativity and subtraction in the given group D. 

Our first step will be to show that addition in X is associative. Let any �' TJ, ( E X be 
given. Let p E D. Then each of the following statements is equivalent to the next : 

p ";r (� + TJ) + (  

p >r u + z whenever u, z E D and u � � + TJ and z � ( 

p - z >r u whenever u, z E D  and u � sup{x + y : x, y E D, x � �' y � ry} and z � ( 

p - z ";r sup{x + y : x, y E D, x � �' y � ry} whenever z E D and z � (  

p - z >r x + y whenever x, y, z E D and x � �' y � TJ, z � ( 

p >r x + y + z whenever x, y, z E D and x � �' y � ry, z � (. 
The last statement is symmetric in �' ry, (; hence the first statement is not affected by a 
permuting of those three terms. Thus addition in X (defined as in ( al ) ) is associative. 
Since D is sup-dense in X, the addition in X also satisfies � + 0 = 0 + � = �. Thus we have 
established that (X, 0, +) is an additive monoid. 

Define -� as in (bl ) ; the mapping x r--+ -x from D into D is thus extended to a 
mapping from X into X . To show that (X, + , - ,  0) is an additive group, fix any � E X, 
and let 1 = � + ( -0 ; we must show that 1 = 0 . Observe that 

for v E D, 
and hence 

1 = � + (-�) = sup{x - v :  x, v E D, x � � � v} .  
From this it follows immediately that 1 � 0 .  To show that 1 >r 0 ,  we shall apply 3 .21 .g. Fix 
any u E D with u >r li it suffices to show that u >r 0. From u >r 1 we conclude, successively, 
that 
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:r ,  v E D, x � � � v implies u � x - v; 

for each v E D  with v � �
' we have x E D, x � � =? x � u + v;  

for each v E D  with v � �' we have � � u + v; 

N(u) is bounded below; 

N( -u) is bounded above. 

By assumption D is integrally closed; hence u � 0. 
Thus X is an additive group, when equipped with the operations + and - defined as 

in (al) and (bl ) .  The ordering is translation-invariant (as defined in 8.30) ; this follows 
trivially from our definition of addition in X. Hence X is in fact an ordered group, with D 
as a subgroup. Therefore inf( -S) = - sup(S) for any set S �  X; now (a2) and (b2) follow 
from (al) and (hl ) .  

10.6. Suppose the conditions of the preceding theorem are satisfied. Suppose, also, that 
Q is another ordered group, and f : D ---> Q is a sup-preserving group homomorphism, and 
F : X ___, Q is a sup-preserving extension of f. Then F is also a group homomorphism. 

Proof. It suffices to show that F preserves addition. Define sets Lc as in 4.3 1 ;  then 
( = sup(Lc ) .  Then for any �

' 7) E X we have 

{ .r + y : X .  y E D, X �  C Y � 7) } 
{x E D  x � 0 + {y E D  y � 7)} 

Hence 

F(� + 1)) F(sup(LE + L,1 ) )  
sup(f(LE + L,1 ) )  
sup(f(Ld + f(L,1 ) )  
sup(f(Ld) + sup(f(£,1 ) )  
F(sup(Ld) + F(sup(£,1 ) )  
F(O + F(7l) 

by (al ) in 10 .5 
since F is sup-preserving 
since f is additive on D 
by 8.33 
since F is sup-preserving 
since D is sup-dense in X.  

ORDERED FIELDS AND THE REALS 

10. 7. Definitions. A chain ordered ring is a ring R equipped with an ordering S such 
that 

(i) (R, S) is a chain: 

(ii) the ordering is translation-invariant - that is, :r S y =? x + u S y + u for 
all x, y. u E X; and 
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(iii) x, y � 0 ::::} xy � 0. 

If R is also a field, we shall call it a chain ordered field. (Some mathematicians call these 
an ordered ring and an ordered field, respectively, but that is not specific enough for the 
purposes of this book. )  

Some basic examples. The rational number system Q (with its usual ordering) i s clearly 
a chain ordered field; we shall assume informal familiarity with that fact , but it also follows 
from a construction presented in 10. 1 1 .  The real number system JR, introduced in the next 
paragraph, is a chain ordered field. Certain other subsets of lR are also chain ordered fields 
- for instance, {a + bj2 : a, b E Q}, which is introduced in 10.23.a. In 10. 12 we present a 
chain ordered field that is not contained in R 

10.8. We now define the real number system lR to be a Dedekind complete, chain ordered 
field (or , in the terminology of some mathematicians, a complete ordered field) .  To make 
sense of this definition, we shall show that (i) there exists a Dedekind complete, chain 
ordered field, and (ii) any two such fields are isomorphic; thus, there is only one real 
number system. We shall prove those facts in 10 . 15 . 

Discussion. Intuitively, we usually think of the real number system as a model for 
the set of all points on a Euclidean straight line. However, that description has certain 
drawbacks. It does not determine lR uniquely, for it also fits *JR quite well. Also, the 
geometric description does not translate readily into usable algebraic axioms. 

We also think of reals as "infinite decimal expansions" such as 3 .14159265358979323 · · · . 

In grade school we learn, informally, how to perform arithmetic operations with such ex
pansions. A formal theory of such expansions is sketched in 10.44 and 10.45. Perhaps this 
view of the real number system is the most concrete and the most useful for purposes of 
real-world applications - in physics, engineering, etc. 

However, in advanced analysis we usually consider the decimal expansions to be just rep
resentations for numbers, not the numbers themselves. Those numbers have other represen
tations (in binary, in ternary, in hexadecimal, etc. ) .  In the development of abstract theory, 
what we really need are not concrete representations such as 3 . 14159265358979323 . . .  , but 
the essential properties of the real numbers, which are used to prove theorems. That lR is a 
field means that we can do ordinary arithmetic; that it is chain ordered means that inequal
ities work the way they should; that it is Dedekind complete means that we can take sups, 
infs, and limits. Analysts often take these ideas for granted and forget how complicated a 
structure the real number system is. 

Actually, we shall prove the existence of lR in several different ways. The proof in 
10. 15.d is fairly detailed; other proofs are sketched briefly in 10.45 and 19.33.c. All of the 
constructions are somewhat complicated and nonintuitive - they represent a real number 
as a set of rational numbers, or a pair of sets of rational numbers, or a set of pairs of 
rational numbers, etc. The theorem on the uniqueness of the reals, in 10. 15.e, tells us that 
these constructions of lR from Q all yield the same result. Any one of these constructions is 
sufficient, and it does not matter which one we use. After we have proved the existence of a 
Dedekind complete, chain ordered field by representing it in terms of rational numbers, we 
may discard that representation; we may return to thinking of real numbers as indivisible, 
primitive objects like the points on a line. 
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10.9. A few basic properties. 
a. If F is a chain ordered field, then 0 < x < y 

1 1 0 < - < - .  
y X 

b. If F is a chain ordered field, then F has no greatest or least element. 
c. If F is a chain ordered field, then x2 = -1  has no solution x in F. 

247 

d. If R is a chain ordered ring with unit, other than {0} , then the unique homomorphism 
from Z to R (noted in 8. 19.d) is injective and order-preserving. Thus R contains an 
isomorphic copy of Z. 

Hint : Let 1R denote the multiplicative identity of R. Show that 1 R  > 0, and hence 
1 R  + 1 R  + · · · + 1R (the sum of finitely many such terms) is also positive. 

e. If F is a chain ordered field, then the unique ring homomorphism from Q into F (noted 
in 8.23.c) is injective and order-preserving. Thus F contains a uniquely determined 
isomorphic copy of Q. Identifying various sets with their isomorphic copies when no 
confusion will result, we may write N <;;: Z <;;: Q <;;: F; we shall follow this convention in 
results below. 

f. No finite field can be a chain ordered field. 

10. 10. An abstract construction of chain ordered fields. Let D be an integral domain, and 
let F be the resulting field of fractions, as in 8.22. Suppose that some ordering � is given on 
D, making it a chain ordered ring. Define an ordering � on F as follows: For rn , n, x, y E D 
with m, n ::::J 0, define 

X y - >,:o -
m n to mean xn ;;;J ym. 

(The reader should verify that this ordering does not depend on the choice of the represen
tatives of the equivalence classes. ) Show that F is then a chain ordered field. Moreover, 
considering D as a subset of F, show that the ordering on F is an extension of the ordering 
on D. 

Two important particular cases of this construction are given in the next two sections. 

10. 1 1 .  Example. When the integral domain D is Z = { integers} ,  then the field of fractions 
is Q, the field of rational numbers; the ordering given in 10 . 10 is just the usual ordering. 

10.12. A non-Archimedean example. Let (A, � )  be a chain ordered ring that is also an 
integral domain. (An example to 'keep in mind for now is A = Z; later we may reconsider 
this construction with A = JR..) Let x be a variable. Let D be A[x] , the ring of polynomials 
in the one variable x with coefficients in A; then D is an integral domain (see 8 .24) . The 
resulting field F of fractions is A( x) , the field of rational functions in the one variable x 
with co�fficients in A. 

On D = A[x] , we now define this ordering: p ::::J q will mean that the leading coefficient 
of the polynomial p - q (defined in 8.24) is strictly greater than 0. Verify that this makes 
(A[x] , �) into a chain ordered ring. Hence our construction in 10.10 makes (A(x) , � ) into a 
chain ordered field. This example can be found in various algebra books; another source is 
Lightstone and Robinson [1975] . 

A few observations about this field will be useful later in this chapter: 
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a. If p and q are polynomials, the degree of p is greater than the degree of q, and the 
leading coefficient of p is positive, then p :::J q. 

b. If p and q are polynomials other than 0, the degree of the rational function pjq will 
mean the difference deg(p) - deg(q) , and the leading coefficient of pjq will mean the 
quotient of the leading coefficients of p and q. Show that if r, s are rational functions 
with positive leading coefficients, and deg( r) > deg( s) , then r :::J s .  

c. The function p(x)  = x i s strictly greater than every constant function k. Thus, the 
sequence 1 ,  2, 3, . . .  is bounded above. 

d. The sequence 1 ,  x, x2 , x3 , . . . is not bounded above - i.e. , there does not exist a rational 
function r (x) that satisfies r(x) ;::;) xn for all nonnegative integers n .  (Contrast this 
result with 10.20.c . ) 

10. 13. Definition and exercise. Let F be a chain ordered field (as defined in 10.7 - hence 
F is also lattice ordered) .  Then N � Z � Q � F as noted in 10.9.e. 

Then the following conditions are equivalent; a chain ordered field F possessing one 
(hence all) of these conditions is said to be an Archimedean field. 

(A) F is Archimedean in the sense of 10.3; that is, {0} is the only additive subgroup 
of F that is bounded above by an element of F. 

(B) N does not have an upper bound in F. 
(C) The set { � : n E N} has infimum (in F) equal to 0. 
(D) For each c E F, the set { m E Z : m > c} has a lowest element. 
(E) Between any two elements of F there is an element of Q. (This is sometimes 

called the Density Property. ) 

(F) Q is sup-dense and inf-dense in F (see 4.31 ) .  

Hints for the equivalence proof : I t  is fairly easy to see that conditions (A) through (D) are 
equivalent. To show that those conditions imply (E) , let a, (3 E F be given with a <  (3. By 
(C) and (D) , there exist n E N  with (3 - a >  1/n, and m E  Z with m > na � m - 1 .  Show 
that m/n lies between a and (3. 

It is easy to see that (E) implies (F) . 
To see that (F) implies (C) , let S = { �  : n E N} and T = {q E Q : q > 0} . Since 

every element of either of these sets is less than some member of the other set, we have 
inf(S) = inf(T); but inf(T) = 0 since Q is inf-dense in F. 

This presentation is based partly on Davis [1977] . 

10.14. ( Optional. ) Let F be a chain ordered field. Say that a sequence (xn ) is Cauchy in 
F if for each E in F with E > 0 there exists a positive integer M such that 

j, k � M -E < Xj - Xk < E. 

(Cauchy sequences will be studied in another setting in Chapter 19 . ) 
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Proposition. Let lF be a chain ordered field. Then (A) lF is Archimedean if and only if (B) 
each bounded, monotone sequence in lF is Cauchy. (Also see related results in 10 .17 . ) 

Hints : For (B) =? (A) , i t suffices to show that the set S = { 1 ,  � . � .  % ,  . . .  } has infimum 
equal to 0. Suppose that some b > 0 is a lower bound for S. By the Cauchy criterion, there 
is some positive integer AI such that 

j. k 2 AI 1 1 
- - - < b . j k 

Since 2�1 E S, we have b ::;  2�1 . Use j = 1\I and k = 21\1 to obtain a contradiction. 
For (A) =? (B) , let (xn ) be a bounded, monotone sequence. We may assume that (xn ) 

is increasing (why?) and that x1 2 0 (why?) ; thus 0 ::; x1 ::; x2 ::; x3 ::; · · · ::; b for some 
b E  JF. Suppose (x, ) is not Cauchy. Then there exist some E > 0 in lF and some positive 
integers n1 < p1 < n2 < p2 < · · · such that Xp1 - X71 1 > E for all j .  For any positive integer 
k . show that 

Thus the set { 1. 2. 3 . . . .  } is bounded above by b/ E.  

10.15. Examples and theorems about Archimedean fields. 
a. The field constructed in 10 .12 is not Archimedean, by 10. 12 .c . 
b. Q is an Arc:himedean field. 
c. The multiplicative group { :r E Q : x > 0} is an Archimedean chain ordered group (as 

in 10.3) . 
d. Existence of the reals. There exists a Dedekind complete. chain ordered field. In 

fact, if lF is any Archimedean field, then the Dedekind completion of lF is a Dedekind 
complete. chain ordered field. 

Hints : Let lR denote the Dedekind completion of JF. The completion is unique up to 
order isomorphism, by 4.38. Show that { � E lR : � > 0} is the (also unique) Dedekind 
completion of the multiplicative group {:r E lF : x > 0} . Use 10.5 to define addition 
and additive inverses in lR and to define multiplication and multiplicative inverses in 
{� E lR : � > 0} : thus lF and {:r E lF : x > 0} are subgroups of the groups (IR, +) 
and ( { � E lR : � > 0} . · ) respectively. Extend the definition of multiplication to other 
products of real numbers by � · TJ = [sgn( �)] [sgn( TJ)] I � I I TJ I · Show that this makes lR into 
a Dedekind complete, chain ordered field. 

The construction of the reals by cuts was published by Dcdekind in 1872. 
e. Uniqueness of the reals. Let IR1 and IR2 be two Dedekind complete. chain ordered 

fields . Then IR 1  and IR2 contain ring-isomorphic copies of Q. and there is an isomor
phism (of rings with unit ) from lR 1 onto IR2 that leavf's elements of Q fixed and preserves 
order. 

Hints : By 10. 13(E) , Q is both sup-dense and inf-dense in IR1 . Hence IR1 is a 
Dedekind completion of Q. Similarly for IR2 . By the uniqueness of completions (4.38) , 
there is a unique order isomorphism from IR1 onto IR2 that leaves Q fixed. By 10.6. that 
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isomorphism preserves sums. Applying 10.6 to the multiplicative groups of positive 
elements, we see that that isomorphism also preserves products. 

f. ( Optional.) Let lF be an ordered field. Show that lF is Archimedean if and only if (after 
relabeling by isomorphism) we have Ql � lF � IR, in which case Ql is both sup-dense 
and inf-dense in lF, and IR is the Dedekind completion of lF. 

10. 16. Remarks. Our proof of the uniqueness of IR depends on our use of conventional 
language and logic. If we change our rules of inference - e.g. , if we restrict ourselves to first 
order language and logic, as is common in nonstandard analysis - then there may be many 
different models of the real line (though they may be indistinguishable except through the 
use of higher-order language and logic) .  See 14.68. 

10.17. ( Optional.) Let lF be a chain ordered field. Let lF be equipped with the order 
interval topology (see 5 . 15.f) and the resulting convergence (see 7.41 and 15.4 1 ) .  Then it 
can be shown that the following conditions are equivalent . 

(A) lF is Dedekind complete and thus is the real line. 
(B) If (xn ) is any monotone, bounded sequence in lF, then (xn ) has a limit in lF . 
(C) lF is Archimedean, and every Cauchy sequence in lF (defined as in 10 . 14) has 

a limit in lF. 
(D) lF is connected (defined as in 5 . 12 ) .  
(E )  For any a, b E  lF with a � b ,  the set [a, b] = {x E lF :  a � x � b} i s compact 

(defined as in 17 .2) . 
(F) For any a, b E lF with a � b, the set [a, b] = {x E lF : a � x � b} is 

pseudocompact (defined as in 17.26.a) . 
We shall not prove the equivalence. These conditions and others are proved equivalent by 
Artmann [1988] ; that exposition is based in part on Steiner [1966] . Artmann's book also 
gives an example of a non-Archimedean field in which every Cauchy sequence converges. 
Thus Dedekind completeness is not the same thing as Cauchy completeness. 

THE HYPERREAL NUMBERS 

10.18. By the hyperreal line (or the hyperreal number system) we shall mean any 
non-Archimedean, chain ordered field lHI that contains IR as a subfield; the members of lHI 
are called hyperreal numbers. 

Strictly speaking, there are many hyperreal lines. We gave one construction in 10.12 ; 
two more constructions are given in 10. 19 and 10.20. However, usually we work with just 
one such field at a time, and so it is convenient to call that field "the" hyperreal number 
system while we are working with it. 

Let lHI be a hyperreal line; thus Z � Ql � IR � JHI. Then: 
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a. Elements of lR are called real numbers, or sometimes (for emphasis) standard real 
numbers. 

b. A hyperreal number � is called bounded if -r < � < r for some real number r;  

otherwise � is unbounded. (Other terms commonly used in place of "bounded" are 
limited and hyperfinite. ) 

Clearly, any real number is bounded. Show that some hyperreal number a is 
unbounded. Then ±a, ±2a, ±3a, . . .  are different unbounded hyperreal numbers, and 
a · a is yet another one. The set of positive unbounded hyperreal numbers has no 
largest or smallest member. The set of bounded hyperreals is a commutative ring with 
unit. 

c. A hyperreal number � is called infinitesimal if -r < � < r for every positive real 
number r. Show that 0 is the only real infinitesimal. Show that a nonzero hyper
real number � is infinitesimal if and only if 1 /� is unbounded. The set of positive 
infinitesimal numbers has no largest or smallest member. 

Every positive real number is an upper bound for the set of infinitesimals. Show 
that the set of infinitesimals does not have a least upper bound in !HI. This illustrates 
the fact (which we already knew) that lHI is not Dedekind complete. 

The set of all infinitesimals is an ordered ring (without unit) .  (Some mathematicians 
exclude 0 when they define infinitesimal, but that definition has the disadvantage that 
the resulting set of infinitesimals does not have such a nice algebraic structure.) 

d. Two hyperreal numbers are said to be infinitely close (or infinitesimally close) if 
their difference is an infinitesimal. 

Let � be a bounded hyperreal number. Show that there is one and only one real 
number r that is infinitely close to �- That number r is called the standard part of 
�; we may abbreviate it by std(�) . 

Hint: To show that there is at least one such number, use the Dedekind complete
ness of lR to prove that there is a real number r = inf{ s E lR : s > 0; then show it has 
the required properties. 

e. Show that 

{bounded hyperreals} {real numbers} EEl { infinitesimals} 

is an internal direct sum decomposition of one additive group into two subgroups. 
Show that 

std {bounded hyperreals} -+ {real numbers} 

is an isotone map (for the ordering) and a ring homomorphism. 
Thus, nestled around each real number r there are infinitely many bounded hy

perreal numbers, all infinitely close to that real number r .  In some books, some of 
these hyperreal numbers are denoted by r + E, r - E,  r + 8, r - 8, etc . ; a picture of a 
microscope is sometimes used to suggest their closeness to r .  
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f. Remark. It can be shown that the smallest hyperreal line is the field IR.(x) , of rational 
functions in one variable with real coefficients, constructed as in 10. 12 . Indeed, if we 
take the real line and adjoin some element x that is infinitely large, then x acts as a 
transcendental over JR. and hence acts algebraically as an indeterminate - i.e. , as a 
variable. The resulting field generated by JR. U { x} must then be JR.( x) .  This is discussed 
by Fleischer [1967] . Fleischer also points out that, although we may not be able to 
extend quite as many functions in the setting of this field as we did in 9.49, at least 
we can extend some functions constructively. See also the related remarks in 10.20.c. 

10.19. Ultrapowers of the reals. Let 9" be a proper filter on a set A. Define the reduced 
power *JR. = JR.A /9" and its arithmetical operations and ordering as in 9.4 1 ,  9.49, and 9 .51 . 
Then *JR. is a ring with unit by 9.53 since JR. is a ring with unit. In fact , *JR. is a commutative 
lattice algebra since JR. is. (Similarly, the hypernatural numbers *N inherit some of the 
properties of N. ) 

Recall from 9.52.e and 9 .52 .f that *JR. is chain ordered if and only if 9" i s an ultrafilter. 
Show that 

a. *JR. is a field if and only if 9" is an ultrafilter. 
Hints : If 9" is not an ultrafilter, then A can be partitioned into sets A1 and A2,  

neither of which is an element of 9". Let a1 and a2 be their characteristic functions. 
Show that neither a1 nor a2 is equivalent to 0, but their product n 1 n2 is 0. 

b. Suppose 0, A, 9" satisfy the conditions of the Enlargement Principle (9 .54 ) , and JR. <;;; 0. 
Then *JR. =  JR. A /9" i s a non-Archimedean, chain ordered field. 

Hint :  Let E = { S <;;; JR. : S :;2 ( n, +oo) for some posit iY ' integer n } .  Then E is a 
proper filter on JR.. Show that any member of nEEG * E is . [n upper bound for N. 

10.20. Assume that 9" is a free ultrafilter on thr set A = N; hence *JR. = JR.I'i /9" is a chain 
ordered field. Show that 

a. *JR. is non-Archimedean. In fact, the equivalence class of the sequence ( 1 ,  2, 3, . . .  ) is an 
upper bound for N in *JR.. 

b. Different constructions may yield slightly different hyperreal number systems. For 
instance, one of the sequences a =  ( 1 ,  0, 1 , 0, 1 ,  . . .  ) or ,3 = (0, 1 ,  0, 1 ,  0, . . .  ) is equivalent 
to the real number 0 and the other is equivalent to the real number 1 .  We can choose 
which is which, if we want to, by specifying 9" in more detail. Let e = { cofinite 
subsets of N} , let E = {even numbers} = {2, 4, 6, . . . } ,  and let F = {odd numbers} = 
{ 1 , 3 , 5, . . .  } .  Using 5.5 . i and 6.33, we can obtain free ultrafilters E , 9" on N that satisfy 
E � {E} U e and 9" � {F} U e. In the hyperreal line IR.N j£ we have 1r(a) = 0 and 
1r(j3) = 1 ;  in the hyperreal line IR.N /9" we have 1r( a) = 1 and 1r(j3) = 0. 

c .  Every countable set S <;;; *JR. is order bounded. 
Hints : Let S = { 1r(JI ) ,  7r(f2 ) ,  1r(/3) ,  . . .  } ,  where each fn is a function from N into 

JR.. Define functions u, v : N ----+ JR. by taking 

u(k) = min {h (k) , h (k) , . . . , fk(k ) } , v ( k) = max { h ( k) , h ( k) , . . .  , f k ( k)} . 
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For each j E N, show that Cj = {k E N : u(k) :s; fj (k) :s; v(k)} is cofinite, hence a 
member of :J, and thus 1r(  u) :s; 1r(fj )  :s; 1r( v) . Therefore 1r ( u) and 1r ( v) are lower and 
upper bounds for S. This result can be found in Takeuchi [1984] and elsewhere. 

Further remark. Contrasting the result above with 10 .12 .d, we see that IRA /:T is not 
isomorphic to the minimal hyperreal line IR(x) discussed in 10. 1 8.f. This observation 
is taken from Fleischer [1967] . 

10.21 .  ( Optional. ) Let :J be a free ultrafilter on a set A, and define the ultrapower 
*IR = IRA j:J. Does it follow that *IR is non-Archimedean? It does under certain additional 
hypotheses, as in 10.19 .b and 10 .20.a, but in general the answer is not clear. However, in 
general (i .e . , for any free ultrafilter 9'") the following conditions are equivalent : 

(A) *IR is Archimedean. 

(B) *IR = IR. 

(C) *S = S for every set S C::: JR. 
(D) *N = N. 

(E) Whenever S = {51 , 52 , 53 , . . .  } is a countably infinite partition of A, then a 
unique member of S belongs to :J. 

(F) Whenever F1 , Fz , F3 , . . .  is a sequence in :J, then n:=l Fn E :J. In other words, 
the ideal of sets {A \ F : F E  :J} is a u-ideal. 

Proof of equivalence. For (A) =} (B) , observe that IR C::: *IR in any case, and an ordered 
field lF is Archimedean if and only if IQl C::: lF C::: IR (see 10 . 15.f) .  For (B) =} (C) , use 9.45.d. 
Implication (C) =} (D) is obvious. For (D) =} (E) , define a function f : A --> N by 
taking f(>..) = n when ).. E S, . Since f is equivalent to some constant k, t he set S., is a 
member of :J. For (E) =;. (F) , suppose that no member of S belongs to :J. Then all the 
sets F, = A \  Sn belong to :J. Hence their intersection belongs to :J- but that intersection 
is empty, a contradiction. For (F) =} (A) , suppose *IR is not Archirnedean. Then N is 
bounded above by some ( E *IR. Then ( is the equivalence class of some function f : A --> IR, 
such that the set Fn = {>.. E A :  n :s; f(>..) }  is a member of :J for each n E N. Then n:=l Fn 
is nonempty, a contradiction. 

Further remarks. Do there exist .any filters :J satisfying those conditions (A)-(F) above? 
That is a famous problem in set theory. To discuss it we need a few definitions: 

An ultrafilter :J on a set A is said to be a-complete if, whenever C C::: :J with card( C) :s; a, 
then ncEC c is a member of :J. A measurable cardinal is a cardinal a with this property: 
a is uncountable and there exists a free ultrafilter :J on some set with cardinality a such 
that :J is f)-complete for every cardinality f) < a. A w-measurable cardinal is a cardinal 
a with this property: a is uncountable and there exists a free ultrafilter :J on some set A 
with cardinality a such that 9'" is card(N)-complete. 

Clearly, a filter satisfying condition (F) above exists if and only if an w-measurable 
cardinal exists; and it is shown by Bell and Slomson [1969] that a w-measurable cardinal 
exists if and only if a measurable cardinal exists. 
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However, the existence or nonexistence of a measurable cardinal cannot be proved in 
conventional set theory. More precisely, the following results are known: (i) The consistency 
of ZF implies the consistency of ZF + AC + "there does not exist a measurable cardinal." 
(ii) The axiom system ZF + AC + "there exists a measurable cardinal" is empirically 
consistent , but its consistency is not implied by Con(ZF) . These results can be found in 
Kunen [ 1980] and other books on formal logic. 

QUADRATIC EXTENSIONS AND THE COMPLEX 
NUMBERS 

10.22. Let lF be a field, and suppose q is an element of lF that is not a square - i.e. , 
assume q E lF and suppose there is no solution x E lF for the equation x2 = q. (Examples 
are given in 8.20.c, 8 .23.b, and 10.9 .c . ) Let JF(y'q) represent the set lF x JF, equipped with 
binary operations defined as follows: 

addition: (a1 , bl )  + (az , bz )  = (a1 + az , b1 + bz ) 

multiplication: (a1 , bl ) (az , bz) = (a1a2 + qb1 b2 , a1 b2 + azb1 )  
where the expressions a1 a2 + qb1 b2 , etc . , are computed using the arithmetic rules of JF. 
Verify that JF( y'q) is a field when equipped with these binary operations; the additive and 
multiplicative identities are (0, 0) and ( 1 ,  0) and 

the multiplicative inverse of (a, b) is ( a -b ) 
a2 - qb2 ' a2 - qb2 

when (a, b) =/= (0, 0) . (This makes sense since (a, b) =/= (0, 0) '* a2 - qb2 =/= 0.) 
Furthermore, the mapping a f---+ (a, O) is an injective homomorphism from lF into JF(ytq) . 

Thus we may view IF as a subset of JF(ytq) . If we write (a, O) as a and (O, b) as by!q, then 
(a, b) may be written as a + by!q, with all the usual rules of arithmetic being preserved. 
Then JF( y'q) has additive identity 0 and multiplicative identity 1 .  We have extended our 
original field to a larger field in which the equation x2 = q does have a solution; the solution 
is the "number" (0, 1 )  = ytq. 

Exercise. Show that the only other solution of x2 = q in JF( y'q) is the "number" ( 0, - 1 ) = 
-y!q. (The beginner is urged to use the ordered pair notation (a, b) rather than the more 
familiar notation a + bylq, to reduce the likelihood of assuming something that has not 
already been proved. )  

10.23. Examples. 
a. Q( J2) = {a +  bJ2 : a, b E  Q} is a subfield of R 
b. Let m be an odd prime. As we noted in 8.20.c, there are elements q E Zm for which 

x2 = q has no solution in Zm. Fix any such q. Then Zm (yfq) is a field containing 
exactly m2 elements. Exercise. Construct addition and multiplication tables for the 
field with 9 elements. 
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10.24. The complex numbers are the quadratic extension field JR( /=1), formed from lR 
by the construction of 10.22; this field is usually denoted by C. The complex number A 
is usually written as i .  Thus complex numbers can be written as x + iy or x + yi , where 
x, y E R The complex number o: = x + iy has real part, imaginary part, and complex 
conjugate defined by 

Re o: = x, Im o: = y, o: = x - zy. 

( Caution: Some mathematicians use overlines for other purposes than complex conjugation 
- e.g. , set complementation or topological closure. ) 

10.25. The spaces C and JR2 are isomorphic, when considered as real vector spaces: They 
yield the same results for addition and for multiplication by a real number. 

Any complex-valued function of a complex variable can be rewritten as a JR2-valued 
function of a variable in JR2 . If w = f(z) , we may write z = x + iy and w = u + iv = 
f(x + iy) ,  where u, v, x, y are real. The letters f, u, v, w, x, y, z are customarily used in the 
literature in precisely this arrangement . 

Example. If w = f(z) = z3 , then 
u + iv 

so u(x, y) = x3 - 3xy2 and v(x, y) = 3x2y - y3 . 

10.26. Exercise. The 2-by-2 matrices of the form [ x y ] with x, y E IR, equipped with 
-y X 

matrix addition and multiplication, form a field that is isomorphic to C; the matrix above 
corresponds to the complex number x + iy. 

More generally, let IF be a field, and let q be an element of IF that has no square root in 
IF. Then the 2-by-2 matrices of the form [ x y ] with x, y E IF, equipped with matrix qy X 
addition and multiplication, form a field that is isomorphic to the quadratic extension field 
IF(Jil) ,  with the matrix above corresponding to x + yJl]. 

10.27. For many purposes it is convenient to represent complex numbers as points in the 
plane, with the real part being the distance to the right of the origin, and the imaginary 
part being the distance up from the origin; then a is the reflection of o: in the horizontal 
coordinate axis. This representation is sometimes known as an Argand diagram. See the 
following illustration. This illustration also shows the polar coordinate representation: If r 

is the distance from 0 to o: and () is the angle from the positive real axis to the line between 
0 and o:, then o: = r cos () +  ir sin B. The real number () is sometimes called the argument of 
the complex number o:. 

Historical remarks. Calculations with complex numbers were performed long before such 
numbers were properly understood or fully accepted . For instance, Cardan showed that the 
quadratic equation x(10 - x) = 40 has the two solutions 5 + J=T5 and 5 - J=T5, without 
any clear understanding of what such numbers could mean. Euler, around 1750, wrote 
that such computations are a method for showing that the equation x( 10 - x) = 40 has no 
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Argand diagram 

a =  x + iy 
= r( cos B + i sin B) 
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solutions. Some mathematicians took this attitude: Of course there is no square root of a 
negative number; but if there were such a thing, what algebraic properties should it have? 
Around 1800, writings of Argand and Gauss gave our present geometrical interpretation of 
complex numbers as points in the plane. Finally, in 1830, William R. Hamilton published a 
paper explaining complex numbers in terms of ordered pairs; probably that is the simplest 
starting point for mathematicians learning about complex numbers today. Some accounts 
of the history of this subject are given by Kline [1990] and Tietze [1965] . 

10.28. The rules for addition and multiplication of complex numbers are the same as the 
rules given in 10.22, with q taken to be - 1 .  The rule for addition is fairly simple; it is the 
same as the addition of vectors in JR.2 (see Chapter 1 1 ) .  The rule for multiplication, 

is more complicated, and may seem rather arbitrary to the beginner. However, it becomes 
much more natural when interpreted geometrically with polar coordinates. Let cis( B) denote 
cos(B) + i sin(B) . Using (*) and some basic trigonometric identities, verify that the product 
of the complex numbers r1cis(Bl ) and r2cis(B2 )  is the complex number (r1r2)cis(B1 + B2 ) .  
Thus, to multiply two complex numbers, we multiply the radii and add the angles. Arith
metic with complex numbers may be viewed as transformations of the plane: Addition is a 
translation, while multiplication is a rotation and stretching. 

It follows that 
[rcis(B)]n 

for integers n. This is known as De Moivre's formula. 

10.29. Reversing the process described above, we find that the nth roots of any complex 
number rcis( B) are 

1/n · [B + 27rj ] 
T ClS 

n 
(j = 0, 1 ,  2, . . .  , n - 1 ) .  

These are points equally spaced along a circle centered at 0 with radius r1 fn . 
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The reader is cautioned that familiar properties of vfx or yX for positive real numbers 
x do not always extend to complex numbers x. Indeed, the notations vfx and y'X are 
too ambiguous and imprecise for some computations with complex numbers. For instance, 
/Pfo = jfXi is valid for p, q  > 0, but the computation -1 = AA = J(-1 ) (- 1 )  = 
JI = 1 is clearly incorrect . However, the reader who makes an error of this sort is in good 
company: Euler made some similar mistakes, in the years before complex numbers were 
well understood. 

10.30. Polynomial equations. The discussion in 10.29 shows that for any complex number 
a other than 0, we have n distinct solutions z to the polynomial equation zn - a = 0. 
What about other polynomial equations? In 17.36 we shall prove that every nonconstant 
polynomial (in a single complex variable, with complex coefficients) has at least one complex 
root ; in fact, counting multiplicities of multiple roots, every polynomial of degree n has 
exactly n complex roots. Power series and analytic functions, which are like "polynomials 
of infinite degree." have a more complicated theory, which will be considered briefly in 22.23 
and 25.27. 

We can actually give formulas for the roots of the simplest polynomials: 

a. The quadratic equation az2 + bz + c = 0 (with a =f. 0) has solutions given by the 
-b ±  Jb2 - 4ac 

quadratic formula, z = . Every student learns this in high school 2a 
-- at least . when a, b, c are real numbers and b2 - 4ac 2: 0. Actually, we can apply this 
formula with any complex numbers a, b, c (with a =f. 0) , since 10.29 tells us how to find 
square roots of b2 - 4ac. The quadratic formula yields two distinct complex solutions 
z , or one solution repeated if b2 - 4ac = 0. 

b. An analogous formula, involving square roots and cube roots, can be given for the 
cubic equation az:3 + bz2 + cz + d = 0 (with a =f. 0) , but it is a bit more complicated. 
It was published by Cardan in 1545. Divide through by a; thus we may assume a =  1 .  

b Substitute z = w - 3 .  Some cancellation occurs. The resulting equation can be 
rewritten in the more convenient form w:3 + 3ew - 2] = 0, with known constants 

1 1 2 e = -c - -b 3 9 ' 
1 3 1 1 f = - -b + -be - - d. 27 6 2 

Now make another substitution, taking w = ( - e(-1 . Again some cancellation occurs. 
The resulting equation (3 - e3C3 - 2] = 0 can be rewritten as (6 - 2](3 - e3 = 0. 
This is a quadratic in (3. Solve it as in 10 .30.a; thus (3 = f ± J j2 + e3 . Then find �, 
as in 10.29. This leads, finally, to 

b 
3 

This looks like six values, since each complex number other than. 0 has two square 
roots and three cube roots, but there is some repetition and we only end up with 
three distinct solutions. This complicated procedure is seldom used in applications; 
numerical approximation methods do not depend on the use of these formulas. 
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c. A still more complicated formula or method yields the solution of the quartic equation 
z4 + az3 + bz2 + cz+d  = 0. This problem was solved by Cardan's student and published 
in Cardan's book in 1545. Here is one description of the method: By completing the 
square, we may rewrite the given equation as 

( 1 2 ) 2 
4a - b z - cz - d. 

For any constant r (to be specified) , we have 

which we shall rewrite as (z2 + �az + r) 2 = Az2 + Bz + C. 
Now, an expression of the form Az2 + Bz + C, with constants A, B, C is a perfect 

square - i.e. , an expression of the form A(z - D)2 - if the constants A ,  B, C satisfy 
B2 = 4AC, and in that case we have D = - 2� . If we can choose a constant r to 
satisfy this condition, then we will have 

which can be rewritten as z2 + � az + r = ± VA  (z - D)  - that is, two quadratic 
equations, which we can solve for z as in 10.30.a. 

It remains only to find a value of r that satisfies B2 = 4AC . This equation, written 
in more detail, is ( ar - c )2 = 4 C t a2 - b + 2r) ( r2 - d) - a third-degree equation for 
r ,  which we can solve as in 10.30.b. 

d. Some quintic (or fifth-degree) equations have solutions that can be expressed in terms 
of fifth roots. For instance, one of the solutions of x5 + 20x + 32 = 0 is the number 

� 5 25oov'5 + 25oJ 50 - wJ5 - 75oJ 50 + wJ5 

+ � 5 25oov'5 - 25oJ 50 + wJ5- 75oJ 50 - wJ5 

+ � 5 25oov'5 + 25oJ5o + wJ5 + 750V5o - wJ5 

� 5 25oov'5 - 25oJ5o - wJ5 + 750V5o + wJ5 

(taken from [Wolfram 1994] ) .  Examples like this could lead one to expect that the 
general fifth-degree equation, like the equations of lower degree, could be solved by a 
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formula in terms of radicals. Mathematicians sought such a formula for many years. 
But in 1826 Abel proved that such a formula is impossible, and a few years later Galois 
developed a theory that describes exactly when a polynomial is solvable by radicals. 
For instance, the polynomial 2x5 - 2x + 1 has Galois group S5 , which is not solvable, 
so the roots of 2x5 - 2x + 1 cannot be represented in terms of radicals. 

Still, we know by the Fundamental Theorem of Algebra ( 1 7.36) that every fifth
degree polynomial equation with complex coefficients has five complex roots. If they 
cannot be represented using radicals, how can the roots be represented? Radicals are 
not enough; more functions are needed. In 1844 Eisenstein solved quintic equations 
in terms of radicals and what we shall call the Eisenstein function in the paragraph 
below. In 1858 Hermite, Kronecker, and Brioschi solved quintic equations in terms of 
radicals and elliptic modular functions; in 1877 Klein solved quintic equations in terms 
of radicals and the hypergeometric function. For additional information about some 
of these solutions, see Wolfram [1994] or Shurman [1995] . 

For most choices of a, the quintic equation x5 + x = a cannot be solved by radicals. 
However, some basic properties of the polynomial p(x) = x5 + x are easy to figure out : 
That polynomial has derivative p' (x) = 5x4 + 1 2 1 ,  and so p is strictly increasing 
and gives a bijection from lR onto R Let the inverse of that function p be denoted by 
Eis(x ) ;  we shall call it the Eisenstein function. Then it can be shown that a solution 
of x5 + ax4 + bx3 + cx2 + dx + e = 0 is given by x = Eis( q(a, b, c, d, e)) , where q( · ) is 
a function of five variables that can be expressed entirely in terms of radicals (i.e. , in 
terms of nth roots for n :S: 5, together with sums, differences, products, and quotients) .  
The function q can be expressed in closed form, but the formula is extremely long, 
and we shall not give it here. That formula can be produced by methods described by 
Stillwell [1995] . 

e. Nowadays, when one wants to solve a polynomial equation of degree higher than two, 
generally one uses a numerical iterative scheme on an electronic computer. For instance, 
one such scheme is Newton's Method, which can be found in every modern textbook on 
calculus. These numerical schemes do not yield exact solutions, but they yield solutions 
to as much accuracy as one wishes; 10 decimal places of accuracy is more accuracy than 
any engineering problem will ever require. However, roots produced by a numerical 
scheme may have no apparent rhyme or reason; they may seem to be arranged entirely 
at random. The formulas of Cardan, Hermite, Eisenstein, et al. are of interest because 
they reveal the pattern of the roots - i.e. , the relationships between the roots and the 
other numbers present in the problem. That is important for theoretical purposes and 
ultimately has some effect on engineering problems as well. 

ABSOLUTE VALUES 

10.31.  Definitions. Let X be a field (not necessarily ordered) .  By an absolute value on 
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X we mean a mapping I · I : X ----> [0, +oo) satisfying 

lx l = 0  � x = O  

lxy l = lx i iY I 
lx + Yl ::=; lx l + I Y I 
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(positive-definiteness) 

( multiplicativeness) 

(subadditivity) 
for all x, y E X. These properties imply also 1 1 1 = 1 ( exercise) .  An absolute value is also 
known as a modulus or magnitude or value or valuation. 

The absolute value thus defined on fields should not be confused with the absolute value 
defined in 8.39 for lattice groups. Fortunately, the two notions do coincide in the case where 
the field or lattice group is IR (or any subfield of IR); in that case l x l is just max{x, -x} ,  
the usual absolute value on JR. I t will always be used on IR, except when some other 
arrangement is specified. 

10.32. The absolute value of a complex number. For real numbers x and y, define lx + iy l = 
J x2 + y2 . Show that 

a. l o: l  = yf(Re o:)2 + (Imo:)2 for any complex number o:. 
b. If o: = r cis 8 for some real number (;I and positive number r (as in 10.28), then lo: l  = r. 

Hence lo:;3J = lo: I I;3 J ,  by our observations in 10.28. 
c. lo: l  = lal and o:a = lo: 1 2 . 
d. lo: + ,iJI2 = Jo: l2 + 2 Re o:,B + l ,iJI2 ::=; l o: l2 + 2 Jo:,81 + lf712 = ( Jo: l + lf7 1 )2 . 
e. I I is an absolute value. 

It is the usual absolute value on C. It will always be used on C,  except if some 
other arrangement is specified. The usual topology and uniform structure on C are 
given by the metric d(o:, f)) = Jo: - f71 . Remark. This topology and uniform structure 
are the same as those of IR2 ; see 18. 18 and 22. 1 1 .  However, C and IR2 have different 
differentiable structures; see 25.8. 

f. The set 1I' = { z E C : l z l = 1} is a commutative group whose operation is the 
multiplication of complex numbers. It is often called the circle group, since it is 
geometrically a circle, x2 + y2 = 1 ,  in the complex plane. It is isomorphic (as a group) 
to the additive group introduced in 8. 10.e. In fact, the mapping (;I f---+ cis( 8) (defined in 
10.28) is an isomorphism from the additive group [0, 21r) onto the multiplicative group 
1!'. Also, the mapping (;I f---+ cis(O) is a group homomorphism (not an isomorphism) from 
the additive group IR onto the multiplicative group 1!'. 

10.33. Let lF be a field, not necessarily contained in IR or containing JR. (For instance, lF 
could be one of the finite fields discussed in 8.20 . ) For clarity in the discussion below, let 
1 denote the multiplicative identity of IR, and let e denote the multiplicative identity of JF. 
For any n E N, let us denote ne = e + e + · · · + e (the sum of n e 's) . Let I I be an absolute 
value on the field JF. Then the following conditions are equivalent; if any (hence all) are 
satisfied we say that the absolute value is non-Archimedean. 

(A) The set { Jne J : n E N} is bounded in JR. 
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(B) lne l ::; 1 for every n E N. 
(C) Ia + b l ::; max{ la l ,  l b l } for all a, b E  lF. 
(D) The metric d(u, v) = i u - v i satisfies the ultrametric inequality d(u , v )  ::; 

max{ d( u, w) , d( v, w) } .  
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Proof of equivalence. The proofs of (C) {===} (D) and (C) =? (B) =? (A) are easy; it 
suffices to prove (A) =? (C). Let r = sup{ lne l : n E N} .  Let any a ,  b E lF be given; let 
s = max{ l a l ,  l b l } .  For each n E N, observe that 

l a + bl " = l (a + b)" l = L. n (n) an-j/} 
j=O J 

n 
< L:: rs" 

) =0 
(n + 1 )rs" . 

Hence Ia + b l ::; \l(n + 1 )r s . Take limits as n --+ oo to obtain Ia + b l ::; s ;  this completes 
the proof. This proof follows Rooij [1978] . 
Examples of non-Archimedean valuations. 

a. The discrete absolute value (or Kronecker absolute value) on any field lF is given by 

lxl { � if X =  0 
if X o/= 0 . 

Obviously this satisfies condition (C) given above. 
b. Let p be a prime number �· i .e . , one of the numbers 2, 3, 5, 7, 1 1 ,  . . . .  Any nonzero 

rational number can be expressed in the form m/(npr ) ,  where r, m, n are integers. with 
m and n nonzero and not divisible by p. Define lm/(npr ) l p = pr ; this is the p-adic 
absolute value on Ql. Completions of metric spaces will be studied in Chapter 19 ; the 
completion of the metric space (Ql, I I 1J is the system of p-adic numbers, which are used 
in algebraic number theory and in the study of topological groups . An introduction to 
this subject is given by Bachman [ 1964] . 

c. Let lF be a field, let x be a variable, and let JF(x) be the field of rational functions in 
the variable x with coefficients in lF (see 9.28 ) .  Each nonzero element can be written 
in the form r(x) = xrnp(x)jq(x) where m is an integer, p(x) and q(x) are polynomials, 
and neither p nor q has a factor of x. Then let l r l = 2-rn .  Verify that this yields a 
non-Archimedean valuation on lF(x ) .  Instead of 2-m we could use e- m for any constant 
c > 1 .  For further reading, see also Narici and Beckenstein [ 1990] . 

10.34. Intentional ambiguity. In later chapters, the main fields we shall use are IR and 
C. We shall sometimes state a theorem involving a field lF that may be IR or C, without 
specifying which of these fields is intended. This intentional ambiguity permits us to cover 
both cases simultaneously. For any a E JF, we shall let Re a, lm a, a, and Ia I be the real and 
imaginary parts of a, the complex conjugate of o:, and the absolute value of a, respectively. 
This notation is applicable (albeit unnecessarily complicated) even when lF = IR; in that 
case we have Rc a = a = a and Inux = 0. Likewise, the expression l a l  has the same 
value regardless of whether the field being used is IR or C, since the absolute value function 
on IR is just the restriction of the absolute value function on C .  



262 Chapter 10: The Real Numbers 

See also the related discussions in 1 1 . 1 ,  26.5, 26.21 , and 27.30. 

10.35. Clarkson's inequality for scalars. Let p, q E ( 1 , +oo) with � + � = 1. Then p q 
for any complex numbers �' 1], 

if p ;:::: 2 ;:::: q, 
and the reverse of this inequality holds if p :::; 2 :::; q. (This result will be used in Chapter 22 
to prove that the Banach spaces LP (J.L) are uniformly convex; other properties of uniform 
convexity are studied in that chapter and in Chapter 28. ) 

Proof. Our presentation is based on that of Weir [1974] . Define 

'P( t) (0 < t < 1 ) .  

Then compute the first two derivatives and simplify to: 

'P'(t) [ ( 1 + V'tf- 1 - ( 1 - V'tf-1] t(lfp) -1 
'P"(t) (� - 1) [ (1 + V'tr-2 _ (1 - V'tr-2J t(lfp) -2 . 

For most of the remaining steps, we shall give inequalities only for p 2: 2 2: q; the reversed 
inequalities are then valid when p :::; 2 :::; q. Observe that <p"(t) :::; 0 (assuming p 2: 2 2: q) . 
Hence, by integrating, 

<p(a) < <p(b) + (a - b)<p' (b) for a, b E  (0, 1 ) .  

Substituting a = rP and b = rpq and simplifying, we obtain 

for r E (0, 1 ) .  Taking limits, we find that this is also valid for r E [0, 1 ] .  
(This paragraph can be omitted if we wish to consider only real numbers for scalars. ) 

Next we claim that i f ( is any complex number with 1 ( 1  :::; 1 ,  then 

� again, with inequality reversed if p :::; 2 :::; q. To establish this inequality, note that 
( can be represented in the form ( = r cos (} + i r sin (} for some real number (}, with r = 1 ( 1  E [0, 1] . Holding r fixed, define '1/J(B) = 1 1 + ( IP + 1 1 - ( IP ; it suffices to show that 
'1/J(B) :::; '1/J(O) for all 8. Note that '1/J is periodic with period ?T ,  since ( and -( switch places 
when we increase (} by 1r; hence it suffices to consider (} E [0, 1r] . Observe that 

( 1  + ( ) ( 1 + () 
( 1  - ( ) ( 1 - ( ) 

1 + 2r cos (} + r2 
1 - 2r cos (} + r2 . and 
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This yields the representation 

and it is then easy to compute 

In the interval 0 ::; () ::; 1r we have sin () :::: 0. Also, we have 

1 1  + ( I > 
1 1  + ( I < 

1 1 - ( I  
1 1 - ( I  

when 0 ::; () ::; 1r /2 , 
when 1r /2 ::; () ::; 1r. 
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and 

Hence 'lj; assumes a maximum at () = 0 and () = 1r (or a minimum, if p ::; 2 ::; q) . This 
completes the proof of the claim. 

Finally, to prove the theorem, let any complex numbers �' TJ be given. We may assume 
that at least one of C,, ry is nonzero; without loss of generality we may assume IC. I ::; I TJI ·  Then 
we substitute ( = C,jry. 

CONVERGENCE OF SEQUENCES AND SERIES 

10.36. Remarks. Both IR and [ -oo, +oo] are chains; hence their natural convergences are 
defined as in 7.41 .  The extended real line [-oo, +oo] has the further advantage that it is 
order complete; hence its convergence can also be described as in 7.45. 

It is sometimes easier to work in [-oo, +oo] , since any net in that space has a limsup 
and a liminf. Questions about convergence in IR can be restated as questions about conver
gence in [-oo, +oo] , since the convergence in IR is just the restriction of the convergence in 
[-oo, +oo] . 

On the other hand, it is sometimes easier to work in IR, because that space has a simpler 
metric and simpler arithmetic. Questions about convergence in [ -oo, +oo] can be restated 
as questions about convergence in a bounded subset of IR, via the following observation: 
The mapping () f--7 tan () is an order isomorphism from [- � , �] onto [ -oo, +oo] . 

Any net in [-oo, +oo] has both a lim inf and a lim sup in [-oo, +oo] . Any bounded net 
in IR has both a lim inf and a lim sup in R Not every bounded net in IR has a limit; for 
instance, the sequence 0, 1 ,  0, 1 ,  0, 1 ,  . . .  has no limit. (However, every bounded net in IR has 
generalized limits, in a sense described in 12.33.) 

10.37. ( Optional. ) Notions of calculus, such as limits, can be described in terms of infinites
imals; Newton and Leibniz had something like this in mind when they invented calculus. 
(The epsilon-delta approach now widely used in calculus books was not developed until 
many decades after Newton and Leibniz. ) 

Assume that :J is a free ultrafilter on N; hence *IR = !Rf\1 j:J is a non-Archimedean field, 
as in 10.20.a. Let f : IR -> IR be some function; let p, L be some real numbers. Show that 
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the right-hand limit f(p+) = limalO f(p + a) exists and equals L, if and only 
if for each positive infinitesimal a the hyperreal number * f(p + a) is infinitely 
close to L. 

(The number a i s understood to vary through real values, not hyperreal values.) Applying 
that result twice, we obtain: 

lima�o f(p + a) exists and equals L if and only if for each nonzero infinitesimal 
a the hyperreal number * f(p + a) is infinitely close to L. 

Proof It suffices to prove the first equivalence. First suppose that f(p+) = L.  Let any 
positive real number E be given. Then there is some positive real number 8 such that 

a E IR, 0 < a <  8 
It follows from 9.50.c and 9.52.d that 

a E *IR , 0 < a < 8 

L - E < f(p + a) <  L + E . 

L - E < * f(p + a) <  L + E. 
In particular, if a is a positive infinitesimal, then 0 < a < 8 is satisfied for every positive 
real number 8; hence -E < * f(p + a) - L < E is satisfied for every positive real number E; 
hence * f(p + a) is infinitely close to L. 

Conversely, suppose that * f (p + a) is infinitely close to L for every positive infinitesimal 
a. We wish to show that J(p+) = L. Let (an ) be any sequence of positive real numbers 
decreasing to 0; it suffices to show that f(p + an) --> L. Let any real number E > 0 be given; 
it suffices to show that i f (p + an) - L i < E for all n sufficiently large. Define a function 
A : N --> IR by taking A(n) = an ; let a be the equivalence class of that function; then a 
is a positive infinitesimal. Since * f(p + a) is infinitely close to L ,  we have in particular 
L - E < * f(p + a) <  L + E. That is, L - E < f(p + A(n)) < L + E for all but finitely many 
values of n. This completes the proof. 

10.38. (This result can be postponed; it will not be needed until 28.37.) 
Let X be a nonempty set. A sequence (fJ) in JRX is a Pryce sequence if 

sup lim inf Jj (x) sup lim sup Jj (x) . 
xEX J �= xEX  j �= 

(The liminf and limsup take their values in [-oo, +oo] . )  It is easy to show that any subse
quence of a Pryce sequence is also a Pryce sequence. 

Pryce Selection Theorem. Every sequence in JRX has a subsequence that is a Pryce 
sequence. 

Proof We follow the presentation of Konig [1986] . Throughout this proof, both subscripts 
and superscripts will be used as indices; superscripts will not denote exponentiation or 
composition. Also, for brevity, for any function u :  X -->  [-oo, +oo] , 

will denote the number sup u (x) . 
xEX 
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Let the given sequence be (IJ ) .  For j = 1, 2, 3, . . .  , let gJ = fJ . For each n = 1 ,  2, 3, . . .  , 
recursively define a point x" E X and a subsequence (gj' : j E N) of the sequence (gj'- 1 
j E N) as follows: Let 

q11- 1 (x) = lim sup gn- l (x) . J 
.1 -.-.--...jo 'X 

for each x E X, with values in [-oo, +oo] . Then choose x11 E X  according to the value of 
qn- I , as follows: 

If qn - 1 = -oo, let x" be any point of X. 

If qn- I E IR, choose some X11 E X  satisfying q" - 1 (x11) > q"- 1 - � -

If q"- 1 = +oo, choose some x" E X  satisfying q"- 1 (x71 ) > n .  

Let Tn 
= qn- l (x" ) .  Since T" = lim supJ�= gj'- 1 (x" ) ,  some subsequence (gj' : j E N) of 

the sequence (gj'- 1 : j E N) satisfies T" = limJ�= gj' (x" ) .  This completes the recursive 
definition. Since the sequence (gj (xn ) : j E N) is convergent, we have T" = pn (x" ) = 

q" (xn ) . 
Now let (hn ) be a diagonal subsequence of the g's -- that is, let h" be a member 

of the sequence (gj' : j E N) ,  and then let hn+ I  be some later member of the sequence 
(gj' : j E N) ,  chosen so that h"+1 also belongs to the subsequence (gj' + 1 : j E N) .  For each 
n, it follows that (h'' , h"+ 1 , h"+2 , h"+3 , . . .  ) is a subsequence of (gj' :  j E N) ,  and therefore 
T11 = lim1�= hl (x" ) .  In particular, (hn ) is a subsequence of the originally given sequence 
(JJ ) ;  we shall show that (h" ) is a Pryce sequence. Define 

p(x) = lim inf hl (x) , q(x) = lim sup h.i (x ) ; 
} -+ X j---+x 

then p :::; q and it suffices to show that p � q. We may assume that 7j > -oo and p < +oo. 
Since (hJ ) is a subsequence of (gj' : j E N) , which is in turn a subsequence of (gj' - 1  : 

j E N) ,  we have 

Hence the numbers q"- 1 are bounded below by the number q, which is not -oo. Also, 

p" (x" ) < p" < p < +x. 

Sin.ce p < +oc, we have q"- 1 (x" ) :S: n for all n sufficiently large. For those n ,  our definition 
of xn tells us that qn- I cannot be +oo. Thus for all n sufficiently large we have qn- I finite, 
and therefore (by our definition of x" ) 

1 1 -oc < 7j :S: qn- 1 < - + q"-l (x" ) < - + p  < +x. 
n n 

Taking limits yields 7j :S: p. 
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10.39. Convergence of infinite series. Let a1 , a2 , a3 ,  • • •  be complex numbers (or, in par
ticular, real numbers) .  Then the expression 

00 
or 

is called a series (or an infinite series) . That expression also represents the limit of the 
sequence 

- that is, the value of limn_,00 2::�= 1 ak - if that limit exists. (We say the series is the 
"limit of the partial sums." ) When the limit exists, we say the series 2::�1 ak converges. 
When the limit fails to exist, we say the series diverges. 

The definitions above all generalize readily to the case where a1 , a2 , a3 ,  . . .  are members 
of any monoid equipped with a Hausdorff convergence structure (see 7.36) . In 22.20 we 
consider the case where X is any Banach space; in Chapter 26 we consider the case where 
X is a topological vector space. 

For infinite series of real numbers, it is customary to extend the definition a little further: 
When a1 , a2 , a3 , . . . are real numbers, then 2::�1 ak is understood to mean the limit of 
a1 + a2 + · · · + an ,  not just in IR, but in the extended real line [-oo, +oo] . When the limit 
happens to be +oo, some mathematicians say that the series diverges to infinity. (Some 
mathematicians say that the series converges to infinity, but we shall not follow that 
terminology in our discussion of infinite series. )  Similar terminology applies for -oo. 

The sequence (ak )  = (a1 , a2 , a3 , . . .  ) should not be confused with the series 2::�1 ak = 
a1 + a2 + a3 + · · · .  For instance, the sequence (2-k ) = ( � ,  i ,  k ,  . . .  ) converges to 0, while 
the series 2::%"=1 2-k = � + i + k + · · · converges to 1 by the result in 10.4l .d. 

10.40. When all the ak 's are nonnegative real numbers, then 2::%"=1 ak always exists in 
[0, +oo] - that is, the series always converges to a finite number or diverges to +oo. We 
may abbreviate these two cases by saying simply that 2::%"=1 ak < oo or that 2::%"=1 ak = oo. 

More generally, let (a,x : >. E A) be any parametrized collection of members of [0, +oo] . 
Then we define the sum L-XEA a,x to mean the supremum of all sums of the form L-XEL a,x 
for finite sets L � A. The supremum exists, since [0, +oo] is order complete. Again, the 
order of the terms does not affect the summation. Exercise. When A = N, then this 
definition is equivalent to the one given earlier for 2::%"=1 ak . 

Actually, we are mainly interested in the countable case, because ( exercise) if L-XEA a,x 
is finite, then at most countably many of the a,x 's are nonzero. Hint :  Show that for each 
positive integer m, the set Am = { >. E A : a,x > rk}  is finite. 

10.41. Some basic properties of convergent series. 
a. Suppose 2::;:1 aj and 2::;:1 b1 are convergent series of real or complex numbers with 

finite sums, and k is any constant . Then 2::;:1 (a1 + b1 )  and 2::;:1 (ka1 ) are also conver-
gent series, with sums equal to ( 2::;:1 aj) + ( 2::;:1 bj) and k 2::;:1 aj , respectively. 
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b. If aj :::; bj for all j ,  then 2".:::� 1 aj :::; 2".:::� 1 bj . In particular, if 0 :::; aj :::; bj and 2.::: bj is 
convergent , then 2.::: aj is convergent . 

c. If 2".:::� 1 aj is a convergent series of real or complex numbers, then limj__,00 aj = 0. 
On the other hand, if limj__,oo aj = 0, it does not follow that 2".:::� 1 aj is convergent 

- for example, consider the harmonic series in 10.4 1 . f below. 
d. Geometric series. Show that 1 + r + r2 + · · · + rn = ( 1 - rn+1 ) / ( 1 - r) if r =/= 1 ,  and 

hence 

2 3 1 + r + r  + r  + · · ·  { 1 / ( 1 - r) 
divergent 

if j r j  < 1 
if jr j  2 1 .  

e. Integral test. If f : [ 1 , +oo) -+ [0, +oo) is a decreasing function, then 2.:::;: 1 f(j) and 
J1
00 f(x) dx are both finite or both infinite. In fact , 2:::7�i j(j) :::; f1

n+ 1 f(x)dx :::; 
2.:::7=1 f(j ) .  

f. Corollary. The series 2.:::;: 1 j-P converges for real numbers p > 1 and diverges if 
O < p ::; I . 

In particular, the harmonic series 2.:::;: 1 I = 1 + � + � + i + · · · diverges. However, 
it diverges rather slowly - i.e. , to make 2.:::7=1 I moderately large, we must make n 

incredibly enormous. In fact ,  the integral test tells us that 2.:::;'=1 I is approximately 
equal to In n. For instance, when n is a trillion, then 2.:::7= 1 I is only approximately 
equal to ln( 101 2 ) = 12 ln( 10) � 27.63. When n is a googol, or 10100 , then 2.:::7= 1 I is 
still only about ln( 10100 ) = 100 ln( 10) � 230.26. 

The harmonic series is a sort of "borderline case" - it often takes delicate calcula
tions to decide the convergence or divergence of series that are similar to the harmonic 
series. The series 2.:::;:2 j 1!, .i and 2.:::;:2 j ( ln j )fln ln j ) also diverge, even more slowly. On 
the other hand, the series 2.:::;:2 j ( l; .i )2  converges. 

g. Alternating series test. If a 1 2 a2 2 a3 2 · · · 2 0 and limn__,00 an = 0, then the series 
a1 - a2 + a3 - a4 + · · · converges. We omit the rather elementary proof (which can be 
found in most calculus books) , since we shall prove a stronger result in 22.21 . 

h 1 1 1 rn+ 1 1 1 . Let tn = 1 + 2 + 3 + · · · + :n - In n . Show that tn - tn+ 1 = Jn ;: dx - n + 1 > 0. Hence 
the sequence t 1 , t2 , t3 , . . .  is bounded and decreasing. It therefore converges to a limit, 
which is called Euler's constant . That limit is approximately 0.577215664901532 . . .  ; 
it is commonly denoted by f .  

10.42. When we add up only finitely many numbers, or add up infinitely many nonnegative 
numbers , then it does not matter in what order we add them; the result is the same. 
However, when we add up infinitely many numbers, some positive and some negative, then 
changing the order of the terms may affect the answer. For instance, using 10.41 .h, show 
that 1 - l + l - l + l - · · · = In 2 but 2 :l 4 5 ' 

1 1 1 1 1 1 1 1  1 1 1 1 + - - - + - + - - - + - + - - - + - + - - - · · ·  3 2 5 7 4 9 1 1  6 13 15 8 
3 - ln 2. 2 
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If we change the order of the terms a bit more, we obtain the series 

1 1 1 - - + -2 3 '-v-' 
1 odd term 

+ 

1 1 1 1 1 1 1 1 
4 + - + -5 7 - - + 6 9 + 11 + 13 + 15 '-v-' 

2 odd terms 4 odd terms 
1 1 1 1 1 1 1 1 1 
17 + 19 + 2 1  + 23 + 25 + 27 + 29 + 31 -

-

10 
8 odd terms 

which converges to +oo. Hints: Observe that 

etc. Also, show that 

1 ln( 1 )  - ln(2) - 4 > 2 ' 
1 ln(2) - ln(3) 

-6 > 2 ' 
1 ln(3) - ln(4) - 8 > ____:_:.__2

_-'---C.. ' 

1 
8 

+ 

Other rearrangements of this series yield other sums. In fact , it can be proved that any 
number L in [ -oo, +oo] can be obtained as the sum of a suitable rearrangement of the series 
above. (Hints: Obtain L = -oo in a fashion analogous to the method used above for the 
sum L = +oo. Now consider any finite number L. Take just enough positive terms to get 
a partial sum that is greater than L; then take just enough negative terms to get a partial 
sum that is less than L; then just enough positive terms . . .  ; etc. ) 

Thus, it is erroneous and misleading to say that 2::::�1 ak = a 1 + a2 + a3 + · · · is simply 
the "sum" of the ak 's. To be more precise, we must say that 2::::�1 ak is the sum of the ak 's 
in the specified order; this is reflected in our definition 2::::�1 ak = limn�oo (al +a2+ ·  · ·+an ) · 
Different orderings of the ak 's yield different partial sums Sn = a 1 + a2 + · · · + an and thus 
different sequences (sn ) ,  which may have different limits. Intuitively, it may be helpful to 
view a series this way: The numbers in a1 + a2 + a3 + · · · are not all added "simultaneously;" 
rather, the leftmost terms are added earlier than the terms occurring farther to the right. 
See the related results in 23.26. 

10.43. Example. We shall now show that the series 2:::::= 1 � I sin( nx) I diverges, for any 
real number x that is not a multiple of Jr. (However, in 22.22 we shall show that the series 
2:::::= 1 � sin(nx) converges for any real number x.) 

Proof Since I sin( n( x + 1r)) I = I sin( nx) I ,  we may translate x by any multiple of 1r; thus 
we may assume that -Jr /2 < x < 1r /2 and x -/=- 0. Since I sin( -nx) I = I sin( nx) I ,  we may 
assume that 0 < x < 1r /2. Choose a positive integer M large enough so that (M - 1)x > 21r. 

Consider any M consecutive integers k +  1, k +2, . . .  , k +M. Since (k+M)x- (k+ 1)x > 
21r, the angles (k + 1 )x , . . .  , (k + M)x go a bit more than once around a circle. Those 
angles cannot skip across the interval ( �1r, �1r) (modulo 21r) without taking a value in that 
interval, since that interval has width 1r /2, which is larger than x. Thus at least one of 
those angles lies in the interval ( �1r, �1r) (modulo 21r) , and so at least one of the numbers 
sin( ( k + 1 )x) , . . .  , sin( ( k + M)x) is larger than � V2. Hence for any nonnegative integer j 
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we have 

{ sin(Mj + 1)  sin(Mj + 2) sin(Mj + M) } 
max 

M j + 1 ' M j + 2 ' 
. . .  ' M j + M 

> 

Therefore f I sin(n) l 
n n=l 

oo M 
"' "'  I sin(Mj + p) l 
L..., L..., M j + p j=O p= l 

which diverges to oo since the harmonic series does. 

> 
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l J2 2 
Mj + 1  

10.44. Decimals from real numbers. Let D = {0, 1 ,  2 ,  . . .  , 9 } .  For each sequence cr 
(s 1 , 82 , 83 , 84 , . . .  ) in DN , let 

00 
"' 81 
L..., 101 j=l 

Since the 8J 's are nonnegative, the partial sums are an increasing sequence, and it is easy 
to see that they are bounded above; hence the series converges to a finite real number h (cr) .  
Then the expression "0.81 8283 · · · "  i s  called the the decimal representation of the number 
h(cr) .  Show that 

a. 0 ::;  h (cr) ::; 1 .  

b.  By a decimal rational we shall mean a number o f  the form m/10k , where m and k are 
integers. Show that any decimal rational m/lOk in (0, 1 )  is equal to h (cr) for exactly 
two different sequences cr: one that is all Os after a certain point, and another that is 
all 9s after a certain point. (For instance, 3.279999 . . .  = 3.280000 . . . . ) 

c. Any other real number r E (0, 1 )  ( i .e . ,  not a decimal rational) is equal to h(cr) for 
exactly one sequence cr .  

d. Note that there are only countably many decimal rationals in [0, 1] . Use this to show 
that card( [O, 1 ] )  = card(DN) .  

e. We evolved the decimal representation system because we each have ten fingers. But 
mathematically, there is nothing special about the number ten. An analogous system, 
which might develop on a planet where the people have b fingers for some integer b > 1 ,  
would use representations of the form 

with SJ E {0, 1, 2, . . .  , b - 1 } .  Thus card( [O, 1 ] )  = card( {0, 1, 2, . . .  , b - 1 }N) .  
In particular, we could take b = 2 .  Thus card( [O ,  1 ] )  = card(2N) .  

f. Cardinality of the reals. Conclude that card(IR) = card(2N) .  
The number system C ,  defined in 10.24, has a natural bijection to lR x IR; conclude 

that also card(C) = card(2N ) .  
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10.45. Real numbers from decimals ( optional ) .  In the preceding section, we considered lR 
as already known � i.e. ,  as defined in 10.8 and constructed in 10 .15.d � and we studied 
decimal expansions as infinite series in R Historically, decimal expansions predate the 
abstract ideas of a Dedekind complete, chain ordered field. We could actually construct 
a Dedekind complete, chain ordered field by using formal decimal expansions; these ideas 
were published by Stolz in 1886. 

We assume some familiarity with Q, but not with R Define lR to be the set of all infinite 
sequences of the form 

where we identify a sequence ending in infinitely many Os with the corresponding sequence 
ending in infinitely many 9s (as in 10.44. b ) .  Such a sequence will be represented, as usual, 
by "z + .y1y2y3y4 . . . . " Its rational truncations are the finite sequences of symbols 

z , etc. 

where "z + .y1 yz · · · Yk" represents the rational number z + lf5 + -fcill + · · · + � · 
Define the ordering of lR in the usual lexicographical fashion. Then it is easy to show that 

lR is chain ordered and Dedekind complete. Define the arithmetic operations ( +) and ( · ) 
first for rational truncations, in the obvious fashion. Then the sum of two numbers a, b E lR 
is defined to be the sup of the sums of the rational truncations of a and b. The product 
of two positive numbers a, b E lR is the sup of the products of their rational truncations. 
The product of two not-necessarily-positive numbers is defined in terms of the products of 
positive numbers; we omit the details. Zealous readers can verify that JR, defined in this 
fashion, is a complete ordered field. This approach is developed in greater detail in various 
other sources � for instance, Abian [1981 ] ,  Dienes [ 1957] , and Ritt [1946] .  

10.46. Constructible numbers. The constructivists' notion o f  "number" i s  a bit different 
from the mainstream mathematicians' notion. For a constructivist, a number is acceptable 
if it can be approximated arbitrarily closely and some estimates can be given for how fast the 
approximations are converging. Thus, numbers such as J2 and 1r are perfectly acceptable, 
for we have formulas (albeit complicated) for approximating these numbers to as many 
decimal places as we may wish. (See also 6.7.) However, the constructivists' notion of 
"number" has a few surprising consequences. 

For instance, recall from the footnote in 6.4 that Goldbach's Conjecture asserts that 
for each integer k > 1 ,  

( * ) the number 2k can be  written as the sum of  two prime numbers. 

No proof or counterexample for this proposition has yet been found. Although we do not 
know whether ( *) is true for every k, we can easily test it for any particular k, and thus we 
can evaluate the number defined by 

{ � if ( * ) is true for this k 
if ( * ) is false for this k. 
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Let us also define x1 = 0. We can evaluate Xk for as many k's as we wish. (So far, all 
known xk's are 0. Perhaps someday someone will find a k for which Xk = 1 ,  or will prove 
that all the xk 's are 0 . )  Now define 

r X3 k Xk + . . .  + ( - 1 )  
10k + . . . . 

1000 

(To show that this series converges to a real number, either use results about Cauchy 
sequences in Chapter 19, or prove that the liminf and limsup of the partial sums differ by 
less than w-n for any n . )  We shall refer to this number r as the "Goldbach number." We 
don't know the "exact value" of r yet . Nevertheless, constructivists would say that f is 
indeed a "real number," since we have an algorithm that can "find" r as accurately as we 
wish - i.e . ,  given any f > 0, we can compute an approximation f' satisfying i f - f' l < f. 
The sign of the Goldbach number is related to the Goldbach Conjecture: 

• r = 0, if the conjecture is true; 

• r > 0, if the conjecture is false and the first counterexample (i.e. , the first contradiction 
to ( *) ) occurs when k is even; 

• r < 0, if the conjecture is false and the first counterexample occurs when k is odd. 

We don't yet know which of those three cases holds; it is possible that we will never know. 
This mysterious quality may make some classical mathematicians reluctant to accept r as a  
"real number." It leads constructivists to conclude that, even if we know two real numbers 
(0 and r) to arbitrarily high accuracy, we still may be unable to tell which of the numbers is 
larger. This makes plausible our assertion in 6 .6 that the Trichotomy Law for real numbers 
is not constructively provable. 

We shall encounter the Goldbach number r again in 15.48. 
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Linearity 

LINEAR SPACES AND LINEAR SUBSPACES 

11 .1 .  Definitions. Let lF be any field. An JF-linear space i s  a set V equipped with 
operations 0, - ,  +, which make it an additive group, and also equipped with another 
mapping called scalar multiplication, from lF x V into V, satisfying certain rules noted 
below. The elements of V are called vectors. The elements of lF are then called the scalars; 
we refer to lF as the scalar field. 

For any vector v and scalar c, the result of the scalar multiplication of c and v is called 
their product . It is usually written as c · v or as cv; generally the raised dot is included 
only for clarification or emphasis. The rules satisfied by scalar multiplication are: 

(i) 1 . v = v ,  
(ii) a ·  (;3 · v) = (a;J) · v ,  

(iii) a · ( u + v) = (a · u) + (a · v) ,  
(iv) (a + J3) · v = (a · v) + (J3 · v) ,  

for all a ,  J) E lF and u ,  v E V .  The second rule i s  a sort of associativity of multiplication, 
although it should be noted that two different kinds of multiplication are involved: scalar 
times scalar and scalar times vector. The last two rules assert the distributivity of multipli
cation over addition; they can also be described as asserting the additivity of the mapping 
v r---+ a · v (for fixed scalar a) and the mapping a r---+ a · v (for fixed vector v) .  

The same symbol "0" will be  used for the additive identities of  the scalar field lF and 
the various linear spaces; it should be clear from the context just which additive identity is 
meant by any "0." 

An lF-linear space may be called a linear space, or a vector space, if the choice of 
the scalar field lF is clear or does not need to be mentioned explicitly. Whenever we work 
with several linear spaces at once, it will be understood that all the linear spaces are over 
the same scalar field lF (unless some other arrangement is specified) - e.g. , the discussion 
may apply to several vector spaces over IR or to several vector spaces over C ,  but we do not 
mix the two types unless that is mentioned explicitly. Whenever possible, we prefer not to 
specify what scalar field is being used, so that we can apply our results to many different 

272 
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scalar fields. See also the related discussion in 10.34 .  

11 .2. Some basic properties. 

a. 0 · v = 0 for any vector v; that is, the field's additive identity times any vector v yields 
the linear space's additive identity, and 

b. ( - 1 )  · v = -v for any vector v; that is, the field's - 1  times any vector v yields the 
additive inverse of v . 

11.3. More definitions. A linear algebra over a field IF is  a set X equipped with 0, +,  
and two multiplication operations :29 and * , such that 

(i) X with 0, + ,  * is a ring. (The operation * may be called the ring multipli
cation; in some contexts it is referred to as the vector multiplication. 

(ii) X with 0, + , ® is a linear space over some field IF (and ® is the multiplication 
of scalars times vectors, often called the scalar multiplication) .  

(iii) The two multiplication operations satisfy this compatibility rule: c®  (x * Y) = 

( c ® x) * y = x :29 ( c * y) for all scalars c and vectors x, y. 

Such an object X is simply called an "algebra" in some of the older literature; we might refer 
to it as an algebra in the classical sense. For clarification we might call X an algebra 
over IF. (Perhaps a better term would be linear ring, or IF-linear ring.) If (X, 0, + ,  * ) is a 
ring with unit 1 ,  then the resulting linear algebra is called an algebra with unit, or a unital 
algebra. 

The linear algebra is said to be commutative if its ring multiplication is commutative 
- i.e. ,  if x * y = y * x for all x, y E X. 

Of course, we have used the symbols ® and * in this introductory discussion only for 
emphasis. Usually, the multiplication operations are both written as a raised dot ( · ) or 
indicated by juxtaposition -- i.e. , the product of x and y (with either type of multiplication) 
is usually denoted x · y or xy. 

Most of the rings used by analysts are linear algebras over the field lR or C.  Boolean 
algebras , studied in Chapter 13 and thereafter, can be viewed as algebras over the finite 
field z2 = {0, 1 } .  

11 .4. Examples. 

a. Any field IF is a commutative unital algebra over itself. 

b. More generally, if IF is a field and n is a positive integer, then IFn 
= { n-tuples of 

elements of IF} is a commutative unital algebra over IF. Elements of IFn are customarily 
represented in the form v = (v1 , v2 , . . .  , vn ) using parentheses and commas, or as n-by-
1 column matrices, or as the transposes of 1-by-n row matrices: [v1 v2 · · · vn] T ;  see 
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8.26. The vector operations on lFn are defined coordinatewise: 

etc . ,  for any vectors x, y E lFn and scalar c E JF. 
c. Still more generally, any product P = flxEA X>. of  lF-linear spaces can be made into 

an lF-linear space, with operations defined coordinatewise: 

(f + g) (>.) (!(>.) )  + (g(>.) ) ,  (c . !) (>.) c . (!(>.) )  
for all f, g E P, >. E A, and scalars c .  I f  the X>. 's are lF-(unital) algebras, then P is 
also an lF-(unital) algebra, with vector multiplication 

(!g ) (>.) (f(>.) ) (g (>.) ) .  
I t  i s  commutative if the X>. 's are all commutative. 

In particular, when all the X>. 's are equal to one space X, we see that XA = 
{functions from A into X }  is a linear space or a linear algebra. 

The product vector space takes a more intuitively appealing form if we write A = 
{a, {3, "( , . . .  } . (Here we follow the convention of 1 .32: it is not assumed that A is 
ordered or countable. )  Then we have 

and for linear algebras 

Xf3 + Yf3 
= x, + y, 

l Xa + Ya 

Xf3 
x, 

Ya 
Yf3 
y, 

d. Let lF be a field, let n be a positive integer, and let X be the set of all n-by-n matrices 
over JF. Then lF is a unital algebra, with vector multiplication given by the multiplica
tion of matrices (as defined in 8.27) . This algebra is not commutative if n > 1 .  

Preview. More generally, i f  X i s  a linear space, then the linear operators from 
X into X form a noncommutative unital algebra with ring multiplication given by 
composition of operators. If X is a topological vector space, we may also consider the 
continuous linear operators; it is another unital algebra. 
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e. Let G be a locally compact Abelian group equipped with its Haar measure, and let 
L1 (G) be defined accordingly - see 26.45. It can be shown that L1 (G) is a commutative 
algebra, generally not unital, with ring multiplication defined by the convolution 
operation (! * g)(t ) fc f(t - s)g(s) ds. 

f. Another important algebraic system can be described as follows: Let X = IR3 be 
equipped with the usual vector space operations, as in 1 1 .4.b. The cross product of 
two vectors is defined by 

This multiplication is anticommutative: it satisfies x x y = -y x x, and consequently 
x x x = 0. In particular, we have 

where 

i X j = k, 
j X i = -k, 

j X k = i, 
k X j = -i, 

k X i =  j ,  
i X k = -j , 

The cross product is not associative; for instance, i x (i x j) = -j -1- 0 = (i x i) x j .  
Consequently, IR3 i s  not a linear algebra when the cross product is  used for vector 
multiplication. 

Several more examples are given in 1 1 .45 and 1 1 .46, and in Chapter 22 and thereafter. 

1 1 .5.  Definitions. Let X be an IF-linear space, and let S <;;; X. A linear combination of 
elements of S is an expression of the form 

where n is a nonnegative integer, the sj 's are elements of S, and the aj 's are elements of 
IF. We permit n = 0, with the convention that the sum of no elements of X is 0. 

A linear subspace of X is a subset S <;;; X with the property that any linear combi
nation of elements of S is also an element of S. Equivalently, it is a nonempty set that is 
closed under scalar multiplication by all scalars and under the binary operation of addition. 
(Thus, it is a subalgebra in the variety of IF-linear spaces - see 8.55 and 9 .21 . )  

11.6. Basic properties. Let X be an IF-linear space. Prove the following results, either 
directly or by using results of 9 .21 .  

a. The whole vector space X is  a linear subspace of itself. 

b. Any intersection of linear subspaces is a linear subspace. 

c. Let T <;;; X. Then there exists a smallest linear subspace containing T; it is the 
intersection of all the linear subspaces containing T. It is also equal to the set of 
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all linear combinations of elements of T. It is called the span (or linear span) of T; 
it may be abbreviated span(T) . A linear subspace S is said to be spanned by T if 
S = span(T) . (This is a special type of Moore closure, but the term "closure" generally 
is not used in this context . )  

d. If  S i s  a linear subspace of X ,  then S becomes a linear space in its own right, when 
the vector space operations of X (addition, scalar multiplication, additive inverse, 0) 
are restricted to S. 

e. {0} is a linear space over any scalar field. It is also a linear subspace of any linear 
space. It is contained in the span of any set. In fact, {0} is the span of the empty set. 
The empty set is not a linear space. 

f. The definition of linear subspace depends on the choice of the scalar field lF. For 
instance, the set S = { u E <C : Re( u) = 0} is a linear subspace of <C when we take IR 
for the scalar field, but not when we take <C for the scalar field. 

g. If S and T are linear subspaces of X and c E lF, then the sets 

S + T = { s + t : s E S, t E T} , 

are linear subspaces also. 

cS = {cs s E S} 

h. If S>, (.X E A) are linear subspaces of X, then the sum L>.EA S>, (defined in 8. 1 1 ) is  
also a linear subspace; in fact, it is  the span of U>.EA 5>, . 

i. Let (Y>. : .X E A) be an indexed set of lF-linear spaces. The external direct sum of 
the Y>. 's is the set 

U Y>. = {1 E IT Y>. : f(.X) is nonzero for at most finitely many A's} . 
>.EA. >.EA. 

This is a linear subspace of the product fLEA Y>, . Of course, if A is a finite set, then 
the external direct sum is equal to the product. 

The external direct sum described above is a special case of the external direct sum 
defined in 9.30. Caution: Some mathematicians call this the "direct sum;" see the 
remarks in 9.30. 

An important special case is that in which all the Y>. 's are equal to one vector space 
Y. Then the external direct sum U>.EA Y is equal to the set of all functions f : A ----> Y 
that vanish on all but finitely many A's. 

Specializing further: Let lF be the scalar field; then UnEN lF is the linear space 
consisting of all sequences of scalars that have only finitely many nonzero terms. 

j. If IF' is any field, then JFIF = {functions from lF into itself} is a linear space. (In fact, it 
is a commutative algebra ; see 1 1 .3 . )  For each positive integer n, let Pn = {polynomials 
of degree at most n, in one variable, with coefficients in lF} ; this is a linear subspace of 
JFIF. The set Qn = {polynomials of degree exactly n} is not a linear space, since it is 
not closed under addition. 

k. Preview. Let lF be the scalar field (either IR or <C) .  Then JF(O, l ) = {functions from (0, 1 )  
into lF }  is a linear space. Following are some linear subspaces of JF(O, l ) , of types that 
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will be studied later in this book: 

B 

BC 

BUG 

Lip 

ego 

{bounded functions} ,  

{bounded continuous functions} ,  

{bounded, uniformly continuous functions} ,  

{Lipschitzian functions} ,  

{smooth functions vanishing at endpoints} .  
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All of the relevant terms are defined later in this book. Exercise for more advanced 
readers · Show that JF(O . l )  :) B :) BC :) BUG :) Lip � C000 • • ";C ";C ";C ";C � 

LINEAR MAPS 

11 .  7 .  Definitions. An JF-linear map i s  a mapping f : X --+ Y from one lF-linear space 
into another that satisfies 

f(x + x') f(x) + f(x' ) and f(cx) = cf(x) 
for all x, x' E X and c E lF. We may omit the prefix "lF" and simply refer to a linear 
map, if no confusion will result. However, we emphasize that the choice of lF is part of the 
definition. For instance, the map a f--7 a, from C into itself, is IR-linear but not C.-linear. 

The lF-linear maps are just the homomorphisms (as defined in 8 .48) for the variety of all 
lF-linear spaces. The category oflF-linear spaces has lF-linear spaces for objects and lF-linear 
maps for morphisms. 

Mathematicians often omit the parentheses in writing linear maps - i.e. , if f is linear 
then f(x) may be written as fx. As usual, operations written multiplicatively are per
formed before operations written additively, if no parentheses dictate otherwise. Thus, an 
expression such as f x + u is understood to mean (! ( x)) + u, not f ( x + u) . 

A bilinear map is a mapping f : X x Y --+ Z from the product of two linear spaces 
into a linear space, such that 

f(x, · ) : Y --+ Z is linear for each fixed x E X, and 
!( · ,  y) : X --+  Z is linear for each fixed y E Y.  

11 .8. It  is  easy to see that if X and Y are lF-linear spaces, then 

Lin(X, Y) {lF-linear maps from X into Y}  

i s  a linear subspace of Y x .  
A linear map from a vector space into the scalar field i s  also called a linear functional. 

The linear dual of an lF-linear space is the linear space 

Lin( X, JF) {linear maps from X into lF} .  
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When the context is clear, Lin( X, F) may be called the dual of X and denoted more briefly 
by Lin(X) or by X* . The reader is cautioned that "dual" and "X*" have other meanings 
in other contexts; see 9.55.  

11.9.  Examples and further properties. Prove the following, either directly or as special
izations of results about homomorphisms between algebraic systems. 

a. Any linear map f is a homomorphism of additive groups. Hence it satisfies 

f(O) = 0, f is injective � {0} = ri (O) . 

b. If f : X -+ Y is a linear map, then Graph(!) is a linear subspace of X x Y. 

c. (This example requires some familiarity with calculus. )  The set 

C[O, 1] {continuous functions from [0, 1 ]  into lR}  

i s  a linear subspace of JR[D, IJ .  Let any g E C[O, 1] be  fixed; then a linear functional 
L9 : C[O ,  1] -+ lR can be defined by the Riemann integral 

1I 
f(t)g(t) dt (! E C[O ,  1 ] ) .  

This example will be  generalized substantially in  later chapters. 

d. If f : X  -+ Y is a linear map and S is a linear subspace of X ,  then f(S) is a linear 
subspace of Y .  

e. I f  f : X -+ Y is  a linear map and T i s  a linear subspace of Y,  then f- I (T) i s  a linear 
subspace of X. 

f. A linear isomorphism i s  a linear map that is  bijective. Show that if f : X -+ Y 
is a linear isomorphism, then f- I : Y -+ X is also linear, and hence is also a linear 
isomorphism. 

g. The identity map i :  X -+  X is linear; its kernel is {0} .  

h. If  X and Y are linear spaces, then the constant mapping from X to Y that sends all 
elements to 0 is a linear map; its kernel is X.  

i. Let S be a linear subspace of  X .  Define a relation on X by XI ;::::;; x2 i f  XI - x2 E S. 
This is an equivalence relation. Let XIS be the quotient space - i.e . ,  the set of all 
equivalence classes - and let 1r : X -+ X IS be the quotient map. Then X IS is a linear 
space, with operations defined by 

c1r(x) = 1r(cx) 

for XI ,  x2 , x E X and c E F, and the quotient map is a linear map. 

j. (Isomorphism Theorem. ) XIKer(f) is isomorphic to Range(!) , by the mapping 
F(1r(x)) = f(x) . 

k. Let A be an m-by-n matrix over a field F. Represent elements of the vector spaces Fm 
and Fn as column vectors. Then the map v f---+ Av, defined as in 8.28, is a linear map 
from Fn into Fm. 
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11 . 10. Proposition. Let X and Y be linear spaces. Let S <;;; X,  and let f :  S ----. Y be some 
function. Then f can be extended to a linear map F : span( S) ---+ Y if and only if f has 
this property: 

whenever s 1 , s 2 , . . .  , sm are elements of S and a 1 , a2 , . . .  , am are scalars such that 
a1 s 1 +a2s2 + ·  · · + amsm = 0, then f satisfies ad(sl ) + a2J(s2 ) + · · · + amf(sm ) = 
0. 

Moreover, if f satisfies that condition, then the extension F is unique, for it must satisfy 

Proof. If (a 1 s 1 + · · · + amsm) - (b1 t 1  + · · · + bntn ) = 0, with the s ; 's and tj 's in S, then 
[ad(sl ) + · · · + amf(sm )] - [bd(t l ) + · · · + bnf( tn )] = 0 by our hypothesis on f. Hence 
the formula ( *) does indeed define a function F. Obviously that function is linear. 

Further observation ( optional ) .  Let <I> be the collection of all graphs of functions f from 
subsets of X into Y, such that f can be extended to a linear map on span(Dom(f) ) .  Then 
<I> has finite character (see 3.46) . 
11 .11 .  Real linear versus complex linear. In applications, the most important fields are lR 
and IC. A linear space over the scalar field lR is a real linear space; a linear space over 
the scalar field C is a complex linear space. 

In some parts of functional analysis - e.g. ,  vector lattices or nonlinear functional anal
ysis - there are relatively few benefits from working with complex scalars. Consequently 
some mathematicians simplify their notation by only considering real linear spaces. For 
many purposes, this limitation is without loss of generality, since every complex linear 
space can also be viewed as a real linear space. Indeed, since JR. <;;; C, we can replace the 
scalar multiplication ( - ) : C x V ----. V with its restriction ( - ) : lR x V ----. V. 

Complex scalars are important for some areas of functional analysis and its applications, 
particularly spectral theory and mathematical physics. Consequently some mathematical 
books and papers only consider complex linear spaces. This limitation is without much loss 
of generality, for every real linear space X can be viewed as a subset of a complex linear 
space, as we now show: 

Let X be any real linear space. Then on the vector space X x X we can define the 
vector operations 

(x1 , yJ ) + (x2 , Y2 ) 
(a + ib) · (x1 , yl )  

(x1 + x2 , Y1 + Y2 ) ,  and 

(ax1 - by1 , ay1 + bxl ) 
for (x1 , yl ) and (x2 , y2 ) in X x X and a, b E R These definitions make X x X a complex 
linear space, called the complexification of X.  We may denote it by X + iX and its 
element (x, y) by x + iy. Note that X is isomorphic to the subset { (x, 0) : x E X} .  

This construction seems rather cumbersome, but i n  most applications the complexifica
tion arises naturally. Indeed, C (introduced in 10.24) is just the complexification of JR, and 
for any set A the linear space cA is the cornplexification of JRA . Here is another example: 
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Let A be a topological space; then a function f : A ---> C is continuous if and only if it is of 
the form f = u + iv, where u, v are real-valued continuous functions. 

In 1 1 .30.e we shall see that any complex linear space can be viewed as the complexifi
cation of a real linear space - though not necessarily in a constructive fashion. 

11 . 12. Bohnenblust-Sobczyk Correspondence. Any complex vector space V may also be 
viewed as a real vector space (by "forgetting" how to multiply by scalars) ,  but the two 
viewpoints give us two different collections of linear functionals. How are the two collections 
related? 

Recall that a mapping f : V ---> Z, from one lF-linear space into another, is an lF-linear 
map if it is additive and satisfies f (cv) = cf(v) for all v E V and c E IF'. A real linear 
functional on V is an JR-linear map from V into JR; a complex linear functional on V 
is a C-linear map from V into C.  

Now suppose V is a complex linear space. Show that 

a. If f is a complex linear functional on V, then 91 ( v) = Re f ( v) and 92 ( v) = Im f ( v) are 
real linear functionals on V with 92 (v) = -91 (iv ) ,  and f = 91 + i92 · 

b. Conversely, if 91 is a real linear functional on V, then f ( v) = 91 ( v) - i91 ( iv) is a 
complex linear functional on V.  

c. These transformations give a bijection f +--+ 91 between the real linear and complex 
linear functionals on V. 

d. ( Optional.) Generalize the preceding argument . If V is a complex linear space and X 
is a real linear space with complexification X + iX, then there is a bijection between 
complex linear maps f : V ---> X + iX and real linear maps g1 : V ---> X.  Also, if T and 
X are real linear spaces, then any real linear map from T into X extends uniquely to 
a complex linear map from T + iT into X + iX. 

LINEAR DEPENDENCE 

11 . 13. Definitions. A set S <;;; X is linearly dependent if we can write 

where n is a positive integer, the c/s are nonzero scalars, and the si's are distinct elements 
of S .  If 0 cannot be expressed in this fashion, S is linearly independent. 

1 1 . 14. Observations. In any linear space: 

a. 0 is a linearly independent subset . 

b. Any subset containing 0 is linearly dependent. 

c. If v is a nonzero vector then the singleton { v} is a linearly independent set. 

d. If b and c are distinct scalars and v is any vector, then any set containing both bv and 
cv is linearly dependent. 
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e. A set S is linearly dependent if and only if some point s E S is in span( S\ { s} ) . 
f. ( Optional.) A set S is linearly independent if and only if each finite subset of S is 

linearly independent . Thus, the collection of all linearly independent sets has finite 
character (see 3.46 ) .  

11 .15. Example. For each r E JR, let v(r) = ( 1 , r, r2 , r3 , . . .  ) . Then {v(r) : r E JR} is  a 
linearly independent subset of the real linear space JRN = {sequences of reals} .  

Hint : Suppose a1v(rl ) + a2v (r2 ) + · · ·  + anv(rn ) = 0 for some scalars a 1 , a2 , . . .  , an and 
some distinct real numbers r1 , r2 , . . .  , rn . Show that a1p(rl ) + a2p(r2 ) + · · · + anp(rn ) = 0 
for every polynomial p. By considering the Lagrange polynomials (2.2 .e) ,  show a 1 = a2 = 
0 0 0 = an = 0. 

1 1 . 16. Common Kernel Lemma. Let k be a positive integer, let X be a linear space, and 
let Ao , A1 , A2 , . . .  , Ak be elements of X*,  the linear dual of X (defined in 1 1 .8) . Then: 

(Pk )  n7=1  Ker(Ai) C::: Ker(Ao) if and only if Ao E span{ ,\ 1 , A2 , . . .  , Ak } .  
(Qk-) A 1 , A2 , . . .  , A k  are linearly independent elements of X* if and only i f  there exist vectors 

x1 , x2 , . . .  , xk E X  such that Aj (xi ) = 8ij (where 8 is the Kronecker delta) . 

Hints : The "if" parts are obvious. We shall prove the "only if" parts by induction on k, 
showing Qm =? Pm =? Qm+1 ·  The proof of Q1 is trivial. 

To prove Qm =? P m , first note that we can omit any element of the set { A1 , A2 , . . .  , Am } 
that is a linear combination of the other elements of that set; hence we may assume that 
that set is linearly independent . Now show that if x1 , x2 , . . .  , Xm are as in Qm and x E X, 
then 'I:.7�1 Aj (x)xj - X E n::1 Ker(Ai ) ·  

To prove Pm =? Qm+1 , let Ao ,  A1 , A2 , . . .  , Am be linearly independent elements of 
Lin(X) .  By symmetry (explain) , it suffices to establish the existence of x0 satisfying 
Ai (xo) = 8i0 · If no such Xo exists, show n::1 Ker(Ai) c::: Ker(Ao) . 

11 .17. Definitions. Let X be a linear space, and let B C::: X. Then the following conditions 
are equivalent . If one (hence all) of them is satisfied, we say B is a basis for X - or, to be 
more specific, a vector basis or linear basis. (Some mathematicians also call it a Hamel 
basis, but other mathematicians reserve that term for a narrower meaning indicated in 
1 1 . 30.c . )  

(A )  For each nonzero vector x E X, there i s  one and only one way (except for 
changing the order of the summation) to write x = c1 s 1 + c2s2 + · · · + CnSn , 
with n equal to a positive integer, with the ci 's equal to nonzero scalars, and 
with the si 's equal to distinct elements of B.  

(B) B is  linearly independent and span(B) = X. 

(C) B is a maximal linearly independent subset of X, i .e. ,  a linearly independent 
set that is not included in any other linearly independent set. 

(D) B is a minimal spanning set for X; that is, span(B) = X and B does not 
contain some other set A satisfying span(A) = X. 
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Later we shall use the Axiom of Choice to prove that every linear space V has a vector 
basis and that any two vector bases for V have the same cardinality. That cardinality is 
called the dimension of V; it is written dim(V) .  The linear space is said to be finite
dimensional or infinite-dimensional according as dim(V) is finite or infinite. When V 
is finite-dimensional, then dim(V) is a nonnegative integer. 

11 . 18. Examples and observations. 
a. { ( 1 , 0 ) ,  (0, 1 ) }  and { ( 1 , 0 ) ,  (- 1 ,  1 ) }  are two different vector bases for F2 . 
b. Let X be the degenerate linear space {0} ,  which contains just the one vector 0. Then 

the empty set is a vector basis for X .  

c .  Let X be  a linear space, and let S s;; X. Then S i s  linearly independent i f  and only if 
S is a vector basis for span(S) . 

d. Let X and Y be linear spaces, let B be a vector basis for X ,  and let f E Y 8 .  Then 
f extends uniquely to a linear map from X into Y .  Thus, there is an isomorphism 
between the linear spaces Y8 and Lin( X; Y) = { linear maps from X into Y} .  In 
particular, F8 is isomorphic to the linear dual of X (defined in 1 1 .8) . 

e. If X is an F-linear space with vector basis B, then X is isomorphic to ubEB F - that 
is, the external direct sum of B copies of the scalar field F (defined in 1 1 .6 . i ) .  An 
isomorphism i from the external direct sum onto X is given by i (f) = LbEB  f(b) · b. 
(This sum makes sense since f(b) is a scalar, b is a vector, and f(b) vanishes for all 
but finitely many b.) For each b E  B, we have i- 1 (b) equal to 1 {b} , the characteristic 
function (defined on B) of the singleton { b} ;  such functions form a vector basis for the 
external direct sum. 

FURTHER RESULTS IN FINITE DIMENSIONS 

11 . 19. Let n be a positive integer. For each j E { 1 ,  2, . . .  , n } ,  define the vector 

T)j (0, . . .  ) 0, 1, 0, . . .  ) 0) [0 · · · 0 1 0 · · · O]T E Fn , 

where T)j has a 1 in the jth position and Os elsewhere. It is easy to see that any vector v = 
( v1 , v2 , . . .  , Vn) E Fn can be written in one and only one way as v = c1 T)l + c2TJ2 + · · · + Cn TJn 
for scalars c1 , c2 , . . .  , en ; indeed, we must take Cj = Vj for each j .  Hence {TJI , T]2 , . . .  , TJn }  is 
a vector basis for Fn ; it is called the standard basis for Fn . The vector T)j is called the 
jth standard basis vector for Fn . 

1 1 .20. Matrices as linear maps. Every linear map from Fn into Fm is uniquely representable 
as an m-by-n matrix, in the sense of 1 1 .9.k. 

Indeed, let { T)l , TJ2 , . . .  , TJn }  be the standard vector basis for Fn , as in 1 1 . 19. Let A : Fn ----+ 
Fm be a linear map. Then the values of A are determined by its values on the T)j 's; indeed, if 
v = CI T)l + c2T)2 + · · · + cnrJn for some scalars Cj E F, then Av = c1ATJ1 + c2ATJ2 + · · · + cnATJn · 
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It follows that A is represented by the m-by-n matrix whose columns are the vectors Ar)j 
(j = 1, 2 ,  . . .  , n) .  

1 1.21. If v , w E Fn , then v T w is  the product of a 1-by-n matrix and a n-by-1 matrix. 
Thus it is a 1-by-1 matrix, which we may view as a scalar. We shall call this the scalar 
product of the vectors v and w. A couple of its basic properties are: 

a. The scalar product is symmetric - that is, v T w = w T v. 
b. In a product of matrices C = AB, the component C;k is the scalar product of the ith 

row of A with the kth column of B.  

1 1 .22. For each fixed v E Fn , define a mapping fv : Fn 
---+ F by w r---+ v T w .  Then: 

a. fv is a linear functional on Fn ; that is, fv is a member of (Fn ) * , the linear dual of Fn . 
b. The mapping f : v r---+ f v is a linear map from Fn into (Fn ) * . 
c. The mapping f :  v r---+ fv is a bijection from Fn onto (Fn ) * . (Thus Fn is isomorphic to 

its own linear dual . )  
Hints : Any member of (Fn ) * is  a linear map from Fn into F1 , hence (by 1 1 .20) 

representable as fv for some n-by-1 matrix v; thus f is surjective. To show it is 
injective, note that if v = ( v1 , v2 , . . .  , Vn ) -1=- 0, then Vj -1=- 0 for at least one j; hence 
fv (r/j)  -1=- 0, where 'r/j is the jth standard basis vector; hence fv -1=- 0. 

d. The dual of a linear map. Suppose X and Y are linear spaces over the scalar field If, 
and A : X ---+ Y is some linear map. Then we may define a dual map A* : Y* ---+ X* 
by A*(!) = f o A, as in 9.55. Show that if X and Y are finite dimensional, and A 
is represented by a matrix, then A* is represented by the transpose of that matrix, 
introduced in 8.26. 

More precisely: Let v r---+ fv be the bijection from Fn onto (Fn ) * described above, 
and let w r---+ gw be the analogous bijection from Fm onto (Fm) * . Suppose A : Fn ---+ Fm 
is some linear map, represented by an m-by-n matrix which we shall also denote by A. 
Define a corresponding map A* : (Fm)* ---+ (Fn) * by this rule: [A*(gw )] (x) = gw (A(x) ) 
for any x E Fn 

- that is, A* (gw ) is the composition 

Show that A* (gw) = fATw , where AT is the transpose of the matrix A - that is, 
A*(gw ) = fv , where v = AT w .  

11 .23. Lemma. Let A be an m-by-n matrix over F. Then the n columns of A are linearly 
independent elements of Fm if and only if there exists an n-by-m matrix B such that BA 
= In . (·We then say B i s  a left inverse for A.) 
Proof For the "if" part, suppose BA = In , but the columns A1 , A2 , . . .  , An are linearly 
dependent vectors in Fm - i.e. , suppose c1A1 + · · · + cnAn is equal to Om , the zero vector 
in Fm , for some scalars c1 , . . .  , Cn that are not all 0. Let c = [c1 c2 · · · cn] T ;  infer that Ac 
is equal to Om . But then c = Inc =  BAc = BOm = On , a contradiction. 
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For the "only if" part, assume the columns A1 , A2 , . . .  , An are linearly independent 
vectors in Fm . View them as elements of the linear dual of Fm , by their action in the scalar 
product (see 1 1 .22) . By the Common Kernel Lemma, there are vectors b1 , b2 , . . .  , bn E Fm 
such that bJ Aj = t5ij · Take the 1-by-m matrices bJ to be the rows of a matrix B;  then 
BA = In . 

1 1.24. Remarks. By taking transposes in the preceding result , we obtain this dual result: 

The rows of a matrix A are linearly independent if and only if A has a right 
inverse, i .e . ,  a matrix C such that AC = I . 

It  can also be proved, though not so easily, that the rows of a square matrix are linearly 
independent if and only if its columns are linearly independent . This slightly deeper result 
can be proved using determinants or other more advanced methods, but we shall not need 
it. It implies that a linear operator f : V ---+ V, from a finite-dimensional linear space into 
itself, has a left inverse if and only if it has a right inverse. That conclusion is not valid in 
infinite-dimensional linear spaces, as we see from the example in 8.5.a. 

11.25. Proposition. In any linear space V over the field F, if w1 , w2 , . . .  , Wn+ l are n + 1 
vectors in the span of some n vectors y1 , Y2 , . . .  , Yn , then the vectors WI , Wz , . . .  , Wn+ 1 are 
linearly dependent. 

Proof We first prove this in the special case where V = Fn and the y; 's are the basis vectors 
'f}; ; that is, we first show that any n +  1 vectors in Fn are linearly dependent . Assume, to the 
contrary, that w1 , Wz , . . .  , Wn , Wn+ 1 are linearly independent . View w1 , Wz , . . .  , Wn as the 
columns of an n-by-n matrix W; then there exists an n-by-n matrix B such that BW = I. 

Let Bwn+l = c = [c1 Cz · · · Cn]T .  Show that Wn+l = c1w1 + · · · + CnWn , proving that 
w1 , wz , . . .  , Wn+l are linearly dependent . 

Now, for an arbitrary linear space V, assume that w1 , w2 , . . .  , Wn+ 1 lie in the span of 
{yl , Yz , · . .  , Yn } · Then 

n 
W; L aijYj (i = l , 2 ,  . . .  , n + l ) 

j=l 
for some scalars a;j . Let A; = [a; 1 a;2 · · · a;n] T .  Then the A; 's are n + 1 vectors in Fn , so 
they are linearly dependent. Hence c1A 1  + · · · + Cn+ lAn+l = 0 for some scalars c; that are 
not all 0 .  Now show that c1w1 + · · · + Cn+IWn+ l = 0.  

11 .26. Corollary. Let X be a linear space. Assume that X can be spanned by some finite 
subset of X. Let n be the smallest number of vectors that span X. Then X has at least 
one vector basis, any vector basis for X contains exactly n vectors, and X is isomorphic 
to Fn . (We then say that X is finite dimensional, and we call n the dimension of the 
vector space X . )  

1 1.27. Example. Let F be  a field. The set o f  all polynomials o f  degree :::; n,  i n  one variable 
x, with coefficients in F, is a linear space with dimension n + 1 ,  when the vector operations 
are defined in the obvious fashion. One vector basis is { 1 , x, x2 , . . .  , xn } .  
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CHOICE AND VECTOR BASES 

1 1 .28. Remarks. By using the Axiom of Choice, we shall now obtain further results about 
vector bases and cardinality in infinite-dimensional linear spaces. These results provide 
representations of linear spaces, which may be conceptually helpful to the beginner. How
ever, the results below are optional; they will not be needed later except for pathological 
examples. These results have little practical value in applied mathematics or in functional 
analysis, because ( 1 )  the Axiom of Choice and its consequences are nonconstructive, and 
(2) the vector basis of an infinite-dimensional topological linear space generally has little 
connection with the topology of that space. 

1 1 .29. Many formulations of the Axiom of Choice were introduced in Chapter 6. We now 
state three more equivalents of Choice: 

(AC16) Vector Basis Theorem (strong form) . Let X be a linear space 
over a field IF. Suppose that I is a linearly independent subset of X,  G is a 
generating set (that is, span(G) = X ) , and I �  G. Then I �  B � G for some 
vector basis B. 

(AC17) Vector Basis Theorem (intermediate form) . Let X be a linear 
space over a field IF, and let G be a subset of X that generates X (that is, 
span(G) = X ) . Then X has a vector basis B contained in G. 

(AC18) Vector Basis Theorem (weak form) .  Every linear space has a 
vector basis. 

Obviously (AC16) =? (AC17) =? (AC18) .  

Proof of (AC5) or (AC7) =? (AC16) .  Use 1 1 . 17(C) .  

Proof of (AC17) =? (AC2) .  This proof is due to Halpern [1966] . Let {So : a  E A} be a 
nonempty set of nonempty disjoint sets; we wish to prove that there is a set S0 consisting 
of exactly one element from each Sn . To this end, we shall construct not only a suitable 
vector space, but also a suitable scalar field. 

Let S = UnEA S" . Let IE be a field disjoint from S ;  this can always be accomplished 
by relabeling. Let IF = IE[S] be the field of rational functions with coefficients in IE and 
variables in S (see 8.24). Form the external direct sum 

U IF {! E IFA 
: f(a) cJ 0 for at most finitely many a E A} 

aEA 

as in 1 1 .6 . i ;  then <I> is a linear space over IF. For each s E S and a E A ,  let 

9s (a) { � if s E Sn 
if S tj_ Sa . 

Then 9s E <I> and in fact the set G = {gs : s E S}  spans <I>. Let B � G be a vector basis for 
<I> over IF; then B = {gs : s E S0 } for some set S0 � S. For each a E A ,  the characteristic 
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function of the singleton {a} is an element of <I> and thus in the span of B. Hence there 
is at least one 9s E B that does not vanish at a, and thus S0 meets S01 • To show that So 
meets each S01 in at most one point, suppose t ,  u are distinct members of So n S01 • Then 
tgu = ugt , contradicting the fact that the set {gt , 9u }  is linearly independent . 

Proof of (AC18) =} (MC). (Recall that (MC) was stated in 6 . 15 . )  This proof, given by 
Blass [1984] , is similar but somewhat longer, and so we shall omit it. We remark that it 
uses Blass's subfield (8.25) .  

11 .30. Corollaries of the Vector Basis Theorem. 
a. Any lF-linear space can be represented as an external direct sum of copies of lF (see 

1 1 . 18.e) . 

b. If V and W are linear spaces over lF, I � V is linearly independent , and f : I -->  W 
is any function, then f can be extended to a linear function from V into W. Hint : 
1 1 . 18.d. 

c. We may view IR as a linear space over the scalar field Q; a basis for this linear space is 
called a Hamel basis. (Some mathematicians apply that term more widely, as noted 
in 1 1 . 17.) Using such a basis, show that there exists a function f : IR --> IR that is 
additive - that is, satisfying f(s + t) = f(s) + f(t ) - but not continuous. Remark: 
Compare this with 24.42. 

d. If V is any linear space, its linear dual separates points of V .  
e. Any complex linear space can be  represented as the complexification of some real linear 

space (as defined in 1 1 . 1 1 ) .  

f. Let S be  a linear subspace of a linear space X. Then S has an additive complement T 
- that is, X has a linear subspace T satisfying 

S + T  = X  and S n T  {0} ,  

or, equivalently, satisfying the condition that 

each x E X can be written in one and only one way as s + t with s E S and 
t E T. 

It may be instructive to contrast this with 8. 16. 

g. Let S be a linear subspace of a linear space X. Then S is the range of a linear projection 
- i.e. ,  there exists a linear map f :  X -->  S that has range S and satisfies f(s) = s for 
each s E S. 

1 1.31 .  Theorem (Lowig, 1934) . Let V be an lF-linear space. Then any two vector 
bases for V over lF have the same cardinality. (That cardinality can therefore be called the 
dimension of the linear space. )  

Proof This proof i s  taken from Hall [1958] . Let S and T be  vector bases for V .  Each 
s E S can be expressed uniquely (except for the order of summation) in the form s = 
a 1h + · · · + antn for some positive integer n, some nonzero scalars a1 , a2 , . . .  , an , and some 
vectors t 1 , t2 , . . .  , tn E T. Let F(s) be the finite set {h , t2 , . . .  , tn } obtained in this fashion. 
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If s 1 , s2 , • . •  , sk are distinct elements of S, then F(s l ) U F (s2 ) U . . . U F (sk ) contains at 
least k elements, for otherwise s 1 , s2 , . . .  , Sk would be linearly dependent (by 1 1 .25) . By 
M. Hall's Marriage Theorem 6.37(ii ) , there exist points t (s ) E F (s ) such that the mapping 
s r---+ t (s ) is injective; thus card(S) :::; card(T) . Similarly card(T) :::; card(S) ; now apply the 
Schroder-Bernstein Theorem 2.19 . 

DIMENSION OF THE LINEAR DUAL ( OPTIONAL) 

1 1.32. Assumptions, notations, and remarks. The results below make use of the fact 
(proved in 10.44.f) that card(JR) = card(IC) = card(2N ) .  Also, the results below assume the 
Axiom of Choice; these results should be contrasted with 27.47.a. 

Throughout the discussion below, let F be the scalar field; assume F is either lR or C. 
Let X be a linear space over F, and let X* be its linear dual - i.e. , the set of all linear 
maps from X into F. 
11 .33. Observation. If dim(X) 
card(X*) = card(F). Hint : 1 1 .22. 

n < oo, then dim(X*) 

11 .34. Proposition. card(X) = max{ card(F) , dim(X)} .  

n also, and card(X) 

Hints : Let B be any vector basis for X; then card(F x B) = max{ card(F) , dim(X) }  by 
(AC13) in 6.22. Let UbEB F be the external direct sum (defined in 1 1 .6.i) of B copies of F. 
Use 1 1 . 18.e, 6.22, and 1 1 .29 to explain 

card( X) = card ( U F) :::; card ( U (F x B)n) 
bEB n= l 

= card(F x B) < card(X x X) = card(X) . 

Then use the Schroder-Bernstein Theorem. 

11 .35. Lemma. If X is infinite-dimensional, then dim(X*) 2': card(2�'� ) .  

Hints : Let { e0 ,  e 1 , e2 , . . .  } be any linearly independent sequence in X. For each real number 
r, by 1 1 .30.b there exists some fr E X* satisfying fr (en ) = rn for n = 0, 1 ,  2, . . . . Now apply 
1 1 . 15, to show that the fr 's are linearly independent members of X* . 

11 .36. Theorem. I f X is infinite-dimensional, then dim(X*) > dim(X) . 

Proof. By the preceding results, we have dim(X*) 2': dim(2N) ,  hence dim(X*) = card(X* ) .  
Let B be a vector basis for X; then B i s an infinite set; hence card(N x B) = card( B) . Since 
the X* is isomorphic to F8 , we have card(X*) = card(F8) = card((2N )8 ) = card(2Nx B) = 
card(28 ) > card(B) = dim(X) . 
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PREVIEW OF MEASURE AND INTEGRATION 

1 1.37. Definitions. Let X be an additive monoid. (In most cases of interest X is either 
[0, +oo] or a vector space . ) Let S be a collection of subsets of a set n with 0 E S, and let 
T :  S ----> X be some mapping satisfying T(0 ) = 0. We say that T is 

finitely additive if T (U7=1 5j ) 2:::7=1 T (5j )  whenever 51 , 52 , . . .  ' 5n are finitely many disjoint members of S whose union is also a member of S;  

countably additive (or O"-additive) i f X i s equipped with a metric (or other 
notion of convergence) and T (U;: 1 51 ) = 2:::;: 1 T (51 )  whenever 51 , 52 , 53 , . . .  
is a sequence of disjoint members of S whose union is also a member of S.  

The expression 2:::;: 1 T(5j )  is defined as in 10.39. 
Of course, every countably additive mapping is also finitely additive, since we may take 

53 , 54 , 55 , . . .  all equal to 0. We emphasize that "finitely additive" means "at least finitely 
additive, and perhaps countably additive;" it does not mean "finitely additive but not 
countably additive." 

Aside from the requirements 0 E S � P(O) , the collection S in the definition above 
is arbitrary. We now impose some additional restrictions. By a charge we shall mean a 
finitely additive mapping from an algebra of sets into an additive monoid. By a measure we 
shall mean a countably additive mapping from a rr-algebra of sets into an additive monoid 
equipped with some convergence structure. 

Cautions : The terminology varies considerably throughout the literature. Some math
ematicians apply the term "measures" to what we have called charges, or to countably 
additive charges, or to positive measures (defined below) , etc. 

Unfortunately, the phrase "f.L is a charge (or measure) on W" has two different meanings 
in the literature: It may mean W is the ( rr-)algebra S on which f.L is defined, or it may mean 
that W is the underlying set n on which S is defined. One must determine from context 
just which meaning is intended. 

1 1.38. Remarks on the choice of the codomain X. In most applications of charges, the 
monoid X usually is either [0, +oo] or some vector space; then f.L may be called a positive 
charge or a vector charge, respectively. Though a wide variety of vector spaces are 
used in this fashion in spectral theory, in more elementary applications the vector spaces 
most often used for the monoid X are the one-dimensional vector spaces � and C. The 
resulting charge or measure is then called a real-valued charge or measure or a complex 
charge or measure, respectively. We shall study positive charges and measures in 21 .9 
and thereafter; real-valued charges and measures in 1 1 .47 and thereafter; and other vector 
charges and measures in 29.3 and thereafter. 

Positive charges and vector charges differ only slightly in their definition, but more 
substantially in their use. We are mainly interested in positive charges when they are 
in fact measures; moreover, it is commonplace to fix one particular positive measure f.L 
and then use it for many different purposes. In contrast, vector charges are sometimes of 
interest without countable additivity or rr-algebras, but they are of interest mainly in large 
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collections � i.e. , we may study the relationships between many different vector charges, 
which are members of a "space of charges" as in 1 1 .47. An important part of the theory of 
vector measures v is the question of just when they can be represented in the form 

v (S) Is f(w) dp,(w) 

for some vector-valued function f and some positive measure p,; see 29.20 and 29.21 . 

11 .39. Remarks on the choice of the domain S. In most of our elementary examples of 
charges or measures later in this book, the collection of sets S is actually equal to P(O) = 
{subsets of 0} .  However, our most important measure is Lebesgue measure, which is not 
so elementary and which is not defined on a (}-algebra of the form :P(O) ; in 2 1 .22 we prove 
it cannot be extended in a natural way to P(O) . 

In many cases of interest, 0 is a topological space, and S is either the Borel (}-algebra 
or some (}-algebra containing the Borel (}-algebra. Recall that the Borel u-algebra is the 
(}-algebra on 0 generated by the topology � i.e. , the smallest (}-algebra containing all the 
open sets; the members of that (}-algebra are called Borel sets. 

A measurable space is a pair (0, S) consisting of a set 0 and a (}-algebra S of subsets 
of 0; a measure space is a triple (0, S ,  p,) in which JL is a positive measure on S. (It 
might be more descriptive to call (0, S, p,) a "positive measure space," but we shall not be 
concerned with a measure "space" in which JL is a vector measure.) 

Thus, a measurable space is a space that is capable of being equipped with a measure; 
a measure space is a space that has been equipped with a positive measure. These terms 
should not be confused with each other, or with a space of measures � i .e. , a collection 
of measures equipped with some structure that makes the collection into a vector space, a 
topological space, or some other sort of "space," as in 1 1 .48. 

11 .40. Several kinds of integrals will be introduced in this book; still more integrals can 
be found in the wider literature. When necessary, we shall specify what kind of integral 
is being used. Fortunately, the several integrals generally agree in those cases where they 
are all defined. For instance, I01 t2 dt makes sense as a Riemann integral or as a Lebesgue 
integral, but with either interpretation the expression has the value of 1/3. 

We now informally sketch some of the main features shared by most types of integrals. 
Precise definitions will be given later. 

In general , an integral Is f dp, depends on a set S, a function f (called the integrand) ,  
and a charge p, .  In some of our studies of integrals, we may hold one or two of the arguments 
S, f, JL fixed. When an argument is held fixed and/or its value is understood, then it may 
be supressed from the notation; thus 

Is fdp, may be written as or J fdp, or jr  
Usually, when S is omitted from the notation, then S is understood to be equal to 0. When 
0 is a subset of IRn and JL is Lebesgue measure, then dp,(w) may be written simply as dw. 

The integral Is f dp, may be written in greater detail as Is f(w) dp,(w ) . Here w is 
a dummy variable, or placeholder . It is sometimes helpful in clarifying just what is the 
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argument of f, particularly if the function f is complicated. The integral is not altered in 
value if we replace w with some other letter, or omit it altogether. Thus: 

Is f(>.) dJ-1(>.) Is !( · ) dJ-1( · ) 

1 1.41. Using (O"-)algebras and charges, we shall consider integrals I f  dJ-1 of three main 
types in this book: 

(i) J-1 is a vector charge taking values in a complete normed vector space, and f is 
a scalar-valued function taking values in the scalar field of that vector space. 
Then I f dJ-1 takes values in the vector space. 

We shall call this a Bartle integral (though the terminology varies in 
the literature) ;  this type of integral is introduced in 29.30. The mapping 
(!, J-1) ,._.. I f  dJ-1 is bilinear - i.e. , linear in each variable when the other 
variable is held fixed. For f and J-1 held fixed, the mapping S ,._.. Is f dJ-1 is 
finitely additive; i .e . ,  it is a vector charge. 

This is algebraically the simplest type of integral we shall consider. We 
modify this concept in a couple of ways, indicated below, to allow +oo in our 
computations. 

(ii) J-1 is a positive measure (and thus may take the value +oo) , f is a function 
taking values in some complete normed vector space, and some restriction is 
placed on l l f ( - ) 1 1  so that it is "not too big." Then I fdJ-1 takes values in the 
vector space. 

We shall call this a Bochner integral; it is introduced in 23. 16 . It is a 
linear function of J, for fixed /-1· For fixed J, the mapping J-1 ,._.. I f  dJ-1 is like 
the "upper half" of a linear map: It preserves sums and multiplication by 
positive constants. For f and J-1 fixed, the mapping S ,._.. Is f dJ-1 is countably 
additive - i.e . , it is a vector measure. A central result for Bochner integrals 
is Lebesgue's Dominated Convergence Theorem, 22.29. 

(iii) J-1 and f both take values in [0, +oo] ,  and I fdJ-1 does, too. 
We shall call this a positive integral; it is introduced in 21 .36. It behaves 

like the "positive quadrant" of a bilinear mapping: The maps f ,._.. I f  dJ-1 and 
J-1 ,._.. I f  dJ-1 both preserve sums and multiplication by positive constants. For 
f and J-1 fixed, the mapping S ,._.. Is f dJ-1 is countably additive - i.e. , it 
is a positive measure. A central result for positive integrals is Lebesgue's 
Monotone Convergence Theorem, 2 1 .38(ii ) . 

We emphasize that for integrals of this type, I f  dJ-1 may take the value 
+oo. When I fdJ-1 exists and is finite, we say that f is integrable. 

Other types of integrals over charges are possible, of course. For instance, for any vector 
spaces X, Y, Z, we could integrate an X-valued function f with respect to a Y-valued 
measure J-1, using some bilinear map ( , ) : X x Y ____, Z; then I f  dJ-1 takes place in Z. 
However, such integrals will not be studied in this book. 

A few other integrals will be defined in other fashions, not in terms of charges and 
algebras. The Riemann integral I: f(t) dt is reviewed in Chapter 24; in that chapter we 
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also introduce the Henstock integral I: f(t) dt and the Henstock-Stieltjes integral 
I: f(t) dcp(t ) ,  and show how these integrals are related to the Lebesgue integral. Here f 
and cp are functions defined on an interval [a, b] . 

1 1 .42. Integration of simple functions. Let A be an algebra of subsets of a set n.  A 
function f : n ----> X is called a simple function if 

the range of f is a finite subset of X, and f- 1 (x) E A for each x E X (or 
equivalently, for each x E Ran(!) ) .  

Equivalently, a simple function is one that can be written in the form 
n 

f( - )  

where n is a positive integer, the xj 's are members of X, and ls1 ( - ) is the characteristic 
function of some set Sj E A. (The representation ( * ) is not unique, since we do not require 
the Xj 's to be nonzero or distinct and we do not require the Sj 's to be disjoint . ) 

If X is a vector space, then it is easy to verify that the simple functions form a linear 
subspace of xn. If X = [0, +oo] , the set of simple functions is not a linear space, but at 
least it acts like the "upper half" of a linear space: It is closed under addition and under 
multiplication by nonnegative constants. 

Now let f-1 be a charge defined on A, taking values in some monoid K, and let f :  n ----> X 
be a simple function. When it makes sense, we define 

1 f df-1 
n X 

The summation on the right is over all x E X or, equivalently, (since f-1(0) = 0) the 
summation is over all x E Ran(!). Thus, the summation involves only finitely many terms. 
Equivalently, if f is represented by ( * ) , then 

1 f df-1 
n 

n 

L f-L(S1 ) x1 . 
j=l 

For these summations to make sense, we must also make certain restrictions: We must 
have some notion of how to multiply X times f-1 u-l (X)) and how to add Up the resulting 
products. This requirement is met by any simple function, in cases 1 1 .4 1 (i) and 1 1 .4 1 (iii ) .  

In case 1 1 . 4 1 (ii) ,  the requirement is met by any simple function f that satisfies this 
additional hypothesis: 1-1 (  {w E D  : f (w) #c 0} ) < oo. 

In this case we say that f is an integrable simple function. If we use representation 
( * ) , then we must choose the Sj 's so that no nonzero vector x j is associated with a set Sj 
that has infinite measure. (That is accomplished, for instance, if we require that f be an 
integrable simple function and the sj 's be disjoint. ) 
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11 .43. Simple functions should not be confused with step functions, though the two 
notions are closely related. A step function is a mapping f : [a, b] --+ X, from some 
subinterval of lR into some vector space, with the property that there exists some partition 
a =  to < t 1 < t2 < · · · < tn = b such that f is constant on each subinterval ( tj_ 1 , t1 ) .  
(Different partitions may be used for different step functions. )  

Step functions are a special case of simple functions, as follows: Let A be the collection 
of all finite unions of subintervals of [a, b] . (We interpret "subintervals" so that singletons 
and the empty set belong to A.)  Then A is an algebra of sets, and the resulting X-valued 
simple functions (defined as in 1 1 .42) are precisely the step functions. 

ORDERED VECTOR SPACES 

11 .44. Remarks. We shall only consider ordered vector spaces using lR for the scalar field. 
It is possible to develop a theory of ordered vector spaces using other scalar fields - see, 
for instance, Schaefer [1971] - but such a theory is more complicated and less natural and 
intuitively appealing; it is not recommended for beginners. 

Definitions. An ordered vector space is a real vector space X equipped with a partial 
ordering � such that 

(i ) x � y {==} x + u � y + u (i.e. , X is an ordered group) ;  and 
(ii) If x >,:= 0 in X and r 2 0 in JR, then rx >,:= 0 in X. 

We say X is a Riesz space, or vector lattice, i f in addition 
(iii) (X, �) is a lattice - i.e. , each finite nonempty subset of X has a supremum 

and an infimum. 
Finally, X is a lattice algebra (or algebra lattice) if X is also an algebra (in the classical 
sense, as in 1 1 .3) whose vector multiplication satisfies 

(iv) x, y >,:= 0 =? xy >,:= 0. 
If X is a Riesz space, then a Riesz subspace is a subset S that is closed under the 

vector operations and the lattice operations - that is, 

s, t E S, c E lR s + t ,  cs , s V t ,  s 1\ t E S. 

Clearly, such a set is itself a Riesz space, when equipped with the restriction of the operations 
of X. 

1 1 .45. Example: real-valued functions. Let A be any set. Then the product 

JRA {functions from A into lR} 
i s a Dedekind complete lattice algebra, when given the product ordering - that is, when 
ordered by 

x � y  if x(.X) :::; y(.X) for every >. E A. 
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The vector and lattice operations are defined pointwise: 

(x + y) (,\) = x( ,\) + y(,\) ,  

(x  V y) ( ,\) = max{ x( ,\) ,  y(J\ ) } ,  
(x · y)( ,\ ) = x( ,\) · y( ,\ ) , 
(x 1\ y) ( ,\) = min{x(J\) , y( ,\ ) } .  
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More generally, for any set S c::; IRA that is bounded above or below by some real-valued 
function, we have 

[sup(S)] (,\) = sup{s(,\ ) : s E S} , [inf(S) ] ( ,\) = inf{s(,\) : s E S} . 

When this ordering is used, many mathematicians write x :S y instead of x <. y. However, in 
this book we shall often write <. for such an ordering, to help beginners avoid inadvertently 
attributing familiar properties (e.g. , a chain ordering) to a familiar symbol. 

11 .46. Further examples: subspaces of IRA . The pointwise formulas given for x V y, x 1\ y, 
sup(S) , inf(S) in the previous paragraph remain valid in many important subsets of IRA ; 
some of these are listed below. 

a. The set B(A) = {bounded functions from A into IR} is a Dedekind complete lattice 
subalgebra of IRA . 

b. The space C[a, b] = {continuous functions from [a, b] into IR} is a lattice subalgebra of 
IR[a .b] , for any real numbers a, b with a < b. 

C[a, b] is not Dedekind complete. Example. Show that the sequence of functions 
fn (t )  = ylmax{O, t }  is bounded above in C[- 1 , 1 ] but does not have a least upper 
bound in C[- 1 , 1 ] . 

c. The space C1 [a, b] = {continuously differentiable functions from [a, b] into IR} is a 
subalgebra of IR[a .b] -- i .e . , it is closed under addition and both multiplications. Also, 
it is an ordered vector space. 

C1 [a, b] is not a lattice. Example. Let x(t) = t and y(t ) = -t. Show that the set 
{X ,  y} has an upper bound in C1 [ -1 ,  1 ] ,  but not a least upper bound. 

d. If we use IR for the scalar field, then many of the Banach spaces used in the theory of 
measure and integration are vector lattices. They are not subspaces of IRA ; rather, they 
are subspaces of a quotient space IRA jJ for some ideal J. Examples will be developed 
in later chapters. 

11 .47. The space of bounded real charges. Let n be a set , let A be an algebra of 
subsets of n, and let 

ba(A. IR) {bounded, real-valued charges on A}. 
(Here, "ba" stands for "bounded additive." ) Then ba(A, IR) is a linear subspace of B(A, IR) = 
{bounded functions from A into IR} ,  which is in turn a linear subspace of IRA = { functions 
from A into IR} .  

Let ba(A . IR) be equipped with the restriction of the product ordering - that is, 

fl <- v means that fl(A) :S v(A) for every A E A. 
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Then ba(A, IR) is a Dedekind complete vector lattice, with lattice operations as follows: 

(p, V v)(A) 

(p, 1\ v) (A) 

sup {p,(B) + v(A \ B) : B E  A, B � A} ,  

inf {p,(B) + v(A \ B) : B E A, B � A} .  

Although ba(A, IR) is a linear subspace of IRA as linear spaces, it is not a sublattice. The 
lattice operations V and 1\ shown in the preceding paragraph are not simply the restrictions 
of the lattice operations of IRA . Indeed, ba(A , IR) ,  considered as a subset of IRA , is not 
closed under that space's lattice operations; an elementary example of this is given in the 
exercise in 2 l . l l .c . 

Since ba(A, IR) is a vector lattice, each charge p, has a positive part , a negative part, and 
an absolute value, as defined in 8 .39. In the present context those are 

p,+ (A) 
p,- (A) 
fp,f(A) 

sup{ p,(S) : S E A, S � A} ,  
sup{ -p,(S) : S E A, S � A} ,  
sup{ p,(S) - p,(A \ S) : S E A, S � A} ,  

respectively. The three functions p,+ , p,- , and / p,f are called the positive variation, the 
negative variation, and the variation (or total variation) of p,, respectively; they are 
members of ba(A, IR) .  The variation of p, may also be written as Var(p,) .  We emphasize 
that any bounded real charge has finite variation; this fact will be important in 29.6.d and 
29.6 .h. 

The lattice ba(A, IR) is Dedekind complete. If M is a nonempty subset of ba(A, IR) , 
bounded above or below by some member of ba(A, IR) , then we have 

n 
[sup(M)] (A) = sup L l-lJ (SJ )  

j= l 
or 

n 
[inf(M)] (A) = inf L J-lJ (SJ ) ,  

j=l 

respectively, where the sup or inf is over all positive integers n, all finite sets of charges 
{p,1 , p,2 , . . .  , J-ln} � M, and partitions A = 51 U 52 u · · · u Sn where the Sj 's are disjoint 
elements of A. If (M, �) or (M, >,:=) is a directed set , then we obtain these simpler formulas, 
respectively: 

[sup(M)] (A) = sup p,(A) 
/"EM  

or [inf(M)] (A) = inf p,(A) . 
/"EM 

(Hints: Since ba(A , IR) i s a lattice, we easily reduce the proof to the case where M is a 
directed set; then use the fact that a setwise limit of charges is a charge. )  

The space ba(A, IR )  i s  studied in greater depth by Bhaskara Rao and Bhaskara Rao 
[1983] . 

11 .48. The space of bounded, countably additive real charges. Let n be a set, let 
A be an algebra of subsets of n, and let 

ca(A, IR) {bounded, countably additive, real-valued charges on A} . 
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(We emphasize that A is not assumed to be a a--algebra, so the members of ca(A, JR) are 
not necessarily measures.) Then ca(A, JR) is a sublattice of ba(A, JR) - that is, ca(A, JR) is 
closed under the binary operations V and 1\ of ba(A, JR) . (Exercise. ) 

Moreover, ca(A, JR) is Dedekind complete. If M is a subset of ca(A, JR) that is bounded 
above or below by some member of ca(A, JR) , then 

00 00 

[sup(M)] (A) = sup L /Lj (Sj )  
j= l 

or [inf(M)] (A) = inf L llj (Sj ) 
j=l 

respectively, where the sup or inf is over all countable collections {�t1 , �t2 , /L3 , . . .  } c;;; M, and 
partitions A = 51 U 52 U 53 U · · · , where the Sy 's are disjoint elements of A. (Exercise. 
Verify. ) 

1 1.49. Notes on the boundedness of charges. 
a. In 29.3 we shall prove that any real-valued measure (i .e . , countably additive, on a a-

algebra) is bounded. In fact, any measure taking values in a Banach space is bounded. 
b. A finitely additive charge on an algebra of sets need not be bounded. For example: 

Let A = { S c;;; N : S is either finite or cofinite } ;  this is an algebra (but not a 
a--algebra) of subsets of N. Define >. : A  ----> Z by 

>.(S) { card(S) 
-card(N \ S) 

if S is finite 
if S is cofinite. 

Verify that >. is a real-valued charge that is unbounded. 
c. Are there any real-valued charges on a a--algebra that are not countably additive? Well , 

yes and no. Such objects exist, but explicitly constructible examples of such objects 
do not exist. This is discussed further in 29.37. 

11 .50. Some basic properties of Riesz spaces. If X is a Riesz space, then X is a lattice 
group, so it has all the properties of lattice groups listed earlier in this chapter . It also has 
the following properties: 

a. r(x V y) = (rx) V (ry) and r(x 1\ y) = (rx) 1\ (ry) for all x, y E X  and any real number 
r > 0. Hence also lrxl = rlxl and (rx)+ = r(x+ ) .  

b .  x V y = � ( x + y + I x - y I) and x 1\ y = � ( x + y - I x - y I) .  
c. x V (-x) = lxl >,::o 0. 

d. -y =<- y ¢:==} y >,::o 0. 

1 1.51. Proposition. Let X be a Riesz space. Then X has the same ideals, whether we 
view X as a Riesz space or (by "forgetting" how to multiply by scalars) we view X as a 
lattice group. Thus, an ideal in a Riesz space X is an additive subgroup satisfying any of 
the conditions in 9.27. 

Proof Since the category of lattice groups has fewer fundamental operations, it has at least 
as many ideals - i.e. , every Riesz space ideal is a lattice group ideal . Conversely, suppose 
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S � X is a lattice group ideal; we must show that it is a Riesz space ideal. We shall use 
the fact that S is solid (established in 9.27(B) ) .  To show that S satisfies definition 9.25(B) 
for Riesz spaces, it suffices to show that 

c E IR, s E S cs E S. 

Since S is an additive subgroup, it suffices to prove this implication in the case where c > 0 . 
Since 0 =:;< s+ =:;< jsj and 0 =:;< s- =:;< jsj , we have s+ , s- E S. Since S is closed under 
addition, ms+ , ms- E S for any positive integer m. Let m be some integer greater than c. 
Since X is a Riesz space, we obtain 

and 

and therefore cs+ , cs- E S. Now use the Jordan decomposition: 

cs 
Since S is an additive group, it follows that cs E S. 

POSITIVE OPERATORS 

1 1.52. Definitions. Let X and Y be lattices (not necessarily groups or vector spaces) .  A 
mapping f : X ----+ Y is 

a lattice homomorphism if it satisfies f(x1 V x2 ) = f(xl ) V j(x2 ) and j(x1 1\ 
x2 ) = f(xl ) 1\ f(x2 ) · 
increasing (or isotone) if x1 =:;< x2 '* f (xi )  =:;< f ( x2 ) .  

order bounded i f  the image of any order interval is contained in an order 
interval - i.e. , for any x1 , x2 E X there exist y1 , y2 E Y such that 

c {y E Y : Y1 =:;< Y =:;< Y2 } · 

It is clear that f is a lattice homomorphism '* f is increasing '* f is order bounded. 
Any of these three types of functions can be used as the morphisms for a category, with 
lattices for the objects. 

Note that a linear operator between Riesz spaces (or more generally, an additive mapping 
between ordered groups) is increasing if and only if it is a positive operator - i .e . , if and 
only if it satisfies x >,::o 0 '* f(x) >,::o 0. 

1 1.53. Proposition. Let X and Y be Riesz spaces; assume that Y is Archimedean (defined 
as in 10.3) . Let f : X ----+ Y be an additive, increasing map - that is, 

and 
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Then f is IR.-linear. 

Corollary. Every lattice group homomorphism from a Riesz space into an Archimedean 
Riesz space is actually a Riesz space homomorphism. 

Proof of proposition. It suffices to show that f(rx) = r f(x) for every real number r and 
every vector x E X. By additivity and the Jordan Decomposition, it suffices to prove that 
equation when r ::;> 0 and x � 0. 

By additivity. it is easy to see that f(qx) = qf(x) for rational numbers q. Since f is 
order-preserving, we can conclude that 

Now, for any integer m E N, we can find rational numbers q1 , q2 > 0 such that 
q1 � r < 0 < q2 � r < ..!.. . It follows that rn 

1 1 
� - f ( x) � ( q1 � r) f ( x) � f ( rx) � r f ( x) � ( q2 � r) f ( x) � - f ( x) . m m 

1 < m 

Let "( =  f(rx) � rf(x); it follows that the subgroup Z"( = {m"( : m E  Z} is bounded above 
by f(x) . Since Y is Archimedean, it follows that "( =  0. 

1 1 .54. A pathological example. In the preceding theorem, we cannot omit the assumption 
that Y be Archimedean. To see this, let lHI be the hyperreal line (see 10 . 18 ) . We shall prove 
the existence of a mapping f : JR. --> lHI that is a homomorphism for lattice groups but is not 
IR.-linear. 

First represent JR. as an internal direct sum, JR. = X EB Y, where X and Y are some additive 
subgroups of JR. other than { 0} and JR. itself. (This can be accomplished using 1 1 .30.a, since 
JR. may be viewed as a linear space over the scalar field Q.) Let c be a nonzero infinitesimal 
in IHI. Define f :  JR. -->  lHI by taking f(x + y) = x + ( 1  + c)y for all x E X  and y E Y .  Then 
f is clearly additive. It is not linear, for if x, y are nonzero real numbers with x E X and 
y E Y then yf(x) = yx -=/= ( 1  + c)xy = xf(y) . It suffices to show that f is order-preserving. 
Suppose x1 + Y1 < x2 + Y2 ,  where X j , x2 E X  and Yl , Y2 E Y. Then x2 + Y2 � x1 � Y1 is a 
positive real number and (Yl � Y2 )c is an infinitesimal. Hence (YI � Y2 )c < x2 + Y2 � x1 � Yl · 
That is, f(x l + yJ ) < f(x2 + Y2 ) .  

(This example disproves an erroneous assertion of Birkhoff [1967, page 349] . ) 

11 .55. Proposition (Kantorovic) .  Let X, Y be Riesz spaces, and assume Y is Archimedean. 
Let f : X+ --> Y+ be any function. Then f extends to a positive operator F : X --> Y if and 
only if f is additive - i .e . , if and only if f(x1 + x2) = f(xi ) + f(x2 ) for all x1 , x2 E X+ . If 
that condition is satisfied, then the extension F is uniquely determined: It satisfies 

F(x) 

Proof This proof follows the presentation of Aliprantis and Burkinshaw [1985] . Obviously, 
if f extends to a positive linear operator, then f must be additive and the extension F must 
satisfy the formula (** ) .  Conversely, assume f is additive and define F :  X -->  Y by (**) ;  
we must show that F is linear. The proof will be in several steps: 
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a. If x = u - v with u, v E X+ , then F(x) = f(u) - f(v) . Hint: x+ - x- = x = u - v, 
hence x+ + v = u + x- ; now use our assumption that f is additive on X+ . 

b. F(x1 + x2) = F(xl ) + F(x2 ) ;  that is, F is additive on X. Hint : Apply the preceding 
result with u = xi + xt and v = x1 + x2 . 

c. F is an increasing function on X. Hint :  If x >;= 0 =;. F(x) = f(x) >;= 0. 

Finally, apply 1 1 .53 to complete the proof. 

11.56. Observations. Let X and Y be Riesz spaces. Then: 
a. ,Cb(X, Y) = {order bounded linear maps from X into Y} is a linear subspace of 

[.,(X, Y) = { linear maps from X into Y} . 
b.  Let J , g E [.,(X, Y) . Then the following conditions are equivalent: 

(A) f - g is an increasing operator - that is, x1 =<- x2 =;. f(xl ) - g(xl ) =<
f(x2 ) - g(x2 ) . 

(B) f - g is a positive operator - that is , x >;= 0 =;. f(x) - g (x) >;= 0 . 
(C) f (x) =<- g(x) for all x E X+ . In other words, the restriction of f to X+ 

is larger than or equal to the restriction of g to X+ , where functions on 
X+ are ordered by the pointwise ordering - i.e. , where JRX+ is equipped 
with the product ordering. 

When either (hence both) of these conditions holds, we shall write f =<- g. This ordering 
makes J:., (X, Y) and ,Cb(X, Y) into ordered vector spaces. 

1 1.57. Theorem (Riesz-Kantorovic) .  Let X and Y be Riesz spaces, and suppose Y is 
Dedekind complete. Then the linear space 

J:.,b (X, Y) {order bounded linear operators from X into Y }  

is equal to the set of all linear operators that can be written as the difference of two positive 
operators. Furthermore, ,Cb (X, Y) is a Dedekind complete Riesz space when ordered as in 
1 1 .56.b. For any f E J:.,b (X, Y) , the positive part is given by this formula: 

j+ (x) sup{f(u) : u E [O, x] } when x E X+ . 

Other lattice operations are as follows, for x E X+ : 

(f V g) (x) 
(f 1\ g) (x) 

/f/(x) 

sup{f(u) + g(v) : u, v E X+ and u + v = x} , 
inf{J(u) + g(v) : u, v E X+ and u + v = x} ,  
sup{f(u) : u E [-x, x] } sup{/f(u)/ : u E [-x, x] } .  

When <I> i s a nonempty subset of ,Cb(X, Y) that is directed and that is bounded above by 
some member of ,Cb(X, Y) ,  then 

(sup <I>) (x) sup f(x) 
/E<l> 

for each x E X+ . 
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Caution: A formula above shows the relation between If l (x) and I f(x)j . In general they 
are not the same; do not confuse them. In the expression If l (x) , we take the absolute 
value of the vector f in the lattice ,Cb(X, Y) ; it is a function from X into Y that can be 
evaluated at x. On the other hand, f(x) is a vector in the lattice Y ,  and so we can take its 
absolute value in that lattice to obtain I f(x)l E Y. 

Proof of theorem. Our proof is based on the presentation of Fremlin [ 1974] ) .  I t i s easy 
to show that any positive operator is order bounded; hence any difference of two positive 
operators is order bounded. 

Conversely, suppose f : X ---> Y is order bounded. Define a function g : X+ ---> Y+ by 
g(x) = sup{f(u) : u E [O, x] } ;  that supremum exists because Y is assumed to be Dedekind 
complete. We note that g is additive on X+ : 

( ' ) 

sup{f(ul ) + f(u2 ) : u1 E [O, x1 ] ,  u2 E [O, x2] }  
sup{f(v) : v E [O, x1 ] + [O, x2] }  
sup{f(v) : v E [O, x1 + x2] }  

where equation ( ! )  is by the Riesz Decomposition Property (noted in 8.38) . By 1 1 .55, 
therefore, g extends to a positive linear map from X into Y, which we shall also denote 
by g .  Then g(x) � f(x) for all x E X+ , so g - f is also a positive linear map. Thus 
f = g - (g - f) is the difference of two positive linear maps. 

It is an easy exercise to verify that the function g constructed above is actually equal 
to the supremum of the set {0, !} ,  in the ordered vector space ,Cb (X, Y) . Thus 0 V f exists 
for each f E ,Cb(X. Y) , and therefore that ordered vector space is a vector lattice, by the 
observations in 8.38. 

To show ,Cb(X, Y) is Dedekind complete, suppose <I> <;;; ,Cb(X, Y) is a nonempty set 
bounded above by some f3 E ,Cb (X, Y) ; we shall show that sup <I> exists in ,Cb (X, Y) .  We 
may replace <I> by the collection of sups of nonempty finite subsets of <I>; the existence and 
value of <I> are not thereby affected. Thus we may assume <I> is directed; we shall show 
that, on X+ , sup <I> is then equal to the pointwise supremum of the members of <I>. Fix any 
ipo E <I>.  We may replace each ip E <I> with the function ip - ipo ; this does not affect the 
existence of sup <I>, and it replaces the value of sup <I> with sup <I> - ipo ; thus we may assume 
that 0 E <I>. Since Y is Dedekind complete, h(x) = sup/E<I> f(x) exists for each x E X+ . 
Since 0 E <I>, we have h(x) � 0 for each x E X+ . By 8.32, the function h : X+ ---> X+ 
is additive. By 1 1 .55, h extends to a positive linear operator from X into Y; clearly that 
operator is the sup of <I> in J:11(X, Y) . 

11 .58. Definition and corollary. Let X be a Riesz space. Then the linear space 

J:b(X, IR) {order bounded linear functionals on X} 
is called the order dual of X .  It is equal to the set of all linear functionals that can be 
written as the difference of two positive linear functionals. It is a Dedekind complete Riesz 
space when equipped with this ordering: f � g if x � 0 =? f(x) ;:::: g(x) . It also satisfies 
this formula: 

If l(x) sup{ lf(u) l : u E [-x, x] } ,  
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This definition is a special case of the notion of "dual" introduced in 9.55. It is investigated 
further in books on vector lattices; we shall not study it further in this book. 

ORTHOGONALITY IN RIESZ SPACES (OPTIONAL) 
11 .59. Definitions. Let X be a Riesz space (or more generally, a lattice group) .  In this 
context , two elements x, y are orthogonal to each other, denoted x ..l y, if /x/ A /y/ = 0. 
For any set S <;;; X, the orthogonal complement of S is the set 

S.L {x E X  : x ..l s for all s E S} .  

This definition i s a special case of 4 . 12 , with 

r { (x, y) : x ..l y} { (x, y) : /x/ A /y/ = 0} , 

and so the conclusions of 4 . 12 are applicable. Thus, x ..l x ¢=::::} x = 0, and 

for sets S, S1 , S2 <;;; X. Also, if S = T.L and T = S.L , then 

11 .60. Example. We consider JRA as in 1 1 .45. Verify that x ..l y if and only if xy = 0, 
where xy is the function defined pointwise - i.e. , (xy) (>.) = [x(>.)] [y(>.)] for all >. E A. Also 
prove that two sets S1 , S2 <;;; JRA are orthogonal complements of each other if and only if 
they are sets of the form 

where A1 and A2 form a partition of A. 

1 1.61. Definition. Let X be a Riesz space or, more generally, a lattice group. A band in 
X, also known as a normal sublattice, is an ideal (as defined in 9.27 and 1 1 .51 ) that is 
sup-closed in X (as defined in 4.4 .b) . 

Riesz Theorem on Orthogonal Decompositions. Suppose that X is Riesz space 
(or, more generally, a lattice group) . Assume X is Dedekind complete. Then a subset 
S <;;; X is an orthogonal complement of some subset of X if and only if S is a band. 
Furthermore, if S and T are orthogonal complements of each other, then they form a direct 
sum decomposition: X = S EB T, as defined in 8.13 . The projections 1rs : X --+ S and 
1ry : X --+ T are homomorphisms of lattice groups (or of Riesz spaces, if X is a Riesz 
space) . The projection onto S is given by the formula 

1rs (x) sup{/ sj A x  : s E S} if X >,:o 0, 
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and Irs(x) = Irs (x+) - Irs (x- )  in general. The projection onto T is given by analogous 
formulas. 

Remark. Compare this theorem with 22.52. 

Proof of theorem (following Bhaskara Rao and Bhaskara Rao [1983] ) .  First suppose that 
S is an orthogonal complement . Then S is an ideal; that is a straightforward exercise. To 
show that S is sup-closed, let M be a nonempty subset of S, and suppose fJ = sup(M) exists 
in X. Show that lf-11 � sup{/ml : m E  M} , and hence fJ E S. (These arguments actually 
do not require that X be Dedekind complete. ) Now assume X is a Dedekind complete 
lattice group, and S is a band in X. Most of our proof will be concerned with showing that 

( * * * ) If T = sl_ and X E x+'  then X = Sx + tx for some Sx E s and tx E T. 

The set M = {/ s I 1\ x : s E S} is bounded above; since X is Dedekind complete, Sx = 

sup(M) exists in X. Since S is a sup-closed ideal , we have M � S and also Sx E S. The 
elements of M are nonnegative; hence sx >,:= 0 also. Let tx = x - sx ; next we shall show that 
tx lies in T = sl_ . Let any (J E s be given; we are to show that I (J I 1\ ltx I = 0. Since M 
is bounded above by x, we have Sx � x; therefore tx >,:= 0 and ltxl = tx . Let u = uab 1\ tx ; 
then u >,:= 0 and it suffices to show that u � 0. Since 0 � u � I u I and u E S and S is a 
sup-closed ideal, it follows that u E S; hence also u + sx E S. Then 

0 � U + Sx 
and so 

u +  Sx 
whence u + sx � sup(M) = sx , and thus u � 0 . This completes our proof of ( * * * ) . Next 
we prove the conclusion of ( * * * ) with the hypothesis weakened: We shall permit x to be 
any element of X, not necessarily nonnegative. Applying the Jordan Decomposition, we 
have X = p - n, where p, n E x+.  Then p, n have Riesz decompositions 

p Sp + tp E s + T and n Sn + tn E S + T. 

We obtain x = Sx + tx ,  with Sx = Sp - Sn E S and tx = tp - tn E T. To show every sup-closed 
ideal is an orthogonal complement , let S be an sup-closed ideal. Clearly S � 51-1- .  For the 
reverse inclusion, let X E sj_j_ have decomposition X =  s + t E s + T. Then t E T, but also 
t = x - s E Sl-1- = T1- . Hence t = 0, and x = s E S. 

Whenever S and T are orthogonal complements, they satisfy S n T = {0} ;  see 8.13 . 
In the present context , we have also shown that S + T = X. Hence S El:l T = X (see 
8 . 1 1 ) ,  and the projections Irs , 7rr are uniquely determined group homomorphisms. The 
arguments of the preceding paragraphs show that Irs must satisfy the formula stated in 
the theorem. Note that if u >,:= 0 then 0 � 1r5 (u) � u. For any x E X, both x+ and 
x- are nonnegative, so 0 � Irs (x+ ) � x+ and 0 � Irs (x- )  � x- . Since x+ 1\ x- = 0, it 
follows that Irs (x+ ) 1\ Irs (x- ) = 0. From the Jordan Decomposition x = x+ - x- , we obtain 
Irs (x) = Irs (x+ ) - Irs(x- ) ,  which is therefore the Jordan Decomposition of Irs (x) . Hence 
[ 1r s ( x) ] + = 1r s ( x+ ) .  By 8.45, 1r s is a homomorphism of lattice groups. If X is a Riesz space, 
then Irs is a homomorphism of Riesz spaces, by 1 1 .53. The same conclusions can be drawn 
for Iry . 
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Convexity 

12.1 .  Preview. The diagram below shows examples of a star set, a nonconvex set, and a 
convex set, all of which will be defined soon. The distinction between convex and nonconvex 
may be easier to understand after 12.5.i . 

A typical 
star set 
in JR2 

a nonconvex 
set a convex 

set 

12.2. Notational convention. Throughout the remainder of this book (except where noted 
otherwise) ,  the scalar field of a linear space will always be either lR or C. Usually the scalar 
field will be denoted by F, and we shall not specify which field is intended; this intentional 
ambiguity will permit us to treat both the real and complex cases simultaneously. However, 
we shall make free use of certain properties and structures enjoyed by lR and C that are 
not shared by all other fields - e.g. , the real part , imaginary part , complex conjugate, and 
absolute value (see 10.3 1 ) ,  and the completeness of the metric determined by that absolute 
value (see Chapter 19) . 

CONVEX SETS 

12.3.  Definitions. Several types of sets will now be introduced together; they have similar 
definitions and basic properties. Let X be a linear space with scalar field F (equal to lR or 
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q,  and let S <;;; X. We say that the set S is 
a linear subspace of X if s ,  t E S and A, p, E lF  imply As + p,t E S; 

convex if s, t E S and A E (0, 1) imply As + ( 1 - A)t E S; 

affine if s ,  t E S and A E lF  imply As + ( 1 - A)t E S; 

symmetric if s E S =? -s E S. 
Also, a nonempty set S <;;; X is said to be 

balanced (or circled) if, when ever s E S and a is a scalar with I a I :::; 1 ,  then 
as E S; 

absolutely convex if, whenever s .  t E S and a,  f3 are scalars with Ia I + l/3 1  :::; 1 , 
then as + {Jt E S; 

a star set if, whenever s E S and A E [0, 1 ) ,  then As E S. 

303 

Caution: This definition of "star set" is well suited for our purposes, but it differs slightly 
from the definitions of "star body," "star-like set," etc. ,  used elsewhere in the literature. 

Though these different classes of sets ultimately must be studied separately, they do 
share a few basic properties: They are classes of sets that are closed under certain fun
damental operations, and thus they are Moore collections (as in 4 .6) . For instance, a set 
S <;;; X is a linear subspace of X if and only if S is closed under all the binary operations 
b>-..1, : X  x X --> X defined by b>..1, (x, y) = AX +  p,y, for all choices of A, p, in the scalar field. 
Likewise, S is a convex set if and only if S is closed under all the binary operations b>.. l ->. for 
A E [0, 1 ] .  The other classes of sets can be characterized similarly - using not only binary 
operations, but also unary operations (s c--+ As for balanced sets and star sets, s c--+ -s for 
symmetric sets) and the nullary operation 0 (for balanced sets, absolutely convex sets, and 
star sets) . 

Since these classes are Moore collections, they are closed under intersection. Thus, any 
intersection of convex sets is a convex set , etc. In fact, all the fundamental operations 
involved are finitary, and so the resulting classes of sets are algebraic closure systems, in 
the sense of 4 .8 . 

Since these classes of sets are Moore collections, they yield Moore closures (see 4.3) -
in fact , they yield algebraic closures (see 4.8) . However, in this context it is not customary 
to use the term "closure." Instead we use different terms for the different kinds of closures: 
The smallest linear subspace containing a set T is the (linear) span of T. The smallest 
convex set containing a set T is the convex hull of T. Analogously we define the affine 
hull of T, the symmetric hull of T, the balanced hull of T, the absolutely convex 
hull of T, and the star hull of T. Notations for these hulls vary throughout the literature. 
In this book the convex hull of T and balanced hull of T will be denoted by co(T) and 
bal(T) , respectively. 

12.4. Some relations between convexity and its relatives. These relationships are summa
rized in the following chart . 



304 Chapter 12: Convexity 

I nonzero singleton I 

absolutely convex = convex and balanced 

I balLed I 

a. A set is absolutely convex if and only if it is convex and balanced. 
b. Every balanced set is a symmetric star set. 
c. Every convex set that contains 0 is a star set. 
d. Every affine set is convex. 
e. A subset of X is a linear subspace of X if and only if it is affine and contains 0. Thus 

any linear subspace of X ( in particular, X itself) is convex, affine, symmetric, balanced, 
absolutely convex, and a star set. 

f. If x E X \ {0} ,  then the singleton {x} is an affine set, but it is not balanced. 

Moreover, suppose that the scalar field lF' is ffi?.. Then: 
g. A set is balanced if and only if it is a symmetric star set. 
h. A set is absolutely convex if and only if it is nonempty, symmetric, and convex. 

12.5. Further elementary properties. Let X be an JF'-linear space. Then: 
a. Any union of symmetric sets or balanced sets or star sets is, respectively, a symmetric 

or balanced or star set. 
b. Suppose that J' is a nonempty collection of subsets of X that is directed by inclusion 

- i.e. , such that for each F1 , Fz E J' there exists some F E  J' such that F1 U Fz � F. 
If every member of J' is convex or affine or absolutely convex, then the union of the 
members of J' also has that property, respectively. Hint :  4 .8(B) . 
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c. The convex hull of a set T is equal to the set of all convex combinations of members 
of T - i.e. , all vectors of the form 

where n is a positive integer, the t1 's are members of T, and the Cj 's are positive 
numbers whose sum is 1 .  

d .  The convex hull of a set T is the union of the convex hulls of the finite subsets of T. 
e. The convex hull of a balanced set is balanced. 
f. The absolutely convex hull of any set S � X is equal to co(bal( S) ) .  
g.  The balanced hull of a convex is set i s not necessarily convex. See the example in the 

following diagram. 

Example. Let the scalar field be JR, 
let the vector space be JR2 , and let 
S = [0, 1J x [0, 1 J . Then S is 
convex. However, T = bal(S) = 
[0, 1 J X [0, 1 J U [- 1 ,  OJ X [- 1 ,  OJ 
is balanced but not convex. 

h. If x, y E X, then the straight line through x and y is the set {ax+ ( 1 -a)y : a E JR}. 
It is the affine hull of the set { x, y} , if the scalar field is R In a real vector space, a 
set S � X is affine if and only if it contains the straight line through each pair of its 
members. 

i. If x, y E X, then the straight line segment from x to y is the set {ax + ( 1 - a) y : 
a E [ 0, 1 ] } .  It is the convex hull of the set { x ,  y} . The points x and y are its end points. 
A set S � X is convex if and only if it contains the straight line segment connecting 
each pair of its members (regardless of whether the scalar field is lR or C) . 

j . A subset of lR i s convex if and only if i t is an interval. 
k. Let X be a real linear space, and let C � X. Then there exists an ordering � on X 

that makes X into an ordered vector space with nonnegative cone X+ equal to C if 
and only if C satisfies these conditions: (i) C is convex, (ii) C n ( -C) = {0} ,  and (iii) 
if x E C and r > 0 then rx E C. 

12.6. Exercises: arithmetic operations on convex sets. 
a. For each >. in some index set A, suppose that C>- is a convex subset of some linear 

space XA . Then n>-EA CA is a convex subset of the linear space n>-EA XA . 
b. Let f : X --7 Y be a linear map. If S � X is a convex set, then so is f(S) � Y . If 

T � Y is a convex set , then so is f-1 (T) � X. 
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In particular, if 5 � X is a convex set, then c5 = { cs : s E 5} is convex for any 
scalar c, and xo + 5 = { xo + s : s E 5} is convex for any vector x0 E X. 

c. If 5 and T are convex subsets of X, then 

co(5 U T) U [a5 + (1 - a)TJ . 
o:o:;a::; 1 

d. For any sets A1 , Az,  . . .  , Ak � X, the convex hull of the sum is the sum of the convex 
hulls. That is, co (2::7=1 A;) = I:7=1 co(A; ) . 

e .  I f C is a convex set, then C + C = 2C. That is, {x + y : x, y E C} = {2u : u E C} . 
Equivalently, 1C + 1C = C. 

12. 7. ( Optional. ) As we noted in 12.3, it is possible to consider convex sets as algebraic 
systems, with fundamental operations given by the binary operations 

cr (x, y) = rx + ( 1 - r)y for r E (0, 1 ) .  

One may be tempted to try to view convex sets as an equational variety and thus apply to 
them all the theory of equational varieties. 

However, convex sets do not form a variety, for they are not closed under the taking 
of homomorphic images that respect the fundamental operations. It can be proved (see 
Romanowska and Smith [1985] ) that the smallest variety containing all convex sets is the 
variety of barycentric algebras. These are the algebraic systems that have fundamental 
operations given by some binary operations Cr for r E (0, 1 ) ,  where the binary operations 
satisfy these identities: 

Cr (x, x) = X and Cr (X, y) = C1-r (y, x) when 0 < r < 1 ;  

Ctj(s+ 1 ) (cs;t (X, y) , z) Csj (s+1 ) (x, Ct-s (Y, z ) ) when 0 < s < t < s + 1. 
The convex sets are the barycentric algebras that can be embedded in vector spaces; not 
all barycentric algebras can be so embedded. 

The following example, from [Romanowska and Smith] , shows that the class of convex 
sets is not closed under the taking of homomorphic images that respect the fundamental 
operations. Let n be an integer greater than 1 .  Let 0 = {e1 , e2 , . . .  , en } be the standard 
basis for JRn - that is, let Ej = (0, 0, . . .  , 1 ,  . . .  , 0, 0) be the vector with 1 in the jth place and 
Os elsewhere. Let � be the convex hull of the set 0; it is a convex subset of JRn (called the 
standard simplex) . We shall also consider the set P(O) = {subsets of 0} as an algebraic 
system, with binary operations defined by 

Cr (A, B ) = A U B  for r E (0, 1 ) .  

(We emphasize that all the Cr 's , for different values of r , are the same binary operation.) 
The set P(O) cannot possibly be isomorphic to a convex subset of a real vector space, for 
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any convex set that contains more than one point must contain infinitely many points. 
However, the mapping f :  � -+  P(O) defined by 

is a homomorphism - i.e. , it preserves the fundamental operations of the algebraic systems. 
Thus P(O) is a homomorphic image of a convex set. Therefore it preserves any identities 
that could be used to define the variety of convex sets - but it is not a convex set. Thus 
convex sets do not form a variety. In fact , P(O) is a barycentric algebra. 

12.8. Definition. Let X be a linear space, with scalar field JR. or C. A set S s;;; X is 
absorbing (or radial) if for each x E X we have ex E S for all scalars c sufficiently small 
(i .e. , for all scalars c satisfying le i ::; r, where r is some positive number that may depend 
on x and S). 

Show that the absorbing sets form a proper filter on X; thus they are sets that are 
"large" in the sense of 5.3. 

Absorbing sets will be important in the theory of Minkowski functionals (see 12 .29.c 
and 12 .29.g) and topological vector spaces (see 26.26, 27.9.e, and 27.20) . 

COMBINATORIAL CONVEXITY IN FINITE 
DIMENSIONS (OPTIONAL) 

12 .9 .  Radon's Affineness Lemma. Let x0 , XI , . . .  , Xk be vectors in IR.n , for some positive 
integers k and n with k > n. Then there exist real numbers p0 , PI ,  . . .  , Pk , not all zero, such 
that 'LJ=o Pj = 0 and "LJ=o PjXj = 0. 

Hint :  First show that the vectors X I  - x0 , x2 - x0 , . . .  , Xk - x0 are linearly dependent -
see 1 1 .25. 

12.10. Caratheodory's Theorem. Let S s;;; !R.n . Then every point in co(S) can be 
expressed as a .convex combination of n + 1 or fewer elements of S. 

Proof The proof is in several steps. 
(i) Let Tk be the set of all convex combinations of k or fewer elements of S. It suffices 

to show that if k > n then Tk+ I s;;; Tk. (Why?) 
(ii) Let x E Tk+ I · Then x = aoxo + · · ·  + akxk for some x0 , xi ,  . . .  , xk E S and 

ao , ai , . . .  , ak E (0, 1] with ao + · · · + ak = 1. (Explain.) 
(iii) Choose real numbers Po , PI ,  . . .  , Pk as in Radon's Lemma. For j = 0, 1 ,  . . .  , k and 

any real number r, let f3j (r) = Dj - TPj · Show that x = "LJ=o f3J (r)xj and 1 = "LJ=o f3J (r) . 
( iv) By a suitable choice of r , show that x E Tk . 

12.11 .  Radon's Intersection Theorem. Let S be a subset of IR.n consisting of at least 
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n + 2 points. Then S can be partitioned into disjoint subsets Q and R such that co( Q) 
meets co(R) . 

Hints: Let S 2 {xo , x1 , . . .  , Xn+ l } · Choose real numbers Po , Pl , . . .  , Pn+l as in Radon's 
Lemma. By relabeling and reordering, we may assume 

and 

where 0 ::;  r < n + 1 (explain) . Now let 

and 

Then what? 

12.12. Helly's Intersection Theorem. Let S0 , S1 , . . .  , Sk be convex subsets of lR
n , 

where k and n are positive inte�ers and k > n. Suppose that each n + 1 of these sets have 
nonempty intersection. Then ni=O si is nonempty. 

Hints : By induction on k, we may assume that the intersection of any k of the Sj 's is 
nonempty (explain) .  For each j = 0, 1 ,  . . .  , k, pick some Xj E ni#j S; . Apply Radon's 
Intersection Theorem to the points x j .  (How?) 

12.13. The following result is interesting enough to deserve mention, though its proof is 
too difficult to include here: 

Shapley-Folkman Theorem. Suppose x E 2::;:1 co(Aj ) ,  in JRn . Then x can 
be expressed as x = 2::;'=1 Xj , where each Xj E co(Aj ) and where {j : Xj � Aj } 
has cardinality at most n. 

Taking m much larger than n,  this shows that the sum of a large number of arbitrary sets 
is "almost convex." Proofs can be found in the appendices of Arrow and Hahn [1971] and 
Starr [1969] . Actually, those proofs assume the sets Aj are compact , but the problem can 
easily be reduced to that case by using Caratheodory's Theorem and its consequences; see 
26.23.g. 

Other matters related to the theorems of Radon, Helly, and Caratheodory are considered 
by Danzer, Griinbaum, and Klee [1963] . Additional material on convexity, especially in finite 
dimensions, can be found in Roberts and Varberg [1973] , Rockafellar [1970] , and Stoer and 
Witzgall [1970] . 

CONVEX FUNCTIONS 

12.14. Remarks. For the definitions below, we consider functions f taking values in 
[-oo, +oo] . The definitions can be simplified slightly when f is known to be real-valued 
i.e. , when -oo, +oo � Range(!) - and certainly that restricted case still covers most of the 
applications. For these reasons, some mathematicians define "convex" only for real-valued 
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functions. However, the greater generality of extended real-valued functions is occasionally 
useful, because [-oo, +oo] is order complete - i.e . , we can always take sups and infs in 
[-oo, +oo] . 

Arithmetic in [-oo, +oo] is defined as in 1 . 17. Note that a sum of finitely many terms, 
r1 + r2 + · · · + rn , is defined if and only if -oo and +oo are not both among r1 , r2 , . . .  , rn · 
12.15. Definition. Let C be a convex subset of a linear space X,  and let f :  C ---> [-oo, +oo] 
be some function. Then the following conditions are equivalent ; if they are satisfied we say 
f is a convex function. 

(A) The set { (x, r) E C x lR :  f(x) :::; r} is a convex subset of C x JR. (This set is 
called the epigraph of f. )  

(B) The set { (x, r) E C x lR :  f(x) < r} is a convex subset of C x JR. 
(C) Whenever x0 , x1 E C and 0 < A <  1 , then 

f ( ( 1 - .A )xo + .Ax! ) < ( 1 - .A)f(xo )  + .\f(xl ) 

whenever the right side is defined (see remark in 12 . 14 ) . 

(D) Whenever n i s a positive integer and .\ 1 , .\2 , . . .  , An are positive numbers sum
ming to 1 and x1 , x2 , . . .  , Xn E C, then 

whenever the right side is defined (see remark in 12 . 14 ) . 
(E) Whenever n is a positive integer and !L l ,  JL2 , . . . , !Ln are positive numbers and 

X! , X2 , · · · , Xn E C, then 

fL 1 + fL2 + · · · + fLn 
whenever the right side is defined. 

If f is real-valued - i.e . .  if ±oo � Range (!) - then the following conditions are also 
equivalent. 

(F) For each v E X and � E C, the function 

p !(� + pv) - f(O 
p 

is increasing on the interval {p E lR :  p > 0, � + pv E C} .  
(G) For each v E X  and � E C, the function p >----> h� . v (P) = [f(� + pv) - !(0]/p 

is increasing on the set where it is defined - i.e . , on the set {p E lR \ {0} : 
� + pv E C} .  
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Hints : The equivalence of (A) , (B) , (C) follows by considering various cases, according to 
whether each number involved is +oo, -oo, or a finite real number. Obviously (D) implies 
(C) as a special case; conversely, (D) follows from (C) by induction. Condition (E) is just 
a reformulation of (D) . 

Now suppose f i s real-valued. To prove (C) =} (F) , show ht;, ,v (>..p) :S ht;, ,v (P) for 
0 < )... < 1 by taking xo = � and XI = � + pv. To prove (F) =} (C) , take � = x0 and 
v = XI - x0 ; use the fact that ht;,,v (>..) :S ht;,v ( 1 ) . Obviously (G) implies (F) . To prove 
that (C) and (F) together imply (G) , note that ht;,,-v (  -p) = -ht;,,v (p) ; also, the inequality 
ht;,,v ( -p) :S ht;, , v (p) for p > 0 follows from the convexity of f .  

12.16. Further definitions. A function g : C ____, [-oo, +oo] i s concave i f -g i s convex. 
A function h : C ____, [-oo, +oo] is affine if it is both concave and convex. An equivalent 
condition for h to be affine is that 

whenever xo , XI E C and 0 < )... < 1 ,  then 

( 1  - >..)h(xo) + >..h(x i )  

whenever the right side i s defined - i.e. , whenever we do not have one of 
h(x0 ) ,  h(xi ) equal to -oo and the other equal to +oo. 

12.17.  Some elementary properties of convex functions. Let X be a vector space, let C be 
a convex subset of X, and let f :  C ____, [-oo, +oo] be some function. Then: 

a. f is convex if and only if the restriction f 1 L is a convex function for each line segment 
L whose endpoints are elements of C - equivalently, if and only if for each x0 , XI E C, 
the function )... f-+ f ( ( 1 - >..)x0 + >.xi ) is a convex function from the interval [0, 1 ] into 
[-oo, +oo] . 

b. We say f is quasiconvex if the set { x E C : f ( x) :S r} is a convex set for each 
r E [-oo, +oo] . Show that 

(i) Every convex function is quasiconvex. 
(ii) Every increasing function from lR into [-oo, +oo] is quasiconvex. 
(iii) (Example. ) The function f ( x) = x3 is increasing on JR, hence quasicon

vex, but it is not convex. (Hint :  Use 12 . 19(E) . ) 
c. We say f is strictly convex if it has this property: Whenever x and y are two distinct 

points in C and 0 < )... < 1 ,  then f(>..x + ( 1 - >..)y) < >..f(x) + ( 1 - >..) f(y) . 
Show that if C is an open interval in the real line, then any convex function from 

C into lR is either affine or strictly convex. 
d. If f is a real-valued function defined on a linear space, then f is affine if and only if 

f - f(O) is linear. 
Caution: In some contexts the term "linear" is used for affine maps as well. Es

pecially, a "piecewise-linear" map is a map that is defined separately on various 
parts of its domain and is affine on each of those parts. This terminology is especially 
common in numerical analysis. 
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e .  ( Optional.) If f is real-valued and convex and its domain C is the convex hull of a 
finite set, then f is bounded. 

Hints : Say C = co{x1 , x2 , . . .  , Xn } .  First show supxEC f(x) :::; maxj f(xj ) · Then 
let u = � (x1 + x2 + · · · + xn) · For each y E C, show there is some corresponding z E C 
satisfying u = �y + n�l z. Use this to obtain a lower bound on f(y) . 

f. ( Optional.) Let V be a real linear space. Let <P be the collection of graphs of functions 
f that have the property that they can be extended to convex functions from convex 
subsets of V into JR. Then <P has finite character (see 3 .46) . 

12. 18. Remarks. Let C be a convex subset of a vector space X, and let f :  C ----+ [-oo, +oo] 
be a convex function. Then the set 

{x E C : f(x) < +oo} 
i s a convex subset of C, sometimes called the effective domain of f. Most interesting 
behavior of convex functions occurs in the effective domain, and we can replace f with 
its restriction to this set without seriously affecting most results about convex functions. 
Conversely, any convex function f defined on any convex set S <;:;; X can be extended to a 
convex function on any larger convex set C, by taking f(x) = +oo whenever x E C \ S. 
The extension and the original function have the same effective domain. 

Here is a simple special case: Let f be the constant function 0 on some convex set 
S. Let C be any larger convex set. Then f can be extended to the convex function 
Is : C ----+ {0, +oo} defined by 

Is (x) when x E S  
when x E C \ S. 

Then Is is a convex function, sometimes called the indicator function of C. Note that 
its definition depends on not only S but also C, though the choice of C is not reflected 
by our notation Is . (The indicator function should not be confused with the characteristic 
function ls :  C ----+ {0, 1 } , defined in 2.2.b.) 

12.19. Derivatives and convexity. (These results assume some familiarity with college 
calculus. )  Let C <;:;; IR be an interval, and assume f : C ----+ IR is continuously differentiable. 
Show that the following are equivalent : 

(A) f is convex, 
(B) (y - x)f' (y) � f(y) - f(x) for all x, y E C, 
(C) (y - x) [f'(y) - f'(x) ] � 0 for all x, y E C, 
(D) f' ( x) is an increasing function of x on C. 

If f is twice continuously differentiable, then this condition is also equivalent : 
(E) f" � 0 on C. 

Remark. In 25.25 we shall determine precisely how much differentiability a convex function 
must possess. 
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12.20. Corollaries. We now note some specific applications of the preceding results. 
a. Show that t �--* e1 is convex on R Then use that fact to show that if p, q E ( 1 ,  oo) with 

i + � = 1 ,  then o/t Vii � � + * for t , u 2: 0. 
b. The function x �--* xP , defined on [0, +oo) , is convex if 1 � p < oo and concave if 

O < p � l . 
c. Show that tan : [0, 7!)2) ---> [0, +oo) is convex. Taking limits, define tan( 1r /2) = +oo, 

and show that tan : [0, 1r /2] ---> [0, +oo] i s convex. 

12.21. Combining convex functions. Let C be a convex subset of a linear space. 
a. Sums: Let f and g be convex functions defined on C, both taking values in ( -oo, +oo] 

or both taking values in [-oo, +oo) . Then f + g is convex. 
b. Products : Let f, g : C ---> [0, +oo) be convex functions. Assume also that 

0 < [f(x) - f(y)J [g(x) - g(y)J for all x, y E C. 

(This condition is satisfied, for instance, if the linear space is JR, and f and g are both 
increasing or both decreasing.) Show that the product function x �--* f(x)g(x) is also 
convex. 

c. Compositions : Let J � lR be an interval - i.e . , a convex subset of JR. Let f : C ---> J 
and g : J ---> [-oo, +oo] both be convex, and assume g is increasing. Show that the 
composition g o  f : C ---> [-oo, +oo] is convex. As a particular example, show that 
x �--* exp(tan(x)) is convex on [0, 7r/2) . 

d. Pointwise suprema: Let {!>. : >. E A} be a nonempty family of convex functions from C 
into [-oo, +oo] . For each x E C let u(x) = sup>.EA f>. (x) . Then u is convex. (Dually, 
the pointwise infimum of concave functions is concave.) 

Hint : Rather than bother with separate cases according to whether f>. (x) is +oo, 
-oo, or a member of IR, just note that the epigraph of u is the intersection of the 
epigraphs of the f>. 's. 

Example. Using this result (or arguing directly) ,  prove that the mapping x �--* 

- min{ 1 ,  x} is convex on R 
Remarks. A converse of this result is given by (HB4) in 12 .3 1 .  Compare also the 

supremum results in 15.23 and 16. 16(D) . 

12.22. The infimum of convex functions. Let {f.x : >. E A} be a nonempty family of convex 
functions from C into [-oo, +oo] . 

a. In general, the pointwise infimum p(x) = inf.xEA f>. (x) is not convex. 
For instance, let C be the real line, and let {f.x : >. E A} consist of just the two 

functions x and -x. Then the pointwise infimum is - lx l ,  which is not convex. 
b. Define L :  C ---> [-oo, +oo] by taking L (x) = inf '£7=1 cjf>.1 (xj ) ,  where the infimum 

is over all choices of n, cj , Aj , Xj such that 
n is a positive integer, the cy 's are positive numbers summing to 1 ,  the >.y 's 
are members of A, and the xy 's are members of C satisfying x = '£;'=1 CjXj 
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and such that +oo and -oo are not both among the values !>,1 (xi ) ,  !>,2 (x2 ) ,  
· · · , fAn (xn) · 
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Then L is convex, and in fact L i s the largest convex function that satisfies L .,::; f>, for 
all >. . We may refer to it as the convex infimum of the f>, 's. 

Thus, the convex functions from C into [-oo, +oo] form a complete lattice. 
Of course, in some cases, the convex infimum may simply be the constant -oo. 

That is the case, for instance, when C = JR. and the collection of functions consists of 
just { -x, x } .  

c. Suppose {!.\ : ). E A} is directed downward - i.e . , suppose that for each finite set 
A0 c:;; A there is some JL E A such that f11 .,::; min{!>, : >. E A0 } .  Then the pointwise 
infimum p is equal to the convex infimum L .  

NORMS , BALANCED FUNCTIONALS , AND OTHER 
SPECIAL FUNCTIONS 

12.23. Definition and exercise. Let X be a real or complex linear space; let the scalar 
field be denoted by IF'. Let p : X ---> [0, +oo) be some mapping. Show that the follqwing 
conditions are equivalent . If one, hence all of them, is satisfied, we shall say that p is a 
balanced function. 

(A) Jc l  .,::; 1 =? p(cx) .,::; p(x) for scalars c and vectors x. 

(B) Jc1 l .,::; i c2 l =? p(c1x) .,::; p(c2x) for scalars c1 , c2 and vectors x. 

(C) For each number b E  [0, +oo] , the set {x E X  : p(x) .,::; b} is balanced (in the 
sense of 12.3) . 

Show that any balanced function also satisfies p(cx) = p( Jc lx) . In particular, if l e i  = 1 
then p(cx) = p(x) . 

12.24. Definitions. Let X be a real or complex vector space. 
a. A function g : X ---> [ -oo, +oo] is positively homogeneous if it satisfies 

g(tx) = tg(x) for all t E [O, +oo) and x E X. 
Here we follow the convention that 0 · oo = 0. Thus, a positively homogeneous function 
g may have oo in its range, but it must satisfy g(O) = 0. 

A function g :  X ---> [-oo, +oo) is homogeneous if it satisfies 

g(tx) = l t Jg(x) for all scalars t and all x E X. 
(Here g is not permitted to take an infinite value. ) 

Exercise. Let g : X ---> [0, +oo) . Then g i s homogeneous if and only if g i s both 
balanced and positively homogeneous. 
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b. Let C be a subset of X that is closed under addition. Suppose f3 :  C ->  [-oo, +oo] does 
not have both -oo and +oo in its range. If fJ(x + y) ::::; {J(x) + fJ(y) for all x, y E C, we 
say f3 is subadditive (at least , in the context of vector spaces; the term "subadditive" 
has another meaning in measure theory - see 29.29.b) . 

c. A function f : X -> [-oo, +oo] is sublinear if it is both subadditive and positively 
homogeneous. Exercise. Such a function is convex. 

A seminorm is a function f : X -> [0, +oo) that is subadditive and homogeneous. 
Note that any such function is sublinear, hence convex. A norm is a seminorm f that 
also satisfies x =1- 0 =;.. f(x) > 0. Seminorms and norms will be studied in greater 
detail in Chapter 22 and thereafter. 

Remarks. We shall use sublinearity very seldom in this book; most of our functions will 
satisfy either stronger hypotheses (e.g . , linear or seminorm) or weaker hypotheses (e.g. , 
convexity) .  An exception is the proof in 28.37, which uses a sublinear functional. See also 
the remarks in 12 .31 . 

12.25.  Elementary properties and examples. 
a. Any norm is a seminorm; any seminorm is sublinear; any linear function is sublinear; 

any sublinear function is convex. 
b. If p is subadditive, then p(x) ::::; p(y) + p(x - y) and p(y) ::::; p(x) + p(y - x) ,  hence 

-p(y - x) < p(x) - p(y) < p(x - y) . 
c. The map f f--> j+ = max{!, 0} is sublinear on !Rx , for any set X. 
d.  If f3 :  [0, +oo) -> [0, +oo) i s concave and {3(0) = 0, then f3 is subadditive. 

X Hint : Use the decomposition x = ( 1 - >.)0+ >.(x+y) to show {J(x) ;:::: --{J(x+ y) .  x + y  
Similarly, {J(y) ;:::: _Y_{J(x + y). Now add these two results. x + y  

e. In particular, some subadditive functions are the functions 

arctan(s) , s 
1 + s ' min{ 1 , s } ,  tanh(s) , and sP for p E (0, 1 ] .  

(Some beginners may be unfamiliar with tanh(s ) , which i s the function ( e8 - e- 8 ) / (  e 8  + 
e- s ) . )  All of these functions except the last are also bounded; that fact will be signifi
cant in 18 . 14 . 

f. If p : X -> [0, +oo) is balanced and subadditive, then 
p(ex) < ( [ lei ] + 1 )p(x) < ( l e i + 1 )p(x) 

for all vectors x and scalars e, where [s] is the greatest integer less than or equal to s .  

12.26. Pryce's Sublinearity Lemma. Let X be a linear space, let Y s;; X be a convex 
set, and let � E X. Let p :  X ->  IR be a sublinear functional. Let a, b, e E (0, +oo) , with 

p(�) + ae < inf p(� + ay) 
yEY 
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Then there is a point TJ E Y such that 

p(f; + aTJ) + be < inf p(f, + aTJ + by) .  yEY 

(This rather technical result will not be needed until 28.37. ) 

Proof (Pryce [1966] ) .  The hypothesis can be restated as: 

�p(f;) ae � inf p(f, + ay) + 6 yEY 
for some 6 > 0 . 

Consider any yo , Yl  E Y and let fj = ay�!�Y1 • Then fj E Y and 

By sublinearity of p, 

f; + (a + b)fj (1 + � ) (f, + afj) � �f,. a a 

p(f, + ayo + by! ) > ( 1  + � )p(f, + afj) � �p(f, ) .  a a 
Hence for any fixed TJ E Y, we have 

inf p(f, + aTJ + by) yEY 

( b ) { ( _) _ aT/ + by } b ( ) > 1 + - inf p f, + ay : y = b , Y E Y � -P f. a a +  a 
b . b > ( 1  + - ) mf p(f, + ay) � -p(f;) a yEY a 

( 1 + - ) mf p(f; + ay) + - ae � mf p(f; + ay) + -6 b . b ( . ) b 
a yEY a yEY a 

[be + inf p(f, + ay) + �6] . yEY a 

315 

The last expression, in square brackets [ ] , is greater than be + p(f, + aTJ) if we choose TJ E Y 
appropriately. 

MINKOWSKI FUNCTIONALS 

12.27. Definitions. Let S be a star set in a vector space X . Note that if x is a point in 
the vector space (not necessarily a member of S) , then 

{ r E [0. +oo) : rx E S} 
1 {k E (O, +oo] : kx E S} 

is a subinterval of [0, +oo) that includes 0, so 

is a subinterval of (0, +oo] that includes oo. 
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Thus the number 
J.Ls (x) inf { k E (0, +oo] : k- 1x E S} 

is well defined (though it may be oo) . The function J.Ls : X ----) [0, +oo] is the Minkowski 
functional of the set S. 

It is easy to see that the mapping S �--+ J.Ls is direction-reversing � i .e . , if S and T are 
star sets and S � T, then J.Ls � f.LT . The largest star set, X , has the smallest Minkowski 
functional: J.Lx is just the constant function 0. The smallest star set, {0} , has the largest 
Minkowski functional; it is easily seen to be 

{ ! if X =  0 
if X =/= 0. 

In our applications, we will use Minkowski functionals J.Ls mainly when S is a convex set 
� a  case investigated in 12 .29.e � but the most basic properties of Minkowski functionals 
do not involve convexity. 

12.28. Proposition. Let X be a vector space. Let g :  X ----) [0, +oo] be some function, and 
let S be a nonempty subset of X . Then the following two conditions are equivalent : 

(A) S is a star set and g is the Minkowski functional of S. 
(B) g is a positively homogeneous function and 

{x E X  : g(x) < 1 }  C S C {x E X  g(x) :::; 1 } .  
Hints for (B) =;. (A) : To show S is a star set, observe that 

x E S, A E [0, 1 )  
To show J.Ls  :::; g ,  observe that 

=;. g(Ax) = Ag(x) < 1 AX E S. 

g(x) < r =;. g ( �x) < 1 =;. �x E S =;. J.Ls (x) :::; r. 

To show g :::; J.Ls , similarly, 

J.Ls (x) < r =;. �x E S  =;. g (�x) :::; 1 =;. g(x) :::; r. 

12.29. Corollaries and further properties. 
a. A function on a vector space is positively homogeneous if and only if it is the Minkowski 

functional of some star set. 
b. The Minkowski functional of any balanced set is a balanced function. 
c. Let S be a balanced star set. Then J.Ls is finite-valued (i .e . , does not take the value 

+oo) if and only if S is absorbing (as defined in 12.8) . 
d. If g is a positively homogeneous function, then both the sets { x E X : g( x) < 1 }  and 

{x E X  : g (x) :::; 1 }  are star sets with Minkowski functional equal to g. 



Hahn-Banach Theorems 317 

e.  If S is a convex star set, then JLs i s a convex function. 
Hints : If 0 < .\ < 1 and a >  JLs (x) and (3 > JLs (y) , then a- 1x and (3- 1y belong to 

S, hence 

.\x + ( 1 - .\)y 
.\a + ( 1 - .\)(3 

.\a x + ( 1 - .\)(3 y 
.\a + ( 1  - .\)(3 a .\a + ( 1  - .\)(3 (3 E S . 

f. The converse of that last result is false; a star set S may be nonconvex and still have 
JLs convex. 

For instance, let X =  IR2 and define g(x , y) = max{ lx l , l y l } ;  this function is convex. 
Thus the sets A =  { (x, y) E IR2 : g(x, y) < 1 }  and B = { (x , y) E IR2 : g(x, y) :::; 1 }  
are convex. The function g is the Minkowski functional of both A and B ,  and also of 
any set between A and B, but A <;;; S <;;; B does not imply S is convex. 

g. Lemma on the construction of seminorms. Let S <;;; X be a convex, balanced set 
(not necessarily absorbing) , and let JLs be its Minkowski functional. Then the linear 
span of S is the set Xo = u:=l nS = {x E X :  JLs (x) < oo} , and JLs is a seminorm on 
that set. If S is also absorbing, then X0 = X ;  that is, JLs is a seminorm on X.  

Remark. Minkowski functionals will be used in 22. 1 1 ,  22.25, 22.28, and 26.29. 

HAHN-BANACH THEOREMS 

12.30. Introduction. The literature contains many closely related theorems, any one of 
which may be referred to as "the Hahn-Banach Theorem." These theorems are useful in 
different ways in different parts of analysis. We shall prove about 20 of these theorems, 
in this and later chapters - see 12 .31 , 23 . 18, 23.19 , 26.56, 28.4, 28. 14.a, and 29.32. Still 
other forms of the Hahn-Banach Theorem are given by Buskes [1993] , Gluschankof and Tilli 
[ 1987] , Holmes [1975] , Luxemburg [1969] , Thierfelder [1991] , Tuy [1972] , and Zowe [1978] . 

We shall view the Hahn-Banach Theorems as weak forms of the Axiom of Choice. The 
various equivalent forms will be denoted by (HB1 ) ,  (HB2), (HB3) , etc . ; collectively we shall 
refer to them all as HB. (It is surprising that some seemingly weaker forms of HB commonly 
presented as "corollaries" in the literature - such as (HB1 ) , (HB4) , (HB9) - are in fact 
equivalent to HB in their set-theoretic strength. ) We shall keep track of effective proofs 
because the Hahn-Banach Theorem is nonconstructive: It implies the existence of certain 
pathological objects for which we have no explicit examples. However, many analysts prefer 
to view the Axiom of Choice (AC) as simply being "true" and will therefore view the Hahn-·' 
Banach Theorem in the same fashion; these readers can skip some of the converse proofs. 

Considered as a set-theoretic principle, the Hahn-Banach Theorem is weaker than the 
Ultrafilter Principle, which is in turn weaker than the Axiom of Choice. ( In 17.6 we shall 
prove UF =? HB.) In fact, the Hahn-Banach Theorem is strictly weaker than the Ultrafilter 
Principle; that fact was established by Pincus [1972] , but its proof is beyond the scope of 
this book. A survey comparing the relative strengths the Hahn-Banach Theorem and other 
weak forms of Choice is given by Pincus [1974] . Some theorems that appear similar to the 
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Hahn-Banach Theorem are in fact equivalent to the Axiom of Choice (see Lembcke [1979] ) 
or the Ultrafilter Principle (see Buskes and van Rooij [ 1992] ) .  

We begin with vector space versions of the Hahn-Banach Theorem which do not involve 
any topology. In later chapters we shall present other versions in normed vector spaces, 
topological vector spaces, and Boolean algebras. 

12.31. Real-valued, Nontopological Hahn-Banach Theorems. Following are our 
most basic versions of the Hahn-Banach Theorem; we shall show that they are equivalent 
to one another and are consequences of the Axiom of Choice. However, the proofs will be 
postponed until 12 .36, 12 .37, and 12.38, where we present proofs of more general results. 

Many of the Hahn-Banach Theorems can be extended to complex vector spaces via the 
Bohnenblust-Sobczyk Correspondence ( 1 1 . 12) : If X is a complex vector space on which 
A is a linear functional, then X can also be viewed as a real vector space on which Re A 
is a linear functional. We shall omit the details of that argument ; for simplicity we shall 
generally only consider real vector spaces. 

For brevity we combine certain theorems. Theorems (HB2) assumes p is convex where 
(HB3) assumes p is sublinear; otherwise those two theorems are identical. Theorems (HB4) 
and (HB5) differ in the same fashion. Of course, in each case the sublinear version is just a 
weakened form of the convex version, since any sublinear function is convex. The sufficiency 
of convexity was noted at least as early as Nakano [ 1959] , but it seems not to be widely 
known that the assumption of sublinearity can be replaced by the weaker hypothesis of 
convexity. Most of the literature assumes sublinearity - a notable exception being the 
excellent textbook of Reed and Simon [1972] . We will use convexity instead of sublinearity 
throughout this book. 

It is interesting to compare (HB4) with 16 . 16(D) and (HB17) (see 28.4) . It is also 
interesting to compare (HB6) with Dowker's Sandwich Theorem 16.30. 

Banach limits, introduced below, will be discussed further in 1 2.33. Note that any 
member of B(6) is a bounded net of real numbers, hence it has a limsup. 

(HBl ) Existence of Banach Limits. Let (6,  �) be a directed set , and let 
B(6) = {bounded functions from 6 into JR.} . Then there exists a real-valued 
Banach limit for (6 ,  �) - that is, a linear map LIM : B(6) ----+ JR. that satisfies 
LIM(!) :::; lim sup8El> f(b) for each f E B(6) .  

(HB2 ) Convex Extension Theorem and (HB3) Sublinear Extension 
Theorem. Suppose X is a real vector space, Xo is a linear subspace, A : Xo ----+ JR. 
is a linear map, p : X ----+ JR. is a convex (or sublinear) function, and A :::; p on 
X0 . Then A can be extended to a linear map A : X ----+ JR. that satisfies A :::; p on 
X .  

(HB4) Convex Support Theorem and (HB5) Sublinear Support 
Theorem. Any convex (or sub linear) function from a real vector space into JR. 
is the pointwise maximum of the affine functions that lie below it. That is, if 
p :  X ----+ JR. is convex (respectively, sublinear) , then for each x0 E X  there exists 
some affine function f : X ----+ JR. that satisfies f(x) :::; p(x) for all x E X and 
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f(xo) = p(xa ) .  

(HB6) Sandwich Theorem. Let C be a convex subset of a real vector space. 
Suppose that e : C -> lR is a concave function, g : C -> lR is a convex function, 
and e ::; g everywhere on C. Then there exists an affine function f : C -> lR 
satisfying e ::; f ::; g. 

Proofs will be given in 12 .36, 12.37, and 12.38. 
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CONVEX OPERATORS 

12.32. Before proving that the principles in 12 .31 follow from each other and from the 
Axiom of Choice, we shall generalize slightly. This will require more definitions: 

Definitions. Let C be a convex subset of a vector space and let (Z, �) be an ordered vector 
space (not necessarily a vector lattice) . A mapping p :  C ->  Z is 

sub linear 
convex 
concave 
affine 

if p(x + y) � p(x) + p(y) and p(tx) = tp(x) for all t E [0, +oo) ; 
if p(tx + ( 1 - t )y) � tp(x) + ( 1 - t )p(y) for all t E [0, 1 ] ; 
if p(tx + ( 1 - t )y) >,:= tp(x) + ( 1 - t )p(y) for all t E [0, 1 ] ;  
if p(tx + ( 1 - t )y) = tp(x) + ( 1 - t )p(y) for all t E [0, 1] ; 

in each case the condition is to hold for all x, y E C. Note that any sublinear function is 
convex. 

Remarks. The theory of convex operators obviously includes the theory of convex real
valued functions. It also includes the theory of affine operators between (unordered) linear 
spaces, for if f : X -> Y is any affine mapping, we can make it into a convex operator by 
equipping Y with the trivial ordering described in 8.37. We shall study convex operators 
further in Chapters 26 and 27. 

Another way to unite the theories of linear operators and convex functionals is via Ioffe's 
"fans;" these are convex-set-valued functions. An introduction to the subject and further 
references are given by Ioffe [1982] . 

12.33. The notion of generalized limits can be traced back at least as far as Banach [1932] . 
However, the precise definition of "Banach limit" varies slightly from one paper to another 
in the literature. In the case of Z = IR, our definition of "Banach limit" agrees with the 
definition given by Yosida [1964] . 

Let (�, [;;; ) be a directed set, and let (Z, �)  be a Dedekind complete, ordered vector 
space. (The reader should keep in mind the special case of Z = IR; that is the simplest and 
most Important case.) Let 

B(�, Z) {bounded functions from � into Z}; 

in this context a function f is bounded if its range has an upper bound and a lower bound. 
Note that B(�,  Z) is itself an ordered vector space . 
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A member of B(D.. , Z) may be viewed as a bounded net based on D., taking values in Z. 
Since Z is Dedekind complete, for any f E B(D.. , Z) the objects 

lim inf(f) = sup inf f(f3) , 
nEb. f3:;Jn 

lim sup(f) = inf sup f(f3) 
nEb. /3:;ln 

both exist in Z, and lim inf(f) � lim sup(f) . We say that the net f converges if and only 
if lim inf(f) and lim sup (f) are equal, in which case their common value is the limit of f, 
denoted lim(!) . We may sometimes refer to this as the order limit . We may also call 
it the ordinary limit, to contrast it with the generalized limit developed in the next few 
paragraphs. 

Note that ( exercise) the order limit is a positive linear operator, from a linear subspace 
of B(D.. , Z) into Z. That linear subspace - i.e. , the space of all convergent nets - generally 
is not all of B(D.. , Z) ,  since some bounded nets are not convergent in the sense of ordinary 
limits. 

Let LIM : B(D.. ) ----+ Z be a linear map. At the end of this section we shall show that the 
following three conditions are equivalent : 

(A) LIM(!) � lim sup6E6. f(8) for each f E B(D.. , Z) . 
(B) lim infoEtl f(8) � LIM(!) � lim sup6ED f(8) for each f E B(D.. , Z) . 
(C) LIM is a positive operator that extends the ordinary limit to all of B(D.. , Z) . 

That is, f >r:= 0 =? LIM(!) >r:= 0, and LIM(!) = limoEtl f(8) whenever the 
right side of that equation exists. 

If one, hence all, of these three conditions are satisfied, we say LIM is a Z-valued Banach 
limit for the directed set (D., �) If, moreover, (D., �) is the ordered set (N, :::; ) - that is, the 
positive integers with their usual ordering - then we shall call LIM a sequential Banach 
limit . 

In the next few sections we shall prove the existence of Banach limits. The Banach limit 
is an extension of the ordinary limit; it gives us a way of saying that, in a generalized sense, 
every bounded net "converges." In particular, when Z = IR, it says that every bounded 
net of real numbers "converges" to a real number; a real-valued sequential Banach limit is 
a way of saying that every bounded sequence of real numbers converges to a real number. 
We emphasize that there may be many different Z-valued Banach limits for a directed set 
(D., � ) .  They agree on those nets that converge in the usual sense, but they may give 
different generalized limits for those nets that do not converge in the usual sense. 

Banach limits could be contrasted with limsups and liminfs (discussed as "generalized 
limits" in 7.46 ) .  Banach limits have slightly better algebraic properties - they are given by 
a linear map - but they do not preserve topological properties quite as well as the limsup 
and liminf do. 

Proof of equivalence : First , (A) {==} (B) since lim sup f = - lim inf(-f) and LIM(-f) = 
-LIM (f) by the linearity of LIM. Clearly, condition (A) implies that LIM is a positive 
operator, and condition (B) implies that LIM agrees with lim wherever the latter exists. 

It remains only to prove (C) =? (A) . For each E E D., let u(E) = supne: f(8) . Then 
u(E) >r:= f(E) ; thus u - f >r:= 0, so LIM(u - f) >r:= 0. Also, the net (u(E) : E E D.) decreases to 
lim sup6E6. f (8) . Thus LIM(!) � LIM(u) = lime:Etl u (E) = lim sup6E6. f(8) . 
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12.34. Vector-valued Hahn-Banach Theorems. We now generalize the theorems of 
12 .31 . We shall show that the following principles are equivalent to each other and that 
they are all consequences of the Axiom of Choice. (It is not yet known whether they are 
equivalent to the Axiom of Choice or are strictly weaker. ) 

Hypothesis. Let Z be a Dedekind complete, ordered vector space. 

(VHB1 ) Existence of Banach Limits. If (�, �) is any directed set , then 
there exists a Z-valued Banach limit for (�, �) (as defined in 12 .32) . 

(VHB2) Convex Extension Theorem and (VHB3) Sublinear Exten
sion Theorem. Suppose X is a real vector space, X0 is a linear subspace, 
A : X0 ____, Z is a linear map, p : X ____, Z is a convex (or sub linear) function, and 
A � p on X0 . Then A can be extended to a linear map A : X ----> Z that satisfies 
A �  p on X. 

(VHB4) Convex Support Theorem and (VHB5 ) Sublinear Support 
Theorem. Any convex (or sublinear) function from a real vector space into Z 
is the pointwise maximum of the affine functions that lie below it. That is, if 
p :  X ----> Z is convex (respectively, sublinear) ,  then for each x0 E X there exists 
some affine function f : X ----> Z that satisfies f ( x) � p( x) for all x E X and 
f (xo ) = p(.ro ) . 

(VHB6 ) Sandwich Theorem. Let C be a convex subset of a real vector 
space. Suppose that e : C ----> Z is a concave function, g : C ----> Z is a convex 
function, and e � g everywhere on C. Then there exists an affine function 
f : C ----> Z satisfying e � f � g. 

Proofs will be given in the next few sections. 

12.35. Finite Extension Lemma (FEL) . Suppose X is a real vector space and Z 
is a Dedekind complete, ordered vector space. Suppose X0 <;;; X is a linear subspace, 
Ao : Xo ----> Z is linear, p :  X ----> Z is convex, and Ao � p on Xo . Also assume that 

X = span(Xo U S) for some finite set S <;;; X. 

Then Ao can be extended to a linear map A : X ----> Z satisfying A � p on X. 

Remarks. We shall use FEL in proving (VHB2) . Note that FEL differs from (VHB2) only 
in the addition of the hypothesis ( * ) .  

FEL does not require the Axiom of Choice or any of its weaker relatives; FEL can be 
proved using just ZF. FEL or a similar result was already known to Banach; it appears 
explicitly in Luxemburg [1969] . 

Proof of FEL. The proof is by induction on the cardinality of S; thus we may assume S 
contains just one element �. Using the linearity of Ao , the convexity of p, and the fact that 
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A0 � p on X0 , we can verify that 

sup 
wEXo , s<O 

p(w + s�) - Ao (w) 
s 

Chapter 1 2: Convexity 

inf 
p(v + rO - Ao (v) 

vEXo , r > O  r 
(the details of the verification are left as an exercise) .  Now let A(O be any member of Z 
lying between those two values. The function A, being linear, must be defined by 

A (x + rO Ao (x) + d(�) for all x E X0, r E JR. 
From our choice of A(O it follows that A �  p on X (again, the details of the verification are 
left as an exercise) .  This completes the proof. 

12.36. Proof of AC ==> (VHB2) .  We shall give two different proofs. 
Version ( i ) :  This is the more traditional proof. Consider all linear maps A : W ----+ Z, 

where W is a linear subspace of X that includes X0 and A is an extension of A that satisfies 
A �  p on W. Partially order such A's by inclusion of their graphs. By Zorn's Lemma, there 
is a maximal member of this partially ordered set � i .e . ,  an extension A : W ----+ Z that 
cannot be extended farther. If W � X,  choose any � E X \ W. By the Finite Extension 
Lemma 12.35 ,  A can be extended to all of span(W U {0) � contradicting the maximality 
of W. Thus W = X,  completing the proof. 

Version (ii ) :  Some mathematicians may find the Finite Character Principle more intu
itively appealing than Zorn's Lemma, so we offer an alternative proof. Consider all functions 
A : W ----+ Z where W is a subset of X that includes X0, A is an extension of A that satisfies 
A � p on W, and A is a function that can be extended to a linear function (see 1 1 . 10 ) .  
Partially order such A's  by inclusion of their graphs. Use the Finite Character Principle 
( (AC5) ,  in 6.20) to show that there is a maximal A in this collection. 

12.37. Most of the equivalence proofs. In this section we prove most of the equivalences 
stated in 12.34; the one remaining argument is much longer and will be given separately in 
12.38. 

Proof of (VHB2) ==> (VHB3) .  Obvious. 

Proof of (VHB2) ==> (VHB4) .  Define q (x) = p (x + xa) - p(xa ) .  Then q is also convex, 
and q(O) = 0. By (VHB2) (with X0 = {0} ) ,  there exists some linear function g : X ----+ Z 
that satisfies g � q everywhere on X. Now let f (x) = g(x - x0) + p(xo ) ;  this completes the 
proof. 

Proof of (VHB3) ==> (VHB1 ) .  Let X = B(D., Z) ,  and let X0 = {convergent nets} .  Let 
p(x) = lim sup6Etl x(b) ; this functional is easily verified to be sublinear. For x E Xo, let 
A (x) = lim x; then A �  p on Xa . 

Proof of (VHB4) ==> (VHB5) . Obvious. 

Proof of (VHB5) ==> (VHB1 ) .  The mapping q, : f f----+ lim sup6Etl f (b) is a sublinear 
mapping from B(D., Z) into Z, which vanishes on the zero element of the linear space 
B(D., Z) .  Let LIM : B(D., Z) ----+ Z be an affine mapping satisfying LIM � q, and LIM(O) = 
q,(o). 
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Proof of (VHB1)  =? (VHB2) .  Let fo : Xo -+ Z and p be given. For each finite set 
S c;;; X, let <I> s be the set of all functions g : X -+ Z that have the following properties: 
g is an extension of f0 , -p( -x) � g(x) � p(x) for all x E X ,  and the restriction of 
g to span(Xo U S) is linear. By Banach's Finite Extension Lemma (in 12.35) , each il>s is 
nonempty. Since il> s n il>r = il> sur , the family of sets il> s has the finite intersection property. 
Now let 

6 {(g , S) S is a finite subset of X and g E il>s} , 

and let 6 be ordered by: (g1 , SI ) � (g2 , 52) if 51 c;;; 52 ; then 6 is a directed set . Define 
LIM : B(6, Z) -+ Z as in (VHB1 ) .  

For each x E X, define a function 1/Jx : 6 -+ Z by taking 1/Jx (g, S )  = g(  x ) .  Then 1/Jx 
is bounded, since -p( -x) � 1/Jx (b) � p(x) for all b E 6. Define a function f : X -+ Z 
by taking f(x) = LIM(1/Jx ) · Observe that f(x) = LIM(1/Jx )  � LIM(p(x) ) = p(x) ,  since 
p(x) does not depend on b. Also observe that if x E Xo , then 1/Jx (b) = fo (x) , so f(x) = 

LIM(Jo (x)) = fo (x) . 
It remains to show that f is linear. Fix any x, y E X and a, {3 E Z. Then for all 

b = (g, S) sufficiently large in 6, we have x, y E S, so g is linear on the span of { x, y } .  
Thus g(ax + {Jy) - ag(x) - {Jg(y) = 0 .  Therefore 1/Jnx+f>y (b) - a1/Jx (b) - {31/Jy (b) = 0 for all 
b sufficiently large. Since LIM is a linear operator, we have 

f(cxx + {Jy) - af(x) - f3f(y) 
LIM ( 1/Jax+f:Jy - a1/Jx - {31/Jy) 0. 

(The proof above is a reformulation of an argument of Luxemburg [1969] . We use nets 
where Luxemburg used reduced powers of Z and the terminology of nonstandard analysis; 
our condition (VHB1)  is essentially a translation of Luxemburg's Theorem 6 . 1 . )  

Proof of (VHB6) =? (VHB1 ) .  Let e = lim inf and g = lim sup. 

12.38. Proof of (VHB1)  =? (VHB6) .  This proof takes several ingredients from Neumann 
[1994] . However, Neumann was not concerned with weak forms of Choice, and so he used 
Zorn's Lemma to find a minimal element of the set M investigated below. In our present 
investigation of weak forms of Choice, we are not permitted to use Zorn's Lemma - an 
equivalent of AC -- and so it is not clear that M has a minimal element . Instead, in our 
proof (heretofore unpublished) we shall use infinitely many decreasing sequences in M. 

Let L = inf {g(x) - e (x) : x E C}; then L E Z+ . By replacing g with g - L ,  we may assume 
L = 0. Let M be the set of those convex functions f : C -+ Z that satisfy e � f � g on C. 
The set M is nonempty, since g E M . 

The proof will be in several steps. We first show that 

(a) From any f E M  and a, {J E (0, 1 )  with a +  {3 = 1 ,  we can canonically construct a 
function p E M  that satisfies p(x) � f(x) and p (ax + {Jy) � ap(x) + {Je(y) for all 
x, y E C. 

(The term "canonically" here refers to the fact that no arbitrary choices are needed; the 
function p is constructed from a, {3, and f by a uniquely specified algorithm. That fact is 
important , since we shall apply this construction infinitely many times later in this proof. ) 
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To prove (a) , we define a decreasing sequence fo >r h >r fz >r h >r · · · in M as follows: 
Let fo = f. Now assume some fn E M is given. Since e is concave and e � fn , we 
have e (x) � [fn (ax + (3y) - (3e(y)] fa for all x, y E C. Hence we may define a function 
fn+ 1  : C ---+ Z by 

inf { fn (ax + (3:) - (3e(y) ( 1 )  

Then e � f n+ 1 . From the convexity of f n and the concavity of e , we find that f n+ 1 is 
convex, too (easy exercise) . From fn � g and the convexity of fn , we obtain 

fn (ax + (3y) - (3e(y) (3 (3 
� fn (x) + - [fn(Y) - e(y)] � fn (x) + - [g(y) - e (y)] a a a 

for all x, y E C. Hold x fixed and take the infimum over all y; this yields fn+ 1 (x) � fn (x) 
since inf{g(y) - e (y) : y E C} = 0. Thus fn+ 1  E M, too. This completes the recursive 
construction of the sequence {fn } · 

Now define p(x) = infnEN fn (x) . The pointwise infimum of a chain of convex functions 
is convex, so p is convex. Hence p E M. By taking the infimum over all n in both sides of 
( 1 ) ,  we obtain 

p(x) inf { p(ax + (3�) - (3e(y) : y E C} . 

This completes the proof of (a) . 
Next we shall show that 

(b) From any function f E M and any finite sequence ( ( a1 , 6 ) ,  ( a2 , 6),  . . . , ( aJ , �J )) in 

(0, 1 )  x C, we can canonically construct a function q E M that satisfies q(y) � f(y) 
and q(aj�j + ( 1 - aj )y) = ajq(�j )  + ( 1 - aj )q(y) for all y E C and 1 :::; j :::; J. 

Extend the given finite sequence to an infinite sequence ( ( aj , �j )  : j E N) in (0 ,  1 )  x C by 
making it periodic in j with period J. Let (3j = 1 - aj .  Construct a sequence 

in M (2) 

as follows: Let h = f. Given fn, choose Pn E M as in statement (a) - that is , with 
Pn � fn and with 

Pn (anX + f3nY) >,:= anPn (x) + f3ne(y) for all X, Y E C. 

Then we can define a convex function f n+ 1 : C ---+ Z by 

Pn (an�n + f3nY) - CtnPn (�n ) 
f3n for y E C. 

(3) 

(4) 

From (3) we may deduce that e � fn+ 1  on C. On the other hand, fn+1 � Pn follows 
from the convexity of Pn · Thus fn+ 1  E M, completing the recursive construction of the 
sequence (2) .  Now let q be the pointwise infimum of the functions in that sequence. Then 
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q is the order limit of the fn 's, as well as the order limit of the Pn 's. The order limit is 
a linear operator, so it preserves linear combinations. Fix some particular j ,  and consider 
the subsequence of equations obtained from (4) by taking n = j, j + J, j + 2J, j + 3J, . . . . 
Taking order limits, we obtain 

q(y) 

This proves (b). 

q(aj�j + f3jy) - ajq(�j ) 
f3j for y E C. 

Finally we proceed to our main construction. Let � be the set of all ordered pairs ( Q, q) 
where Q is a finite subset of (0, 1 )  x C and q is a member of ]V( that satisfies 

q(a� + ( 1 - a)y) = aq(�) + ( 1 - a)q(y) for all y E C and (a, 0 E Q. 

For such an ordered pair ( Q,  q) and for each x E C, let IJ! x ( Q, q) = q( x) .  In this fashion we 
define a function Wx : � ---> Z.  This function has bounded range: e(x) � Wx(Q, q) � g(x) 
for all (Q, q) E �- Thus Wx E B(�, Z) . 

Say that ( Q, q) I;;; ( R, r) whenever Q s;; R; from statement (b) it follows that I;;; is a 
directed ordering of �- By (VHB1 )  there exists a Z-valued Banach limit LIM : B(�, Z) ---> 
Z. Define f(x) = LIM(IJ!x) · Then e(x) � f(x) � g(x). 

To show f is affine, fix any x, y E C and a E (0, 1 ) .  For all (Q, q) sufficiently large in �' 
we have (a, x) E Q. Then q(ax + ( 1 - a)y) = aq(x) + ( 1 - a)q(y) . That is, 

Wax+ ( l-a)y (Q, q) aiJ!x(Q, q) + ( 1 - a)IJ!y(Q, q) 

for all ( Q, q) sufficiently large. Apply the Banach limit on both sides; we obtain f (ax + 
( 1 - a)y) = af(x) + ( 1 - a)f(y) . This completes the proof. 
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Boolean Algebras 

BOOLEAN LATTICES 

13.1 .  Definition. Let (X, =::;: ) be a lattice that has a first element and a last element -
denoted 0 and 1 ,  respectively. If x E X ,  then a complement of x is an element y that 
satisfies 

x /\ y  = 0 and x V y  = 1 .  

The lattice X i s  complemented i f  each of  its elements has at least one complement . 
Recall from 4.23 that a lattice is distributive if its binary operations V, /\ distribute 

over each other - i.e. ,  if 

x /\ (y V z) = (x /\ y) V (x /\ z) ,  x V (y /\ z) = (x V y) A (x v z) 

for all x, y, z E X. Exercise. If X is a distributive lattice with smallest and largest elements 
0 and 1 ,  then each member of X has at most one complement . 

A Boolean lattice is a complemented lattice that is also distributive. (Some mathe
maticians add the further requirement that 0 =/= 1 ,  but we shall not impose that restriction; 
see the remarks in 13.4.a and 13 .13 . )  A Boolean lattice is complete if its ordering is com
plete - i.e. ,  if every subset S <;;; X has a supremum (written V S) and an infimum (written 
A S) .  

B y  the exercise above, if X is a Boolean lattice, then each x E X has exactly one 
complement , which we shall denote by Cx. It is convenient to also define the symmetric 
difference of two elements x and y: 

x 6 y  (x /\ Cy) V (Cx /\ y) .  

A Boolean lattice i s  essentially the same thing as a Boolean algebra, and the two terms 
may be used interchangeably. However, the term "Boolean algebra" emphasizes the univer
sal algebra viewpoint , as discussed in 13.  7. Boolean rings are introduced in 13. 13 ;  although 
Boolean rings and Boolean lattices are not the same, there is a natural correspondence 
between them, and for that reason the terms "Boolean rings" and "Boolean lattices" are 
occasionally used interchangeably. 

Much of this chapter is based on Halmos [1963] , Monk [1989] , and Sikorski [1964] . 

326 
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13.2. Exercise ( optional ) .  Let X be a distributive lattice with smallest and largest elements 
0 and 1 .  Then the set S of all complemented elements of X is a sublattice of X; it is a 
Boolean lattice if we restrict the lattice operations of X to S. If X contains more than one 
element , then no element of X can be its own complement . 

13.3. The basic example: algebras of sets. If S is an algebra of subsets of a set 0 
(as defined in 5.25) ,  then S is a Boolean lattice, when ordered by r:;; . In this case we have 
a conversion of symbols as described in the table below. Of course, in the algebra of sets, 
the complement of a set s is the set Cs = {X E n : X � S} .  We emphasize that in Boolean 
lattices, C may have other meanings. 

Algebra of subsets of 0 
Boolean lattice 

Boolean lattices are not really much more general than algebras of sets. In fact, the 
Stone Representation Theorem, proved later in this chapter, states that every Boolean 
algebra is isomorphic to some algebra of sets. However, that isomorphism is sometimes 
an inconvenient representation; the proof of the Stone Representation Theorem involves 
arbitrary choices and intangibles. 

Aside from the conceptual difficulty of intangibles, the chief difference between Boolean 
lattices and algebras of sets is one of viewpoint: When considering algebras of sets, we 
are permitted to consider the points that make up those sets. In contrast, the members 
of a Boolean lattice are considered as urelements, not necessarily containing any ''points." 
(Compare the remarks in 5.21 about "pointless" open sets. ) 

13.4. Further examples of Boolean lattices. 
a. If 0 = 1 in a Boolean latt ice X, then X contains just the single element 0. We shall 

call {0} the degenerate Boolean lattice; it is the smallest Boolean lattice. It is 
isomorphic to P(0) = {0} .  

Any Boolean lattice with 0 -=f. 1 will be called nondegenerate. 
To call {0} a Boolean lattice reflects a recent trend among algebraists. The older 

literature imposed the restriction that 0 "I- 1 in any Boolean lattice (and that additional 
restriction is still imposed by some mathematicians today) .  That restriction only 
excludes one Boolean lattice, and so that restriction has little effect on the ultimate 
results of the theory if one is careful to keep track of the degenerate case. However, that 
restriction complicates the notation and the development of the theory, because with 
that restriction Boolean algebras and Boolean rings (discussed later in this chapter) 
do not form equational varieties. We emphasize that 

in this book, { 0} is a Boolean lattice 

and so Boolean algebras and Boolean rings do form equational varieties. 

b. The next smallest Boolean lattice is the set 2 = { 0, 1 }  consisting of two elements, 
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ordered by 0 --< 1 .  This example, though quite elementary, is extremely important ; it 
will be used in 13. 19. The set 2 is isomorphic to :P(S) if S is any singleton. 

c. Some algebras of sets, such as :P(O) , are complete Boolean lattices. 
Others are not complete. For instance, let X be the algebra of all finite or cofinite 

subsets of Z. (This is a special case of 5.26.f. )  Show that S = {finite subsets of the set 
of even integers} is a subset of X that does not have a least upper bound in X.  

Hints : Any upper bound for S is a set B that contains all the even integers; hence 
it is not finite; hence it is cofinite; hence it contains all but finitely many odd integers. 
If r is an odd integer belonging to B ,  then B \ { r} is a slightly smaller upper bound 
for S. 

d. The lattice M3 given in 4 .18 is complemented but not distributive; thus it is not a 
Boolean lattice. 

e. Let S be a topological space. Recall that a subset of S is clopen if it is both open and 
closed. The collection clop(S) = { clopen subsets of S} is an algebra of sets, and thus 
a Boolean lattice. It will play an important role in 17.44. 

f. Let X and _l_ be as in 4 . 12 ,  and let e = {S <:;;; X : Sj_j_ = S} - that is, let e be the 
collection of closed subsets of X. Show that (e, <:;;; ) is a complete Boolean lattice, with 

V At = cl ( U At) , 
tET tET 

CA = Al_ .  

Hint :  To prove (e, <:;;; ) is distributive, observe that for any sets P, Q <:;;; X we have 
cl(P n Q) = cl(P) n cl(Q) , as noted in 4. 12. Apply this with P = A U  B and Q = A U  C 
to show that 

A v (B A C) (A V B) A (A V C) for any A, B , C E e. 

g. Let £.., be some language, and let lF be the set of all formulas that can be formed in 
that language. Assume that the language is equipped with some suitable collection 
of axioms and rules of inference, which reflect ordinary methods of reasoning. (A 
precise specification of such "suitable" axioms and rules will be given in 14.32. )  Call 
two formulas A and '.B "equivalent" provided each implies the other via the given 
axioms and rules of inference. This turns out to be an equivalence relation on JF. The 
resulting quotient algebra is a Boolean lattice, with the binary operations A, V, and C 
corresponding to the logical notions "and," "or," and "not" respectively. See 14.33. 

h. Let 0 be a topological space; define closure and interior as in 5 . 16. A set S <:;;; 0 is 
regular open if S = int(cl(S) ) .  Clearly, any clopen set is regular open; a topological 
space may have other regular open sets as well. The regular open sets may be described 
as those open sets that have no "cracks" or "pinholes." The collection RO(O) = 
{regular open subsets of 0} ,  ordered by <:;;; , forms a complete Boolean lattice, with 
Boolean lattice operations given by 

(\ si 
iE/ 

int (n si) , 
1E/ 

Cs = 0\cl(S) 
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for S, S; E RO(D.) .  Although RO(D.) is a subcollection of :P(D.) and its ordering is the 
restriction of the ordering of :P(D.) , the Boolean lattice operations of RO(D.) generally 
are not just the restrictions of the Boolean lattice operations of :P(D.) . The Boolean 
lattice RO(D.) may appear rather complicated, but it arises naturally in certain ap
plications: It turns out to be the smallest complete Boolean lattice that fits certain 
constructions. It plays an important role in the theory of forcing. See 14.53 and Bell 
[1985] . 

Another Boolean lattice that is of particular interest to analysts is given in 21 .9 .  

13.5. A few computations. If X is  a Boolean lattice, show that 
a. CCx = x. (Thus, C is an involution of X, in the sense of 2 .4 . )  

b. x � y ¢=;. Cx >,:= Cy . 
c. x = y ¢=;. x L y = 0 ¢=;. x 1\ Cy = Cx 1\ y = 0. 

d. De Morgan's Laws. C(x V y) = (Cx) 1\ (Cy) and C(x 1\ y) = (Cx) V (Cy) .  

e .  b >,:= Cb ¢=;. b = 1 ,  and b � Cb ¢=;. b = 0 .  Hence no Boolean lattice with more than 
two elements is also a chain. 

13.6. The duality principle. Whenever B = (X, � ' 0, 1, C, /\, v) is a Boolean lattice, then 
B"P = (X, >,:= ,  1 ,  0, C, V, A) is another Boolean lattice - i.e . ,  we obtain a new Boolean lattice 
if we keep the same set X and the same complementation operation, but swap 0 and 1, and 
swap meets and joins. (In fact , the mapping x f-.+ Cx is an isomorphism, in the sense of 
13.7, from B onto B0P . )  

Any statement about Boolean lattices has a dual statement that follows as a consequence 
by this swapping. For instance, the two De Morgan's Laws in 13.5.d are dual to each other. 
When two statements are dual to each other in this fashion, for brevity we may state just 
one of them. 

BOOLEAN HOMOMORPHISMS AND SUBALGEBRAS 

13 .  7 .  Definitions. We may view Boolean lattices as an equational variety, in the sense of 
8.50. The fundamental operations are V, 1\, C , 0, 1. A Boolean lattice satisfies the axioms 
of a lattice (that is, Ll-L3 in 4.20 ) ,  together with these axioms: 

x 1\ 0 = x 1\ Cx = 0, x V 1 = x V Cx = 1. 

A Boolean lattice, viewed as an algebraic system in this fashion, is usually called a Boolean 
algebra. We may occasionally revert to the term "Boolean lattice" to emphasize the 
ordering structure. We emphasize that, in this book, the singleton {0} is a Boolean algebra 
(albeit a degenerate one) ; see the remarks in 13.4.a. 

A Boolean homomorphism is a homomorphism in this variety - i.e . ,  a mapping that 
preserves the fundamental operations. Thus, a Boolean homomorphism means a mapping 
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f : X --+ Y from one Boolean algebra into another that satisfies 

f(xl V x2) = f(xi ) V j(x2 ) ,  f(xl 1\ x2 ) 
J (Cx) = CJ(x) , f(O) = o, 

f(xi ) 1\ j(x2 ) ,  
f ( 1 ) = 1 ,  

for all x ,  x1 , x2 E X. We may call this a Boolean algebra homomorphism for emphasis or 
clarification. Exercise. It suffices to show that f preserves V and C; the other conditions 
then follow as consequences. Hint : 0 = 0 1\ Co. 

13.8. Definition and a concrete example. A two-valued homomorphism on a Boolean 
algebra X is a Boolean homomorphism from X into the Boolean algebra 2 = {0, 1 } .  

If X i s  an algebra of subsets of some set n, and Wo E n, then one two-valued homomor
phism on X is the probability concentrated at w0 : 

J-L(S) { 1 if w0 E S 
0 if w0 � S for S E X. 

Exercise. If Y is a nondegenerate Boolean algebra, then there does not exist any ho
momorphism from the degenerate Boolean algebra {0} into Y. In particular, there is no 
two-valued homomorphism on the degenerate Boolean algebra {0} .  

13.9. More definitions. If  X i s  a Boolean algebra, then a Boolean subalgebra of X 
is a subobject of X in the variety of Boolean algebras - i.e . ,  it is a set S � X that is 
closed under the fundamental operations. Thus, a Boolean subalgebra of X is a nonempty 
set S � X that satisfies 

Note that S itself is then a Boolean algebra, when equipped with the restrictions of the 
operations of X. 

We can apply to Boolean subalgebras all the conclusions of Chapter 4 about Moore 
closed sets and all the conclusions of Chapter 9 about subalgebras in an equational variety. 
Thus, X is a Boolean subalgebra of itself; the intersection of any collection of Boolean 
subalgebras is a Boolean subalgebra; any homomorphic image of a Boolean subalgebra is 
a Boolean subalgebra; etc. The Boolean subalgebra S generated by a set G � X is 
the smallest Boolean subalgebra that includes G; it is equal to the intersection of all the 
Boolean subalgebras that include G; the set G is then called a generating set , or a set of 
generators, for the Boolean subalgebra S. In the special case where X = P(D) for some 
set D and G is a collection of subsets of D, we find that S is the algebra of sets generated 
by G (see 5.26 .e) . 

13.10. Normal Form Theorem. Let X be a Boolean algebra, and let G � X. Then the 
Boolean subalgebra S generated by G can be described more concretely in three stages, as 
follows: Let 

{ x E X x E G or Cx E G} ,  
{ x E X x is the inf of finitely many members of Gc} ,  
{ x  E X  x is the sup of finitely many members of GcA } .  
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(We have 1 E GcA and 0 E GcAv since the inf of no members of X is 1 and the sup of no 
members of X is 0.) Then GcAv = S. In other words, S consists of the elements of X that 
can be written in the form 

s 
I Ji 

v 1\ cn(i ,j )  gi,j 
i=l j= l 

where I, J1 , h , . . .  , J1 are nonnegative integers, the n( i ,  j) 's are nonnegative integers (or 
more simply, Os and 1s) , and the gi,/s are elements of G. An expression such as the right 
side of ( * ) is said to be in normal form. 

In particular, the subalgebra generated by a finite set is also finite. 

Hints : Obviously GcAv is closed under finite sups. Use the Distributive Law and De Mor
gan's Laws to show that GcAv is also closed under finite infs and under complementation. 

Remarks. An important special case is that in which X = P(n) for some set n. Then 
G, Gc , Gel\ , GcAv are collections of subsets of n, and "inf'' and "sup" mean "intersection" 
and "union," respectively. The theorem above shows that the algebra of sets S generated 
by a given collection of sets 9 can be obtained by a three-stage construction. 

An analogous three-stage construction does not work for 0'-algebras: If we start with a 
collection 9 of subsets of n ,  and then close it under complementation, then under countable 
intersection, then under countable union, the resulting collection A.sa is not necessarily 
equal to the 0'-algebra generated by 9 .  Indeed, A6,. is contained in the 0'-algebra generated 
by 9 ,  but Aba is not necessarily closed under complementation or countable intersection. 
An example is given by n = 2!\! , with A equal to the collection of all sets of the form 
p X n;:m+l {0, 1 } ,  where m is any positive integer and p is any subset of I17=1 {0, 1 } .  We 
omit the lengthy computation that shows that the resulting collection A6,. is not closed 
under complementation or countable intersection. 

It is easy to see where the analogy between algebras and 0'-algebras breaks down: the 
product of finitely many finite sets is finite, but a product TI-rEC A-y (as in 1 .38) of countably 
many countable sets is not necessarily countable - see 2 .20.k and 2.20.1. 

13.11 .  Sikorski's extension criterion. Let G be a subset of a Boolean algebra X ,  
which generates a Boolean subalgebra S <;;;; X. Let Y be another Boolean algebra, and 
let f : G ---> Y be some mapping. Then f can be extended to a Boolean homomorphism 
F : S ---> Y if and only if f satisfies the following condition: 

en, gl (\ cn2 g2 (\ . . .  (\ cnk gk 0 

implies 

for every nonnegative integer k and every choice of 

and 

Moreover, if this condition is satisfied, then the extension F : S ---> Y is uniquely determined. 

Remark. This theorem is similar in nature to 1 1 . 10, though a bit more complicated. 
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Proof of theorem. The uniqueness of F is clear: If an extending homomorphism F : S ----t Y 
exists, then it must satisfy 

I J, 
F(8) = v (\ Cn(i,j) f(g; ,j ) 

i= I  j=I 
whenever 8 

I J, 
V I\ i=I j=I 

Cn(i,j ) g · . 
'l,J . ( 1 )  

Every 8 E S can be  expressed as a combination of g;,j 's i n  G as above, by 13. 10; hence there 
is at most one homomorphism F :  S ----t Y  that extends f. It is not immediately clear that 
equation ( 1 )  determines a function, however. Some 8 E S may be representable in normal 
form in terms of 9i,j 's in more than one way, and so we must verify that the resulting value 
of F(8) does not depend on the particular representation of 8. After we establish that, we 
shall show that the function F defined by ( 1 )  is indeed a homomorphism. 

To show that ( 1 )  actually does define a function, suppose that 

I J, v 1\ cn(i,j ) 9i,j 
i= I  j=I 

for some 9i,i 's and hk,l 's in G, and let 

I J, 

K Lk 
8 V 1\ cm(k, l) h 

k=I l= I  

K Lk  

k ,l 

<pi v 1\ cn(i ,j ) f(g;,j ) and <pz v 1\ cm(k, l) f(hk,t ) .  
i = I  j=I k=I l=I 

We must show that <pi and <pz are equal to each other. 
To show this, first observe - by De Morgan's Law and the Distributive Law - that 

I 
C8 V I\ c cn(i ,j, ) g ·  · .  'l ,)t (2) 

(ji ) i=I 

where the join v(j,) is over all sequences (j;) E IT{=I {1 ,  2 ,  0 0 0 ' J; } - i.e . ,  all sequences 
(ji , Jz , . . .  , j I) that satisfy 1 :::; j; :::; J; for each i .  

Now, from the two representations for 8 ,  together with De  Morgan's Law and the Dis
tributive Law, we see that 

0 8 A C8 
K Lk I v v 1\ 1\ [C Cn(i ,ji )  9i,j, A Cm(k ,l ) hk, l] . 

(j, ) k=I l=I i= I  

The right side of  this equation i s  an expression of  the type in the hypothesis of  Sikorski's 
criterion. Hence, by assumption, 

K Lk I v v 1\ 1\ [ C Cn(i,j; ) f(g;,jJ A Cm(k,t ) f(hk ,t )] 0. 

(j, ) k=I l=I i=I 

Unwinding our computations, we find that (C<pi ) A <p2 
Therefore <pi = <pz . 

0. Similarly, <pi A (C<pz ) 0. 
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Thus F is well-defined. It remains to show that F is a Boolean homomorphism. Suppose 
that s and F(s) are represented as in ( 1 ) .  We claim that 

C F(s) 
I v 1\ c cn(i .j, ) f(gi ,j, ) 

(j, ) i=l 
F(Cs ) .  

Indeed, the first equation follows from our representation of F(s )  in  ( 1 ) ,  by an argument 
analogous to our proof of (2) . The second equation follows from our representation of Cs in 
(2) , using the definition of F. Thus F preserves C . That F also preserves V is obvious from 
our definition of F. Now it follows from an exercise in 13.7 that F is a homomorphism. 

13.12. Tarski-Scott-Luxemburg Epimorphism Theorem. Every Boolean algebra is 
the homomorphic image of some algebra of sets. That is, if X is any Boolean algebra, then 
there exists some Sj that is an algebra of sets and some surjective Boolean homomorphism 
f : SJ ----+ X.  
Proof We may specify such a surjective homomorphism as follows: 

Temporarily forget the Boolean algebra structure of X, and just view X as a set . Let 
A =  J>(X) .  For each x E X, let 

:J,l' {A <;;;; X : X E A} {A E A : x E A} C A. 
(This is  just the ultrafilter on X, fixed at x, as in 5 .5 .c . )  Thus lB = {:.fx : x E X} i s  a 
collection of subsets of A; let Sj be the algebra of subsets of A generated by lB .  

Now recall the Boolean algebra structure of X. We shall show that the mapping :.fx r---+ x 
satisfies Sikorski 's criterion ( 13. 1 1 ) ; hence it extends uniquely to a Boolean algebra homo
morphism from Sj onto X. Let 

and Y1 , Y2 , · · · , Yn- 1 , Yn 

be any elements of X, such that 

(We permit rn or n to be 0, with the understanding that the intersection of no subsets of 
A is just A. )  It suffices to show that 

0. (b) 
The set on the left side of (a) can be rewritten as 

The fact that this set is empty implies that 
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and therefore x; = y1 for some i and j .  But then x; A Cy1 = 0, implying (b) . 
Remarks and alternate proof. This theorem could be taken as a corollary of the Stone 
Representation Theorem (UF6) in 13.22. However, the Stone Representation Theorem is 
an equivalent of the Ultrafilter Principle - i.e. ,  it is a weak form of the Axiom of Choice. 
In contrast, the present theorem does not require any arbitrary choices. We shall use that 
fact in our proof of (HB12) =? (HB13) ,  in 23.19. 

This theorem was announced by Tarski [1954] , who credited it to Scott. It was subse
quently used by Luxemburg [1969] . 

Readers with a greater background in algebra may prefer the following proof. Let Xb 
denote the given Boolean algebra X, and let Xs denote the underlying set of X - i .e . ,  
without its Boolean structure. Let A be the free Boolean algebra that has the set Xs for 
its set of generators. By the definition of a free Boolean algebra (not covered in this book) , 
the identity map i : Xs ----+ Xb extends uniquely to a homomorphism I : A ----+ Xb, which 
is therefore surjective. The construction of free algebras is a well-known construction and 
can be found in many algebra books. By an argument similar to the proof of 13. 1 1 ,  it can 
be shown (without using the Axiom of Choice or any of its weaker offspring) that the free 
Boolean algebra with generators Xs is isomorphic to a subalgebra of P(P(Xs ) ) ;  thus A is 
isomorphic to an algebra of sets. 

BOOLEAN RINGS 

13.13. Definitions and remarks. A Boolean ring i s  a ring X with unit, in which every 
element is idempotent - i.e. , in which x2 = x for every x E X. The collection of all Boolean 
rings is an equational variety, as defined in 8.50, and so our results on algebraic systems 
are applicable. The fundamental operations are the ring operations: · , +, - , 0, 1 .  Boolean 
rings are a full subcategory of the category of rings with unit. 

We emphasize that, by our definition, the degenerate ring {0} is a Boolean algebra. Some 
of the older literature imposes the further restriction that 0 =/= 1 as part of the definition 
of a Boolean ring; see the remarks in 13 .4.a. In this book, {0} is a Boolean ring, and so 
Boolean rings do form an equational variety. 

Exercise. Let X be a Boolean ring. Show that 

-x = x and xy = yx 
for all x, y E X. Hints: (x + x)2 = (x + x) and (x + y)2 = (x + y) . 

13. 14. Any Boolean ring (X, +, - , · , 0, 1 )  can be made into a Boolean lattice with the same 
underlying set, (X, A, V, C, 0, 1 ) ,  by the definitions 

p A q  = pq, p v q = p + q + pq, Cp = 1 + p. 
The unary operations 0 and 1 are left unchanged. Conversely, we can make any Boolean 
lattice into a Boolean ring by defining 

pq = p A q, p + q = p 6 q, -p p. 



Boolean Rings 335 

These two transformations are inverses to each other; they yield a bijection between Boolean 
rings and Boolean lattices. (The relevant verifications are left as a tedious but straightfor
ward exercise. ) 

In the mathematical literature, the phrases "Boolean lattice," "Boolean ring," and 
"Boolean algebra" are sometimes used interchangeably. The same set X may be viewed as 
a Boolean lattice or a Boolean ring. However, some caution must be exercised. It should 
be noted that 

if X contains more than one element , then the ring and lattice structures are not 
compatible with each other in the sense of ordered groups (discussed in 8.30) . 

Proof. We noted in 10.2 that an ordered group containing more than one element cannot 
have a lowest or highest element , but any Boolean lattice has both. 

13.15. Proposition ( optional ) .  Let p(xl , x2 , . . .  , xn ) and q (x1 , X2 , . . .  , xn ) be terms for the 
variety of Boolean algebras (as in 8.50) - that is, assume p and q are functions of the vari
ables x1 , x2 , . . .  , xn , expressed by formulas using only those variables and the fundamental 
operations 0, 1 ,  V, 1\ , C or 0, 1 ,  · , +.  Then 

the equation p(x1 , x2 , . . .  , xn ) = q(x1 , x2 , . . .  , xn ) is satisfied by every choice of 
X1 , x2 , . . .  , Xn in every Boolean algebra X 

if and only if 

the equation p(x1 , x2 , . . .  , xn ) = q(x1 , x2 , . . .  , xn ) is satisfied by every choice of 
x1 , x2 , . . .  , x, in the Boolean algebra 2 = {0, 1 } .  

In other words, the identities that are true for all Boolean algebras are the same as the 
identities that are true for 2. 
Remarks. We omit the proof, since this result is not needed later in this book. A proof is 
given by Johnstone [ 1987] and other books. 

13.16. Some features associated with Boolean rings are equivalent to features associated 
with Boolean lattices: 

a. If X is a Boolean ring, then a Boolean subring of X is a nonempty subset S � X 
that is closed under the fundamental operations of rings with unit - i.e. , that satisfies 

It is then a Boolean ring in its own right , when equipped with the restrictions of the 
operations of X .  

Let X be a Boolean algebra, and let S � X .  Show that S is a Boolean subring 
( i .e. , closed under the ring-with-unit operations) if and only if S is a Boolean sublattice 
( i .e . ,  closed under the Boolean lattice operations) . Hereafter, we shall use the terms 
"Boolean sublattice,'' "Boolean subring," and "Boolean subalgebra" interchangeably. 



336 Chapter 1 3: Boolean Algebras 

b. Recall that a ring-with-unit homomorphism is a mapping f : X ----+ Y, from one ring 
with unit to another, that preserves the fundamental operations of rings with units 
i.e. ,  that satisfies 

J(x1 x2) = f(xl )f(x2 ) ,  

f (  -xi ) = -f(xl ) ,  
for all x1 , x2 E X. 

f(xl + x2 ) 

f(O) = 0, 

f(xl ) + f(x2 ) ,  

/ ( 1 )  = 1 

Let f : X ----+ Y be a mapping from one Boolean algebra into another. Show that 
f is a homomorphism of Boolean lattices (as defined in 13 .  7) if and only if f is a 
homomorphism of rings with unit (as in the preceding paragraph) . Hereafter, either 
type of homomorphism may be described more briefly as a Boolean homomorphism. 

13. 17. More definitions. Let X be a Boolean ring. 

a. By an ideal in X we shall mean a set S c;;:; X that is an ideal in the sense of 9.25, in 
the category of rings with unit or in the category of Boolean rings. (We obtain the 
same ideals either way; see 9 .26.g. ) Clearly the set X itself is an ideal; any other ideal 
is called a proper ideal. 

An equivalent definition can be given in terms of the lattice structure. Exercise. 
Let X be a Boolean algebra, and let S c;;:; X. Show that S is an ideal in X if and only 
if S is nonempty and 

( i) s, t E S => s V t E S, and 

( ii) s E S, x E X => x 1\ s E S. 

b. Dual to the notion of "ideal" is that of "filter." Let X be a Boolean algebra, and let 
T c;;:; X. We shall say that T is a filter if T is nonempty and 

( i) s, t E T => s 1\ t E T, and 

( ii) t E T, x E X => x V t E T. 

Equivalently, a filter is a set of the form f- 1 ( 1 ) ,  where f is any Boolean homomorphism. 
Clearly the set X itself is a filter; any other filter is called a proper filter. (Note that 
the improper filter is of the form f- 1 ( 1) because we may take f : X ----+ { 0} ;  recall that 
0 = 1 in the degenerate Boolean algebra {0} . ) 

c .  Let T = {Cs : s E S} ; then T is a filter if  and only if S is  a ideal. We say S and T are 
dual to each other. 

d. If X =  P(O) for some set 0, with ordering given by c;;:; , then an ideal or filter in X as 
defined above is the same thing as an ideal of sets or a filter of sets (as defined in 5.2 
and 5 . 1 ) .  

13. 18. Let I be a proper ideal in a Boolean algebra X,  and let F = {Cx : x E I}; thus F 
is a proper filter. Show that the following conditions are equivalent. When any of them is 
satisfied, we say I is a prime ideal and F is a Boolean ultrafilter. 

(A) I is a maximal ideal - i.e . ,  a proper ideal that is not included in any other 
proper ideal. (Equivalently, F is a maximal filter. ) 
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(B) For each x E X, exactly one of x, Cx is an element of I (and hence the other 
is a member of F) .  That is, the filter F = { x E X : Cx E I}  is also equal to 
{x E X :  x tt I} .  

(C )  Whenever x 1\ y E I ,  then at least one of  x, y i s  an element of I. Equivalently: 
if x V y E F, then at least one of x, y belongs to F. 

(D) The quotient Boolean algebra X j I is isomorphic to { 0, 1 } .  

(E) The characteristic function of F is a two-valued homomorphism on X (defined 
as in 13 .8) .  

If X = P(n) for some set n,  then another equivalent condition is 

(F) F is an ultrafilter of sets on n (in the sense of 5.8) . 
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Hint for (A) :=;. (B) : Show that if I is an ideal in X containing neither z nor Cz , then 
{ x V y : x � z and y E I } is a strictly larger ideal that contains z .  

13.19. The dual of a Boolean algebra A i s  defined to be the set 

A* {two-valued homomorphisms on A} 
{characteristic functions of Boolean ultrafilters in A},  

which is  a subset of  2A = {mappings from A into { 0 ,  1 } } . From the examples in 13 .8  we see 
that A* is empty when A is the degenerate algebra {0} ,  but A* is nonempty when A =  P(n) 
for some nonempty set n.  In (UF8) we shall prove that A* is nonempty whenever A is any 
nondegenerate Boolean algebra. In 17.44 we shall introduce a natural topology on A* .  

Remarks. Since we may identify sets with their characteristic functions, we could say 
that a Boolean algebra A has dual A* = {Boolean ultrafilters in A} <;;; P(A) . However, we 
prefer to view A* as a subset of 2A because this makes the topology on A* (introduced in 
17.44) more obvious and also makes more obvious the analogy between Boolean duality and 
the other kinds of dualities described in 9.55. 

Caution: Some mathematicians instead define A* to be the set of all prime ideals in A. 
Switching to this definition would require no changes of substance; we would simply have to 
replace each argument with a d_ual argument . Of course, switching back and forth between 
the two conventions is a tedious process, so we find it more convenient to stick with just one 
of the conventions. We prefer to use ultrafilters rather than ideals here, because this makes 
our Boolean duality more like the other kinds of duality discussed in 9.55. In this book we 
shall always take A* to be the set of (characteristic functions of) Boolean ultrafilters. 

13.20. Proposition. Any finite, nondegenerate Boolean algebra X has a nonempty dual. 
In fact , if x0 E X \  {0} , then there exists at least one f E X* with f(x0) = 1 .  

Remark. This proposition does not require the Axiom of Choice or any of its weakened 
forms. This proposition will be used, together with a weak form of Choice, to prove (UF8) 
in 13.22, which removes the restriction to finite X's. 
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Proof of proposition. Since So = { u E X : 0 -< u � x0 } is a nonempty, finite poset, it 
has a minimal element. Let uo be any minimal element of S0 . (Different choices of u0 
may yield different functions f, but in the present argument we are only concerned with 
proving the existence of at least one such f; we do not need a canonical, particular f . )  
Observe that y 1\ uo i s  either uo or  0, for each y E X .  Use that fact to show that the set 
T = {y E X  : y >,:o u0} is a Boolean ultrafilter in X .  Hence its characteristic function 

f(y) 

is a member of X* with f(xo ) = 1 .  

{ 1 i f  y E T  
0 if y E X \  T 

13.21. Lemma on Stone's Epimorphism. Let X be any Boolean algebra. Assume 
that X*  is nonempty. Then there exists a Boolean homomorphism from X onto an algebra 
6 of subsets of X* .  

In fact ,  one such homomorphism may be defined as follows: For each x E X, let S(x) = 
{! E X* : f(x) = 1 } .  Let 6 be the range of this mapping. Verify that 

S(x V y) = S(x) U S(y), 

S(Cx) = X* \  S(x) , 

S(x 1\ y) = S(x) n S(y), 

S(O) = 0 ,  S( 1 )  = X*.  

These equations show that 6 i s  an algebra of subsets of X*  and that the mapping x f--+ S(x) 
is a homomorphism from X onto 6. 

These observations do not require the Axiom of Choice or any of its weakened forms. 
However ,  we can draw further conclusions about Stone's epimorphism if we assume some 
weakened form of the Axiom of Choice; see (UF6) in 13.22. 

BOOLEAN EQUIVALENTS OF UF 

13.22. We shall show that the several principles listed below are equivalent to the Ultrafilter 
Principle. In Chapter 6 we proved (UF1 )  =} (UF2) (and in Chapters 7 and 9 we proved 
that (UF1 )  <=? (UF3) <=? (UF4 ) ) ;  now we shall complete the cycle by proving that (UF2) 
=} (UF5) =} (UF6) =} (UF7) =} (UF8) =} (UF9) =} (UF10) =} (UF1 ) .  

Remark. Although (UF1 )  i s  probably the version of the Ultrafilter Principle most useful 
for analysts, the variants listed below are as well known in logic and algebra. The mathe
matician who is searching through the literature for equivalents of UF and related material 
would do well to look under not only "ultrafilter," but also "prime ideal" and "Boolean." 

(UF5) Boolean Separation Theorem. The dual of a Boolean algebra 
separates its points. That is, if X is a Boolean algebra and x0 , x1 are distinct 
members of X ,  then there exists f E X* with f(x0 ) -=/=- f(x l ) .  Or, by translation, 
we may restate this as: If X is a Boolean algebra and x0 E X \  {0} ,  then there 
exists f E X* with f(xo) = 1 .  
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(UF6) Stone Representation Theorem (explicit version) . If X is a 
nondegenerate Boolean algebra, then X* is nonempty and the Stone mapping 
(described in 13.2 1 )  is an isomorphism from X onto an algebra of sets. 

(UF7) Stone Representation Theorem (simple version) . Every Boolean 
algebra is isomorphic to some algebra of sets. 

(UF8) Boolean Prime Ideal Existence Theorem. If X is a nondegenerate 
Boolean algebra, then X has a prime ideal. (Equivalently, X has a Boolean 
ultrafilter; X* is nonempty; there exists a two-valued probability on X, in the 
terminology of 23. 19.b.) 

(UF9) Boolean Prime Ideal Extension Theorem. Let X be a Boolean 
algebra. Then every proper ideal in X is included in a prime ideal. (Equivalently, 
every proper filter in X is included in a Boolean ultrafilter. )  

(UFlO) Boolean Ultrafilter Extension Theorem. Let X be a Boolean 
algebra, and let S be a nonempty subset of X. Then S is included in a Boolean 
ultrafilter if and only if S has this finite meet property: 

s1 !\ s2 !\ · · · !\ sn i- 0 for each finite set { s1 , s2 , . . . , sn } C::: S. 

(Equivalently, S is included in a prime ideal if and only if S has the analogous 
finite join property. ) 
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Proof of (UF2) =? (UF5) .  Let ci> be the collection of all functions f from subsets of X 
into {0, 1 }  that have the following property: 

f can be extended to a Boolean homomorphism from some subalgebra of X into 
{ 0, 1 } ,  where that subalgebra includes the point x0 and where that homomor
phism maps x0 to 1 .  

Then ci> can be  described also as the set of all functions f from subsets of X into {0 ,  1 } ,  
such that 

{ (x0 , 1 ) }  U Graph(!) is the graph of a function that satisfies Sikorski 's extension 
criterion ( 13 . 1 1  ) .  

It is easy to verify that ci> has finite character, in the sense of (UF2) (iii ) .  Also, ([> satisfies 
(UF2)( i )  trivially, since the set {0, 1 }  is finite. To verify (UF2) (ii ) ,  let S be any finite 
subset of X. Then the Boolean subalgebra generated by S U { x0 } is finite, and so we can 
apply 13 .20 to it. Thus, (UF2) is applicable; this completes the proof. This argument is a 
modification of one by Rice [1968] . 

Proof of (UF5) =? (UF6) . X* is nonempty, so Stone's mapping S : X ----+ 6 in 13.21 is 
well-defined. Also, from (UF5) we see that x E X\{0} =:;, S(x) i- 0. Thus the ring-with
unit homomorphism S : X ----+ 6 has kernel equal to {0} ,  so S is injective. Therefore S is 
an isomorphism from X onto 6 .  
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Proof of (UF6) =? (UF7) . Obvious. 

Proof of (UF7) =? (UF8) . Immediate from the example in 13.8. 

Proof of (UF8) =? (UF9) .  Let I be a given proper ideal in X. Let 1r : X ----+ X/ I be 
the quotient map, onto the quotient Boolean algebra. By (UF8) , X/ I has a prime ideal P. 
Verify that 1r- 1 (P) is a prime ideal in X that includes I. 
Proof of (UF9) =? (UF10) . The "only if" part is obvious and does not require (UF9) ;  any 
subset of an ultrafilter (or more generally, any subset of a proper filter) has the finite meet 
property. For the "if" part, conversely, suppose S has the finite meet property. Then the 
set {x E X : x >r s1 /l. · · · /l. sn for some finite set {s1 , . . .  , sn } � s} 
is a proper filter containing S. (In fact , it is the smallest such filter; it is the filter generated 
by S. )  By (UF9) , this filter is contained in some ultrafilter. 

Proof of (UF10) =? (UF1 ) .  Immediate from 13. 18(F) . 

HEYTING ALGEBRAS 

13.23. In  this subchapter we shall consider two types of algebraic systems that are slightly 
more general than Boolean algebras. They have most of the properties of Boolean algebras, 
but not quite all. In particular, they lack some of the symmetry or duality of Boolean 
algebras; thus they might be thought of as "one-sided Boolean algebras." That relatively 
pseudocomplemented lattices are more general than Heyting algebras and Heyting algebras 
are more general than Boolean algebras can be seen from the examples in 13.28. 

13.24. Definition. Let X be a lattice, and let a, b E X. Then the set { x E X : a /1. x � b} 
is nonempty - for instance, b is a member. The pseudocomplement of a relative to b 
is the element of X denoted by a =? b and defined by this formula: 

(a =? b) max{ x E X : a /1. x � b} 

if such a maximum exists. We shall also refer to =? as the Heyting implication. 
We say that X is a relatively pseudocomplemented lattice if the Heyting impli

cation is a binary operation - that is, a =? b exists in X for all a, b E X ,  and thus the 
Heyting implication is a mapping from X x X into X.  

13.25. Basic properties. Let X be  a relatively pseudocomplemented lattice. Then: 

a. x � (a =? b) if and only if a /1. x � b. 
b. x � (a =? ( b =? c)) if and only if a /1. b /1. x � c. 
c. Interchange of Hypotheses. (a =? ( b =? c)) = ( b =? (a =? c) ) . 

d. (a /1. (a =? b) ) � b � (a =? b). 
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e. If a =:$  b, then (c =? a) =:$  (c =? b) and (a =? c) � (b =? c) .  Hint :  
{x E X :  c 1\ x =:$ a} C {x E X :  c 1\ x =:$ b} , 
{x E X : a l\ x =:$ c} => {x E X : b l\ x =:$ c} .  

f. ( a  =? b) =:$ ( ( b =? c) =? ( a  =? c)) . 
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g. X has a largest element , hereafter denoted by 1. It is equal to (a =? a), for any a E X .  
h .  ( 1 =? a )  = a and (a =? 1 )  = 1 for any a E X .  

1 .  a =:$  b if and only if (a =? b) = 1 .  
j .  X is a distributive lattice. In fact ,  it satisfies one of the infinite distributive laws: 

If a E X and S <;;:: X and u = sup(S) exists, then sup{ a 1\ s : s E S}  exists 
and equals a 1\ u. 

Proof. Let T = {a 1\ s : s E S}. In any lattice, if u = sup( S) exists, then a 1\ u is an 
upper bound for T (easy exercise) . To show that in a relatively pseudocomplemented 
lattice, a 1\ u is the least upper bound, we shall show that a 1\ u =:$ T, where T is any 
given upper bound for T. By assumption, a 1\ s =:$ T for each s E S. Then each s E S 
satisfies s =:$ (a =? T) , by definition of =?.  Thus u =:$ (a =? T) . Using the definition of 
=? again, we have a 1\ u =:$ T, as required. (This proof can be found in Rasiowa and 
Sikorski [1963] and other books . )  

k. It  can be shown that relatively pseudocomplemented lattices form an equational variety. 
We omit the proof; it can be found in Rasiowa [1974] . 

13.26. A Heyting algebra (also known as a Brouwerian lattice or a pseudo-Boolean 
algebra) is a relatively pseudocomplemented lattice with the further property that 

X has a smallest element , denoted hereafter by 0. 
In a Heyting algebra X ,  we also define a unary operation C : X ---> X by 

Ca (a =? 0) max { x E X : a 1\ x = 0} .  
The operation C i s  called the pseudocomplement . 

13.27. Basic properties. Let X be a Heyting algebra. Prove the following properties. 
(Several of these are just specializations of results of 13.25, obtained by setting one of the 
variables to 0 . )  

a. Co = 1 ,  C 1  = o, (o '* b) =  1 .  
b .  If a =:$ b ,  then Cb =:$ Ca. 
c. Contrapositive Law. (a =? (Cb)) = (b =? (Ca) ) . 
d. Double Negation Law. a =:$ CCa. Hint :  Use the Contrapositive Law with b = Ca, 

and use 13.25. i . 
e. (a =? b) =:$ ( (Cb) =? (Ca) ) .  
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f. a A (Ca) = O. 
g. (a =} (Ca)) = (Ca) . 
h. Brouwer's Triple Negation Law. CCCa = Ca .  

Hints : (Ca) � CC(Ca) by applying the Double Negation Law to  Ca .  Also, apply C 
to both sides of the Double Negation Law; by 13.27.b this yields C(CCa) � C(a) . 

i. ( (Ca) A (Cb)) = C(a V b) .  
j .  ( (Ca) V (Cb)) � C(a A b) .  
k. ( (Ca) V b) � (a =}  b) . 
l. CC (b V (Cb) ) = 1 .  Hint :  Use 13.27.f with a =  Cb; also use 13.27.i .  

m. Although we omit the proof, it can be shown that Heyting algebras form an equational 
variety. See Rasiowa [1974] . 

n. Every Boolean lattice is a Heyting algebra. 

13.28. Topological examples. Let X be a set, and let 'D be a collection of subsets of X that 
is closed under finite intersections and arbitrary unions. Assume that the partially ordered 
set ('D,  � )  is a lattice. 

Then ('D, �) is a relatively pseudocomplemented lattice. To see this, let S, T be any two 
given members of 'D. Let Xs,T = {G E 'D :  S n G � T}. Then the union of the members 
of Xs,T is itself a member of Xs,T , and thus the largest member of Xs,r;  hence it satisfies 
the requirements for a relative pseudocomplement . 

We note two particular instances of this when X is a topological space; these examples 
are from Rasiowa and Sikorski [1963] : 

a. The lattice of open sets, discussed in 5 .21 ,  is a Heyting algebra, since it also has a 
smallest member - namely, the empty set. (Although the proof is too long to present 
here, it can be shown that, conversely, any Heyting algebra is lattice isomorphic to 
the lattice of open sets of some topological space; a proof of this is given by Rasiowa 
and Sikorski [1963, page 128] . )  In 5 .21 we verified directly that the lattice of open sets 
satisfies one of the infinite distributive laws; that fact also follows from 13 .25.j .  The 
lattice of open sets may or may not be a Boolean algebra; in 5 .21 we gave an example 
in which the lattice of open sets does not satisfy the other infinite distributive law and 
thus is not a Boolean algebra. 

b. The open dense subsets of a topological space X form a lattice, with binary lattice 
operations u, n (see 15 . 13.c) .  In fact , it is a relatively pseudocomplemented lattice, by 
the argument given at the beginning of this section. It may or may not have a smallest 
member, and thus it may or may not be a Heyting algebra. For instance, ( exercise) it 
does not have a smallest member if X is the real line with its usual topology. 

13.29. Which Heyting algebras are Boolean? Suppose X is a Heyting algebra. Then the 
following conditions are equivalent : 

(A) a V (Ca) = 1 for all a E X. 

(B) CCa � a  for all a E X. 
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(C) (a =;. b) � ((Ca) V b) for all a , b E X. 
(D) ( (Ca) =;. (Cb)) � (b =;. a) for all a, b E  X. 
(E) ((Ca) =;. b) � ((Cb) =;. a) for all a , b  E X. 
(F) X is a Boolean algebra. 
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Proof. If X is a Boolean algebra, then it is easy to verify that all the other conditions listed 
above are satisfied. Conversely: 

If (A) holds, then C is a complementation operation (as in 13. 1 ) ,  not just pseudocomple
mentation; since any Heyting algebra is a distributive lattice, (F) follows . For (B) implies 
(A) , note that CC (a V (Ca)) = 1 and a �  CCa in any Heyting algebra. For (C) implies (A) , 
let b = a. For (D) implies (B) , let b = CCa and simplify. For (E) implies (B) , let b = Ca. 



Chapter 14 

Logic and Intangibles 

14.1 .  Introduction. Contrary to the assumption of many nonmathematicians, the study 
of formal logic does not make us more "logical" in the usual sense of that word - i.e. , the 
study of logic does not make us more precise or unemotional. Formal logic is not merely 
a more accurate or more detailed version of ordinary mathematics. Rather, it is a whole 
other subject, with its own methods and its own theorems, which are of a rather different 
nature than the theorems of other branches of mathematics. 

Because many of logic's most important applications are in set theory, those two subjects 
are often presented together, and they may be confused in the minds of some beginners. 
However ,  logic and set theory are really different subjects. It is possible to do some inter
esting things in set theory without any formal logic (see Chapter 6 ) .  Conversely, logic can 
be applied to other theories besides set theory - e.g. , real analysis, ring theory, etc. We 
have already seen examples of this in 8.51 and 13 .15 .  

14.2. Chapter overview. This chapter provides a brief introduction to formal logic. Our 
presentation is mostly conventional, but we follow the unconventional approach of Rasiowa 
and Sikorski [ 1963] in our definition of "free variables" and "bound variables;" this is dis
cussed in 14.20. 

We shall cover the basics of logic, up to and including a proof of the Completeness and 
Compactness Principles, which show that the syntactic and semantic views of consistency 
are equivalent . An easy corollary of the Compactness Principle is the existence of nonstan
dard models of arithmetic and analysis in 14.63; this is one way to introduce the subject of 
nonstandard analysis. The Completeness and Compactness Principles are also interesting 
to us because they are equivalent to the Ultrafilter Principle, a weak form of Choice studied 
extensively in other chapters of this book. 

After the Completeness and Compactness Principles we shall state a few more advanced 
results, with references in lieu of proofs. Our main goal is to develop some understanding of 
the notion of "consistency," so that we can understand Shelah's alternative to conventional 
set theory, 

Con(ZF) Con(ZF + DC +  BP) . 

This result was proved by Shelah [1984] , but the proof is too long and too advanced to be 
included in this book. Our goal is only to understand the statement of Shelah's result and 
some of its applications. At the end of this chapter, we shall use Shelah's consistency result 
to explain intangibles - i.e . ,  objects that "exist" in conventional mathematics but that lack 
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''examples." For a first reading, some may choose to skip ahead to the end of this chapter 
and just read the summary of consistency results and the explanation of intangibles; the 
rest of this chapter will not be needed elsewhere in the book. 

SOME INFORMAL EXAMPLES OF MODELS 

14.3. In logic we separate a language from its meanings. An interpretation of a language 
is a way of assigning meanings to its symbols. Formulas are not true or false in any absolute 
sense; they are only true or false when we give a particular interpretation to the language. 
For instance, the axioms of ZF set theory are usually regarded as true, but they become 
false if we interpret "set" and "member" in the peculiar fashion indicated in 1 .48. In the 
view of some logicians -- especially, formalists - mathematical objects such as sets do not 
really "exist ; " all that really "exists" is the language we use to discuss sets and the reasoning 
we can perform in that language. When we change the language or its interpretation, then 
the nature of sets or other mathematical objects changes. Bertrand Russell took such a 
viewpoint when he said 

Mathematics is the only science where one never knows what one is talking 
about nor whether what is said is true. 

If we cannot establish absolute truth, the next best thing is syntactic consistency - 

i .e . , knowing that our axioms do not lead by logical deduction to a contradiction. By the 
Completeness Theorem (proved in 14.57) , syntactic consistency is equivalent to semantic 
consistency -- i .e . , knowing that our collection of axioms has at least one model. A model 
of a collection of formulas is an interpretation that makes those formulas true; it is a sort 
of "'example" for that collection of formulas. 

An interpretation of a language may be highly unconventional, unwieldly, and not at 
all intuitive. It may be constructed just for a brief, one-time use -- e.g. , to prove the 
consistency of a given collection of axioms. After a model has been used to establish 
consistency of some axioms, in some cases we may choose to discard the model and think 
solely in terms of the axioms, because they are conceptually simpler. (A good example of 
this is in 14.4. ) Application-oriented mathematicians may choose to skip the modeling step 
altogether, and begin with the axioms, trusting that other mathematicians have already 
justified those axioms with a model. 

All of the terms introduced above -- interpretation, consistent, model, etc. -- will be 
given more specialized and precise meanings later in this chapter. But firt>t, to introduce the 
basic ideat>, in the present subchapter we t>hall present some informal examples of models, 
where "model" has the broad and slightly imprecise meaning indicated above. Most of these 
examples are mere sketches, intended only to indicate the flavor of the ideas. The omitted 
details are considerable, and are not intended as exercises; the reader who wishes to fill in 
the details should consult the references in the bibliography. 

14.4. Models of the reals. The axioms for an ordered field were given in 10. 7; those plus 
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Dedekind completeness make up the axioms for the real number system. Many analysis 
books simply "define" lR to be a Dedekind complete, ordered field. But how do we know 
that that list of axioms makes sense? We must show (or trust other mathematicians who 
say they have shown) that 

(i) there is such a field, and 

(ii) any two such fields are isomorphic. 

Proof of (ii) is given in 10. 15.e. Proofs of (i) by different constructions in terms of the 
rationals are given in 10. 15.d, 10.45, and 19.33.c. Any one of these constructions is a 
model of the axioms of JR, and it therefore demonstrates the consistency of the axioms of 
R However, the constructions - involving Dedekind cuts, equivalence classes of Cauchy 
sequences, etc. - are rather complicated and generally have little to do with our intended 
applications of the reals. The axioms for lR are usually much simpler conceptually and more 
convenient for applications. Thus, after we have demonstrated consistency we may discard 
the model and think of the real numbers in terms of their axioms: The real number system 
is a complete ordered field. 

14.5. A non-Euclidean geometry modeled in Euclidean geometry. During the 18th and 19th 
centuries, mathematicians became concerned about Euclid's Parallel Postulate, which 
says, in one formulation: 

through a given point p not on a given line L, there passes exactly one line that 
lies in the same plane as L but does not meet L .  

The other postulates of geometry are concerned with objects o f  finite size, such as triangles. 
In contrast, the Parallel Postulate is concerned with behavior of points that are very far 
away - perhaps infinitely far away - and so the Parallel Postulate is less self-evident. Some 
mathematicians attempted to remove any doubts by proving this axiom as a consequence 
of the other axioms of Euclidean geometry. In these attempts, one approach was to replace 
the Parallel Postulate with some sort of alternative that negates the Parallel Postulate, and 
then try to derive a contradiction. Some alternatives to the Parallel Postulate did indeed 
lead to clear contradictions, but other alternatives merely led to very peculiar conclusions. 

The peculiar conclusions made up new, non-Euclidean geometries. For instance, a paper 
of Riemann (1854) developed a geometry, now called double elliptic geometry or Rie
mannian geometry, in which any two lines meet in two points, and the sum of the angles 
of a triangle is greater than 180 degrees. At first these geometries were not seen to have 
anything to do with the "real" world; they were merely viewed as imaginary mathematical 
constructs. 

However, in 1868 Eugenio Beltrami observed that the axioms of two-dimensional double 
elliptic geometry are satisfied by the surface of an ordinary sphere of Euclidean geometry, 
if we interpret "line" to mean "great circle" (i.e. , a circle whose diameter is the diameter 
of the sphere) .  Therefore, if a contradiction arises in our reasoning about double elliptic 
geometry, then by the same argument with a different interpretation of the words we can 
obtain a contradiction in Euclidean geometry. Thus, we have a model that establishes 
relative consistency: If the axioms of Euclidean geometry are noncontradictory and the 
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theorems we have proved about the sphere in Euclidean geometry are correct , then the 
axioms of double elliptic geometry are also consistent . 

Even if we find these bizarre geometries distasteful and prefer to concern ourselves only 
with Euclidean geometry, Beltrami's reasoning leads to this important conclusion: 

The Parallel Postulate of Euclidean geometry is not implied by the other axioms 
of Euclidean geometry. 

As Hirsch [1995] has put it so aptly, before the 19th century Euclidean geometry was 
"not merely an axiomatic study, but our best scientific description of physical space." In 
retrospect, we can now see that double elliptic geometry is every bit as "realistic" as Eu
clidean geometry. Ants on a very large sphere might think they were on a plane, if they 
thought at all. Indeed, many humans thought that way until Colombus sailed. In much the 
same fashion, our three-dimensional space may be very slightly curved in a fourth direction, 
but the curvature may be so small that we have not yet detected it .  Perhaps a space ship 
that travels far enough in a seemingly straight line will eventually return to its home planet . 
We can only be certain of what is near at hand. 

For a more detailed discussion of the history of these ideas, see Kline [1980] . A similar 
approach to the Parallel Postulate, using the interior of a circle in the Euclidean plane, was 
developed by Cayley; it is discussed by Young [191 1/1955] . 

14.6. Specifying a universe. Here is one way to construct models of set theory: Let M 
be some given class of sets. Hereafter, interpret the term "set" to mean "member of M." 
Thus, the phrases "for each set" and "for some set" will be interpreted as "for each member 
of M" and "for some member of M." Then statements in the language of set theory can be 
interpreted in terms of M. 

For instance, the definition of equality of sets (given in 1 .47) says that if A and B are 
two sets, then 

A =  B holds if and only if for each set T, we have T E A +--+ T E B. 

This condition is satisfied when "set" and "member" have their usual meanings, but not 
when those terms have certain unconventional meanings, as in 1 .48. Are they satisfied in 
the model M? Yes, for some choices of M; no, for others. In the model M, the definition of 
equality has this interpretation: Let A, B E M; then 

A = B if and only if for each T E M, we have T E A +--+ T E B.  

I t  i s  easy to  see that "equality" of sets in  the model M coincides with the restriction of 
ordinary equality to the collection M if and only if M has this property: 

whenever A, B E M and M n A = M n B, then A = B.  ( ! )  
Easy exercise (from Doets [1983] ) .  I f  M i s  a transitive set (defined as in  5 .42 ) ,  then M 
satisfies the condition ( ! )  above. A converse to this exercise is Mostowski's Collapsing 
Lemma, which states that any model that satisfies ( ! )  is isomorphic to a transitive model. 
We shall not prove this lemma; it can be found in books on axiomatic set theory. 
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If J\1 includes some, but not all, members of von Neumann's universe V (described in 
5.53) , then sets A, B E J\1 may have different properties when viewed in J\1 or in V.  For 
instance, since J\1 has fewer sets than V, it also has fewer functions and fewer bijective 
functions. It is quite possible that there exists a bijective function in V between A and 
B ,  but there does not exist such a function in J\1. Thus card(A) = card(B) in V, but 
card(A) =/= card(B) in J\1. When we go from the smaller universe J\1 to the larger universe 
V, some distinct cardinalities coalesce; this phenomenon is called cardinal collapse. 

14.7. Go del 's universe. A subclass of V was used for an important model of set theory by 
Godel around 1939. He interpreted "set" to mean "member of L," using the universe L of 
sets that are "constructible relative to the ordinals," as described in 5.54. That universe is 
(perhaps) smaller than the usual universe V. With this interpretation, he was able to show 
that the axioms of ZF set theory plus AC (the Axiom of Choice) plus GCH (the Generalized 
Continuum Hypothesis) are all true. He constructed his model L inside the conventional 
universe V, and his use of V assumed the consistency of the ZF axioms. Thus, he concluded 
that 

if ZF is consistent, then ZF + A C  + GCH is consistent. 
Though Godel's proof involved constructible sets, this conclusion does not mention con
structible sets, and is not restricted to any particular meaning for "sets." 

(In 1963 Cohen showed, by other methods, that ·CH is also consistent with set theory; 
see 14.8 .  Thus the Continuum Hypothesis and the Generalized Continuum Hypothesis are 
independent of the axioms of conventional set theory. ) 

Godel's construction also shows that if ZF is consistent , then so is ZF + AC + GCH + 
(V = L) .  The axiom V = L is called the Axiom of Constructibility, which says that 
all sets are constructible relative to the ordinals. Thus, we cannot be sure that Godel's 
constructible universe L really is smaller than von Neumann's universe V; we do not obtain 
a contradiction if we assume that those two universes are the same. On· the other hand, 
it has been proved by other methods that V =/= L is also consistent with set theory - see 
for instance Bell [1985] - so the Constructibility Axiom is independent of the axioms of 
conventional set theory. 

14.8. Modeling the reals with random variables. The Continuum Hypothesis (CH) can 
be formulated as a statement about subsets of the reals: It says that no set S satisfies 
card(N) < card(S) < card(JR). By now the literature contains several different variants of 
Cohen's proof that CH is independent of ZF + AC. One of the simplest to outline is the 
following: 

Let (n,  I:, 1-1) be a probability space, where the set n has a very high cardinality. Let :R. 
be the space of all equivalence classes of real-valued random variables. For a suitable choice 
of (n,  I:, 1-1) , it is possible to show that 

(i) For a suitably formulated axiomatization of JR, every axiom of lR is satisfied 
with probability 1 by :R.. 

(ii) If statements that are true with probability 1 are used to generate new state
ments, via the rules of logic, then the new statements are also true with 
probability 1 .  
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(iii) The Continuum Hypothesis, interpreted as a statement about :R, is not true 
with probability 1 .  

Here IR is modeled by :R ,  and "truth" is replaced by "truth with probability 1 ." The axioms 
of set theory and of IR, though interpreted in a peculiar fashion, remain unchanged in 
superficial appearance, and the rules of logic remain unchanged insofar as they deal with 
strings of symbols. Therefore, regardless of what kind of "truth" and "sets" and "real 
numbers" we use, the axioms of sets and of IR cannot be used, via the rules of logic, to 
deduce the Continuum Hypothesis. 

The explanation sketched above is only the merest outline; the omitted details are 
numerous and lengthy. Some of them are given by Manin [1977] . 

14.9. A tapas model for constructivists. We mentioned in 6 .6 that the Trichotomy Law 
for real numbers is not constructively provable. We now sketch part of a demonstration of 
that unprovability, due to Scedrov. Our treatment is modified from Bridges and Richman 
[1987] . 

By a "Scedrov-real number" we shall mean a continuous function from [0, 1] into R Let 
f be such a function, let P be a statement about a real number, and let x E [0 , 1] ; then 
we say P is true for f at x if P is a true statement about the real number f (y) for all y 
in some neighborhood of x in [0, 1 ] .  The collection of all such points x is the truth value 
of P for f; it is an open set. A statement is true if its truth value is the entire interval 
[0 , 1 ] . It can be demonstrated (though we shall omit the details here) that the Scedrov-real 
numbers are a model of the real numbers with constructivist rules of inference. 

Now let f(x) = x and g(x) = 0, for all x E [0, 1 ] .  Then the truth value of the statement 
f :S: g is the empty set (since the interior of a singleton is empty) ,  while the truth value of 
f > g is the interval (0, 1 ] . Hence the truth value of the statement "f :S: g or f > g" is the 
interval (0, 1 ] ,  and thus that statement is not true in this model. 

14.10. A finite model. The following example (from Nagel and Newman [1958] ) is a bit 
contrived, but it illustrates a point well. We consider a mathematical system consisting of 
two classes of objects, K and L, which must satisfy these axioms: 

1 .  Any two members of K are contained in just one member of L .  
2 .  No member of K is contained in more than two members of L .  
3 .  The members of K are not all contained i n  a single member of L ,  
4. Any two members o f  L intersect in  just one member o f  K.  
5. No member of L contains more than two members of K.  

The consistency of this axiom system can be established by the following model: 

(*) Let T be a triangle. Let L be the set of edges of T, and let K be the set of vertices 
of T.  

We can verify that this model satisfies the preceding five axioms; thus they cannot be 
contradictory. We emphasize that those five axioms might also have other interpretations; 
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we are not restricted to (*)  as the only possible interpretation. However, we do have at 
least one model, given in (* ) .  This is sufficient to prove that the five axioms by themselves 
cannot lead to a contradiction. 

We have used Euclidean geometry to make (* )  easy to visualize, but perhaps we do not 
feel certain about the reliability of Euclidean geometry. The use of geometry is not essential 
for our present axiom system. We can reformulate (*)  without mentioning triangles: 

(**)  Let a, b, c be distinct objects. Let K = {a, b, c} and L = { {a, b } ,  {b, c} , {c, a }  } .  

The model (** )  has only finitely many parts; thus, it leaves very little room for doubt. The 
importance of such models is discussed in 14.70. 

LANGUAGES AND TRUTHS 

14.1 1 .  A language i s  a collection 1:- of symbols, together with rules of grammar that 
govern the ways in which those symbols may be put together into strings of symbols called 
"formulas." For instance, one of the most important languages we shall study is the language 
of set theory. This language includes symbols such as E ,  � '  n, etc. Its grammatical rules 
tell us that A n B E C is a formula, but 

A EE B,  A n U = B, An = 

are not formulas. 
In formal logic we separate a language from its meanings. For instance, in a formal 

language, "1 + 2" and "3" are different, unrelated strings of meaningless symbols. When 
we interpret that language in its usual fashion, then the strings "1 + 2" and "3" represent 
the same object. Although ultimately we shall be concerned with attaching meanings to 
the symbols in the language £ ,  at the outset it is best to disregard such meanings - even 
the meanings of familiar symbols such as E , � ' n, +,  = . Conceptually, a good place to start 
is the monoid of meaningless strings of symbols, described in 8.4.g. 

14.12. Formal versus informal systems. Ordinary mathematicians (i.e. , those other than 
logicians) may study sentences, theorems, and proofs about (for instance) rings or differen
tial equations. However, logicians study sentences, theorems, and proofs about sentences, 
theorems, and proofs. The ordinary mathematician uses a language that describes rings or 
differential equations; the logician uses a language that describes languages. The logician 
is related to the mathematician much as a linguist is related to a novelist. 

As Rosser [1939] pointed out , in works of logic we may commonly identify at least two 
distinct systems of reasoning: 

a. The inner system of reasoning is the subject of the work. It is a sort of microcosm 
of reasoning. It may be less powerful than the reasoning that we use in "ordinary" 
mathematics, but it is delimited more precisely. Just as a theorem about rings must 
have precise hypotheses ( "Let G be a commutative ring . . .  " ) ,  so too a theorem in logic 
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must have precise hypotheses ( "Let £., be a language with infinitely many free variable 
symbols . . .  " ) .  The inner language is also called the object language. Formulas such 
as ('lit; P(�, x) ) UQ  (x, J(y, z) )  will occur in the object languages studied in this chapter. 

b. The outer system of reasoning is ordinary reasoning. It is conducted in the language 
of ordinary discourse, also sometimes known as the metalanguage - a natural lan
guage such as English or Japanese, modified slightly to suit the specialized needs of 
mathematicians. In logic, as in algebra or analysis, the outer language usually does 
not have to be formal - we can communicate effectively without first discussing in 
detail how we will communicate. 

When the inner system is mathematics, the outer system is often called "meta
mathematics ," which translates roughly to "beyond mathematics" or "above mathe
matics" or "about mathematics." For instance, the Soundness Principle 14.55(iv) and 
the Godel-Mal'cev Completeness Principle in 14.57 are results about formal systems; 
thus they are "metatheorems" which reside in the outer system. 

The inner and outer systems do not necessarily have the same truths; one of these 
systems may be stronger than the other. For instance, we must assume ZF plus the 
Ultrafilter Principle (UF) in our outer system when we want to prove the Godel-Mal'cev 
Completeness Principle. That principle can be applied to inner systems that are weaker 
(such as ZF) or stronger (ZF + AC) or perhaps not even directly comparable. 

Here is another example: Let "Con" denote consistency. Then "Con(ZF)" and 
"Con(ZF + AC + GCH)" are two statements about the consistency of certain axiom 
systems in formal set theory. Thus they are metamathematical statements, where the 
mathematics in this case is set theory. Then "Con(ZF) =? Con(ZF + AC + GCH)" 
is a metatheorem - · or, if we prefer, a metametatheorem, as discussed below. 

c. Beginners may find it helpful to view the Ultrafilter Principle and the Completeness 
Principle as "true;" then they will only need to deal with the two levels of reasoning 
described above. However, more advanced readers can consider a third level: Through
out many chapters of this book we study equivalents of AC and of UF, viewing them 
as principles which "might be true" or "might be false," depending on what kind of 
universe we decide to live in. The implication (UF8) =? (UFl l ) ,  proved in 14 .57, is a 
metametatheorem -- it is a theorem about metatheorems such as the Completeness 
Principle. It is even more "outer" than the "outer system" - but to avoid confusion, 
hereafter we shall not discuss such results in this fashion. 

There is some resemblance between the logician's inner and outer systems - both systems 
include "sentences," "implications," "theorems," and "proofs." This may cause some con
fusion for beginners. No such confusion arises in other subjects, such as ring theory or 
differential equations - e.g. , a theorem about rings generally does not look like a ring. 

14.13. The beginner is cautioned to carefully maintain in his or her mind the distinction 
between inner and outer systems. Throughout this chapter we shall use notations that 
support that distinction. First, however, we shall give an example of the kind of difficulties 
that arise when the distinction is not maintained carefully: 

Berry's Paradox. Call a positive integer succinct if it can be described in 
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sentences of the English language using less than 1000 characters (where a char
acter means a letter, a space, or a punctuation symbol) .  There are only finitely 
many different characters, and so it is clear that there are only finitely many 
succinct numbers. Let n0 be the first positive integer that is not succinct . We 
have described no in this paragraph, which is shorter than 1000 characters. So 
n0 is succinct after all, a contradiction. 

Explanation of the flaw in the reasoning. The first sentence suggests that we are to use 
English for the formal language of our inner system. However, English is a very fluid 
language, which changes even while it is being used. Everyday, nonmathematical English is 
permitted to talk about itself, and this kind of self-referencing can lead to paradoxes, but 
they are not taken seriously because, after all, English is not mathematics. 

In attempting to make mathematically precise sense out of Berry's Paradox, we must use 
some frozen, unchanging "version" of English for the formal language of our inner system. 
We assume that some particular version of English has been selected and is understood by 
all parties participating in this endeavor. The term "English" hereafter is understood to 
refer to this frozen, formal language. This object language cannot discuss itself, and thus 
cannot discuss what is a "sentence of the English language." The notion of a "sentence" 
(as it is used here) is a metamathematical concept - i.e. ,  a concept about the language, 
rather than a concept expressed in the language. 

Now we can give a more precise definition of a "succinct" positive integer: It is a positive 
integer that can be described in the object language in fewer than 1000 characters. Likewise, 
no is the first positive integer that cannot be described in the object language in fewer than 
1000 characters. These definitions are mathematically precise, quite brief, and not at all 
fallacious, but they are formulated in the metalanguage, not in the object language. Our 
definition of n0 is formulated in the metalanguage; we have not given a definition of n0 in 
the object language. We certainly have not given a definition of n0 that is 1000 characters 
or fewer in the object language. We cannot conclude that n0 is succinct, so no contradiction 
is reached. 

14.14. When 9" and 9 are formulas in our object language, then 9" -->  9 is also a formula 
in that language. It is most often read as "9" implies 9 ." 

We now consider two types of  implications in our metalanguage, which will be investi
gated in greater detail later in this chapter. Let � be a set of formulas, and let 9" be a 
formula. 

a. A derivation of 9" from � is a finite sequence of formulas £1 , £2 , . . .  , En such that 
En = 9" and each £1 is either (i) an axiom, (ii) a member of �

' 
or (iii) obtained from 

previous members of the sequence by rules of inference. When such a sequence exists, 
then we say 9" is a syntactic consequence of �; this is abbreviated as � f--- T 

When � is the empty set, the derivation is called a proof, and the consequence 9" 
is called a syntactic theorem; we may write 0 f--- 9" or, more briefly, f--- 9". Observe 
that this notation does not reflect the choice of the axioms, which are nevertheless 
available for use in the derivation. The statement " � f--- 9" " is equivalent to this 
statement , which may be preferred by some readers: "any set of axioms that makes all 
the members of � into syntactic theorems, also makes 9" into a syntactic theorem." 
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A set of formulas 2: is syntactically inconsistent if some formula and its negation 
are both syntactic consequences of I:; otherwise the set of formulas is syntactically 
consistent. The study of syntactic consequences is sometimes called proof theory. 

b. We write L; I= J" to say that J" is a semantic consequence of I:. This means that 
every model of L; is also a model of J" - i.e . ,  that every interpretation of the language 
that makes L; true (and makes all of our unmentioned axioms true) , also makes J" true. 
The axioms, if any, are understood from the context and are not mentioned in this 
notation. 

When L; is the empty set, the consequence J" is called a semantic theorem. We 
may write 0 I= J" or, more briefly, I= J". This means that any interpretation that makes 
the axioms true also makes J" true. 

A set of formulas L; is semantically inconsistent if it has no models or seman
tically consistent if it has at least one model. The study of semantic consequences 
is sometimes called model theory. 

On the surface, proof theory and model theory seem rather different. A fundamental and 
nontrivial result of first-order logic is that proof theory and model theory are equivalent, in 
this sense: they actually yield the same notions of "theorem" and "consistency," provided 
that our system of reasoning is sound. This equivalence will be established in 14 .57 and 
14 .59; thereafter, we can simply refer to a "theorem" and to "consistency." However, to 
establish the equivalence, we must first develop the syntactic and semantic views separately. 

A few cautionary remarks. 

( i) Terminology varies in the literature. Some mathematicians prefer either the 
viewpoint of proof theory or the viewpoint of model theory, and so they define 
the terms "theorem," "valid formula," "true formula," or "tautology" 
to be synonomous with what we have called a "syntactic theorem" or with 
what we have called a "semantic theorem." Which term is applied to which 
type of theorem varies from one paper or book to another. That may confuse 
beginners, but it does not affect the ultimate results since the two kinds of 
theorems will eventually be shown equivalent. 

( ii) The symbol I= has another meaning, which will not be used in this chapter. 
We mention it to prevent confusion when the reader runs across it in some 
other book. If M is some particular model in which a formula J" is true, some 
mathematicians may write M I= :f. This is read as: M is. a model of J", or M 
satisfies J", or J" holds in M. 

( iii) The symbols f- (syntactic implication) and I= (semantic implication) should 
not be confused with these similar symbols: 

T (truth) , l_ (falsity) , If- (forcing) , 

which are used in some books (but not this one) . Forcing is discussed briefly 
in 14 .53 .  
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(iv) Although � f- 9 and � F= 9 will ultimately be proved equivalent to each 
other, they are not equivalent to � ---+ 9.  In fact , no direct comparison is 
possible, since � ---+ 9 is a statement in the object language. We can modify 
that statement slightly if we wish to make comparisons: Each of the four 
expressions 

f- (� ---+ 9)
' 

is a statement in the metalanguage. The first two are equivalent to each 
other, and the last two are equivalent to each other. In propositional logic, 
all four statements are equivalent to each other. In predicate logic, the last 
two statements are slightly stronger than the first two statements; this will be 
discussed further in 14.38 and thereafter. 

14.15. The kind of logic used most often in the literature is first-order logic; it is also 
known as predicate logic or the predicate calculus. 

To be precise, we may subdivide a theory into these ingredients: 

A first-order language includes an alphabet of symbols - punctuation sym
bols, symbols for individuals, symbols for operations, and quantifiers - and 
grammatical rules for forming those symbols into formulas. All of the symbols 
are understood as meaningless characters of a meaningless alphabet ; they will 
only take on meaning when we consider an interpretation or quasi-interpretation 
(as in 14.47) . The specification of the symbols and rules is understood to in
clude a specification of the arities of the operation symbols, as explained in 14 .18 
below. First-order language is  discussed in further detail in the next subchapter. 

A first-order logic includes the language, plus rules of inference and logical 
axioms. It may also be viewed as including the resulting theorems - i.e. ,  the 
syntactic and semantic consequences of those rules and axioms. The rules of 
inference and logical axioms are discussed in the subchapter which begins with 
14 .25, and the resulting theorems are discussed in the subchapters after that. 

A first-order theory includes the logic, plus extra-logical axioms. It may also 
be viewed as including the resulting theorems. Some examples of extra-logical 
axioms are given in 14.27. 

INGREDIENTS OF FIRST-ORDER LANGUAGE 
We shall now list the ingredients. Some readers may wish to glance ahead to 14.24, where 
we consider propositional logic, a special case that has fewer ingredients .  

14.16. Punctuation symbols. These are parentheses for grouping - i.e . ,  to avoid ambiguity 
- and commas for delimiting items in a list. It is possible to give precise rules for the use 
of parentheses and commas, but we shall omit the details. 
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14. 17. Symbols for individuals. (These are omitted in propositional logic; see 14.24.) In 
predicate logic, there are three types of symbols for individuals: 

• individual constant symbols, denoted in the discussions below by 

a, b, c, . . .  or or I II a, a , a  , . . .  

(Actually, constant symbols may be dispensed with as a separate class of symbols, 
since they may be viewed as function symbols of arity 0; see 14 . 18 below. ) 

• individual free variable symbols, denoted in the discussions below by 

x, y, z ,  . . .  or or I II v, v , v  ' 0  0 0 

• individual bound variable symbols, denoted in the discussions below by 

�' 7], ( , 0 0 0 or or �, ( , (' ,  0 0 0 

In most texts on logic, the free and bound variables are taken from the same set of symbols; 
in some texts either the constant symbols or the variable symbols are omitted altogether. 
However, we prefer to use three separate sets of symbols; this is discussed further in 14.20. 

The sets of constants and variables are countably infinite in most applications, but these 
sets could be larger or smaller. Practical, everyday mathematics uses only countably many 
symbols - for instance, although there are uncountably many real numbers, we have no 
way of actually writing down distinct representations for most of those numbers. It is not 
even humanly possible to write down a countably infinite collection of symbols; that would 
require more time than any mere mortal has. Nevertheless, for some theoretical purposes it 
can be useful to conceptualize and investigate a language with uncountably many symbols 
- e.g. , we could say "let £.- be a language that includes a constant symbol c,. for each real 
number r ." We can talk about the c,. 's in the abstract, even if we can't write them all down 
concretely. 

Hereafter, we shall assume that 

the set of free variables and the set of bound variables are both empty ( as zn 
propositional logic) or both infinite ( as in ordinary mathematics) . 

The case of finitely many variables turns out to be technically different and difficult, and 
will not be considered in this chapter. That case is manageable for elementary results but 
becomes difficult starting in 14.4 1 ;  for simplicity of exposition we shall exclude that case 
from the outset. One difficulty with that case can be explained roughly as follows: Reasoning 
in for_mal logic (or in other parts of mathematics, for that matter) involves substitutions, 
usually replacing all occurrences of one free variable with copies of some term whose free 
variables are not already in use. A single computation may involve many substitutions and 
thus many free variables. It will involve only a finite number of free variables, but in general 
we do not know in advance how large or small that finite number will be - the number 
may vary from one computation to another, and in general there is no finite upper bound 
for the number of variables needed for a computation. If our language has only finitely 
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many free variables - i.e. ,  if some particular finite number is specified in advance - then 
we may run out of variables before some computations are completed. On the other hand, 
if we have infinitely many free variables, we can complete any computation and still have 
plenty of free variables left over. 

14.18. Symbols for operations. Each operation symbol has an arity, or rank - i.e. ,  an 
associated nonnegative integer that specifies how many arguments each of these symbols 
should be followed by. For instance, if f has arity 4, then we may form expressions such as 
f (w, x, y , z) .  The precise rules for forming such expressions are given in 14.22 and 14.23. 

It is convenient to write x + y  instead of +(x, y) . The abstract discussions of expressions 
f ( x, y) will apply to expressions x + y with obvious modifications. Analogous modifications 
also apply for other commonly used binary operation symbols, such as · , x ,  1\, V, etc. 

We have three types of operation symbols, listed below. Although interpretations are 
not part of the formal language, a preview of typical interpretations may make the formal 
language easier to understand, so we include a few examples of interpretations here: 

( i) Function symbols, here denoted J, g, h, etc. (These are omitted in propo
sitional logic; see 14.24.)  

Examples in arithmetic or analysis. We might use the function symbols 
+,  - ,  · ,  /, all with arity 2, and the function symbols cos and - with arity 1 .  A 
function symbol with arity 0 is a symbol that gets interpreted as a constant 
- e.g. ,  the symbol "3" or "J5." 

In ordinary mathematics, the character "-" represents both the binary 
operator of subtraction and the unary operator of additive inverse, but those 
are actually different operators, and for purposes of logic it would be best to 
represent them with different characters such as "-" and "-." Interestingly, 
these two operators are represented by different keys on some recent handheld 
electronic calculators, a source of confusion for mathematicians who grew up 
using one character for the two operations. 

Examples in set theory. We might use the function symbols n, U with arity 
2, and C with arity 1 ;  we might use 0 for a symbol with arity 0. 

Examples in group theory. A character such as o or D might be used as a 
function symbol of arity 2 .  

(ii) Relation (or predicate) symbols, here denoted P, Q, R, etc . (In propo
sitional logic, these occur only with arity 0, and are then called primitive 
proposition symbols ; see 14.24 and 14. 18(ii) . )  

Examples. Some common relations o f  arity 2 are <,  > ,  :::; , 2 ,  =, -=/=-, E ,  tf_ .  
Many other meanings are possible for relation symbols; for instance, in  arith
metic, R(x, y) might have the interpretation "x is a divisor of y." An example 
of a relation with arity 1 is "x is a prime number." A relation with arity 0 is 
just a statement that does not mention any variables. 

Remark. It is actually possible to dispense with function symbols, by 
viewing each function of arity n as a relation with arity n + 1 .  For instance, 
the equation z = x + y determines a function z = f(x, y) with arity 2, but it 
also determines a relation R(x, y , z) with arity 3 .  
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( iii) Logical connective symbols. The precise choice of logical connective sym
bols may vary slightly from one exposition to another. The ones we shall use 
are: 

u 
n 

(arity 1 )  
( arity 2 )  
(arity 2 )  
(arity 2 )  

not , negation 
or, disjunction 
and, conjunction 
implies, implication 

Some mathematicians use additional connectives - e.g. ,  the connective ,__.. 
(iff) or the connective I (the Sheffer stroke) . Also, some mathematicians prefer 
to define some of the connectives in terms of others - e.g . ,  the connective U 
may be defined by the equation A U 'B = (>A) -> 'B.  However, we prefer to 
begin with unrelated symbols and then find relationships as a consequence of 
axioms. 

The notations vary slightly. For instance, among some mathematicians, 

"not'' 
��or" 

'"and" 
"implies" 

may be written instead as 
may be written instead as V or U 
may be written instead as 1\ or n or & 
may be written instead as =} or => 

We have chosen our notation in this book so that different symbols are used 
in logics (U ,  n) , in lattices (v, /\) ,  and in algebras of sets (U ,  n) .  This may 
reduce some confusion when two of these different kinds of structures must 
interact - see especially 14.27.d, 14.32, and 14 .38. 

357 

It should be understood that meanings are not yet attached to the symbols - not even 
to familiar symbols such as ', + ,  C, o, =,  E ,  -> . We may call ' the "negation'' or call + the 
"plus sign" to make them easier to read aloud and to lend some intuition about what this 
is all leading up to, but we do not yet associate these symbols with their usual meanings 
or any other meanings. l\Ieanings will be attached later, when we consider interpretations 
in 14.47. In the formal language, these symbols are merely viewed as meaningless symbols, 
with arities assigned to grammatically govern the joining of these meaningless symbols 
into meaningless strings. In fact , the symbols ' and U have slightly different meanings in 
intuitionist and classical logic, both of which are introduced in the following pages. 

In the formal theory, our meaningless symbols may also be accompanied by some axioms. 
The logical connective symbols are governed by the logical axioms (see 14.25) ; function 
symbols may be governed by extra-logical axioms as in 14 .27.c ; relation symbols may be 
governed by extra-logical axioms as in 14 .27.a. No other meaning is attached to any of 
these symbols in the formal theory. 

14.19. Quantifiers. There are two kinds of quantifiers: 

\/E. . the universal quantifier, usually read "for each C' 
::IE. . the existential quantifier, usually read "there exists � such that . "  
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Here � is a bound variable; any other bound variable may be used in the same fashion. (In 
propositional logic there are no variables and thus no quantifiers; see 14.24) We caution 
that the symbols 1::/ and :3 occasionally have meanings slightly different from "for each" and 
"there exists;" see 14.47.j. Until we study their interpretations in 14.47.j , the symbols 1::/ 
and :3 should be viewed as not having any meaning at all; they are simply meaningless 
symbols whose use is governed by grammatical rules and inference rules listed in 14 .23(iii) 
and 14.26. 

The quantifier 1::/ is commonly read as "for all" in the mathematical literature, but we 
prefer to read it as "for each." In common English, "for all" suggests that the objects are 
perhaps being treated all in the same fashion. The customary mathematical meaning of 1::/ 
is closer to "for each," which emphasizes that the objects under consideration can all be 
treated separately, one by one, perhaps with each treated differently. 

We emphasize that in a first-order language, a quantifier is understood to act only on an 
individual variable. Thus, it is possible to say "for each individual C' but grammatically 
it is not permitted to say "for each formula 3"' or "for each class S of individuals." Those 
expressions are permitted in higher-order languages - i .e. , languages of second or third 
order, etc. ;  we shall not investigate such languages in this book. 

14.20. Discussion of bindings. Some popular expositions of logic are Mendelson [1964] 
and Hamilton [ 1978] ; those textbooks have been used widely and their treatment can now 
be considered "conventional" or "customary." Our own treatment will follow Rasiowa and 
Sikorski [1963] , which is unconventional in some minor respects. For instance, the Rasiowa
Sikorski treatment uses fewer definitions of symbols and more axioms governing the use of 
undefined symbols. 

A more important difference is in the use of bound and free variables: 

• In conventional treatments such as Mendelson [1964] or Hamilton [1978] , the rule for 
incorporating quantifiers into formulas is trivial: If A is any formula and x is any 
variable, then 1::/xA and :3xA are formulas, regardless of how x is already being used in 
the formula A or elsewhere. The same symbols are used for free variables and bound 
variables; one defines whether a variable symbol x is bound or free according to how 
and where it appears in a formula. The definitions of bound and free variables and 
the rules for substitution are (in this author's opinion) rather complicated and nonin
tuitive. The definitions involve the "scope" of a quantifier and the rather convoluted 
notion of "a term t that is free for the variable x in the formula �-" 

• In Rasiowa and Sikorski [1963] , the rule for defining free and bound variables is trivial: 
Before we even begin to think about how to make formulas, we agree in advance which 
symbols ( x, y, z, . . .  ) will be free variables and which symbols ( �, rJ, ( , . . .  ) will be bound 
variables; two disjoint sets of symbols are used. The rules for incorporating those 
variables into formulas (described in 14.22 and 14.23) and for making substitutions 
(described in 14.26) are not trivial, but they are not particularly complicated. 

To motivate either approach, we shall now discuss bindings in general. 
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In ordinary mathematics (i.e. , outside of formal logic) , bindings are generated by certain 
operators such as J, :2:.:: , f l  For instance, the equation 

f(x) t e d� lo 
makes sense whenever x is a real number. In this equation, x is a free variable, and � is a 
bound or dummy variable (also sometimes known as an apparent variable) . The function f 
is a function of x; it does not really involve �- In some sense, � is not really a "variable" at 
all - it is just a "placeholder," and the place can be held just as well by nearly any other 
letter. All of the expressions 

fx w2 dw, lo 
represent exactly the same function f(x). In fact, that function can also be represented 
without any dummy variables: f(x) = x3 /3. However, dummy variables are unavoidable 
for certain other functions; for instance, it is well known (but not easy to prove) that the 
function g(x) = J; exp (e) dE, cannot be represented in terms of the classical elementary 
functions (algebraic expressions, trigonometric functions, exponentiation, logarithms, and 
compositions of such) .  

In the paragraph above, we have followed the typographical convention of Rasiowa and 
Sikorski , using different sorts of letters for free variables (x, y, z, etc. )  and bound variables 
( f,, T), ( , etc . ) .  But in the wider literature, that convention generally is not observed, and any 
letter can be used for either type of variable. For instance, the function f described in the 
preceding paragraph could be defined as easily by the equation f(O = J0!'. x2 dx. In this re
spect, the Mendelson/Hamilton approach follows the convention of "ordinary" mathematics 
(i .e . , mathematics outside of logic) .  However, in other respects the Mendelson/Hamilton 
approach differs from the conventions of ordinary mathematics, as we shall now describe. 

In the equation J(x) = J;;' e dE,, we can replace f, by nearly any other letter. There is 
one exception: We should not replace f, with x itself. Polite mathematicians prefer not to 
write f(x) = J;;· .r2 dx since that equation uses the same letter x for two different purposes 
- as a free variable and a bound variable. Admittedly, that type of expression can be 
found in some physics or engineering books - it is interpreted to mean the same thing 
as J(x) = J;;" e dE, - but mathematicians frown upon such constructions. Likewise, an 
expression such as 

g(x, y) (x + y)2 + 1Y exp(x2 ) dx 

will make any well-bred mathematician uncomfortable, but we know that what is probably 
meant is 

g(x, y) (x + y)2 + r exp(e) d�. lo 
Analogous beasts appear in conventional logic books, but with little or no stigma at

tached. In the formula 
Q(x, y) u (vx (R(x, z) ) ) , 
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the variable x has one free occurrence and two bound occurrences. (The "x" immediately 
after the V is one of the bound occurrences. )  Such a distasteful formula is not absolutely 
necessary for proofs, since Vx (R(x, z) )  is in most respects equivalent to Vw (R(w, z ) ) ,  as 
explained in 14.42. Thus we can replace (*) with the formula Q(x, y) U (Vw (R(w, z ) ) ) ,  
which does not mix free and bound occurrences o f  one symbol. 

An integral formula such as g( u) = J01 ftl1 x3u dx dx has no clear meaning in ordinary 
mathematics. Nevertheless, analogous formulas appear often in logic; one such formula is 

::Jx ( \j X ( p (X, U)) ) , ( **) 

which has one variable bound twice. Such a formula may seem unnatural, since it has no ana
logue outside of formal logic. Again, such beasts are not really necessary: Since Vx P(x, u) 
is in most respects equivalent to Vw P(w, u) (see 14.42 ) ,  it may be helpful to view (**) 
as having the same meaning as ::Jx (Vw ( P( w, u ) ) ) ,  an expression with no double bindings. 
(An analogous interpretation would make J01 It: x3u dx dx equal to J01 ftl1 w3u dw dx. )  

Thus, in  any explanation o f  logic, i t  i s  necessary to  either 

(i) prohibit nonintuitive expressions such as ( *) and ( **) ,  or 

(ii) provide rules for dealing with such expressions. 

Conventional books such as Mendelson [1964] and Hamilton [1978] have followed option (ii ) ,  
but the rules are necessarily rather complicated. Rasiowa and Sikorski [1963] have taken 
option (i) , and so shall we in this book. Since the nonintuitive expressions can always be 
replaced by more acceptable ones anyway, the difference between options (i) and (ii) has 
only a superficial or cosmetic effect;  it has no effect on deeper results discussed later in this 
chapter, such as the Completeness Principle. 

A word of caution: Even the Rasiowa-Sikorski approach is not entirely trivial. Among 
other things, it permits expressions such as ( :3� P(O) U (V� Q(O) .  The �'s in the first half of 
this expression are unrelated to the fs in the second half of this expression. Some confusion 
might be avoided if we replace this formula with the equivalent formula ( :3� P(�) )U(V'l Q(77) ) .  

Actually, variables could be dispensed with altogether; books on combinatory logic 
such as Hindley, Lercher and Seldin [ 1972] show that everything can be expressed in terms 
of functions. That approach will not be followed in this book, however. 

14.21. Substitution notation. Throughout the discussions in the next few pages, we shall 
frequently use this notation: 

Let x be a free variable symbol. Let A(x) be a finite string of symbols in which 
x may occur 0 or more times, and in which other free or bound variables may 
occur 0 or more times. Let IJ be any finite string of symbols. Then A(iJ) will 
denote the string of symbols obtained from A(x) by replacing each occurrence 
of x (if there are any) with a copy of the string IJ .  

Of course, if x does not appear in the string A(x) , then A(iJ) is identical to A(x) . 

14.22. Grammatical rules, part 1 .  In a first-order language, terms are certain finite strings 
of symbols formed recursively by these two rules: 
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(i) Any constant symbol or free variable symbol is a term. 

( ii) If f is an n-ary function symbol and t 1 ,  t2 , . . .  , tn are terms, then the expres
sion j(t 1 , t2 , . . .  , tn ) is a term. 

There are no other terms besides those formed via these rules. 
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Condition (ii) is not self-referential - i.e . ,  it does not involve any circular reasoning 
that leads to a contradiction. Indeed, we may classify strings of symbols according to their 
length (i .e . ,  how many symbols appear in a string) or their depth (i.e. , how many times 
we have functions nested within functions) .  Then the construction in condition (ii) always 
forms longer terms from shorter ones or forms deeper terms from shallower ones. To prove 
a statement about all the terms of a language, it is often possible to proceed by induction 
on the length or depth of the terms. 

Observation: By our definition, no bound variables appear in terms. 

Example. Consider a language in which 2, 5, 6 are among the constant symbols, x and y 
are among the variable symbols, J and cos are function symbols of arity 1 ,  and +, - , · are 
function symbols of arity 2 .  Then the string of symbols (5 ·x )+ (J( (6 ·y) - (  cos(2) ) )  ) is a term. 
When it is given its usual interpretation involving real numbers, then that string of symbols 
is a real-valued function of two real variables, written more commonly as 5x + J6y - cos 2. 

Remark. In the discussions below, terms will generally be represented by the letters 
t , t 1 , t2 , . . .  and s , s 1 , s2 , . . .  , etc. However, it should be understood that these letters are 
not actually symbols making up a part of our formal language (the inner system) .  Rather, 
these letters are metavariables - i .e . ,  they are part of the metalanguage; they are infor
mal conventions adopted for our discussion in the outer system. The precise expression "let 
t be a term" is an abbreviation for the imprecise and unwieldly expression "let us consider 
any term, such as J (xl , x2 , g (cl , c2 ) , h(x3 , c3 , c4 ) ) ." 

14.23. Grammatical rules, part 2. Certain finite strings of symbols are known as formulas 
(or, in some books, well-formed formulas 

, or wff's) . The definitions are recursive: 

(i) An atomic formula (or atom) is an expression of the form P(t 1 , t2 , . . .  , tn ) ,  
where P is an n-ary relation symbol and t 1 , t2 , . . .  , tn are terms. It is a formula. 

We permit n = 0. Thus a primitive proposition symbol (i .e . , relation sym
bol of arity 0) is an atomic formula. (In propositional logic, this is the only 
type of atomic formula, since the only relation symbols we have in proposi
tional logic are those' of arity 0; see 14.24.) 

( i i )  If A1 , A2 , . . .  , An are formulas and � is an n-ary logical connective symbol, 
then �(A1 , A2 , . . .  , An) is a formula. Since we will only use a few connectives, 
this rule can be restated as: If A 1 and A2 are formulas, then 

are formulas. We may omit the parentheses when no confusion is likely. 

(iii) Suppose A(x) is a formula in which the bound variable � does not occur. 
Apply the substitution notation of 14 .21 .  Then Vt, A(O and ::lt, A(O are also 
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formulas. (Of course, no formulas can be formed in this fashion if the sets of 
variable symbols are empty, as in propositional logic. ) 

There are no other formulas besides those formed recursively using the rules above. 
Remarks. The beginner might be concerned that 14 .23( ii) seems self-referential and thus 

might permit circular reasoning. However, there is no need for worry - no circularity is 
possible here. Each formula formed as in 14.23 ( ii) is longer (in number of symbols used) 
than the formulas from which it was formed. A statement about the set of all formulas can 
be proved by induction on the lengths of the formulas; this is a common method of proof. 

In the discussions below, formulas will generally be represented by the letters A, � ' e, 
etc. However, i t  should be understood that these letters are not actually symbols making up 
a part of our formal language (the inner system) . Rather, they are metavariables, adopted 
for our informal discussion in the outer system. The precise expression "let 9" be a formula" 
is an abbreviation for the imprecise and unwieldly expression "let us consider any formula, 
such as (•P(x, f (y , z) ) )  U (Q(x , z) n ( (R n (S(x , y , z , g(z) ) ) ) ) ) ." 

14.24. An important special case of predicate logic is propositional logic (or propo
sitional calculus, also known as sentential logic or sentential calculus) .  Historically, 
it developed before other kinds of logic. It is simpler than predicate logic, in that it has 
fewer ingredients. A typical formula in propositional logic is ( P -+ ( P n ( -.P)) )  -+ ( -.P) ; a 
typical formula in predicate logic is (1::/e, P(�, x)) U Q (x, f(y, z ) ) .  

In  propositional logic, there are no symbols for individuals - i.e. ,  no constant indi
viduals, no bound variables, and no free variables - and there are no function symbols. 
Consequently, the only relation symbols have arity 0, and there are no quantifiers and no 
terms. 

AssuMPTIONS IN FIRST-ORDER LoGIC 

In addition to its language ( i .e. , alphabet and grammatical rules, described above) , a logical 
theory also involves certain assumptions. These are listed below. 

14.25. Logical axioms. The literature contains many different axiomatizations of logic. 
We shall follow the development of Rasiowa and Sikorski [1963] . 

Our first nine axioms determine what is known as positive logic. 

(i) (A -+ �) -+ ( (� -+ e) -+ (A -+ e)) .  This is called the Syllogism Law. 

( ii) A -+  (A u �) . 
( iii) � -+ (A u �) .  
( iv) (A -+ e) -+ ((� -+ e) -+ ((A u �) -+ e) ) .  
(v) (A n �) -+ A. 
(vi) (A n �) -+ � -
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(vii) ( e ___. A) ___. ( ( e ___. 13)  ___. ( e ___. (A n 13) )  ) . 
(viii) (A ---> (13 ---> e)) ___. ( (A n 13 ) ---> e) . This is the Importation Law. 

(ix) ( (A n 13) ---> e) ---> (A ---> (13 ---> e) ) .  This is the Exportation Law. 
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The nine axioms above, plus the next two axioms below, determine what is commonly 
known as intuitionist logic. It was developed largely by Heyting and corresponds closely 
to intuitionist or constructivist thinking. 

(x) (A n (-,A) )  ---> 13 .  This is the Duns Scot us Law. 

(xi ) (A ___. (A n (-,A)) ) ---> (-,A) .  
Finally, the eleven axioms above plus the twelfth axiom below determine what is known as 
classical logic, which is close to the way of thinking of most mathematicians. 

( xii) A U  (-,A) .  This is the Law of the Excluded Middle, or tertium non datur. 
The twelve rules listed above are actually axiom schemes - each of them represents 

infinitely many axioms. For instance, Axiom Scheme (ii) yields the axiom P ---> (.PUQ) ,  but 
it also yields the axiom (P(x) n R(J(a, y ) ) ) ---> ( (P(x) n R(J(a, y) ) )  U (Q n (--,S) ) )  by using 
different formulas for A and 13.  (Recall that A and 13 only belong to the metalanguage. 
They are informal shorthand abbreviations for expressions such as P(x) n R(J(a, y) ) ,  which 
belong to the object language. )  

14.26. The rules of  inference of our logical system are rules by which, from a given set of 
formulas, we may deduce (or infer) another formula. Here, "deduce" and "infer" merely 
mean "obtain." We are not necessarily obtaining "true" formulas -- we are merely collecting 
"obtainable" formulas, and the rules of inference tell us which formulas are obtainable. 
Admittedly, the rules of inference are most often applied to formulas that are in some sense 
"true," but this is not always the case. For instance, in a proof by contradiction, we may 
assume the negation of the desired conclusion, and then use the rules of inference to try to 
infer various consequences of that and other assumptions, until a contradiction is reached, 
thereby proving the desired conclusion. 

The rules of inference and logical axioms vary slightly from one exposition to another. 
Indeed, what one book calls a rule of inference is what another book may call a logical 
axiom. Our own rules, listed below, follow those of Rasiowa and Sikorski [1963] . These 
rules will be "justified" in 14.55(ii ) .  

(Rl) Modus ponens, also known as the rule of  detachment. Suppose A and 13 are 
formulas. Then from A and (A ---> 13) we can infer 13 .  

Our first rule, modus ponens, is present in all versions o f  logic. The remaining rules below 
involve variables, and so they can be skipped in considering any logic that does not involve 
variables (such as propositional logic) .  

(R2) Rule of substitution. Let x1 , x2 , . . . , Xn be distinct free individual variables, and let 
t 1 , t2 , . . .  , t, be (not necessarily distinct) terms. Let A(x1 , x2 , . . .  , xn ) be a formula, 
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in which each of the free individual variables x1 , x2 , . . .  , Xn occurs 0 or more times. 
Let A(t1 , t2 , . . .  , tn )  be the formula obtained from A(x1 , x2 , . . .  , xn )  by simultaneously 
replacing all occurrences of the x1 's with copies of the corresponding t1 's. Then from 
A(x1 , x2 , . . .  , Xn) we can infer A(h , t2 , . . .  , tn ) · 

In the four rules below, let A(x) be a formula in which the bound variable � does not occur; 
we follow the substitution notation of 14.2 1 .  Also, let � be any formula. Then: 

(R3) Introduction of existential quantifiers. Suppose � contains no occurrence of x. Then 
from A(x) -+ � we can infer (3�; A(�)) -+ � .  

(R4) Introduction of universal quantifiers. Suppose � contains no occurrence of x. Then 
from � -+ A(x) we can infer � -+ (VE A(�) ) .  

(R5) Elimination of existential quantifiers. (We make no assumption about whether x 
appears in � . )  From (3� A(O) -+ � we can infer A(x) -+ �. 

(R6) Elimination of universal quantifiers. (We make no assumption about whether x ap
pears in � . ) From � -+ (V� A(�)) we can infer � -+ A(x) . 

The rules of inference form the basis for our syntactic implications, and in fact the rules of 
inference are our most basic examples of syntactic implications. The rule of modus ponens 
says that for certain formulas �' 9, 9-C we have �' 9 I- 9-C; the other five rules of inference are 
of the form � I- 9 .  

The rules of inference listed above will be  assumed - i . e . ,  taken as hypotheses in  our 
reasoning about reasoning. Some auxiliary rules of inference will be proved as consequences 
of modus ponens and the logical axioms in 14.30. 

14.27. Examples of extra-logical axioms. Besides the logical axioms shared by essentially 
all first-order theories determining our reasoning methods, a particular first-order theory 
may have additional, specialized axioms, determining the mathematical objects that we 
wish to study with that reasoning process. We refer to these as extra-logical or nonlogical 
axioms. Below are some examples. It should be understood that these examples are not 
part of the general explanation of predicate logic developed in this chapter - i.e. ,  we shall 
not assume these axioms later in this chapter. 

a. In many first-order systems, a special role is played by a relation symbol of rank 
two, called equality or equals. It is equipped with several axioms; the precise list of 
axioms varies from one exposition to another. Most often this symbol is denoted by 

" = " - though in some expositions it may instead be denoted by " � " or " = " or 
some other symbol, to emphasize that it is a symbol with precisely specified properties 
under formal study rather than just ordinary informal equality. Here is a typical set 
of axioms for equality: 

(i )  x = x. 
(ii) (x = y) -+ (y = x) .  

(iii) ( (x = y) n (y = z) ) -+ (x = z ) . 



Assumptions in First-Order Logic 

(iv) Let s 1 , s2 , t  be terms, and let y be a free variable. For j = 1 , 2 , let tj be 
the term obtained from t by replacing each occurrence of the variable y 
with the term si . Then ( s 1 = s2) ---> (t 1 = t2 ) is an axiom. 

(v) With notation as in 14.2 1 ,  if s 1 , s2 are terms, then ( s 1 = s2 ) ---> (A( s i ) ---> 
A(s2 ) )  is an axiom. 
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The first three of these axioms say that equality is an "equivalence relation," in a sense 
similar to that in 3.8 and 3 .10 .  The last two axioms say that "equals can be substituted 
for equals." Actually, there is some redundancy in our formulation; our axioms (ii) and 
(iii) actually follow from axioms (i) , (iv) , and (v) . (See Hamilton [1978] , for instance. )  

A logical system that includes such axioms i s  generally called predicate logic 
with equality. In this book we shall consider the axioms of equality to be extra
logical axioms, since they do not occur in all first-order systems. However, we caution 
that some mathematicians are concerned solely with first-order systems with equality, 
and some of these mathematicians find it convenient to designate the axioms of equality 
as "logical axioms" - which means that those axioms may sometimes get used without 
being mentioned. 

b. For the theory of preordered sets, two of the binary relation symbols are = and �.  
Axioms used are the axioms for equality (described above) plus these axioms for the 
ordering: 

(reflexive) 
(transitive) 

(x � x) ,  
((x � y) n (y � z)) ---> (x � z ) .  

For the theory of partially ordered sets, we add this axiom: 

( antisymmetric) ((x � y) n (y � x)) ---> (x = y) . 

All of the axioms above are of first order - i .e . ,  they deal only with individual 
members of a preordered or partially ordered set D,  not with subsets of that set. In 
contrast , the Dedekind completeness of a poset D is a statement requiring a higher
order language. Recall that D is Dedekind complete if each nonempty subset that is 
bounded above has a least upper bound. In symbols, that condition is 

for each S � D, ( ( • (S = 0)) n ( :3x Vy (y E S ---> y � x) ) ) ---> (::Ju Vx ( (u � 
.r) � (Vy (y E S ---> y � x) ) ) )  

where A � '13 i s  an abbreviation for (A ---> '13) 1\ ('13 ---> A) .  The condition begins with 
"for each set S that is a subset of D;" thus it involves a quantifier that ranges over 
subsets of D.  There are other, equivalent ways to formulate the condition of Dedekind 
completeness of D, but none of them can be expressed in first-order language over D. 
Contrast this with 14.27.d, below. 

c. For the theory of monoids, one of the binary relations is =, one of the binary 
functions is o, and some nullary function (i .e . ,  function of arity 0) is denoted by i .  
Axioms used arc the axioms of equality (described above) plus these axioms: 

(associative) (x o y) o z = x o (y o z ) ,  
(right identity) x o z = x, 

(left identity) i o x = x. 
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Additional algebraic axioms can be used to determine the theory of other types of 
algebraic systems - e.g. , groups, rings, etc. 

d. In the language of set theory, the individual elements a, b, c, x, y, z, etc . ,  that we 
discuss are intended to represent sets. In conventional (i.e. , atomless) set theory, the 
only undefined constant is 0; all other constants are defined in terms of it. Thus, 0 is 
an abbreviation for 0, 1 is an abbreviation for { 0} ,  2 is an abbreviation for { 0, { 0} } ,  
etc . ,  as i n  5.44. 

A basic binary relation is E (membership) .  Other relations can be defined in terms 
of membership. For instance, u � v means (x E u) --+ (x E v ) ,  and u = v means 
(u � v) n (v � u) . 

The most commonly used axioms of set theory are the ZF axioms listed in 1 .47. 
To make ZF into a first-order theory we must view the Axiom of Comprehension 
and the Axiom of Replacement not as single axioms, but as axiom schemes. Each of 
these two schemes represents infinitely many different axioms. We have one Axiom of 
Comprehension for each property P that can be formulated in the first-order language, 
and one Axiom of Replacement for each function f that can be formulated in the 
first-order language. (See also the reinterpretation of these axioms indicated in 14.67.) 

The language of set theory is extremely powerful - it is more expressive than any 
of the other languages mentioned above. As we remarked in 1 .46, all familiar objects 
of mathematics can be expressed in this language. The integers can be built up using 
the Axiom of Infinity; the rational numbers can be built up using equivalence classes 
of pairs of integers; the real numbers can be built up using Dedekind cuts of rationals. 
The language of set theory is sufficiently expressive for us to assert that a certain poset 
X is Dedekind complete: We can describe the ordering as a subset of X x X,  and the 
subsets of X are members of P(X) .  Contrast this with 14.27.b, above. 

SOME SYNTACTIC RESULTS (PROPOSITIONAL 
LOGIC) 

14.28. Remark. We now consider some consequences of the logical axioms and inference 
rules listed in 14.25 and 14.26. We begin with some results that do not mention variables or 
constants; these results will not require any rules of inference except modus ponens; these 
results will apply equally well to propositional logic or predicate logic. In 14.39 we shall 
begin to consider results that do involve variables and constants. 

14.29. Some basic syntactic theorems of positive logic. 
(i) A --+  A. 

(ii) A __.  (:B --+ A) .  
(iii) :B --+  (A --+ A) .  
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(iv) A ----> ( (A ----> A) ----> A) .  

(v) ( (A ----> 13)  n A) ----> 13 .  

(vi) A ----> (13 ----> (A n 13 ) ) .  
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These results will be proved for all formulas A and 13,using the axioms of positive logic (i .e. , 
Axioms (i) through (ix) of 14 .25) . These results will be used later in proofs. 

Proof. The formula 

is an instance of Axiom (ix) , and ( ( (A n A) ----> A) n A) ----> A is an instance of Axiom (vi ) .  

Combine these, by modus ponens, to prove the formula ( (A n A) ----> A) ----> (A ----> A) .  Next , 
(A n A) ----> A is another instance of Axiom (vi ) ;  combine that with the preceding formula 
to prove Theorem (i) . 

Theorem (ii) is immediate from Axioms (v) and (ix) via modus ponens (with the sub
stitution e = A) .  

The formula (A ----> A) ----> (13 ----> (A ----> A) )  i s  an instance of Theorem (ii ) .  Combine it 
with Theorem (i) , by modus ponens, to prove Theorem (iii ) .  

Theorem (iv) is just an instance of Theorem (ii ) .  

The formula ( (A ----> 13) ----> (A ----> 13 ) ) ----> ( ( (A ----> 13)  n A) ----> 13) is an instance of Axiom 

(viii ) .  An instance of Theorem (i) is (A ----> 13) ----> (A ----> 13 ) .  Combine those, by modus 
ponens, to prove Theorem (v) .  

The formula ( (A n 13) ----> (A n 13)) ----> (A ----> (13 ----> (A n 13 ) ) )  is an instance of Axiom 
(ix) , and the formula (A n 13) ----> (A n 13) is an instance of Theorem (i) . Combine these to 
prove Theorem (vi ) .  

14.30. Additional rules of inference. We shall use the axioms of positive logic to prove: 

(i) If A, 13 ,  e are some formulas such that A ----> 13 and 13 ----> e are syntactic 
theorems, then A ----> e is also a syntactic theorem. 

(ii) A n 13 is a syntactic theorem if and only if both A and 13 are syntactic 
theorems. 

(iii) (A ----> A) ----> A is a sy�1tactic theorem if and only if A is a syntactic theorem. 

(iv) If A ----> (13 ----> e) and A ----> 13 are syntactic theorems, then A ----> e is a syntactic 
theorem. 

Proofs. We shall use not only Axioms (i) through ( ix) , but also some of the Theorems of 
the previous section. 

Rule (i) follows easily from Theorem (i) and modus ponens. 
For Rule (i i) ,  observe that if A n  13 is a syntactic theorem, then A and 13 are syntact ic 

theorems by Axioms (v) and (vi) via modus ponens. Conversely, if A and 13 are syntactic 
theorems, then A n  13 follows from Theorem (vi) and two applications of modus ponens. 
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To prove Rule (iii ) :  If A is a syntactic theorem, then from Theorem (iv) by modus 
ponens we know (A ----+ A) ----+ A is a syntactic theorem. Conversely, if (A ----+ A)  ----+ A is a 
syntactic theorem, then from Theorem (i) by modus ponens we can conclude that A is also 
a syntactic theorem. 

To prove Rule (iv) : Note that (A ----+ ('B ----+ e)) ----+ ( (A ----+ 'B ) ----+ (A ----+ ( ('B ----+ e) n'B) ) )  is 
an instance of Axiom (vii ) .  Combine it with the two given syntactic theorems, via modus 
ponens; thus we obtain A ----+ ( ( ('B ----+ e) n'B) )  as a syntactic theorem. On the other hand, 
an instance of 14.29(v) gives us ( ('B ----+ e) n 'B) ----+ e. Combine these two results, using 
14 .30(i) ; thus A ----+ e is a syntactic theorem. 

14.31. A set I: of formulas is syntactically inconsistent if we can use I: to deduce both 
A and -,A, for some formula A. Note that we can then use I: to deduce any formula; that 
is clear from the Duns Scotus Law (Axiom (x) in 14.25) . 

If I: is not syntactically inconsistent , then it is syntactically consistent. 
A derivation is understood to involve only finitely many steps, and so it can only involve 

finitely many of the axioms. Therefore, 

a collection of formulas is syntactically consistent if and only if each finite subset 
of that collection is syntactically consistent . 

In other words, syntactic consistency of sets of formulas is a property with finite character, 
in the sense of 3.46. 

14.32. Definition of the ordering of the language. Let F be the set of all formulas. We use 
the positive logic axioms from 14.25, plus whatever additional axioms we may choose. We 
now define two binary relations on F as follows: For formulas A and 'B, 

A � 'B will mean that the formula A ----+ 'B i s  a syntactic theorem; 

A � 'B will mean that both A ----+ 'B and 'B ----+ A are syntactic theorems. 

It should be emphasized that the relations � and � are part of our metalanguage, not part 
of our object language (see 14. 12.b) . Thus, the expressions A � 'B and A � 'B are not 
"formulas." 

It follows from Theorem (i) of 14.29 and Rule (i) of 14.30 that 

� is a preorder, and � is an equivalence relation, on F. 

Let lL = (F / �) be the set of equivalence classes. The set lL, equipped with the operations 
discussed below, is commonly known as the Lindenbaum algebra. 

The preorder � on F determines a partial order on lL, which we shall also denote by �
Let [ ] : F ----+ lL be  the quotient map; that is, [A] i s  the equivalence class containing the 
formula A. Thus 

[A] � ['B] if and only if (A ----+ 'B) is a syntactic theorem. 

We shall use equality ( =) in its usual fashion as a relation between equivalence classes. 
Thus, [A] = ['B] means that A and 'B belong to the same equivalence class - i.e. , it means 
that A �  'B. 
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It should be emphasized that any axioms whatsoever (or no axioms at all) may be used 
in addition to Axioms (i)-(ix) . Different choices of additional axioms yield different relations 
� ' :::::: and thus yield different Lindenbaum algebras. Throughout most of our discussions 
in this and the next chapter, we assume that some particular choice is made regarding the 
additional axioms, and thus we may speak of the Lindenbaum algebra. 

14.33. Theorem. The Lindenbaum algebra (L, �) defined above is, in fact, a relatively 
pseudocomplemented lattice (as defined in 13 .24) , with operations given by 

[A] v [13] = [A u 13] ,  
[A] A [13] = [A n 13] , 

( [A] =;. [13] ) = 
1 = 

[A ----> 13] , 
[A ----> A] 

for any formulas A, 13. A formula A is a syntactic theorem if and only if it satisfies [A] = 1 .  
If we assume the axioms of intuitionist logic, then L is a Heyting algebra, with 

O = [A n (--.A) ] ,  C [A] = [·A] 

for any formula A. The Heyting algebra is degenerate (i .e . ,  satisfying 0 = 1 )  if and only if 
our set of axioms is syntactically inconsistent (i.e., there is some formula such that An (·A) 
is a syntactic theorem) , in which case every formula is provable. 

If we assume the axioms of classical logic, then L is a Boolean algebra. Its greatest 
member 1 is also equal to [A U (•A)] for any formula A. 

The Boolean algebra L is more than just { 0, 1} if and only if at least one formula :J is 
neither provable nor disprovable from the axioms. 

Proof of theorem. (This argument follows the exposition of Rasiowa and Sikorski [ 1963] . )  
We first show that any two-element subset of (L, � )  has a supremum. Let any two 

elements of L be given; then those two elements can be represented as [A] and [13] for some 
formulas A and 13 (which are not uniquely determined by the given elements of L) .  From 
Axioms (ii) and (iii) we see that [AU13] is an upper bound for the set { [A] , [13] } in the poset 
(L, �) .  Is it least among the upper bounds? Let any other upper bound for { [A] , [13] } be 
given; say that upper bound can be represented by [e] for some formula e. Then A ----> e and 
13 ----> e are syntactic theorems, by our definition of � · By Axiom (iv) via modus ponens, it 
follows that (A v 13) ----> e is also a syntactic theorem; thus [A u 13] � [e] . Thus [A u 13] is 
indeed least among the upper bounds of { [A] , [13] } .  

An analogous argument works for lower bounds, using Axioms (v) ,  (vi ) ,  and (vii ) .  Thus 
L is a lattice, with [A] V [13] = [A u 13] and [A] 1\ [13] = [A n 13] . 

Next we shall show that ( [A] =? [13] ) = [A ----> 13] defines a relative pseudocomplementa
tion operator. Let any formulas A, 13 be given; we are to show that [A ----> 13] is the largest 
A in L that satisfies A 1\ [A] � [13] .  By Theorem (v) of 14 .29 we know that [A ----> 13] is one of 
the A's with that property. Is it the largest? Let any formula '.D satisfying ['.D] 1\ [A] � [13] 
be given. Then ('.D n A) ----> 13 is a syntactic theorem. The formula 

is also a syntactic theorem, as it is an instance of Axiom (ix) . From those two syntactic 
theorems via modus ponens we deduce the syntactic theorem '.D ----> (A ----> 13) .  In other 
words, '.D � (A ----> 13 ) ,  so [A ----> 13] is indeed largest . 
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That proves our claim about relative pseudocomplements. As in any relatively pseudo
complemented lattice, we now know that the largest element of [, is 1 = [A ---> A] , for any 
formula A. By 14.30(iii) we know that A is a syntactic theorem if and only if 1 � [A] ; that 
is, if and only if 1 = [A] . 

Now suppose our axioms include the axioms of intuitionist logic. By Axiom (x) we see 
that [A n (-,A)] � [13] for any formulas A, 13 .  Thus [, has a smallest element , given by the 
rule 0 = [A n (-,A)] for any formula A. Hence [, is a Heyting algebra. The conclusion about 
inconsistency and degeneracy is now obvious. 

We have 0 = [A] /\ [-,A] . By 13.25.a it follows that [-,A] � ( [A] ::::;. 0) .  On the other 
hand, we also have ( [A] ::::;. 0) = [A ---> (A n (-,A)) ]  � [-,A] by Axiom (xi ) .  Thus the pseu
docomplement ( [A] ::::;. 0) is equal to [-,A] . 

If we also assume Axiom (xii) , then [A] V (C[Al ) = [A U (-,A)] = 1 ,  so [, is a Boolean 
algebra. 

14.34. Further consequences in intuitionistic logic. In any intuitionist logic, all the formulas 
given by the following schemes are syntactic theorems. This follows from the fact that the 
formulas correspond to identities that are satisfied in any Heyting algebra. 

a. Interchange of Hypotheses. (A ___. (13 ___. e) ) ___. (13 ___. (A ___. e) ) .  
b. Contrapositive Law. (A ---> (---,13 ) ) ---> (13 ---> (-,A) ) .  
c .  Double Negation Law. A ---> (-,-,A) . 

d. (A ___. (-,A) ) ___. ('A) .  

e. (A ---> 13 )  ___. ( (---,13 )  ___. (-,A) ) .  
f. Brouwer's Triple Negation Law. (-,-,-,A) ---> (-,A) and (-,A) ---> (-,-,-,A) .  
g.  ( (-,A) n (---,13) )  ___. (-,(A u 13) )  and (-,(A u 13) )  ___. ( (-,A) n (---,13 ) ) .  
h.  ( (,A) u (---,13) )  ___. (-,(A n 13) ) .  
i. ( (-,A) u 13) ___. (A ---> 13 ) .  

In  classical logic we have those formulas, plus the ones listed in  the section below. 

14.35. Some nonconstructive techniques of reasoning. In the setting of intuitionist logic, 
the following formula schemes are undecidable, in the sense that they can neither be proved 
nor disproved syntactically, using just the intuitionist logical axioms. Moreover, they are 
equivalent to each other, in the sense that any one of them can be deduced from any of the 
others. They are all derivable in classical logic; adding any one of them to intuitionist logic 
yields classical logic. 

Some of the formulas below could be viewed as symbolic representations of the principle 
of proof by contradiction. 

(A)  Law of the Excluded Middle: A U  (-,A) 

(B) Converse of the Double Negation Law: (-,-,A) ---> A 

(C) (A ___. 13) ___. ( (,A) u 13)  

(D )  ( (-,A) ___. (---,13 ) )  ___. (13  ___. A)  
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(E) ( (---.A) ----> 13) ___, ( (---.13) ----> A) 
for all formulas A, 13. 
Proof The equivalence of these conditions is just a restatement of the result of 13 .29. To say 
that these conditions cannot be disproved in intuitionist logic is just to say that the axioms 
of classical logic are syntactically consistent ; that will be established in the next chapter. To 
show that these conditions cannot be disproved in intuitionist logic, let (H, 0,  1 ,  V, 1\ ,  =:;., C) 
be some particular Heyting algebra that is not a Boolean algebra. (An example of such 
is mentioned in 13.28.a. ) Say the members of H are 0, 1 ,  a, b, c, etc. Form a propositional 
calculus that has one primitive propositional symbol for each member of H;  say the primitive 
propositional symbols are denoted P0 , P1 , Pa , Pb , Pc , etc. Now interpret each formula in the 
propositional logic as the corresponding member of the Heyting algebra. For example, 
one instance of the Duns Scotus Law is the formula (Pc n (---.Pc) ) ----> Pa ; interpret this 
as the member of the Heyting algebra represented by ( c 1\ (Cc)) =:;. a. That expression 
simplifies to 1 ,  in any Heyting algebra. It is now a tedious but straightforward matter to 
verify that (i) each of the eleven logical axiom schemes of intuitionist logic is represented 
by 1 in the Heyting algebra; and (ii) if :1 and :1 ----> 9 are formulas represented by 1 in 
the Heyting algebra, then 9 is also represented by 1 in the Heyting algebra - i.e . ,  modus 
ponens preserves "truth;" but (iii) the Law of the Excluded Middle is not represented by 1 
in this particular Heyting algebra. This completes the proof. 

Remarks. In effect,  we have used H as a "quasimodel" for our propositional calculus. 
Models and quasimodels will be explored in greater detail later in this chapter. However, for 
brevity we shall only consider classical logics, and so all our formal models and quasimodels 
will be Boolean-valued. Thus the argument given in the preceding paragraph does not quite 
fit the formal framework developed later in this chapter. 

14.36. Discussion of intuitionist logic. The axiom system of classical logic is slightly 
stronger than that of intuitionist logic. Hence, the set of syntactic theorems in classical 
logic is slightly larger than that of intuitionist logic. 

The connective U has rather different meanings in classical logic and intuitionist logic. 
In classical logic, if P is a primitive proposition symbol about which nothing in particular 
is assumed, then neither P nor ---.P is a theorem; nevertheless P U ( ---.P) is a theorem - this 
is just the Law of the Excluded Middle. In contrast, 

in intuitionist propositional logic, if A and 13 are some formulas such that A U  13 
is a syntactic theorem, then at least one of A or 13 is a syntactic theorem. 

(The proof is too difficult to give here; a topological proof is given by Rasiowa and Sikorski 
[ 1963, page 394] . An analogous result for predicate logic can be found on page 430 of thl}t 
book. )  This result may surprise many readers, because it is so different from what we are 
familiar with in classical logic. It may also puzzle some readers, because it seems to give 
a stronger conclusion in intuitionist logic than in classical logic - even though intuitionist 
logic is the weaker logic. But read carefully! Since intuitionist logic has fewer axioms and 
fewer syntactic theorems than classical logic, the hypothesis that "A U 13 is a syntactic 
theorem of intuitionist logic" is stronger than the hypothesis that "A U 13 is a syntactic 
theorem of classical logic." 
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Heyting developed his algebraic approach to intuitionist logic in a paper in 1930. In 
1932, Kolmogorov published some related results, including this intuitive (i .e . ,  real-world) 
interpretation of Heyting's formalism: 

Let us use letters such as A, �' e, etc. ,  to denote problems that are to be solved. Interpret 
connectives as follows: 

A n �  means the problem "to solve both A and � ," 

A U � means the problem "to solve at least one of A or � ," 

A -+ � means the problem "to show how any solution of A would yield a solution 
of � ," 

-.A means the problem "to show how any solution of A would yield a contra
diction." 

Then the properties of Kolmogorov's system of problem-solving coincides with the prop
erties of Heyting's formal intuitionist propositional calculus. (For further references and 
discussion, see Kneebone [1963] . ) The Law of the Excluded Middle (which we introduced 
in 6.4) is not taken as an axiom in the intuitionist system of Heyting or Kolmogorov - i.e. ,  
although for some particular problems A we may be able to solve at least one of A or -.A, 
we do not have a general method for doing that. The systems of Heyting and Kolmogorov 
reflect a somewhat constructive viewpoint, but we shall not try to make that description 
precise, for there are many different schools of constructivism. 

SOME SYNTACTIC RESULTS (PREDICATE LOGIC) 

14.37. Remark. Our preceding syntactic results did not make any direct use of variables; 
they would apply equally well to propositional logic or predicate logic. We now turn to syn
tactic results that do involve variables. Most of these results are only relevant to predicate 
logic. A few of them are also relevant to propositional logic, but take a simplified form in 
that case; see 14.40.b for instance. 

14.38. We begin by considering the relation between these two kinds of implications: 

(i) I; f- (3'" -+ 9 ) ,  ( ii) I; u 3'" f- 9 .  

Here 3'" and 9 are any formulas, and I: i s  any set of formulas. 
It is easy to see that (i) '* ( ii) - i.e. ,  that whenever 3'" and 9 are some particular 

formulas that satisfy ( i) , then they also satisfy (i i) . (Proof. Assume I: f- (3'" -+ 9 ) ,  and 
assume we are given the set of formulas I: U 3'". Since we are given I:, we may deduce 3'" -+  9 .  
Since we are also given 3'", by modus ponens we may deduce 9 . )  

Under certain additional assumptions we can show that ( ii) ==* ( i ) , and therefore ( i) , 
( ii) are equivalent ; that is the subject of 14.39 and 14.40. However, in general ( i .e . ,  without 
additional assumptions) , ( ii) does not imply ( i) ; that is shown by an example in 14.60. 



Some Syntactic Results (Predicate Logic) 373 

14.39. The Deduction Principle. Let 9" and 9 be formulas, and let I: be a set of 
formulas. Suppose that I: U {9"} f- 9; that is, there exists a derivation of 9 from I: U {9"} . 
Suppose, moreover, that the derivation can be chosen so that 

whenever any of the inference rules (R2) , (R3) , (R4) is used, then the free 
variables x, x1 , x2 , x3, . . .  being replaced are symbols that do not appear in 9". 

Then I: f- (9" --+ 9 ) .  
Proof We view I: as a collection of extra-logical axioms. Let £ 1 , £2 , . . .  , en be the given 
derivation. Thus, en = 9 ,  and each CJ is either a logical or extra-logical axiom, or 9", or 
a consequence of previous c/s by the rules of inference. It suffices to prove, by induction 
on k = 1 ,  2, . . . , n, that I: f- (9" --+ ck ) · We prove this by considering cases according to the 
method by which Ck enters the given derivation. 

If ck is an axiom, then from Ck --+ (9" --+ c k) (in 14.29(ii) ) and Ck we may deduce 
9" --+ c k . If c k is equal to 9", then 9" --+ £ k is the formula 9" --+ 9", which was proved in 
14.29(i) . Thus, in these cases we have I: f- (9" --+ ck ) ,  without even referring to the induction 
hypothesis. 

Next, consider the case in which Ck follows from previous formulas Ci and CJ via modus 
ponens. Then (with i and j switched if necessary) we may assume ci is the formula CJ --+ Ck .  
By our induction hypothesis we have I: f- (9" ---. (£J ---. ck ) )  and I: f- (9" --+ cj ) · By  14.30(iv) 
it follows that I: f- ( 9" --+ c k ) .  

Next, consider the case in  which ck follows from some previous formula Cj by the Rule of 
Substitution (R2) � i.e . ,  by replacing some or all of the free variables with specified terms. 
Since none of those free variables appear in 1", the same substitution leaves 1" unaffected. 
Thus 1" --+ c k follows from 1" --+ c J by the Rule of Substitution. 

Next , consider the cases in which ck follows from some previous formula CJ by one of 
the remaining inference rules (R3) ,  (R4) , (R5) ,  (R6) .  In these cases, Cj is a formula C --+ 'D 
of a certain type, and from it we can deduce ck , a formula C' --+ 'D' of a certain type. It 
suffices to show, by different reasonings in these four cases, that 

from 9" --+ ( e --+ 'D) ' we can deduce 1" --+ ( e' --+ 'D') .  (a) 
For some of these cases it is helpful to use 14.34.a; thus (a) is established if we can just 
show that 

from e --+  (1" --+ 'D ) ,  we can deduce e' --+ (1" --+ 'D') .  (b) 
For other cases, it is helpful to .use Axioms (viii) and (ix) in 14.25; thus (a) is established 
if we can just show that 

from ( e n 1") --+ 'D' we can deduce ( e' n 1") --+ 'D' . (c) 

A-pplications of (R3) are of this form: A(x) contains no occurrence of �' 'B contains no 
occurrence of x, and from A(x) --+ 'B we infer (:3�; A(�) ) --+ 'B .  By assumption, x does not 
occur in 1", hence it does not occur in ( 1" --+ 'B) ,  and so from A ( x) --+ ( 1" --+ 'B) we infer 
(:3�; A(O ) --+ (1" --+ 'B) ,  by the same rule of inference. That is just (b) . 

Applications of (R4) are of this form: A(x) contains no occurrence of �' 'B contains no 
occurrences of x ,  and from 'B --+ A(x) we infer 'B --+  (Vt; A(�) ) .  By assumption, 1" contains 
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no occurrences of x, hence � n � contains no occurrences of x, hence by the same inference 
rule from (� n �) __, A(x) we infer (� n �) __, ('<It; A(�)) .  This is just (c) . 

Applications of (R5) are of this form: A(x) contains no occurrence of � and from 
(:lt;, A(O )  __, � we infer A(x) __, �. By the same inference rule, from (:lt;, A(O) __, (� __, �)  
we infer A(x) __, (� __, �) .  This i s  (b) . 

Applications of (R6) are of this form: A(x) contains no occurrence of �' and from 
� __, ('<It; A(�)) we infer � __, A(x). By the same rule, from (� n �) __, ('<It; A(�)) we infer 
('B n �) __, A(x). This is (c) . 

This completes the proof. 

14.40. Corollaries. Refer to 14.38. In special circumstances we obtain simplified versions 
of the Deduction Principle: 

a. Deduction Principle for Closed Formulas. Let � and 9 be formulas, and let I: 
be a set of formulas. Assume � has no free variables. Then I: U {�} f--- 9 if and only if 
I: f--- (� --; 9) .  

b.  Deduction Principle for Propositional Logic. In propositional logic, let � and 
9 be formulas, and let I: be a set of formulas. Then I: U {�} f--- 9 if and only if 
I: f--- (� --; 9) .  

(In particular, taking I: = 0,  we see that � f--- 9 if and only if f--- (�  __, 9) .  Thus, 
"__," means just what one would expect it to mean, at least in propositional logic. ) 

c. A weak form of proof by contradiction. Suppose I: is a set of formulas and A is a 
formula with no free variables. If I: U {A} is syntactically inconsistent , then I: f--- (-,A) . 
(Moreover, this result is  valid both in classical logic and in intuitionist logic. )  

Proof of c .  By assumption, I: U {A} f--- (� n (---,�)) for some formula '13.  Now, the formula 
('B n (---,�) ) __, (-,A) is an instance of the Duns Scotus Law, Axiom (x) from 14.25. Hence 
by modus ponens we have I: U {A} f--- (-,A) . Since A has no free variables, we have I: f--
(A __, (-,A)) by the Deduction Principle 14.40.a. However, by 14.34.e we have the syntactic 
theorem (A __, (-,A)) __, (-,A) , based solely on the logical axioms. Hence by modus ponens 
we have I: f--- (-,A) . 

14.41. Theorem characterizing quantifiers as sup and inf. Let � be a bound variable 
that does not appear in the formula A(x); we follow the substitution notation of 14.2 1 .  Let 
T be the set of all free variables (- an infinite set, by our assumption in 14 .17) ,  or more 
generally let T be any set of terms with T -;2 { x1 , x2 , x3 , . . .  } where the x j 's are distinct free 
variables. Then, in the Lindenbaum algebra (JL, �) ,  we have 

[:lt; A(0] = sup [A(t)] , 
tET 

['<It; A(�)] = inf [A(t) ] . 
tET 

Proof By 14.29(i) we know (:lt;,A(�)) __, (:lt;,A(O) is a syntactic theorem. From that 
syntactic theorem and inference rule (R5) we can infer that A(x) __, (:lt;, A(O) is also a 
syntactic theorem. Let t be any term in T. Note that the variable x does not appear in the 
formula (:lt;, A(O) .  When we replace each x with t in the formula A(x) __, (:lt;, A(�) ) ,  the 
result is the formula A(t) __, (:lt;, A(�) ) ,  which is therefore is a syntactic theorem by (R2) .  
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Thus [A(t)] � [::l�;A(�)] in the poset (IL, � ) .  That is, [:3�; A(�)] is an upper bound for the set 
{ [A(t)] : t E T} . 

Is i t the least upper bound? Let 13 be a formula such that [13] i s also an upper bound 
for { [A(t) ] : t E T}; we are to show that [::J�A(O] � [13] . For each t E T, our assumption 
about 13 says that A(t) -+ 13 is a syntactic theorem. Since T contains infinitely many free 
variables, and 13 and A(x) are strings of only finitely many symbols, we have A(z) -+ 13 for 
some free variable z that belongs to T but does not appear in 13 or in A(x) . Then � does 
not appear in A(z) , and A(O is the same as the string of symbols obtained from A(z) by 
replacing each z with �- By (R3 ) ,  the formula (::l�;A(�)) -+ 13 is a syntactic theorem. That 
is, [::l�;A(O] � [13] ,  as required . 

A dual argument proves [\i�; A(OJ = inftET [A(t) ] . 

14.42. Corollary. Suppose that neither of the bound variables �' 7] appears in the formula 
A(x) . Then 

(Thus, the validity of a syntactic theorem does not depend on our choice of the bound 
variables. )  Also, 

[• (\i�; A(0)] = [:3� (•A(0)] , 

[(\i�; A(0) u 13] = [\i� (A(�) u 13)] , 

[ (::l�; A(0) u 13] = [::l�; (A(�) u 13)] , 

etc . By repeated use of these formulas, quantifiers can be moved to the beginning of any 
formula. Thus, any formula is equivalent to a formula in prenex normal form - i .e . , 
a formula consisting of a string of quantifiers, followed by a string of symbols other than 
quantifiers. 

14.43. Rule of Generalization. Let � be a bound variable that does not appear in 
the formula A(x) ; we follow the substitution notation of 14 .21 . Then A(x) is a syntactic 
theorem if and only if \i�; A(O is a syntactic theorem. 

Proof. By 14.29(i) we know (\i�;A(�)) -+ (\i�;A(0) is a syntactic theorem; by inference rule 
(R6) it follows that (\i�;A(O) -+ A(x) is also a syntactic theorem. If \i�;A(O is a syntactic 
theorem, then modus ponens tells us A(x) is also a syntactic theorem. 

Conversely, assume A(x) is a syntactic theorem. Let T be the set of all terms. For 
each t E T, we know by (R2) that A(t) is a syntactic theorem; that is, [A(t) ] = 1 . Hence 
[\i�;A(O] = inf1ET [A(t) ] = 1 ,  so \i�;A(O is a syntactic theorem. 

14.44. Definitions. A sentence, or closed formula, is a formula with no free variables. 
(Note that "formulas" and "sentences" are the same thing in propositional logic, since that 
logic has no free variables. )  

Let A(x1 , x2 ,  . . .  , x11 ) be some given formula whose free variables are the distinct sym
bols x 1 ,  x2 , . . .  , x n ,  and no others. Let �1 , 6 ,  . . .  , �" be any n distinct bound variables that 
do not appear in the given formula. Then the closure of the given formula is the for
mula \i�;l \7'6 · · · \i�;, A(6 , 6 , . . .  , �, ) ; that is, it is the formula obtained by replacing all 
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occurrences of each xi with the corresponding �i and binding all the �i 's with universal 
quantifiers. (Observe that the closure is a closed formula.) 

By applying the Rule of Generalization n times, we obtain: 

Proposition. Let :1 be any formula. Then :1 is a syntactic theorem if and only if its closure 
is a syntactic theorem. 

14.45. Lemma. Let (£ , �) be a first-order theory (with language £ and axioms �) that is 
syntactically consistent . Assume £ has infinitely many free variables. Let c be a constant 
symbol that is not already in use in the language £ ;  let £' = £ U { c} be the larger language 
obtained by adding that one symbol. Then (£/ , �) is also syntactically consistent . 

Proof Suppose not - i.e. , suppose that � f- :F n  (-,:f) for some formula :1 when we use the 
enlarged language £' . Consider any derivation of the formula :1 n (-,:f) from the axioms 
of �- The derivation involves only finitely many steps, hence only finitely many symbols. 
Select some free variable z that does not appear in the derivation, and replace all occurrences 
of c with z throughout the derivation. This yields a derivation � f- 9 n (,g) in the language 
£ ,  for some formula 9 - contradicting the assumed consistency of (£ , �) .  

14.46. Technical lemma. (This lemma will be used in the proof of 14 .57. ) 
Let (£,  �)  be a first-order theory (with language £ and axioms �) that is syntactically 

consistent . Assume that the language £ contains infinitely many free variables, but all the 
axioms in � are closed formulas. Let (£' , �' ) be a first-order theory with larger language £' 
and larger axiom collection �' , formed by adding more constant symbols and more axioms 
according to these rules: 

( i) Whenever t is a term in the language £ that involves no free variables (i .e . ,  
it involves only constant symbols and function symbols) ,  and Ve, A(�) is an 
axiom in �

' 
then add the axiom A(t) as one of the ingredients of �' . 

(ii) For each axiom in � of the form ::le, A(�) , add to the language some constant 
symbol c not already present in £ ,  and add the axiom A( c) . 

Then the new system (£' , �') is also syntactically consistent . 

Remarks. A constant c that satisfies A(c) is sometimes called a witness for the axiom 
::le, A (�) . Thus, in part (ii) we add a new symbol c to serve as a witness. That new symbol 
can be chosen canonically - i.e. ,  this does not require the Axiom of Choice - for instance, 
we could use the symbol ! ::le, A(O I ,  where the box and all the marks inside it are parts of 

the symbol. 

Proof of lemma. Suppose that (£' , �') is not syntactically consistent - i.e . ,  adding axioms 
and constants by methods (i) and (ii) yields a contradiction :Fn (-,:f) . Then finitely many of 
those axioms and symbols yield a contradiction, so the contradiction results from extending 
(£ , �) finitely many times using steps of type (i) or (ii) above. Take those finitely many 
steps, one at a time, and stop at the point where the system becomes inconsistent . Say we 
have the systems 

( £o ,  �o) consistent and (£ 1 , �I ) inconsistent , 
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separated by one step. 
The step that causes the inconsistency cannot be of type (i ) , since steps of that type 

do not enlarge the language, and they enlarge the axiom system only by adding formulas 
that were already syntactic theorems (by the Rule of Generalization 14.43 and the Rule of 
Substitution 14 .26(R2) ) . Thus, the step causing inconsistency is of type (ii ) .  We have 

and 

where A is some formula such that 

L:1 = L:o U {A(c) } ,  

::3�:; A(�) belongs to I: and hence also belongs to L:0 . 

By 14.45 we know that (£ 1 , L:0 ) is consistent. We shall use the language £ 1  throughout the 
remainder of this proof. 

Since L:0 U {A(c) } is inconsistent and A(c) has no free variables, 1 4.40.c tells us that 
L:0 f- (-.A( c) ) .  Let some derivation of (-.A( c) ) from L:o be specified, and let z be a free 
variable that does not appear in that derivation. Replacing c with z throughout that 
derivation yields a derivation of the formula -.A(z ) .  By the Rule of Generalization 14.43, 
\/�:; (-.A(O) is a syntactic theorem of L:0 . By 14 .41 , that theorem can be restated as 
-. ( ::3�:; A( 0) .  This contradicts ( * * ) and completes the proof. 

THE SEMANTIC VIEW 

14.4 7. We shall now discuss interpretations and quasi-interpretations of a language. In 
the discussion below, I I will represent several different but related mappings. 

By a quasi-interpretation of a first-order language ,C we shall mean1 a triple (B ,  D, I I ) ,  
with these ingredients: 

a. A Boolean algebra B is specified, which must be nondegenerate (i .e . , satisfying 0 =I- 1 ) .  
We may refer to B as the set of truth values. We require that the Boolean algebra 
B satisfy a certain completeness condition, which is slightly complicated; it will be 
described in 14.47.j ( q ) .  The condition is satisfied if B happens to be a complete Boolean 
algebra (i .e . , if every subset of B has a supremum and an infimum) ,  but the condition 
may also be satisfied by certain other Boolean algebras. In the simplest cases we 
may take B = {0, 1 } ,  and then the quasi-interpretation is called an interpretation. 
However, other choices of B are also of interest , and so we consider the more general 
theory of quasi-interpretations. The element 1 (the greatest element of B) may be 
called true or truth or tautology. The element 0 (the least element of B) may be 
called false or falsehood or contradiction. 

b. A collection D of objects is specified; it is sometimes called the domain. It may be a 
set or a proper class. Members of D are called individuals. Typical examples: For 
analysis, D could be the set of real numbers. For set theory, D could be the class 

1 See also the alternate terminologies in 14. 50. 
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of all sets or some smaller collection of sets such as the collection M in 14 .6 . For 
propositional logic, we generally take D to be empty. 

In some discussions, we may refer to D itself as the "interpretation" or "quasi
interpretation" but it is understood that the interpretation or quasi-interpretation also 
involves the Boolean algebra B and the mappings I I discussed below. A countable 
quasi-interpretation is a quasi-interpretation whose domain D is a countable set. 

c. A mapping I I is given from the set of individual constant symbols of the language £ ,  
into D. Thus, each constant symbol c in ,C i s  understood to represent some individual 
in D, which will be denoted in this discussion by lc l . We say that c is the name of the 
individual l c l .  In ordinary mathematics we do not distinguish between an individual 
object and the symbol that is its name, but that distinction is important in logic. 

We emphasize that this mapping I I is not necessarily injective - i.e. , one quasi
interpretation may give several names to the same individual. In other words, several 
constant symbols in ,C could conceivably all be names for the same number or set or 
other mathematical object in D. 

Also, we emphasize that this mapping I I is not necessarily surjective - i.e . , not 
every individual in D necessarily has a name. (For theoretical purposes it is sometimes 
useful to work with ,C(D) , the language obtained by adding to ,C another constant 
symbol for each individual in D - i .e . , a language that gives a name to every member 
of D - but that language will not be studied here. )  

d.  For each n-ary function symbol f i n the formal language, the mapping I I must specify 
some n-ary function I f I on D - that is , a mapping I f I : Dn -+ D. Note this distinction: 
f is a meaningless letter, while I f I is a function. Typical examples with n = 2: If D is 
the real number system, then lf l might be addition or multiplication. If D is the class 
of all sets, then lf l might be the union operation. 

We emphasize that lf l (dl , d2 , . . .  , dn ) is defined to be some member of D whenever 
d1 , d2 , . . .  , dn are any individuals; they need not be individuals with names. Thus, 
the function lf l goes beyond merely specifying meanings for expressions that can be 
formulated in the formal language £ .  

e .  For each n-ary relation symbol R in the formal language, we specify some corresponding 
function IR I  : Dn -+ B. 

Note that if B = {0, 1 } ,  then IRI may be viewed as (the characteristic function of) 
some subset of Dn; thus it is an n-ary relation on D. In particular, if n = 2, then IR I 
i s (the characteristic function of the graph of) a binary relation on D, such as ::; or 
� .  Here is a typical example: When the language of analysis is interpreted in its usual 
fashion, then D is the set of real numbers and < is a binary relation symbol that is 
interpreted as a function I < I from IR2 into { "true," "false" } .  Some of its values are 
I < 1 (3 , 5)  = "true" and I < 1 (3 ,  3) = "false." 

Note that in propositional logic, each relation symbol R has arity 0, and so its 
quasi-interpretation IRI is just a constant member of B. 

Continuation of the quasi-interpretation. The ingredients indicated above can be specified 
arbitrarily (except that B must satisfy the completeness condition 14.47.j ( q ) ) .  Once those 
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ingredients have been specified, we extend the mappings I I according to the following rules, 
which are not at all arbitrary. 

f. Each free variable symbol x is interpreted as the identity map from D into D. Thus, 
it acts as a variable whose possible values are the members of D. 

g. Any term in the formal language is interpreted as a function from Dm into D for some 
nonnegative integer m; here m is the number of distinct free variables appearing in 
the expression term. Indeed, we have already interpreted each constant symbol as a 
mapping from D0 into D (i .e . , as a member of D � see 14 .47.c) and each free variable 
symbol as a mapping from D1 into D (see 14.47.f) .  Recall from 14 .22 that other terms 
are defined recursively. If 

t 1 , t2 , . . .  , tn are terms interpreted to have values l t 1 l ,  l t2 l , . . .  , l tn I in D, 
and f is an n-ary function symbol with interpretation l f l : Dn ---> D, then 

f(t l , t2 , . . .  , tn ) is interpreted to have value I f I ( l t 1 l , l t2 l , . . .  , l tn l) in D 

� it is the composition of the function lf l : Dn ---> D and the functions l tj l · 
For instance, suppose a1 , a2 , a3 are constant symbols, h ,  h are function symbols 

with arity 3, and g is a function symbol with arity 4; assume some interpretation is 
given for each of these symbols. Let x1 , x2 , x3 , x4 be any free variable symbols. Then 

g (h (x1 , a 1 , a2 ) ,  h (x2 , a3 , x3 ) ,  X3 , h (x1 , x4 , x2 ) )  
is interpreted as a function from D4 into D, since it yields particular values in D when 
particular values are substituted for x1 , x2 , x3 , x4 . 

For more concrete examples we turn to arithmetic. If "3," "5," and "+" have 
their usual interpretations, then the term "3 + 5" will be interpreted to have value 
8. The term "x + 5" will be interpreted as a function from D into D (where D is N 
or Z or whatever) ;  this function takes numerical values when particular numbers are 
substituted for x. 

h. An atomic formula P(t 1 , t2 , . . .  , tn ) (defined as in 14 .23( i ) ) is interpreted by composing 
the function I P I (introduced in 14 .47.e) with the functions l t 1 l , l t2 l , . . .  , l tn l · Thus, it 
is interpreted as a function from Dm into B, where m is the number of distinct free 
variables appearing in the atomic formula. 

For instance, in ordinary arithmetic, the formula 3 + 5 < 10 is interpreted to have 
the constant value "true;". the formula 3 + 5 < x is interpreted as a mapping from the 
integers or the real numbers or other domain D, to the set { "true," "false" } .  

i .  The logical connectives -, , U ,  n, ---> are mapped to the corresponding fundamental oper
ations of the Boolean algebra B. Formulas in the formal language are now interpreted 

· recursively, in the obvious fashion. If A and 'B are formulas, then 

1 -,A I 
lA U ':B I 
IA n ':B I 

lA ---> 'B I 

(C IA I ) ,  
( IA I v I 'B I ) ,  
( IA I A I 'B I ) ,  
( IA I =* I'B I ) .  
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In each of these equations, the connective on the left side is the formal, logical symbol; 
the connective on the right side is a unary or binary operation in the Boolean algebra 
B. In general, a formula with n distinct free variables is interpreted as a mapping from 
Dn into B. 

j .  Quasi-interpretation of quantifiers. If the language has infinitely many free variable 
symbols, then quantifiers are interpreted as suprema and infima in the Boolean algebra 
B, as follows: 

For simplicity we explain quantifiers first in the case of a formula involving only 
one free variable. Suppose x is the only free variable occurring in A(x) , and � does 
not occur in A(x) ; we follow the substitution notation of 14.21 .  Then x f-+ IA(x) l is a 
function from D into B, which takes some truth value whenever x is replaced by some 
d E  D (whether that d has a name or not ) .  Then we define the quasi-interpretations 

1 3� A(�) l = sup IA (d) l , 
dED  

IV� A(�) l = inf IA(d) l . dED 

The sup and inf are with respect to the ordering of the Boolean lattice B. 
More generally, assume � is a bound variable, x1 , x2 , . • •  , Xn are distinct free vari-

ables, A(x1 , x2 , . . .  , xn ) is a formula whose only free variables are x1 , x2 , . . .  , Xn , and � 
does not appear in A(x1 , x2 , . . .  , Xn) · Then (x1 , x2 , . . .  , Xn) f-+ IA(xl , x2 , . . .  , Xn) l is a 
function from Dn into B, taking a truth value whenever x1 , x2 , . . .  , Xn are replaced by 
some d1 , d2 , . . .  , dn E D (whether those dj 's have names or not ) .  Now we define the 
quasi-interpretations 

these are functions from Dn-l into B. 

sup IA(d, x2 , X3 , . . .  , xn ) l , 
dED 

To make sense of this definition, we require that 

(�)  all sups and infs of the types indicated above must exist in B.  

One simple way to satisfy ( � )  is by insisting that B be a complete Boolean algebra 
i.e . ,  by requiring that every subset of B have a sup and an inf. However, that simple 
requirement may be too strong in some cases - see 14.56 - so we merely keep it in 
mind for motivation; ( � )  is the one condition we shall actually impose as part of our 
definition of "quasi-interpretation." 

Caution: When B is the two-element Boolean algebra { 0, 1 } ,  then each of those 
sups or infs indicated above is actually a maximum or a minimum, and so \i and 3 
actually do have the meanings "for each . . .  in D . . . " and " there exists . . .  in D such 
that . . . . " However, when B is a larger Boolean algebra, then the sups and infs need not 
be maxima or minima. It is quite possible that supdED  IA(d, x2 , x3 , . . .  , xn ) l is equal 
to 1 ,  and yet no one of the elements d E  D actually satisfies IA(d, x2 , x3 , . . .  , Xn ) l = 1 .  
(Thus, in the terminology of 14.46 and 14.48, an existential formula may be valid and 
yet not have a witness . )  The possible lack of a suitable d is the cause of some of the 
complications in the pages that follow - e.g. ,  this is why 14.46 is needed as a step in 
the proof of the Completeness Principle. 
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14.48. More terminology. Let (B ,  D, I I ) be a quasi-interpretation of some language f.-, and 
let 3" be some formula in that language with n free variables. Then 13"1 is a function from 
D" into B. It is a constant function (i .e. , a member of B) if n = 0; it may or may not be a 
constant function otherwise. ) We say that the formula 3" is valid in the quasi-interpretation 
if that function 1 3"1 is a constant function that takes only the value 1 .  

Observation. From the definition given in 14.47.j for the quasi-interpretation of quan
tifiers and the definition of closures given in 14.44, we see immediately that in any quasi
interpretation, the closure of any valid formula is valid. 
Example. Consider quasi-interpretations with domain D equal to the set Z of integers. 
Let J"(x) be a formula that states (in some appropriate symbolism) that "x is even;" then 
---, (J"(x)) states that "x is odd." When the language of arithmetic is given its usual inter
pretation, then the formula (:f(x)) U (---, (:f(x) ) ) is valid, since every integer is either even 
or odd; this is an instance of the Law of the Excluded Middle. However, neither of the 
formulas :f(x) or ---, (:f(x)) is valid , since neither of the statements "every integer is even" or 
"every integer is odd" is correct. 

14.49. Definition. Let V be the set of all free variable symbols in a language £.- ,  and let 
(B ,  D, I I ) be a quasi-interpretation of £.- . By a valuation (or assignment) on (B, D, I I )  we 
shall mean a map 'lj; :  V ---> D; thus it is just a member of Dv . We shall denote by 1 1 1/J the 
effect of combining a quasi-interpretation I I  and a valuation 'lj;. Expressions are interpreted 
with values in B, as in 14.47-14.47.j , but in addition each free variable v is replaced by its 
valuation 'ij;( v) E D. Thus, all the functions get evaluated. For any formula 3" - even one 
involving free variables - the result 1 3"1 </> is a particular member of the Boolean algebra B,  
not just a function from Dn into B. We emphasize that l:tl v, is not necessarily 0 or 1 ;  it 
may be some other member of B. Observe that 

a formula 3" is valid in I I , as defined in 14 .48, if and only if it satisfies 
l:t lv• = 1 for every valuation 'lj;. 

14.50. More terminology. Let (B ,  D, I I ) be a quasi-interpretation of the language, and let 
I: be a collection of formulas in that language. We say that (B ,  D, I I ) is a quasimodel of 
the theory E if every formula in I: is valid in (B ,  D, I I ) .  

A two-valued quasimodel of a theory I: (i.e. , a quasimodel in which B = { 0 ,  1 } )  will be 
called a model of I: .  

Alternate terminology. Instead of "quasi-interpretation" or "quasimodel," some mathemati
cians use the terms Boolean-valued interpretation or a Boolean-valued model. We 
prefer not to use those terms, for this reason: Following common nonmathematical English 
usage, those terms would appear to refer to notions that are less general than "interpreta
tion" or "model." Our prefix of "quasi-" suggests greater generality, and is therefore more 
descriptive. 

Also, Rasiowa and Sikorski [1963] use the term "realization" for both quasi-interpreta
tions and quasimodels, but perhaps that is less helpful to the beginner's intuition. 

A few mathematicians use the term "model" where we have used the term "valuation." 
This changes the nature of the theory, but not by very much if (as in some books) we do 
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not distinguish between constants and variables. 

14.51. Quasi-interpretations of propositional logic. The ingredients of a quasi
interpretation can be simplified substantially when we work with propositional logic - i.e . ,  
when there are no quantifiers, individual constants, individual variables, or relation symbols 
of arity greater than 0. In this special case we can take the domain D to be empty. 

For a theory in propositional logic, a quasi-interpretation means an assignment of some 
truth value for each primitive proposition symbol P; we may denote that assignment by 
I P I . Thus, we only need to specify a mapping I I as in 14.47.e, and only for n = 0. After 
that, the quasi-interpretation recursively assigns a true value to compound propositions, as 
in 14.4 7.i. 

Note that if each primitive proposition is true or false - i.e., if IP I E {0, 1} for each prim
itive proposition symbol P - then in fact 1:11 E {0, 1 }  for each formula :f; this follows by in
duction on the lengths or depths of formulas. In this case, the resulting quasi-interpretation 
is in fact an interpretation. 

14.52. Example. Peano arithmetic uses a constant symbol "u" (the "unit" or "urele
ment" ) ,  a unary function "CJ" (the successor function) ,  the binary relation "=" with the 
axioms for equality (listed in 14.27.a) , plus these three further axioms: 

(i) ' (3�; (CJ(�) = u ) ) .  That is, u is not the successor of any number. 

(ii) ( (CJ(x) = CJ(y) ) ----+ (x = y) ) .  That is, CJ is injective. 

(iii) The Induction Axiom. If S is a subset of the domain that satisfies u E S 
and also satisfies ( (x E S) ----+ (CJ(x) E S) ) ,  then S = D. 

A few models of Peano's Axioms are given by: 

• D = N = {1 , 2 , 3 , . . .  } ,  u = 1 , CJ(x) = x + 1 ; 
• D = N U {0} ,  u = 0, CJ(x) = x + 1 ;  
• D = 2N = {2n : n E N} ,  u = 2, CJ(x) = x + 2 .  

I t  is not difficult to manufacture more models of Peano's Axioms. However, all these models 
are isomorphic - i.e. ,  it can be shown that if (D, u, CJ) is any model of Peano's Axioms, 
then there is a unique bijection b : D ----+ N such that b( u) = 1 and b( CJ( x) ) = 1 + b( x) .  Thus, 
Peano's Axioms determine N uniquely up to isomorphism. 

Peano's first two axioms fit into a first-order language, but the last axiom requires a 
higher-order language, since it quantifies over sets S � D. In a first-order language, we 
have no precise representation of the notion of "a subset of D." 

For most purposes, we can replace axiom (iii) with a scheme of infinitely many first
order axioms: For each property P( x) that can be expressed in first-order language, we 
have an axiom 

(iii) p ( (P(u) n (P(x) ----+ P(CJ(x) ) ) ) ----+ (Vr, P(O) .  
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This axiom scheme is slightly weaker than Peano's Axiom (iii ) .  One way to see that fact 
is to note that if we only have finitely or countably many symbols in our language, then 
there are only countably many properties P that can be expressed in the language, but N 
has uncountably many subsets S for us to consider. For another demonstration that the 
first-order axiom scheme (iii) P is weaker than (iii ) , see 14.63, where we shall show that no 
system of first-order properties of N can uniquely determine N up to isomorphism. 

14.53. A brief introduction to forcing (optional) . Cohen's method of forcing is a 
technique for creating models and quasimodels, particularly of set theory. Our presentation 
below is based on Bell [1985] . 

Let B be a complete Boolean algebra. We shall describe classes y(B) and y(r) ,  which 
can be used for the domains for quasimodels of set theory, taking truth values in B. 

The Boolean-valued universe y(B) , will be defined recursively, in a fashion some
what analogous to the construction of the von Neumann universe V in 5.53, but with this 
difference: When we ask whether x E y and whether x = y, the answers are not necessarily 
members of the Boolean algebra 2 = {0, 1 }  = { "no," "yes" } ;  rather, the answers may be 
members of the Boolean algebra B. More precisely, 

for each ordinal a, let v�B) be the set of all B-valued functions X that have 
Dom(x) c;;; Vr�B ) for some ordinal (3 < a; 

then let y(B) be the union of all the V�B) 's . 
Truth values in this quasi-interpretation are defined recursively too. The language of 

set theory expresses everything - ordered pairs, the integers, functions, etc. - in terms 
of set membership, so in our formal language we can dispense with function symbols and 
with most relation symbols; we only need the two relation symbols E and =. A term is a 
constant or a free variable; an atomic formula is an expression of the form s E t or s = t 
where s, t are terms. Truth values of atomic formulas are defined thus: 

lu E v i sup (v(y) 1\ l u = Y l ) , 
yEDom(v) 

lu = v i = ( sup (u(x) =? lx E v i )) 1\ ( sup (v (y) =? I Y E u l )) . 
:rEDom(u) yEDOm(v) 

Other formulas are built from atomic formulas and evaluated in a fashion similar to that in 
14.47.i , 14 .47.j .  

With these evaluations, y(B) is a quasimodel of conventional set theory, ZF  + AC 
(if we assume ZF + AC in the outer system) . Making different choices of the complete 
Boolean algebra B yields different additional properties of y(B) , and hence various semantic 
consistency results. For instance, with a suitable choice of B, y(B) does not satisfy the 
Continuum Hypothesis; therefore 

Con(ZF) Con(ZF + AC + -.CH) . 
However, all the quasi-interpretations constructed in the fashion above will satisfy ZF + AC. 
To get negations of AC, we need a more complicated construction, based on automorphisms 
of B. 
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An automorphism of B is a Boolean isomorphism g : B --> B - i.e . , a Boolean 
homomorphism that is also a permutation of B. The automorphisms of B form a group, 
Aut(B) , with group operation given by the composition of functions. 

An automorphism g : B --> B can be extended naturally to a map g(B) : V(B) --> V(B) 
recursively by this rule: Whenever u E V(B) with domain Dom(u) , then g(B)u is the member 
of V (B) that has Dom(g(Blu) = {g(B)x : x E Dom(u) } and is defined on that domain by 
(g(Blu) (gCBlx) = g(u(x ) ) .  (That last g is just the original mapping from B into B.) It is 
not hard to verify that the map g � g(B) is a group homomorphism; that is, it preserves 
compositions: (gh) (B) = g(B)h(B) . 

Let G be a subgroup of Aut( B) . For each x E V(B) , define the stabilizer group 

stabc(x) {g E G : g(x) = x } ;  

i t  i s a subgroup of G.  
Now let r be a collection of subgroups of Aut( B) . We now recursively define the Boolean

valued universe vcr) ' a subclass of V(B) ' as follows: 

For each ordinal a, let v�r) be the set of all B-valued functions X that have 
Dom(x) � vJr) for some ordinal (3 < a  and satisfy stabc (x) E f; 

then let vcr) be the union of all the v�r) 's . 
Truth values can be defined on vcr) just as they were defined on V(B) . Certain choices 

of G and r yield quasimodels of certain set theories. For instance, Bell [1985] shows a 
quasimodel of this sort in which a set is infinite but Dedekind finite (see 6.27) ; hence the 
axiom of Countable Choice is not satisfied. Thus 

Con(ZF) Con(ZF + ..,cc) .  

The omitted details are very large and numerous, and are not intended as an exercise. 
The interested reader should consult Bell [1985] and other books on forcing. 

The main ideas of forcing can be reformulated in syntactic terms. Let P be a suitable 
subset of B \ {0} . For p E P and formulas A, let p If- A be an abbreviation for p � IA I ,  
where I I is the truth-value mapping and � is the ordering of the Boolean algebra B ;  then 
p is called a "forcing condition." The basic properties of the Boolean-valued universe vcr) 
can be reformulated as properties of the forcing relation If- .  In fact , it is possible to study I f
without referring to Boolean-valued universes. This approach is more difficult for newcomers 
to logic and will not be explained here, but it seems to be preferred by logicians - they 
find it more intuitive than the Boolean-valued approach. This is the approach originally 
used by Cohen. The approach via Boolean-valued universes is a later reformulation, due 
largely to Scott and Solovay. 

Historical note : The interested reader may search in vain for an important paper of 
Scott and Solovay, often referenced as "to appear." That work actually did not appear. It 
is subsumed by Bell [ 1985] , as explained in Scott 's foreword in that book. 
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SOUNDNESS ,  COMPLETENESS , AND COMPACTNESS 

14.54. Observation. Any first-order language (as described in 14. 15-14.23) has at least 
one interpretation (as described in 14.47-14.50) . 

Proof. Here is one trivial construction: Let D = {0} , where "0" is some object - i .e . , let 
D be a singleton. Interpret every constant symbol to have value 0; interpret all the relation 
symbols to only take the value "true." 

14.55. Proposition. Every quasi-interpretation of the language £., is also a quasimodel of 
the logic. That is, if (B, D, I I ) is a quasi-interpretation of a first-order language f- ,  then 

(i) each of the twelve logical axioms listed in 14.25 is valid in I I ; and 
(ii) each of the six rules of inference listed in 14 .26 is valid in the following sense: 

Whenever E and :J are formulas that are valid in I I and 9 is a formula that 
can be deduced from E and :J using one of the rules of inference, then 9 is 
also valid in I 1 -

Using the two preceding results plus an induction argument , it follows that 
(iii) If I: is any given set of extra-logical axioms and A is a formula that can be 

deduced from I: and the logical axioms via the rules of inference, then A is 
valid in every quasimodel of I:. 

Since every model is a quasimodel, as a corollary we obtain this slightly weaker result : 
(iv) The Soundness Principle. If I: is any given set of extra-logical axioms and 

A is a formula that can be deduced from I: and the logical axioms via the 
rules of inference, then A is valid in every model of I:. In other words, 

if I: f- A, then I: F= A. 

In other words, every syntactic theorem is a semantic theorem. 
Remark. Some mathematicians use the term "theorem" only for syntactic theorems and 
call a formula "true" if it is valid in every model. With that terminology, the Soundness 
Principle takes this more memorable form: Every theorem is true. 
Proof. We first consider the validity of the twelve logical axioms. We shall demonstrate 
validity only for Axiom (ii ) ;  the other axioms can be verified in a similar fashion and are 
left as exercises. Let I I be some quasi-interpretation of the language f- ;  we wish to prove 
that lA --> (A U 23) l ,p = 1 for every valuation 'lj;. By 14.47.i , that condition can be restated 
as ( IA I ,p =? ( IA I,p V l 23 l ,p ) )  = 1 .  But (a =? (a V (3)) = 1 is true for any elements a, (3 in 
any Boolean algebra B. This proves the validity of Axiom (ii ) .  

Next, we consider the validity of the inference rules. We shall verify this only for (R3) 
and (R5) ; verification of the other inference rules is left as an exercise. We assume � is a 
bound variable that does not occur in the formula A(x) ; we follow the substitution notation 
of 14.2 1 .  Let 23 be some formula; for (R3) we also assume that x does not occur in 23 . Let 
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I I  be a given quasi-interpretation of the language. The conditions "A(x) ----> � is valid" and 
" (3� A (  0)  ----> � is valid" can be restated, respectively, as 

IA(x ) I'P  � I� I'P for every valuation r.p, 

1 3� A(0 1 1/l � 1� 1 1/1 for every valuation 'lj;. 

If 'lj; is any given valuation, for each d E D we may define an auxiliary valuation by 

when v =/:. x 
when v = x. 

( 1 )  

(2) 

From the definition in 14 .47.j we see that 1 3� A (�) l 1/l = supdED IA(x ) l 1/ld · Thus (2) can be 
restated 

IA(x) l 1/ld � 1� 1 1/1 for every 'lj;, I I , and d. (2') 

To verify (R3) , we nee-1 to show that ( 1 )  implies (2' ) .  Since x does not occur in the formula 
� ' we find that 1� 1 1/ld =' 1� 1 1/1 for every d; hence IA(x ) l 1/ld � 1� 1 1/ld = 1� 11/1 ·  To verify (R5) , 
we need to show that en implies ( 1 ) ;  just observe that when {j = '1/J(x) , then '1/Jb = 'lj;. 

14.56. Observation. Let � be a syntactically consistent set of formulas. Then � has a 
quasimodel. In fact , one can be specified as follows: 

For domain D use the set of all terms in the language, with the interpretation mapping 
I I defined on terms by the identity mapping. For the Boolean algebra of truth values use 
the Lindenbaum algebra JL, with the interpretation mapping I I defined on formulas by the 
equivalence class mapping [ ]  defined in 14 .32. 

Remark. We do not assert that the Lindenbaum algebra is necessarily complete. The 
fact that it satisfies condition 1 4.47.j ( q ) follows from 14.4 1 .  

14.57. We shall show that the following two principles (and two more covered in 14 .59) 
are equivalent to the Ultrafilter Principle; we refer especially to other equivalents in 13.22. 

(UFll)  for Propositional Logic: 
(UF12) for Predicate Logic: 

Godel-Mal'cev Completeness Principle (consistency version) . If � is 
any set of formulas, then these three conditions are equivalent : 

(A) � is syntactically consistent - i.e . , � cannot be used to deduce a 
contradiction. 

(B) � is semantically consistent - i.e. , � has at least one model. 
(C) � has at least one quasimodel. 

As an intermediate step between (UF l l )  and (UF12) , we shall also prove the equivalence 
of this more complicated principle: 
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(UF13) Let ,C be a language that has no variable symbols and no quantifiers 
(but may still have constants and functions) .  Let � be a set of formulas in ,C that 
is syntactically consistent in ,C. Then � has at least one model ( {0, 1 } ,  D, I 1 ) .  
Furthermore, the model can be chosen so that the mapping I J : {terms of 
,C } ----+ D is surjective - i.e . , so that for each individual d E  D there is at least 
one term t satisfying l t l = d. 

387 

Proof. The implication (C) =? (A) is proved as follows: Suppose � is not syntactically 
consistent . Then there is some formula A such that both A and ·A are syntactic theorems. 
If I I is a quasimodel of �' then it makes both A and ·A valid - that is, IAI and I•AI are 
both equal to the constant function 1 .  Then 1 = I •A I  = C IAI = C 1 = 0. Thus the Boolean 
algebra B is degenerate, contrary to the requirement in 14.47.a. This shows (C) =? (A) . 

The implication (B) =? (C) is trivial, since every model is a quasimodel. It only remains 
to prove (A) =? (B) . (That implication by itself is sometimes known as the Completeness 
Principle. )  

Proof of (UF8) =? (UFl l ) .  As we noted in 14.56, the Lindenbaum algebra lL is a quasi
model of �. By (UF8) , there exists a Boolean homomorphism from lL into {0, 1 } .  Use 
that homomorphism to map the truth values in lL to truth values in {0, 1 }. The homomor
phism preserves the action of V, /\, C , =? . We need not concern ourselves with :J, V since we 
are considering only propositional logic, which has no individuals or quantifiers. Thus the 
resulting map into { 0, 1 } is a model of �. 

Proof of (UFl l )  =? (UF13) . Let e be the given predicate calculus - i.e . , the language ,C 
equipped with the logical axioms and rules of inference, the given extra-logical axioms �' and the r�ulting syntactic theorems. T__? construct a model, we shall first form a related 
language ,C and propositional calculus e; a model for that propositional calculus will be 
used to form a model for e. 

Form a languag� ,C by taking each atomic formula of ,C as a primitive propositional 
variable symbol of ,C . Thus, an expression such as P(f(a , b) , g(c) ) will be treated as a 
single symbol, grammatically on the �arne level as Q or R. The terms f(a, b) and g(c) and 
the constants a, b, c play no role in ,C ,  except as meani�gless marks on paper that serve 
to make up parts of that single symbol. The language ,C will have no individual variable 
symbols, individual constant symbols, or functions. It will have the same logical connective 
symbols •, n, U , ----+ as the language ,C .  Each formula in either of the languages ,C or E can 
be reinterpreted as a formula in the other language by reading it in a different fashion. 
For instance, in the original language ,C , the expression P U Q(a , b, g (c) ) consists of seven 
symbols 

p u Q a b g c 
joined together with commas, parentheses, and juxtapositions; but in the new language E 
the expression P U Q( a, b, g (  c) ) consists of just the three symbols 

p u Q(a, b, g (c) ) 
joined together with juxtaposition. 
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� � 

Form a new propositional calculus e using the language £., and the same set I; of extra-
logical axioms (but read in a different fashion, as noted above) . Since £., has no variable 
�mbols or quantifiers, rules of inference (R2) through (R6) are irrelevant ; thus both e and 
e have modus ponens as their only rule of inference. Therefore, proofs in the two systems 
are identical in appearance (though read differently) .  By assumption, e is syntactically 
consistent ; therefore e is, too. By (UFl l ) ,  e has a model, as described in 14 .51 .  That is, 
there exists a mapping 

{formulas of E}  { "true," "false" } 

defined on the primitive proposition s,ymbols and then defined recursively on other formulas, 
in such a way that all the axioms of e become true. 

Next, let D be the set of all terms that can be formed in the language £., ,  as defined 
in 14.22 - i.e . , expressions such as f(a , b) and g(c) . We shall now construct a model for 
e whose domain is the set D. To do that, we must describe an interpretation mapping I I  
that can be applied to constant symbols, to function symbols, and to relation symbols, as 
explained in 14.47. 

For terms, the mapping I I will just be the identity mapping. In other words, any term 
t in £., is a string of symbols that is a single element d of D; we interpret I t I = d. 

Next we shall interpret atomic formulas: If P is an n-ary predicate symbol in the 
language £.,, and t1 , t2 , . . .  , tn are terms, then the atomic formula P(t1 , t2 , . . .  , tn )  in £., 
will be given the same truth value ( 1  or 0) that__!t had when we viewed it as a primitive 
proposition symbol in the propositional calculus e introduced a few paragraphs ago. 

Finally, we recursively assign truth values for compound propositions, as in 14.47. i . Thus 
we obtain an interpretation of £., ,  which is in fact a model of I;,  

Proof of (UF13) =? (UF12) . Let I; be a syntactically consistent set of axioms; we wish 
to prove that I; has a model. By repeated use of the Rule of Generalization 14.43, we may 
replace all the members of I; with closed formulas - i.e . , formulas with no free variables. 
Then, replacing members of I; by equivalent formulas (where equivalence is as in 14 .32 ) ,  by 
14.42 we may assume that each axiom in I; is in prenex normal form - i.e. , with all the 
quantifiers at the beginning of the formula. 

Let 'J0 represent the given logical system - i.e . , the given language and syntactically 
consistent set of axioms. Form new, syntactically consistent systems 'J1 , 'J2 , 'J3 , . . .  recur
sively; obtain 'In+ l from 'In by adding new axioms and new constant symbols, using the 
construction given in 14 .46; the axioms added in this fashion are also without free variables. 

Let 'J00 = U:=o 'In , in the obvious sense - i.e. , let 'J00 be the original system To plus all 
the additional axioms and constant symbols of the 'In 's. Clearly, 'J 00 is also syntactically 
consistent , by 14.3 1 .  Let ll be the subset of 'J 00 consisting of those statements that do not 
contain any quantifiers. Now let M = ( {0, 1 } ,  D, I I ) be a model for ll, of the type described 
in (UF13) - i.e . , with each individual named by at least one term. We shall show that M 
is also a model for 'J oo (and hence also for our original system 'J = 'J 0) .  It suffices to show, 
by induction on integers k 2: 0, that 

if � is an axiom of 'J oo in which k or fewer quantifiers appear, then � is valid in 
the interpretation M. 
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This is clear for k = 0, since such axioms are just the axioms of 11. Suppose it is true for 
some k, and let :I be an axiom of 'J 00 involving k + 1 quantifiers; we shall show that this :I 
is also valid in JYL There are two cases to consider: :I is either of the form \::If, A(�) or of the 
form :lf, A(�) , for some formula A. For these two cases we refer again to the construction 
in 14 .46. 

Case ( i ) .  :I is of the form \::If, A(O. Thus \::If, A(�) is an axiom in 'J00 , hence in 'In for 
all integers n sufficiently large - say for all n ::::0: j .  If t is any term in the language of 
'J00 , then t is a term in 'In for some n ::::0: j, and so (by our construction of 'In+ l from 'In) 
we know that the statement A(t) is an axiom of 'In+l ,  hence of 'J00 • The statement A(t) 
involves only k quantifiers, hence it is valid in JY(. Thus, 1 = IA(t ) l = IA I ( I t l ) = IA I (d) , 
where d = l t l .  By our assumption about the model M in (UF13) ,  the mapping I I takes 
terms onto individuals; thus IA I (d) = 1 for every individual d in the domain D. By the 
definition in 14.47.j , therefore, IVf, A(O I  = 1, so :I is valid. 

Case (ii ) .  J" is of the form :lf, A(�) . Then :lf, A(�) is an axiom of 'In for some n .  By 
our construction of 'In+ l from 'In , the axiom has a witness - i.e. ,  there is some constant 
symbol c in 'In+ l such that A(c) is an axiom of 'Jn+l · Now A(c) is an axiom of 'J00 involving 
only k quantifiers, so it is valid in M. Therefore :lt; A(O is valid in M by the definition of 
I :Jf, A(O I  in 14.47.j .  

This completes the proof. 

14.58. Remarks. The earliest version of the completeness principle was due to Godel, so 
it is sometimes known as the Godel Completeness Theorem. It should not be confused 
with Godel's Incompleteness Theorems, introduced in 14.62 and 14.70. In mathematics, the 
term "complete" generally means "not missing any parts," or "not having any holes in it" 
- see 4 .14 .  Predicate logic is complete in some respects, but incomplete in other respects. 

The equivalence of the completeness principles with other forms of UF was proved by 
Rasiowa and Sikorski [1951 ] , Los [1954] , and Henkin [1954] . Our exposition is based on 
Cohen [1966] and several other works. 

With a bit more work (not shown in detail here) , our proof of (UF12) can be modified 
to show a slightly stronger principle: 

If I: is a syntactically consistent set of formulas, then I: has a model whose 
domain D satisfies card(D) -::; max{card(I:) , card(N) } .  

In particular, any syntactically consistent first-order theory with a countable language has a 
countable model. Most languages used in practice are countable (i .e . ,  have only countably 
many symbols) . 

As we remarked in 14.6, it is possible to form a model of set theory by replacing '{.Oil 
Neumann's universe V with some other class JY( of sets, which may be smaller. The class 
JY( need not be a proper class - it may be a set. In fact ,  it may even be a countable 
set, since set theory can be described with a countable language. Thus arises a situation 
which, at first, seems paradoxical: Set theory describes and proves the existence of various 
uncountable objects, and yet some of the sets that can be used as domains for models of 
set theory are countable! This is known as Skolem's Paradox. To understand this, we 
must distinguish between the "inner" and "outer" systems, described in 14 .12 .  The set D 
may be countable in the outer system, but not in the inner system - i.e . ,  there may be a 
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bijection between D and N in the informal, outer system that we use to analyze the model, 
but there may be no such function in the formal, inner system. 

14.59. Here is another form of the Completeness Principle: 

(UF14) for Propositional Logic: 
(UF15) for Predicate Logic: 

Completeness Principle (theorems version) . Let I: be a collection of 
axioms, and let A be a formula. Then the following are equivalent: 

(A) A is a syntactic theorem. That is, I: f- A. 

(B) A is a semantic theorem. That is, I: t= A. That is, in every model 
of I:, the formula A is also valid. 

(C) In every quasimodel of I:, the formula A is also valid. 

Proof that the "consistency versions" (UFl l )  and (UF12) imply the "theorem versions" 
(UF14) and (UF15) ,  respectively. The implication (A) '* (C) was given in 14.55(iii) . The 
implication (C) '* (B) is trivial, since every model of I: is a quasimodel of I:. It suffices 
to prove (B) '* (A) . 

Let X be the closure of A (defined as in 14.44 ) .  In every model of I:, since A is valid, 
X is also valid, by 14.48. If I: U { •X} is syntactically consistent , then it has a model by 
by (UF l l )  or (UF12) ,  but that model would make X and •X both valid, a contradiction. 
Thus I: U {·X} is syntactically inconsistent . The formula •X has no free variables, so by 
14.40.c we obtain I: f- ••X. Since we are using classical logic, that simplifies to I: f- X. By 
the result in 14.44 ,  then, we have I: f- A . This completes the proof. 

Proof that the "theorem versions" (UF14) and (UF15) imply the "consistency versions" 
(UFl l )  and (UF12) ,  respectively. The only part that requires proof is (A) '* (B) . Let A 
be any formula. Suppose that I: has no model. Then it is vacuously true that every model 
of I: makes A n  (·A) valid. Thus A n  ( •A) is a semantic theorem, and therefore a syntactic 
theorem. Thus from I: we can deduce A n  (•A) ;  that is, I: is syntactically inconsistent . 

14.60. A pathological example. To complete the discussion in 14.38, we shall now present 
an example in which 

but not f- (J" ---* 9 ) .  

It i s  clear from 14.40.a that in  such an example, J" must have at least one free variable. 
Actually, what we shall prove is that J" f= 9 but not f- (J" ---* 9 ) ;  the desired conclusion then 
follows from the Completeness Theorem. 

Assume that our language includes (among other things) the constant symbols 0 and 
1 ,  the binary relation symbols = and -:/- ,  and at least one free variable symbol x. Assume 
that our axiom system includes at least the usual axioms for equality (these are listed in 
14.27.a) and the axiom 0 -:/- 1 .  Let 9 be the formula "0 = 1 ;" thus •9 is one of our axioms. 
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The formulas x = 1 and x =I- 1 are negations of each other, but neither of these formulas 
is a valid formula in any interpretation of the language, since each can be falsified by at 
least one valuation � i .e . ,  by at least one choice of the value of x. Let :1 be either one of 
these two formulas ( it doesn't matter which) . Then neither :1 nor -,:f has a model, hence 
neither is a semantic theorem, hence neither is a syntactic theorem. 

Since there are no models of :1, we can say (vacuously) that every model of :1 is also a 
model of 9 .  That is, :1 f= 9 .  

I f  :1 ---> 9 were a syntactic theorem, then its contrapositive, ( •9) ---> (-.:f) would also be 
a theorem. Then (-,:f) would also be a theorem, by modus ponens, since ( •9) is one of our 
axioms. But we already know that (-.:f) is not a theorem. Thus, :1 ---> 9 is not a syntactic 
theorem � i.e. ,  we do not have f- (:J ---> 9 ) .  

14.61. Following are two more equivalents of UF: 

(UF16) for Propositional Logic: 
(UF17) for Predicate Logic: 

Compactness Principle. If � is a set of formulas, every finite subset of which 
has a model, then � has a model. 

Remarks. The name "Compactness Principle" stems from some topological considerations 
described in 17.25. A nonlogicians' variant of the Compactness Principle is given by (UF2) 
� see the remarks in 6 .35. 

Proof of (UFl l ) =? (UF16) and proof of (UF12) =? (UF17) . Immediate from the 
observation about finite character, in 14 .31 .  

Proof of (UF17) =? (UF16) . Propositional logic is a special case of predicate logic. 

Proof of (UF16) =? (UF8) . Let X be a nondegenerate Boolean algebra; it suffices to 
show that the dual of X is nonempty � i .e . ,  we are to show the existence of a function 
f : X ---+ {0, 1 } that satisfies 

f(x V y) = f(x) V f(y) , f (Cx) = Cf(x) , f ( 1 )  = 1 ( ! )  

for all x, y E X. Let 'B <-+ e be an abbreviation for the formula ('B ---+ e) n (e ---> 'B) .  Define 
a propositional calculus that has one primitive proposition symbol Px for each x E X, and 
let � be the set of formulas 

�or all x, y E X. Then a model of � is the same thing as a function f satisfying ( ! ) .  
We shall apply (UF16) ; thus i t  suffices to  show that each finite subset of � has at least 

one model. Any finite subset <I> <;;; � involves only finitely many x's and y 's. Let X0 be the 
nondegenerate Boolean subalgebra of X generated by those x 's and y 's. Then the dual of 
Xo is nonempty, by 13.20. Thus there exists a Boolean homomorphism f :  X0 ---> {0, 1 } . 
Now 

interpret Px as 
{ true if x tt Xo or f(x) = 1 

false if x E Xo and f(x) = 0 .  
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This is a model of cl>. 

14.62. Let us emphasize the difference between a model and a quasimodel. A model 
"answers every question" that can be expressed in the formal language by assigning a truth 
value of "true" or "false" ( 1  or 0) to every closed formula. A quasimodel does not give 
such a definite answer, since its truth values may range through a Boolean algebra. The 
Lindenbaum algebra, which yields a quasimodel as in 1 4.56, plays this special role: It tells 
us which formulas are provable or disprovable, by assigning them the truth values of 1 or 
0. Some formulas may be neither provable nor disprovable - the Lindenbaum algebra may 
have other values besides 1 and 0 .  We can answer some of the unanswered questions by 
adding more axioms, but we would have to keep adding more axioms; that will be evident 
from Godel's Incompleteness Theorem, described below. 

If we really want to have an answer to every question, the Completeness Theorem gives 
us one way to accomplish that . Any consistent theory has a (not necessarily unique) model 
and thus a (not necessarily unique) method for assigning the value "true" or "false" to every 
closed formula. 

We can even make each closed formula provable or disprovable, in this rather contrived 
fashion: Form a model, and then use that model's valid formulas as the axioms for a new 
theory. The new theory extends the old one, is consistent , and has Lindenbaum algebra 
equal to {0, 1 } .  However, this formulation is not constructive, since the Completeness 
Theorem is not constructively provable. The resulting axiom system is extremely large and 
not recursive. 

Godel's First Incompleteness Theorem, published in 1931 ,  says that for sufficiently com-
plicated theories we cannot answer all the questions. Somewhat more precisely: 

Let 'J be a formal theory that includes arithmetic, and assume that the axioms 
of 'J can be described in a mechanical fashion (i .e . ,  recursively - we shall not 
give a precise definition of this term) .  Assume the language of 'J includes only 
countably many symbols. Then: 

Godel's First Incompleteness Theorem. If 'J is consistent , then there exist 
formulas that can be formulated in the language of 'J, but cannot be proved or 
disproved within the formal system from the axioms of 'J. 

We shall not prove this theorem, but we shall sketch some of the ideas of the proof. The 
remainder of this section is optional; it will not be needed later in the book. 

Let 'J be a theory that contains arithmetic; say £.., is the language of 'J. Some properties 
of numbers can be expressed in £.., - for instance, a number x is composite if it satisfies 

Now assume that 'J's language £.., has only countably many symbols, and let S be the set of 
all finite strings of symbols. Then it is possible to number these strings - i.e . ,  to define a 
canonical injective mapping # : S __, N. Statements about strings can be transformed to 
statements about numbers - for instance, define a relation !> on the positive integers by 
saying that m !> n if 

m = #(S) and n = #(T) for strings S, T such that S is a proof of T. 
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The relation t> is a purely numerical relation - i.e. ,  it is a relation whose graph is a subset 
of N x N. Although we defined t> in terms of the language £., and the correspondence #, it 
is possible to describe this same relation t> in purely numerical terms, without mentioning 
£., or #. 

When A is a formula, we shall call #(A) the Godel number of A. Let G be the set of 
all Code! numbers; it is a subset of N. We shall now outline a proof of: 

Lemma. Let Q be a property of some natural numbers - i.e . ,  assume that Q (x) 
is true for some natural numbers x and false for others. Assume, moreover, that 
the statement "x has the property Q" is expressible in the formal language C 
Then there exist a particular number n and a formula A such that (i) the Code! 
number of A is n, and (ii) A expresses the statement that ''the number n has 
the property Q." 

Sketch of proof of lemma. Let v be some particular free variable, which will not change for 
the remainder of this discussion. Define a special function 'P : G x N ---> G as follows: To 
evaluate 'P(m , n) ,  

let Srn be  the string of  symbols with Code! number m. The number n can 
be expressed in the language £., ;  let Tn be the string of symbols that expresses 
the number n. Let Um.n be the string obtained from Srn by replacing each 
occurrence of v in it with a copy of the string Tn ; finally, let 'P( m, n) be the 
Code! number of Urn.n · 

The equation z = 'P( x, x) is a statement about numbers. Code! proved that it can be 
expressed in the formal language C The map x f-+ 'P(x, x) is an operation somewhat 
analogous to the operation of quining, which was introduced in 1 . 12 .  

Now, let 9 be the formula that expresses, in the language £., , the statement "'P( v ,  v ) has 
the property Q." Say the Code! number of 9 is p. The number p can be expressed in the 
formal language. Obtain A from 9 by replacing each occurrence of v with the string that 
expresses p, and let n = '-{J(p, p) ; this proves the lemma. 

Proof of theorem, continued. For property Q (x) , Code! uses a property such as "x is the 
Code! number of a formula that is not provable in 'J." Of course, it is a nontrivial matter 
to establish that the lemma is applicable to this property. The lemma then yields an 
effectively constructible formula that says, roughly, "I am not provable." (However, it uses 
indirect self-referencing as in Quine's Paradox ( 1 . 12 ) ,  rather than direct self-referencing as 
in Epimenides's Paradox ( 1 . 1 1 ) . )  Such a statement cannot be provable and therefore must 
be true and therefore cannot be disprovable either. In this fashion we obtain Codel's First 
Incompleteness Theorem. 

Remarks. Longer informal expositions of this subject can be found in Rosser [1939] , 
Nagel and Newman [1958] , Hofstadter [1979] , and Mac Lane [1986] . More technical and 
detailed expositions can be found in books on logic. 
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NONSTANDARD ANALYSIS 

14.63. No system of  first-order properties of N or lR can uniquely determine N or R Any 
first-order theory that can be modeled by N or lR can also be modeled by some system of 
"numbers" that includes infinitely large members. More precisely, we have this proposition: 

Skolem's example ( 1934) .  Let £ be a first-order language that includes infinitely many 
free variables, the relation symbol " < " ,  and the constant symbols "1 ," "2," "3," . . .  (and 
possibly other symbols as well) . Let I: be a set of axioms in that language. Suppose that 
N (respectively, JR) is the domain for some model of I:, giving the symbols " < " and "1 ," 
"2," "3," . . .  their usual meanings. Then there exist other models for I:, which are not 
isomorphic to N (respectively, JR) .  In fact, there exists a model that contains an "infinitely 
large number" - i.e . ,  a number that is greater than all the numbers 1 ,2,3, . . . . 

Proof Let c be a constant symbol that is not already in use in the language £;  let £' = 
£ U { c} . By 14.45, the system ( £' ,  I:) is consistent. Now let A be the set of axioms 

1 < c, 2 < c, 3 < c, 
and (for each positive integer n) let An be the first n of these axioms. The first-order theory 
(£' , I: U An) has a model given by D = N (respectively, D = JR) ,  with c interpreted as n + 1 .  

Each finite subset of I; U A is contained in some I; U An and therefore has a model. By 
the Compactness Principle (UF17) in 14.61 ,  I: U A has a model. The interpretation of c in 
that model is an infinitely large number. 

14.64. Historical remarks and overview. In the late 17th century, when Newton and Leib
niz were first inventing calculus, part of their theory involved infinitesimals - i .e. , numbers 
that are infinitely small but nonzero. A basic idea of Leibniz, now known as Leibniz's 
Principle, was that the larger number system (involving real numbers, infinitesimals, in
finitely large numbers, etc . )  should somehow have the "same properties" as the real number 
system, but he did not know how to make this principle precise. Among other things, it was 
not entirely clear just which "properties" would fit Leibniz's principle - and in retrospect 
it is clear that some properties cannot fit Leibniz's Principle. Indeed, the conventional real 
number system is Dedekind complete and therefore Archimedean, which essentially means 
that it lacks infinitesimals (see 10.3) ;  the lack of infinitesimals is not one of the "properties" 
Leibniz had in mind. 

In those days mathematics was more computational and did not involve rigor as we 
know it today. During the next couple of centuries, mathematicians gradually added more 
rigor to their ways of thinking. During the 19th century, Cauchy developed a theory of 
limits, and then Weierstrass restated this theory in terms of epsilon-delta arguments, finally 
putting calculus on a firm foundation. Mathematicians could not find a justification for 
infinitesimals and no longer needed them for calculus, so infinitesimals gradually fell out of 
favor and were used less and less. The epsilon-delta arguments gained wide acceptance and 
are used in nearly all calculus textbooks today. 

Early in this century, Skolem observed that there must exist nonstandard models of 
arithmetic and analysis. In 1960, Abraham Robinson developed this idea in much greater 
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detail and made Leibniz's Principle precise and rigorous: We specify a particular first-order 
language £ that is suitable for discussing properties of lR or properties of *JR; then the same 
properties (expressible in that language) will be valid in either model; this is the Transfer 
Principle. Troublesome properties such as Dedekind completeness cannot be expressed 
directly in the first-order language. It is possible to formulate a property in the first-order 
language that specializes to Dedekind completeness when interpreted in JR, but that same 
property does not yield Dedekind completeness when interpreted in *R This is discussed 
further in 14.66. 

Robinson gave many applications including a rigorous justification for an infinitesimal 
calculus much like the one envisioned by Newton and Leibniz. Thus nonstandard analysis 
was born. Important contributions were also made by Zakon, Los, Luxemburg, Kiesler, 
Loeb, and others. We might call this the "monomorphism" school of thought (in contrast 
with 1ST, discussed below) ; all of the papers involve a monomorphism mapping S f--> *S. 
The monomorphism theory can be presented either 

(i) "axiomatically" - i.e. , we list the properties that a monomorphism must 
have, or 

(ii) "constructively" - i.e. , we describe how to form a monomorphism, though 
perhaps with the use of ultrapowers or other tools that Errett Bishop would 
not have called "constructive." For instance, it can be shown that the hy
perreal line *JR (introduced in 10.20.a) is a model of lR that satisfies Leibniz's 
Transfer Principle, although we shall not prove that fact in this book. 

The "axiomatic" approach is more concise but it can only be justified by the "constructive" 
approach. 

In 1977 Edward Nelson published a much simpler axiomatic approach, which codifies the 
main ideas of nonstandard analysis without ever mentioning monomorphisms. The approach 
is called "IST," which stands for "Internal Set Theory" and also stands for "Idealization, 
Standardization, and Transfer," Nelson's three main axioms. Nelson's approach is perhaps 
the closest yet to the original conception of Newton and Leibniz. We summarize it in 14 .67. 

The term "nonstandard analysis" may be misleading; a more descriptive term would be 
"hyperfinite reasoning." As it is commonly used, nonstandard analysis is a type of reasoning 
that allows us to treat infinite sets much like finite sets; that should be particularly evident 
in the Enlargement Principle in 9.54. This "hyperfinite reasoning" was developed and used 
first in analysis, but it also applies to other branches of mathematics . 

It is provable (in logic) that nonstandard mathematics is a conservative extension of 
conventional (standard) mathematics. This means that any statement that can be formu
lated in conventional mathematics and proved in nonstandard mathematics can also be 
proved in conventional mathematics. In fact, any proof in nonstandard mathematics �an 
be converted into a proof in conventional mathematics, in a largely mechanical fashion. 

Generally, the standard proof requires clever choices of ultrafilters or other abstract 
tools. One advantage of nonstandard mathematics is that cleverness with ultrafilters is not 
required: The relevant properties of ultrafilters are already built into the basic principles of 
nonstandard mathematics - the Transfer Principle, etc. Thus, the working mathematician 
is freed to concentrate on other difficulties that are more specific to the problem. 
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The advantage of nonstandard mathematics is that its intuition is sometimes helpful; 
some proofs in nonstandard mathematics may be easier to find or to understand than the 
corresponding proofs in conventional mathematics. Indeed, Leibniz and Newton had in
finitesimals in mind when they invented calculus; surely this is a testimony to the usefulness 
of the intuition of nonstandard mathematics. 

Leibniz viewed the derivative dy / dx as the quotient of two infinitesimals � hence his 
notation, which is still in use today. In today's conventional mathematics (i .e . ,  in the 
Cauchy-Weierstrass epsilon-delta approach) ,  it is customary to define the derivative as a 
limit of quotients, not as an actual quotient . In general, limit arguments can be converted 
to nonstandard terms � for instance, a function f : IR __, IR satisfies limx�xo f(x) = L if 
and only if, whenever c: is a nonzero infinitesimal, then * f(x0 + t:) is infinitely close to L .  
(We proved a result o f  this sort in  10.37. ) However, i t  must be noted that a similar type of 
intuition can also be obtained from other tools, e.g. , convergent nets; see 15 . 14(A). 

14.65. Construction of superstructures. The "constructive" approach to monomorphisms, 
alluded to in 14.64(ii ) ,  does not require so much formal logic, but it uses more set theory. 
We define the monomorphism S f->  *S as a mapping from S00 (!R) into S00 (*1R) or, more gen
erally, from Soo (X) into Soo (* X )  where X is any infinite set of interest. The superstructures 
S00 (A) are defined as follows: 

Let A be an infinite set. Recursively define 

00 
So(A) = A, Soo (A) = U Sk (A) , 

k=O 
where ::P(X) = {subsets of X} .  (We emphasize that this procedure is only iterated countably 
many times, unlike the procedures in 5.53 and 5.54. ) The set Soo(A) is called the super
structure over A. The members of A are called the individuals or atoms in this context; 
the members of S00 (A) \ A =  U�=l Sk (A) are called the entities of the superstructure. 

The collection of entities is closed under most set-theoretical operations. For instance, if 
a is an entity, then U a = {p : p E q for some q E a} is also an entity. Any subset of an entity 
is an entity. If a and b are entities then (a, b) is an entity, since we follow the convention of 
reading (a , b) as { {a } , {a , b} } .  If f :  X __,  Y is a function and X, Y are entities, then f is 
an entity; here we identify a function with its graph. Even the Axiom of Choice is modeled 
by the collection of entities: If g : X __, Y is a function, X is an entity, Y is an entity, and 
g(  x) is an entity for each x E X, then there exists some function f : X __, U Y such that 
f(x) E g(x) for each x and f is an entity. 

S00 (!R) is only a set, not a proper class, and thus it is much smaller than the von 
Neumann universe V developed in 5 .53. Nevertheless, S00 (IR) is large enough to include 
all of the objects used in real analysis. Indeed, it includes all subsets of IR, sets of subsets 
of IR, and all sets of subsets of subsets of IR, etc. It includes ordered pairs, functions, etc. 
The superstructure S00 (!R) is a transitive set, and it is also closed under intersection, finite 
union, and finite Cartesian products. However, S00(!R) is not closed under countable union 
or countable Cartesian products: If S1 , S2 , S3 , . . .  are entities, then S1 u S2 u S3 u · · · and 
S1 X S2 X S3 X · · · are not necessarily entities. 

For each entity S in S00 (IR), there is a corresponding entity * S in Soo (*IR). The corre-
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spondence is complicated, so we shall not describe it in full detail; it can be found in books 
on nonstandard analysis. However, we shall mention a couple of its features: (i) When 
S E S1 (1R) , then *S is just the ultrapower described in 9 .41 .  (ii) In 2 .7 we subscribed to the 
convention that the forward image function associated with a given function f is generally 
denoted by the same letter f ;  thus f(S) = {f(s) : s E S} .  However, that convention cannot 
be applied to the monomorphism mapping: in general *S is not equal to {*T : T E S}. 

14.66. The mapping S f---+ *S, from S00(!R) into S00(*JR) ,  is  not surjective. A member of 
its range - i.e. , an object of the form *S - is called a standard object in S00 (*1R) ; any 
other member of S00 (*JR) is called a nonstandard object. Since the mapping S f---+ *S is 
injective, the collection of all standard objects is an isomorphic copy of S00(!R) inside the 
nonstandard universe S00(*1R) . Some important sets are not standard - for instance, the 
set of all infinitesimals and the set of all standard sets. 

An internal object is a member of a standard set - i.e. ,  it is an object x that satisfies 
x E *S for some standard entity *S. The internal object x may or may not be standard. 
An external object is a member of Soo (*JR) that is not internal. 

For any set A in the standard universe, we have P(* A) ::2 *P(A),  and in many cases 
P(* A) � *P(A) .  Observe that P(* A) is the collection of all subsets of * A; it can be shown 
that *P(A) is the collection of all internal subsets of * A. 

Internal sets arise naturally in uses of the Transfer Principle. For instance, consider the 
following true statement . 

For each set S <;;; lR - that is, for each S E P(IR) - if S has an upper bound in 
IR, then S has a least upper bound in R Thus: lR is Dedekind complete. 

If we use the Transfer Principle naively, without understanding what we are doing, we might 
end up with this: 

(Incorrect and false statement.) For each set T <;;; *JR - that is, for each T E 

P(*JR) - if T has an upper bound in *JR, then T has a least upper bound in *R 
Thus, *IR is Dedekind complete. 

But in 10 .19 we saw that *JR generally is not Dedekind complete. If we apply the Transfer 
Principle correctly, we obtain the folowing statement , which is less interesting but has the 
advantage of being correct and true. 

For each set T E *P(IR) - that is, for each internal set T <;;; *JR - if T has an 
upper bound in *JR, then T has a least upper bound in *R 

14.67. A sketch of IST. In 1977 Edward Nelson published a new approach to nonstandard 
analysis, which reaches the applications quickly without first building up so much machinery. 
In Nelson's theory, we start from conventional mathematics and then add a new word: 
standard. This word is left undefined - i.e. ,  it is not defined in terms of our old vocabulary 
- but the permitted uses of this word are governed by several new axioms and syntactic 
instructions. 

Actually, we need two new words, but only "standard" is an undefined word added to our 
mathematical ( "inner" ) system. We also add the word "classical" to our metamathematical 
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( "outer" ) system, and it has a very simple definition: An expression is classical if it does 
not, either explicitly or implicitly, involve the word "standard." 

Other words can be defined using the term "standard." For instance, a real or complex 
number E is an infinitesimal if l E I  < y for every positive standard number y. Note that any 
expression that uses the word "infinitesimal" is a nonclassical expression, since it implicitly 
involves the word "standard." 

We shall not list the new axioms and syntactic instructions here; they can be found in 
books on 1ST - for instance, Robert [ 1988] . 

The term "standard" can only be used in accordance with the new axioms and syntactic 
instructions; it cannot be bandied about freely. For instance, in conventional ZF set theory, 
the Axiom of Comprehension says that if P is a property formulated in the first-order 
language and X is a set, then { x E X : P(  x) is true} is also a set. In 1ST's version of 
set theory, we must add the further restriction that the property P is classical - i.e . ,  P 
can be formulated in the first-order language without mentioning the words "standard," 
"infinitesimal," etc. If P does not meet that specification, then {x E X :  P(x) is true} may 
be a proper class, rather than a set. 

14.68. 1ST's new systems of numbers. Because of the restrictions made on the language, 
"classical" mathematics cannot be used to prove the existence or nonexistence of infinitely 
large or infinitely small numbers. However, 1ST's new axioms can be used to prove the 
existence of such numbers. The resulting number system is not called the hyperreal numbers; 
rather, it is called the real numbers. In effect , we view the real number system as containing 
not only the classical real numbers discussed by Weierstrass et al. ,  but also some other 
numbers - infinitesimals, etc. - that we had not noticed before. Presumably they were 
there all along. This new use of old terminology may prove disconcerting to some beginners. 

Here are a few comparisons between 1ST and conventional mathematics: 

a. The ordinary Principle of Induction says that every nonempty subset of N has a smallest 
element . This is true in 1ST, but we must emphasize that what is needed is a subset 
of N, not just a subclass. 

b. The real number system is Dedekind complete - i.e. ,  if S is a subset of lR that is 
bounded above by a real, then S has a least upper bound. This remains valid in 1ST, 
but in that setting we require that S be a subset of lR and not just a subclass of R 

c. The real number system is an Archimedean field. That is, if a and b are positive real 
numbers, then there exists a positive integer n such that nb > a . In 1ST this remains 
valid, but we point out that in 1ST the positive integer n might be infinitely large -
i.e . ,  its reciprocal might be an infinitesimal. 

The "new" real number system of 1ST should not be confused with the hyperreal number 
system introduced in 10. 18. Both are ordered fields that include infinitesimals, but those 
infinitesimals are "detected" using different methods of reasoning, in the context of different 
kinds of logic and set theory. The hyperreal number system, introduced in 10 . 18 in the 
setting of conventional set theory, is neither Dedekind complete nor Archimedean. 

14.69. The connection between monomorphisms and !ST. The terminology of 1ST is rather 
different from the terminology of monomorphisms. Most papers in nonstandard analysis 
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today use either monomorphisms or IST, but not both. The two schools of thought are 
nearly equivalent : Most ideas expressed in either system can be translated into the other 
system, by a method that, though not effortless, is mostly mechanical. 

Nelson's IST can be described "constructively" in terms of monomorphisms (i .e . ,  not 
in Nelson's terms) ,  roughly as follows: Since *JR contains an isomorphic copy of JR, let 's 
just work with that isomorphic copy and forget about the original copy; then we have 
one less object to worry about. When we want to work with real numbers and related 
objects, we'll just work with subsets of *JR. We have some axioms that describe our number 
system, including axioms about infinitesimals and other nonstandard objects. The axioms 
for *JR are quite similar to classical axioms for lR'. - which is not surprising, in view of 
the Transfer Principle we have already discussed - but *JR does contain infinitesimals and 
other nonstandard objects. Now let 's change our notation and drop the asterisk; we'll 
write our number system as "lR'.," and call it "the real numbers." The result is a new 
"real number system," which contains infinitesimals and other new objects. Similarly, the 
symbols N = {natural numbers} and Z = {integers} both take new meanings; both these 
sets now contain infinite members . The objects that are called "standard" in IST are those 
in the image of the monomorphism mapping. 

SUMMARY OF SOME CONSISTENCY RESULTS 

14. 70. The quest for certainty. Is  i t  possible to build mathematics on a completely reliable 
foundation? When consistency of a theory is proved by a fully detailed but finite argument , 
as in 14. 10, we say that absolute consistency is established. Truths may vary from one 
logical system to another, depending on our axiom system, but can we at least prove that 
our axiom system is absolutely consistent? 

In some very simple cases we can. For instance, the axioms of classical propositional 
logic can be proved absolutely consistent (though this may not be readily apparent from this 
book's exposition since we have mixed that elementary result with more advanced results) . 

In 14.7 we described how Godel used the consistency of ZF to prove the consistency of 
ZF + AC + GCH. This result - and earlier, more elementary results of a similar nature 
show that we can sometimes "bootstrap" our way up, using some weak consistency results 
to prove other, stronger consistency results. 

Mathematicians around 1900, encouraged by a few successes in proving consistency, 
began to hope that all of mathematics could be put on a firm foundation. The search 
for absolute proofs of consistency was promoted especially by David Hilbert, and so it is 
sometimes known as Hilbert's program; see the discussion by Kreisel [1976] . 

However, in 1931 Godel published his Incompleteness Theorems; the second of these 
tells us that Hilbert 's program cannot be carried out for larger portions of mathematics. In 
fact , it cannot be carried out for any system that is sufficiently sophisticated to yield all of 
arithmetic. 

Godel's proof is too complicated to present here; even a precise statement of his results 
is too complicated to present here. However, here is a partial statement of his results: 
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Let 'J be a formal theory that includes arithmetic, and assume that the axioms 
of 'J can be described in a mechanical fashion (i .e . ,  recursively - we shall not 
give a precise definition of this term) .  Assume the language of 'J includes only 
countably many symbols. Then: 

Godel's Second Incompleteness Theorem. The statement "'J is consistent" 
can be encoded as a formula expressed in the language of 'J; but that formula 
is not a theorem of 'J - i.e. ,  that formula about 'J cannot be proved inside 'J. 

The proof uses many of the same ideas indicated in 14.62. 

14. 71. Fundamental uncertainty. One particular consequence of Godel's Second Incom
pleteness Theorem is: 

Absolute consistency cannot be proved for any formal system that includes arith
metic. In particular, absolute consistency cannot be proved for ZF. 

Thus, mathematics has lost its innocence: A kind of uncertainty is inherent in the foundation 
of mathematics and cannot be exorcised. The age of supreme confidence, which began when 
Isaac Newton explained the movements of the heavens with a few simple equations, ended 
with Kurt Godel's Second Incompleteness Theorem. 

This should not be entirely surprising. On a more fundamental level, we cannot use the 
basic techniques of reasoning to prove that the basic techniques of reasoning are reliable. 
Such circular reasoning would be worthless. Perhaps we are all really quite mad and merely 
imagine ourselves to be rational. Even a mathematician must accept certain some things 
on faith or learn to live with uncertainty. 

And there is even disagreement on such matters of faith! For instance, as we noted in 
6.4, most mathematicians are comfortable with proof by contradiction and the Law of the 
Excluded Middle (and we use such proofs freely in this book) , but to constructivists such 
proofs are taboo. 

Actually, many researchers in branches of mathematics outside of logic are not aware 
that the age of certainty has ended. Godel's Second Incompleteness Theorem has no effect 
on such simple certainties as 2 + 2 = 4,  and it does not diminish the extraordinary success 
mathematics has brought to technology. Very clever computations were required to create 
radio and television, or to land human beings on the moon and then return them safely to 
earth. Those computations do not actually rely on ZF set theory. For all practical purposes, 
applied mathematics is a system that "works," and it will continue to work even if an 
inconsistency someday is found in the most popular formalization of abstract mathematics. 
It is convenient, and perhaps reassuring, to explain differential equations in terms of set 
theory, but it is not absolutely necessary. If our explanation of subsets is someday discovered 
to be inconsistent, researchers in differential equations will not immediately resign from their 
jobs en masse. 

14. 72. If we cannot establish absolute consistency, what is the next best thing? What 
shall we use for the basis of our reasoning? 
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First of all, there is empirical consistency - i .e . ,  that which is based on evidence, 
but not on a complete proof. For instance, mathematicians have now used ZF for nearly a 
century and have not yet proved any contradictions from it. Thus, ZF seems to be consistent , 
based on empirical evidence, if we accept conventional rules of reasoning. Similarly, 

ZF + AC + IC is empirically consistent (so far) , 

where AC is the Axiom of Choice and IC is the statement that "there exists an inaccessible 
cardinal" (introduced in 2 .2 1 ) .  However, the accumulated evidence is less for this axiom 
system than for ZF, as this system has not been studied quite so extensively. 

Second, there is relative consistency: We may prove that if one set of formulas � is 
consistent , then another set <I> is consistent - or, more briefly, 

Con(�) Con( <I>) .  

The problem of  consistency i s  not removed altogether - we may not be  certain of  the 
consistency of � or <I> - but the problem may be relocated to a more manageable place: in 
many cases, � is simpler or more intuitively "believable" than <I>. When relative consistency 
is proved, then <I> inherits all of �'s plausibility. 

Although the absolute consistency of ZF is not attainable, at least ZF is empirically 
consistent . Hence we may use the consistency of ZF as a plausible hypothesis in our relative 
consistency arguments. 

14. 73. The relative consistency of Choice. The most famous consistency result relative to 
ZF is Godel's result: Con(ZF) =;. Con(ZF + AC + GCH) ,  which we have already discussed 
in 14.7. By Godel's result , it is "safe" to add the Axiom of Choice and the Continuum 
Hypothesis to set theory - if this generates any contradictions, then contradictions were 
already present in ZF anyway. The various pathologies generated by Choice - such as 
the Banach-Tarski Decomposition, in 6 . 16 - may cause us to question that axiom and to 
consider alternatives, but none of those pathologies actually lead to a contradiction (unless 
ZF is already corrupt) ,  and so none of them can actually force us to give up the Axiom of 
Choice. 

We emphasize that Godel's result does not say that ZF implies AC. Quite the contrary; 
in 1963 Cohen showed that 

if ZF is consistent , then ZF + not-AC + not-CH is also consistent . 

Thus ZF does not imply AC or CH (the Continuum Hypothesis) .  

14.7 4.  Equiconsistent alternatives to ZF. Since Cohen's breakthrough, several other math
ematicians have subsequently proved the relative consistency of more specific negations of 
the Axiom of Choice. They have proved that certain statements that contradict AC, such 
as 

BP "every subset of JR. has the Baire property" 

LM "every subset of JR. is Lebesgue measurable" 
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(discussed, respectively, in Chapters 20 and 2 1 )  are consistent with certain weak conse
quences of Choice, such as 

DC 
cc 

Dependent Choice 
Countable Choice 

UF 
HB 

Ultrafilter Principle 
Hahn-Banach Theorem 

(discussed in Chapters 6 and and 12 ) .  Specifically, if ZF is consistent, then so is each of the 
following sets of axioms: 

• ZF + BP + LM (Solovay [1964/1965] ) 

• ZF + UF + not-CC (Halpern and Levy [1971 ] )  

• ZF + DC + HB + "all ultrafilters are fixed" (Pincus and Solovay [1977] ) 

• ZF + DC + BP (Shelah [1984] ) 

• ZF + DC + BP + not-LM (Stern [1985] ) 

These consistency results will not be proved in this book; the ambitious reader will find the 
proofs elsewhere in the literature. Many of these results were proved by forcing. Earlier 
in this chapter we have suggested some of the ingredients of consistency proofs, but those 
suggestions are far from actually being a proof. The consistency of conventional set theory 
(ZF + A C) and the consistency of Shelah's alternative (ZF + DC +  BP) will be assumed 
throughout this book; the importance of Shelah's alternative will be explained in 14.77. 

The Axiom of Choice and its negation cannot coexist in one proof, but they can cer
tainly coexist in one mind. It may be convenient to accept AC on some days - e.g. ,  for 
compactness arguments - and to accept some alternative reality, such as ZF + DC +  BP 
on other days - e.g., for thinking about complete metric spaces. 

Each of the axiom systems listed above includes ZF, and thus each system is equicon
sistent with ZF - i.e. ,  its consistency is equivalent to the consistency of ZF. Another way 
to say this is that the various axiom systems have the same consistency strength. Hence 
each of these alternative set theories is as plausible as conventional set theory. The theolo
gian Kierkegaard might have put it this way: To believe that ZF is consistent requires a 
certain leap of faith, but to believe the consistency of any of these larger systems of axioms 
requires no larger leap of faith. 

14. 75. Axiom systems that are not equiconsistent with ZF. Let IC be the statement that 
"there exists an inaccessible cardinal." As we have remarked earlier, ZF + AC + IC is em
pirically consistent (so far) . That is, no contradictions have yet been established as con
sequences of ZF + AC + IC, even after considerable scrutiny by set theorists. Hence it is 
reasonable to take Con(ZF + AC + IC) as a hypothesis in certain arguments (where "Con" 
stands for "consistency of" ) . 

Obviously Con(ZF + AC + IC) =;. Con(ZF + AC) . However, Con (ZF + AC) does not 
imply Con(ZF + AC + IC) . That fact can be proved along the following lines: We can use 
an inaccessible cardinal to form a set M such that we can prove inside ZF + AC  + IC that 
M is a model of the axioms of ZF + AC (in the sense of 14.6) . The Soundness Theorem 
can also be proved in this setting; thus, inside ZF + AC + IC we can prove the consistency 
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of ZF + AC. Now Godel's Second Incompleteness Theorem tells us that Con(ZF + AC) =? 
Con(ZF + AC + I  C) cannot be proved inside ZF + AC, or even inside ZF + AC + IC. For 
further details of this argument , see Shoenfield [1967] , page 306. 

Thus, ZF + AC + IC is not equiconsistent with ZF, or ZF + AC, or all the other axiom 
systems listed in 14.74. We say that ZF + AC + IC has greater consistency strength than 
does ZF or ZF + AC. 

Results of Solovay [1970] , Shelah [1984, 1985] , and Stern [1985] imply that the follow
ing sets of axioms are equiconsistent - i.e. , consistency of any one of these sets implies 
consistency of all the others. 

• ZF + AC + IC 

• ZF + CC + LM 

• ZF + DC +  LM 

• ZF + DC + LM + BP 

• ZF + DC +  LM + not-BP 

These results show that Lebesgue measurability in IR - a set of "ordinary" size - is 
inextricably connected to questions about inaccessible cardinals - i.e. , sets so enormous 
that they are very hard to imagine. 

This equiconsistency result came as something of a surprise to mathematicians. There 
is an extensive analogy between Lebesgue measurability (in measure theory) and the Baire 
property (in topology) ,  as shown by Oxtoby [ 1980] and Morgan [1990] . However, the analogy 
breaks down when we study equiconsistency: ZF + DC +  BP is equiconsistent with ZF, but 
ZF + DC + LM is not. 

QUASICONSTRUCTIVISM AND INTANGIBLES 

14.  76. Dependent Choice, introduced in 6.28, is generally considered to be constructive. 
In fact , it is the strongest form of Choice that is accepted by most schools of constructivism. 
It is fairly strong, as we can see from the fact that the constructivists have been able to 
translate so much of classical mathematics into their viewpoint (see 6.8) .  

Most existence proofs . in this book use conventional set theory - that is ,  Zermelo
Fraenkel set theory plus the Axiom of Choice (ZF + AC) .  Much of this book is concerned 
with mere existence proofs, but we also give explicit examples when we can. There is 
no standard meaning for "explicit example," but many mathematicians would attach a 
.narrower meaning to that phrase than they do to "existence proof." 

How can we make the phrase "explicit example" more precise? Some possible interpre
tations are: 

• an object that can be constructed in the sense of Bishop, as in 6.2; 

• an object that can be constructed in the sense of Godel, as in 5.54; or 
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• an object that is definable in the sense of predicate logic, as in 6 . 1 1 .  

However, all these interpretations involve ideas that are quite far away from mainstream 
mathematics; they would require us to restructure our entire language and methods of 
reasoning. 

Instead, we shall now propose a compromise between constructivist mathematics and 
mainstream mathematics, which should be easily understood by most analysts and other 
"ordinary" mathematicians - i.e . ,  it is not accessible only to logicians. By quasiconstruc
tive mathematics we shall mean mathematics that permits the use of conventional rules 
of reasoning plus ZF + DC, but no stronger forms of Choice. (This kind of reasoning was 
called "agnostic" mathematics by Garnir [1974] , referring to the fact that the user of this 
mathematics assumes neither the Axiom of Choice nor its negations such as BP or LM.) 
In this book, an explicit example of an object will mean2 a quasiconstructive proof of 
existence of that object. Most of this book uses classical, conventional set theory (ZF + 
AC) ,  but occasionally we shall work with the more restrictive viewpoint of quasiconstruc
tive mathematics to study the presence or absence of explicit examples. We emphasize 
that constructive mathematics (in the sense of Bishop) is even more restrictive: It pro
hibits proofs by contradiction and the Axiom of Regularity, both of which are permitted in 
quasiconstructive mathematics. 

14. 77. By an intangible, we shall mean an object that "exists" but has no "explicit 
examples" - i.e. , an object whose existence can be proved in conventional mathematics 
(ZF + AC) but not in quasiconstructive mathematics (ZF + DC) .  Throughout this book, 
we shall assume the consistency of ZF; we shall use that assumption to prove that certain 
objects are intangibles. 

For instance, certain subsets of a topological space have the Baire property, discussed 
in Chapter 20. Let BP be the statement that "every subset of IR has the Baire property." 
As we stated without proof in 14 .74, the consistency of ZF implies the consistency of ZF + 
DC + BP. Later in this book we shall prove that ZF + AC implies not-BP. Thus, 

subsets of IR that lack the Baire property are intangibles 
- such sets "exist ," but there are no "explicit examples" of such sets. 

Strictly speaking, it is not the particular set S lacking the Baire property that is in
tangible; rather, it is the property of being such a set that is intangible. If we could quasi
constructively get our hands on a particular set S that lacked the Baire property, then S 
would not be an intangible! We can make our language more precise by saying something 
like this: "the negation of the Baire property is an intangible property." But it is more 
convenient and more intuitively appealing to say, somewhat imprecisely, that "the subsets 
of IR that lack the Baire property are intangibles;" the intended meaning should be clear. 

Actually, in some situations we can "get our hands on" a particular intangible object 
- but not quasiconstructively. Consider the following illustration:3 Let Pl ( x) and P2 ( x) 

2 Admittedly, the phrase "explicit example" has been used in different ways in the literature, and some 
mathematicians may not agree with the particular meaning attached to that phrase by this book. However, 
it is this author's feeling that many mathematicians will agree with it. At any rate, the definition given 
here has the advantage that it leads to some interesting theorems. 

3Suggested by an anonymous referee. 
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be, respectively, the statements "x = 0" and "the Axiom of Choice is true." (The latter 
predicate actually does not depend on x. ) Then in conventional mathematics (ZF + AC) ,  
the set S =  {x : p1 (x) and p2 (x) } is nonempty. In fact, it has exactly one element, and 
we know what that element is: 0. The issue here is not whether we can find a particular 
member of S, but rather, whether we can prove that the object belongs to S. In quasi
constructive mathematics, it is clear that S is either 0 or {0} ,  but we cannot determine 
which. Thus, 0 is an intangible - or more precisely, the property of being a member of 
S is an intangible property. This illustration shows that our simple and precise definitions 
of "explicit example" and "intangible" match only approximately with the usual imprecise 
intuitive meanings of those. terms. 

Later we shall prove that these objects are also intangibles: free ultrafilters, nontrivial 
universal nets, well orderings of JR, inequivalent complete norms on a vector space, finitely 
additive probabilities that are not countably additive, and members of (Coo )* \ £1 . Some 
classical texts may give one the impression that these peculiar objects are somehow already 
present and the Axiom of Choice is used merely to "detect" them. However, it is more 
accurate to say that these objects are created by our acceptance of the Axiom of Choice. 
They disappear if we replace conventional set theory (ZF + AC) with some of its alternatives 
(such as ZF + DC + BP) .  

A special role is played by the negation of the Baire property: It is a "weaker" intangible 
than most other intangibles that we shall consider in this book, in the following sense. If we 
assume that the other intangible object exists, we can (and shall, elsewhere in this book) 
use it to prove the existence of a non-BP set, without recourse to formal logic or to any 
form of Choice stronger than DC. Hence Shelah's result, Con(ZF) =} Con(ZF + DC + 
BP) , is the only result we need from formal logic for most of our intangibility proofs. 

14. 78. Intangibles in a wider sense. The "intangibles" defined above might be named 
more descriptively as "AC/DC intangibles" - i.e. ,  objects whose existence is implied by 
ZF + AC but not by ZF + DC. That is the only kind of intangible considered in most of 
this book. However, many more objects are "intangible" if that term is given the broader 
meaning of "anything that exists but lacks explicit examples," where "exist" and "explicit 
example" are given any reasonable interpretations. Different interpretations yield different 
kinds of intangibles. We now mention four kinds of "intangibles" not covered by our AC/DC 
theory: 

a. If we replace conventional set theory ZF + AC with Shelah's ZF + DC +  BP, then many 
of the classic pathological objects of analysis cease to exist. However, they are replaced 
by a new collection of intangibles , for BP is also a nonconstructive postulate of exis
tence. Indeed. it asserts that every subset of lR can be represented in the form M 6 G 
for some meager Af and open G, without giving any clue about how to find such a 
representation. 

b. As we remarked in 6 .3 and 6.4, the Axiom of Choice is not the only source of non
constructive reasoning in conventional mathematics; two other sources are the Axiom 
of Foundation and the Law of the Excluded Middle. These sources yield their own 
collections of intangibles. 

c. For some objects, even the Axiom of Choice is too weak to prove existence. The 
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following example assumes familiarity with some concepts of algebra and functional 
analysis introduced later in this book. Let K be a compact Hausdorff space, and 
consider the algebra C(K, C) = {continuous functions from K into C} .  An algebra 
norm on C(K, C) is a vector space norm I I I I with the additional property that 
1 1!9 1 1 :::; l lf l l l l9 l l ,  where the product !9 is defined pointwise: (f9) (x) = j(x)9(x) for 
x E K. The sup norm on C(K, C) is complete, and any other complete algebra norm 
on C(K, C) is equivalent to the sup norm. Do there exist any incomplete algebra 
norms on C(K, C)? This question cannot be answered in ZF+AC; it can be answered 
affirmatively or negatively depending on what further axioms we add to ZF+AC. For 
a full discussion, see Dales and Woodin [1987] . 

d. Lebesgue unmeasurable sets constitute a different sort of "intangible." Indeed, all the 
axiom systems mentioned in the last few paragraphs are equiconsistent with ZF, as we 
noted in 14 .7 4. However, the axiom systems described in 14.75 have greater consistency 
strength. In particular, that is the case for ZF + DC +  LM, where LM is the statement 
that "every subset of lR is Lebesgue measurable." Thus, 

• the existence of Lebesgue nonmeasurable sets can be proved in conventional set 
theory (ZF + AC) - and in fact we shall give such a proof in 21 . 22; 

• empirically, it seems to be impossible to give an explicitly constructible example 
of such a nonmeasurable set - i.e. , mathematicians have been unable (so far) to 
prove the existence of Lebesgue nonmeasurable sets using just ZF + DC, so the 
axiom system ZF + DC + LM seems to be consistent; but 

• proving the impossibility of such an explicit construction (i .e . ,  proving the con
sistency of ZF + DC +  LM) requires a stronger assumption than our usual gospel 
of Con(ZF) .  
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Chapter 1 5  
Topological Spaces 

15.1. Remarks. We now resume the study of topological spaces, which we began in 
Chapters 5 and 9. Our study will also use some material from Chapter 7. 

Many of the most basic properties of topological spaces are actually valid in the more 
general setting of pretopological spaces, so we shall begin in that setting. Admittedly, that 
setting is more general than one usually encounters in textbooks on topology. However, (i) 
the greater generality gives us some extra insights into topological spaces, as in 15.10; and 
(ii) it doesn't really require extra work, since the properties of pretopological spaces that 
we shall study are properties of topological spaces that we would have had to study anyway. 

PRETOPOLOGICAL SPACES 

15.2. Let X be a set. A neighborhood system for a pretopology on X is a system 
of filters {N(x) : x E X} such that x is a member of each member of N(x) .  A member of 
N(x) will be called a neighborhood of x; thus N(x) is called the filter of neighborhoods 
or the neighborhood filter at x. A set X equipped with such a neighborhood system is 
called a pretopological space. A convergence is defined on X as follows: for nets, 

Xn is eventually in each neighborhood of x 
or, equivalently, for proper filters, 

1' � N(x) .  
In  particular, the neighborhood filter itself converges to  x. Clearly, the convergence is 
centered and isotone, as defined in 7.34. 

15.3. Some basic properties. Let X be a pretopological space. Then: 
a. The convergence on X is Hausdorff (in the sense of 7.36) if and only if any two distinct 

points in X have disjoint neighborhoods. 
Hints : The convergence has nonunique limits if and only if there exist distinct 

points y, z E X and a proper filter 1' such that 1' ----> y and 1' ----> z -- that is, such 
that 1' � N(y) and 1' � N(z) .  In view of 7.18(E) , that can happen if and only if every 
member of N(y) meets every member of N(z) .  

409 
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b. X has the "star property:" 

If z E X and (xa ) is a net that does not converge to z ,  then (xa ) has a 
subnet (yf3) that stays out of some neighborhood of z; hence no subnet of 
(yf3) converges to z. 

Also, X h ts the "sequential star property:" 

If z E X and (xn ) is a sequence that does not converge to z, then (xn) 
has a suiJsequence (Yn ) that stays out of some neighborhood of z; hence no 
subsequence of (Yn ) converges to z (and in fact, no subnet of (Yn ) converges 
to z) .  

Hints : Assume the net (xa : a E A) does not converge to  z. Then there i s  some 
neighborhood N of z such that Xa is not eventually in N. Thus, IllS = {a E A : Xa tJ_ N}  
i s  a frequent subset o f  A, and so  the frequent subnet (xa : a E IllS) has the desired 
properties. For the sequential result, recall from 7. 16.d that any frequent subnet of a 
sequence is actually a subsequence. 

Remark. We t>hall see in 21 .43 that some complete lattices have order convergences 
that lack the seque:1tial star property and therefore are not pretopological convergences. 

c. If (xa ) and (Yf3 )  are nets in a set S �  X, both converging to some limit z E X, then 
(xa ) and (Yf3) are '3ubnets of a single net in S which also converges to z .  

Hint :  Let the given nets have eventuality filters 3'" and 9. Then 3'" n 9 i s  a proper 
filter that contains { S} U N( z) .  

d.  Let p : X --+ Y be a mapping from one pretopological space into another. Then p is 
convergence-preserving (defined as in 7.33) if and only if p has this property: 

Whenever N is a neighborhood of p(x) in Y, then p- 1 (N) is a neighborhood 
of x in X. 

15.4. Definitions. Let (X, lim) be a pretopological convergence space, with neighborhood 
filters N(x) . We define two maps from P(X) into itself, the convergence closure operator 
and the convergence interior operator, by 

cl(S) 

int(S) 

{ z E X S is a member of some filter that converges to z} 
{ z E X some net that converges to z is eventually in S} 

{ z E X S meets every neighborhood of z} , and 

{ z E X S is a member of every filter that converges to z} 

{ z E X every net that converges to z is eventually in S} 

{ z E X S is a neighborhood of z } .  

Then the closure and interior are related by: 

int(X \ S) X \  cl(S) . 

Thus, closures and interiors are dual notions, in the sense of 1 .7. In practice, however, 
closures and interiors are commonly used in different ways. Typically, the closure of a set 
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S i s  used i f  S itself does not contain enough points for some purpose - e.g. ,  i f  S i s  not 
closed under some sort of operation of taking limits. The interior of a set S may be used 
as part of an argument to show that S or some other related set is nonempty, and thus to 
prove the existence of certain mathematical objects. 

15.5 .  Further properties of pretopological closures. 
a. cl(0) = 0 ,  S c;;; cl(S) , and S c;;; T =? cl(S) c;;; cl(T) . 

b. cl(S u T) = cl(S) u cl(T) . More generally, cl (U7=1 s1) = U:1= 1 cl(SJ ) for any finite n. 

(For a slight generalization, see 16.23.c.) 

c. cl(S) \ cl(T) = cl(S \ T) \ cl(T) c;;; cl(S \ T). 
Hint: From S = (S n T) U (S \ T) , we obtain cl(S) = cl(S n T) U cl(S \ T) . Intersect 

both sides of this equation with the complement of cl(T) , to obtain cl(S) \ cl(T) = 
cl(S \ T) \ cl(T) . This argument is taken from Kuratowski [1948] . 

Remarks. The closure of a pretopological space does not necessarily satisfy the idempotence 
condition cl (cl(S) ) = cl(S) . That is the one condition it still needs to be a Moore closure 
(see 4 .5.a) or a topological closure (see 5 . 19, 15.6, 15 .7 ,  and 15 . 10(E) ) .  

15.6. Example: a pretopological closure that is not idempotent. We exhibit a space in 
which cl(cl(S)) may differ from cl (S) . 

The underlying set will be JR2 . For each (x, y) E JR2 and each number c > 0, let 

{ ( x, y' ) E lR 2 : I y - y' I 'S c} U { ( x' , y) E lR 2 : I x - x' I 'S c} . 
(This is a plus-shaped set centered at (x, y) ; each of its four arms has length c . ) Now define 
the neighborhood filter N(x, y) to be the filter {S c;;; JR2 : S ;;:> KE (x, y) for some c > 0} .  
The resulting convergence i s  as follows: A proper filter :T on JR2 converges to a limit (x ,  y) 
if and only if KE (x, y) E :T for every c > 0. Equivalently, a net (x,, Yn )  in JR2 converges to 
a limit (x, y) if and only if for each c > 0 ,  we have eventually (x"' Yn )  E KE (x, y ) .  Finally, 
let S =  { (x, y) E JR2 : x > 0 and y >  0} .  Verify that 

cl(S) 

but cl(cl(S)) 

{ (x , y) E JR2 x � 0 and y �  0 and (x, y) -=f. (0, 0) } ,  

{ (x, y)  E JR2 x � 0 and y �  0} is strictly larger. 

TOPOLOGICAL SPACES AND THEIR 
CONVERGENCES 

15.7. Definitions. Let (X,  'J) be a topological space, as defined in 5 . 12 .  Recall from 5 .16 .a 
that a set N c;;; X is  a neighborhood of a point p i f  p E G c;;; N for some open set G.  Then 
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N(p) = {N : N is a neighborhood of p} is a filter, called the neighborhood filter at p. The 
N(p) 's form a system of neighborhood filters for a pretopology, as defined in 15 .2 .  Thus, 

a topological space is a special type of pretopological space. 
Convergence is defined as in 15 .2 .  However, in a topological space (X, 'J) , the definition 

of convergence can be reformulated in terms of open sets. It is easy to show that for filters, 

:f ---> z if and only if every open set containing z is a member of :f. 
The equivalent condition for nets is: 

Xn ---> z if and only if for each open set G containing z, eventually x" E G. 

The convergence given by either of these rules is the convergence determined by the 
topology. Every topological space is understood to be equipped with this convergence, 
unless some other arrangement is specified. A convergence rule that can be determined by 
some topology is called a topological convergence. 

Of course, any sequence is also a net, and so all our results for nets will apply to 
sequences. We shall work with sequences rather than with nets or filters whenever possible, 
since sequences are conceptually simpler. 

15.8. A few basic properties of topological convergences. Let (X. 'J) be a topological space. 
Show that 

a. A set is open if and only if it is a neighborhood of each of its points. 

b. A set S <::; X is open if and only if it has this property for nets: 

Whenever Xn ---+ z and z E S, then eventually x" E S .  

An equivalent property in terms of filters is: 

Whenever :f ---+ z and z E S, then S E :f. 
From either of these characterizations, we see that the topology 'J can be recovered from 
its convergence rule; two distinct topologies on X cannot have the same convergence 
rule. (However, not every convergence rule is determined by a topology. In 15 . 10 we 
shall characterize just which convergences are topological. )  

c .  A set S <::; X i s  closed i f  and only i f  it has this property: If Xn ---+ z and eventually 
Xn E S, then z E S. An equivalent property is: If :f ---> z and S E :f, then z E S .  

d .  In a topological space, the topological closure and interior (defined i n  5. 16. b and 5. 16.c) 
are the same as the pretopological convergence closure and interior (defined in 15 .4) .  

Remark. Any topological closure is idempotent (see 5 . 19) ,  but not every pretopo
logical convergence closure is idempotent (see 15 .6) . We shall see in 15 . 10(E) that a 
pretopological convergence closure is a topological closure if and only if it is idempo
tent . 

15.9. Elementary examples of convergence. Some of the following examples are based on 
5 . 15 .  Let X be any set . Then: 
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a. Recall that the indiscrete topology on X i s  { 0, X}. With this topology, every net in 
X and evf'ry filter on X converge to every point of X.  

b. Recall that the discrete topology on X is P(X) .  With this topology, a net (xn ) con
verges to a limit z if and only if eventually .r, = z ,  and a filter 3'" converges to a limit 
z if and only if 3'" is the ultrafilter fixf'd at z .  

c. Recall that t he eofinite topology on X is 

'J { S <;;; X : either S is empty or CS is finite} .  

Show that i f  X has the cofinite topology and (xn ) i s  a sequence in X with the property 
that no point � E X  appears in the sequence infinitely many times, then (xn ) converges 
to every point of X.  

d.  Let Y be a topological space, and let X <;;; Y. Then a net (xn ) converges to  a limit p 
in the relative topology on X (introduced in 5. 15 .e and 9.20) if and only if (i) Xa --> p 
in Y. and (ii) p and all the .r, 's lie in the set X.  

e .  A net (J'0 ) converges to  a limit z with respect to  the topology generated by a collection 
of sets 9 if and only if 

eventually x, E G. 

In particular. if z tf_ Uc:E9 G. then every net in X converges to z .  

f. Let (X. d) be a pseudometrie space; the topology of such spaces was described in 5. 15.g. 
Show that a filter 3'" converges to a limit p in this space if and only if Bd(p. c-) E 3'" for 
each c > 0. Equivalently, a net ( x" ) converges to p if and only if for each c > 0 we 
haVf' eventually d( .r, . p) < c. 

In particular. let Jl{ have its pseudometric topology; then a net of real numbers 
(rn ) converges to a real nuruber s if and only if for each c > 0 we have eventually 
l r, - ;; I  < E. 

Observe that the convergence in any pseudometric space (X. d) can be characterized 
in tf'nus of convergence of distances, which are real numbers: 

.1"0 --> J! iu (X, d) 

15. 10. Theorem characterizing topological convergences (optional) . Let X be a 
convergetH"P space whose convergence is centered and isotone (as defined in 7.34) . Then the 
following couditions are equivalent . 

(A) The convergence on X is topological - i.e . .  given by a topology. 

(B) (Iterated Net Condition.) Let (y� : b E D) be a net in X converging to 
a limit ;:; .  For each b E D. let (J:� : E E Eo ) be a net in X converging to Yo . 
Let F = flhE D Eh have the product ordering. and let D x F have the product 
ordering. Then the net ( .r�. ( h J : (b .  f) E D  x F) converges to z .  

( C) (Cook-Fischer Iterated Filter Condition.) Let 9 be  a filter on a set I ,  
and let I '  : I --> X be some function. Assume the filterbase v(9)  = { v(G) : 
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G E 9 }  converges to some point z in X.  For each i E I, suppose s (i )  is a filter 
on X converging to v(i) . Then the filter X =  UcE9 niEG s(i ) converges to z. 

(D) (Kowalsky's Conditions. )  The convergence is pretopological (as defined in 
15.2) . Furthermore, suppose 9 is a filter on X converging to some point z in 
X.  For each x E X, assume that s(x) is a filter on X converging to x. Then 
the filter X = UcE9 niEG s(i) converges to z. 

(E) (Gherman's Conditions. )  The convergence is pretopological. Moreover, 
the closure operator defined in 15 .4 is idempotent - i.e. ,  it satisfies cl( cl(S))  = 
cl (S). 

Bibliographical remarks. Earlier, more complicated versions of parts of this theorem were 
given by Kelley [1955/1975] and Cook and Fischer [ 1967] ; those versions assumed a "star 
property" like that in 1 5.3.b. The star property assumption was removed independently, 
in different fashions, by Aarnes and Andenres [ 1972] and Gherman [ 1980] . It should be 
emphasized that our definition of "isotone" is based on Aarnes-Andenres subnets - i.e. , 
we assume condition 7.3 1 ( * ) .  Kelley studied nets without assuming that condition and 
without considering filters. With his formulation the star property cannot be omitted; that 
was shown by Aarnes and Andenres [ 1972] . 
Hints for (A) =? (B) . Let N be an open neighborhood of z; it suffices to show that 
eventually x;(o) E N. 

Outline of (B) =? (C) .  We shall begin by constructing a net that is  somewhat like the 
canonical net of v(9 ) ,  but is also parametrized by elements of I. Let 9 be ordered by reverse 
inclusion (see 7.4 ) ,  let X and I have the universal ordering (see 3.9.g) , and let products 
have product ordering. Let 

D { (i , G) E I x 9 i E G} .  
Then D is  a frequent subset of  I x 9 ,  hence directed. For {j = (i , G) in  D, let Yb = v(i) . 
The net (Yb : {j E D) converges to z since its eventuality filter includes v(9 ) .  

For each {j = ( i ,  G)  in  D,  let S0 = s( i ) ;  thus S0 i s  a filter on X that converges to 
v( i) = Yo . The canonical net of S0 is 

(x� : f E Eb) , where Eo = { (w, S) E X x Sb w E  S} and xfw,S) = w; 

this net also converges to v( i) = y0 . 
Define F = IloED E0 as in the statement o f  (B ) .  Then the net (x�(o) : (8, f) E D x F)  

converges to  z by the assumed condition (B) . Hence its eventuality filter C. also converges 
to z. We wish to show that X ---> z; it suffices to show that X 2 C. .  •• 

Let A E C. ;  we are to show that A E X. Since A is an eventual set of (x�(o) : (8, f) E 
D x F) ,  there is some {jA E D  and ]A E F such that {j � {)A , J � ]A =? x�(o) E A . Say 
{jA = (iA , GA ) · 

Temporarily fix any i E GA, and let {j = (i , GA) · Then {j is a member of D that satisfies 
{j � {jA and therefore x�(b) E A for all f � fA · Thus x� E A for all f E Eb such that 
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c :;= fA (b ) .  Thus the net ( :r� : c E Eh) i s eventually in A, so A i s a member of that net 's 
eventuality filter, which is sh = s(i ) .  

Thus A E niEGA 8 ( i )  s;;; X. 
Outline of (C) =} (D) . Easily, condition (C) implies the iterated filter condition in (D) . 
I t suffices to show (C) implies the convergence is pretopological . Fix any z E X;  let N(z) 
be the intersection of all the filters that converge to z :  we wish to show N(z) --> z .  Let 
I =  {filters on X that converge to z} and G = {I} .  Define s(i )  = i and v(i )  = z for all 
i E I. The hypotheses of the Cook-Fischer condition are satisfied, and therefore X --> z .  
Unwinding the notation, we find that X = N( z) .  
Outline of (D) =} (E) . Let I =  cl(S) ;  we wish to show cl(I ) = I . Clearly. I <;;;; cl ( I ) .  Let 
z E cl (I ) : it suffices to show z E I .  

When :r E I. t hen S meets every element of N(:r ) ;  let N(x) V {S} denote the filter 
generated by N(.r) U {S} (see 5.5 . i ) . Define s :  X --> {filters on X} as follows : 

s(.r) { N(x) 
N(x) v {S} 

In either case. s(:r) is a filter that converges to :r .  

if X �  I 
if J: E I .  

Since z E cl(I ) ,  some filter 9 converges to z and contains I .  By the assumed condition 
(D) , Kowalsky's iterated filter X = UcE9  niEG s(i )  converges to z. Since I E 9 ,  we have 
S E niE I 8 ( i )  <;;;; X. Since S E X  and X -->  z .  we have z E d(S) = I . 
Hint for (E) =} (A) :  Let � denote the convergence originally given on X;  we are to prove 
that � is a topological convergence. Condition (E) tells us that the convergence closure 
operator defined in 15 .4 sat isfies Kuratowski's axioms 5 .19 and thus is the closure operator 
for some topology 'J on X. Since int (CS) = C (cl(S) ) .  the convergence interior operator 
defined in 15.4 is the interior operator for that topology 'J. Let L be the convergence of 
that topology. Now. both � and L are pretopologic:al , and they have the same interior 
operator. hence the same neighborhood filters. Being pretopological. they satisfy 

z :J ] N(z)  z .  
That is. the two convergences are the same. Hence � is a topological convergence. 

MORE ABOUT TOPOLOGICAL CLOSURES 

15.11 .  The closure operator is isotone - i .e . , it sat isfies S <;;;; T =} cl(S) <;;;; cl(T) and 
t llPrefore it sat isfies 

n cl (S;, ) 
>.EA 

] c� ( n s),) 
>.EA 

and U cl(S;, ) c 
>.EA 

c l  (U S;,) . 
>.EA 
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as we noted in 4 .29.c. Neither of these inclusions is necessarily reversible, as we shall now 
show with simple examples. For both examples, take X = lR with its usual topology; let 
Q = {rational numbers} .  Then 

n c1 (s" )  => c1 ( n s,) if s" = JR \ {>-} ;  7o 
.-\ E lR  .-\ E lR  

U cl (S" )  c c1 ( U s,) if s" = {>-} .  7o 
,\ E Q ,\ E Q 

15. 12. Relativization of closures. Let Y be a topological space, let X � Y, and let X be 
equipped with the relative topology. Let ely and clx denote closures in the topology of Y 
and the topology of X.  Then for any set S � X, we have 

clx (S) X n cly (S) .  

15.13. A subset S is dense in a topological space X if cl(S) = X. A topological space X 
is separable if it has a countable dense subset. Show that 

a. A set S � X is dense if and only if it meets every nonempty open subset of X .  

b. I f  G i s  an open subset o f  a topological space X, and Y i s  a dense subset of X ,  then 
G � cl(G n Y) .  

c .  The intersection of finitely many open dense sets is open and dense. 

d. Any subset of a separable metric space is separable. 

e. Any open subset of any separable space is separable. 

f. However, separability is not a hereditary property - - i.e . ,  not every subspace of a 
separable space is necessarily separable. 

Example. Let � be some particular member of an uncountable set X (for instance, 
take 0 E lR) .  Let X be given the topology 'J = { S  � X : �  E S or S = 0}.  Show that 
X is separable, but the relative topology on X \ { 0 is not separable. 

g. Let (X, d) be a separable metric space. Then there is a sequence (xn ) in X with the 
property that every point in X is the limit of some subsequence of (xn ) · In fact, we 
can choose the subsequence canonically (i.e. , without any arbitrary choices) .  

Hints : Repetitions 3;re permitted. If (uk) is a countable dense set , let (x11 ) be the 
sequence 

Given any point p E X, we can choose a subsequence (xn , )  of (xn ) canonically as 
follows: Take n1 = 1 .  Thereafter, let n; be the first integer greater than n;_ 1 that 
satisfies d(x . p) < l .  nt '  z 
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CONTINUITY 

15. 14. Definition. Let (X. S) and (Y, 'J) be any topological spaces, let .r0 E X. and let 
f : X ---> Y be a function . Then the following conditions are equivalent: if any (hence all) 
are satisfied, we say f is continuous at the point X0 • 

(A)  f is ''convergence-preserving'' at :r0 .  That is, whenever (:r, ) is a net converg
ing to a limit .r0 in X.  t hen also f(r, ) ---> f(:r0) in Y. (Compare this with 
condition 1 5 . 1 4 ( E ) ,  which is intuit ivdy similar but removes the concept of 
"time" from our convergence. )  

(B )  Whenever 'B i s  a fi lterbase converging to  a limit :r11  i n  X,  t hen the filterbase 
'B = {! (B) : B E  'B}  converges to the limit f(.r1 1 ) in Y. 

(C)  The inverse image of each neighborhood of f( ;r:0 )  i s  a neighborhood of .r11 • 

If the topologies on X and Y are given by gauges D and E. then an equivalent condition 
ts: 

(D) For each pseudometric e E E and each number c > 0. t here exists some finite 
set D' <;;; D and some number b > 0 such that 

e (-.p(.r0 ) .  -.p(:r ) )  < c .  

We emphasize that the choice of !) and D' may depend on a l l  of  c . r .  and 1·0 . but not 011 .r; 
t his should be contrasted with the definition of uniform continuity in 1 8 . 8 ( C ) .  Of course, 
the preceding condition simplifies slightly if X is a pseudometric space with singletm1 gauge 
D = { d} - or. more generally, if D is a gauge that is directed (as defined in 4.-± .c) . 

If X = Y = IR, and !HI = *IR is the hyperreal line constructed as in 1 0 . 20 . a .  then the 
conditions above arc also equivalent to t his condition: 

(E) Whenever � is a hyperreal number that is infinitely close to :r0 (defined in 
1 0 . 18 .c) , then * J(O is infinitely close to f (:r0 ) .  (Here *J : !HI ---> !HI is defined 
as in 9.49. Compare this condition with 1 5 . 1 4 ( A ) . )  

15.15. Let (X. S )  and (Y, 'J) b e  any topological spaces, and let f : X ---> Y b e  a funct ion . 
Then the following conditions are equivalent: if any (hence all) are sat isfied. we say f is 
continuous . 

( A )  Inverse images of open set s  are open: that is. T E 'J =;. f- 1 (T) E S .  (This 
definition of continuity was used in 9 . 8 . )  

(B) The inverse image of  each closed set i s  closed. 

(C)  For each set S <;;; X , we have f(cl (S ) ) <;;; c:l (f (S ) ) . 

(D) For each set T <;;; Y. we have d(J-1 (T)) <;;; .f- 1 (c!(T) ) . 

( E )  .f is continuous at each point .r0 in X, as defined in several equivaknt ways in 
1 5 . 1 4 .  In particular. using the formulation in 1 5 . 1 4 ( A ) . we obtain the comli
t ion that f is convergence-preserving -- i .e . , whenever ( .1:0 )  is a net converging 
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to any limit xo in X, then also f(x, ) ----+ f(x0 )  in Y.  (This generalizes 7.33 
and 15 .3 .d . )  

A homeomorphism from one topological space to another is a continuous bijection whose 
inverse is also continuous. Thus it is an isomorphism in the category of topological spaces. 

15. 16. Additional characterization. A mapping f : X ----+ Y, from one topological space 
into another, is continuous if and only if f is "locally continuous" in the following sense: 
each point in X has a neighborhood N such that the restriction f 1 

N 
: N ----+ Y is continuous 

(where N is given the relative topology, defined in 5 . 15 .e) . 

15. 17. Degenerate examples of continuity. 
a. Any map from a topological space into an indiscrete space is continuous. 

b. Any map from a discrete space into a topological space is continuous. 

15.18. Exercise. If f :  X ----+ Y is a continuous map from one topological space into another 
and S � X  is connected (defined in 5 . 12 ) ,  then f(S) � Y is also connected. 

15.19. Remarks. To say that f is continuous is to say, roughly, that f carries any set 
of points near x to a set of points near J(x) .  Here are two ways in which this notion is 
important: 

(a) In many applied mathematics problems, some data x is based on a measurement , 
and a decision or consequence f(x) is then computed . Any measurement of x inevitably 
involves small errors. If f is continuous, then at least the small errors in x will not have 
catastrophic effects on the decisions and consequences f(x) . On the other hand, if f is 
discontinuous, then even a tiny error in x may make our computed value of f(x) highly 
erroneous, and thus the computation may be altogether worthless. 

(b) In some problems we may intentionally introduce an error: x may represent a very 
difficult problem, while x' may represent a "nearby" problem that is much easier to solve. 
For instance, 

• perhaps x is 1r, while x' is 3 . 1416; or 

• perhaps x is a complicated function, while x' is a polynomial or other simple function 
that approximates x; or 

• perhaps x stands for a complicated differential equation, while x' denotes a similar 
equation obtained by dropping one troublesome nonlinear term that, hopefully, only 
represents a small quantity. 

Let y = f(x) be the solution that we are not able to find, and let y' = f(x') be the solution 
that we are able to find. If f is continuous at x, then y

' should be near to y. Of course, 
in some of the examples cited - functions, differential equations, etc. - the appropriate 
notion of "near" may be quite complicated, hence the relevant topologies may be quite 
complicated. 

For real-valued functions of a real variable, this informal definition of continuity is some
times suggested in calculus books: "A function is continuous if its graph is an unbroken 
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curve - i .e . ,  if its graph can be drawn without lifting the pencil from the page." But this 
presupposes that the function can be drawn at all. Some functions are just too pathological 
to be drawn with any reasonable degree of accuracy; see for instance 25 . 19 .  

15.20. We now caution the reader about some subtle distinctions concerning continuity. 
Let f : X --+ Y be some mapping (not necessarily continuous) from one topological 

space into another, and let S c;;: X. The phrase ·' f is continuous on S" has two possible 
interpretations: 

(i) f is cont inuous at each point of S, or 

(ii) the restriction f ls is continuous. 

These are not the same! It is easy to prove that ( i )  =? ( i i ) .  When the set S is open, then 
we can easily prove that (i i) =? ( i )  also ( exercise) .  However, in general ( ii) does not imply 
( i ) .  Indeed, this is obvious in one extreme case: if S is just a singleton, then (ii) is always 
true, but if f is not continuous then we can choose the singleton so that ( i )  is false. 

In deciding whether a function is continuous, we only need to consider the behavior of 
that function on its domain, not elsewhere. Thus, the sign function (defined as in 2 .2 .c)  is 
not continuous on JR., but its restriction to lR \ { 0} is continuous - i .e . , the function 

f(x) = { 1 
- 1  

is continuous, since its domain is lR\{0} .  

if X >  0 
if X < 0 

The definition of ·'continuity" that we have given in this chapter is the standard one. It 
(or an equivalent definition) is used by all research mathematicians who work with conti
nuity. Unfortunately. some calculus textbooks do not conform to this usage. These books 
concern themselves only with real-valued functions defined on subintervals of JR., and so 
they usc ad hoc definitions that are easily manageable in that context. They may go astray 
when dealing with functions defined on more complicated sets. For instance, some calculus 
text books would assert that the function f defined in ( *) is not continuous, because it is 
undefined at 0. The student who wishes to proceed to higher mathematics will first need 
to unlearn the not-quite-correct definitions of continuity given in these calculus books. 

15.21. Definitions of one-sided limits and one-sided continuity. Let X be a subinterval of 
[-x, +x] , equipped with its relative topology; let Y be any Hausdorff topological space 
(or more generally. any Hausdorff pretopological space ) .  Let f : X --+ Y be some function. 
Let .r0 E X; assume that X contains some other points higher than x0 . We say that a point 
y0 E Y is the limit from the right of f at x0 , or Yo is the right-hand limit of f at x0 , 
if it sat isfies this condit ion: 

for each neighborhood N of y0 , there is some number 15 > 0 such that x E 
(.:ro. J"o + /5 )  =* f(x) E N 

or, equivalently, this condition: 

whenever (x, ) is a decreasing sequence in X that converges to x0 , then the 
sequence (f(xn ) )  converges to y0 in Y. 
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(Another equivalent condition is obtained if we use nets instead of sequences. )  These 
conditions can be abbreviated 

Yo =  lim f(x) 
x lxo 

or Yo =  lim f(x) X---txo +  or Yo = f(xo+ ) .  

We say f is continuous from the right at x0 , or right-continuous at x0 , i f  f(x0 ) 
f (xo+ ) .  

Analogously, we may define the limit from the left ,  or the left-hand limit, written 
lim,r fxo f(x) or limx�xo- f(x) or f(xo -) ;  we say f is continuous from the left at Xo or 
left-continuous at xo if f(xo ) = f(xo-) .  

The right- and left-hand limits are called one-sided limits. 

Exercises. 
a. Suppose the domain of f is an interval [a, bj . Then: 

(i) Yo =  limx�a f(x) means the same thing as Yo =  limxla f (x ) ,  and 

(ii) f is continuous at a if and only if f is right-continuous at a. 
Also show analogous results at b, with left-hand limits and left-continuity. · 

b. Suppose the interval X contains some points below x0 and also some points above x0 . 
Then: 

(i) y0 = limx�xo f(x) if and only if both the one-sided limits exist and are 
equal to Yo , and 

( ii) f is continuous at x0 if and only if f is both right- and left-continuous 
at x0 . 

c. Suppose J <;;;: IR is an open interval and g : J ___, IR is an increasing function. Then g 
has one-sided limits 

g(t+) = lim g(s) ,  8 1  t g(t-) = lim g(s) 
·• T t 

at every t, and g is discontinuous at at most countably many points of J. 
Hints : See 7.40.c ,  to prove that g(t+) and g(t-) both exist. For the cardinality 

result use an argument similar to 10.40. 

d. Let J <;;;: IR be an interval with sup( J) tf. J. Assume that the right-hand limit f(x+) = 
limuLJ f(u) exists at every x E J. Define g :  J ___, IR by setting g(x) = f(x+) for 
all x.  Show that g is right-continuous on J and g = f at every point where f is 
right-continuous. 

15.22. Let X be a topological space, and let f :  X ___, [-oo, +oo] be some function. Theri' 

the following conditions are equivalent; if any (hence all) of them are satisfied, we say f is 
lower semicontinuous (abbreviated I.s.c. ) : 

(A) f(x) � lim inf f(xa) whenever Xa ---> x in X. 

(B)  For each b E  [-oo, +oo] , the set {x E X : f(x) > b} i s  open - i.e . ,  the set 
{x E X :  f(x) � b} is closed. 
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(C) For each b E  lR, the set { .r E X : .f(2· )  > b} is open i .e . , the set { .r E X : 

.f ( .r) <::: b} is closed. 
Proof of fxruivalence. The proofs of (A) =? (B)  =? (C) are easy. It suffices to show 
(C) =? (A) . Suppose that (C) holds but .f (x) > lirn inf J:, for some net (:r0 ) converging to 
some limit .r in X .  Then (regardless of whether one, both, or neither of t he numbers .f(:r ) ,  
lim inf 2'0 is finite) there is some finite number r· such that .f (x)  > r > lim inf X 0 .  By (C) 
the set {u  E X : .f (u )  <::: r }  i s closed. I t contains all the X n  ' s after some o0 , but not the 
point .r . contradicting the fact that :r0 ----> .r . 

Dual notion. Let X be a topological space. and let .f : X ----> [ - :x ,  +x] be some function . 
Then the following conditions are (•quivalent ; if any (hence all) of them are satisfied, we say 
.f is upper semicontinuous (abbreviated u.s.c. ) :  

(A) .f ( J') 2 lim sup .f ( J', ) whenever :r" ----> :r in X .  

(B)  For each b E  [-x.  +x] . the set { .r E X  : .f ( .r )  < b}  is open - i .e . .  the set 
{ .r E X :  .f ( .r ) 2 b} is closed. 

(C) For each b E  lR, the set {x E X  : f(.r )  < b} is open 
f (J·) 2 b} is closed. 

i.e . .  the set { 2· E X : 

RemaTks. Semicontinuity is a sort of ·'almost -continuity'' condition. It can often be used in 
proofs in place of continuity. especially when limits arc replaced with upper or lower limits; 
see 7.4G. 

15.23. FuTther propeTties of scmicontinuity. Let X be a topological space. 
a. A function f :  X ----> [-x.  +x] is l . s .c . if and only if -f is u.s .c . 
b. A function f :  X ----> [-x. +x] is cont inuous if and only if it is both l .s .c . and u.s .c . 
c. Any pointwise infimum of cont inuous functions on X (or, more generally, any pointwise 

infimum of u.s .c . functions) is u.s.c. 
d. Any pointwise suprmmm1 of cont inuous functions on X (or, more generally, any point

wise supwmum of l .s .c . functions) is l .s .c . 
A partial converse to the last result is given in 1 G . l G ( D ) . Compare also 12 .2 l . d .  

MORE ABOUT INITIAL AND PRODUCT TOPOLOGIES 

15.24. Convngf?ncr: in initial topologies. Let (X.  S) have the init ial topology determined 
by some mappings tp>. : X ----> (Y>, . 'J>. ) that is. suppose S is the weakest topology that 
makes all the tp>, 's continuous (sec 9 . 1 5  and 9 . 1 6) . (It is also sometimes known as the weak 
topology. ) Show t hat 

a. A set N <;:;; X is a neighborhood of a point p E X if and only if there exists a finite 
family of sets T1 E 'J >., (.j = 1 .  2. 3 . . . . .  rn ) such that p E n;'�1 tp \,

1 (T1 ) <;:;; N. 
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(Hint :  Use the characterization of neighborhoods in 5.23.b and the characterization 
of a generating collection of sets in 9 . 16 . ) 

b. A net (xa ) converges to a limit p in (X, S) if and only if 'PA (xa ) ----+ 'PA (p) in each 
(YA , 'JA ) · 

15.25. Following are some important instances of convergence in initial topologies. 
a. Convergence in the relative topology was characterized in 15.9.d. 
b. If X = ILEA YA is a product of topological spaces, with the product topology, then 

members of X may be viewed as functions f defined on A, satisfying J(>..) E YA for each 
>.. . Then fa ----+ f in X if and only if fa (>.. ) ----+ f(>..) in YA for each >.. . Convergence in the 
product topology is sometimes called pointwise convergence, or componentwise 
convergence, or coordinatewise convergence. 

c. Let S be the supremum of a collection of topologies 'J A on a set X.  (This is the initial 
topology obtained by taking all the 'P A 's equal to the identity map.) Then X a ----+ p in 
(X, S) if and only if Xa ----+ p in each (X, 'JA) .  

d.  Let (X, D) be a gauge space. The gauge topology 'J v i s  the supremum of the pseudo
metric topologies {'Jd : d E  D} .  Hence Xa ----+ p in (X, D) if and only if d(xa , P) ----+ 0 
for each d E  D. (We emphasize that this condition does not say supdED d(xc , P) ----+ 0 . )  

15.26. Let X = ILEA YA be a product of topological ::;paces , with the product topology. 
Show that 

a. A set S s;; X is a neighborhood of a point u E X (in the product topology) if and only 
if there exist a finite set L s;; A and open sets TA s;; YA ().. E L) such that 

(This is a special case of the neighborhood characterization at the beginning of 15 .24. ) 
Thus, S must be "fat" in all but finitely many directions. 

b. Use the preceding characterization of neighborhoods together with 15.8.a to show that 
each of the coordinate projection mappings 1TA : X ----+ YA is an open mapping - i .e . , 
show that if S s;; X is an open set , then 1rA (S) i::; an open subset of YA . 

c. The coordinate projections need not be closed mappings - i.e . , if S s;; X is a closed 
set, it does not necessarily follow that 1rA (S) is a closed subset of YA . For in::;tance, 
when JR2 has its usual topology, then { (x, y) E JR2 : xy 2: 1 } is a clo::;ed ::;et , but its 
projection onto the first coordinate is {x E lR :  x =/= 0} ,  which is not clo::;ed. 

d. Let 'P : X ----+ Y be any mapping from one set to another (without any topology or 
other structure necessarily specified) .  If S i::; a topological space, then we can define a 
mapping S'P : sY ----+ sx by setting 

S'P ( >.. ) = >.. o 'P : X ----+ S for any 
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Show that S'P is continuous, when sY and sx are equipped with their product topolo
gies. Hint :  15 .25.b. 

e. Let f2 be a set. Identify each set S c;;; n with its characteristic function 1s : f2 ---> {0, 1 } ;  
then the 1s · s  are members of 2 ° .  Show that the order convergence of sets Sn described 
in 7.48 is the same as the convergence of the 1s" 's given by the product topology on 
2n (where 2 = {0 , 1 }  has the discrete topology, as usual) . 

15.27. Theorem. If { Xn : o E A} is a collection of separable topological spaces with 
card(A) ::; card(IR) , then TinEA X" (with the product topology) is separable. 

Proof. The product topology is not affected if we replace the index set A with another index 
set of the same cardinality; hence we may assume A c;;; JR. Let P = TinE A X" . For each 
a E A, let x!' ,  .r2' .  x3' ,  . . .  be a dense sequence in X" . Let 2 be the collection of all closed 
subintervals of IR that have rational endpoints and positive, finite length . For each positive 
integer m, each finite sequence 11 , h , . . .  , 1171 of disjoint members of 2. each finite sequence 
n1 , n2,  . . .  , nm of positive integers, and each o E A, define 

PJ1 . . . . Jm .11 1  . . . . n nr (a) 

x�; ,  if a E 11 
x�;2 if a E h 

x��m if ex E 1m 
x!' if a E A \  U;'� 1 J;. 

The function PJ, . . . .  .J, .n , . . . . .  n, 1naps each n to smne rne1nber of X" , so P.J, . . . .  .J, . n ,  . . . . n ,  is 
actually a member of P.  There are only countably many such functions p. since 2 and N are 
countable. It suffices to show the functions p are dense in P. Let any nonempty open set 
G c;;; P be given; it suffices to show G contains one of the functions p. For each (3 E A, let 
H1; : P ---> Xr; be the (3th coordinate projection; by 15 .26.a we know that G :2 n;'� 1 Jr,-;,1 ( V, )  
for some distinct numbers n1 , . . . •  O m  E A and some nonempty open sets V, c;;; Xo , .  Choose 
disjoint sets 11 , 12 , . . . .  1111 E 2 such that o; E 1; , and choose some numbers ni such that 
x�; E v; .  Unwinding all the notation, verify that P.h . . . . . .J, .n , . . . . . n ,  is a member of G. This 
proof follows Willard [ 1970] ; further references are also given by Willard. 

15.28. Let X = f1.xEA Y.x be a product of topological spaces, equipped with the product 
topology. A point in X may be seen as an ·'ordered A-tuple" ( .r,, x11. :x·"� . . . .  ) (see 1 .32) . 
Hence a mapping h :  X ---> Z, from X into some other topological space Z, may be written 
as z = h( Xn , x1; , :x;"� ,  . . .  ) . Ordinary continuity from X (with the product topology) to Z is 
sometimes called joint continuity, to emphasize that the variables x, . x1; • .r 1 . . . .  are being 
considered together, not separately. A slightly weaker condition is separate continuity: we 
say that the mapping z = h(xn , X;; , x1 ,  . . .  ) is separately continuous if z is continuous as 
a function of each one of the arguments x .x whenever all the other arguments are held fixed. 

Examples. 
a. Let (X, 'J) be a topological space, and let d : X x X ---> [0 , +oc) be a pseudometric 

on X (not necessarily associated with the topology 'J) . Let X x X have the product 
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topology, and let lR have its usual topology. Then d is separately continuous from 
X x X into lR if and only if d is jointly continuous. ( Hint : 2. 12.e . ) Thus, the phrase 
"a continuous pseudometric" is not really ambiguous. 

b. Define f : lR x lR ---> lR by 

f(x, y) when(x, y) =/= (0, 0) 
when (x, y) = (0, 0 ) . 

Show f i s separately continuous but not jointly continuous. Hints: 15 . 14(A) and 
15.25 .b . 

c. In 1 . 17 we defined the extended real numbers and their arithmetic operations. For many 
purposes -- particularly in the theory of measure and integration - it is convenient 
to define the product of 0 and ±oo to be 0. That causes confusion for some students, 
because it seems to be contrary to what they would expect from their experience with 
calculus. We shall now take a closer look at this. 

Most of the multiplication rules would make multiplication a jointly continuous 
operation from [-oo, +oo] x [-oo, +oo] into [-oo, +oo] . That is, if (xa ) and (Ya ) are 
nets converging to some limits x and y, then XnYa ---> xy. For instance, if x, ---> 3 and 
Ya ---> +oo, then XaYa ---> 3 · ( +oo) = +oo. This behavior is very reassuring: it tells us 
that ±oo are very much like ordinary real numbers. 

The only exceptions are when we multiply 0 times ±oo. If Xn ---> 0 and y, ---> ±oo, 
then the product XnYn could converge to anything or not converge at all. For instance, 
take the directed set to be N, so that our nets are sequences. Then 

1 2 - · n ---> +oo, 
n 

1 
- · n ---> 1 . 
n , 

1 2 · n ---> 0, 
T1 

and ( � sin n) · n does not converge at all. This state of affairs can be summarized as 
follows: 

Multiplication, considered as a binary operation on [ -oo, +oo] , is jointly 
continuous everywhere except at the ordered pairs (O, ±oo) and (±oo, O) . It 
cannot be made jointly continuous at those ordered pairs, no matter how 
we define the products at those pairs. Still, for some purposes in the theory 
of measure and integration (not involving limits of this sort) , it is conve
nient to define 0 · oo = 0 and accept multiplication as an operation that is 
discontinuous at that ordered pair. 

15.29. A topological equivalent of choice ( optional) .  We shall show that AC (introduced 
in 6 . 12 , 6.20, and 6.22) is equivalent to the following assertion, from Schechter [1992] : 

(AC19) Product of Closures. For each ,\ in some index set A, let S>., be a 
subset of some topological space X>., . Then cl(fLEA S>.. ) = fLEA cl(S>.. ) .  

In this equation, the first "cl" denotes closure in the product topology on fLEA  X>., , while 
the second "cl" denotes closure in X>.. . 
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Actually, the inclusion cl ( flAEA SA ) c:;; TIAEA cl(SA )  is provable in ZF ( i .e . , without AC) .  
To see this, just note that TIAEA cl(SA )  = nAEA 7r_\ 1 (cl(SA ) )  is closed (where 7rA is the .Xth 
coordinate projection ) .  Thus. it remains to show that the inclusion 

(AC20) 

is equivalent to AC. Refer to 6 . 12 .  
To prove (AC3) =? (AC20 ) ,  let any f E TIAEA cl (SA )  be given; we wish to show that 

f E cl (flAEA SA ) · It suffices to show that TIAEA SA meets every neighborhood of f. Let 
G be any neighborhood of f; then f E TIAEA G A c:;; G where G A is some open subset of 
XA . Since f( .X) E cl(SA ) ,  the set S\ meets every neighborhood of f(.X) in XA · Thus the set 
GA n SA is nonempty. Choose any element zA E GA n  SA . Now the function z. defined by 
z( .X) = zA · is an element of G n TIAEA SA . 

To prove (AC20) =? (AC3) .  let A, SA , 6 ,  XA , X ,  � be as in 6.24. Let XA be 
equipped with the indiscretP topology, i .e . , in which the only open sets are 0 and XA . Then 
�A E XA = ci (SA ) · Hence the function � is an element of TIAEA cl(SA ) ·  Now apply (AC20) ; 
this tells us c! (flAEA SA ) is norwmpty, and therefore the set TIAEA SA is nonempty. 

QUOTIENT TOPOLOGIES 

15.30.  Definition. Let (X, S)  be a topological space, let Q be a set, and let 1r : X ---+ Q be 
a surject ive mapping. The resulting quotient topology (or identification topology) on Q 
is defined to be 

WP saw in 5 .40. b t hat this collection 'J is a topology on Q. (In fact, 5.40. b shows that 'J is a 
topology regardless of whPthcr 1r is surjective. but surjcct ivity of 1r is part of the definition 
of a quotient topology. ) 

\Nhen Q is equipped with the quotient topology, then 1r will be called a topological 
quotient map (or topological identification map) .  The terminology stems from the fact 
that Q is t lw quotient set of X ,  determined by the mapping 1r (see 3. 1 1 ) .  Alternatively, 
points of Q arc obtained by identifying with each other (i .e . , merging) those points of X 
that have t he same image under 7r. 

In gemTal. convergmtce of nets and filters in the quotient topology does not have a 
simple characterization analogous to that of 15.24.b. A partial result in that direction is 
given in 22 . 1 :� . ('. 

Our trPatnwnt of quotients is based partly on Dugundji [ 1966] . 

15.31 .  Basic proper-ties of the quotient topology. 
a. Let 1r : X ---+ Y he a topological quotient map. Then a set T is open in Y if and only 

if 1r - J (T) is OJWn in X .  (This is just a restatement of the definition . )  
b .  Let 1r : X ---+ Y be a topological quotient map. Then a set T is closed in Y i f  and only 

if 1r - 1  (T) is closed in X .  
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c. (Composition property. ) If 7r : X ---> Q is a topological quotient map and g : Q ---> Z 
is some mapping such that the composition g o 7r : X ---> Z is continuous, then g is 
continuous. 

In fact, a continuous surjective map 7r : X ---> Q is a topological quotient map if 
and only if it has that composition property. For this reason the quotient topology is 
sometimes called the final topology - it has some properties analogous to the initial 
topology (introduced in 9 . 15 and 9. 16) , but with the arrows reversed. 

d. Let X be a topological space and let 1r : X ---> Q be a surjective mapping. Then 
the quotient topology on Q makes 7r continuous. In fact, the quotient topology is the 
strongest (i .e . , largest) topology on Q that makes 7r continuous. 

e. Recall that a mapping is open if the forward image of each open set is open, or closed 
if the forward image of each closed set is closed. 

Show that if 7r : X ---> Y is a continuous surjective map that is either open or closed, 
then 7r is a topological quotient map. 

Several of the most important topological quotient maps are open maps (see 16.5 
and 22. 13.e) , but this is not a property of all topological quotient maps. 

f. Let 7r : X ---> Q be a topological quotient map. Recall from 4.4.e that the 1r-saturation 
of a set S <:;; X is the set 7r- 1 (1r(S)) <:;; X. Show that 

7r is an open map if and only if the 7r-saturation of each open subset of X is 
open. 

1r is a closed map if and only if the 7r-saturation of each closed subset of X 
is closed. 

g. Example. If X =  fl-\EA Q-\ is a product of topological spaces with the product topology, 
then each of the coordinate projections 7r,\ : X ---> Q-\ is a topological quotient map. 
Hint : 15.26.b. 

h. Example. Let (X, d) and (Q, e) be pseudometric spaces. Let 7r :  X ---> Q be a surjective 
mapping that is distance-preserving - i.e . , that satisfies e(1r(xl ) ,  1r(x2 ) ) = d(x1 , x2) .  
Then the mapping 7r is open, closed, and a topological quotient map. 

More generally, let (X, D) and ( Q, E) be gauge spaces, with gauges D = { d-\ : .\ E 
A} and E = { e-\ : A E A} parametrized by the same index set A. Suppose 7r : X ---> Q 
is a surjective mapping that is "distance-preserving" in the following sense: 

for all x1 , x2 E X and A E A. 

Then 7r is open, closed, and a topological quotient map. A slight specialization of this 
result is given in 16 .21 . 

NEIGHBORHOOD BASES AND TOPOLOGY BASES'' 

15.32. Let X be a topological space (or, more generally, a pretopological space) , and let 
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x E X. A base of neighborhoods at x, or a neighborhood base at x, is any filterbase 
'B that generates the neighborhood filter N(x) .  In other words . it is any collection 'B C::: N(.r) 
with the property that every member of N(:r) is a superset of some member of 'B .  
15.33. E.rarnples of neighborhood bases. Let ( X ,  'J) be a topological space. and let x E X .  
Let N( :r ) be the neighborhood filter at x. 

a. Trivially, N(:r) itself is a neighborhood base at :r . 

b. Another neighborhood base at .r is given by N(:r) n 'J. the collection of open neighbor
hoods of X .  

!\lore generally, an open neighborhood base means any neighborhood base, all of 
whose members are open sets . Thus, it is a neighborhood base 'B C::: N(.r) n 'J. 

c. A closed ne·ighborhood base means a neighborhood base, all of whose members are dosed 
sets. A topological space is called regular if every point has a closed neighborhood 
base. Regular spaces will be investigated further in 16 . 13 . 

Exercise. Every gauge space (X,  D) i s regular. Hint :  Let Br� and Kr1 denote 
the open and closed d-balls. as in 5 . 15 .g. If N is a neighborhood of J' , then N =:! 
nriEC' Br�(:r , r ) :;::> n riE C' Kr� (.r, r/2 ) for some finite set c c::: D and some r > 0. 

Other examples of neighborhood bases will be given in Chapters 26 through 28. 

15.34. A topological space is first countable if each neighborhood filter N(J·) is generated 
by some countable filterbase 'B (J·) i .e . , if for each x there is some countable collection 
'B ( J: ) C::: N( x) such that each member of N( :r) is contained in some member of 'B ( .r) . 

As shown by some of the exercises below, in a first countable space. sequential arguments 
are sufficient for many purposes; nets are very seldom needed. However. the Principle of 
Countable Choice is needed for many of these sequential arguments i.e .. t lw proofs may 
require a sequence of arbitrary choices, since there is no "canonical sequence'· analogous to 
the canonical nets developed in 7. 1 1 .  

Sequential arguments are also sufficient in a few special situations i n  spaces that are 
not first countable: that is the content of the deep theorems 17.50 and 28.36. For a more 
elementary example of sequences sufficing in a space that is not first countable, consider 
the characterizations of closures and continuity when X is an infinite set equipped with the 
cofinite topology (see 5. 15.c· and 15.9 .c) . 
Exercises. 

a. Any pscudometric space (X, d) is a first countable space. A countable, open neigh
borhood base at x is given by the open balls B(x, f, )  = {u E X :  d(n , .r) < f, }  for 
n E N. 

In particular, lR is first countable. 
Remark. Actually, first countable is only a very slight generalization of pseu

dometrizable. !\lost spaces of interest to analysts are subsets of topological vector 
spaces; among such spaces. first countable is the same as pseudornetrizable - see 
26.32. 
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b. In any first countable space X, cl(S) is equal to the sequential closure of S ·� that is, 
the set 

{x E X  : x is a limit of some sequence in S} . 
c. In a first countable space, i f some subnet of a sequence (xm ) converges to a limit z ,  

then some subsequence (xkn : n = 1 ,  2 , 3, . . .  ) also converges to z .  
Hints : Let { B 1 , B2 , B3 , . . .  } be a neighbor hood base at z ;  we may assume B 1 ;;;;> 

B2 ;;;;> B3 ;;;;> · · · .  (Why?) Let k0 = 0. Thereafter, show that there exists an integer kr, 
that satisfies both kn > kn- 1 and Xkn E Bn . 

d. Let X and Y be topological spaces; assume X is first countable. Then a mapping 
p : X ----+ Y is continuous if and only if it preserves sequential convergences -- i.e. , if 
and only if it satisfies 

Xn ---t X in X p(xn ) ----+ p(x) in Y 

- regardless of whether Y is first countable. 
Hints : Assume p preserves sequential convergences. Let N be a neighborhood 

of p(x0 )  in Y ;  we wish to show that p- 1 (N) is a neighborhood of x0 in X. Let 
{B1 , B2 , B3 , . . .  } be a neighborhood base at x0 in X; we may assume B1 ;;;;> B2 ;;;;> B3 ;;;;> 
· · · ; we wish to show that p- 1 (N) contains some BJ . Suppose not . Then there exist 
points Xj E Bj \ p- 1 (N) . The sequence (xj ) converges to x0 , hence p(xj ) ---t p(x0 ) , 
hence for j sufficiently large we have p( x j ) E N, a contradiction. 

15.35. Another way to describe topologies is in terms of bases for topologies. Let (X, 'J) 
be a topological space, and let 13 <:;; 'J. We say1 that 13 is a base for the topology 'J if 

every member of 'J is a union of members of 13 . 

(The union may be of finitely or infinitely many members of 13 . I t may also be of no 
members of 13; thus we automatically get 0 as a union. ) Trivially, the topology 'J itself is 
a base; other bases are sometimes convenient . Some examples are: 

a. In a pseudometric space, the collection of all open balls forms a base for the topology. 
b. In any poset, the principal lower sets form a base for the lower set topology. 
c. Let X be a chain. Then a base for the interval topology (defined in 5 . 15 .f) is given by 

the sets of the forms 

Sa = {X E X : X > a} ' sb = {X E X : X < b} ' s� = {X E X : a < X < b} ' 
for points a ,  b E X. Note that these sets are full, as defined in 4.4.a. Show that if G 
is an open subset of X, then the full components of G (defined as in 4.4.a(ii ) ) are also 
open. 

d. Let X =  TI-\EA Y,\ be a product of topological spaces. By a basic rectangle we shall 
mean a subset of X of the form TI-\EA G ,\ where 

(i) each G,\ is an open subset of Y,\ , and 
1 Caution: Some texts define "base" a little differently. 
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(ii) G>.. -1- Y>.. for at most finitely many ,\ ' .s 
(When A is a finite set , condition (ii) can be omitted from this definition, since it is 
satisfied automatically. ) Show that the basic rectangles form a base for the product 
topology (hence their name) .  These basic rectangles may also be called basic open 
rectangles. to distinguish them from another sort of "basic rectangle·· introduced in 
2 1 .40 .  

15.36. Further· properties of bases. 
a. Let (X, 'J) be a topological space, and let 'B be a collection of subsets of X. Then 

'B is a base for the topology 'J if and only if for each :r: E X, the collection of sets 
'B(x) = {B E  'B : x E B} is an open neighborhood base at .T . 

b. Let X be a set (without any topology specified yet ) ,  and let 'B be a collection of 
subsets of X. Then 'B is a base for some topology 'J on X if and only if this condition 
is satisfied: for each x E X. the collection of sets 'B(x) = {B E 'B x E B} is 
a filter base on X. In that case, the resulting topology is uniquely determined; it is 
'J = {S C:.: X : S is a union of members of 'B } .  

c. Let 9 be any collection of subsets of X. Let 'B = { B C:.: X : B is an intersection of 
finitely many members of 9 } .  (Here X E 'B, since by convention X is the intersection 
of no members of 9 . )  Show that 'B and 9 generate (in the sense of 5.23.b) the same 
topology 'J, and 'B is a base for that topology. Thus, the topology 'J generated by 9 is 
equal to the collection of all unions of finite intersections of members of 9 .  

d. Let (X , 'J) be a topological space with base 'B.  Show that a net (.r" ) converges to a 
limit z in (X, 'J) if and only if for each B E 'B that contains z. we have eventually 
Xn E B. 

15.37. Cardinality and metric spaces. 
a. If (X. d) is a separable metric space, then card( X) � card(2N ) = card(JE.) . 

Proof Let (xn) be a sequence such as in 15 . 13 .g. For each p E X, there is a 
subsequence (x, , ) that converges to p, and in fact we can choose it canonically. Thus 
we obtain a function p ,....... ( n; ) , from X into {strictly increasing sequences of pos
itive integers} ,  with x, ,  ---+ p. Obviously the mapping is injective. so card(X) � 
card( {strictly increasing sequences of positive integers} )  � card(P(N) ) .  

b .  Every separable metric space has a countable base. 
Hints :  If (xn) is a dense sequence, show that the set of open balls {B(x, . l jk) : 

n. k E N} is a base. 
c. Let X be a separable metric space satisfying card(X) = card(JE. ) . (For instance, lE. 

itself is one such space; many others occur in analysis m:; well . ) Use the preceding 
results to show that most subsets of X are neither open nor closed -- i .e . .  show that 

card({S C:.: X : S is open or closed} )  < c:ard( {subsets of X} ) . 

d. Every open subset of lE. can be written as a union of countably many disjoint open 
intervals. 
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Hints : Let G � JR. be open. By an argument similar to 4.4 .a(i i) , show that G is a 
union of disjoint open intervals. There are at most countably many of these intervals, 
since each contains a rational number and there are only countably many rational 
numbers. 

e. Let J � JR. be an interval (possibly all of JR.) . Let A be the collection of all unions of 
finitely many subintervals of J (where singletons are considered to be intervals, and 
the empty set is also a member of A by convention) . Then A is an algebra of subsets 
of J, and the a--algebra that it generates is the a--algebra of Borel sets. 

CLUSTER POINTS 

15.38. Definition. Let X be a topological space. Let (X a : o: E A) be a net in X, and 
let :J' be its eventuality filter. Let 'B be any filterbase that generates :J' (e.g . , we may take 
'B = 3') . Let z E X. Then the following conditions are equivalent . If any, hence all, are 
satisfied, we say z is a cluster point of (xa ) or :J' or 'B. 

(A) z i s a limit of some superfilter of 3'. 
(B) z is a limit of some subnet of (xn ) - that is, an AA subnet (as defined in 

7. 15 .a) . 
(C) z is a limit of some Kelley subnet of (xn ) (defined as in 7. 15 .b) . 
(D) z is a limit of some Willard subnet of (x, ) (defined as in 7. 15.c. 
(E ) Some proper filter contains both :J' and N(z ) .  

(F) Every member of :J' meets every member of N(z ) .  

(G)  Every member of 'B meets every member of N(z) .  

(H) z E nDE'B c! (B) . 
(1) z E nFE:J' cl(F ) . 

( J) z E naEA cl ( {X f) : (3 >,:= 0:}) . That is, z is in the closure of each tail set of the 
net (xn ) ·  

(K ) Each neighborhood of z is a frequent set for the net (x, ) .  

(The interchangeability of the three types o f  subnets follows from 7.19 . ) Note that the set 
of cluster points is always a closed set since it is an intersection of closed sets. 

Remarks. For some purposes, a cluster point can be used as an "almost limit" - i .e . , 
it has many of the properties of limits; it can sometimes be used in place of a limit when a 
limit is not available. 

Caution : Some mathematicians have another meaning for the term "cluster point :" Let 
S be a subset of a topological space X; then z is a cluster point of S if z E ci (S \ { z } ) .  That 
meaning will not be used in this book, however. 
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15.39. Exercise. Show that if E is proper filter on a topological space X,  then e = { cl(E) : 
E E E }  is a filterbase on X, and the filter generated by e has the same cluster points as E 
docs. 

15.40. The definition of "cluster point" also applies to sequences, since they are also nets. 
By definition, a point z is a cluster point of a sequence (xn) if some subnet of that sequence 
converges to z - but that subnet is not necessarily a sequence. The point z may possibly 
satisfy a stronger condition. 

We say z is a sequential clustu point of the sequence (xn) if the following equivalent 
conditions hold. (Equivalence follows from 7.27. ) 

(A) z is a limit of a subsequence of (x, ) . 
(B ) z is a limit of a sequence (uk ) that is a subnet of (xn) - that is, an AA subnet 

(as defined in 7.15 .a) . 
(C) z is a limit of a sequence (uk ) that is a Kelley subnet of (xn) (defined as in 

7. 15.b) . 
(D) z is a limit of a sequence (uk ) that is a Willard subnet of (xn) (defined as in 

7. 15.c) . 
Further observation. In general, the cluster points of a sequence and the sequential cluster 
points of that sequence need not be the same. But they are the same if the topological 
space is first countable - see 15 .34.c. 

MORE ABOUT INTERVALS 

15.41. Proposition. Let (X, ::; )  be a chain. Then the topological convergence determined 
by the order interval topology (defined in 5 . 15 . f) is the same as the order convergence (as 
characterized in 7.38, 7.40.d, or 7.41 ) . 
15.42. Corollary. Let (X. ::; )  be a chain, equipped with the convergence described above. 
Let ( x, ) be a net in X, and let z E X. Then z is a cluster point of ( Xn ) if and only if these 
three conditions are satisfied for all CJ and T in X:  

( i) i f  z > CJ ,  then frequently x, > CJ ;  
( ii) i f  z < T ,  then frequently x, < T; and 

( iii) if CJ < z < T .  t hen frequently CJ < x, < T .  

15.43. Important e.ramples. The metric topologies and order interval topologies are the 
same. on IR. or on [-CXJ,  +00] . 

15.44. Optional example. Let :f be a free ultrafilter on N; thus *JR; = IR.r; /:f is a chain 
ordered field. Let *IR. be equipped with its order interval topology and order convergence. 
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Show that every convergent sequence in *JR. is eventually constant. 

Hints: Suppose not. Say (un) is a sequence converging to v in *JR., and (un) is not eventually 
equal to v. Replacing (un) with a subsequence, we may assume that none of the un 's 
are equal to v. By 10.20.c, the sequence ( (un - v) - 1 : n E N) is order bounded; obtain a 
contradiction. This result is from Takeuchi [1984] . 

15.45. Proposition. Let X and Y be chains equipped with their interval topologies. Let 
f : X ----+ Y be some mapping. Then 

(A)  f is continuous and increasing, if and only if 
(B) f is sup-preserving and inf-preserving. 

Proof. (B) =} (A)  was proved in a slightly more general setting in 7.40.h. For (A)  =} (B) , 
let S be a nonempty subset of X, and suppose a = sup( S) . Consider S itself as a directed 
set . The identity is : S ----+ S is a net that increases to the limit a. Hence f o is : S ----+ Y 
is a net that increases to the limit f(a) . Thus f(a) = sup(f(S) ) ,  so f is sup-preserving. 
Similarly we show that f is inf-preserving. 

15.46. Corollaries: relativization and the interval topology. Let (Y, 'J) be a chain equipped 
with the order interval topology, and let X � Y. Let :J and � be, respectively, the order 
interval topology determined on X by its ordering, and the relative topology determined 
on X by (Y, 'J) . Show that 

a. � :2 :J. 
b. � = :J if and only if the inclusion X L Y is continuous when X and Y are equipped 

with the interval topologies; that occurs if and only if the inclusion X L Y is sup
preserving and inf-preserving. 

c. If X is full (as defined in 4 .4.a) , then � = :J. (In particular, the interval topology on JR. 
is the same as the relative topology that JR. inherits from [-oo, +oo] . )  

d .  I f  X is not full, then the relative topology on X may or may not be the same as the 
interval topology. For instance, take Y = JR.; show that 

(i) The two topologies agree in the case of X = Z. 
(ii) The two topologies disagree, in the case of X =  [0, 1] U (2, 3] . Hint :  X is 

disconnected when given the relative topology, but X is order isomorphic 
to [0, 2] . 

e. A set X � JR. (equipped with the relative topology) is connected if and only if it is full 
(as defined in 4.4 .a) - i.e . , if and only if X is an interval. 

f. Optional. Let Y be a chain equipped with the order topology. Then Y is connected 
if and only if Y is Dedekind complete and between any two elements of Y there is 
another element of Y. 

15.47. Exercises on continuity in R Prove that 
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a. If J c:;; IR is an interval ami f : J -----. IR is continuous, then f ( J) is an interval. Hint : 
1 5 .46.t> and 15 . 18 .  

b. Intermediate Value Theorem. Let f : [a, b ]  -----. IR be a continuous function. If rn is 
a m1mlwr between f(a )  and f(b) . t hen there exists at least one number c E [a. b] such 
that f(c) = 111 . 

c. A partial converse. Let f : [a , b] -----. IR be an increasing function whose range is an 
interval. Then f is continuous. Hint : 15 .2l .c .  

15.48. The Intermediate Value Theorem, as stated above, is not constructive; we may be 
unable to find t llP nmnber c whost> existenct> is asserted by that theorem. Indeed, for a weak 
( "Brouwerian" ) counterexample, consider t he mysterious "Goldbach number" r described 
in 10 .46.  It is a mJmlwr that is known to be quite dose to zero, and in fact it can be 
approximated as accurately as one may wish, but we do not yet know whether this number 
is positiw. negative, or zero. Use it to define a pit>cewise-affine function f as in the following 
diagram. This function is well-defined and continuous, and we can evaluate it with as much 
accuracy as wt> may wish. It satisfies .f (O) < 0 < f(3) . Finding an exact solution c E [0 , 3] 
of f(c)  = 0 would tell us much about r: if c < 1 ,  t hen r > 0: if 1 <::: r <::: 2, t hen r = 0; if 
c > 2. t hen r < 0. At present . W<' are unable to find c exactly. 

{ - 1 + (f + 1 ) t  
f ( t )  = r 

( 1 - I') ( t - 2) + !'  

(O <::: t <::: 1 )  
( I  <::: t <::: 2)  
( 2  <::: t <::: 3) 

f ( t )  

/ 
2 

However , the following variant of the Intermediate Value Theorem is constructively 
provabk: 

Approximate Intermediate Value Theorem. If f : [a , b] -----. IR is continuous 
and rn is a number betwem f (a )  and f (b) , t hen for each c. > 0 we can find some 
nmnher ( " E [a.. b] such that I f (  c) - m l < c . 

(We shall not present the proof here. For further discussion see Troelstra and Dalen [ 1988, 
pages 292 293] . )  

The viewpoint of numerical analysis is somewhat similar t o  that of construct ivism, and 
again gives reason for replacing the classical Intermediate Value Theorem by the Approxi
mate Intermediate Value Theorem. Our values for the function f or the constant m may 
be based on measurements or on the results of some numerical computation; they are not 
completely accnrat('. Our computed value of f(:r)  or rn may differ only very slightly from 
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the "true" value, but that may yield large errors in the computed value of the exact solution 
c of the equation f(c) = m. For instance, take f(x) = 0.001x and m = 0; let us try to 
solve f (c) = m for c. The desired solution c changes greatly if we change m to 0.001 or if 
we change the function to f(x) = 0.001 + 0.001x. Thus (with � denoting "approximately 
equal" ) , we rr -ty not be able to find an approximation c � c to the exact solution c of 
f (c) = m, but .ve can find a number c such that f(c) � m. 



Chapter 1 6  

Separat ion and Regularity Axioms 

16 .1 .  Preview. This chapter considers conditions under which points and/or closed sets 
can be separated by open sets and/or continuous functions. The chart below shows the 
relations between the main separation conditions. The chart has implications downward; 
for instance, every T3 space is also a T2 space, and every preregular space is also a symmetric 
space. 

pseudometrizable 
paracompact (partitions of unity) 
normal and symmetric ( shrinkings and 
Urysohn functions, plus symmetric) 
completely regular (gauges, uniformities) 

metrizable 
paracompact and To 

T4 = normal and T1 

T3.5 = Tychonov (has Hausdorff 
compactifications) 

regular (closed neighborhood bases; ex ten- T3 = regular and separated 
sions by continuity) 
preregular ( limits are unique, up to topo- T2 = Hausdorff (has unique limits) 
logical distinguishability) 
symmetric (the closures of points form a T1 = Frechet (points are closed) 
partition of X) 
(arbitrary topological space) To = Kolmogorov (points are topologi

cally distinguishable) 

The two entries in each row of the chart are closely related: a space satisfies the condition 
in the right column if and only if the space is Kolmogorov and satisfies the condition in the 
left column in the same row. For instance, a topological space is Hausdorff if and only if it 
is both Kolmogorov and preregular. We can move from the left column to the right column 
by taking the Kolmogorov quotient of a space, as in 16 .5 .  

Normality is an interesting condition by itself -- we shall introduce it in 16 .26 ··· but 
it fits in the chart only in conjunction with the symmetry condition, since normal by itself 
does not imply completely regular. 

435 
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The long list of conditions may be daunting to beginners, or it may seem like hair
splitting to some readers. The beginner will find it helpful to concentrate on pseudometriz
able spaces and completely regular spaces; those will play t he greatest role in this book. 
Most spaces arising in applications in analysis are at least T3.5 spaces, but the abstract the
ory can be developed more clearly if we classify properties according to the various axioms 
in the chart. It is possible to decrease the emphasis on some of these properties, but it is 
not possible to omit them altogether. For instance, some textbooks omit mentioning T1 
spaces at all, but give as an exercise the fact that points in a T2 space are closed. 

The terminology T0 , T1 , T2 , etc . , follows the literature, but the reader is cautioned 
that the literature varies slightly on its definitions of T3 and T3.5 ; some mathematicians 
interchange some of the terms in the two columns in our chart. Even mathematicians who 
agree with our terminology may use it in different ways; for instance, the phrases "Tychonov 
space," "completely regular To space ," and "completely regular Hausdorff space" are used 
interchangeably in the literature; they all describe the same thing. 

Most of the separation and regularity axioms are well known and can be found in any 
topology book. However, "symmetric spaces" and "preregular spaces" are not so well known. 
They are the same (respectively) as the "Ro spaces" and "R1 spaces" introduced by Davis 
[1961 ] .  Symmetric spaces were introduced earlier by Shanin [1943] . This book owes a debt 
to Murdeshwar [1983] , who investigated those spaces systematically. 

Our choice of emphases is determined by the needs of later chapters. For instance, many 
topology books concern themselves solely with Hausdorff spaces. This book considers the 
non-Hausdorff case as well ,  because one of the best ways to describe a weak topology on 
a topological vector space (generally Hausdorff, in applications) is as the supremum of a 
collection of pseudometric topologies (each of which is not Hausdorff) .  

KOLMOGOROV (T-ZERO) TOPOLOGIES AND 
QUOTIENTS 

16.2 . Let x, y be points in a topological space (X, 'J) . Then the following conditions are 
equivalent . When one, hence all, of these conditions holds, we shall say that x and y are 
topologically indistinguishable. This is clearly an equivalence relation on X. 

(A) The topology 'J cannot distinguish between x and y. That is, every open set 
that contains either of x, y also contains the other. 

(B) Every closed set that contains either of x, y also contains the other. 

(C) cl ( {x}) = cl( {y}) . 

(D) N(x) = N(y) . That is , any neighborhood of either point is also a neighborhood 
of the other point. 

(E) Any filter or net that converges to either of the points x, y must also converge 
to the other. 
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(F)  Any filter or net that has either of the points x, y as a cluster point must also 
have the other as a cluster point. 
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16.3. Definition. A topological space (X, 'J) is called a T,, space, also known as a Kol
mogorov space, if it satisfies either of the following equivalent conditions: 

(A) If :r and y are topologically indistinguishable (in the sense of 16 .2) , then x = y. 
(B) Given any distinct points :r 1 , x2 E X, at least one of these two conditions is 

satisfied: 
(i) There exists an open set G1 that contains x1 but not x2 . 
(ii) There exists an open set G2 that contains x2 but not x1 . 

(Compare the last condition with 16.7(C) and 16. l l (D) . ) 

16.4. Examples. 
a. Let (X, d) be a pseudometric space. Then two points x, y E X are topologically 

indistinguishable if and only if d(x, y) = 0. Hence X is a Kolmogorov space if and only 
if the pseudometric d is a metric. This result is generalized in 16 . 1 7. 

b. The indiscrete topology on a set X is not a Kolmogorov space if card(X) 2': 2 . 
c. The knob topology on X (sec 5.34.c) is not a Kolmogorov topology if card(X) 2': 3 . 

16 .5 .  Let (X. S) be a topological space. Then "x is topologically indistinguishable from 
y," defined as in 16.2, is an equivalence relation on X. Let Q be the resulting quotient set 
--- i .e . , the set of equivalence classes. Thus, Q is obtained by identifying with each other 
(i .e . , merging into one point) any points of X that are topologically indistinguishable in 
(X. S) . 

Let 7r :  X ---. Q be the quotient mapping (see 3. 1 1 ) .  Let Q be equipped with the quotient 
topology -- i .e . , the strongest topology on Q that makes 1r continuous (see 15 .30) . Then: 

a. Every closed subset of X is 1r-saturated (see 4.4.e ) . 
b. Every open subset of X is 1r-saturated. 
c. The quotient map 1r : X ---. Q is both open and closed. Hint :  15.3 l . f 
d.  The forward image mapping S >---> 1r (S) gives a bijection from {open subsets of X} onto 

{open subsets of Q} and from {closed subsets of X} onto {closed subsets of Q} . This 
bijection preserves unions and intersections. The lattice of open sets of X (described 
in 5.21) is latt ice isomorphic to the lattice of open sets of Q. 

Let x, x1 • x2 E X and let S, T be 1r-saturated subsets of X. Then 
e. :r E S ¢==? 1r (.r) E 1r (S) . 
f. S C::: T ¢==? 1r (S) C::: 1r (T ) . 

g. S and T are disjoint if and only if 1r ( S) and 1r(T) are disjoint. 
h. S is an X-ncighborhood of x if and only if 1r(x) is a Q-ncighborhood of 1r(S) . 

1. x1 E clx ( {J:2 }) if aud only if 1r ( :rt ) E c!Q ( {1r(x2 ) }  ) .  
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j. The quotient space Q constructed in this fashion is a Kolmogorov space. 

We may call Q the Kolmogorov quotient space of X or T0 quotient space of X . It 
preserves many of the properties of X, and so for many purposes we can replace X with 
Q. For this reason, much of the mathematical literature does not concern itself with spaces 
that are not Kolmogorov. 

SYMMETRIC AND FRECHET (T-ONE) TOPOLOGIES 

16.6. Definition and proposition. Let X be a topological space (not necessarily Kol
mogorov) .  We shall say X is a symmetric space if it satisfies any of the following equiv
alent conditions: 

(A) The relation x E cl(y) is a symmetric relation between x and y - that is, 
X E cl(y ) {==} y E cl(x ) .  

(B)  I f G is an open neighborhood of x, then G � c l ( {x} ) .  
(C) If F is a closed set and x E X \ F, then the closed sets F and c l ( { x} ) are 

disjoint. 
(D) The set { u E X : u is topologically indistinguishable from x} is equal to 

cl( { x} ) ,  for each x E X. (See 16 .2 for definition. ) 
(E) The sets of the form cl( {x}) , for x E X, form a partition of X; that is , any 

two such sets cl( {xi } )  and cl( { x2 } )  are either identical or disjoint. 
The proof of equivalence is an easy exercise. 

16.7. Definition and proposition. A topological space (X, 'J) is called a T1 space if any of 
the following equivalent conditions are satisfied: 

(A) For each x E X, the singleton { x} is a closed set. 
(B) X is a Kolmogorov, symmetric space (defined in 16 .3 and 16.6) . 

(C) Given any distinct points x1 , x2 E X, both of these conditions are satisfied: 
(i) There exists an open set G1 that contains x1 but not x2 . 
(ii) There exists an open set Gz that contains Xz but not x1 . 

(Compare the last condition with 16.3(B) and 16. 1 1 (D) . )  
A T1 topology is sometimes called a Frechet topology. However, this usage i s uncmp.

mon in functional analysis books, since the term "Frechet space" has another meaning; see 
26. 14 .  

16.8 .  Examples. 
a. Finite sets are usually equipped with the discrete topology. Show that the only T1 

topology on a finite set is the discrete topology. 
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b. ( Optional exercise. ) Let (X, 'J) be a T1 topological space. If the topological closure is 
also an algebraic closure (defined in 4.8) ,  show that X has the discrete topology -
that is, 'J = P(X) .  

c. The indiscrete topology on a set X with more than one point is a symmetric space (in 
fact, a pseudometrizable space) , but not Kolmogorov . 

d. The set N, equipped with either the lower set topology U or the upper set topology V 
given in 5 . 15 .d, is Kolmogorov but not T1 ; hence it is not a symmetric space. 

e. ( Optional. ) More generally: Let (X, � )  be a preordered set . Then the lower set 
topology on X is a Kolmogorov topology if and only if � is a partial order. The 
lower set topology is T1 if and only if � is the equality relation ( =) , in which case the 
resulting topology is the discrete topology. 

f. Let X be a topological space, and let Q be its Kolmogorov quotient (as defined in 
16.5) . Then X is a symmetric space {=:? Q is a symmetric space {=:? Q is T1 . 

PREREGULAR AND HAUSDORFF (T-Two ) 
TOPOLOGIES 

16.9. Proposition and notation. Let X be a topological space (not necessarily Kolmogorov) .  
Let x , y E X. Then the following conditions are equivalent ; in the next section we shall 
abbreviate this relationship as xOy. 

(A) x is a cluster point of N(y) . 
(B)  y is a cluster point of N(x) . 
(C) Some filter (or net) converges to both x and y . 
(D) Some proper filter contains both N(x) and N(y) . 
(E) Every neighborhood of x meets every neighborhood of y . 

Clearly, 0 is both reflexive and symmetric. However, we do not assert that it is transitive; 
i .e . , we do not assert that 0 is an equivalence relation on X. 

Note that if x E cl( {y} ) , then xOy, since the constant net y then converges to both x 
and y. 

16.10. Definition and proposition. Let X be a topological space (not necessarily Kol
mogorov) . Let 0 be defined as in 1 6.9 .  We shall say X is a preregular space if it satisfies 
any of the following equivalent conditions: 

(A )  xOy '* y E cl( {x} ) .  
( B )  :rOy {=:? y E cl( {x}) . In other words, cl( {x}) is equal to the set {y E X  : 

:rOy} . (Note that this condition implies the symmetry condition 16 .6 (A) .  
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Also, it implies that 0 is a transitive relation. That fact, together with the 
observations in 16.9, tell us that 0 is an equivalence relation . )  

(C)  I f  x i s  one of  the limits of a filter or a net, then the set of all limits of  that 
filter or net is equal to cl( { x} ) . 

(D) Each filter or net has at most one limit, up to topological indistinguishability. 
In other words, if x and y are two limits of a filter or a net, then x and y are 
topologically indistinguishable (as defined in 16 .2) .  

Proof of equivalence is  left as an exercise. 

16. 1 1 .  Definition and proposition. A topological space (X, 'J) is called a T2 space, or a 
Hausdorff space, if any of the following equivalent conditions are satisfied: 

(A) When X is equipped with the topological convergence (defined as in 15 .2 or 
15 .7) ,  then X is Hausdorff in the sense of convergence spaces (defined in 7.36) 
- i.e., any net or filter has at most one limit. 

(B) X is a preregular Kolmogorov space. 

(C) Let W be any topological space, let W0 be a dense subset of W, and let 
fo : Wo -Y X be continuous. Then fo has at most one extension f : W -7 X 
that is continuous. 

(D) Any two distinct points in X have disjoint neighborhoods. In other words, 
given any distinct points x1 , x2 E X, there exist disjoint open sets G1 and G2 
such that 

(i) G1 contains x1 but not x2 , and 

(ii) G2 contains x2 but not x1 . 
(Compare the last condition with 16.3(B) and 16.7(C) . )  

Hausdorff spaces, or T2 spaces, are also sometimes known as separated spaces. That 
term should not be confused with separable spaces, introduced in 15 .13 .  

Proof of equivalence. The equivalence of (A) , (B) , (D) and the implication (A) =? (C) are 
easy exercises (with 15.3 .a as a hint ) .  It remains for us to present a proof of of (C) =? 
(D) - or more precisely, a proof that not-(D) implies not-( C) .  Suppose x0 , x1 are distinct 
points in X that do not have disjoint neighborhoods. Let W = { x0 , xd, equipped with the 

relative topology. The inclusion j : W � X is then continuous. The open subsets of W 
are 0 ,  W, and perhaps one of {x0 } ,  {xi } ,  but not both of these singletons. By relabeling if 
necessary, we may assume that {xi } is not an open subset of W. Then W0 = {x0 } is dense 

in W, since every neighborhood of x1 meets W0 . The inclusion j0 : Wo � X  is continuous. 
Two different continuous extensions of it are the map j (already noted) and the constant 
function x0 (since any constant function is continuous) .  

16. 12. Exercises. 
a. If X is an infinite set, then the cofinite topology on X (defined in 5 . 15 .c) is T1 but not 

T2 ; hence it is a symmetric space but not preregular. 
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b. Let X be a topological space, and let Q be its Kolmogorov quotient (as defined in 
16.5) . Then X is preregular ¢==? Q is preregular ¢==? Q is T2 . 

c. Technical lemma. Let (Y, d) be a pseudometric space, and assume the resulting topol
ogy is not the indiscrete topology. Let y0 E Y. Then there exist another point y1 E Y 
and open disjoint sets So , 51 � Y such that Yo E 50 and Y1 E 51 . (This exercise will 
be used in 18 .20. )  

Hint :  First show that there exists some y1 such that d(y0 , yl ) > 0. 

REGULAR AND T-THREE TOPOLOGIES 

16.13. Definition and proposition. Let X be a topological space (not necessarily Kol
mogorov) .  We shall say X is regular if any, hence all, of the following equivalent conditions 
are satisfied: 

(A) Any point and any closed set not containing that point are contained in dis
joint open sets. 

(B) If x E G and G is open, then there exists an open set H such that x E H � 
cl(H) � G. 

(C) Each point has a neighborhood base consisting of closed sets. 
The proof of equivalence is an easy exercise. 

A topological space is sometimes called T3 if it is both Kolmogorov and regular. 

16. 14. Exercises. 
a. Any regular space is also a preregular space (hence any T:l space is also a T2 space) . 
b. Let X be a topological space, and let Q be its Kolmogorov quotient (as defined in 

16.5) . Then X i s regular ¢==? Q is regular ¢==? Q is T:l · 
c. ( Optional. ) Look in Steen and Seebach [1970] , and find an example of a topological 

space that is T2 but not T:l · 

16.15.  Theorem on extension by continuity. Let X and Y be topological spaces; 
assume Y is regular. For each x E X ,  let N( x) be the neighborhood filter at x. Let D be a 
dense subset of X, and let f : D --. Y be continuous. Then 

D n N(x) {D n N : N E N(x) } 

is a filter on D for each x E X .  Moreover, f can be extended to a continuous function 
F : X --> Y if and only if for each x E X the filterbase 

{f(D n N) : N E N(x) } 
is convergent in Y, in which case we can take F(x) (for x E X \ D) to be any of the limits 
of f(D n N(x) ) .  
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Note that if Y is T3 , then F is uniquely determined. 

Proof of theorem (following Dugundji [ 1966] ) .  That D n N(x) is a filter on D follows easily 
from the fact that D is dense in X. 

Suppose f has a continuous extension F.  Then for each x E X  the filter N(x) converges 
to x, hence the filterbase F (N(x) ) converges to F(x) , and it is easy to verify that the 
filterbase f(D n N(x)) also converges to F(x) . 

Conversely, suppose that f(D n N(x) ) is convergent for each x E X; we shall prove the 
existence of a continuous extension. When x E D, then one of the limits of f(D n N(x)) 
i s f(x) , since f i s continuous on D.  For each x E X ,  let F (x) be any one of the limits of 
f(D n N(x) ) ;  it suffices to show that F is continuous. Fix any x0 E X; we shall show F 
is continuous at x0 . Let Yo be any neighborhood of F(x0 )  in Y; it suffices to show that 
F-1 (Y0 )  is a neighborhood of x0 in X.  Since Y is regular, there is some open set Y1 with 
F(x0 )  � Y1 � cl(YI ) � Y0 . Since f(D n N(x0) ) --+ F(x0 ) ,  there is some open neighborhood 
X0 of x0 in X such that f(D n X0) � Y1 . It suffices to show that F(Xo) � Y0 . 

For each z E X0 , we claim that the collection 

'Bz { Y1 n f(D n M) : M E  N(z) } 
is a filterbase on Y. To see this, observe that if z E X0 and M E N(z) ,  then X0 n M 
is a neighborhood of z, hence it contains a nonempty open set, hence it meets D (which 
is dense) ; thus X0 n D n M is nonempty. Then f(Xo n D n M) � Y1 n f(D n M) ,  so 
Y1 n f(D n M) is nonempty. Our claim follows easily. 

Any limit of the filterbase f(D n N(z) ) is clearly also a limit of the filterbase 'Bz . Thus, 
in particular, 'Bz --+ F(z) .  Since all the members of 'Bz are subsets of Y1 , it follows that 
F(z) E cl(YI )  � Y0 . This shows F(X0) � }(1 and completes the proof. 

COMPLETELY REGULAR AND TYCHONOV 
(T-THREE AND A HALF) TOPOLOGIES 

16. 16. Theorem. Let (X,  'J) be a topological space. Then the following conditions are 
equivalent: 

(A) 'J is gaugeable - i.e . , given by a gauge, in the sense of 5. 1 5.h. 
(B) 'J is uniformizable - i.e. , given by a uniformity, in the sense of 5.33. 
(C) 'J is completely regular - i .e . , it has this property: for each point z and 

each closed set F not containing that point, there exists a continuous function 
r.p :  X --+  [0, 1] such that r.p(z) = 1 and r.p vanishes everywhere on F. 

(D) Every lower semicontinuous function f : X --+ [-oo, +oo] i s the pointwise 
supremum of a collection of continuous functions from X into [-oo, +oo] . 

Hints : The proof of (A) =? (B) is an easy exercise that was already posed at the end of 
5 .33. For (B) =? (A) ,  let U be a given uniformity on X, and let V1 � X x X be any 
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given symmetric entourage. Let 11(1 = X x X. By 5.35.c, for each positive integer n we 
may choose some symmetric entourage Vn+I <:;; V,, such that v,:+I <:;; V,, . (This choosing 
is an application of the Principle of Dependent Choice, introduced in 6.28.) Apply Weil's 
Lemma 4 .44 ;  there is some psendornetric d on X that satisfies 

{ (:r. y )  E X2 : d(x, y )  < T" }  C V,, C { (x, y )  E X2 : d(x, y ) :::; T11 } 

for all posit ive integers n. Let D be the collection of all pseudometrics d that are determined 
in this fashion. for all choices of V1 and the V,, 's . Show that the uniformity determined by 
D is equal to U. 

To prove (C) =? (A) , for each continuous function f :  X --> [0 ,  1 ] define a corresponding 
pseudometric dr (x, y )  = l f (x) - f(y) l .  Show that the gauge consisting of all such dr 's yields 
the topology 'J. 

For (A) =? (C) , note that if z rf F, then r = distd(z , F) > 0 for some pseudometric d 
in the gauge. Then <p(x) = min{ 1 ,  �distd (x, F ) }  has the required properties. 

For (D) =? (C) , let V = CF; then V is open. Hence its characteristic function 1 v is 
lower semicontinuous. Also, 1 v ( z) = 1 .  By (D) , then, there is some continuous function 
g :  X --> [-x.  +OG] such that g :::; 1v and a =  g(z )  > 0. Then <p = min{ 1 ,  �g+ } has the 
required properties. 

For (C) =? (D) , let f :  X --> [-x, +x] be a lower semicontinuous function. Replacing 
f by � arctan .f, we may assume Range ( .f)  <:;; [ - 1 ,  1 ] .  (explain) .  It suffices to show that , for 
each .r:0 E X  and each number a <  .f ( .r0 ) ,  there is some continuous function g :  X --> [ - 1 ,  1 ] 
such that g :::; .f and g(x0) 2': a. If a :::; - 1 ,  then take g to be the constant function - 1 ,  
and we are clone. Thus, we may assume - 1  < a < f ( x0 ) .  Since .f is lower semi continuous, 
there is some open neighborhood V of x0 on which .f 2': a. Since X is completely regular, 
there is some continuous function h : X --> [0, 1] that vanishes at x0 and takes the value 
1 everywhere on CV. Then the function g(:r) = a - (a + 1 )h (x) satisfies the requirements. 
This argument follows Bourbaki [ 1966] . 

16 .17.  More definitions. A completely regular Kolmogorov space is also known as a 
Tychonov space. or sometimes as a T3.5 space. Another characterization of Tychonov 
spaces will be given in 1 7.23. 

Let (X, D) be a gauge space, let U be the result ing uniformity, and let 'J be the resulting 
topology (see 5.33) . Then two points x, y E X are topologically indistinguishable if and 
only if d(1· .  y) = 0 for every d E  D. Show that the following conditions are equivalent : 

(A) Thf' gauge D is separating, as defined in 2 . 13 . 
(B) The topology 'J is Kolmogorov - that is, any two distinct points are topo

logically distinguishable ·· so (X. 'J) is a Tychonov space. 
(C) nuEli u is the diagonal set I =  { (x. x) : X  E X} .  That is, if X ,  y are any two 

distinct points in X, then there exists some U E U such that ( x, y)  rf U. A 
uniformity sat isfying this condition is said to be a separating uniformity. 

16. 18. Remarks: regular versus completely regular. It is an easy exercise that every 
completely regular space is regular; thus any Tychonov space is also T:J . 
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There exist topological spaces that are regular but not completely regular; likewise, 
spaces that are T3 but not T3. 5 .  All known examples of such spaces are very complicated; 
we shall not present one here. The ambitious reader can find such examples in Steen and 
Seebach [1970] . 

In fact, most topologies used in analysis are completely regular. Two elementary topolo
gies that are not completely regular are the lower set topology on .N (see 16.8.d) and the 
cofinite topology on an infinite set (see 16 . 12.a), but these are not regular either, and they 
are somewhat contrived: they are not typical of the topologies used in analysis. 

16.19. Remarks: gauge versus uniformity. By Weil's Theorem, gauge spaces (X, D) and 
uniform spaces (X, U) are in some sense "the same thing." Technically, there is a slight 
difference: A uniform space is equipped with a uniform equivalence class of gauges, whereas 
a gauge space is equipped with one particular gauge D from that uniform equivalence 
class. In practice, it is often convenient to represent a uniformity U by working with some 
particular gauge D that determines that uniformity. Although the gauge is more specific 
than the uniformity, most of the properties of interest to us are actually uniform properties 
� i.e. , they are preserved if we replace the gauge with any other uniformly equivalent gauge. 
Thus, when we discuss a gauge space (X, D) ,  in most cases we are actually concerned with 
the associated uniform space (X, U) .  For most purposes we can and will use gauges and 
uniformities interchangeably. Each has its conceptual advantages. 

16.20. Further exercise. Let 'J be a completely regular topology. Then the largest gauge 
that is compatible with 'J (as defined in 5 . 15 .h) is the set of all pseudometrics d :  X x X ---+ 
[0, +oo) that are jointly continuous � i.e . , continuous when X x X is given its product 
topology and [0, +oo) is given its usual topology. 

Contrast this with 18 . 12 ; also see the specialization in 26.31 .  

16 .21 .  Let X be a topological space, and let Q be its Kolmogorov quotient (as defined in 
16.5) . Then X is completely regular ¢==? Q is completely regular ¢==? Q is T3.5 .  In fact, 
a gauge on either space can be used to produce a corresponding gauge on the other space; 
the pseudometrics d on X and e on Q correspond to each other by this formula: 

Two points x 1 ,  x2 in X are topologically indistinguishable if and only if d(x1 , x2 ) = 0 for 
every pseudometric d E  D. This is a slight specialization of the observations in 15.3 1 .h . 

If X is a pseudometric space � i .e . , if the gauge on X consists of just a single pseudo
metric � then Q is a metric space. 

PARTITIONS OF UNITY 

16.22. Definition. Let X be a topological space. A collection S = {Sa : a E A} of subsets 
of X is called 
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point finite if each point of X belongs to only finitely many S" 's; 

locally finite (or neighborhood finite) if each point of X has a neighborhood 
that meets at most finitely many S, 's .  

16.23. Basic pmperties. 

a. Any finite collection of sets is locally finite. 
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On the other hand, a locally finite collection of sets need not be finite. For a trivial 
example. let X be an infinite set with the discrete topology, and consider the singletons 
of X. For an example in a more familiar setting. let X be the real line with its usual 
topology; then the intervals [ n. n + 1 ]  (for integers n) form an infinite collection of sets 
that is locally finite. 

b. Any locally finite collection of sets is point finite. 
On the other hand, a point finite collection of sets need not be locally finite. For 

a trivial example, let X be an infinite !:let with the indil:lcrete topology ; consider the 
singletons of X. For an example in a more familiar setting, let X be the real line 
with iti:l usual topology: then each point of X is in at most one of the open intervals 
[ ,�1 , �] (for integers n > 0 ) ,  but any neighborhood of 0 contains infinitely many of 
those intervals . 

c. If S = { S, : a E A }  is a locally finite collection of sets, then { cl( S" ) : n E A }  is also 
locally finite, and UnEA  cl( Sn ) = cl (UnEA Sn ) .  (This generalizel:l 15 .5 .b slightly. ) 

d. If 9 is an open cover of X and X can also be covered by a locally finite open refinement 
of 9 ,  then X can also be covered by a locally finite open precii:le refinement of 9 (with 
definitions as in 1 .26 ) .  

Hint : Let 9 = { GiJ : f) E A }  be the given cover, and let S = { S" : n E B } be 
a locally finite open refinement that covers X - · that is, S covers X, and each S, is 
contained in some G1J . Use the Axiom of Choice to define a function 1 : A ___, B such 
that So <;;; G-y(n ) · Now let T;J = Uney - I (IJ) S" ; then {T1J : {3 E B}  is a locally finite 
open cover of X and TtJ <;;; G iJ for each (3. 

16.24. Definition. Let X be a topological i:ipace. A partition of unity on X is a collection 
{ !" : ct E A }  of continuous functions from X into [0, 1 ] , satisfying LnEA fn (x) = 1 for each 
.r E X, and such that the sets 

{X E X : fn (X) > 0} (a E A) 

form a locally finite collection. Note that the sets Ji; 1 ( (0 ,  1 ]) must then form a cover -

i.P . .  their union is equal to X .  
The partition o f  unity Un : a E A }  is said to  be  subordinated to  a given cover 

{ T;J : ;3 E B }  if each set Ji; 1 ( ( 0, 1 ]) is contained in some T11 . The partition of unity { .f, } 
is precisely subordinated to the given cover {T!J } if, moreover, it is parametrized by the 

same index set (that is, A = B) .  and Ji; 1 ( (0, 1 ]) <;;; T, for each n .  
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Some conditions for the existence of partitions of unity will be considered in 16.26(D) 
and 16 .29. 

16.25. Basic properties of partitions of unity. 
a. Typical use of partitions of unity. Let {!, : a E A}  be a partition of unity that is 

precisely subordinated to a covering {T, : a E A} .  For each a, let g, : X ---+ ffi. be 
some given continuous function. Show that a continuous function g : X ---+ ffi. can be 
defined by g(x) = LaEA J, (x)ga (x) . 

We say that g is formed by patching together the 9a 's. Note that for each x, 
g(x) i s  a convex combination of finitely many 9a (x) 's. In many cases of interest , g 
inherits many of the properties of the ga 's. See for instance 18.6 . 

b. Availability of precise partitions. If X has a partition of unity subordinated to a given 
cover {T13 : (3 E B} ,  then X also has a partition of unity that is precisely subordinated 
to that cover (as defined in 16.24) . 

Hint: This is similar to 16.23.d. Let Ua : a  E A} be the given partition of unity. 

Use the Axiom of Choice to define a function 'Y : A ---+ B such that J;; 1 ( ( 0, 1 ]) � T'Y( a l .  
Show that the functions 913 = LaE'Y- l (f3) f, satisfy the requirements. 

c. Making the sum come out right. Let {!, : a E A}  be a collection of continuous functions 

from X into [O, oo) ,  such that the sets J;; 1 ( (o, oo)) form a locally finite cover of X .  
If La f, = 1 ,  then {!, }  is a partition of unity. If we do not have La fa = 1 ,  we can 
modify the fa 's to obtain a partition of unity, as follows: 

Using the fact that the sets J;;1 ( (0, oo)) form a locally finite cover, prove that 

the function s(x) = LaEA fa (x) is continuous and positive. Then define ga (x) = 
fa ( x) / s (  x) .  The 9a 's form the desired partition of unity. 

NORMAL TOPOLOGIES 

16.26 . Definition and proposition. A topological space X i s  normal i f  i t  satisfies any of 
the following equivalent conditions: 

(A) Any two disjoint closed sets are contained in disjoint open sets. 

(B) (The Shrinking Lemma.) Let 'J = {Ta : a E A} be an open cover of X 
that is point finite (see 16 .22) . Then 'J has a shrinking - i .e . ,  there exists 
an open cover S =  {S, : a E A} such that cl(Sa )  � Ta for each a. 

(C) (Urysohn's Lemma.) If A and B are disjoint closed subsets of X, then there 
exists a continuous function a :  X ---+ [0, 1] that takes the value 0 everywhere 
on A and the value 1 everywhere on B. 

(D)  For each locally finite open cover of X, there exists a partition of  unity pre
cisely subordinated to that cover. 
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Proof of (B) =? (A) . Let F1 and F2 be disjoint closed sets. Then CF1 and CF2 form an 
open cover of X, which is finite and hence point finite. Let G 1 , G2 be a shrinking - i.e. , 
let {G1 , G2 }  be an open cover with cl(Gi ) � CFi for each i . Then Ccl(Gl ) , Ccl(G2) are open 
disjoint sets that contain F1 , F2 , respectively. 

Proof of (A) =? (B) .  Let 'J = {T" : a  E A} be a given open, point finite cover of X . By 
the Well Ordering Principle (see 6 .20) , let � be a well ordering of A. We shall define the 
sets S" by transfinite recursion (see 3.40) . 

Let any {3 E A be given. Assume that open sets Sa have been chosen for all a --< {3, 
satisfying cl(Sc. )  � T" and also satisfying 

(In other words, replacing the T" 's with Sa 's for all a --< {3 does not cost us the property of 
having a cover of X. ) We now wish to choose S!3 . Let 

Then F!3 is a closed subset of T!3 . Since X is normal, there is some open set S!3 such that 
F!3 � S!3 � cl(S!3 )  � T!3 . Then (X \ F!3) U S!3 = X, completing our recursive construction. 

To show that the sets S-y form a cover of X, let any x E X be given. Since the T-y 's 
are a point finite cover, there are just finitely many indices /l --< 12 --< · · · --< In that satisfy 
X E T'Yj . Then X must be a member of u;=l S-yJ . 

Proof of (C) =? (A) . If such a function CJ exists, then cr-
1 ( [0 , 1 ) )  and cr- 1 ( ( � , 1] ) are 

disjoint open sets containing A and B, respectively. 

Proof of (A) =? (C) . Let F0 = A. Use (A) to find some closed set F1 such that F0 � 
int ( Fl ) � F1 � X \ B.  

Let D be the set of all dyadic rationals in [0, 1 ] ;  that is, 

D {Tkm E [0, 1 ] : m , k E N U {O} } . 

We shall now recursively construct closed sets Fr for r E D, chosen so that r < s =? Fr � 
int (F8 ) .  The construction will be in stages. After no stages, we already have the sets F0 
and F1 . After k stages, we shall have closed sets Fr for all r in the finite sequence 

To construct the next stage, let r and s be any two consecutive numbers in Sk . Since 
Fr � int (F., ) ,  we may use (A) to choose some closed set F(r+s)/2 that satisfies 
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(This choosing is an application of the Principle of Dependent Choice 6.28.) In this fashion 
we choose closed sets F1 for all t E Sk+ 1 \ Sk ; that completes the recursion. Now we may 
define 

cp(x) { inf { r E D 
1
: x E Fr} if X E Fl , 

if X �  Fl . 
Observe that 

{x E X  : cp(x) < p} C int (Fp) C Fp C {x E X  : cp(x) :S p} .  

It remains to show that 'P is continuous; we leave the details as an exercise. 
Proof of (D) =} (C) . If F1 and F2 are disjoint closed sets, then {CF1 , CF2} is an open 
cover of X .  Let cp1 , cp2 be a precisely subordinated partition of unity; then 'Pj vanishes on 
Fj (j = 1 ,  2) . Hence cp1 takes the value 1 on F2 and vanishes on F1 . 
Proof that (B) and (C) together imply (D) . Let 'J = {Ta : a  E A}  be a given locally finite 
open cover. Let S = {S, : a  E A} be a shrinking of that cover, as in (B) . For each a, by 
(C) there is some continuous function fa : X -->  [0, 1] that takes the value 1 on Sa and the 
value 0 outside cl(Ta ) · Now form a partition of unity {ga } as in 16 .25 .c . 

16.27. Remarks and examples. Normality is most useful when it occurs in conjunction 
with the symmetric condition. Normality does not imply symmetric. For instance, the 
spaces X =  { 1 , 2} with topology 'J = {0, { 1 } , { 1 , 2 } } and Y =  { 1 , 2, 3} with topology 
U = { 0, { 1 } ,  { 1 ,  2, 3 } }  are both normal; neither is a symmetric space. (The topology 'J is 
Kolmogorov; the topology U is not . ) 

It i s easy to see that any normal symmetric space is also completely regular. But normal 
plus symmetric is strictly stronger than completely regular; in 17.39 we shall give an example 
of a space that is T3.5 but not normal. 

16.28. Examples and corollaries. 
a. Any pseudometric space (X, d) is normal. Hint: If F0 , F1 are disjoint nonempty closed 

sets, let 

{x E X  dist (x , Fj ) < dist (x , F1 -j ) }  (j = 1 , 2 ) . 

Other important examples. In 17. 7 .g we shall show that any compact preregular space 
is normal . 

b. A normal, T1 space is commonly known as a T4 space. Show that any normal, sym
metric space is completely regular, hence T4 =} T3.5 . 

PARACOMPACTNESS 

16.29. Definition. Recall from 1 .26 the definitions of "refinement" and "precise refine
ment ." 
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Let X be a preregular topological space. Then the following conditions are equivalent. 
If any, hence all, are satisfied, we say X is paracompact. 

(A) Every open cover of X has a locally finite refinement . 

(B) Every open cover of X has a precise locally finite refinement. 

(C) For each open cover of X, there exists a partition of unity subordinated to 
that cover. 

(D) For each open cover of X ,  there exists a partition of unity precisely subordi
nated to that cover. 

Remarks. It is clear from 16.26(D) that 

every paracompact space is normal 

- at least , using our definition of "paracompact ." Hence any paracompact space is also 
regular and completely regular. (In 17.38 we give an example of a T4 space that is not 
paracompact . )  

The reader i s  cautioned that the definition o f  "paracompact" varies in  the literature. 
Most mathematicians make either regularity or Hausdorffness (that is, regular or T2) a 
part of the definition. Note that either of these implies preregular, so any space that 
satisfies either of those definitions of "paracompact" is also paracompact by our definition. 
On the other hand, a few mathematicians omit any such assumptions and simply take 
condition (A) as the definition of "paracompact;" they then speak about spaces that are 
"both paracompact and regular." 

Proof of theorem. Obviously (B) =? (A) and (D) =? (C) .  The implications (A) =? (B) 
and (C) =? (D) follow from 16.23.d and 16.25.b. The implications (C) =? (A) or (D) =? 
(B) follow from the definition of partition of unity - i.e. ,  if Un : a E A} is a partition of 
unity, then f;- 1 ( (0, 1 ] )  : a E A} is a locally finite collection of sets. 

In view of 16 .26(D) ,  it suffices to show that conditions (B) and preregular imply normal. 
We shall show, by one argument , that 

(i) preregular and (B) imply regular, and 

(ii) regular and (B) imply normal. 

Let some disjoint sets A and B be given, where B is a closed set; for (i) we assume A is a 
singleton, and for (ii) we assume A is a closed set . We are to show that 

(* ) A and B are contained in disjoint open sets. 

Temporarily fix any b E B. We shall first show that 

(** ) the sets A and {b} are contained in some disjoint open sets Gb and Hb, respectively. 

This is clear in case ( ii ) .  In case (i) we have cl( {b} )  � B and hence a tf. cl( {b} ) ;  our claim 
now follows from 16. 10(D) . In either case, we have established (** ) . 

Cover X by the open sets Hb and X \  B. By our assumption (B) ,  this open cover has 
a precise locally finite refinement consisting of open sets Jb � Hb and N � X \  B. Let 
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J = ubEE  Jb . Then J and Ccl(J) are disjoint open sets. We shall show that B <;;; J and 
A <;;; Ccl(J) .  

Since {Jb : b E  B} U {N} i s  a cover of  X,  and N <;;; X \  B, we must have B <;;; J. On the 
other hand, since the collection of sets { Jb } is locally finite, we have 

cl(J) = U cl(Jb )  <;;; U cl(Hb)  <;;; U Cab = C ( n cb) ; 
bEE  bEE  bEE  bEE 

hence A <;;; nbEE  Gb <;;; Ccl(J) . This completes our proof of (* ) .  

16.30. Dowker's Sandwich Theorem (optional) . Let X be a paracompact space. Let 
a, b : X -+ lR be functions such that a is lower semicontinuous, b is upper semicontinuous, 
and a (x) > b(x) for every x E X. Then there is some continuous g : X -+ lR such that 
a( x) > g( x) > b( x) for every x E X. ( Remark. It is interesting to compare this result with 
(HB6) in 12 .3 1 . )  

Proof of theorem. For real numbers r let Gr = {x E X  : a(x) > r > b(x) } .  The sets Gr 
(r E JR) form an open cover of X. Let Ur : r E JR} be a subordinated partition of unity; 
show that g(x) = LrEIR r fr (x) has the required properties. 

16.31. Theorem (A. H. Stone, 1948) . Every pseudometric space is paracompact. 

Proof. Our proof follows Rudin [1969] . Let (X, d) be a pseudometric space. Let B(x, r) 
denote the open ball with center x and radius r - that is, the set { u E X : d( x, u ) < r } . 

We know (X, d) is regular, by 16 . 16 .  Let {Ca : a E A} be an open cover of X;  we 
shall construct a locally finite open refinement { Da,n : a E A, n E N} .  By the Well 
Ordering Principle (in 6.20) ,  let � be a well ordering of the set A. Let A x N be given this 
lexicographical ordering: (a, n) -< (a' , n') if either 

(a) n < n'
, or 

(b) n = n' and a -< a' . 

Then A x N is also well ordered; this is a special case of 3.44.a(ii ) .  We shall define the 
Da,n 's recursively in that order - that is, first we define all the Da, 1 's (in order of a's ) ;  
then we define all the Da,2 ' s ;  then all the Da,3 ' s ;  etc. 

To define Da,n , assume that all the preceding D's have already been defined (an as
sumption that is trivially satisfied when we begin the defining process, since then there are 
no preceding D's) . Let Ea,n be the set of all x's that satisfy: 

(i) a is the first member of A satisfying x E Ca , 

(ii) n is large enough so that B(x, 22-n ) <;;; Ca , and 

(iii) x is not a member of any previous D.  

Then let 
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Each set Da.n is a union of open balls, hence is open. Also, each of those balls is contained 
in C,, hence the collection of open sets { Da,n : o E A, n E N} refines the open cover 
{Ca : o E A} . To show that {Da .n} covers X ,  let any x E X  be given. Then there is a first 
o E A satisfying x E Cc n and there is some n large enough so that B(x, 22-" ) C::: C" . Then 
X E uj�n Ur1EA Dr) .j · 

It remains only to show that { Dn,n } is locally finite. Let any � E X be given; we shall 
exhibit a neighborhood G of X that meets only finitely many of the Da,n 's. Choose some 
.A and m such that � is in the open set D>..m· Then choose some positive integer j large 
enough so that B(� ,  2-.1 ) C::: D>..m· We shall use G = B(�, 2-m-J ) .  The proof consists of 
showing that ( 1 )  G does not meet any Do.n with n 2 m + j, and (2) for each positive 
integer n :::; m + j - 1 there is at most one o such that G meets Dn.n · 

Proof of ( 1 ) .  The set En.n is disjoint from D>.,m ;  this follows from (iii) and the fact that 
n 2 m + j > m. For any y E En,n , we have d(�, y) 2 2-j since B(�, TJ ) C::: D>..m ·  Since 
m + j 2 j + 1 and n 2 j + 1, we have G n B (y , 2-n ) C::: B(�, 2-J- 1 ) n B(y, 2-J- 1 ) = 0. The 
set Dn.n is the union of such balls B(y, 2-n ) and therefore is disjoint from G. 

Proof of (2 ) .  Suppose p E G n Dn.n and q E G n Df1.n where n < m + j and o =/= (3; 
we shall obtain a contradiction. We may assume o -< (3. By the definition ( * ), we have 
d(p, p' ) < 2-n and d(q, q') < 2-n for some p' E Ea.n and q' E Ef3.n ·  By (i) , since (3 >- o, 
we have q' � C0 • By (ii ) ,  B (p' , 22-" ) C::: Cn . Thus d(p' , q') 2 dist (p' , CCn ) 2 22-" , and 
therefore 

d(p, q) 2 d(p' , q' ) - d(p, p1 ) - d(q, q') > Tn (4 - 1 - 1 )  = Tn+ 1 2 Trn -1+2 . 

This contradicts the fact that p, q both lie in G = B(�, 2-rn-1 ) and completes the proof of 
the theorem. 

HEREDITARY AND PRODUCTIVE PROPERTIES 

16.32. Definitions. A property P is  hereditary if, whenever Y is a topological space 
with property P and X is a subset of Y equipped with the relative topology, then X also 
has property P. For instance, Hausdorff is a hereditary property, since any subspace of a 
Hausdorff space is also Hausdorff when equipped with the relative topology. 

A property P is productive if, whenever X = fLEA Y>. is a product of topological 
spaces and the Y>, 's all have property P,  then X (equipped with the product topology) also 
has property P. 

A property P i s  an initial property if, whenever X has the initial topology determined 
by a collection of mappings f :  X ---> Y>, , and the Y>. 's are topological spaces with property 
P, then X also has property P.  Note that any initial property is also a hereditary property 
and a productive property, since the relative and product topologies are special cases of 
initial topologies. 

16.33. Exercises and remarks. 
a. All the following separation axioms are initial properties: symmetric , preregular , reg-
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ular, completely regular. The verification of these facts are fairly straightforward ex
ercises; we shall omit the details. 

b. All the separation axioms Tn , for n = 0, 1 ,  2, 3, 3.5, are hereditary and productive 
properties. In fact , if X has the initial topology determined by a collection of mappings 
f : X ---. Y.x , and that collection of mappings separates points of X ,  and the Y.x 's have 
one of the properties T0, T1 , T2 , T3 , T3 .5 , then X also has that property. 

c. Normalcy and paracompactness are not hereditary; we shall prove that via an example 
in 17.40.a. 

d. Normalcy is not productive; we shall prove that by an example in 17.40.b. 

e. Paracompactness is not productive. Indeed, let X be the real line equipped with the 
topology generated by all sets of the form { x E JH; : a ::; x < b} , for a, b E R (This 
is called the right half-open interval topology, or the lower limit topology . )  It 
can be shown that X is a paracompact Hausdorff space, but X x X (with the product 
topology) is not paracompact . (In fact , X x X is not normal; this gives another proof 
that normalcy is not productive. )  We omit the details of the proof, which can be found 
in topology books. 



Chapter 1 7  

Compactness 

17 .1 .  Preview. In !Rn , a set i s  compact i f  and only i f  i t  i s  closed and bounded. That 
notion is generalized in this and the next few chapters. The following chart shows relations 
between some of the main relatives of compactness. 

CHARACTERIZATIONS IN TERMS OF 
CONVERGENCES 

17 .2 .  Definition and exercise. Let (X,  'J) be a topological space. We say that X is  compact 
if any of the following equivalent conditions are satisfied. (Examples will be given later in 
the chapter. )  

(A )  Every open cover of X has a finite subcover. That is, i f  9 = {G.\ : ,\ E 
A} is a cover of X consisting of open sets, then some finite subcollection 
{G.\, , G .\2 , . • . , G.\" } is also a cover of X .  (This is the most common definition 
of compactness in the mathematical literature. )  

(B )  Every filter subbase consisting o f  closed subsets of X i s  fixed. That is, when
ever S = {S.\ : ,\ E A} is a collection of closed subsets of X that has the finite 
intersection property, then n.\EA 5.\ is nonempty. 

(C) Every net in X has a cluster point - i.e . ,  every net has a convergent subnet. 

(D) If J" is a proper filter on X ,  then the set nFEJ" cl (F) = {cluster points of J"} 
is nonempty. 

Remarks. In view of 7. 19 and 15 .38, it does not matter which kind of subnet we use in (C) .  
Also, the equation nFEJ" cl(F) = {cluster points of J"} was noted in 15 .38 (regardless of 
compactness) .  

Proof of equivalence. The equivalence of (A) and (B) follows from taking complements 
i.e . ,  take G.\ = X \  S.\ . The equivalence of (C) and (D) is just the correspondence between 
nets and proper filters (see 7.9, 7. 1 1 ,  and 7.31 ) .  For (D) =? (B) ,  let J" be the filter generated 
by S. For (B) =? (D) ,  let S =  {cl(F) : F E  J"} . 
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17.3. More definitions. A subset K of a topological space Y is said to be a compact set if 
K is a compact space when equipped with the relative topology induced by Y. This notion 
is so important that we shall now reformulate all four of the conditions stated in 17.2 ;  the 
formulations below are occasionally more convenient than those given in 17.2. A set K � Y 
is a compact set if one (hence all) of the following conditions is satisfied. 

(A) Whenever {G>- : >. E A} is a collection of open subsets of Y with union 
containing K ,  then U>-EL  G>, :::2 K for some finite set L <;;; A.  

(B) Whenever { F>, : >. E A} i s  a collection of closed subsets of Y such that the 
collection { K n F>, : >. E A} has the finite intersection property, then n>-EA F>, 
meets K. 

(C) Every net in K has a cluster point in K - i .e . ,  every net in K has a subnet 



Characterizations in Terms of Convergences 455 

that converges to a point in K.  

(D)  I f  :J i s  a proper filter on Y and K E :J, then :J has a superfilter that converges 
to some point in K. 

Although these conditions refer to the topology of Y ,  they do not actually depend on Y,  
except insofar as i t  determines the relative topology on K .  Thus, if K � Y n Z, where Y 
and Z are two topological spaces that determine the same relative topology on K,  then K 
is compact ¢==? K is a compact subset of Y ¢==? K is a compact subset of Z. 

17.4. The preceding definitions of compactness and their proof of equivalence did not 
require the Axiom of Choice or any weakened form of Choice. 

Following is another characterization of compactness; this statement is equivalent to the 
Ultrafilter Principle. 

(UF18) Let X be a topological space. Then X is compact if (and only if) 
every ultrafilter on X converges to some limit - or equivalently, if (and only if) 
every universal net in X converges to some limit. 

In fact, this statement is equivalent to the Ultrafilter Principle with or without the paren
thesized "and only if" part . It follows from the definitions of "ultrafilter" and "compact" 
that if X is compact, then every ultrafilter on X converges; this implication does not require 
any arbitrary choices and thus is valid in ZF. We assert that our earlier versions of UF are 
equivalent to the remaining statement that 

(*)  X is compact if every ultrafilter on X converges. 

Indeed, (*)  follows easily from (UF3) in 7.24, together with the definition of "compact." A 
proof that (*)  implies (UF1 )  will be given in 1 7.22. 

17.5. Let f : A --+ X be a mapping from a set A (without any topology necessarily 
specified) into a compact Hausdorff space X .  

(i) Suppose (>-n ) is a universal net in A. Then (f(>-n ) )  is a universal net i n  X, which 
converges to a unique limit . We say that f converges along the universal net (>-n) to 
that limit. 

(ii) Equivalently, let U be an ultrafilter on A. Then {f(U ) : U E U} is a filterbase on 
X ,  and the filter it generates is an ultrafilter. That ultrafilter converges to a unique limit 
in X .  We say that f converges along the ultrafilter U to that limit. Let us denote that 
limit by limu f. We may restate its definition: limu f is the unique point in X with the 
property that each neighborhood N of limu f contains some set f(U ) with U E U. (This 
notion is discussed also by Bourbaki [1966] . )  

We have limu f = limu g whenever f and g are U-equivalent in  the sense of 9 .41 ,  and 
so limu is in fact well defined on the quotient space XA /U - i.e . ,  on the ultrapower *X. 

17.6. ( Optional. ) The Ultrafilter Principle implies the Hahn-Banach Theorem. We shall 
show that (UF1 )  =} (HB1 ) .  Let (6, �) be a directed set. Let 'D be the filter of eventual 
subsets of 6 - that is, let 

S :2 { D E 6 : D � Do } for some Do E 6 } . 
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By (UF1) ,  let U be an ultrafilter on � that extends D. If f : � ----> lR is a bounded function, 
then f may be viewed as a map into the compact Hausdorff space [a ,  b] for some a, b E JR. 
Hence we may define limu f E lR as in 17 .5 .  Obviously the map f f---+ limu f is positive 
and linear. It is easy to verify that if f : � ----> lR is a bounded function such that the net 
{!(b) : b E  �}  converges to a limit L, then that limit is equal to limu f. Thus limu is a 
Banach limit . 

Remark. Actually, Pincus [1972] showed that the Hahn-Banach Theorem is strictly 
weaker than the Ultrafilter Principle, but the proof of that fact is beyond the scope of this 
book. 

BASIC PROPERTIES OF COMPACTNESS 

17.7. Elementary examples and properties. 

a. Any finite subset of any topological space is compact. In particular, 0 is compact. 

b. The union of finitely many compact sets is compact. 

c. Let X be a topological space. Then 

:J {S  c;;; X : S c;;; K for some compact set K} 

i s  an ideal on X. Thus, for some purposes, we may view the members of  :J as "small" 
subsets of X ,  in the sense of 5 .3 .  

d. Let S and 'J be two topologies on a set X .  Then the weaker topology has more 
compact sets - or at least as many. That is, if S c;;; 'J, then every 'J-compact set is 
also S-compact. It is possible for S and 'J to yield the same collections of compact sets 
even if if S � 'J; see the second and third examples below. 

(i) The discrete topology on X is the strongest topology, so it should have 
the fewest compact sets. Show that a subset of X is compact for the 
discrete topology if and only if that subset is finite. 

(ii) The indiscrete topology on X is the weakest topology, so it has the most 
compact sets. In fact , with the indiscrete topology, every subset of X is 
compact. 

(iii) The cofinite topology is strictly stronger than the indiscrete topology 
(unless card(X) < 2) ,  but the cofinite topology also makes every subset 
of X compact. 

e. If ( x1 , x2 , x3 , . . .  ) is a sequence converging to a limit x0 in a topological space, then the 
set { x0 , x 1 , x2 , x3 , . . .  } is compact. (This result does not generalize to nets. )  

f. In  any topological space, the intersection of a closed set and a compact set i s  compact. 
In a compact topological space, any closed set is compact . In a Hausdorff topological 
space, any compact set is closed. 
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g. Any compact preregular space is paracompact (hence normal and completely regular) .  
Proof Given an open cover, any finite subcover is a locally finite refinement . 

h. The continuous image of a compact set is compact. That is, if f : X --> Y is a 
continuous map from one topological space into another, and K c=; X is compact, then 
f(K) is compact. 

i. Any upper semi continuous function from a compact set into [ -oo, +oo] assumes a 
maximum. 

j. Dini's Monotone Convergence Theorem. Let (g" : o E A) be a net of continuous 
functions (or more generally, upper semicontinuous functions) from a compact topolog
ical space X into R Assume that g" 1 0 pointwise -- i.e . , assume that for each x E X  
the net (gn ( x ) )  is decreasing and converges to 0. Then the convergence is uniform -
i.e. , limnEA ::mp.rEX g, (x) = 0. 

Hint :  Let c > 0 be given. If none of the closed sets Fn = {x  E X :  fn (x) � c}  is 
empty. show that the collection of Fn 's has the finite intersection property. 

17.8. Proposition. Let (X, :S:)  be a chain ordered set (for instance, a subset of [-oo, +oo] ) ,  
and let 'J be the interval topology on X (defined in 5 . 15 .f) .  Then (X, 'J) is compact if and 
only if (X. :S: )  is order complete. 

Furthermore, if (xn: : o E A) is a net in an order complete chain, then lim inf Xn is the 
smallest cluster point of the net, and lim sup Xn is the largest cluster point of the net. 

Proof. First, suppose that X is order complete. It follows easily from 15.42 that lim inf X0 
and lim snp :r" are cluster points of (xn ) · It follows from 7.47.a that any other cluster points 
must lie between those two. 

On the other hand, suppose X is not order complete; we shall show X is not compact. 
Assume D is a nonempty subset of X such that sup( D) does not exist in (X. ::; ) .  Consider 
D itself as a directed set; we shall show that the inclusion map i : D --> X is a net with 
no cluster point. To put our notation in a more familiar form, we shall write the net as 
(ih : D E  D) ,  where in fact i0 = D . Consider any z E X; we shall show z cannot be a cluster 
point of X .  We consider two cases: 

(i) z is not an upper bound of D. In this case there is some Do E D with Do > z. The 
set { x E X : :r < Do } contains z but is not a frequent set for the net ( i6 ) ,  so z is not a 
cluster point . 

(ii) z is an upper bound of D, but is not the least upper bound. Thus D has some upper 
bound b < z. Then the set { x E X : x > b} contains z but is not a frequent set for the net 
( i6 ) ,  so z is not a cluster point. 

17.9 .  CorollaTies. 
a. The extended real line [-oo, +oo] is compact when equipped with its usual topology. 

(That topology will be discussed further in 18.24.) 

b. A subset of IR is compact if and only if it is closed and bounded. In particular, any 
interval [a. b] c=; IR (where - x  < a < b < +oo) is compact. 

17.10.  Compactness and HausdoTjJ spaces. 



458 Chapter 1 7: Compactness 

a. Let S be a subset of a Hausdorff topological space. Then S is compact if and only if 
S is closed and S is contained in a compact set. 

b. Let S be a subset of a compact Hausdorff space. Then S is compact if and only if S is 
closed. 

c. If X is a compact space, Y is a Hausdorff space, and f :  X ----) Y is continuous, then f 
is a closed mapping - i.e. , the image of a closed subset of X is a closed subset of Y.  

If, furthermore, f i s  a bijection, then f- 1 is also continuous - that is, f i s  a 
homeomorphism. 

d. No Hausdorff topology on a set can be strictly weaker than a compact topology on 
that set. In other words, it is not possible for a set to have two topologies S � 'J where 
S is Hausdorff and 'J is compact . 

17. 11 .  We shall say that a topological space X is locally compact if each point has a 
compact neighborhood. Following are some examples. 

a. Any compact space is locally compact. 

b. Any set with the discrete topology is a locally compact Hausdorff space. 

c. lR is locally compact. 

Preview of further results. In 17. 17  we shall see that JRn is a locally compact Hausdorff 
space, when equipped with the product topology. In 27. 17 we shall see that no infinite 
dimensional Hausdorff topological vector space is locally compact . 

In 17. 14.d we shall see that any locally compact preregular space is completely regular. 

REGULARITY AND COMPACTNESS 

17. 12 .  If  X is  a symmetric space and x E X, then cl({x})  i s  compact. 
Proof Any open cover of cl( { x}) has a finite subcover; that is immediate from 16.6(B) . 

17.13. Let X be a preregular space, and let K be a compact subset of X .  Then: 

a. If p E X with cl( {p} )  disjoint .from K, then K and cl( {p}) are contained in disjoint 
open sets. 

Proof For each x E K, we have x � cl ( {p} ) .  By 16. 10, p and x are contained in 
disjoint open sets Ax and Bx , respectively. Then { Bx : x E K} is an open cover of the 
compact set K, so it has a finite subcover; we have K � B = UxEI Bx for some finite 
set I �  K. Then p is in the open set A =  nxEI Ax . 

b. If L is closed and compact, and K and L are disjoint, then K and L are contained in 
disjoint open sets. 

Proof For each p E L, the sets cl( {p} ) and K are contained in disjoint open sets Ap 
and Bp, respectively. The sets Ap form an open cover of L. Choose a finite subcover 
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of the Ap's, and take their union for an open set containing L. The intersection of the 
corresponding Bp's is an open set containing K.  

c. cl(K) = UxEK cl({x}) .  
Proof We have cl(K) :2 UxEK cl( { x} )  i f  K i s  any subset of any topological space. 

For the reverse inclusion, let p E cl( K) ;  we wish to show that p E UxEK cl( { x}) . Since 
p E cl(K) ,  we know that K meets every neighborhood of p. Hence by the preceding 
exercise, cl({p}) is not disjoint from K. Say x E cl( {p} ) n K. By 16. 10, then, also 
p E cl( {x} ) ,  as required. 

d. If K is contained in an open set G, then cl(K) S: G also. 
Proof Use the preceding exercise and 16.6(B ) .  

e .  cl(K) i s  compact. More generally, i f  K S: T S: cl(K) ,  then T is compact. 
Hints : Any open cover of T is also an open cover of K;  use the preceding exercise. 

f. If S S: K, then cl(S) is compact . 
Proof cl(S) = cl(S) n cl(K) is the intersection of a closed set and a compact set; 

apply 17.7.f. 

17. 14. Let X be a locally compact preregular space. Then: 

a. (Neighborhoods of points.) Each point has a neighborhood base consisting of closed 
compact sets (and hence X is regular) . 

Proof Any x E X has a compact neighborhood, hence (by 17. 13.e) has a closed 
compact neighborhood K. Then K is a compact preregular space, hence (by 17.7.g) 
K is a regular space. Hence x has a neighborhood basis in K consisting of closed sets. 
Since K is a neighborhood of x in X ,  those same sets also form a neighborhood basis 
for x in X. Those sets are also closed and compact in X .  

b .  (Neighborhoods of compact sets.) Let K S: G with K compact and G open i n  X.  Then 
there exists some open set H whose closure is compact, such that K S: H S: cl(H) S: G. 

Proof By 17. 14.a, each x E K is contained in some open set Ax whose closure is 
a compact set contained in G. Then the compact set K has open cover {Ax : x E 
K} , hence some finite subcover {Ax : x E F} .  Let H = UxEF Ax . Then cl(H) = 
UxEF cl(Ax ) by 15.5 .b or 16 .23.c; hence cl(H) i s  a compact subset o f  G. 

c. (Local partitions of unity. ) Suppose K S: U7=l Gj , where K is compact and the Gj 's 
are open. Then there exist continuous functions 'PJ : X ----+ [0, 1 ]  such that 2:7=1 'PJ = 1 
on K,  and each 'PJ vanishes outside some compact subset of GJ . 

Proof Let G = U7=l G1 . By two applications of 17. 14.b, we may find open sets 
G' , G" such that 

K S: G" S: cl( G") S: G' S: cl( G' ) S: G 

and cl( G') ,  cl( G") are compact sets. The set cl( G') ,  equipped with the relative topology, 
is compact and a preregular space, hence paracompact (see 17.7.g) . Let Tj = G" n Gj 
for j = 1 ,  2, . . .  , n ,  and let To = cl(G') \ K. These sets are relatively open in cl(G' ) ,  
and they form a cover of  cl(G') .  Let (S1 : j = 0, 1 , 2, . . .  , n) be a shrinking of  (T1 ) 
that is, let the S1 's be another cover of cl( G') consisting of relatively open sets, such 
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that cl( SJ ) S: TJ . Form a partition of unity on cl( G' ) that is precisely subordinated 
to (Sj ) ;  say cpo , cpi , cp2 , · · · , cpn are continuous functions from cl(G') into [0, 1] such 
that ""L;'=o cpj = 1 and cpj vanishes outside Sj . Since K S: cl( G') \ S0 , we must have 
""L7=l cpj = 1 on K. For 1 ::; j ::; n ,  extend cpj to all of X by defining cpj = 0 outside 
of cl( G') .  Note that cp1 vanishes outside cl(SJ ) ,  which is a compact subset of G1 . It 
suffices to show that cp1 is continuous on X. Note that X is the union of the open sets 
G' and Ccl(G") ,  and cpj is continuous on each of those sets, since cp1 vanishes on the 
latter set . 

d. Corollary. Any locally compact preregular space is completely regular. 
Proof Let any open set G and any point x E G be given. Then K = cl( { x} )  is a 

compact subset of G, by 16.6(B) and 17 . 12 .  Apply the preceding exercise with n = 1 .  

17.15. Definition and proposition. Let S be  a subset of a topological space X .  Following 
are three closely related conditions on S: 

(A) cl(S) is compact . (It is then customary to say that S is relatively compact . )  

(B) S is a subset of a compact set. (As we noted i n  17.7.c, the sets satisfying this 
condition form an ideal. )  

(C) Every net in S (or every proper filter on X that contains S) has a cluster 
point in X. 

We have the following implications: 

In any topological space, (A) =} (B) =;. (C) . (Obvious. )  

In any preregular space, (B) =;. (A) , and so those two conditions are equivalent . 
(Proved in 17. 13 .f. )  

In any regular space, (C )  =} (A) , and so all three conditions are equivalent . 
(Proved in the paragraphs below. )  

Proof Assume regular and (C) . Let 9 be  any proper filter on X with cl(S) E 9 ;  we must 
show 9 has a cluster point. Assume not; we shall obtain a contradiction. 

For each x E X, since x is not a cluster point of 9, there is some neighborhood Nx of 
x that is disjoint from some member of 9, and hence X \  Nx E 9. These conditions are 
preserved if we replace Nx with a smaller neighborhood of x; since X is regular, we may 
assume Nx is closed. Then the set Gx = X \  Nx is open and a member of 9.  

Since 9 i s  closed under finite intersection, for any finite set A S: X the set cl (S)nnaEA 
Ga 

is a member of 9 and hence nonempty. By 5. 17.e, the set s n naEA 
Ga is nonempty. Thus 

the collection of sets S = { S} U { G x : x E X}  has the finite intersection property and 
therefore is contained in a proper filter :J. By our assumption on S, that filter :J has some 
cluster point � E X . Now N� is a neighborhood of �' hence N� meets every member of :J, 
hence N� meets G� , a contradiction. 
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TYCHONOV ' S  THEOREM 

17.16. Recall that the Axiom of Choice, in one form, asserts that a product TI,\EA  s,\ of 
nonempty sets is nonempty (see (AC3) in 6 . 12 ) .  That result bears some resemblance to: 

(AC21) Tychonov Product Theorem. Any product TI-\EA  Y-\ of compact 
topological spaces is compact . 

Here it is understood that the product space is equipped with the product topology. In 
contrast with (AC3) ,  however,  the Tychonov Product Theorem does not assert that the 
product is nonempty. (An empty set is a perfectly acceptable compact topological space! )  
Thus, it may be  surprising that the Tychonov Product Theorem i s  equivalent to  the Axiom 
of Choice. 

Proof of (AC3) ::?- (AC21 ) .  We shall make use of (UF18) ,  which we already know to be 
a consequence of the Axiom of Choice. Let (x, : o: E A) be a universal net in TI-\EA Y,\ ;  
we must show that (xn : o: E A)  is convergent. Let 1f,\ : X ----+ Y-\ be the ,\th coordinate 
projection. The net (n-\ (xa ) : o: E A) is universal in Y-\ . Let S-\ = {y E Y-\ : n-\ (xn ) ----+ y} .  
Then each s,\ is nonempty. Hence TI ,\EA s,\ is nonempty, by (AC3). If z E TI,\EA  s,\ ,  then 
Xn ----+ z .  

The proof of (AC21 )  ::?- (AC3) will be  given in  17.20. 

17.17. Corollary. Let n be a positive integer, and let IRn have its product topology. A 
subset of IR" is compact if and only if it is closed and bounded, where "bounded" has its 
usual meaning (see 3 . 15  and 2. 12.a) . Hence JR" is locally compact. 

17.18. An auxiliary construction. This observation will be used occasionally - e.g., in 
26.9 and in 26.10 .  

Let 0 be an open subset of IR" . Then there exists a sequence ( Gn) of open sets whose 
union is 0, such that each Gn is contained in a compact subset of 0. We remark: 

a. One way to construct such a sequence ( Gn) is as follows: The rational numbers are 
countable (see 2 .20.f) .  Consider all the open balls G = B(x, r) with the property 
that r and all the coordinates of x are rational numbers, and the closure of B (x, r) is 
contained in n. There are only countably many such balls; let them be the Gn 's. 

b. In most applications of such a sequence, the particular choice of the Gn 's is not im
portant. Any other such sequence Hn will do just as well, because ( exercise)  each Gn 
is contained in the union of finitely many of the Hn 's, and vice versa. 

COMPACTNESS AND CHOICE ( OPTIONAL) 

17.19. Remarks. This subchapter is optional. It is concerned with showing that cer-
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tain propositions imply either the Axiom of Choice or weakened forms of Choice. Many 
mathematicians take the viewpoint that the Axiom of Choice is simply "true;" with that 
viewpoint, this subchapter is of no interest. 

17.20. Compactness equivalents of AC. We shall prove that the Axiom of Choice is equiva
lent, not only to Tychonov's Theorem, but also to several other principles that are seemingly 
weaker: 

(AC22) 

(AC23) 

(AC24) 

Any product of compact gauge spaces is compact. 

Any product of knob spaces is compact. 

Any product of T1 compact topological spaces is compact. 

(AC25) Any product of topological spaces, each equipped with the cofinite 
topology, is compact. 

(Gauge topologies and knob topologies were introduced in 5 . 15.h and 5.34.c, respectively. ) 

Intermediate proofs. Any knob space is a compact gauge space, and any space with the 
cofinite topology is a compact T1 space. Thus, the proofs of (AC21 )  =:? (AC22) =:? 
(AC23) and (AC21 )  =:? (AC24) =:? (AC25) are obvious. 

Proof of (AC23) =:? (AC3) and (AC25) =:? (AC3) . This argument is from Kelley [1950] . 
Define S;. , 6 ,  etc. ,  as in 6 .24. Equip each Y;. with either the knob topology or the cofinite 
topology. In either case, the set S;. is closed. Hence 3'" is a filterbase consisting of closed 
subsets of X. By assumption, X is compact; hence the intersection of the members of 3'" is 
nonempty - completing the proof indicated in 6.24. 

Further remarks. The Axiom of Choice is equivalent to Tychonov's Theorem, if we use 
any of the usual definitions of compactness, given in 17.2. An alternate approach is taken 
by Comfort [1968] . Comfort suggests a different definition of compactness, which is more 
complicated than the usual definitions but has this interesting property: we can prove that 
the product of Comfort-compact spaces is Comfort-compact without using the Axiom of 
Choice. But we haven't really eliminated AC; it turns out that AC is equivalent to the 
statement that a space is compact (in the usual sense) if and only if it is Comfort-compact. 

17.21 .  We have established that the Axiom of Choice is needed to prove Tychonov's 
Theorem - i.e. ,  that the product of arbitrarily many arbitrary compact sets is compact. 
But it is not needed for certain weakened forms of Tychonov's Theorem. For instance, 
arbitrary choices are not needed for: 

Tychonov Theorem (finite version) . Let Y1 , Y2 , . . .  , Yn be compact topo
logical spaces. Then X =  Y1 x Y2 x · · · x Yn , with the product topology, is also 
compact . 

Proof It suffices to prove this for n = 2, and then apply induction. Let ( ( Ua , Va ) : o: E A) 
be any net in Y1 x Y2 . Then ( Ua : o: E A) is a net in the compact space Y1 ; hence it 
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has a convergent subnet. By 7. 19, ( ua : a E A) also has a convergent Kelley subnet 
(un (()) : (3 E lffi) .  Now, (vn (f1) : (3 E lffi) is a net in the compact space Y2 ; hence it has 
a convergent Kelley subnet (va(fJ(I) )  : r E C). Then ((un(f3(1) ) '  Va((J(I) ) )  : r E C) i s  a 
convergent net in Y1 x Y2 , and it is a subnet of the given net. ( Optional exercise : Shorten 
this proof, using the notational convention of 7.2 1 . )  

17.22. Compactness equivalents of UF. The Ultrafilter Principle was introduced in  6.32. 
We shall now show that it is equivalent to (UF18) (introduced in 17.4) and the following 
principles. 

(UF19) Any product of compact Hausdorff spaces is compact. 

(UF20) (Stone-Cech Compactification Theorem.) Let X be a completely 
regular Hausdorff space. Then there exists a topological space (J(X) (called the 
Stone-Cech compactification of X )  with these properties: (i) (J(X)  is a 
compact Hausdorff space, (ii) X is a dense subset of (3(X) ,  and (iii) if K is 
another compact Hausdorff space and f : X ---> K is a continuous map, then f 
extends uniquely to a continuous map F :  (J(X) ---> K.  

(UF21) Let 2 = {0, 1 }  be equipped with the discrete topology. Then for any 
set X,  the set 2x (with the product topology) is compact. 

Remarks. (UF19) and (UF21 )  are just (AC21 )  and (AC23) specialized to the case of Haus
dorff spaces. Most topological spaces of interest in applications are Hausdorff, hence most 
applications of (AC21 )  or (AC23) actually follow from (UF19) or (UF21 ) .  

A set of the form 2x , with the product topology, is sometimes known as a Cantor space. 
However, that name is more often used for the "middle thirds" set C = C0 n C1 n C2 n · · · ,  
where C0 = [0, 1 ] ,  C1 = [0, 1 J u [� , 1] , C2 = [0, iJ u [� , � ] u [� , � ]  u [� , 1 ] ,  etc. Actually, i t  can 
be proved that the middle thirds set is homeomorphic to 2N , but we shall omit the proof. 

From property (UF20) (iii) it follows easily that the Stone-Cech compactification is 
unique up to homeomorphism. 

Proof of (UF18) =? (UF19) .  Just modify the proof of (AC3) =? (AC21 )  given in 17.16. 
If each YA is a compact Hausdorff space, then each SA is a singleton, and so the Axiom of 
Choice is not needed to prove fLEA SA i s  nonempty. 

Proof of (UF19) =? (UF20) . Let I = [0, 1] and let C(X, J )  = {continuous functions 
from X into 1} .  Any x E X determines an evaluation mapping T.T : C(X, I) ---> I, defined 
by Tx (J) = f(x) for each f E C(X, I ) . Use the fact that X is a completely regular 
Hausdorff space, to show that the mapping x f---> T.r from X into IC(X.I )  is injective and is 
a homeomorphism onto its range. Identifying X with its image, we may view X as a subset 
of IC(X.I ) . By (UF7) , IC(X.I )  is a compact Hausdorff space. Let (3(X) be the closure of X 
in IC( X.I ) ; then (J(X)  is compact and X is a dense subset. 

The uniqueness of the extension F follows from the fact that X is dense in (J(X) .  To 
prove the existence of the extension F, let any continuous f : X ---> K be given. Whenever 
'P E C(K, J) , then 'P o  f E C(X, J) . Hence, if A is any mapping from C(X, J )  into I ,  then 
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'P f---7 >.(�.p o f) is a mapping from C(K, I) into I , which we shall denote by F(>.) . The 
mapping >. f---7 F(>.) , from JC(X, I) into JC(K, I) ,  is easily seen to be a continuous extension 
of f. Moreover, F((3(X))  = F(cl (X))  s;;; cl(F(X) )  = cl(f(X)) s;;; K. 

The equivalence of (UF19) with other forms of UF apparently was first proved by Los 
and Ryll-Nardzewski [1954] . However, the proof given above is based on Mycielski [1964] . 

Proof of (UF20) =} (UF21 ) .  Let A be any set, and let X =  2A be equipped with the product 
topology. Let (3(X) be its Stone-Cech compactification. Then each coordinate projection 
n.x : X ---> 2 (for >. E A) extends uniquely to a continuous function P.x : (3(X) ---> 2. Define 
a mapping P : (3(X) ---> 2A coordinatewise, so that Jr_x o P = P_x . Then P is a continuous 
function from the compact space (3(X) onto X. By 17.7.h, X is compact. 

The equivalence of (UF20) with other forms of UF was apparently first announced by 
Rubin and Scott [1954] ; the proof given here is based on Gillman and Jerison [1960] . 

Proof of (UF21)  =} (UF1 )  (based on Mycielski [1964] ) .  Let X be any given set, and let 
£0 be a given proper filter on X ;  we wish to show that £0 is included in an ultrafilter. Let 
� = {subsets of X} .  Then P(�) = {subsets of �} may be identified with 22: = {mappings 
from � into {0, 1 } } ,  as usual. Any :1 E P(�) = 22: is a collection of subsets of X ,  and 
any S E � is a subset of X.  Let 22: have the product topology; then the Sth coordinate 
projection ns : 22: ---> 2, defined by 

ns (:T) { � if S E :1 
if s tJ. :1, 

is continuous (as with any product topology) .  Now define the sets 

D 
E 

fs 

for each S s;;; X .  Show that 

:1 is a proper filter on X} ,  

:1 � Eo } ,  and 

S E :1 or X \ S E :f} 

D n {:f E 22: 
7rA (J")ns (:T) - 7rAns (:f) = 1r0 (:f) = 0} ,  

A,B<;;:X 

E n {:r E 22: [1 - 7rA(J")];rA (£o)  = 0} , and 
A<;;:X 

fs {:f E 2� ns (:T) + nx\s(:T) 2 1 } .  

Since the ;r 5 ' s  are continuous, conclude that D,  E ,  f s are closed. Hence <J> s = D n E n f s 
is also closed . 

. Note that <J>s = {:1 : :1 is a proper filter on X that includes £0 and contains at least 
one of S or X \ S} .  Using 5.5. i and the "Finite Axiom of Choice" (in 6 . 14 ) ,  show that 
the collection of closed sets { <J> 5 : S s;;; X}  has the finite intersection property. By our 
assumption of (UF21 ) ,  22: is compact ; hence there exists some :1 E nscx <J>s.  Then :1 is an 
ultrafilter extending Co . 

-
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17 .23. Corollary ( optional) .  Let X be a topological space. Then X has a Hausdorff 
compactification (i .e . , X is homeomorphic to a dense subset of a compact Hausdorff space) 
if and only if X is a Tychonov space (defined as in 16. 17) . 

17.24. Proposition ( optional) .  Let X be a chain, equipped with the interval topology (as 
defined in 5 . 15 .f) .  Then X is a T4 space (i.e. , a normal Hausdorff space) .  

Proof (taken from Gillman and Jerison [1960] ) .  Any order convergence is Hausdorff, as we 
noted in 7.40.g. We shall show that X is completely regular, and use that fact to help us 
prove X is normal. 

Let Y be the MacNeille completion of X, as described in 4.36.c. Then Y is a chain that 
is order complete. Let Y have the interval topology. By 17.8, Y is a compact Hausdorff 
space. Hence Y is a Tychonov space - i.e. , a T3.5 space. Any subspace of a Tychonov 
space is another Tychonov space, when equipped with the relative topology. By 15 .46.b, 
the relative topology on X coincides with the interval topology. Thus, X is a Tychonov 
space. 

To show X is normal, let any disjoint closed sets A, B be given. We shall define a 
continuous function 'P : X --> [0, 1] that takes the value 0 on A and 1 on B. It suffices 
to show how to define 'P on the open set G = X \  (A U B) .  Let {G>. : A E A} be the 
convex components of G, as defined in 4.4.a(ii ) .  Those components are also open, as noted 
in 15.35.c . We shall define 'P separately on each G>,. 

Each G >. is a convex open subset of the chain X .  Since the G >. 's are disjoint open sets, 
we have cl(G>. ) \ G>. � A U B .  We claim that, moreover, 

cl(G>. ) \ G>. contains at most two points. 

To see this, suppose x1 , x2 , x3 are three distinct points of cl(G>. ) \ G>,; say x1 < x2 < x3 . 
Since G>. is convex and the x; 's do not belong to G>,, no X; can lie between two members of 
G >. .  Thus each x; must lie above or below all of G >. .  Hence at least two of the x; 's (perhaps 
all three) lie on the same side of G >. .  Say x1 , x2 both lie below all members of G >. (the 
proof is similar for the other case) . Then x1 lies in the open set { u E X : u < x2 } ,  which is 
disjoint from G>, , contradicting the assumption that x1 E cl(G>. ) .  This proves our claim. 

To make 'P continuous, it suffices to define 'P on each open set G >. so that (i) 'P is 
continuous at each point of G>, , and (ii) if (xn ) is a net in G>. which converges to some 
point z E cl(G>. ) \ G>,, then 'P (xn ) --> 1p(z) . 

If cl(G>. ) \ G>. is empty or contains only points of A, take 'P = 0 on G>,. If cl(G>. ) \ G>. 
contains only points of B, take 'P = 1 on G >. .  

Finally, suppose cl( G >. )  \ G >. consists of one point z0 E A and another point z1 E B .  Since 
X is completely regular, there exists a continuous function 'P >. : X --> [0, 1] that vanishes on 
all of A and satisfies 'P >. ( zl ) = 1 .  Take 'P = 'P >. on G >. .  This completes our construction of 
ip, and our proof of the normality of X .  

17.25. Compactness in logic ( optional ) .  We now explain why the term "compactness" 
is used in naming the Compactness Principle of Sentential Logic, (UF16) in 14.61 .  This 
explanation follows Johnstone [ 198 7] . 

Our terminology follows that of 14.24 and 14.51 .  Let 'Y be the collection of primitive 
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propositions for a sentential calculus, and let 'J be the collection of all sentences (i .e . ,  
compound propositions formed from elements of ::P) . 

An interpretation of the language is an assigning of "true" or "false" to each member 
of ::P. By labeling "true" and "false" respectively as 1 and 0, we may identify the set of all 
interpretations with the set 2::P . For each T E 'J, define the set 

U(T) {! E 2::P
: f (T) = 1 } {models of T} .  

Show that 

a. Each U(T) is nonempty. This can be proved by considerations of finite Boolean alge
bras, without use of the Axiom of Choice or any of its weaker relatives. 

b. U(T1 )  n U(T2 ) = U(T1 1\ T2 ) .  

c. 'B = {U(T) : T E 'J} i s  a base for a topology on 2::P. (Recall the relevant definitions 
and properties in 15.35 and 15.36. Thus each open subset of 2::P is a union of U(T)'s . )  

d. The topology determined by that base is the same as the product topology, where 2 
has the discrete topology. 

Hints : Refer to the characterizations of convergences in 15.25.b and 15.36.d. We 
have fa ----+ f in the topology determined by the base 'B if and only if 

( *) for each T E 'J such that f (T) = 1, we have eventually fa (T) = 1 .  

On the other hand, fa ----+ f in the product topology i f  and only if 

(**) for each P E ::P, we have fa (P) ----+ f(P ) .  

To see that ( * ) =} ( ** ) ,  use either T = P or T = -,p, depending on whether f(P) is 
1 or 0. To see that (**) =} (* ) , let P1 , P2 , . . .  , Pn be the primitive propositions used 
in forming T; then for all a sufficiently large we have fa (P1 )  = f(P1 )  for all j, and 
therefore (since fa and f are Boolean homomorphisms) fa (T) = f(T) . 

e. Let � � 'J. Show that � is unsatisfiable (that is, � implies a contradiction in each 
interpretation of the language) if and only if {U(-,T) : T E �} is a cover of 2::P. Note 
that it is then an open cover. 

f. Show that the Compactness Principle (UF16) is equivalent to the statement that the 

product topology on 2::P is compact - i.e. ,  that every open cover of 2::P has a finite 
subcover. 

COMPACTNESS ,  MAXIMA , AND SEQUENCES 

17.26. Definitions: A few more kinds of compactness. 
a. A topological space X is pseudocompact if either of the following equivalent condi

tions holds: 

(A) Every continuous function from X into lR is bounded above. 
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(B) Every continuous function from X into [-oo, +oo] assumes a maximum 
on X .  

Clearly, any compact space i s  pseudocompact. 
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Proof of equivalence. Obviously (B) =? (A ) .  For (A) =? (B) ,  let f : X ____, 
[-oo, +oo] be continuous. We may replace f (x) with max{O, f(x) } ;  hence we may 
assume f � 0. Let u = sup f(X) .  If u is merely a supremum, and not a maximum, 
define g :  X ----> [0, +oo) by g(x) = tan (Irj(x)j2u). Show that g is continuous but not 
bounded above. 

b. A topological space X is countably compact if any of the following equivalent con
ditions holds: 

(A)  Every covering of X by countably many open sets has a finite subcover. 

(B) If F1 =2 F2 =2 F3 =2 · · · , where the F; 's are nonempty closed sets, then 
n�1 F; is nonempty. 

(C) Every sequence in X has a cluster point , i .e . ,  has a convergent subnet . 

Proof of equivalence. For (A)  =? (B) , show that if n�1 F; = 0, then the sets G; = 

X \  F; form a countable open cover with no finite subcover. For (B) =? (C) , the set of 
cluster points of any sequence (xn) is the set n�l cl( {x; , Xi+] , Xi+2 ,  . . .  } ) , by 15.38. For 
(C) =? (A) ,  if { G 1 ,  G2 . G3 ,  . . . } is a countable open cover of X with no finite :subcover, 
form a sequence (xn ) with no cluster point by choosing Xn E X \ (G1 U G2 U · · · U Gn) · 
(Thi:s u:se:s Countable Choice, not the full :strength of AC. )  

c. A topological space X i :s  sequentially compact i f  every sequence in  X has a conver
gent sub:sequence - or equivalently, if every :sequence in X ha:s a convergent subnet 
that happen:s to be a sequence. (Thi:s equivalence follows from 7.27 or 15 .40. )  

17.27. Proposition. The product of countably many sequentially compact :space:s (when 
equipped with the product topology) i:s :sequentially compact. 

Remarks and proof. The argument u:sed here i:s a diagonal subsequence argument. A 
similar argument i:s u:sed in several other contexts in mathematics. 

Let Y1 , Y2 . Y3 , . . .  be :sequentially compact :space:s; we wish to show X = TI�=l  Yn is se
quentially compact. Let 7r11 : X  ____, Y,, be the nth coordinate projection. Let (x 1 , x2 , x3 , . . .  ) 
be a given sequence in X; we wish to produce a convergent sub:sequence ( Vk ) .  Recursively 
define U11 .j 's in X as follows. For j = 1 , 2 , 3 , . . . , let uo.J = xy . Now, after a sequence 
(u11 - 1 . 1 , Un- 1 .2 ,  Un-L:J ,  . . .  ) ha:s been specified in X ,  let (un. l ,  Un. 2 ,  Un .3 , . . .  ) be a sub
sequence of it with the property that the :sequence (Irn (un.d ,  Irn (un.2 ) ,  Irn (un.3 ) ,  . . .  ) ito 
convergent in Y,, . This completes the recursion. Now define a diagonal subsequence 
uk = u �c . k  (k = 1 ,  2, 3, . . . ) . For each n, verify that (v7, Vn+l ,  Vn+2 •  . . .  ) is a subsequence of 
(u, . l ,  Un .2 · Uu .:J , . . .  ) ,  and therefore the sequence (Irn (vl ) ,  7rn (v2 ) ,  1rn (v3 ) ,  . . .  ) is convergent 
in Yn · 

17.28. Proposition. If card(U) � card(IR.) , then 2u is not sequentially compact. 
Proof. Let 1r1 : Nl\1 ____, N be the jth coordinate projection, so Irj ( a1 , a2 , a3 • . . .  ) = aj . Let 

A = {strictly increasing sequences of positive integers} .  Let En = {a E A : n occurs at an 
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even position in the sequence a} = U%"=1 7f2k1 (n) . 
Any member of A may be viewed as a subset of N; thus card(A) = card(P(N)) = 

card(JFt) :::; card(U) . Let cp : A ---+ U be some injective function. Define a sequence Un) in 
2u by taking fn : U ---+ {0, 1 }  to be the characteristic function of the set cp(En ) ·  We claim 
that Un) has no convergent subsequence. 

Indeed, let Un1 ) be any subsequence of Un) · Then (nJ ) is a member of A. Let us denote 
it by a, and let u = cp(a) .  Observe that 

u E cp(EnJ {=::;> a E En1 
{=::;> nJ = n2k for some k {=::;> j is even, 

since the functions cp and j ....__. nj are injective. Thus the sequence (! n1 ( u) : j E N) does not 
converge. This proof follows the presentation of Wilansky [ 1970] . 

17.29. Example of the inadequacy of frequent subnets. In 7. 19  and 15.38 we saw that 
Willard subnets, Kelley subnets, and AA subnets can be used interchangeably for most 
purposes in topology. We now show that frequent subnets (defined in 7. 16.c) cannot be 
used interchangeably with those other types of subnets. 

Let X be any topological space that is compact but not sequentially compact (e.g. , the 
space in 17.28) . Let (xn ) be a sequence in X that has no convergent subsequence. Then 
(xn) has a convergent subnet (u{3) · Any frequent subnet of (xn )  is a subsequence (see 
7. 16 .d) .  Any net that is equivalent to (u{3) must have the same limit(s) as (uf3 ) ·  Thus, (uf3) 
is a subnet of (xn ) ,  but it is not equivalent (in the sense of 7. 1'l.c) to a frequent subnet of 
(xn ) .  

Other examples of the inadequacy of frequent subnets have been given by Wolk [ 1982] 
and other papers cited by Wolk. 

17.30. Relations between different kinds of compactness. 
a. Any countably compact, first countable space is sequentially compact . (Recall that 

a topological space is first countable if the neighborhood filter at each point has a 
countable filter base. )  Hint :  15 .34.c. 

b. Any countably compact space is pseudocompact . 
Hint :  Let f :  X ---+ 1Ft be continuous; consider whether the set n�=l {x E X :  f(x) 2: 

n}  is nonempty. 

c. ( Optional.) Any paracompact, pseudocompact space is compact. 
Proof Suppose X is paracompact but not compact . Let 9 = {Ga : a  E A} be an 

open cover with no finite subcover. Let {!a : a E A} be a partition of unity that is 
precisely subordinated to the given cover. Then the sets Ha = {x E X :  fa (x) i= 0} � 
Ga also form an open cover with no finite subcover. Recursively choose a sequence (xn )  
in  X and a sequence (a(n))  in A such that Xn t/. Ha(l )  U · · · U Ha(n- 1 )  and Xn E Ha(n) · 
Define 

g(x) 
f fn(n) (x) 

n=l 
n 

fa(n) (xn )
. 

Then g : X ---+ 1Ft is continuous but g(xn ) 2: n ,  so X is not pseudocompact. 
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17.31. Remarks. We have considered three types of compactness that can be described in 
terms of convergences. A topological space is 

compact if every net has a convergent subnet ; 

countably compact if every sequence has a convergent subnet ; 

sequentially compact if every sequence has a convergent subsequence. 

It is easy to see that any compact space is countably compact, and any sequentially compact 
space is countably compact. In general, no other implications hold between these three kinds 
of compactness - the example in 17.38 shows that sequential compactness does not imply 
compactness, and the example in 17.28 shows that compactness does not imply sequential 
compactness. However, under certain additional hypotheses, all three kinds of compactness 
are equivalent, as we shall see in 17.33 and 17.51 . 

Optional. It is interesting to consider a fourth type of compactness. Say that a topological 
space is 

supersequentially compact if every net has a convergent subnet that is a 
sequence. 

Clearly, this implies the other three kinds of compactness. Supersequential compactness is 
not necessarily a useful notion; we introduce it only to illustrate certain ideas about subnets. 
It turns out that supersequential compactness depends, not on the topology of X, but only 
on the cardinality of X and on which definition of "subnet" we use. Let X be a nonempty 
set. Then: 

a. If we use Aarnes-Anden<Bs subnets, then every finite set X is supersequentially com
pact, no matter what topology we equip it with. Indeed, if (x, : a E A) is a net in a 
finite set X, then there is at least one point p E X such that the constant sequence 
(p, p, p , . . .  ) is an Aarnes-Anden<Bs subnet of (xa : a  E A) . The sequence (p, p, p, . . .  ) 
converges to p, no matter how X is topologized. 

b. If X is an infinite set, or if we use Kelley subnets, then X is not supersequentially 
compact. In fact, regardless of convergences, there exists a net ( .r" ) in X that has no 
subnets that are sequences; this was established in 7.28. 

17.32. Lebesgue's Covering Lemma. Let (X, d) be a compact metric space - or more 
generally, a countably compact pseudometric space. Let { G A : ,\ E A} be an open cover of 
X. Then there exists a number p > 0 with the following property: Each open ball B(x, p) 
is contained in one of the G A 's. (Such a number p is called a Lebesgue number for the 
covering. ) 
Proof. Suppose there is no such p. Then there exist open balls B(xn, Pn ) with Pn l 0, and 
such that B(xn,  p, ) is not contained in any GA. The sequence (xn ) has a cluster point z in 
X. Since {GA }  is an open cover, we have B(z, r) c:;; G11 for some r > 0 and J1 E A. Since z is 
a cluster point of ( :J:71 ) , there exist n's arbitrarily large with X71 E B( z, �r) . For sufficiently 
large n we have also Pn < �r, and hence B(xn , Pn )  c:;; B(z, r) c:;; G11 1 a contradiction. 
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Remarks. The existence of Lebesgue numbers does not imply compactness, even in a metric 
space. For instance, let Z = {the integers} have its usual metric; then Z is not compact but 
every open cover of Z has a Lebesgue number. The existence or nonexistence of Lebesgue 
numbers is discussed further by Arala-Chaves [1985] . 

17.33. Theorem (Gross and Hausdorff, 1914) . Let X be a pseudometric space. Then 
the following conditions are equivalent . 

(A) X is compact - i.e. , every net has a convergent subnet. 

(B) X is sequentially compact - i.e. ,  every sequence has a convergent subse
quence. 

(C) X is countably compact - i.e . ,  every sequence has a convergent subnet. 

(D) Every upper semicontinuous function from X into [-oo, +oo] assumes a max
Imum. 

(E) X is pseudocompact - i.e. ,  every continuous, real-valued function assumes a 
maximum. 

Proof The implications (A) =? (C) and (B) =? (C) and (D) =? (E) are obvious. The 
implication (C) =? (B) is a special case of an exercise in 17.30.a. The implication (A) =? 
(D) is an easy result that was noted in 17.7.i . We proved (C) =? (E) in 17.30.b. We shall 
complete the proof in two different ways, according to the background of the reader. If the 
reader is familiar with paracompactness and Stone's Theorem ( 16.31 ) ,  then (E) =? (A) 
follows from 17.30.c, and we are done. For readers not familiar with Stone's Theorem, we 
shall give more elementary proofs of (E) =? (B) and (C) =? (A) below. 

Outline of (E) =? (B) .  Assume (E) , and suppose (xn )  is a sequence in X with no convergent 
subsequence; we shall obtain a contradiction. Replacing (xn )  with a subsequence, we may 
delete repetitions - i.e. , we may assume the Xn 's are all distinct. For each n, since Xn is not 
a limit of a subsequence of the sequence, the number rn = � infm#n d(xn , Xm) is positive. 
Hence the balls B(xn , rn) are all disjoint. Let 

f (u) { {0 1 
d(u, xn ) } 

n max , -
rn 

0 

Show that f is continuous and not bounded above. 

when u E B(xn , rn ) (n E N) 

when u t/: U�=ol B(xn , rn ) · 

Outline of (C) =? (A) . Let { G >. : >. E A} be any open cover of X .  Let p be a Lebesgue 
number for the cover (see 17.32) .  Each open ball B(x, p) (for x E X)  is contained in 
some G>. , so it suffices to show that X can be covered by finitely many of the B(x, p) 's. 
Suppose not. Recursively choose (using (DC2) , in 6 .28) a sequence (xn ) in X such that 
Xn+I tf:- B(x1 , p) U B(x2 , p) U ·  · · U B(xn , p) .  The sequence (xn )  has some cluster point z E X. 
The open ball B(z,  �p) is a frequent set for the sequence (xn ) ,  so it contains Xm , Xn for some 
distinct numbers m and n. Then d(xm , Xn) < p, a contradiction. 

17.34. Proposition. Any compact pseudometric space is separable. 
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Proof. The open balls of radius � form an open cover; hence the space X can be covered 
by finitely many of them. Say 

Then {xn,j : n E N, 1 � j � kn } is a countable dense subset of X .  

17.35. Existence of a closest point. Let (X, d )  be  a pseudometric space. Let K � X be  a 
compact set (or, more generally, a pseudocompact set) . Let x E X \  K. Then there exists at 
least one point in K that is closest to x .  That is, there exists some q E K (not necessarily 
unique) such that d(x, q) = dist (x,  K).  

Hint :  The function q f---+ d(x, q) i s  continuous and real-valued. 
Remark. Other conditions for existence and/or uniqueness of a closest point will be 

given in 22.39 (D ) ,  22.45, and 28 .41 (E) .  

17.36. Fundamental Theorem of Algebra. Let P(z) be a polynomial of degree n > 0 
with complex coefficients - i.e. , suppose that 

where the ak 's are complex numbers, n > 0, and an -1- 0.  
Then P(z) has a root in  the complex numbers -- i.e. , we have P(() = 0 for some ( E C. 

Proof. Show that P is continuous. Also, show that limlz l�= IP(z) l = oo (that is, show 
limr�oc inf{ IP(z ) l  : z E C, l z l  2': r} = oo) . From these two facts, plus the fact that closed 
bounded subsets of C are compact, conclude that I P( · ) I  assumes a minimum at some point 
( E C. Replacing the function P(z) with the function P(z + () , we may assume ( = 0 -

that is, we may assume IP(O) I  � IP (z ) l  for all complex numbers z .  We wish to show that 
P(O) = 0 .  

We may assume P(O) = a0 -1- 0. Let k be the first positive integer for which ak -1- 0; 
thus P(z) = a0 + akzk + zk+1 Q(z) for some polynomial Q. As in 10 .29, the nonzero number 
-a0/ak has n distinct nth roots in C;  let w be any one of those. Since Q is continuous, for 
l t l  sufficiently small we have 1 twk+ 1Q(tw) l < l ao l · Choose such a value of t ,  satisfying also 
0 < t < 1 . Then 

I P(tw) l l ao + ak (tw) k + (tw)k+ 1Q(tw) l = 1 ( 1 - tk)a0 + (tw)k+1 Q(tw) l 

< ( 1 - tk ) l ao l  + tk 1twk+ 1Q(tw) l < ( 1 - tk ) l ao l + tk l ao l  = IP (O) I ,  

a contradiction. 
This proof goes back at least as far as Argand ( 1806) . It has been rediscovered many 

times; some references are given by Brualdi [ 1977] . 

Corollary. Let P(z) be a polynomial of degree n with complex coefficients. Then P(z) = 

an (z - (r ) (z - (2 ) · · · (z - (n ) for some complex numbers (r , (2 , . . . , (n · 
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PATHOLOGICAL EXAMPLES : ORDINAL SPACES 
( OPTIONAL) 

17.37. Let 0 be the first uncountable ordinal. (see 5.44) ; thus 0 is the set of all countable 
ordinals. Let 0 be equipped with its usual ordering. Also, let K = 0 U { ( }  for some object 
( that is not a member of 0; make K into a chain by taking w < ( for all w E 0. 

Let the sets 0 and K be equipped with their interval topologies (see 5. 15 .£) ;  thus they 
are normal Hausdorff spaces (see 17.24) .  We shall use these and related spaces for some 
pathological examples - e.g. , to show that paracompactness is not hereditary or productive. 
Such results are not really essential to abstract analysis; they are included here merely to 
round out our introduction to general topology. 

(We remark that the particular choice of ( does not matter, so long as ( rf. 0. Hence 
we may take ( = 0, and thus K = 0 u {0} is the next ordinal after 0; this is customary 
in the study of ordinals. However, we shall not specify ( in that fashion, because it is not 
necessary to do so for the purposes below, and it may be distracting to have 0 appearing 
as both an element and a subset of K.)  

This presentation i s  based on Steen and Seebach [1970] . 

17.38. Basic properties. With 0 and K as above: 

a. 0 is an initial ordinal (see 5.47) , hence a limit ordinal (see 5.46.j ) ,  hence has no greatest 
element . 

b. Any sequence in 0 has a supremum in 0. 
Proof The supremum of any collection of ordinals in 0 i s  their union. If (xn ) is a 

sequence in 0, then U�=l Xn is a countable union of countable sets, SO it is countable 
(see 6.26) . Thus it is a countable ordinal, and hence a member of 0. 

c. A neighborhood base for the point ( in the space K is given by the sets of the form 
Nw = {x E K :  X >  w} ,  for points w E  0. 

d. 0 i s  dense in K (hence our notation) .  
Proof For each w E 0, there i s  some strictly larger element w' E 0; then w' E 

Nw n 0. Thus the set 0 meets every neighborhood of the point (. 

e. K is compact, but 0 is not compact. 
Proof K is order complete, but 0 is not order complete. Now apply 17.8. 

f. 0 is first countable, but K is not. 
Proof Let any X E 0 be given. Then a neighborhood base at X is given by the sets 

{ w E 0 : w > v}  for points v < x (of which there are only countably many) and the 
set { W E 0 : w < x+ } , where x+ is the first element after X. 

The space K is not first countable, because ( does not have a countable neighbor
hood base. Indeed, if (Bj : j E N) were such a basis, then each Bj would have to 
contain some set of the form Nw(j ) · Since K is a Hausdorff space, the sole member of 
n;:l Nw(.i ) is the point (. Let (J be the supremum of the w(j ) 's, and let T be some 
strictly larger member of 0. Then T E n�l Nw(j) ? a contradiction. 
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g. D is countably compact . 
Proof. Let (xn ) be a sequence in D, and let a be its supremum. Then (xn ) is also 

a sequence in the smaller ordinal { w E D : w :::; a} ,  which is compact by 17.8, hence 
countably compact . Thus (xn ) has a subnet that converges to a limit in {w E D :  w :::; 
a} , hence in D. 

h. n is pseudocompact, sequentially compact, and normal, but not paracompact. 
Proof. 17.30.b, 17.30.a, 17.24, and 17.30.c. 

17.39. Proposition. Let D and K be as above. Then D x K, with the product topology, 
is T3.5 but not normal. 

Proof. The notation (x, y) will refer to ordered pairs, not intervals. 
Both n and K are T:l.c> spaces, hence are K X K and n X K. The set { (X' X) : X E K}  

is closed in K x K, hence the set A =  { (a,  a) : a E D} =  { (x , x) : x E K} n (D x K) is 
closed in n X K. Also the set B = D X { (} is closed in D X K. These two closed sets are 
disjoint . Suppose that there exist disjoint open sets u ::2 A and v ::2 B ,  in n X K; we shall 
obtain a contradiction. 

For each x E D, we have (x, () E B c:;; V, hence (x, () � cl(U) .  Therefore the set 
{ ( x, A) : x < A < (} is not contained in U. Let A ( x) be the first member of D that satisfies 
:r < A and (x, A) � U. 

Let x0 be the first member of D, and thereafter let Xn+ l = A(xn ) . The sequence (xn ) 
has a supremum a in D, as we noted in 17.38. Since A(x) > x for each x, the sequence (xn ) 
is increasing, and therefore converges to a. Hence (xn , Xn+l )  ----+ (a, a) E A c:;; U. However, 
(x, . x,+ J ) is in CU ,  which is a closed set. This is a contradiction. 

17.40. CorollaTies. 
a. n x K is not normal, but it is a subset of the compact Hausdorff space K x K. Thus 

neither normal nor paracompact is a hereditary property. 

b. n x K is a product of two normal spaces, but it is not normal . Thus the property of 
being normal is not productive. 

BOOLEAN SPACES 

17.41. Definitions. Recall that a set is  clopen if i t  is  both closed and open. A topological 
space is zero-dimensional if it has a base consisting of clopen sets -- i .e . ,  if every open 
set can be expressed as a union of clopen sets. 

A Boolean space (or Stone space) is a zero-dimensional, compact Hausdorff space. 
RernaTks. Such a prevalence of clopen sets may seem highly pathological to analysts, 

since the topological spaces X most commonly used by analysts have no clopen subsets other 
than 0 and X itself. However, Boolean spaces are useful in logic and related topics. Also, 
zero-dimensional spaces (not necessarily compact) will be studied further in Chapter 20 
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where they will be useful in the study of certain spaces that are not zero-dimensional; see 
especially 20.27 through 20.30. 

17.42. Examples. 
a. Any set with the discrete topology is a zero-dimensional space. Any finite set with the 

discrete topology is a Boolean space. In particular, 2 = {0, 1 }  is a Boolean space. 

b. Any subset of a zero-dimensional space is zero-dimensional, when equipped with the 
relative topology. Any closed subset of a Boolean space is a Boolean space. 

c. The set IQ = {rational numbers} ,  topologized as a subset of JR., is a zero-dimensional 
space. A clopen base for it is given by the intervals (a , b) n IQ for irrational numbers 
a, b. 

d. The set lR \ IQ = { irrational numbers} ,  topologized as a subset of JR., is a zero-dimensional 
space. A clopen base for it is given by the intervals (a , b) n (JR.\  IQ) for rational numbers 
a ,  b. 

e. Any product X =  TIA YA of zero-dimensional spaces is zero-dimensional. 
Hints : For each >.,  let �A be a base for the topology of YA consisting of dopen sets. 

Show that a clopen base for the product topology on X is given by the sets of the form 

(TIAEF BA) x (TIAEA\F YA) where F is a finite subset of A and each BA is a member 

of �A·  

f. Further examples are given by these two principles, which are both equivalent to  the 
Ultrafilter Principle: 

(UF22) Any product of Boolean spaces is a Boolean space. 

(UF23) 2A is a Boolean space, for any set A. 
Proof of equivalence. Refer to 17.22. It is easy to see that (UF19) ::::} (UF22) ::::} 
(UF23) ::::} (UF21 ) .  

g .  ( Optional. ) Let a be some ordinal, and let X = { x :<:::: a : x i s  an ordinal} .  Let X have 
the order interval topology (described in 5 . 15.£) .  Then it can be shown that X is a 
Boolean space. We omit the proof. 

17.43. The remainder of this subchapter is optional; it will not be used later in this book. 
In the sections below we shall show that the categories of 

Boolean spaces (with continuous maps) 

and 
Boolean algebras (with Boolean homomorphisms) 

are dual to each other, in the sense of 9.55. All of the conclusions stated below are conse
quences of the Ultrafilter Principle and its various equivalents. 

17.44. Definitions of the dual objects. For the set � described in 9.55, we shall use 
2 = {0, 1 } ,  which may be viewed both as a Boolean algebra (with the obvious ordering 



Boolean Spaces 475 

0 < 1) and as a Boolean space (with the discrete topology) . Thus, for any object X in 
either category, the dual set is 

X* { morphisms from X into 2} .  

The dual of a Boolean algebra A is the set of two-valued homomorphisms on A, 
defined as in 13.19. It is a subset of 2A = {maps from A into {0, 1 } } .  We equip 2A with 
the product topology and equip A* with the resulting relative topology. We know that 2A 
is a Boolean space (see (UF23) , in 17.42.f) ,  and it is easy to show that A* is a closed subset 
of 2A ( exercise ) .  Thus, by 17.42.b, A* is a Boolean space. Recall from (UF5) that A* 
separates points of A. 

The simplest way to define the dual of a Boolean space S is  to use clop(S) ,  the algebra 
of clopen subsets; this is an algebra of sets, and thus a Boolean algebra with fundamental 
operations U, n, C, 0, S. However, for our study of duality, it will be convenient to replace 
those clopen sets with their characteristic functions. Thus, the dual of a Boolean space 
S is defined to be the set 

S* {characteristic functions of clopen subsets of S} 

{continuous functions from S into { 0, 1 } } .  

(Exercise. Prove those two sets are equal; here {0, 1 }  has the discrete topology, as usual . )  
The Boolean algebra S* has smallest and greatest elements equal to  the constant functions 
0 and 1; its other fundamental operations are 

f V g = max{f, g} ,  f 1\ g  = min{f, g} ,  Cf = 1 - f. 

Since S is a Boolean space, it is easy to see that S* separates points of S .  

17.45. Dual morphisms. Let X and Y be objects in either category (Boolean spaces or 
Boolean algebras) , and let f :  X -+ Y be a morphism in that category (i .e . , a continuous map 
or a Boolean homomorphism) .  Then we may define a corresponding function f* : Y* -+ X* 
as in 9.55, called the dual of j, by defining f*(>.) = ).. o f :  X -+  2 for each ).. : Y -+  2 in Y*. 
We shall show that it is a morphism in the other category. Thus the mappings X f-+ X* 
and f f-+ f* define a contravariant functor. 

a. If f : X -+ Y is a Boolean homomorphism between Boolean algebras , then f* : Y* -+ 
X* is a continuous map; that is just a special case of 15 .26.d. 

b. If f : X -+ Y is a continuous map between Boolean spaces, then f* : Y* -+ X* is the 
restriction to Y* of the inverse image map f- 1 : P(Y) -+ P(X) that was defined in 
2 .8 and studied further in 9.32. As we saw in 2.8, the inverse image map preserves all 
the basic set operations, and so it is a homomorphism of algebras of sets. Thus it is a 
Boolean homomorphism. Then its restriction f* is, too. 

17.46. Reflexivity. Let X be an object in either category. Then X* is a collection of 
mappings from X into 2 = {0, 1 }. Conversely, each x E X may be viewed as a mapping Tr 
from X* into 2 ,  defined by Tr(f) = f (x) .  Since X* separates points of X,  the members 
of X may be viewed as distinct mappings from X* into 2. Thus T may be viewed as an 

inclusion X --S 2x* . We shall show that 
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each mapping Tx : X* ---7 2 is actually a morphism, and thus a member of X** ,  
so  that T maps X into X** .  Moreover, T is  a morphism in the category in 
which X and X** are objects. In fact, T is an isomorphism from X onto X** .  

a .  First , suppose X is  a Boolean algebra; thus its dual X* is  a Boolean space and X** 
is  another Boolean algebra. If  we unwind the notation, we find that 

Tx : X* ---7 2 is the characteristic function of the set S(x) � X* defined by 
the Stone map S : X ---7 6 as in 13 .21 .  

S is  an isomorphism of Boolean algebras, from X onto 6 = Range(S ) ,  by (UF6) .  
Thus, i t  remains only to show that a subset of  X* is  clopen i f  and only i f  i t  belongs to 
6 .  

First we show that every member of 6 is clopen. It is easy to show that each 
mapping Tx is continuous from X* into 2 - e.g. , by considering the product topology 
on 2x characterized in terms of convergence of nets in 2x . Hence each set S(x) = 
T; 1 ( 1 )  is the inverse image, under a continuous map, of a clopen set; hence each S(x) 
is clopen. 

Finally, we shall show that any clopen subset of X* belongs to 6. For each x E X, 
let 1rx : 2x ---7 2 be the xth coordinate projection. Each 1rx is continuous, hence each 
set of the form 1r; 1 (0) or 1r; 1 ( 1 )  is clopen. A basic rectangle in 2x is an intersection of 
finitely many of these sets; hence it is also clopen. The basic rectangles form a base for 
the topology of 2x ; hence 'B = { B n X* : B is a basic rectangle in 2x } is a base for the 
topology of X* .  Observe that S(x) = 1r;1 ( 1 )  n X* and S(Cx) = CS(x) = 1r; 1 (0) n X* 
and 

S(x l )  n S(xz) n · · · n S(xn) S (x1 1\ Xz 1\ · · · 1\ Xn) ;  

hence each member of 'B can be written in the form S(x) for some .T E X. Since 'B is 
a base for the topology of X*,  each open subset of X* is a union of S(x) 's. Since X* 
is compact, any clopen subset of X* is compact, and therefore is a union of finitely 
many of the S(x) 's. But also 

S(xl ) U S(xz) U · · · U S(xn) S (x1 V Xz V · · · V Xn ) ,  

so each clopen subset of X* is in the range of S. 

b. Conversely, suppose X is a Boolean space. Then its dual X* is a Boolean algebra, and 
X** is another Boolean space. It is tedious but straightforward to verify that each 
mapping Tx : X* ---7 2 is a Boolean homomorphism and thus a member of X** ;  we 
omit the details. Also, the �apping T : X ---7 X** given by x f---7 Tx is continuous. 
(Hint : Use 15 . 15(E) and 15 .25.b.) 

It remains to show that T : X ---7 X** is surjective. This can be proved directly 
(using the Ultrafilter Theorem or one of its equivalents) ;  such a proof is given by Monk 
[ 1989] , for instance. However, a slightly shorter and more transparent proof in Halmos 
[1963] uses 17.46.a: Since X is compact , X** is Hausdorff, and T is continuous, the 
range of T is compact and therefore closed. Thus it suffices to show that the range 
of T is dense in X** . Since X** is a Boolean space, its clopen sets form a base. Let 
G be any nonempty clopen subset of X**; it suffices to show that Range(T) meets 
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G. The function 1c : X** --+ 2 is a member of X*** . We have already proved in 
17.46.a that any Boolean algebra is reflexive, so X* = X*** -- or, more precisely. 
X* and X*** act the same on X** .  Thus there is some clopen set C � X such 
that the mapping 1c : X --+ 2 � a member of X* � acts the same as 1c on the 
set X** .  Since G is nonempty, it follows easily that 10 is not the zero function, 
hence 1c is not the zero function, hence C is not empty. Choose any x E C. Then 
1 = 1c (x) = TJ, ( 1c )  = 1c (Tx ) ,  so Tr E G � that is, Range(T) meets G. 

17.47. Further duality results. Many properties of X correspond to properties of X* . A 
few of these results are listed below, without proof. (These results are not recommended 
as exercises; some of them are too difficult without further hints. Proofs can be found in 
Halmos [1963] , Monk [1989] , and other books and papers cited by those two books. 

Let A be a Boolean algebra and let S be a Boolean space, with A* = S and S* = A. 
Then: 

a. A is finite {==} S is finite {==} the topology on S is discrete {==} the Stone map 
(introduced in 13 .21)  is an isomorphism from A to P(Ult (A) ) ,  where Ult (A) = {Boolean 
ultrafilters in A} .  

b.  A i s  countable {==} S is metrizable. 

c. By an atom in A we mean an element x >- 0 such that {a E A : 0 -< a -< x} is empty. 
There is a natural correspondence between the atoms of A and the isolated points of 
S, as follows: If s E S is an isolated point, then the singleton { s} is a clopen subset of 
S, hence its characteristic function is a member of A; this mapping s �--+ 1 { "' }  gives a 
bijection from {isolated points of S} onto {atoms of A} .  

d. For any open set G � S and any ideal I � A, define 

G* = { 1c  : C is a clopen subset of G} , I* u C. 
C clopen, 

C � S, 1c E I 

Then the maps G �--+ G* and I �--+ I* are inverses of each other, and they give a bijection 
between the open subsets of S and the ideals in A. The maps G �--+ G* and I �--+ I* 
are both order-preserving (where order is given by �); thus they give an isomorphism 
between the lattice of open subsets of S and the lattice of ideals in A. Furthermore, 
the set S \ G = { s E S : s tf. G} (with the relative topology) is a Boolean space, and 
the corresponding Boolean algebra is isomorphic to the quotient algebra A/(G* ) .  

e .  A morphism f : X --+ Y (in either category � i .e . ,  a continuous map or a Boolean 
homomorphism) is injective if and only if J* is surjective. 

EBERLEIN-SMULIAN THEOREM 

17.48. The presentation in this subchapter is modified from Kelley and Namioka [1976] 
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and Wilansky [1970] . The results of this subchapter may be postponed; they will not be 
needed until Chapter 28. 

17.49. Proposition. Let S be a compact topological space, let (M, d) be a metric space, 
and let M5 be equipped with the product topology. Let 1> be a collection of continuous 
functions from S into M, and let ?/; : S ---> M also be continuous. Suppose that ?/; E cl( 1>) .  
Then ?/; is  a cluster point of  some sequence in 1> � i.e. , ?/; is a limit of  a subnet of  a sequence 
in 1>. 

Proof. First note that one neighborhood base at ?/; in M5 i s  given by the sets of the form 

G17 = {g E M5 : max d [?/;(si ) ,  g(si )] < .!.} lS,Sn n 
for n E N  and a =  (s1 , s2 ,  . . .  , sn ) E sn . 

Hence we may choose some '{)17 E 1> n G 17 • For any T E sn , since ?/; and 'P7 are continuous, 
the set 

is an open neighborhood of T in sn . Since sn is compact, it is contained in the union of 
the sets H T ( T E An) '  for some finite set An � sn . 

Let 1>n = {'PT : T E An} ·  Note that for each positive integer n and each a E sn , the set 
G17 meets 1>n . In fact , G17 meets 1>171 for every m :2: n, since G17, � G17 whenever a' is an 
extension of a. 

Each 1>n is a finite set, which we now arrange in any order. Form a sequence (gk ) by 
taking the element of 1>1 , then the elements of 1>2, then the elements of 1>3 , etc. Then each 
G 17 is a frequent set for the sequence (gk ) .  Since the G 17 's form a neighborhood base 'B for 
?/;, the sequence (gk ) has ?/; as a cluster point. 

17.50. Eberlein-Smulian Theorem (nonlinear version) . Let S be a compact topo
logical space and let (M, d) be a compact metric space. The product M5 will be topologized 
with the product topology; subsets of M5 will be topologized with the relative topology 
thereby determined. In particular, this applies to 

C(S, M) {continuous functions from S into M } C M5. 

Let 1> <;;: C (S, M). Then the following conditions are equivalent : 

(A) ( Iterated limit condition. ) For every net ( 'Pa : a E A) in 1> and every net 
(sr; : /3 E Iffi) in S, we have 

whenever both sides of the equation exist � i .e. , whenever all the indicated 
limits exist . 
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(B) (Sequential iterated limit condition. ) For all sequences ('Pm) in <f> and (sn ) in 
S, we have 

lim lim 'Pm ( Sn ) lim lim 'Pm ( Sn ) rn-----t:x; n-----+x n-----t:x; rn-----tx 

whenever both sides of the equation exist . 
(C) Every net in <f> has a cluster point in C(S, M). That is, <f> is relatively compact 

in C(S, M) .  

(D) Every sequence in <f> has a cluster point in C(S, M). 
(E ) Every sequence in <f> has a sequential cluster point in C(S, M) .  
(F ) cl(<f>) � C(S, M).  
(G ) For each countable set V � <f>, the set cl(V) is metrizable, and cl(V) � 

C(S, M) .  
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Remarks. Note that A15 is a compact Hausdorff space (regardless of the topology of S); 
hence a subset of M5 is compact if and only if it is closed. In particular, cl (<f>) is compact. 
Those considerations do not depend on the topology of S, but the definition of C(S, M) 
does depend on that topology, and so do the conditions listed in the theorem. In general, 
C(S, M) is not closed in M5; see 18.32.g. Note that M5 and its subsets are completely 
regular; hence 17 . 15 is applicable. 

Outline of Proof. We shall show (F) =? (C) =? (D) =? (B) =? (A) =? (F) , and also 
[(A) and (F)] =? (G) =? (E) =? (D) . 

Proof of (F) =? (C) .  M5 i s compact. 

Proof of (C) =? (D) . Obvious. 

Proof of (D) =? (B) . Show that ('Pm) has a cluster point 'P and (sn ) has a cluster point s . 
Then show that if either iterated limit exists, it is equal to tp(s) . 

Proof of (B) =? (A) . By assumption, the limits 

Pn = lim 'Po, (so ) ,  f! P= = limpa , a 

all exist in AI; we wish to show that P= = q00 • Recursively choose sequences (a(m) : m = 

1 ,  2, 3, . . .  ) in A and (jJ(n) : n = 1 ,  2, 3, . . .  ) in JB, as follows: 
Let j be a positive integer. Assume that a(m) and jJ(n) have already been selected for 

all positive integers m, n < j .  (This assumption is free when j = 1 and no selections have 
been made yet . )  Now choose some a(j) in A large enough so that 

(2) d['Pn(j ) (srJ(n) ) , qrJ (n) ]  < 1/j for all positive integers n < j .  

(Again, condition (2) i s free when j = 1 . )  Then choose some jJ(j) in lB large enough so that 
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(4) d[IPa(m) (sr>(j ) ) , Pa(m) ] < 1 /j for all positive integers m ::;  j . 

This completes the recursive definition. (We do not assert that the sequences ( IPa (m) ) and 
(s{J(n ) ) are subnets of the given nets ( IPn ) and ( s13) . )  Now apply (B) to the sequences 
(IPn(m) : m E N) and ( sf3(n) : n E N) ;  this proves Poo = q00 . 
Proof of (A) =:? (F) . Suppose 'ljJ E cl (A) , and 'ljJ is discontinuous at some point s0 E S. 
Then some net ( IPn ) in <I> converges to '1/J,  and some net ( s13 ) in S converges to s0 and satisfies 
'lj; ( s13 ) f. 'lj;( s0 ) .  Since M is compact, by replacing (s13) with a subnet we may assume that 
('1j;(s13 ) )  converges to some limit z -=f. 'l/J(s0 ) .  This contradicts (A) . Thus cl(<I>) � C (S, M) . 
Proof that (F) and (A) together imply (G) . For any s E S and ip E V, let [c (s) ] (IP) = ip(s) ;  
thus we define c (  s )  E Mv.  Observe that the "evaluation map" E : S � Mv defined in this 
fashion is continuous. Since Mv is a compact metric space, it is separable, amj. hence there 
is some countable set T � S such that c (T) is dense in c(S) . 

We now claim that 

if g, h E cl(V) and g = h on T, then g = h on S. 
To see this, fix any s0 E S. There is some net ( t13 ) in T such that E(t13 )  � E(s0 ) .  Replacing 
(trJ )  with a subnet, we may also assume (g(t!1 ) )  and (h(t(1 ) )  are convergent. By (A) , show 
that g(s0) = lim!' g(t!1) = lim!' h(t!1) = h(s0 ) .  This proves our claim. 

Now, the restriction map 9t : g f-+ g [T is continuous from M5 onto Mr. By 17. 10.c , 
that map gives a homeomorphism of cl(V) onto its image, 91( cl (V) ) , which is a subset of 
the metrizable space MT. 
Proof of (G) =:;. (E) . M5 is compact, and any compact metric space is sequentially 
compact. 

17.51 .  Corollary. Assume the conditions of the preceding theorem. Then <I> is compact 
-¢==} <I> is sequentially compact -¢==} <I> is countably compact . 

Outline of proof. Countable compactness is always implied by either of the other two kinds 
of compactness, so we may assume <I> is countably compact. Then condition (D) of the 
Eberlein-Smulian Theorem is satisfied, hence all the conditions of that theorem are satisfied. 
It now suffices to show <I> is closed, for then compactness and sequential compactness follow 
from parts (C) and (E) of the Eberlein-Smulian Theorem. 

Let 'ljJ E cl(<I>) ; we wish to show 'ljJ E <I>. By condition (F) of the theorem, we have 
'ljJ E C(S, M). By 17.49, 'ljJ is a cluster point of some sequence (IPn ) in <I>. We know cl( { IPn} )  
is metrizable , by condition (G) of the Eberlein-Smulian Theorem; hence by 15 .34.c, 'ljJ is 
the limit of some subsequence of ( IPn ) .  Since <I> is Hausdorff and countably compact, any 
sequence in <I> that converges must have its unique limit in <I>; hence 'ljJ E <I>. 
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Uniform Spaces 

18.1 .  Preview. We now resume the study of uniform spaces, which we began in Chapters 5 
and 9. Our study will also make use of material from Chapters 7 through 17; see especially 
16. 16. 

As shown in the following chart, uniform structure fits between topological structure 
and the structure provided by distances, in its degree of detail of information about objects. 
l\Iovement from right to left in this table is given by forgetful functors (discussed in 9.34 ) .  

structure: 
typical questions: 

broader T 

class of objects 1 

narrower 1 

less +----- details about the object ----> more 
topological 
Is f continuous? 
Is S compact? Is 
S topologically 
complete'? 
subset of 2x 

topology 
completely regular 
topology 
pseudometrizable 
topology 
metrizable 
topology 

uniform 
Is f uniformly 
continuous? 
Is S complete'? 

subset of 2x x x 

quasi-uniformity 
uniformity 

pseudometrizable 
uniformity 
metrizable 
uniformity 

distances 
In metric 
spaces: Is f 
nonexpansi ve? 
Is S bounded? 
subset of [0. +:xJ)X xX  
quasigauge 
gauge (a set of 
pseudometrics) 
pseudometric 

metric 

ThesE' functors are not inclusions of subcategories in categories, because the maps are not 
injective. For instance, each gauge uniquely determines a uniformity. We may "forget" 
which gauge determined the uniformity: different gauges on a set may determine the same or 
different uniformities. Similarly, each uniformity uniquely determines a completely regular 
topology. We may '·forget" which uniformity determined the topology: different uniformities 
on a set may determine the same or different completely regular topologies on that set. 

Each category in the table is a full subcategory of the category above it. (Full subcat-
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egories were introduced in 9.5 . ) For instance, completely regular topological spaces are a 
full subcategory of topological spaces; in either of these two categories the morphisms are 
the continuous maps. 

LIPSCHITZ MAPPINGS 

18.2. Definitions. Let (X, d)  and (Y, e) be metric spaces. A mapping p : X ---+ Y i s said 
to be Lipschitz, or Lipschitzian, if e (p(x1 ) , p(x2) ) ::; r.d(x1 , x2 ) for some finite constant r. 
and all x1 , x2 E X. The smallest such r. is then called the Lipschitz constant of p; it is 
equal to 

The set of all Lipschitz mappings from (X, d) into (Y, e) will be denoted Lip( X, Y) .  
We say p i s nonexpansive if (P)Lip ::; 1 .  The mapping is a strict contraction if 

(P)Lip < 1. Caution: This book will not use the term "contraction" by itself. Some math
ematicians use that term for nonexpansive mappings; others use it for strict contractions. 

18.3. Examples. 
a. Let S be a nonempty subset of a metric space (X, d) . Then the map x f--+ dist (x, S) , 

defined in 4.40, is non expansive from X into R (See 4 .41 . b.) 
b. (This example assumes more knowledge of calculus. ) Let p : JR. ---+ JR. be continuously 

differentiable. Then p is Lipschitz if and only if p' is bounded, in which case (P)Lip = 

supxEIR fp' (x) f .  (We shall generalize this result in 25.24 . ) 
c. x f--+ fx f  i s Lipschitz on JR., but not continuously differentiable. 
d. (Preview. ) Let p : X ---+ Y be a linear map from one normed vector space to another. 

Then p is continuous if and only if p is Lipschitzian. (See 23. 1 . )  
e. Suppose (X, p) is a metric space, and f :  X ---+ X is a mapping with the property that 

for each x E X, the set {r ( x) : n = 0, 1 ,  2, 3, . . .  } is metrically bounded. Then 

{3(x, y) 
is a metric on X that is larger than or equal to p and makes the mapping f nonexpansive 
from (X, {3) into itself. In fact, {3 is the smallest metric on X that has those two 
properties. (In 19 .47.c we shall consider some conditions under which {3 is topologically 
equivalent to p.) 

18.4. Definitions. Let (X, d) and (Y, e) be metric spaces. For a > 0 and mappings 
p : X ---+ Y, let 
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We say p is Holder continuous with exponent a if (P)o. < oo. We shall denote the class 
of such functions by Hol0 (X, Y) .  Note that Hol1 (X, Y) = Lip(X, Y) ,  with (p) I = (P)Lip · 

18.5. Examples and exercises. 
a. A function p :  X ---+ Y is constant if and only if (P) o:  = 0. 
b. Let X and Y both be equal to the set [0, +oo) equipped with the usual metric d(x, y) = 

lx - Y l ·  Let a, /3 E (0, 1 ] .  Let p(x) = xf1 . Then 

{ � if {3 = a  
if {3 =f. a.  

Hint : First show that ( ( u + h ) f1 - uf1 ) / h" i s a nonincreasing function of u, for u, h > 0. 
c. Let p : X ---+ Y and q : Y ---+ Z be Holder continuous with exponents a and {3 

respectively. Then the composition q o p : X ---+ Z is Holder continuous with exponent 
a/3, and in fact (q o P)af3 � (p) ;� (q)# . 

In particular, the composition of Lipschitzian functions is a Lipschitzian function; 
we have (qp/Lip � (P)Lip (q)Lip · 

d. Let X and Y be metric spaces, with X metrically bounded. For a > {3 and p :  X ---+ Y, 
show that (p) 13 � (P)a. (diam(X))<>-!1 and hence Hol" (X, Y) � Hol13 (X, Y) .  

e .  For a > 1 ,  the spaces Hol0 (JR. ,  Y) are not very interesting, for they contain only constant 
functions. A hint will be given when we generalize this result slightly in 22.18.e. 

18.6. Let X and Y be metric spaces. A function f : X ---+ Y is called locally Lipschitz 
if any (hence all) of the following equivalent conditions are satisfied: 

(A) f is Lipschitz on a neighborhood of each point, 
(B) f is Lipschitz on each compact set . 
(C) f is Lipschitz on a neighborhood of each compact set. More precisely, if K 

is a compact subset of X, then there is some number r > 0 such that the 
restriction of f to the open set { x E X : distd (x, K) < r} is Lipschitz. 

Exercises. 
a. Prove the equivalence. 

Hints : It suffices to show (A) :::::;. (C) . Suppose not. Show that there exist se
quences (xn ) ,  (x� ) in X such that Xn =f. x�, , distd(Xn , K) ---+ 0, distd(x�, , K) ---+ 0, and 
e (f(xn) , J(x�)) /d(xn , x�, ) ---+ oo. Passing to subsequences, we may assume (xn) and 
(x�) converge to limits Xao and x� in K. Show that Xao = x� . Then what? 

b. For any open cover of a metric space X, there exists a partition of unity subordinated 
to that cover, consisting of locally Lipschitzian functions. 

Hints : Let 'J = {To: : a E A}  be a locally finite open cover that is subordinated 
to the given cover (see 16.31 and 16.29) . For each a, define fa : X ---+ [0, +oo) by 
!a (x) = dist (x, X \  Ta) · Then define a partition of unity {go: } as in 16.25.c. 
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c. Let X be a metric space, and let f : X --+ IR be continuous. Then f can be approx
imated uniformly by locally Lipschitz functions -- i .e . , for any c > 0 there exists a 
locally Lipschitz function g :  X --+ IR satisfying supxEX l f (x) - g(x) l < c. 

Proof Each x E X  has a neighborhood Nx such that l f(x) -f (y) l < c for all y E Nx . 
Choosing smaller Nx 's if necessary, we may assume that the Nx 's are all open; then 
they form an open cover of X .  Let {Pu : a E A} be a locally Lipschitzian partition of 
unity that is subordinated to the cover { Nx } .  For each a E A, let v(a) be some member 
of X such that {u E X  : Pn (u) -=/= 0} <::; N, , (n ) · Show that g(x) = l:uEA f(v(a) ) Pa (x) 
has the required properties . 

Remarks. This argument also works for functions J, g from any metric space X into 
any Banach space B. It will be used for differential equations in 30. 1 1 .  

UNIFORM CONTINUITY 

18.7. Notation. Let (X, U) be a uniform space, with uniformity U determined by gauge 
D.  Let ( (x,, x� ) : a E A) be a net in X x X, and let £ be its eventuality filter on X x X. 

Show that the following conditions are equivalent . 
(A) U <::; £ .  
(B )  For each U E U , we have eventually (xu , x � )  E U .  
(C )  d(x,, x � )  --+ 0 in IR for each d E  D.  We shall abbreviate this as D (xn , x;, ) --+ 0. 

We emphasize that the last condition does not say supdED d(xn , x;, )  --+ 0. 

18.8. Definition. Let (X, U) and (Y, V) be uniform spaces, and let D and E be any gauges 
that determine the uniformities U and V, respectively. Let r.p : X --+ Y be some function. 
Then the following conditions are equivalent. If any (hence all) of these conditions hold, we 
say r.p is uniformly continuous. 

(A) Whenever V E V, then the set 
{ (x, x') E X x X 

is a member ofU. That is, the inverse image of each entourage is an entourage. 
(This is the definition of uniform continuity used in 9.8 . ) 

(B) Whenever D (x,, x;, ) --+ 0 in X, then E (r.p(xn ) ,  r.p(x� ) )  --+ 0 in Y. (Notation 
is as in 18.7(C) . )  

(C ) For each number c > 0 and each pseudometric e E E, there exist some number 
t5 > 0 and some finite set D' <::; D such that 

(We emphasize that the choice of t5 and D' depends on c and e but not on x1 
or x2 • Compare this with 15 . 14(D) . )  
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(D) For each e E E,  there exists a finite set De <::: D and a function 'Ye : [0, +oo) ----+ 
[0, +oo) that is continuous and increasing, and satisfies 'Ye (O) = 0 and 

< 'Ye ( max d(x , x' )) . 
d E  D,. 

Such a system of sets D, and functions "'e will be called a modulus of 
uniform continuity for tp. 
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Note that if the gauge D is directed (as defined in 4.4 .c) , then conditions 18.8(C) and 
18.8(D) can be simplified slightly: the sets D' and D, may be taken to be singletons { d} . 

18.9. Examples and related properties. 
a. If the uniformity on X is given by a pseudometric d, then sequences suffice in 18.8(B) 

(regardless of whether Y is pseudometrizable) . That is , a mapping tp : X ----+ Y is 
uniformly continuous if and only if 

whenever d(J:, , x;, ) ----+ 0 in X, then E (ip(x, ) , ip(x;, )) ----+ 0 in Y, 

with notation as in 18. 7( C ) .  

b.  Any Holder-continuous function from one metric space into another i s uniformly con
tinuous. The converse is false. For instance, define f : [0, e - 1 ] ----+ IR by 

f(t) when t = 0 
when 0 < t :S e - 1 

Show that f is not Holder continuous with any exponent. It is easy to see that f is 
continuous: then the uniform continuity of f will follow by a compactness argument in 
18 .21 . 

c. Any uniformly continuous function is continuous (where each uniform space is equipped 
with its uniform topology) .  This can be proved using uniformities or using gauges; the 
studPnt is urgPd to give both proofs. 

d. Show that the function f(t) = ljt is continuous, but not uniformly continuous, on 
the open interval (0. 1 ) .  Use this fact to give two different metrics on (0, 1 )  that yield 
different uniformities but that both yield the usual topology. 

e. (Preview. ) Let p : X ----+ Y be a linear map from one topological vector space to another 
· - or more generally, an additive map from one topological Abelian group to another. 
LPt X and Y he equipped with their usual uniform structures (see 26.37). If p is 
continuous. then p is uniformly continuous; see 26.36.c. 

f. Let X be a set , let { (Y-\ ,  E-"' ) : ,\ E A} be a collection of gauge spaces, and let y-\ : 
X ----+ Y-"' ])(' some mappings. Show that the initial uniformity on X determined by the 
VJ-\ 's and E-"' 's (as in 9. 16) is equal to the uniformity on X determined by the gauge 
D = U-\EA {ccp-"' : c E E-"' } .  where (cip-\ ) (x, x' ) = e ('P-"' (x) ,  ip-\ (x' ) ) .  We may call this the 
initial gauge determined hy the IP-"' 's and E-"' 's (although any other gauge uniformly 
equivalent to this one will generally do just as well) . 
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An important special case :  When X =  fLEA Y>. and the 'P>. 's are the coordinate 
projections, we obtain the product gauge. 

g. The forgetful functor from uniform spaces to topological spaces preserves the formation 
of initial objects. 

That is, the uniform topology r(U) determined by an initial uniformity U deter
mined by 7r>. 's and uniformities V >. is equal to the initial topology determined by the 
7r>. 's and the uniform topologies r (V>. ) determined by those uniformities. 

18. 10. Theorem on uniform continuity of extensions. Let X and Y be uniform 
spaces, let X0 � X be dense, let r.p : X -----* Y be continuous, and suppose that the restriction 
of r.p to X0 is uniformly continuous. Then r.p is uniformly continuous on X.  In fact , if some 
gauges are specified for X and Y, then any modulus of uniform continuity for the restriction 
of r.p to X0 is also a modulus of uniform continuity for r.p on X. 

In particular, if r.p i s continuous and the restriction of r.p to X0 i s Holder continuous or 
Lipschitzian, then r.p is Holder continuous or Lipschitzian with the same constant . 

Hints : Use notation as in 18.8(D) . Let any x, x' E X be given. Choose a net ( (xa , x� )) 
in X0 x X0 that converges to (x, x' ) . For each o:, we have 

< "fe ( max d(xa , x� )) . dE De 

Holding e fixed, take limits to obtain a corresponding inequality for (x, x') . 

18. 1 1 .  Characterization of uniformly equivalent gauges. Let D and E be gauges 
on a set X.  Then the following conditions are equivalent : 

(A) D and E are uniformly equivalent - i.e . , they generate the same uniformity. 
(B) The identity map ix : X -----* X is uniformly continuous in both directions 

between the gauge spaces (X, D) and (X, E ) .  
(C )  For each net ( (xa , x� )  : o: E A)  i n X x X,  we have 

with notation as in 18.7(C) . 
Hint : A uniformity, being a proper filter, is the eventuality filter for some net. 

18.12 .  Further exercise. Let U be a uniformity on a set X. Then the largest gauge that is 
compatible with U (as defined in 5.32) is the set of all pseudometrics d : X x X -----* [0, +oo) 
that are jointly uniformly continuous - i.e. , uniformly continuous when X x X is given its 
product uniformity and [0, +oo) is given its usual uniformity. (Compare this with 16 .20.) 

18. 13. If D is any gauge, then D is uniformly equivalent to its max closure and its sum 
closure, defined as in 4.4.c . 



Pseudometrizable Gauges 487 

(Hence it is often possible to replace a gauge with a directed gauge; thus in many 
contexts we may assume a gauge is directed. ) 

18. 14. Definition. We shall say f3 is a bounded remetrization function if: 
(i) f3 is a mapping from [0, +oo) onto a bounded subset of [0, +oo ) ;  
(ii) f3 is continuous; 
(iii) f3 is increasing; that is, s :S t =? /3( s) :S /3( t ) ;  
( iv) f3(t )  = 0 {=:::} t = 0; and 
(v) f3 is subadditive; that is, f3(s + t ) ::; f3(s) + f3(t) . 

Show that 
a. arctan(t) , tanh(t ) ,  min{ 1 ,  t } ,  and t/ ( 1  + t) are bounded remetrization functions of t . 

(Hint: See 12.25.e . ) Note that min { 1 , t } is not injective. 
b. If f3 is a bounded remetrization function and d is a (pseudo )metric on a set X, then 

e(x, y) = f3(d(x, y) ) defines a (pseudo )metric e = f3od on X that is uniformly equivalent 
to d and is bounded. 

c. If /3 is a bounded remetrization function and D is a gauge on a set X, then {/3 o d : 
d E  D} is a gauge on X that is uniformly equivalent to D and is uniformly bounded 
- i.e. , we have sup{/3(d(x, y) ) : x, y E X, d E D} < oo. 

18. 15. Example. The usual metric on IR is d(x, y) = lx - Y l · Another metric, bounded 
and uniformly equivalent to the usual one, is e(x, y) = arctan( lx - y l ) .  On the other hand, 
p(x, y) = l arctan(x) - arctan(y) l is a bounded metric on IR that is equivalent , but not 
uniformly equivalent , to the usual metric. (All three metrics yield the same topology. ) 

PSEUDOMETRIZABLE GAUGES 

18.16. Finite gauges. Any finite gauge { d1 , d2 , . . .  , dn } on a set X is uniformly equivalent 
to a single pseudometric d. There are many ways to define d(u, v) .  Two commonly used 
pseudometrics are 

11 

max dj (u, v) .  
l SjSn 

Hints : The proof of equivalence may be accomplished most easily using 18 . 1 1 (C ) .  
For other, more complicated pseudometrics equivalent to these, see 22. 1 1 .  

18. 17. Any countably infinite gauge { d1 , d2 , d3 , . . .  } on a set X is uniformly equivalent to 
a single pseudometric. One such pseudometric is 

d(u, v) 
oc 

L TJ arctan ( dj (u , v)) . 
j = l  
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More generally, we could use any pseudometric of the form 
oc 

d(u, v )  L a1 f3 (dJ (u, v )) 
j= l 

where (3 is a bounded remetrization function (see 18 .14) and the aj 's are positive numbers 
with finite sum. Any such pseudometric d is called a Frechet combination of the dj 's . 

These formulas are admittedly rather complicated, but in general they cannot be re
placed by a simpler formula. In many applications, the dj 's themselves are quite simple, 
and so we may reason in terms of the dj 's instead of d. However, in such applications, we 
may sometimes use the fact that the structure of X can be given by some single pseudo
metric d, without referring to any particular choice of d. 

For instance, an argument involving a net convergence Xa -+ z can often be replaced by 
an argument involving a sequential convergence Xn -+ z, since the topology is pseudometriz
able. Then that convergence Xn -+ z can be represented conveniently by the condition that 
dj (xn , z) -+ 0 for each j . 

Frechet combinations will be used to give pseudometrics for certain product topologies 
and uniformities, and for uniform convergence on compact sets in certain classes of functions 
- continuous, smooth, holomorphic, etc . ; see 18 .18 ,  26.6, 26.7, 26.8, and 26. 10. 

Remark. Unlike the finite and countable cases, an uncountable gauge generally is not 
uniformly equivalent to a single pseudometric. We shall prove this by an example in 18.20. 

18.18. Product pseudometrics. If (Y1 , e l ) ,  (Y2 , e2 ) ,  . . .  , (Yn , en ) are pseudometric spaces, 
then the product gauge on X = TI7=l Yj is uniformly equivalent to a single pseudometric. 
Two pseudometrics commonly used for this purpose are 

n 
L eJ (uJ , vj ) ,  
j=l 

where u = ( u1 , u2 , . . .  , un ) and v = ( v1 , v2 , . . .  , vn ) · This is a special case of 18 .16 obtained 
by taking dj (u, v) = ej (7rj (u ) ,  7rj (v) ) .  

If (Y1 , e l ) ,  (Y2 , e2 ) ,  (Y3 , e3 ) ,  . . .  is a sequence of pseudometric spaces, then the product 
gauge on X = IJ;: 1 Yj is uniformly equivalent to a single pseudometric. We can use any 
pseudometric of the form 

e (u,_v) 
oc 
L aj !3 (ej (uj , vj )) 
j=l 

where (3 is a bounded remetrization function and the a1 's are positive numbers with finite 
sum; here u = (u1 , u2 , u3 , . . .  ) and v = (v1 , v2 , v3 , . . .  ) . This is a special case of 18 . 1 7, 
obtained by taking dj (u, v )  = eJ (7rj (u) , 7rJ (v ) ) .  

The product gauge on an uncountable product generally is not uniformly equivalent to 
a single pseudometric; this will be proved in 18.20. 

18.19. Further examples and consequences. 
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a. The product gauge on IRN = {sequences of reals} is uniformly equivalent to the metric 
d(u, v) = 2:::;':1 2-.i min { 1 ,  luJ - vJ I } .  

b .  If Y1 , Y2 , Y3 , . . .  are each equipped with the Kronecker metric, then the product gauge 
on n;:l }j is also uniformly equivalent to this simple metric: 

1 
min { n : Yn # y;, } 

· 

Note that a product of infinitely many discrete spaces generally is not discrete. In 
particular, 2N is not discrete. In fact, no point in 2N is isolated. 

18.20. Theorem. Let X = TI-XEA Y_x be a product of topological spaces with the product 
topology, and assume X is nonempty and pseudometrizable. Then (i) each of the Y_x 's has 
a pseudometrizable topology, and (ii) for all but countably many of the A's, Y_x has the 
indiscrete topology. 

(Thus, except for degenerate cases, a product of uncountably many topological spaces 
is not pseudometrizable. For example, the product topology and uniformity on IRIR or on 
{0, l }IR cannot be given by a single pseudometric. )  

Proof As usual, let 1r,x : X ---> Y_x be the Ath coordinate projection. Assume the product 
topology is given by a pseudometric d on X. 

To prove (i) , fix any fl· Since X is nonempty, TI_xt11 Y,x is also nonempty; fix any 
( E TI_xt11 Y_x . Define a pseudometric d11 on �1 by d11 (y11 , y;, ) = d ((y11 , ( ) . (y;, , ( ) ) . Show 
that this pseudometric yields the given topology on �1 . 

To prove (ii ) ,  assume that the set 

M {A E A : the topology of Y_x is not the indiscrete topology} 

is uncountable; we shall obtain a contradiction. Fix any point � E X.  For n = 1 ,  2, 3, . . .  , 
let Bn = { x E X : d( �, x) < 1 / n} . Since Bn is an open set containing �, there exist some 
finite set 1, c;;; A and open sets G1 c;;; Y1 (j E 171 ) such that 

n 7r."j 1 (GJ ) c Bn 
J E J, 

by 15 .26.a. Let 1 = U:=l 1, ; then 1 is a countable subset of A.  Since M is uncountable, 
there is at least one J1 E A1 \ 1. Fix any such fl· By 16. 12 .c there exist some p E Y11 and 
some disjoint open sets S. T C::: ��. such that 7r1, (0 E S and p E T. Let TJ be the point in X 
defined by 

when A #  J1 
when A =  Jl· 

Then s X n,\i"/J Y_x and T X nAi"!t Y_x are disjoint open subsets of X that contain � and 
TJ, respectively. The existence of such sets implies that d(� , TJ) > 0. However, J1 tf. 1,  so 
1fJ (0 = 1rj (TJ) for every j E 1. From this it follows that TJ E B" for each positive integer n 

- that is, d(� , TJ) < 1/n for each n, a contradiction. 
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COMPACTNESS AND UNIFORMITY 

18.21. Proposition. Let X and Y be uniform spaces, assume X is compact, and suppose 
f : X � Y is continuous. Then: 

(i) f is uniformly continuous. 
(ii) If f is injective and Y is Hausdorff, then the inverse map f- 1 : Range(!) � X  

is also uniformly continuous; thus f is a uniform isomorphism onto its range. 
Proof of ( i ) . Assume (x, , x� ) � I in X; we must show that (f (x, ) ,  f (x� ) )  � I in Y. 
Suppose not; then there is some pseudometric e in a gauge for Y such that e (f(x, ) ,  f (x� ) )  f. 
0. Replacing ( (x, , x� ) )  with a subnet , we may assume that e(f(x, ) ,  f (x� ) )  > p for some 
constant p > 0. Again replacing ( (x, , x� ) )  with a subnet and using the compactness of X,  
we may assume (x, ) converges to some limit v E X . Then x� � v also. By continuity, we 
have f(x,) � f(v) and f(x� ) � f(v) , a contradiction. 
Proof of ( ii ) .  f(X) is compact, by 17.7.h. Also, f- 1 : Range(!) � X  is continuous, by 
17. 10.c. Hence it is uniformly continuous, by the argument of the preceding paragraph. 

Remark. There exist metric spaces X that are not compact, but nevertheless have the prop
erty that any continuous function from X into another metric space is uniformly continuous. 
Indeed, one such space is Z, with its usual metric. Such spaces are discussed further by 
Arala-Chaves [1985] . 

18.22. Corollary. A compact topological space has at most one uniform structure. In 
other words, if U and V are uniformities on a set X that yield the same compact topology, 
then U = V. 
18.23. Proposition ( optional) .  Let (X, U) be a uniform space, let 'J be the uniform 
topology, let X x X be equipped with the product topology, and let I =  { (x, x) : x E X} .  
By a "neighborhood of the diagonal" we shall mean a set U <;;; X x X such that U � G � I 
for some G that is open in X x X.  Show that 

(i) Any entourage is a neighborhood of the diagonal. 
(ii) If (X, 'J) is compact, then every neighborhood of the diagonal is an entourage 

- i.e . , the uniformity U is equal to the set of neighborhoods of the diagonal. 
Proof of ( i ) . Given U E U, let V be a symmetric entourage satisfying V o V <;;; U. For each 
x E X, we know that V [x] is a neighborhood of x, hence x E Ex <;;; V[x] for some open set 
Ex in X.  Show that G = UxEx (Ex X Ex) has the required properties. 

Proof of ( ii ) .  Let G be an open subset of X x X with G � I; we must show G E U. For 
each x E X, we know that G is a neighborhood of (x, x) in X x X. Hence G � Bx x Bx , 
where Bx is some neighborhood of x in X. Then Bx � U [x] for some entourage U E U. 
This U may depend on x; let us write it as Ux to reflect this - that is, Bx � Ux [x] . Let 
Vx be a symmetric entourage satisfying Vx o Vx <;;; Ux . Then Vx [x] is a neighborhood of x, 
so the compact set X can be covered by finitely many of the sets {Vx [x] : x E X} .  Say we 
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have X = U:�1 Vx; [x; ] .  Then W = n:�1 Vx, is an entourage. It suffices to show W � G. 
Fix any (p, q) E W. Since { VxJx;] : i = 1 , 2, . . . , n} is a cover of X, we have p E Vx1 [xj ] 
for some j .  It is now easy to show that (p, q) E Ux1 [xj ] x Ux1 [xj ] � G. This presentation 
follows the one of James [ 1987] . 

18.24. Let f : lR ----+ lR be any continuous, bounded, strictly increasing function; three 
examples are 

X f(x) = 
1 + lx l '  

f(x) = arctan x, 
ex - e�x 

f(x) = tanh x = ---ex + e�x 

With any of these functions, limx��oc f(x) and limx�+oc f(x) both exist in JR, and so it 
is natural to take those finite numbers as definitions of f(-oo) and f(+oo) , respectively. 
Then d(x, y) = l f(x) - f(y) l defines a metric on the extended real line [-oo, +oo] . Show 
that 

a. The topology determined on [-oo, +oo] in this fashion is the same as the order interval 
topology introduced in 5 . 15 .f, since both topologies have the same convergences. Hint: 
15 .4 1 .  

b.  f i s  a distance-preserving and order-preserving map from ( [-oo, +oo] , d)  onto the met-
ric space 

( [!1 ( -oo) , fj (+oo)] , usual metric of lR ) .  
c. The topological space [ -oo, +oo] , with the order interval topology, is compact. 

d. Any two such functions f yield metrics on [-oo, +oo] that are uniformly equivalent. 
Thus, different choices of f yield different metrics, but the particular choice of f does 
not matter greatly. 

UNIFORM CONVERGENCE 

18.25. Let S be a set, let (Y, e) be a pseudometric space, let ('Pcx : a E A) be a net in 
Y 8 = { functions from S into Y} ,  and let ip E Y 8 .  We say that 'Po: converges uniformly 
to 'P on S  if 

lim sup e [ip, (s ) ,  ip(s)] 0. 
a E A  s E S  

We may refer to this as e-uniform convergence when we need to be more specific. 
We shall show that uniform convergence is given by a pseudometric on Y8. Indeed, 

observe that the convergence is unchanged if we replace e with any uniformly equivalent 
pseudometric e' .  By 18 .14 we may assume that e' is bounded. Show that the uniform 
convergence on S is then given by this pseudometric on Y 8 :  

sup e '  [ip(s) , 7/J(s)] . 
s E S 
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We shall generalize this notion below. 

18.26. Generalization. Let X be a set, and let S be a collection of subsets of X.  Let 
(Y, U) be a uniform space. A net (<t?a )  in yx = {functions from X into Y} will be said to 
converge U-uniformly on elements of S to a limit <p E Y x if 

for each S E S and U E U, eventually { (<t?a (s ) ,  <p(s) ) : s E S} � U. 

This can be expressed in terms of gauges as well. Let E be any gauge on Y that yields the 
uniformity U; then <fa ----> <p in the sense above if and only if 

sup e [<t?a (s ) ,  <p(s)] ----> 0 
s E S 

for each e E E and S E S.  

(We emphasize that this condition does not require that either of the conditions 

sup e [<pa (s ) ,  <p(s) ] ----> 0 or sup e [<pa (s ) ,  <p(s) ] ----> 0 
eEE sEX 

must hold. ) 
We shall show that U-uniform convergence on elements of S is the topological convergence 

given by a gauge on Y x . Indeed, observe that we obtain the same convergence if we 
replace E with any uniformly equivalent gauge E'. By 18. 14 we may assume that E' is 
bounded. Show that U-uniform convergence on members of S is then given by the gauge 
{Ps.e' : S E S, e' E E'} ,  with PS,e' defined as in 18.25. The resulting uniformity on 
yx could be described as the uniformity of uniform convergence on members of 
S. In some contexts the topology resulting from that uniformity is called the topology of 
uniform convergence on members of S. That terminology is especially prevalent in 
contexts where the topology and uniformity determine each other uniquely, as described in 
26.37. 

Of course, different choices of S may yield the same uniform convergences or different 
uniform convergences. Here are some important choices of S .  

• If S contains just the singletons { x} (for x E X), then uniform convergence on elements 
of S is the same thing as pointwise convergence. Thus, the product topology on Y x 
is a special case of uniform convergence topologies. 

• When S = {X} ,  then the uniform convergence topology is called simply the topology 
of uniform convergence on X.  

• When X is a topological space, another important choice is S = {compact subsets af 
X} ,  resulting in the topology of uniform convergence on compact sets. 

Several other important choices of S will be introduced in 28.9 . 
When S is countable - or, more generally, when some countably subcollection of S 

covers the union of the members of S - then the gauge {Ps.e' : S E S, e' E E'} can be 
replaced by a single pseudometric; some examples of this are given in 26.8 and 26. 10 . 
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18.27. Proposition ( optional ) .  A uniformity not only determines, but also is determined 
by, its uniform convergences. More precisely, let lL and V be two uniformities on a set Y .  
Then the following conditions are equivalent: 

(A) The uniformity lL is stronger than the uniformity V -- that is, lL :2 V. 

(B) For every set S, the topology of U-uniform convergence on S is stronger than 
the topology of V-uniform convergence on S. That is, if (If?<> ) is a net in Y5 

that converges U-uniforrnly on S to a limit ip, then 'Pn ---> ip V-uniformly also. 
Proof. Clearly (A) =? (B) .  To show (B) =? (A) , we shall take S = Y x Y - that is, we 

shall consider functions cp : Y x Y ---> Y.  Let ( (x" , x;, ) : a E A) be a net in Y x Y with 

eventuality filter equal to U. (For instance, we could use the filter's canonical net; see 7. 1 1 . )  
Let D and E be gauges that determine the uniformities lL and V .  Then D (xa , x� ) ---> 0 in 
Y ,  and ( in view of observations in 18.7) it suffices to show that E(xa , x� ) ---> 0 in Y .  

Denote S = Y x Y.  Define cp(x, x ' )  = x '  for all (x ,  x' ) E S .  Define functions IPa  : S ---> Y 
by 

IPn (x, x' )  { Xn 
X 

if x = Xn and :r' = x;, 
otherwise. 

For each d E  D and s E S we have d ( IPn (s ) ,  ip(s)) :S d(xn , x� ) ,  which tends to 0 uniformly 

for all choices of s E S; thus 'Pn ---> cp D-uniformly on S. By assumption (B) ,  then, ip,, ---> IP 
£-uniformly on S as well . Fix any e E E. Then 

which tends to 0 as a increases. This proves E( Xn , x;, ) ---> 0 .  

EQUICONTINUITY 

18.28. Let X be a topological space, let (Y, e) be a pseudometric space, and let cp :  X ---> Y 
be some mapping. Then the oscillation of ip at a point x0 E X with respect to the 
pseudornetric e is defined to be the number 

osc,. ( IP, xo ) inf diam, ( cp( N)) 
NEN(J-o ) 

where N(x0) is the neighborhood filter at x0 . (We may omit the subscript e if the choice 
of e is understood. ) Thus, the oscillation is a number in [0, +oo ] .  More generally, if <I> is a 
collection of functions from X into Y ,  the oscillation of <I> at x0 is defined to be the number 

osc, (<I> .  x0 ) = inf sup diam,. (cp( N)) = inf sup sup e (ip(x) .  cp( x l ) . 
NEN(J:o ) 'f'E<P NEN( .ro )  'f'E¢ .r . :r' E N 

We observe that 
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a. {x E X  : osce (<I>, x) < c: }  is an open set, and so osce (<I>, · ) : X __, [O, +oo] is an upper 
semicontinuous function. 

b. For a single function cp, the number osce (cp, x0) is 0 if and only if cp is continuous at 
x0 . Thus, osce(cp, x0) may be taken as a numerical measurement of the size of the 
discontinuity of cp at x0 . We shall generalize this result to collections <I> of functions in 
18 .29(E) , below. 

18.29. Definition. Let X be a topological space, and let x0 E X. Let (Y, V) be a uniform 
space, with uniformity determined by a gauge E. Let <I> be a collection of functions from 
X into Y.  Then the following conditions are equivalent . If any (hence all) of them holds, 
we shall say that <I> is equicontinuous at the point x0 . 

(A) Whenever (('Pa , Xa ) : a E A) is a net in <I> X X with Xa -t Xo , then 

E (cpa (xa ) , cpa (xo)) -t 0 (in the sense of 18 .7(C) ) .  

( B )  Whenever Xa __, x0 in X,  then Xa ( · )  __, x0 ( - )  uniformly on <I> ,  where we define 
Xa ('P) = cp(xa ) and xa (cp) = cp(xo ) .  

(C ) For each V E V,  there i s  some neighborhood G of  x0 in  X such that 

x E G, cp E <I> 

(D) For each e E E and E > 0, there is some neighborhood H of xo in X such that 

x E H, cp E <I> 

(E) The oscillation osce (<I>, x0 ) is equal to 0 for each e E E. (Thus, the oscillation 
of a collection of functions may be taken as a numerical measurement of the 
extent to which the collection fails to be equicontinuous. )  

A collection o f  mappings <I> : X __, Y i s  said to  be  equicontinuous i f  i t  i s  equicontinuous 
at every point of X.  

18.30. Some immediate observations about equicontinuity. 
a. If X is metrizable - or, more generally, if X is a first countable topological space -

then nets can be replaced by sequences in conditions (A) and (B) above. 

b. Let Y have uniformity given by gauge E. Then a collection <I> of functions is equicon
tinuous from the topological space X to the gauge space (Y, E) if and only if <I> is 
equicontinuous from X to the pseudometric space (Y, e) for each e E E. 

c. Any element of an equicontinuous family is continuous. 

d. Any finite collection of continuous functions is equicontinuous. 

e. The equicontinuous families form an ideal - i.e. , any subset of an equicontinuous 
family is equicontinuous and the union of finitely many equicontinuous families is 
equicontinuous. 
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f. (Preview.) Let <I> be a collection of continuous linear maps from one normed space into 
another. Let I I 'P I I be the operator norm of 'P· Then <I> is equicontinuous if and only if 
sup{ I I'P I I : 'P E <I>} < oo. See 23. 1 and 23. 12 .  

18.31. Definition. Let (X, U) and (Y, V) be uniform spaces, with uniformities determined 
by gauges D and E, respectively. Let <I> be a collection of functions from X into Y. Then 
the following conditions are equivalent . If any (hence all) of them holds, we shall say that 
<I> is uniformly equicontinuous: 

(A) Whenever (('f?a , Xa , x� ) : a E A) is a net in <I> x X x X that satisfies 

D(xa , x� ) --> 0 (in the sense of 18.7(C) ) , then E('Pa (xa ) ,  'Pa (x� )) --> 0 . 
(B) For each V E V, there is some U E U such that 

(x, x' ) E U, 'P E <I> 

(C) For each number E > 0 and each pseudometric e E E, there exists some 
number tJ > 0 and some finite set D' r:;;; D such that 

max d(x, x' ) < tJ dE D' sup e ('P(x) , 'P(x' ) ) < E. 
'PE <I> 

(We emphasize that the choice of tJ and D' depends on E and e but not on 
x, x' , ip. ) 

(D)  For each e E E, there exists a finite set De r:;;; D and a function re : [0, +oo) __, 
[0, +oo) that is continuous and increasing, and satisfies le (O) = 0 and 

sup e (ip(x) , ip(x' )) 
ipE<l> 

< /e ( max d(x, x')) . d E  De 

In other words, the 1p's have a common modulus of uniform continuity. 
Clearly, if <I> is uniformly equicontinuous, then <I> is equicontinuous and each member of <I> 
is uniformly continuous. 

Further exercise. If X and Y are uniform spaces, X is compact, and <I> : X __, Y is 
equicontinuous, then <I> is uniformly equicontinuous. 

18.32. Convergence of continuous functions. Suppose X is a topological space and Y is 
a uniform space, with uniformity V determined by gauge E. Let ('Pa : a  E A) be a net of 
functions from X into Y, and let 'P E Y x also. Show that 

a. If 'Pa __, 'P pointwise and the set { 'Pa : a E A} is equicontinuous at x0 , then 'P is 
continuous at x0 . (Hint : Take limits in the inequality osce ( {'Pa } , x0) ::; E to obtain 
osc(ip, xo ) ::;  c- . ) 

b. If 'Pa __, 'P pointwise and the set { 'Pa } is equicontinuous, then 'P is continuous and 
'Pa __, ip uniformly on compact subsets of X.  

c. I f  ( 'Pa ) i s  equicontinuous, 'P i s  continuous, and 'Pa __, 'P pointwise on a dense subset of 
X ,  then 'Pa __, 'P pointwise everywhere on X.  



496 Chapter 1 8: Uniform Spaces 

d. If 'Pa ----+ cp uniformly on X and each 'Pa is continuous, then the net ( 'Pa)  is "asymptot
ically equicontinuous," in the sense that 

lim osce ({ cpr; : (3 >,:= a } ,  xa) aEA 0 for each x0 E X and e E E. 

Using that fact (or any other means) ,  show that cp i s  continuous. 

e. If ( 'Pn : n E N) is a sequence of continuous functions converging uniformly to a limit 
cp, then cp is continuous and the set { 'Pn : n E N} is equicontinuous. Hint :  Use the 
preceding result on asymptotic equicontinuity, plus 18.30.d. 

f. If X is a uniform space, 'Pa ----+ cp uniformly, and each 'Pa is uniformly continuous, then 
cp is uniformly continuous. 

g. Classical example. Let X = Y = [0, 1] with the usual metric, and let 'Pn (x) = xn . 
Then the functions 'Pn are continuous on [0, 1 ] ;  the sequence ( 'Pn) is equicontinuous on 
[0, 1 )  but not at x = 1 .  The sequence converges pointwise, but not uniformly, to the 
function 

cp(x) { � if 0 :S X <  1 
if X =  1 .  

This function i s  continuous on [0, 1 )  but discontinuous at x = 1 .  

18.33. Equicontinuity and the product topology. Let A be  a topological space, let Y be  a 
uniform space, and let Y A be equipped with the product topology. Suppose that <I> � Y A 
is equicontinuous. Then: 

a. The closure of <I> in yA (in the product topology) is also equicontinuous. Hint: 18.29(D) 
or 18 .29(E) . 

b. If A is separable and Y is metrizable, then the relative topology on <I> is metrizable. 
Hints : Let C be a countable dense subset of A. Use 18 .32.c to show that the 

restriction mapping p : Y A ----+ yc takes <I> homeomorphically onto p( <I>) .  

c .  I f  A and Y are both separable and Y i s  metrizable, then <I> i s  also separable. Hint :  yc 
is separable, by 15.27. 

18.34. Equicontinuity and uniform convergence topologies. Let X be a topological space, 
let S be a collection of subsets of X, let Y be a uniform space, and let Y x = {functions 
from X into Y} be equipped with the topology of uniform convergence on elements of S .  
Then the set C(X, Y) = {continuous functions from X into Y} is a closed subset of Y x ,  
provided that either 

(i) each x E X  has a neighborhood that is a member of S, or 

(ii) X is metrizable (or more generally, first countable) ,  and each convergent se-
quence in X is contained in some member of S. 

Proof If (fa )  is a net in C(X, Y) that converges uniformly on members of S to some 
f E Y x , then at least each restriction f j 

S 
will be continuous for S E S, by 18.32.d. Now 

the continuity of f on X follows under hypothesis (i) by 15. 16 ,  or under hypothesis (ii) by 
15 .34.d. 
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18.35. Arzela-Ascoli Theorem. Let X be a topological space, let Y be a uniform space, 
and let C(X, Y) = {continuous functions from X into Y} be given the topology of uniform 
convergence on compact subsets of X.  Let <P � C(X, Y) .  If 

( 1a) <P is equicontinuous, and 

( 1b) the set <P(x) = {lp(x) : lp E <P} is relatively compact in Y for each x E X  
then 

(2) <P is relatively compact in C(X, Y) . 
We also have this partial converse: Assume X i s  locally compact or first countable; then 
(2) =? ( 1 ) .  

Remarks. Since the topologies on Y and C(X, Y)  are completely regular, the characteriza
tions of "relatively compact" given in 17 . 15  are applicable. 

Proof of ( 1 )  =? (2) .  Let (lpn : a E A)  be any universal net in <P; it suffices to show 
(lpn ) converges to a limit in C(X, Y) .  For each fixed x, observe that (lpa(x) : a E A)  is a 
universal net in Y. Hence (lpn ) converges pointwise to a limit lp. Use the equicontinuity 
of <P to show that the limit function is continuous and that the convergence is uniform on 
compact sets. 

Proof of (2) =? (1b) .  Fix any x E X. Then the singleton {x} is compact. Any net in <P(x) 
can be represented in the form (lpn(x) : a  E A) for some net (lpn : a  E A) in <P. That net 
has a subnet converging uniformly on compact sets, hence converging on x. 
Proof of (2) =? ( 1a) .  Let E be a gauge that determines the uniform structure of Y .  
Consider any net ( (lpn , Xn ) : a E A) in  <P x X with Xa -> xo ; in  the case where Y is first 
countable, we may assume this net is a sequence. We are to show that E (lp0 (Xn ) ,  lpn (x0 ) ) -> 
0 ( in the sense of 18 .7) .  

Suppose, on the contrary, that e (lpu (x0 ) , lpn (x0 ) )  f+ 0 for some e E E .  Replacing the 
given net with a subnet (or replacing the given sequence with a subsequence) ,  we may 
assume that 

for some constant p > 0. 
We may assume that all the x" 's and x0 are contained in some compact set - either 
because x0 has a compact neighborhood K that contains all the x" 's for a sufficiently 
large, or because (x" ) is a sequence converging to x0 (see 17. 7.e) . Now use the assumption 
(2 ) .  Again passing to a subnet (at this point we no longer need a subsequence) , we may 
assume that ( lp0 ,) converges to some limit lp in C(X, Y)  uniformly on compact sets and thus 
uniformly on K. Hence 

and 

Also e ( lp( X0 ) ,  lp( x0 ) )  -> 0 since lp itself is continuous. These results contradict ( * ) . 

18.36. Corollary (Arzela-Ascoli Theorem, classical version) .  Let 

C[O, 1] {continuous functions from [0, 1] into IR} 
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be given the topology of uniform convergence on [0, 1 ]  - i.e. ,  the topology determined by 
the metric e(f, g) = max{ lf(t) - g(t ) l : t E [0, 1 ] } .  Let <P � C [O, 1 ] .  Then <P is relatively 
compact in C [O, 1] if and only if <P is uniformly bounded (i .e. , suptE [O , l ] supfE<P lf(t) l < oo) 
and equicontinuous. 



Chapter 19  
Metric and Uniform Completeness 

19 .1 .  Introductory remarks. Most applications of Cauchy completeness are in metric spaces, 
but a more general setting is occasionally useful; we shall develop the concept in the setting 
of uniform spaces. (A still more general setting is possible; see the remarks in 19.29.) 

Some important variants of completeness will be introduced later: Baire spaces, and 
barrelled and ultrabarrelled spaces. 

Many of the ideas in Chapter 18 were based on the category in which the objects were 
uniform spaces and the morphisms were the uniformly continuous maps. Some of the ideas 
in the present chapter arise more naturally in the category whose objects are uniform spaces 
and whose morphisms are Cauchy continuous maps, introduced in 19.24. 

CAUCHY FILTERS , NETS , AND SEQUENCES 

19.2 . Definitions. Let (X,  11) be a uniform space, and let D be any gauge that determines 
the uniformity 11. Let (X a : a E A) be a net in X ,  and let � be its eventuality filter. Then 
the following conditions are equivalent ; if any (hence all) of them are satisfied, we say that 
(xu ) and � are Cauchy. 

(A) For each d E D and each number c > 0, there is some F E � such that 
diamd (F) :S: c. 

(B) For each d E  D and each number c > 0, there is some 1 = ld,c E A such that 
a, (J ?o 1 =} d(xc , Xf1 ) :S: c. 

(C) For each U E 11, there is some F E � such that F x F <;;;; U. 

(D) (A  two-sided Cauchy condition. ) For each entourage U E 11, we have eventu
ally (X a ,  x (:i ) E U. That is, for each U E 11, there exists some 1u E A.. such 
that a, (3 ?o 1u =? (x" , xr, )  E U. 

(E)  (A one-sided Cauchy condition. ) For each entourage V E 11,  there exists some 
1 in A with the property that a ?o 1 =;. Xo: E V[x"] . (Recall from 5.33 that 
V[x] = {y : (x, y) E V} . )  

Proofs. The proofs of equivalence of all the conditions but the last one should be fairly 
straightforward. To prove 19.2(D) =;. 19.2(E), take U = v- 1 and then take (3 = �· To 
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prove 19.2(E) =;. 19.2(D) , choose V so that V o v- 1 <_;; U. 
Further observations. The conditions above are unaffected i f  we replace the gauge D with 
any uniformly equivalent gauge. They may also be unaffected in some cases if we replace 
the gauge with one that is not uniformly equivalent ; see 19.25(ii ) .  

Observe that (xa ) and :Y are Cauchy for the gauge D i f  and only i f  they are Cauchy for 
each pseudometric d E D .  

19.3. Sequences are just a special case o f  nets, but they are a case important enough to 
deserve separate mention. Let (X, U) be a uniform space; let D be a gauge that yields the 

. uniformity U. Then a sequence (xn ) in X is Cauchy if 

for each U E U, there exists some positive integer Nu such that m, n :::: Nu =;. 
(xm , Xn ) E U 

or, equivalently, 

for each d E D and each number E > 0, there is some positive integer N = Nd,E: 
such that m, n :::: N =;. d(xm , Xn ) :S E. 

19.4. Elementary properties of Cauchy nets. Let X be a uniform space, with uniformity 
U given by gauge D. Show that 

a. Any convergent net is Cauchy; any convergent filter is Cauchy. 

b. Any subnet of a Cauchy net is Cauchy; any superfilter of a Cauchy filter is Cauchy. 

c. Suppose (xa ) is a Cauchy net. Then any subnet of (xcx ) has the same set of limits as 
(xa ) · Hence, if some subnet of (xn ) converges, then so does (xa ) · 

d. If (xn ) is a universal net and some subnet of (xa ) is Cauchy, then (x, ) itself is Cauchy. 

e. Let X be a set equipped with the initial uniformity determined by some collection of 
mappings into uniform spaces, Jr), : X ---> X), (,\ E A) , as defined in 9 .15 and 9. 16 .  
Then a net (xa : a E A) is Cauchy in X if and only if the net (Ir), (x, ) : a E A) is 
Cauchy in X), for each ,\ E A. 

In particular, a net Un : a E A) in a product fLEA Y), of uniform spaces is Cauchy 
if and only if it is Cauchy coordinatewise - i.e . ,  if and only if the net Un (>.) : a  E A) 
is Cauchy for each ,\ E A. 

19.5. Proposition. If (xa ) and (y13 )  are Cauchy nets that have a common subnet , then 
they also have a common supernet that is Cauchy - i.e . ,  then (xa ) and (YrJ ) are subnets 
of a Cauchy net. 

This can be reformulated in terms of filters (see 7. 18(E) ) :  Let :Y and 9 be Cauchy filters 
on a uniform space X .  Suppose that every member of :Y meets every member of 9 .  Then 
::t n 9 is Cauchy. 

Proof. The proof is easier in terms of filters. Let U be the uniformity on X.  Let any U E U 
be given; we wish to find some H E :Y n 9 satisfying H x H <_;; U. By 5.35.c, choose some 
symmetric entourage V such that V o V <_;; U. Since :Y and 9 are Cauchy, there exist F E :Y 
and G E 9 such that F x F <_;; V and G x G <_;; V. Now let H = FUG; show that H x H <_;; U .  
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19.6. Observation. A sequence (x1 , x2 , x:J , . . .  ) converges to a point x if and only if the 
sequence (x1 , x, x2 , x, x3 , x , . . .  ) is Cauchy. 

We shall now prove an analogous result for nets. 

Proposition. Let (xn) be a net in X, and let z E X.  Then Xn -+ z if and only if (xn) and 
the constant net (z) are subnets of some Cauchy net. 

This can be reformulated more canonically, using filters: 
Let :J be a filter on X, and let e be the ultrafilter fixed at some point z. Then :J -+  z if 

and only if the filter :t n e is Cauchy. 

Proof. The proof is easier in terms of filters. Let N(z) be the neighborhood filter at z .  
First , suppose :J -+  z. Then :J :;2 N(z) .  Hence :tne :;2 N(z) . The filter N(z)  is convergent 

to z, hence the filter :t n e is convergent to z ,  hence it is Cauchy. 
Conversely, suppose :J n e is Cauchy, and let any N E N( z) be given; we shall show that 

N E :J. By the construction of the uniform topology, we know that N :;2 U[z] for some 
entourage U in the uniformity U. Since :J n e( z) is Cauchy, there is some set K E :J n e 
satisfying K X K <;;;; u 0 Since K E e' we have z E K 0 Therefore 

w E K  (z ,  w) E K x K <;;;; U w E  U [z] <;;;; N. 

Thus K <;;;; N. Since K E :J, it follows that N E :J. 

19.7. Proposition. Let (xn : a E A) be a net in a uniform space (X, U) .  Suppose that 

(i) for each increasing sequence ;3(1 )  =:;, ;3(2) =:;, ;3(3) =:;, · · · in A, the sequence (xr3(k) : k E 
N) is Cauchy. 

Then 

(ii) the net (xn : a E A) is Cauchy. 

(We shall use this result in 29.25 . )  The converse is false - i.e. , in general , condition (ii) 
does not imply condition (i) . 

Proof of (i) =? (ii) .  We shall show that condition 1 9.2(E) is satisfied. Indeed, suppose not. 
Then there is some entourage V E U for which there is no corresponding � E A Hence for 
each � E A there exists some a � � such that Xn tic V [x�; ] .  In this fashion we recursively 
construct an increasing sequence a ( 1 ) , a(2) , a(3) , . . .  satisfying (xo: (k) • Xn (k+ l ) )  tic V. Such 
a sequence is not Cauchy. 

Counterexample to (ii) =? ( i ) .  Let X =  IR, with its usual metric. Let A = { (r, n) E 
lR x N :  l r l :S * } .  Let A be ordered as follows: (r1 , n1 ) =:;, (r2 , n2 ) if n1 :S n2 (regardless 
of the values of r1 and r2) .  It is easy to see that A is a directed set . Let x(,. .n) = r; 
then it is clear that the net (xn : a E A) converges to 0 and thus is Cauchy. However, 
consider the increasing sequence (a(k) : k E N) defined by a(k)  = ( ( - 1 )k , 1 ) ;  the sequence 
(xn (k ) )  = ( - 1 , 1 ,  - 1 ,  1, . . .  ) is not Cauchy. 

19.8. More about Cauchyness in metric spaces. Let (X. d) be a pseudometric space. 
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a. Any Cauchy sequence in X is metrically bounded. Any Cauchy net in X is eventually 
metrically bounded. 

b. Any Cauchy sequence (xn) satisfies d(xn, Xn+I )  __. 0. 
The converse is false. For instance, in IR with its usual metric, the sequence Xn = vn 

is not Cauchy but satisfies d(xn , Xn+l ) __. 0. 
( Optional. ) If (X, d) is an ultrametric space and d(xn , Xn+d __. 0, then (xn) is 

Cauchy. 

c. (Summation property.) If a sequence (Yk )  satisfies 2::�1 d(yk , Yk+d < oo, then 
(Yk )  is Cauchy. 

Not every Cauchy sequence has that summation property, but every Cauchy se
quence (xn )  has a subsequence (yk )  with that property. In fact, we may choose (Yk )  
so that d(yk , Yk+I )  < 2�

k for all k . 

COMPLETE METRICS AND UNIFORMITIES 

19.9. Definitions. A uniform space (X, U) is complete if each Cauchy net or filter in 
X has at least one limit . (This condition, which only holds in some uniform spaces, is a 
converse to 19.4.a, which holds in any uniform space. ) 

It will be helpful to extend this terminology to subsets of X as well. We say that a set 
S � X is complete (or D is complete on S) if every Cauchy net or filter in S has at least 
one limit in S. 

19.10. Basic properties of completeness. Let (X, U) be a uniform space. 

a. Let S � X. Then S itself is a uniform space, when equipped with the trace of U (see 
9.20) . Show that S is complete, when viewed as a subset of X ,  if and only if S is 
complete when viewed as a subset of itself. 

b. Any closed subset of a complete uniform space is complete. 

c. If X is a complete Hausdorff uniform space and S � X ,  then S is complete if and only 
if S is closed. (Contrast this with 20. 12 . ) 

d. We say that a set S � X is sequentially complete if every Cauchy sequence in 
S converges to at least one limit in S. Observe that any complete uniform space is 
sequentially complete. 

Caution: Some mathematicians who are concerned only with sequences omit the 
term "sequentially" here. However, completeness and sequential completeness are not 
equivalent in general. 

19. 1 1 .  Examples and further properties in pseudometric spaces. Let (X, d) be a pseudo
metric space. Then: 

a. If X is sequentially complete, then it is complete. 
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b. (Summability property. ) (X, d) is complete if and only if it has this property: 
Whenever (xn ) is a sequence satisfying ,L�=l d(x71 , Xn+d < oo, then (xn ) converges. 

c. (Cauchy's Intersection property. ) (X, d) is complete if and only if it has the 
following property: If 51 :2 52 :2 53 :2 · · · and the 571 's are nonempty closed subsets 
of X with limn�= diam(5n) = 0, then n�=l 5n is nonempty. (The proof of this fact 
uses Countable Choice ( CC) . )  

d. On any set, the "Kronecker metric" d(x, y) = 1 - Dxy (defined in 2 . 12 .b) is  complete. 
However, see the contrasting result below: 

e. The sets lR and Z are complete when equipped with the usual metric d(x, y) = lx - y l ,  
but not with d(x, y )  = I  arctan(x) - arctan(y) l .  (Hint :  17.9.b and 19.8.a.) 

Note that these metrics are topologically equivalent but not uniformly equivalent 
� i.e. , they yield the same topology on lR or on Z, but not the same uniform structure. 
The topology they yield on Z is the discrete topology. Thus, not every discrete metric 
is complete (although "the" discrete metric is complete, as noted in 19. 1 1 .d) . 

f. Use the completeness of lR to show that the metric space B(A) introduced in 4 .41 .f  is 
complete. The embedding in 4 .4l .f  shows that every metric space may be viewed as a 
subset of a complete metric space. See also 22.14. 

g. As we noted in 18.24, all metrics that yield the usual topology on [-oo, +oo] are 
uniformly equivalent to one another � i .e . ,  they yield the same uniformity. That 
uniformity is complete. 

h. Any knob space (defined as in 5 .34.c) is complete. 

1 .  Technical exercise. Let p and d be metrics on a set X. Suppose that 

(i) p is complete, 

(ii) p is topologically stronger than d, and 

(iii) every d-Cauchy sequence has a subsequence that is p-Cauchy. 

Then p and d are topologically equivalent and d is complete. (This result will be used 
in 19.47.) 

19.12 .  Completeness of uniform convergence. If Y is a complete metric space and X 
is any set, then Y x is complete when equipped with the uniformity of uniform convergence 
on X. 

More generally, i f  Y i s  a complete uniform space and X is any set, then Y x is complete 
when equipped with the uniformity of uniform convergence on members of S (described in 
18.26) for any collection S � P(X). 

Proof Let E be a bounded gauge that determines the uniformity of Y .  Let Y x be equipped 
with the gauge {Ps.e 5 E S, e E E},  with notation as in 18.25 and 18 .26.  Let 
Un : a E A) be a Cauchy net in Y x ;  we must show that (J a )  converges to a limit in Y x .  

Let T = UsES 5. We first show that Un ) converges pointwise on T. Fix any t E T. 
Then t E 5 for some 5 E S. Fix any e E E. Since (fa )  is Ps.e-Cauchy, the net (Ja (t ) )  is 
e-Cauchy in Y. This applies for each e E E, so the net Ua (t ) )  is E-Cauchy in Y. Since Y 
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is assumed complete, there is some limit to which Ua (t ) )  converges. (There may be more 
than one, if the gauge space (Y, E) is not Hausdorff. ) Let f ( t )  be any limit of (J"' ( t ) ) .  

Now fix any S E S, e E E,  and c > 0 .  Since (fa )  i s  Cauchy, there is some lo E A such 
that a, (3 � lo =? ps, e (fa ,  ff3) :::; c - i .e. , such that 

a, (3 � /o , t E S e Ua (t ) ,  ff3 ( t ) ) :::; c. 

Hold a fixed and let (3 increase, and take limits. This shows that 

a � /lh t E S e Ua ( t ) ,  f(t ) ) :::; c. 

It follows that fa ----> f in the topology of uniform convergence on members of S .  
Remarks. In  most cases of  interest, Y i s  Hausdorff and UsES S = X. Then the complete 
uniform structure on Y x is also Hausdorff, and a set <I> t;;; Y x is complete if and only if it 
is closed. Thus it becomes important to know which subsets of Y x are closed; see 18 .34. 

19. 13. Completeness of pointwise convergence. Any product of complete spaces is 
complete, when equipped with the product uniformity. 

In some cases this is easy to verify and does not require the Axiom of Choice. Indeed, 
the product of finitely many or countably many metric spaces is metrizable, ·with metrics 
given as in 18 . 16  and 18. 17. In particular, JRn is complete, and so is any closed subset of 
JRn . Since C is isomorphic to JR2 as a uniform space, C is also complete. 

For arbitrary products, however, the Axiom of Choice is needed. We shall now show 
that AC (introduced in 6 . 12 ,  6 .20, 6 .22) is equivalent to the two principles below. Recall 
the definition of "knob space," in 5.34.c. 

(AC26) Product of Complete Spaces. For each A in some set A, let Y.x 
be a complete uniform space. Then the product X = ILEA Y.x , equipped with 
the product uniform structure, is also complete. 

(AC27) Product of Knob Spaces. Any product of knob spaces, when 
equipped with the product uniform structure, is complete. 

Proof of (AC3) =? (AC26) .  Let :J be a Cauchy filter on X ;  we wish to show that :J has 
at least one limit. For each A, the filterbase 1r_x (:J) is Cauchy in Y_x . Since Y.x is complete, 
the set S.x of limits of 7r>. (:J) is nonempty. By the Axiom of Choice (AC3) , R = ILEA S>. is 
nonempty; then any element of R is a limit of :J. 

Remark. It should be noted that if all the Y>. 's are Hausdorff, then the Axiom of Choice is 
not needed, since each S>. is a singleton. In this special case, the argument above establishes 
the statement (AC26) using just ZF - i.e . ,  set theory without the Axiom of Choice. In 
particular, AC is not needed to prove that 2A is complete, where 2 = {0, 1 }  has the discrete 
uniform structure. 

Proof of (AC26) =? (AC27) . As we noted in 19 . 1 1 .h ,  every knob space is complete. 

Proof of (AC27) =? (AC3) . Let A, S>. , 6 ,  Y>. , X, � be as in 6.24, and equip X with topology 
and uniform structure as the product of knob spaces. For each A E A,  the filterbase 1f>. (:J) 
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is Cauchy on Y.x , since it includes the set 7r.x (Tp} ) = S.x . Since S.x is closed in Y.x , any limit 
of 1r .x ( 3") must lie in S .x . Since each 1r .x ( 3") is Cauchy, the filter base :1 is Cauchy on X. By 
hypothesis, X is complete, so :1 has at least one limit ( in X. We have 1r.x (() E S.x for each 
.A; thus ( E fhEA S.x . 

TOTAL BOUNDEDNESS AND PRECOMPACTNESS 

19. 14. Definition. Let (X,  U) be a uniform space, and let D be any gauge that determines 
the uniformity U. A set S � X is totally bounded if 

for each U E U. there is some finite set F � X  such that S � UrEF U [:r] 

or, equivalently, if 

for each number E > 0 and each d E  D, there exists some finite set F � X  such 
that S � UrEF Br�(:r: . E ) .  

The proof of  equivalence of these two definitions is left as an exercise. A substantially 
different characterization of totally bounded sets will be given in 19 . 17. 

19.15. Basic properties of total boundedne8s. 
a. We obtain an equivalent definition if we replace "finite set F � X" with "finite set 

F � S" in either of the conditions above. 

b. In a pseudometric space, the definition above simplifies slightly. A set is totally 
bounded if and only if, for each E > 0, the set can be covered by finitely many balls of 
radiuH E . 

c. If X i s  a uniform space and S � X , then S is also a uniform space (see 9.20) . Show 
that S is totally bounded, as a subset of X, if and only if S is totally bounded as a 
subset of itself. 

d. Let D be a gauge that determines the uniformity U. Then a set S � X is totally 
bounded in the uniform space (X, U) = (X, D)  if and only if S is totally bounded in 
each of the pseudometric spaces (X, d) for d E D .  (Hence many questions about total 
boundedness of uniform spaces can be reduced to questions about total boundedness 
of pseudometric spaces. )  

e. Any finite subset of a uniform space i s  totally bounded. 

f. The totally bounded subsets of a uniform space form an ideal. That is: any subset of a 
totally bounded set is totally bounded, and the union of finitely many totally bounded 
Hets is totally bounded. 

g. If {Y.x : A E A }  is a collection of totally bounded uniform spaces, and X is equipped 
with an initial uniformity determined by the Y.x 's ,  then X is also totally bounded. 

In particular, any product of totally bounded uniform spaces is totally bounded. 
when equipped with the product uniform structure. 
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More particularly, 2A is totally bounded for any set A. This argument does not 
require the use of the Axiom of Choice or any weakened form of Choice; we shall use 
that observation in a proof in 19. 17 .  

h. Let S <;;; X .  If S is totally bounded, then cl(S) is totally bounded. Hint : 

cl ( U Bd(x, c)) 
xE F 

U cl (Bd (x , c ) )  <;;; U Kd(x, E:) C U Bd(x, 2E:) ,  
xE F xEF xE F 

where Kd is the closed ball defined as in 5 . 15 .g. 

i. If X is totally bounded, then any universal net (or any ultrafilter) in X is Cauchy. 
Hint: 5.8(E) and/or 7.25.d. 

j .  Any totally bounded pseudometric space is separable. Hint : Use a sequence of c 's that 
decreases to 0. 

k. Let X be a uniform space, and let S be a subset with the property that every sequence 
in S has a cluster point in X. Then S is totally bounded. 

Hints : Suppose not. Then there is some number E: > 0 and some pseudometric d in 
a determining gauge, such that S cannot be covered by finitely many d-balls of radius E:. 
Hence we can recursively choose a sequence (xn ) in S such that Xn tJ_ U7�11 Bd(xj , E:) .  
Let z b e  a cluster point of that sequence. Show that Bd (z, c/2) contains infinitely 
many of the Xn 's and hence it contains at least two of them, a contradiction. 

19.16. Let X be a uniform space. In this book we shall say that X is precompact if 
every proper filter on X has a Cauchy superfilter - or, equivalently, if every net in X has 
a Cauchy subnet. 

It is easy to see that 

a uniform space is compact if and only if it is complete and precompact. 

This result does not require the Axiom of Choice or any weak form of the Axiom of Choice, 
unlike the results below. 

19.17. The Ultrafilter Principle, introduced in 6.32 ,  is equivalent to the following principles: 

(UF24) Let X be equipped with the uniform structure given by a gauge. 
Then X is precompact if and only if X is totally bounded. 

(UF25) Let X be equipped with the uniform structure given by a gauge. 
Then X is compact if and only if X is complete and totally bounded. 

Remark. Most mathematicians use the terms "precompact" and "totally bounded" inter
changeably. That is not surprising, since most mathematicians view the Axiom of Choice 
as "true" and therefore view (UF24) as "true." In this book we have distinguished between 
"precompact" and "totally bounded" precisely to see the role of the Ultrafilter Principle as 
a weak form of the Axiom of Choice. 

The equivalence of (UF25) with other forms of UF was first announced by Rubin and 
Scott [1954] . 
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Proof of (UF1 )  =? (UF24) . If X is totally bounded, then X is precompact; this follows 
immediately from (UF1 )  and 19. 15 . i .  

Conversely, we shall show that precompact implies totally bounded. This part of the 
proof does not require UF;  it can be proved in ZF. Assume X is precompact but not totally 
bounded; we shall obtain a contradiction. Since X is not totally bounded, there is some 
number c > 0 and some pseudometric d E D such that X cannot be covered by finitely 
many balls Bd(x, c) , with centers x E X. Let 

J = {A <;;; X : A can be covered by finitely many open balls of radius c } .  

Then J i s  a proper ideal on X .  I t  i s  dual to  the proper filter 3" = {X \ A : A E J } .  
By assumption, 3" has a Cauchy superfilter 9 .  Since 9 i s  Cauchy, i t  has some member 

G with diameter less than c. Then G can be covered by an open ball of radius c, and so 
G E J. This leads to a contradiction. 

Proof of (UF24) =? (UF25) .  Immediate from 19 .16 .  

Proof of (UF25) =? (UF2 1 ) .  By 19. 15 .g and the remark in 19. 13 ,  we know that 2x 

is totally bounded and complete. Hence 2x is compact . This proves (UF21 ) ,  which was 
presented in 17.22. 

19. 18. An important special case of (UF25) is: A pseudometric space is compact if and 
only if it is complete and totally bounded. This can be proved without using UF; we omit 
the proof. 

19.19. Definition and exercises. Let (X, d) be a metric space, and let S be a metrically 
bounded subset of X.  Then we define Kuratowski's measure of noncompactness 

a(S) inf { r : S can be covered by finitely many sets with diameter :S r} 
and Hausdorff's measure of noncompactness 

(3(S) inf { r : S can be covered by finitely many balls with radius :::; r} . 

Show that 

a. The two measures are "equivalent ," in this sense: (3(S) :S a(S) :::; 2(3(S) . Thus one 
measure is small if and only if the other is small. 

b. a (S) and (3(S) are zero if and only if S is totally bounded. Thus, in a complete metric 
space, a (S) and (3(S) are zero if and only if S is relatively compact . 

c. (3(S) is the distance from cl(S) to the nearest compact set, in the Hausdorff metric on 
the space of closed, metrically bounded sets (see 5 . 18.d) . 

19.20. Niemytzki-Tychonov Theorem. Let (X, 'J) be a topological space; assume the 
topology 'J is pseudometrizable. Then (X, 'J) is compact if and only if every pseudometric 
yielding the topology 'J is complete. 
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Proof This proof is taken from Engelking [1977] . The "only if" part follows from 19. 18 . 
For the "if" part, assume that (X, 'J) is not compact; we shall construct an incomplete 
pseudometric for 'J. 

By 17.33, X is not countably compact. By 17.26.b, there exist nonempty closed sets 
F1 � F2 � F3 � · · · such that the intersection n�1 F; is empty. By 18 . 14 , there is 
some pseudometric O" on X that yields the given topology and is bounded by 1 .  Now for 
i = 1 ,  2, 3, . . .  , define 

where 8; (x) = dista (x, F;) .  

Verify that p; is a pseudometric on X .  Let p(x, y) = 2::�1 2-ip; (x, y ) ;  verify that p is a 
pseudometric on X. Show that p and O" have the same convergent sequences; thus p yields 
the topology 'J. Also show that diamp(F; )  :::; 2-\ by 19. 1 l .c we conclude that p is not 
complete. 

BOUNDED VARIATION 

19.21 .  Let (X,  d) be a metric space, and let <p :  [a , b] ---+ X be some function. The variation 
of rp is the number 

Vru-(�, [a, bJ ) � '"P {t. d (<p(t,_ , ) ,  <p(t, )) ' a � 10 < t , < · · · < t,. � b} . 

Here the supremum is taken over all partitions of [a , b] into finitely many subintervals. (For 
clarification, we may refer to this as the variation in the sense of intervals, or variation 
in the classical sense; another meaning of "variation" is given in 29.5 . In 29.34 we discuss 
the relation between the two notions. )  The function rp has bounded variation on [a, b] if 
Var( <p, [a, b] ) < oo. Some elementary but important properties are noted below. 

a. Var( rp, [a, q] ) + Var( rp, [q, b] ) = Var( rp, [a, b] ) for a < q < b. 
b. Var( rp, [a, b] ) = 0 if and only if <p is constant on [a, b] . 
c. If O" : [a, b] ---+ [a, b] is an increasing function or a decreasing function, then Var( <p o 

O", [a, b] ) = Var( rp, [a, b] ) . 
d. If <p : [a, b] ---+ X has bounded variation and 1 : X ---+ Y is Lipschitzian (where X 

and Y are metric spaces) , then 1 o rp : [a, b] ---+ Y has bounded variation. In fact, 
Var(l o <p, [a, b] ) :::; (/)Lip Var(rp, [a, b] ) . 

Remark. Although this result is easy to prove, a harder proof will not yield a 
stronger result; that is evident from the converse given in 19.23. 

e. Corollary. If 1/J : [a, b] ---+ Y is Lipschitzian, then 1/J has bounded variation, with 
Var(1/J, [a , b] ) :::; (b - a) (f) Lip · 

f. Example. Show that the function f(t) = t cos (; ) is continuous on [0, 1] but does not 
have bounded variation. 
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g. A function with bounded variation need not be continuous. For instance, show that 
any increasing function from tp into lR has bounded variation. 

h. A function tp : [a, b] ---> lR has bounded variation on [a, b] if and only if tp is the difference 
of two increasing functions. (We emphasize that tp does not need to be continuous. )  

Hint for the "only if" part : Assume tp has bounded variation. Show that p(t) = 

Var(tp, [a, t ] )  and n(t) = p(t) - zp(t) are increasing functions. 

1 .  A function tp : [a. b] ---> C has bounded variation on [a, b] if and only if Re tp : [a, b] ---> lR 
and lm tp : [a ,  b] ---> lR both have bounded variation . 

More advanced ideas about bounded variation will be covered in 22. 19 and thereafter. 

19.22. Proposition. Suppose tp : [a, b] ---> X has bounded variation, where X is a complete 
metric space. Then tp (t+) = limnl t zp(t) exists at every t E [a, b) , and zp(t-)  = limuf t  zp(t) 
exists at every t E (a , b] , and tp is continuous except at countably many points of [a ,  b] . 
In fact ,  tp is right or left continuous at each point where the increasing function t f-+ 
Var( tp, [a, t] ) is right or left continuous, respectively. 

Hints: If tp is real-valued and increasing, then these results follow from 15 .21 .c .  If tp is 
real-valued, then these results follow from 19.2l .h. Now consider the case where tp takes 
values in a complete metric space X .  

Let 'lj! (u) = Var( tp ,  [a, u] ) .  Then 'lj! is an increasing real-valued function on [a, b] , so for 
each t E [a, b) we have the existence of ?jJ(t+) = limult ?jJ(u) , and moreover ?jJ(t+) = ?jJ(t) 
except at countably many values of t .  

When u and v decrease to  t ,  then ?jJ( u) and ?jJ( v) both converge to  the same limit ?jJ( t+) ; 
smce 

d (zp(u) ,  zp(v) ) < Var( tp, [u, v] ) 'ij!(v) - 'ij!(u) , 
it follows that the values of tp( u) and tp( v) form a Cauchy net. Thus tp( t+) = limul t  tp( u) 
exists at every t E [a, b) . If 'lj! is right continuous at t , then we may apply that argument 
above with u = t to show that tp is right continuous at t .  

19.23. Josephy's Theorem (optional). Let (X, d)  and (Y, e ) be compact metric spaces. 
Suppose 1 : X ---> Y has the property that whenever tp : [0, 1] ---> X has bounded variation, 
then 1 o tp : [0 . 1] ---> Y has bounded variation. Then 1 is Lipschitzian. (This is a converse 
to 19.2 l .d . )  

Proof Suppose 1 is not Lipschitzian. Then there exists a sequence (xn , x�) in  X x X 
such that :r71 /c x',, and e (r(x11 ) , 1 (x�) ) /d (x11 , x',, ) ---> oo. Since Y has finite diameter, we 
have d(xn . x',, ) ---> 0. Since X is compact, by passing to a subsequence we may assume the 
sequences (xn ) and (x',, ) both converge to some limit Xoc in X. For simplicity of notation 
later in the proof, let us also denote x0 = x� . 

Passing to a further subsequence, we may assume that 

e (r(xn ) · l(x',, ) )  ( ) > n n + 1 , d(:r" . .r;, ) 
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Now let On = d(xn , x� ) ; then On < 2/n2 . Define c.p :  [0, 1 ] ____, X by 

c.p( t )  

X00 when t = 0 
Xn when t E [ n�1 , �) and t - n�1 is a multiple of On 
x� when t E [ n�1 , �) and t - n�1 is not a multiple of On 
Xo when t = 1 .  

We shall show that c.p has bounded variation but 1 o c.p does not. It is clear that c.p has left 
and right limits at each point. Since we wish to show that 1 o c.p does not have bounded 
variation, we may (arguing by contradiction) assume that it does; thus we may assume that 
1 o c.p also has left and right limits. 

Let L be either the identity map or 1; by analyzing the function t o c.p we shall simulta
neously analyze the two functions c.p and 1 o c.p. Let p be either the metric d or the metric 
e.  The function t o c.p has variation given by 

Var(t o c.p, [0, 1] ) 
J�oo {p (t(c.p(O) ) , t(c.p( N� 1 ) )) + t,var (t o c.p, [n � 1 , �] ) } 
p C(xoo) , w�u(c.p(t) )) + �var (t o c.p, [n : 1 , �] ) . 

The term involving L(x00 ) is finite; the question is whether the infinite series converges. 

Temporarily fix n, and let us analyze Var (t o c.p, [ n�1 , � J ) .  Let 

1 . Tj = --1 + ]On n + 
with nonnegative integer J chosen so that 

for j = 0, 1 ,  2, . . . , J, 

1 1 -- = To <  T1 < · · · < TJ < - ::::: TJ+1 · n + 1 n 
The function c.p is a step function on the interval [ n�1 , � J - it takes the value Xn at 

each of the points To , T1 , T2 , . . .  , T J ,  the constant value x� on each of the open intervals 
(To , Tl ) , (T1 , T2 ) , . . .  , (TJ-1 , TJ ) , (TJ , � ) , and the value Xn- 1 at � - Hence 

To estimate this quantity, we shall use the inequality TJ < � :::; TJ+ 1 ,  which can be rewritten 
as J < n(n�1 ) 6n ::::: J + 1 .  
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We now analyze the two cases separately: When L i s the identity function, we obtain 

which is summable over n. On the other hand, when L is the function '' we obtain 

Var ( r o cp, [ n : 1 , �] ) = (2J + 1 )e (r(xn ) ,  r(x�) )  + e (r(x�) ,  r(Xn-d) 

� (J  + 1 ) . e (r(xn) , r(x�, ) )  � ( n(n � 1 )8n ) . (n(n + 1 )d(xn ,  x� ) )  1 , 

which is not summable over n .  This completes the proof. 
For generalizations and further references, see Pierce [1994] . 

CAUCHY CONTINUITY 

19.24. Definition. Let X and Y be uniform spaces. A mapping f : X --> Y is Cauchy 
continuous if it has this property: Whenever (xn )  is a Cauchy net in X,  then (f(xa ) )  is a 
Cauchy net in Y. An equivalent formulation in terms of filters is: Whenever :J is a Cauchy 
filter on X,  then the filter generated by the filter base f ( :J) = {! (F) : F E :J} is Cauchy on 
Y. 

Cauchy continuity will only be studied briefly here; a deeper study can be found in 
Lowen-Colebunders [1989] . 

19.25. Proposition. Let f :  X -->  Y be a map from one uniform space into another. Then 

f is uniformly continuous =? f is Cauchy continuous =? f is continuous. 

(Hint : For the second implication, use 19.6 . )  
Moreover, neither of these implications is reversible. For instance, let IR and the interval 

(- � ,  � )  have the usual metric d(x, y) = lx - Y l · Show that 
(i) the function f(x) = tan(x) , from (- � , � )  to IR, is continuous but not Cauchy 

continuous, and 
( ii) the function f ( x) = x3 , from IR to IR, is Cauchy continuous but not uniformly 

continuous. 

19.26. Exercise. Let X and Y be uniform spaces; assume X is complete. Let f : X --> Y 
be some mapping. Then f is continuous if and only if f is Cauchy continuous. 

19.27. Theorem. Let X and Y be complete uniform spaces. Let S <:;: X be dense, and 
let p : S --> Y be some given function. Then the following conditions are equivalent: 

(A) p extends to a continuous function p :  X --> Y; 
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(B) p extends to a Cauchy continuous function p :  X ----+ Y; 
(C) p i s  Cauchy continuous from S into Y. 

Furthermore, if p i s  uniformly continuous, then so is  any continuous extension p; in fact , 
any modulus of uniform continuity for p will also be a modulus of uniform continuity for p. 

Proof The conclusion about uniform continuity follows from 18 . 10 .  The implication (B) 
=} (C) is trivial. The implication (A) =} (B) follows easily from 19.26. Now assume (C) ; 
it suffices to prove (A) . Fix any x E X; let N(x) be its neighborhood filter in X .  Then 
S n N(x) = {S n N :  N E N(x) } is the neighborhood filter of x in S. That filter converges 
to x in S, and therefore that filter is Cauchy. Since p is Cauchy continuous, the filterbase 
p(S n N(x)) = {p(S n N) : N E N(x)}  is Cauchy in Y - that is, the filter it generates 
is Cauchy. Since Y is complete, that filter is convergent . Now we may apply 16 .15 ;  this 
completes the proof. 

19.28. Definition. Let X be a complete uniform space, and let f : [a, b] ----+ X be some func
tion. We say f is piecewise continuous if it satisfies any of these equivalent conditions. 
(The proof of equivalence uses 19.27.) 

(A) f is continuous except at finitely many points and has left- and right-hand 
limits at those points. 

(B) We can form a partition a = t0 < t 1 < t2 < · · · < tn = b such that f is 
uniformly continuous on each open interval (t1_ 1 , t1 ) .  

(C) We can form a partition a =  t0 < t 1 < t2 < · · · < tn = b such that f agrees on 
each open interval (t1_ 1 , t1 )  with some X-valued function J1 that is continuous 
on the closed subinterval [t1 _ 1 , t1 ] .  

CAUCHY SPACES (OPTIONAL) 

19.29. Remarks. Some of  the ideas covered in  this chapter can be extended to a setting 
slightly · more general than uniform spaces. A Cauchy space is a set X equipped with a 
collection e of proper filters on X, called the Cauchy filters, which satisfy these axioms: 

(i) For each x E X, the. ultrafilter fixed at x is Cauchy. 

(ii) If 9", 9 are proper filters, 9" is Cauchy, and 9" <;;; 9 ,  then 9 is Cauchy. 

(iii) If 9", 9 are Cauchy and each member of 9" meets each member of 9,  then 
9" n 9 = { A  <;;; X : A E 9" and A E 9} is Cauchy. 

A function p : X ----+ Y from one Cauchy space to another is Cauchy continuous if 9" is 
Cauchy in X implies p(9") is Cauchy in Y; this generalizes 19.24. 

Any Cauchy space can be made into a convergence space in a natural way: We say that 
a proper filter 9" converges to a point x if 9" n U( x) is Cauchy; here li( x) is the ultrafilter 
fixed at x. Note that, with this definition, any convergent filter is Cauchy. 
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In the theory of Cauchy spaces, one of the main topics of investigation has been: In what 
ways may we form completions of Cauchy spaces - i.e . ,  larger Cauchy spaces in which every 
Cauchy filter converges? That topic is surveyed in Kent and Richard:son [1984] . 

19.30. Example. It i:s ea:sy to :see that any uniform space i:s a Cauchy :space - i.e. , the 
uniform :space's Cauchy filter:s (defined as in 19.2) :satisfy the three axioms of 19.29. Indeed, 
those axioms follow from 19.4.a, 19.4.b, and 19.5, respectively. The convergence that i:s then 
defined from the Cauchy :structure, a:s in 19 .29, coincide:s with the topological convergence 
determined by the uniformity, as in 5.33 and 15 .  7; that fact is ju:st 19.6. 

19.31. Example. Any lattice group (X, �) can be made into a Cauchy :space in a natural 
way: Say that a net (xo: : a E A) or its filter 9" on X i:s Cauchy if there exi:st:s a set S � X 
with these three propertie:s: 

(i) S i:s directed downward - i.e. , for each 81 , 82 E S there exi:sts 8 E S with 
8 � s1 1\ 82 . 

(ii) 0 = inf(S) .  

(iii) For each s E S, we have eventually /xo: - Xf3/ � 8 - that i:s ,  there is :some 
/o E A :such that a, (3 � In =} /xo: - x(1 / � 8. Equivalently, for each 8 E S 
there i:s some F E  9" such that x, x' E F =} jx - x' / � 8.  

For purposes of the discu:s:sion below, we shall then say that S i:s a "witnes:s" of the Cauchy
ne:s:s of T 

If we define "Cauchy" in this fashion, then it i:s very ea:sy to :see that the "Cauchy" filter:s 
satisfy the fir:st two axiom:s in 19.29. The "Cauchy" filter:s also :sati:sfy the third axiom in 
19.29, as we shall now demonstrate. Let 9" and 9 be two Cauchy filters :such that every 
member of 9" meets every member of 9. Say 9" and 9 have witnes:ses S and T, respectively (in 
the sense of the preceding paragraph) . Using 8.33.a, verify that S+T = { s+t : s E S, t E T} 
i:s a witne:ss for the Cauchyne:ss of 9" n 9 .  

In  the context of lattice group:s, the convergence determined by the Cauchy :structure 
(as in 19.29) turns out to be preci:sely the order convergence (a:s defined in 7.38 and 7.40.d 
and further characterized in 8.44.a) ; thi:s is easy to verify. 

However, order convergence in a lattice group sometime:s is not a topological convergence; 
we :see an example of thi:s in 21 .43. Thu:s, the Cauchy :structure of a lattice group i:s not 
neces:sarily given by a uniformity. 

COMPLETIONS 

19.32. Definitions. Let X be a uniform space. By a completion (or more specifically, 
a uniform completion) of X we mean a complete uniform :space Y with a den:se :subset 
that is isomorphic to X. Here "i:somorphi:sm" u:sually mean:s a bijection that is uniformly 
continuous in both directions; we :shall give this term a :slightly stronger meaning in 19.36. 
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For pseudometric spaces and metric spaces, the term "completion" has a more specialized 
meaning. Let (A, d) be a (pseudo)metric space. By a completion of A we mean a complete 
(pseudo)metric space Y with a dense subset that is isomorphic to A; but here "isomorphism" 
means a distance-preserving bijection. 

19.33. Theorem: Existence of completions of metric spaces. Every metric space 
has a completion. We shall sketch two proofs of this fact. 

a. The first proof is extremely short : Let A be any metric space. Then, as we noted 
in 4.4l . f  and 19. 1 l . f, A can be embedded isometrically in the complete metric space 
B(A) . Hence the closure of A in B(A) is a completion. This proof has the conceptual 
drawback that it relies on already knowing lR is complete. 

b. The second proof is a bit longer, but it contains enough insight to be worth mentioning. 
Let (X, d) be any metric space. Show that if (xn) and (Yn) are two Cauchy sequences 
in X,  then (d(xn , Yn) )  is a Cauchy sequence in R Since lR is complete, the number 
D( (xn ) ,  (Yn ) )  = limn_,00 d(xn , Yn) exists. Show that D, defined in this fashion, is a 
pseudometric on the set of all Cauchy sequences. Call two Cauchy sequences equivalent 
if the distance between them is 0; then D becomes a metric on the set of all equivalence 
classes of Cauchy sequences. Show that that metric is complete and X is a dense subset 
of the resulting metric space, with embedding given by x r--+ (x, x, x, . . .  ) .  

c .  Cantor 's Construction of JR ,  1883 ( optional) .  A slight modification of the argument 
in the preceding paragraph gives us a construction of R Let X be the set Q of 
rational numbers, with its usual definition and properties. Define d : Q x Q ---+ Q by 
d(x, y) = lx - Y l · A sequence (xn) in Q will be called "Cauchy" if for each rational 
number E > 0 there exists some M such that m, n 2: N ==? lxm - Xn l < E. Now verify 
lots of things; the quotient space constructed in the preceding paragraph is a Dedekind 
complete, chain ordered field, and thus it is R 

19.34. Preliminaries on Kolmogorov quotients. Before continuing to the next two sections, 
the reader may find it helpful to briefly review sections 16.5 and 16 .21 ,  on Kolmogorov 
quotients. The quotient is formed from a space by "collapsing together" (i.e. , identifying) 
those points that are indistinguishable from one another. It is easy to see that 

a gauge space is complete if and only if its Kolmogorov quotient is complete, 

provided that the Kolmogorov quotient is equipped with the gauge determined as in 16.21 .  

19.35. Lemma. Every pseudometric space has a (distance-preserving) completion. 

Proof Let (S, d) be a pseudometric space. Let Q be its Kolmogorov quotient; then Q 
is a metric space when metrized as in 16 .21 .  The quotient map 1r : S ---+ Q is distance
preserving and surjective (but not injective unless S is Hausdorff) .  Let C be a distance-

preserving Hausdorff completion of Q, formed as in 19.33.a or 19.33.b, and let i : Q --S C 
be the inclusion map. The composition S � Q __i:__. C is a distance-preserving map into a 
complete metric space, but in general this map is not injective. 
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To overcome that drawback, we shall form a new space X that has C as its Kolmogorov 
quotient - i.e . ,  we shall reverse the process of forming a Kolmogorov quotient. By relabeling 

if necessary, we may assume C is disjoint from S. We define the set X to be ( C \ i(Q)) U S. 

To define the pseudometric of X,  view X as a modification of C, formed by "uncollapsing" 
the points that were collapsed together by 7r. For each q E Q, replace the single point 
i(q) E C with a relabeled copy of the set 7r� 1 (q) � S, all the members of which were 
separated by distance 0 in S and will be separated by distance 0 in the new space X. 
Points in C \  i (Q) are left unaltered in  forming the new space X. The inclusion S � X is 
distance-preserving and injective, with X complete. 

19.36. Theorem: Existence of completions of uniform spaces. Every uniform 
space has a completion. Furthermore, the completion can be given by a distance-preserving 
inclusion, in the following sense: 

Let S be a uniform space whose uniform structure is given by a gauge D. Then there 
exists a complete uniform space X with gauge E, such that S is a dense subset of X and 
the members of D are just the restrictions of the members of E. 

If S is Hausdorff, then we may choose X Hausdorff as well. 

Proof. The proof may seem long because it involves a great deal of notation; but it is 
conceptually simple and actually involves very little computation. 

For each pseudometric d E D, let (Td ,  d) be a completion of the pseudometric space 
( S, d) . Here we use the same letter d for the given pseudometric on S and its extension to 
the larger space. The letter D will be used to represent not only the original gauge, but 
also the collection of these extensions. 

Let Y = TidED Td be equipped with the product uniform structure; then Y is complete, 
by (AC26) in 19. 13 .  There may be many gauges on Y that give that product uniform 
structure; one particularly convenient gauge is formed as follows: 

For each pseudometric d, we define a corresponding pseudometric on Y ,  which we shall 
denote by d, as follows: d(y, y') = d (7rd(y) ,  7rd(y' ) ) ,  where 'iTd : Y ----+ Td is the dth coordinate 
projection. It follow

;
:; trivially from 18. 1 1 (C) that the pro�uct uniform structure on Y is 

given by the gauge D consisting of all such pseudometrics d. 
Define an inclusion i :  S � Y by taking i (s )  = (s , s, s, . . .  ) - that is, each member of S 

is mapped to the corresponding constant function. Clearly this map is distance-preserving: 
d(s, s ' ) = d(i(s ) ,  i (s' ) ) .  The closure of i (S) in Y is a distance-preserving completion of S. 

If the original uniform space (S, D) is Hausdorff, then the construction above may be 
modified to yield a Ha11sdorjJ distance-preserving completion, as follows: Let Q be the 
Kolmogorov quotient of Y. Then the gauge space (Q, D) is complete and Hausdorff. The 
quotient map 7r : Y ---+ Q is not necessarily injective, but its restriction to i (S) is injective. 
Thus, the closure of 7r (i (S)) in Q is a distance-preserving Hausdorff completion of S. 

19.37. Theorem: Uniqueness of Hausdorff completions. Both of the results below 
follow easily from 19.27, by an argument similar to the uniqueness proof in 4.38; for the 
metric space result , use a suitable modulus of uniform continuity. 

a. Let X be a Hausdorff uniform space. Then the Hausdorff completion of X is unique 
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up to isomorphism. In other words, if i1 : X --L Y1 and i2 : X --L Y2 are two such 
completions, then the bijection i2 o i1 1 : Range( i t )  ----+ Range(i2 ) extends uniquely to a 
bijection 1: :  Y1 ----+ Y2 that is uniformly continuous in both directions. 

b. Let X be a metric space. Then the metric completion of X is unique up to isomorphism. 

In other words, if i 1 : X --L Y1 and i2 : X --L Y2 are two such completions, then the 
bijection i2 o i1 1 : Range(i t ) ----+ Range(i2 ) extends uniquely to a distance-preserving 
bijection 1: : Y1 ----+ Y2 . 

19.38. Example and remarks. The Lebesgue space L 1 [0, 1 ] ,  defined in 22 .28, is a complete 
metric space in which C[O, 1] = {continuous scalar-valued functions on [0, 1] } is dense; those 
properties will be proved in 22.30.d and 22 .31( i ) .  Thus U [O, 1] is the completion of C[O, 1 ] ,  
where the metric used i s  d(f, g) = f01 f f(t) - g(t) f dt . Although we shall prove that fact 
as a theorem, it could instead be used as a definition of L1 [0, 1 ] .  It is perhaps the most 
elementary definition of L1 [0, 1 ] ;  it does not require any measure theory. 

However, that definition has several drawbacks. It depends heavily on the topological 
structure of the interval [0, 1] , and thus it does not generalize readily to the Lebesgue spaces 
U (p,) . Also, it does not give us easy access to the important theorems that sometimes make 
L1 [0, 1] more useful than C[O, 1] - e.g. , theorems such as the Monotone and Dominated 
Convergence Theorems 21 .38(ii) and 22 .29. Moreover, viewing L1 [0, 1] as the completion of 
C[O, 1] does not offer us much insight into the structure of L1 [0, 1 ] :  It describes members 
of that space as equivalence classes of Cauchy sequences of members of C[O, 1 ] ,  where the 
definition of "equivalence" is somewhat complicated; or it identifies L1 [0, 1] as a subset of 
the collection of bounded maps from C[O, 1] into R We would prefer to view the members 
of L1 [0, 1] as maps from [0, 1] into R 

We shall follow the usual development of integration theory: We begin with measures 
and measurable functions (in 9.8, 1 1 .37, and Chapter 2 1 ) .  We use linearity to define the 
integrals of simple functions; then we take limits to obtain the integrals of other measurable 
functions. The measure J1 can be defined on any measurable space 0; the particular topo
logical properties of [0, 1] are not especially relevant in this construction. Two measurable 
functions from 0 into the scalars are equivalent if they differ only on a set of measure 0. The 
members of LP(JL) are equivalence classes of measurable functions whose integrals are not 
too big - see 22.28. This approach requires an explanation of "measurable function" and 
"measure 0," but it does not involve Cauchy sequences and ultimately it is more insightful. 
For most purposes, we can work with any member of an equivalence class, and so we obtain 
members of L1 [0, 1] as maps from [0, 1] into JR. 

BANACH 'S  FIXED POINT THEOREM 

19.39. Theorem (Banach, Caccioppoli) .  If X is a nonempty complete metric space 
and f : X ----+ X is a strict contraction, then f has a unique fixed point �. 

Moreover, � = limk�x Jk (x) for every x E X. In fact ,  we have this estimate of the rate 
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of convergence: 

(f)Lpd ( x, .f(x)) 
1 - (!)Lip 

Hints : Show d (P (x) , .fH1 (x)) ::; (f)Lpd(x, .f (x)) by induction on j. Also, 

Jn - 1 

d (.f" (x) , .f'" (x)) < L d (P (x) , .tJ+ ' (x)) for m > n ,  
.i=n 

by repeated use of the triangle inequality. 
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Remarks. The Contraction Mapping Theorem is  remarkable: It  has a short and simple 
proof, and yet it has many applications; see for instance 19.40.c and 30.9. In some respects 
it cannot be improved upon; this is made clear by the two converses given in 19.47 and 
19 .50. 

19.40. Exercises. 
a. Let (X, d) be a metric space. Let f : X --+ X be a strict contraction -- or, more 

generally. let f be a self-mapping of X satisfying 

d (f(x) , f(y)) < d(x, y) whenever x i'  y .  

Then f has at most one fixed point. 

b. It is possible for a map .f : X --+ X satisfying condition ( * ) of the previous exercise to 
have no fixed points - even if (X, d) is a nonempty complete metric space. Show this 
with X =  [ 1 ,  +oo) with the usual metric and f(x) = x + � ·  

c .  Show that the equation cos( x )  = x has a unique solution in R Then use a calculator 
to find that solution, correct to five decimal places. 

d. Continuous dependence of fixed points. Let X be a nonempty complete metric space. 
Let Un ) be a sequence of strict contraction self-mappings of X; say �n is the fixed 
point of fn . Assume supn EN (!,)Lip < 1 ,  and fn --+ f oc pointwise. Then f x is a strict 
contraction, with fixed point �x = limn�:x: �" . 

e. In the preceding exercise, the assumption supnEN (fn)Lip < 1 cannot be replaced with 
the weaker assumption that the fn 's and f 00 are all strict contractions. The following 
example requires some familiarity with £2 (defined in 22.25 ) .  Let X = £2 , and let 
fn (:r 1 , Xz , X:J , . . .  ) be the sequence whose nth component is � + n� 1 Xn and whose other 
components are 0. Show that limn�= �n does not exist in fJz . 

f. If we know a strict contraction within some small error, then we also know its fixed 
point within some small error. More precisely, let h and h be strict contraction self-

mappings of a nonempty complete metric space (X, d) , and suppose d (.h ( x) ,  h ( x)) ::; 
c for all :r: E X. Then the distance between the fixed points of h and h is not greater 
than c/(1 - (h )Lip ) .  
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19.41. Proposition: continuous dependence of fixed points. Let (X, d) be a complete metric 
space, and let f :  X ----+ X be a strict contraction. Let Un) be a sequence of arbitrary self
mappings of X (i.e. , not necessarily contractions, or even necessarily continuous) ;  assume 
that fn ----+ f uniformly on X.  Let x be the unique fixed point of f ,  and for each n suppose 
that Xn is some (not necessarily unique) fixed point of fn - Then x = limn_,00 Xn · 
Proof (modified from Vidossich [1974] ) .  Since fn ----+ f uniformly, 

Similarly, d ( Xm , f(xm)) ----+ 0 as m ----+ oo. Then 

as n ----+ oo. 

as m, n ----+ oo. Since d (!(xm) , f(xn )) :::; K d(xm , Xn ) for some constant K = (!)Lip < 1 ,  it 

follows easily ( exercise) that d(xm , Xn ) ----+ 0 - that is, the sequence (xn ) is Cauchy. 
Say Xn ----+ z. Since f is continuous we have f (xn) ----+ f(z) . On the other hand, 

d (f(xn) ,  Xn) ----+ 0. Hence Xn ----+ f(z ) . Therefore z = f(z ) . Since x is the unique fixed 

point of f ,  we have x = z. 

19.42. Slow Contraction Theorem (optional) . Let "! : [O , +oo) ----+ [O , +oo) be a 
nondecreasing function. Assume that 

"! is upper semicontinuous and "!(t) < t for each t > 0 (Boyd and Wong [1969] ) 

or, more generally, assume that 

limn_,oo "!n (t) = 0 for each t E [0, +oo) (Dugundji and Granas [1982] ) .  

Let (X, d )  be a nonempty, complete metric space. Let f be a self-mapping of X that satisfies 
d[f(x) , f (y) J :::; "f [d(x, y) J for all x, y E X. Then f is continuous, f has a unique fixed point 
�' and limn_,00 r(x) = � for each x E X. 

Proof (following Dugundji  and Granas [1982] ) .  Since "!n (t) ----+ 0 for each t > 0, either 
"((t) = 0 for some t > 0 or {"!(t) : t > 0} contains arbitrarily small positive numbers. In 
either case, since "( is nondecreasing, it follows from d(f(x) , f(y) ) :::; "f(d(x, y ) )  that f is 
continuous. 

Next we shall show that .any orbit x, f (x) , P (x) ,  P (x) ,  . . .  converges. Fix any x = xo E 
X ;  let Xn = r(x) and Cn = d(xn , Xn+d · Then Cn :::; "in [d(xo , xl ) J , so Cn ----+ 0. 

Suppose (xn ) is not Cauchy. Then there exist E > 0 and integers m(k) and n(k) such 
that 

k :::; m(k) < n(k) and 

for k = 1 ,  2, 3, . . . . For each k ,  we may assume that n(k) is chosen as small as possible; 
hence d(xm(k) ' Xn(k)-d < E. Since 

0 < bk - d(Xm(k) , Xn(k) -d < Cn(k)- 1 ----> 0, 
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i t  follows that limk_,oo bk = c . 
Choose some p large enough so that IP(2c:) < c:/3. Then choose some k large enough so 

that bk < 2c: and supj2:k Cj < c:/3p. Now 

c < 

< 

< 

a contradiction. 

d (xrn(k) , Xn(k) ) 
m(k)+p- 1 

I: d (x1 , x1+ 1 ) + d (xm(k)+p,n(k)+p) 
j=m(k) 

c + IP(2c:) 
c 

p · - + p · - < c:, 
3p 3p 

n(k)+p- 1 
+ L d (x1 , xJ+ I ) 

j=n(k) 

Thus any sequence of iterates (r(x) ) converges to a limit . If r (x) ---+ � then r+1 (x) ---+ 
� also, but r+ 1 (X) ---+ f ( �) by continuity of f; thus � is a fixed point. For uniqueness, 
suppose that � and 7J are two fixed points; then d( �, 7J) = d(r ( 0 ,  r ( 7J) ) :S In ( d( �, 7J) )  ---+ 0. 

19.43. Remarks and further exercise. The so-called "Slow Contraction Theorem" general
izes Banach's Contraction Mapping Theorem, since we can take r(t) = t (f )Lip · However, 
in the Contraction Mapping Theorem, the sequence fn (x) converges to the unique fixed 
point at a geometric rate. In contrast , the convergence in the Slow Contraction Theorem 
may be very slow. 

In fact , it may be arbitrarily slow. Assume given any sequence ( a1 , a2 , a3 , . . .  ) of positive 
numbers decreasing strictly to 0. We shall devise X, f, /, �' x as in the Slow Contraction 
Theorem, satisfying d(r(x) ,  0 = an . 
Hints: Let a= = 0 ,  and let X =  N U { oo } .  Define 

if m "f. n 
if m = n  f(n) if n E N  

if n = oo. 

19.44. Further remarks. In a sense, the Slow Contraction Theorem 19.42 really is not 
more general than the Contraction Mapping Theorem. It is easy to show ( exercise) that 
if f satisfies the hypotheses of the Slow Contraction Theorem, then f also satisfies the 
hypotheses of Meyer's converse to the Contraction Mapping Theorem, given in 19.47, and 
therefore the given metric can be replaced by a metric that makes f a strict contraction. 
Thus, the Slow Contraction Theorem may be helpful in the initial discovery stages of some 
research, but generally it can be replaced by Banach's Theorem at some later stage of 
that research, and so the Slow Contraction Theorem may go unmentioned in the final 
presentation of that research. 

19.45. Caristi's Theorem (Browder, Caristi, and Kirk) (optional) . Let (X , d) be 
a complete metric space, let v : X ---+ [0, +oo) be some lower semicontinuous function, and 
let f :  X ---+ X be some function such that d(t , f(t ) ) :::; v(t ) - v(f( t ) )  for all t E X. Then f 
has at least one fixed point. 
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Proof. Define a partial ordering on X by: 

t � u if d(t, u) :::; v(t) - v(u) .  
(This is sometimes called the Bronsted ordering. ) By assumption, t � f ( t )  for all t E X. 
Let C <:;; X be  a nonempty �-chain; we now note some properties o f  C :  

a .  The inclusion map i : C � X  (considered as a map from ( C, � )  to (X ,  d ) )  i s  a Cauchy 
net. 

Proof. Let T = infcEC v(c) ; then T 2 0. For any E > 0, there is some cE: E C with 
v (cc) < T + E. If c E C and c >,:= cE: , then v (c) 2 T and d(cE: ,  c) :::; v (cc ) - v (c) < E. 

b. If A is the limit of that net, then A is a �-upper bound for C. 
Proof. For any fixed c E C and for all c' >,:= c in C, we have d(c, c' ) :::; v (c) - v (c' ) .  

Take limits as c' increases; use the fact that v is lower semicontinuous. 

Now let e be the collection of all nonempty �-chains. Then e is nonempty since each 
singleton is a member of e. Use <:;; to partially order e. By a chain in e we mean a 
collection S <:;; e such that any two sets S1 , S2 E S satisfy S1 <:;; S2 or S2 <:;; S1 . It is easy to 
see that the union of all the members of S is then a chain in X, and thus a member of e; 
hence it is the supremum of S in the poset (e, <:;; ) .  

Define rp : e ___, e by rp( C) = C U f(lim C) ; then rp( C) ::2 C .  By Zermelo's Fixed Point 
Theorem 5.52, rp has at least one fixed point C0 . Thus f(lim Co ) E C0 . Since lim C0 >,:= c 
for all c in C0 , we have in particular lim C0 >,:= f (lim C0 ) . On the other hand, since t � f ( t )  
for all t in  X, we have lim Co � f (lim Co ) .  Thus lim C0 i s  a fixed point of  f. 
Remarks. Caristi 's Theorem generalizes the Contraction Mapping Theorem, for if f is a 
strict contraction then we can take v(t ) = d(t, j ( t ) )/ ( 1 - (!)Lip ) .  

Our proof of Caristi's Theorem follows that of Manka [1992] . I t  does not use the Axiom 
of Choice or any weakened form of Choice. Some analysts may prefer to prove Caristi 's The
orem by the method indicated in the remarks in 19. 5 1 ,  although that proof uses Dependent 
Choice. 

MEYERS 'S  CONVERSE (OPTIONAL) 

19.46. Motivating exercise. Assume the notations and hypotheses of  Banach's Contraction 
Mapping Theorem 19.39. Then r ___, � uniformly on some neighborhood of � - that is, 
SUpxE V  d(�, r (x) ) ---> 0 as n ---> oo,  for some neighborhood V of �-

19.47. Meyers's Converse to the Contraction Mapping Theorem. Let f be a 
continuous self-mapping of a nonempty, complete metric space (X, p) . Suppose that � is 
a fixed point of f, and fn ( x) ___, � as n ___, oo for each x E X.  Also assume that fn ___, � 
uniformly on some neighborhood of � - i.e . ,  assume � has some neighborhood V such that 

lim sup p (r (v) , �) 0. 
rt-----.-Jo OCl vE V  
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Then there exists a topologically equivalent, complete metric d on X that makes f a strict 
contraction. 

Remarks. This proof is taken from Meyers [1967] . A similar result was discovered indepen
dently in Leader [1977] . Both proofs were inspired by the treatment of the compact case 
given in Janos [1967] . 

Proof of theorem. The proof is in several steps. 

a. By replacing V with a smaller neighborhood of �' we may assume also that V is open 
and that f(V) � V.  

Hints : Certainly the theorem's hypotheses on V remain satisfied i f  we replace 
V with any smaller neighborhood of �- Replacing V with such a neighborhood, we 
may assume V is open. Now choose k large enough so that fk (V)  � V; then let 
W = n�':r� f-J (V) .  The set W has the required properties; we shall relabel it as V.  

b. Some easy observations: U:=o f-n (V) = X  and 

For integers n (not necessarily positive) ,  let Kn = c1 (r(V)) . Show that f(Kn) � 
Kn+ l ,  and 

Also, Kn -> � as n -> oo - that is, any neighborhood of � contains Kn for all n 
sufficiently large. Hence diam(Kn) -> 0 as n -> oo - if we use the metric p or any 
other metric that is equivalent to p - and nnEZ Kn = {0.  

c. By replacing p with an equivalent metric that i s  also topologically complete, we may 
assume that f is a nonexpansive mapping - i.e . ,  that p(f(x) , f (y) ) :::; p(x, y ) .  

Hints : For any x, y E X, the sequence (P(r(x) ,  r(y) ) : n = 1 ,  2 ,  3 ,  . . .  ) consists 

of nonnegative numbers converging to 0; hence a maximum exists: 

{J(x, y) max {p (fn (x), j" (y) ) : n = 0, 1 , 2, . . .  } .  

As we noted in 18.3 .e, {3 is a metric, uniformly stronger than p, and {3 makes f non
expansive. In view of 19. 1 1 . i ,  it suffices to show that p is topologically stronger 
than (3. Let any x E X and c > 0 be given; we must find a t5 > 0 such that 
p(x, y) < b =? {J(x, y) < c. Choose N large enough so that diarnp (JN (V ) )  < c 
and fN (:r) E V. Using the continuity of f in (X, p) , show that there is some t5 > 0 
sat isfying 

p(x, y) < t5 max p (Jl (x) , Jl (y)) < c. J<2N 
Show that this t5 has the right properties. 

We shall now replace p with {3 (by relabeling) ,  for simplicity of notation. 
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d. Define 

f-l(x) sup{n E Z : x E Kn }  { a finit�nteger 
if X = � 
if X � f 

Show that 1-1(f(x) ) 2: 1-1(x) + 1 for all x E X. Moreover, for any sequence (xm) in X,  

Xm -+ � (in the given topology) .  

e .  Define r(x, y) = 2- min{l"(x) ,�L(Y) } p(x, y) . (We could replace 2 with any constant real 
number greater than 1 ,  but we shall use 2 for simplicity. ) Verify that r is a mapping 
from X x X into [0, +oo) that satisfies 

r(x, y) = O  {==} x = y, r(x, y) = r(y , x) ,  r (t(x) , f(y)) � �r (x , y) . 
(The last inequality follows from f-l(f(x)) 2: f-l(x) + 1 and the fact that f is nonexpan
sive.) 

f. Use r to define a pseudometric d(x, y) = inf L; r(a;_ 1 , a; )  as in 4.42. Show that 
d(x, y) � r (x, y) and d(t(x) , f(y)) � �d(x, y) . 

g. To show d is a metric, let any x, y E X  with x � y be given; we must show d(x, y) > 0 
(and in doing so we shall also obtain an estimate that will be useful later) . Since we 
cannot have both x and y equal to �' we may assume x � �' and thus f-l(x) < oo. Fix 
any integer k 2: /-l(x) ; then x r:f: Kk+l · (For the proof of d(x, y) > 0 we may simply 
take k = /-l(x) , but other choices of k will be useful later. ) 

Consider any sequence a0 , a1 , a2 , . . .  , am with a0 = x and am = y; we must obtain 
a positive lower bound for 2::7:1 r(a;_ 1 , a;) independent of the choice of the sequence 
(a; ) .  We consider two cases. In the first case, f-l(a; ) � k for all i. Then 

m m 

i=l i=l 

which is positive. In the second case, let j be the first integer that satisfies 1-1( aj ) 2: k+ 1 .  
Then min{f-l(a;_ I ) ,  f-l(ai) }  � k for i =  1 ,  2 ,  . . .  , j ,  and so 

m j j L r(a;- I , a; )  > L r(ai- l , a; )  > LTkp(a;- I , a; ) i=l i=l i=l 

which is positive since Kk+1 is a closed set that does not include x. In any case, we 
obtain 

d(x, y) > Tk min {p(x, y) , distp (x, Kk+ 1 ) }  when 1-1(x) � k .  ( **) 
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h. The metric p is stronger than d. 
Hints : Suppose that Xm � x; we must show that Xm ....!!:..... x. Fix any positive inte

ger k large enough so that x E f-k (V) . Since f-k (V) is an open set, for m sufficiently 
large we have Xm E f-k (V) . Since f-k (V) � K_b we have min{M(x) , fl(Xm ) }  2 -k,  
and therefore d(x, Xm) ::;; r(x, Xm) ::;; 2k p(x, Xm) · 

i. Let ( Xm) be a sequence in X.  If ( Xm) is d-Cauchy, then some subsequence of ( Xm) is 
p-Cauchy. 

Hints : Suppose not. Then no subsequence of (xm) is p-convergent . In particular, 
no subsequence of (xm) is p-convergent to �- Hence, for some lvf the number R = 

distp ( �' {xM , XM+l , XM+2 , XM+3 ,  . . .  } ) is positive. 
If the 11( Xm) 's are unbounded, then there is some subsequence ( Xm J such that 

fl(Xm1 ) --> oo. However, then XmJ � � by 19.47.d. 
Thus, suprn fl(Xm ) < oo. Fix any integer k > suprn fl(Xrn) large enough so that 

also diamp (Kk+I )  < �R. Then for any m 2 M  we have distp (Xm , Kk+ I ) > �R. Since 
(xm) is d-Cauchy, for all m, m' sufficiently large, we have 

d(xm , Xm' ) < Tk- l R < Tkdistp (xm , Kk+ I ) .  

It then follows from (**) that d(xm , Xm' )  2 2-kp(xm , Xm' ) .  Thus the sequence (xrn) is 
p-Cauchy. 

j .  The two metrics p and d are topologically equivalent, and d is complete. ( Immediate 
from 19. l l . i . ) 

BESSAGA' S CONVERSE AND BRONSTED 'S  
PRINCIPLE ( OPTIONAL) 

19.48. Technical lemma: Bessaga-Brunner Metric. We introduce a slightly complicated 
type of metric that will be used in two long proofs below. 

Let X be a set, and let f : X --> X and A : X --> (0 , +oo) be some mappings. (We 
emphasize that the values of A are nonzero. )  Assume that !(0 = �' and assume that no 
iterate r ( n 2 1 )  has any fixed point other than � . We shall use f and A to define a metric 
d on X.  

For brevity, our arguments will rely on the following diagram. We denote f0 (x) = x. 
We write X :::::; y if there exist nonnegative integers p, q such that fP(x) = r(y) . It is easy 
to see that this is an equivalence relation on X. Let S0 be the equivalence class containing 
�-

We now sketch a graph that shows the action of f on X.  We view each element of X 
as a vertex of the graph, and draw an arrow (i.e . ,  directed line segment) from x to f(x) for 
each x E X. We shall arrange the graph so that this line segment goes downward - i.e. , so 
that f(x) is below x. Because � is the only fixed point of any of the iterates of j ,  we see that 
the graph has no closed cycles (i .e . , loops) other than the one at �- The graph consists of 
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A(xl ) 

So 

several components: one for each equivalence class. Each component is a simply connected 
tree, with root downward and branches upward. Each tree may go infinitely high or only 
finitely high; the information provided to us is not enough to determine whether some point 
xo has infinitely many predecessors f- 1 (xo) ,  f-2 (x0) ,  f-3 (x0 ) ,  . . .  or only finitely many. 
The tree representing So coalesces at its bottom to a single root at � - If there is any other 
equivalence class, then it is represented by a tree that does not coalesce to a single root, but 
instead continues downward through an infinite succession of branches. We may describe 
such a tree as "infinitely deep." 

.Now, for each x E X\ {0, we label the line segment from x to f(x) with the number A(x) . 
(The number A(O will not be used . )  We shall take that number A(x) to be the distance 
between x and f(x) . In the notation of 4.43, we have r (x, f(x)) = r (f(x) , x) = A(x) . 
The function r is only defined on the pairs of points that are adjacent in the diagram. 

If x and y are two points in the same equivalence class, then we trace forward through 
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the graph to the first point z where x and y coalesce - i.e. , we have z = fP ( x) = f'l (y) 
where the nonnegative integers p, q are as low as possible, as shown in the diagram. We 
may write p = p(x, y) , q = q(x, y) , z = z (x , y) , to emphasize the dependence on x and y. 
There is no shorter route between x and y; there is no other route at all except by retracing 
some steps. The distance between x and y is thus 

d(x, y) d(x, z ) + d(y, z ) 
p- 1 q- 1 

L A (Jl (x)) + L A (Jl (y)) 
j=O .i=O 

( b )  

where i t  i s  understood that an empty sum is  0 (obtained when x = z and p = 0, or  when 
y = z and q = 0) . For example, in the illustration, we have 

[A(xi ) + A(f(x i ) ) ] + A(x2 ) 
since p(x1 , x2 ) = 2 and q(x 1 , x2 ) = 1 for this example. The function d defined in this fashion 
is a metric on the equivalence class (and not just a pseudometric ) ,  since we have assumed 
A(x) is strictly positive for each x. 

If there is more than one equivalence clai:ii:i - - ·  i .e . ,  if the diagram containi:i more than one 
tree - then further considerations are necel:lsary. We shall define f= ( x) = � for all x E X .  
(Intuitively, it is helpful t o  imagine that each "infinitely deep" tree continuei:i downward and 
has � at its infinitely deep bottom. )  The formula ( q )  now becomes meaningful for all points 
x, y E X  (not necessarily in the same equivalence class) , with the understanding that p and 
q are not necessarily finite. We still choose p and q to be the lowest values that satisfy 
JP(x) = j<'(y) . We find that 

p 
{ some fin� number if x E S0 or x ::::; y 

if x � S0 and x f, y. 
Analogous conditions apply to q. We define d : X x X -+ [0, +oo] as in ( � ) .  For instance, 
in the illustration, 

since in this example we have p(x:J , x4 ) = 2 and q(x:l , x4 ) = oo. It is easy to show that the 
function d defined in this fashion is a metric if iti:i valuei:i are always finite - i.e . ,  if the sums 
in ( q )  always converge. That will be true for certain choices of A and f considered in 19.50 .  

19.49. Motivation for Bessaga 's converse. Let f be a self-mapping of a set X. Suppose 
that for some k, the map fk has a unique fixed point � · Then � is also the unique fixed 
point of f. 

19.50. Bessaga's Converse to the Contraction Mapping Theorem. Let X be a 
set , let f :  X -+ X be some mapping, let f(�) = �' and suppose that no iterate f" (n 2 1 )  
has any fixed point other than �. Then there exists a complete metric A on X that makes 
f a strict contraction. 

Proof. We shall define a metric as in 19.48. We shall define A : X -+ (0 , +oo) by taking 
A(x) = 2.\( .r ) for a certain integer-valued function ,\ specified below. (Actually, we have 
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chosen 2 just for simplicity; we could replace it with any constant real number greater than 
1 . )  

We require that .X : X ----> Z have the property that 

.X (J(x) ) = .X(x) - 1 whenever f(x) =I- x (i .e . ,  whenever x =I- 0 . 

To show that there exists such a function .X, define equivalence classes and sketch trees as in 
19 .48. Choose some representative element zs from each equivalence class S. (This requires 
some form of the Axiom of Choice, if there are infinitely many equivalence classes. )  Define 
.X(zs) = 0 for each equivalence class S. After that, .X is uniquely determined: add 1 when 
moving up in the tree, and subtract 1 when moving down in the tree. 

As in 19.48, we define j= (x) = � for all x E X and define p, q, z, d as in 19.48. In the 
present application, that yields 

d(x, y) 
j=O j=O 

These sums converge even if p or q is infinite, so d is a metric. From .X(J(x) )  = .X(x) - 1 
it follows that (!)Lip :::; � - For arguments below, we note that q(x, 0 = 0, and hence 

d(x, �) :::; L:;:o 2>.(x) -j = 2>.(xJ+l . 
To show that the metric is complete, let (xn) be a Cauchy sequence; we wish to show 

that (xn ) converges. If the numbers .X(xn) are not bounded below, then some subsequence 
(xnk )  satisfies .X(xnk )  ----> -oo and hence d(xnk ,  �) ----> 0; hence Xn ----> � since (xn ) is Cauchy. 
Thus we may assume that .X(xn ) is bounded below by some finite constant C. Whenever Xm 
and Xn are distinct members of X ,  then at least one of the numbers p( Xm , Xn ) ,  q( Xm , Xn ) 
is positive, and so 

However, (xn ) is Cauchy, so d(xm , Xn ) < 2c for all m, n sufficiently large. Thus, for all 
m, n sufficiently large, the points Xm and Xn are not distinct - i.e . ,  the sequence (xn ) is 
eventually constant and therefore convergent . 

19.51. We shall show that the Principle of Dependent Choice, introduced in 6.28, is 
equivalent to the following principles about complete metric spaces: 

(DC3) Dancs-Hegedus-Medvegyev Principle. Let (X, d) be a nonempty, 
complete metric space. Let � be a partial ordering on X, which is semicontin
uous in the following sense: For each x E X, the set F(x) = {y E X :  y � x} is 
closed in the metric space (X, d) . Assume also that d and � satisfy the Picard 
condition: 

whenever (xn ) is a sequence in X with x1 � x2 � x3 � then 
d(xn , Xn+ I ) ----> 0 .  
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Then (X, � )  has a maximal element . 

(DC4) Bronsted's Maximal Principle. Let (X, d) be a nonempty, complete 
metric space, and suppose r : X ---+ [0, +oo) is lower semicontinuous. Define a 
partial ordering � on X by: 

x � y if d(x, y) ::::; r(x) - r(y) .  
Then (X, � )  has a maximal element . 
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Remarks. Caristi's Theorem (19 .45) follows from Bronsted's Theorem (DC4) by a one-line 
proof: The maximal point is a fixed point. Also, Bronsted's Theorem follows from Caristi's 
Theorem by a one-line proof, if we are permitted to use the Axiom of Choice: Just take 
f to be a suitable choice function. Thus, the two theorems are "equivalent" in a sense 
used by some mathematicians: Each follows easily from the other, if we are permitted 
to use conventional set theory (including the Axiom of Choice) . However, Brunner [1987 
Zeitschr.] has pointed out that the two theorems are not equivalent in the sense of set theory, 
for Bronsted's Theorem is equivalent to DC (as we shall show) , whereas Caristi's Theorem 
actually follows from just ZF, without DC or any other weakened version of Choice. Further 
discussion of this and related ideas are given by Manka [1988] . 

Proof of (DC2) =? (DC3) .  Note that u E F(v) =? F(u) <:: F(v) . Also note that x E F(x) 
for each x, hence F(x) is nonempty. We may replace d with any uniformly equivalent 
metric; by 18 . 14 we may assume d is bounded. Then diam(F(x)) is finite. 

For any nonempty set S <:: X and any point x E X and any number c > 0, the set 
{y E S : d(x, y) 2 �diam(S) - E} is nonempty; this follows easily from the definition of 
diameter. Hence, given any point Xn- l E X, there is some Xn E F(xn-d satisfying 

d(xn- l , xn ) > 

Using (DC2), we construct a sequence (xn : n E N) satisfying this inequality. By the Picard 
condition, then, d(xn , Xn-d ---+ 0; hence diam(F(xn) ) ---+ 0. From Xn E F(xn-d we obtain 
F(xn) <:;: F(xn_ I ) .  By 19 . 1 l .c ,  n:'=1 F(xn) contains exactly one point, z. For each n E N, 
we have z E F(xn) and hence F(z) <:;: F(xn ) ;  thus F(z) <:;: n:'=1 F(xn ) = {z } .  Therefore z 
is �-maximal in X.  

Proof of (DC3) =? (DC4) .  Easy exercise. 

Proof of (DC4) =? (DC1 ) .  This proof is a slight simplification of a proof given by Brunner 
[1987 Zeitschr.] 

Let <I> be a function that contradicts (DC1 ) ;  we shall use it to construct a contradiction 
of (DC4) .  Thus, we assume that we are given a set A and a function 

<I> A ---+ { nonempty subsets of A} 

for which there does not exist an infinite choice sequence - i.e. , an infinite sequence (an ) 
satisfying an+ l E <!>(an ) for all n .  
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By a choice sequence of length n we shall mean a finite sequence 

x (x(1 ) , x(2) ,  . . .  , x(n )) 
that satisfies x(k +  1 )  E <I>(x(k)) for k =  1, 2, . . .  , n - 1 . Such a sequence may be viewed as a 
function from the set { 1 ,  2, . . .  , n} into A .  We shall also consider the empty sequence to be 
a choice sequence (of length 0) ;  we shall denote it by �· By the "Axiom" of Finite Choice 
(in 6 . 14 ) ,  any choice sequence can be extended to a longer choice sequence; thus there is no 
maximal choice sequence. 

Let X be the set of all choice sequences. We observe that X does not contain an infinite 
�-chain. Indeed, if e were such a chain, then UcEe Graph( c) would be the graph of an 
infinite choice sequence. 

For each x E X,  let >.(x) be the length of x. Also, define the "immediate truncation 
function" f : X ----+ X by 

f(x) 
{ ( x(1 ) ,  x(2) , ·� . ,  x(n - 1)) if x = ( x(1 ) ,  x(2) , . . .  , x(n)) 

if X = �· 

Then >.(f(x) ) = >.(x) - 1 when x is not the empty sequence. 
Let A(x) = 2--'(x) . Define equivalence and the functions p, q, z, d as in 19.48. Note 

that every point in X is equivalent to the empty sequence, and thus S0 = X is the only 
equivalence class. Therefore p and q are always finite, the sums in 19.48( q )  always converge, 
and d is a metric on X. We restate its formula here: 

d(x, y) d(x, z) + d (y, z) 
p- 1 q - 1 

L T-'(x)+J + L T-'(y)+J 
j=O j=O 

= [T-'(z) - T-'(x)J + [T-'(z) - T-'(y) ] , ( q )  
where p, q are the smallest nonnegative integers satisfying JP (x) = r(y) , and z = z(x, y )  
i s  the common value of  JP(x) and r(y) . The choice sequence z = z(x, y) i s  the longest 
common restriction of x and y; it is the empty sequence if x and y begin with different 
choices. 

Define the Bronsted ordering � as in (DC4) ,  using the function A(x) = 2--'(x) . That is, 
define 

X � y to mean 

We claim that the following statements are equivalent : 

(A) the sequence y is an extension of x - that is, z(x, y) = x; 

(B) d(x, y) = 2--\(x) - 2-,\(y) ; 

(C) X � y.  

Indeed, (A) ==? (B) follows from ( q ) ,  and (B) ==? (C) is  trivial. For (C) ==? (A) , 
suppose that x � y. Then 

d(x, y) < T-'(x) - T-'(y) , 
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hence 2 · 2->. ( z ) � 2 · 2->.( r) , hence .\ (z)  ;:::: .\ (x) .  But z is a restriction of x; hence in fact 
z = :.c . 

In particular, we note that 

if y is not the empty sequence. From the illustration in 19 .48 it is clear that the nearest 
points to any choice sequence x are the extensions y obtained by adding one more term at 
the end of sequence x, and those sequences satisfy x = f (y) ; thus their distance from x is 
2->. (y) = 2->. (J·) - I . Thus 

w, :r E X, d(w , x) < 2-,\(.r ) - 1  W = X. ( 1 )  

This shows that the topology determined by the metric d i s  discrete. I t  follows that any 
real-valued function defined on X is continuous and hence lower semicontinuous. 

Obviously. (X. � )  has no maximal element. It suffices to show that d is complete, for this 
will contradict (DC4) .  Let (x, ) be a Cauchy sequence; we shall show that (x,) converges. 
In view of 19.4.c. it suffices to show that some subsequence of (x71 ) converges ; thus we may 
replace (:r, ) with any subsequence. Via such a replacement , we may assume that 

whenever k > j. (2) 
This property will be preserved if we replace (x11 ) by a further subsequence. 

First consider the case in which (xn) has some subsequence whose lengths are bounded. 
Such a subsequence is eventually constant , by ( 1) and (2) ; hence it is convergent. 

We now consider the remaining case, in which ( .\ (x, ) )  has no bounded subsequence 
i.e . ,  the case in which lim11�x .\ (:rn ) = CXJ .  Replacing (x, ) with a subsequence. we may 
assume that 

and .\ (xn) ;:=:: n + 1 (3) 
for all n .  

Let VJ = z (xj . XJ + J ) ; that is, v1 is the largest common restriction of :rJ and :rJ + 1 . Then, 
by (2) and (3) and ( : ) ,  

T1 > d( :r1 , x1 + l ) [T>-(vl ) - T >.(.r � ) ] + [T>-( •· � ) - TA( I J + l l ] 
> 2 [T >-( ,.1 ) - T >-( r 1 l ] > 2 [T >-( vj l - T.J - 1 ] . 

The inequality 2-J > 2 [2->- ( • ·J J - 2-J- 1 ] simplifies to .\(v1 ) > j .  Thus vi , the common 
restriction of x1 and XJ + 1 ,  has length greater than j .  That is, the functions Vj , Xj , XJ + 1  all 
have domains that include the set { 1 ,  2 . . . .  , j } ,  and those functions all agree on that set . 
Let w J be the function on { 1 .  2 . . . .  , j }  obtained by restricting any of VJ , J:7 , XJ+ 1 to that set . 
The function 1L•1 is a choice sequence, since it is a restriction of a choice sequence. Then 
w i +  1 ,  defined analogously, is an extension of WJ , since both these funct ions are restrictions 
of J'.J + l · The sequence w 1 , w2 • w:l · . . . forms an infinite �-chain in X ,  a contradiction. 



Chapter 20 

Baire Theory 

20.1 .  Preview. The name "Baire" is, unfortunately, associated with four distinct notions, 
which can easily be confused: 

• sets of the first or second category of Baire; 

• Baire spaces; 

• sets with the Baire property; and 

• Baire sets. 

All are introduced in this chapter. The first three of these notions are closely related and 
will be studied extensively in the following pages. The fourth notion is less important for 
the purposes of this book and will be introduced briefly in 20.34 mainly to prevent the 
beginner from confusing Baire sets with the other "Baire" notions. 

Much of the material in this chapter is taken from Kuratowski [ 1948] , Bourbaki [ 1966] , 
Engelking [ 1977] , Oxtoby [1980] , and Vaughan [ 1988] . 

G-DELTA SETS 

20.2. Terminology. In  some older topology books, the letters "F" and "G" are reserved 
for closed sets and open sets, respectively. That convention is no longer widely used. This 
text does not follow that convention in general, but gives those letters preference whenever 
convenient. 

The following related convention is still widely used: The union of countably many 
closed sets is called an "Fu ;" the intersection of countably many open sets is called a "G6 ." 
Similarly, the union of countably many G 6 's is a G 6u ; the intersection of countably many 
Fu 's is a Futi · 

The letters F and a come from ferme and sum, French for "closed" and "sum." The let
ters G and 8 come from Gebiet and Durchschnitt, German for "open set" and "intersection;" 
see Hocking and Young [ 1961] . 

530 
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Exercises. 
a. The complement of an Fa is a G 0 ,  and conversely. (Thus any results about Fa 's can 

be restated in terms of G0 's, or conversely. ) 

b. The terms "F0" and "Ga" are not useful , since the intersection of countably many 
closed sets is a closed set, etc. Likewise, the terms "Faa" and "Gu/' are not useful: 
the union of countably many Fa 's is another Fa , etc. 

c. Any Fa is in fact the union of an increasing sequence of closed sets, and any G 0 is the 
intersection of a decreasing sequence of open sets. 

Hint :  If S = U�=l Kn where the Kn's are closed, then also 

d. The intersection of finitely many Fa 's is another Fa ; the union of finitely many G 6 's 
is another G 8 .  

Hint :  If A1 <;;; A2  <;;; A3 <;;; · · · and B1 <;;; B2 <;;; B3 <;;; · · · , show that (U�= l An) n 
(U:=1 En) = U�=1 (An n Bn ) · 

e. In a pseudometric space, every closed set is a G0 , and every open set is an Fa . 
Hint: If (X, d) is a pseudometric space and H is a closed subset , then H is the 

intersection of the open sets {x E X :  dist(x, H) < 1/n} (for n = 1 , 2 , 3 , . . .  ) .  

MEAGER SETS 

20.3 . Let X be a topological space; for sets S <;;; X let CS = X \ S. The boundary (or 
frontier) of a set S is the set cl(S) n cl(CS) ; it is often denoted by aS or bdry(S) or fr(5) . 
Note that 85 = 8(C5) . Show that X can be partitioned into the three disjoint sets 

int(5) ,  int(C5) , 85, 

which are open, open, and closed, respectively. Also, 5 is closed if and only if 85 <;;; 5, and 
5 is open if and only if 85 is disjoint from 5. 

If 5 is a sufficiently "nice" set, then 85 may be quite small, as in 20.4(C) and 20.4(D) . 
However, slightly "nasty" sets may have boundaries that are quite large. For instance, in 
the real line, the set of rationals has boundary equal to the entire real line. 

20.4. Let (X, 'J) be a topological space, and let C denote complementation in X.  Let 
5 <;;; X. Then the following conditions are equivalent . If any (hence all) of them are 
satisfied, we say 5 is nowhere-dense (or rare or nondense) . 

(A) The closure of 5 has no interior; that is, int(cl(5)) = 0.  

(B)  The complement of  5 contains an open dense set; that is, cl(int(C5))  = X. 
(C) 5 is contained in the boundary of some open set. 

(D) 5 is contained in the boundary of some closed set. 
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(E) Every nonempty open subset of X contains a nonempty open set that is 
disjoint from S. (In other words, there aren't any nonempty open sets m 
which the trace of S is dense. This explains the name "nowhere-dense." ) 

(F) S � c!(X \ c!(S) ) .  

20.5. Further properties and examples. 
a. Any subset of a nowhere-dense set is nowhere-dense. 

b. If A and B are nowhere-dense, then A U B  is nowhere-dense. (Hence the nowhere-dense 
sets form an ideal; they may be viewed as the "small" sets for some purposes. )  

Hints : We may replace A and B with their closures; hence we may assume A and 
B are closed . Now apply 15 . 13.c to CA and CB. 

c. Let X be a topological space, and let xN have the product topology. Let A � xN be 
nowhere-dense. By considering our characterization of the topology in terms of basic 
rectangles, we see that any finite sequence s =  (x 1 , x2 ,  • . •  , xm ) in X can be extended 
to a longer sequence s' = ( x1 , x2 , . . .  , Xm , . . .  , Xn ) having the property that no infinite 
sequence extending s' is a member of A. 

20.6. Let X be a topological space. A set S � X is meager, or of the first category of 
Baire, if it is the union of countably many nowhere-dense sets. A set that is not meager is 
called nonmeager, or of the second category of Baire. Thus, every set is of either the first 
or second category. 

A set T is comeager (or residual or generic) if X\T is meager -- equivalently, if T 
contains the intersection of countably many open dense sets. 

Remarks. The collection of meager sets forms an ideal - in fact, it is a O"-ideal; i .e . ,  it is 
closed under countable union, by 6.26. In the cases of greatest interest , X is a Baire space 
(see 20 . 1 5  and sections thereafter) ,  hence X is not a meager subset of itself, and therefore 
the meager sets form a proper ideal. Thus 

we may think of the meager sets as "small" and the comeager sets as "large," 

in the sense of in 5.3. Although "large" is a stronger property than "nonempty," in some 
situations the most convenient way to prove that some set S is nonempty is by showing the 
set is "large." That is one of the main ways in which the Baire Category Theorem (20. 16) 
gets used. 

20. 7. Some examples in lR and other topological spaces. 
a. If x0 is an isolated point in a topological space, then any set containing x0 is nonmeager. 

b. In the real line (or more generally, in any T1 topological space that has no isolated 
points) , every singleton {x} is nowhere-dense, so every countable set is meager. 

c. A countable subset of lR must have empty interior. This will follow from 20. 16, but it 
can also be proved directly by noting that any nondegenerate interval is uncountable. 

d. A countable subset of lR may or may not be nowhere-dense. For instance, Z is nowhere
dense, but Q is dense. 
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GENERIC CONTINUITY THEOREMS 

20.8. Baire-Osgood Equicontinuity Theorem. Let 0 be a topological space, let (X, d) 
be a pseudometric space, and let fl , h, h, . . .  be continuous functions from 0 to X.  Assume 
that limn�= j, (w) exists in X for each w E  0. Then the set 

E { w E 0 : ( fn) is equicontinuous at w } 
is comeager in n.  

Remarks. By 18.32.a, the limit function f (w) = limn�= fn (w) i s  continuous at each point 
of E. The theorem is used mainly when 0 is a Baire space (discussed in 20.6 and defined 
in 20. 15) .  In that setting, Un} is equicontinuous and hence f is continuous, at "most" 
points of 0. This theorem is a nonlinear version of the Banach-Steinhaus Uniform Bound
edness Principle; some linear (or additive) versions of that principle are given in 23. 1 3  and 
27.26(U5) . 

Proof of theorem. For positive integers j and k, let 

c].k n {w E n : d(!m (w ) , fn (w)) � I } . 
rn.n?-k 

These sets are closed. Since the sequence Urn ( w )  : m E N) is Cauchy for each fixed w,  for 
each fixed j we have n = u:=l  cj.k · 

Define oscillation as in 18.28. We wish to show that the set A =  {w E n  : OSC<t> (w) > 0}  
is meager. For positive integers j ,  let 

B1 { w E n : osc<l> ( w) � I } ; 
then A = U�1 BJ = U�1 U:=l (BJ n CsJ.k ) · It suffices to show that each of the closed 
sets B1 n C5J.k has empty interior. 

Fix any j and k, and suppose G is a nonempty open subset of BJnC5J.k · Fix any w0 E G. 
The set {h . h. /3 . . . . , h }  is a finite set of continuous functions, hence it is equicontinuous 
at w0 . Thus wo has some open neighborhood N <;;;; G such that 

sup d (fp (w) ,  fp (wo )) 1 < 
wEN 5j 

for p = 1 ,  2, . . .  , k 

and therefore 

d (tp (w) ,  fp (w')) 2 
sup < 

w .w 'EN 5j 
for p = 1 ,  2, . . .  , k .  

Now' we know that SUPm.n ?- k d (tm ( w ) '  fn ( w)) � 51j for any w E c5].k by the definition 

of that set . Hence also supm ?-k d(fm (w) , fA- (w)) � ty for every w E  C5j. k .  hence for every 
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w E N. Similarly, d(fm (w' ) , fk (w') ) :::; -lJ for all m 2: k. Combine these results with (* ) 
(applied at p = k )  to obtain 

< 4 
5j for all w, w' E N  and m 2: k. 

Combine this result with ( *) and the fact that w0 E B1 to obtain 

1 < osc<I> (w0 ) < sup diam(fm (N)) < 
mEN 

-
j 

a contradiction. 

4 
5j < 

1 
j ' 

20.9. A Continuous Extension Theorem. Let X be a pseudometric space, and let 
A <;;; X be equipped with the relative topology. Let (Y, d) be a complete pseudometric 
space, and let f : A ----+ Y be a continuous map. Then f can be extended to a continuous 
map j :  C ----+ Y, for some Gc5-set C with A <;;; C <;;; cl(A) . In fact, one such set is 

C {x E cl(A) : the filterbase f (A n :N(x)) converges} . 

Here :N( x) denotes the neighborhood filter of x in X,  and f (A n :N( x)) = {f (A n N) : N E 
:N(x) } .  

Pmof of theorem ( following Dugundji [ 1966] ) .  Define C as above. Then A i s  dense i n  C, 
since C <;;; cl(A) . By 16.15 , f can be extended to a continuous function from C to Y.  It 
suffices to show that C is a G6-set in X. For each n E N, let 

An { x E cl(A) : diam (f(A n U)) < � for some U E :N(x) } . 

Since Y is complete, a filterbase converges in Y if and only if it is Cauchy; from this it 
follows that C = n�=l An . 

Note that if U is an open set with diam(f(A n U) )  < � then U n cl(A) <;;; An · Any 
neighborhood of x contains an open neighborhood of x; from this it follows that An is open in 
cl(A) . Thus An = cl(A)nGn for some set Gn that is open in X. Hence C = cl(A)nn�=l Gn . 
The set cl(A) is a Gc5 by 20.2.e; thus C is a Gc5 . 

20.10. Vidossich's Generic Fixed Point Theorem. Let (X, d) be a complete metric 
space, and let \II be a collection of continuous maps from X into X. Let \II be equipped 
with any metrizable topology stronger than the topology of uniform convergence on compact 
subsets of X. 

Let \II u = {f E \II : f has a unique fixed point } ;  define a mapping T : \II u ----+ X by 
letting T(j) be the unique fixed point of f . Let \I10 be the collection of those f's in Wu with 
this further property: 

If Un) is a sequence converging in \II to f and Xn is a fixed point (not necessarily 
the only one) of fn for n = 1 ,  2, 3, . . .  , then T(j) = limn-+oo Xn · 
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Then Wo c;;; w* c;;; Wu c;;; \{/ for some set w* that is a G6-set in w ,  and on which T is 
continuous. 

Remarks. In some cases of interest , 1ll0 is dense in W .  In these cases, w* is comeager in W ,  
and so we reach this conclusion: "Most" of the continuous functions i n  W have unique fixed 
points and have their fixed points depending continuously on the functions. 

Proof of theorem. The map T is continuous from 1ll0 to X.  By 20.9, T has an continuous 
extension T :  W1 ----> X ,  where Wo c;;; W1 c;;; cl(1llo ) and W1 is a G.5-set in W.  

We claim that 
"T(f) is a fixed point of f 

for each f E 1ll 1 . Indeed, since W1 c;;; cl(1ll0 ) , we can find a sequence Un) in Wo converging 
to f in W .  Let Xn = T(jn )  = "T(fn )  and x = "T(f) ;  by the continuity of T we have Xn ----> x. 
Hence the set K = {x, x1 , x2 , x3 , · · · } is compact, and fn ____, f uniformly on K. By the 
continuity of f we have f(xn) ____, f(x) .  Then 

d(x, Xn) + d ( Xn , fn (Xn )) + d (fn (Xn) ,  f (xn)) + d (!(xn) ,  f(x)) 
d(x, Xn ) + 0 + sup d (!n (v) , f(v)) + d (!(xn ) ,  f(x)) ----> 0. 

vEK 
< 

This proves our claim. 
It suffices to exhibit a G8 set w* contained in 1ll 1 n Wu , for on such a set we have T = T. 
For f E 1ll 1 , the set F(f) = {fixed points of !} is nonempty; let 8(!) = diamd (FU)) . 

Observe that 8 ( - )  = 0 on 1ll0 .  
Now consider 1ll 1 as a topological space, equipped with the relative topology. Next we 

claim that 
8 ( ·) is continuous at each point of W 0 .  

In  other words, 

for each E > 0, each f E 1ll0 has an open neighborhood Vf,e: in 1ll 1 on which 
8( · )  'S E .  

Indeed, suppose not. Since the given topology on W and on W 1 i s  metrizable, there exists a 
sequence Un) in W1 converging to f with 8 (fn )  > E. Then there exist Xn , Yn E F(fn) with 
d(xn , Yn ) > E. By our definition of Wo,  both the sequences (xn) and (yn ) must converge to 
T(j) . But then d(xn , Yn) ----> 0, a contradiction. This proves the claim. 

Now observe that we = u/E'llo Vj.E is an open set in \{/1 that contains Wo, and on which 
8( · ) -:::: E.  Hence \{/* = n�=1 w1/n is a G6-set in \{/1 that contains Wo ,  and on which 8 ( - )  = 0 . 
Since w* is  a Gb-set in 1ll 1 and 1ll 1 i s  a G,5-set in W ,  i t  follows (easy exercise) that w* is  a 
Gt5-set in W.  

Now consider any f E 1ll * .  Then F(f) i s  a nonempty set with diameter 0 (since w* c;;; 
8- 1 (0) n wl ) . Since X is a metric space, F(f) is a singleton; hence f E Wu . Thus w* c;;; 
1ll 1 n 1ll u . This completes the proof. 

20. 11 .  Corollary on Nonexpansive Mappings. Let (X, d) be a complete metric space, 
with the property that 
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( ! )  the identity map i : X ----> X can be approximated uniformly on X by a 
sequence of strict contractions Cn : X ----> X.  

Let \[1 be  the set o f  all nonexpansive self-mappings of X, equipped with the topology of 
uniform convergence on X. Then there exists a set \[!* that is comeager in \[1, such that 
each f E \[!* has a unique fixed point T(j) E X and the mapping T : \[!* ----> X is continuous. 
(Thus, most nonexpansive self-mappings of X have unique fixed points, which depend 
continuously on the mappings. )  

Remark. Condition ( ! )  is satisfied by bounded metric spaces that are not too irregularly 
shaped. For instance, it is satisfied if X is a closed bounded subset of a Banach space such 
that X - x0 is a star set (in the sense of 1 2 .3) for some x0 E X.  Indeed, in that case we 
can take cn (x) = ( 1 - � )x + �xo. 
Proof of corollary. We shall apply 20. 10. It suffices to show that the set \[10 , defined as in 
that theorem, is dense in \[1 under the hypotheses of the present corollary. If f : X ----> X 
is any non expansive mapping, then f is uniformly approximated by the mappings Cn o f ,  
which are strict contractions. By 19.4 1 ,  every strict contraction i s  a member of \[10 .  

TOPOLOGICAL COMPLETENESS 

20.12. A topological space (X, 'J) is topologically complete (or completely metrizable) 
if its topology is pseudometrizable, and at least one of the pseudometrics that yields the 
topology 'J is complete. In describing a topologically complete space, we do not necessarily 
specify a particular pseudometric. 

Caution: Some mathematicians apply the term "topologically complete" only to spaces 
that are metrizable - i.e . ,  Hausdorff. 

20.13. Alexandroff-Mazurkiewicz Theorem on Topological Completeness. Let 
(X, d) be a topologically complete Hausdorff space, and let S s;; X have the relative topology. 
Then S is topologically complete if and only if S is a G6 set in X - i.e. , the intersection 
of countably many open subsets of X.  
Proof Let d be  a complete metric on X.  We first show that any open set G C X is 
topologically complete. Verify that 

e(s, t )  · I 1 1 I d(s, t) + 
dist(s ,  X \  G) -

dist (t, X \  G) (s, t E G) 

is a complete metric on G that is topologically equivalent to the restriction of d. 
Now suppose S = n�=1 Gn is the intersection of countably many open sets. Then the 

product P = f1�=1 Gn has a topology that can be given by a complete metric, by 19 .13 . 
Let D be the diagonal set { ( Xn) E P : x1 = x2 = X3 = · · · } .  Then D is a closed subset of 
P (why?) ,  hence also complete. Finally, the mapping s f----+ (s, s, s, . . .  ) is a homeomorphism 
from S onto D. 
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For the converse, suppose that S t;;; X is topologically complete. Let e be a complete 
metric on S that is topologically equivalent to the restriction of d. The identity map 
i : ( S, d) --> ( S, e) is continuous, so by 20.9 it extends to a continuous map z :  C --> S, where 
C is a Gb-subset of X that contains S and is defined by 

C {x E clx (S) : the filterbase i (S n N(x)) converges in s} . 

It suffices to show that C t;;; S. Let x0 E C; we wish to show that x0 E S. Each neighborhood 
of x0 contains a member of S n N(x0 ) ,  so S n N(x0 ) converges to x0 . By assumption, X is 
Hausdorff, so SnN(x0 ) converges to no other limit. Since x0 E C. the filterbase i (SnN(x0 ) )  
converges in S .  But i is just the identity map, so we have established that the filterbase 
S n N(x0) converges in S. Thus its limit, x0 , lies in S. 

20.14. Example. Show that the set lR \ Ql = {irrational numbers} ,  topologized as a subset 
of IR, is topologically complete. 

BAIRE SPACES AND THE BAIRE CATEGORY 
THEOREM 

20.15. Let X be a nonempty topological space. Show that the following conditions on X 
are equivalent . If X possesses any one (hence all) of these properties, we say X is a Baire 
space. 

(A) If G1 , G2 , G3 , . . .  is a sequence of open dense subsets of X,  then the 8et n�1 Gn i8 den8e in X.  
(B )  If F1 , F2 • Fl , . . .  is a sequence of closed subsets of X and U;:== 1 Fn contain8 a 

nonempty open set, then at least one of the F, '8 contain8 a nonempty open 
set. 

(C) Any co meager 8ubset of X i8 dense in X. 
(D )  Any meager sub8et of X ha8 empty interior. 
(E) Any nonempty open subset of X is nonmeager. 

The last condition implies, in particular, that X itself is nonmeager, and hence the meager 
8E't8 form a proper O"-ideal on X. 

20.16. For our purpose8, the most important re811lt about Baire 8paces is 

(DC5) Baire Category Theorem. Any complete pseudometric 
space is a Baire space. 

For motivation the reader may wish to glance ahead to applications of this theorem, in 
20.29, 23. 13, 23 . 14 , 23 .15 .b , 26.2 , 27. 18, and 27.25. We 8hall prove that the Baire Category 
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Theorem is an equivalent of the Principle of Dependent Choices, which was introduced in 
section 6.28. 

Proof of (DC2) =? (DC5) . Let (X, d) be a complete pseudometric space, and let any open 
dense sets V1 , V2 , V3 , . . .  <;;; X be given. We wish to show n;:1 Vj is dense. Let Go be any 
nonempty open subset of X; we are to show that n;:1 Vj meets G0 . We choose nonempty 
open sets G1 , G2 , G3 , . . .  as follows: Assume Gn-1 has already been chosen (this is clear 
for n = 1 ) .  Since Vn is open and dense, Gn- 1 n Vn is a nonempty open set. Now (using 
the Principle of Dependent Choice) we may choose a nonempty open set Gn satisfying 
c!(Gn) <;;; Gn- 1 n Vn and also satisfying 

diam(Gn) < 
1 
n 

Let Kn = c!(Gn ) · Then K1 2 K2 2 K3 2 · · · ,  and by Cauchy's Intersection Property (in 
19. 1 l .c) we have n;;=1 Kn nonempty. Since also Kn <;;; Vn , this completes the proof. 

Proof of (DC5) =? (DC1 )  ( optional) .  This result is from Blair [ 1977] ; it can also be found 
in Oxtoby [1980] . 

Let S be a set, and let <!> : S -->  {nonempty subsets of S}  be some given function. We 
wish to construct a choice sequence for <!> - i.e. ,  a sequence ( sn) in S such that Sn+ 1 E <i>(sn ) 
for each n E N. Let s have the discrete metric, and let X = sN have the product topology. 
Then S and X are both complete (see 19 .13 for the latter) . Verify that, for each k E N, the 
set 

Ak U U U {x E X  : Xk = s ,  x1 = t} 
l>k sES tE1>(s) 

is open and dense in X. By the Baire Category Theorem, n%':1 Ak is nonempty. Choose 
any y E n%':1 Ak · Let k1 = 1 .  Thereafter, let ki+1 be the first integer satisfying ki+ 1 > k; 
and Yk,+ 1 E <i>(ykJ; such an integer exists since y E Ak, . The sequence s; = Yk, is the 
desired choice sequence. 

20.17. Remark. If X is also assumed separable, then the theorem above can be proved 
using just ZF; the Principle of Dependent Choice is not needed. (The details are left as an 
exercise. )  

I n  particular, 2N is a Baire space, and that can be proved i n  ZF. This fact enters into 
some of our arguments about weak forms of Choice. 

20.18. Proposition. Any locally compact regular space is a Baire space. 
Proof The proof is similar to that in 20.16 ,  except that in place of ( * *) we impose the 

condition that cl( Gn) be compact, and instead of the Cauchy Intersection Property 19. 1 l .c 
we use 1 7. 14.a and 17.3(B ) .  

20.19. Example. Let lR = {real numbers} and Q = {rational numbers} have their usual 
topologies; thus Q is a subspace of R Show that 

a. Q is an F" subset of JR. 
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b. If q E Q, and N is a neighborhood of q in Q, then N contains infinitely many members 
of Q. Hence the singleton { q } ,  considered as a subset of Q, is a closed set with empty 
interior. 

c. Q is a meager subset of itself. 
d. Q is not a Baire space. 
e. Q is not topologically complete. 
f. Q is not a G0 subset of R 

ALMOST OPEN SETS 

20.20. Let X be a topological space. Observe that an equivalence relation � can be defined 
on P(X) by: 

A 6 B is meager. 

Here 6 denotes symmetric difference, as in 1 .27. 
Let S � X. Then the following conditions are equivalent : 
(A) S is equivalent (in the sense defined above) to an open set; i .e . , S = G 6 M 

for some open set G and some meager set M. 
(B) S i s equivalent ( in the sense defined above) to a closed set; i .e. , S = F 6 M 

for some closed set F and some meager set M. 
(C) There exists a meager set M � X such that S\M is a clopen subset of 

the topological space X\M (when that space is equipped with the relative 
topology) .  

(Hint :  The boundary of an open set is meager - see 20.4.) 
If any (hence all) of those conditions is satisfied, we say that S has the Baire property, 

or that S satisfies the condition of Baire, or that S is almost open. (Perhaps a more 
descriptive term would be "almost clopen." ) Almost open sets play important roles in our 
theory of intangibles (in 14 .77) and in our study of closed graph theorems; see 27.25, 27.45 , 
and 29.38. 

20.21 .  Corollary. The almost open subsets of a topological space X form a 0'-algebra on 
X.  Indeed, it is the smallest 0'-algebra that contains both the 0'-algebra of Borel sets and 
the ideal of meager sets; see 5 .28. 

20.22. Theorem (optional) .  A set has the Baire property if and only if it is equal to 
the union of a Gb set and a meager set. (See also the related remark in 24.35. ) 

Proof of theorem. Since the sets with the Baire property form a 0'-algebra containing all 
open sets and all meager sets, it follows easily that any union of a G0 and a meager set 
is almost open. Conversely, suppose that S = G 6 lvf where G is open and M is meager. 
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Then M is contained in some meager set K that is an F<T . Now G\K is a G6 and S n K is 
meager, and the union of these two sets is S. 

20.23. Definition and proposition. Let X be a topological space, and let f : X --> lR be 
some function. Then the following conditions are equivalent. If either, hence both, are 
satisfied, we say that f has the property of Baire. 

(A) For each open set G s;;: IR, the set f- 1  (G) is an almost open subset of X. (In 
other words, f is measurable when X is equipped with its a-algebra of almost 
open sets and lR is equipped with its a-algebra of Borel sets.) 

(B) There exists a meager set M s;;: X such that the restriction of f to X \  M is 
continuous (when X \  M is equipped with the relative topology) . 

Outline of proof of equivalence. The proof of (B) =? (A) is an easy exercise; we omit the 
details. For (A) =? (B) , let (Un )  be a countable base for the topology of lR - for instance, 
the open intervals with rational endpoints. Then f- 1 (Un) = Gn 6. Mn where Gn is open 
and Mn is meager. Then M = U:=l Mn is meager. Let r be the restriction of f to X \  M. 
For each n, the set r- 1 (Un) = Gn \ M i s open in X \  M; hence r is continuous. This proof 
is taken from Kuratowski [1948] . 

20.24. An application of the Baire theory to Boolean algebras ( optional) .  Let (X, �) be 
any nondegenerate Boolean algebra. Then (X, �) can be embedded in a complete Boolean 
algebra (X, �) in a natural way (so that the inclusion is inf- and sup-preserving) , as follows: 

Let X* be the dual of X, defined as in 13.19 and topologized as in 17.44. It is a Boolean 
space; hence it is a Baire space. Let A =  {almost open subsets of X*} and J\1 = {meager 
subsets of X*} .  Then A is an algebra of subsets of X*,  and J\1 is an ideal in A; hence we 
can form the quotient Boolean algebra Y = A/M and the quotient mapping 1r :  A -->  Y. 

The dual of the Boolean space X* i s the Boolean algebra X** ,  defined as in 17.44 
- i.e. , the algebra of all clopen subsets of X*. The Stone mapping S : X --> X**, 
defined in 13 .21 and investigated further in 13 .22 and 17.46.a, is an isomorphism of Boolean 
algebras. Every clopen set is open, and therefore is almost open; thus we have inclusions 
X** -S A -S :P(X*) . The composition 

K : X __!___, X** -S A � y 

is a homomorphism of Boolean algebras. 
It can be shown that Y is complete and that K is injective, sup-preserving, and inf

preserving. We omit the details of the proof (which are too long for us to recommend them 
as an exercise) ;  they can be found in Rasiowa and Sikorski [1963, page 89] . 

RELATIVIZATION 

20.25. Assume that X i s a topological space, and Y s;;: X is equipped with the relative 
topology. Use clx and ely to denote the closures in X and in Y. 
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Let S � Y � X .  Prove the following list of results. (The list is admittedly long and 
tedious, but that seems to be unavoidable, and these results are needed for later results 
such as 20.30 and 27.45 . )  

a.  The following are equivalent : 
(A) S is nowhere-dense in Y. 
(B) S � cly (Y \ cly (S) ) .  Hint: 20.4(F) . 
(C) S � clx (Y \ clx (S) ) .  Hint : 15 . 12 .  

The last condition has the advantage that all the closures are with respect to the 
topology on X; this makes some later results easier to prove. 

b. If S is nowhere-dense in Y, then S is nowhere-dense in X .  
c .  If S is meager in Y, then S is meager in X .  
d .  Suppose Y is dense in X ,  and S is nowhere-dense in X. Then S is nowhere-dense in 

Y. 
Proof Let "cl" denote closure in X. We have X = cl (Y) and cl(S) = cl(cl (S) ) ,  

hence by 15 .5 .c 

X \  cl(S) cl (Y) \ cl(cl (S)) c cl(Y \ cl(S) ) .  

The right side is closed, so we may replace the left side by its closure � i .e . , cl(X \ 
cl(S) ) � cl(Y \ cl(S ) ) .  By 20.4(F) we have S � cl(X \ cl(S) ) .  Thus we deduce 
S � cl(Y \ cl(S ) ) .  Now apply 20.25 (C ) . 

e. Suppose Y is dense in X, and S is meager in X .  Then S is meager in Y. 
f. Suppose Y is dense in X, and S is almost open in X. Then S is almost open in Y. 

g .  I f S is almost open in Y and Y is almost open in X ,  then S is almost open in X .  
Hint: By assumption, S = !vi 6 G, where !vi is meager in Y � hence in X �  and 

G is open in Y. Then G = Y n H, where H is open in X .  Thus S = AI 6 (Y n H) ,  
where all of AI, Y, H are almost open in X .  Since the almost open subsets of X form 
a O"-algebra, S is almost open in X .  

h. Suppose X is a Baire space and X \ Y is meager in X. Then S is almost open in Y if 
and only if S is almost open in X. 

ALMOST HOMEOMORPHISMS 

20.26. Recall from 17.41 that a zero-dimensional space is a topological space with a base 
of clopen sets. A few basic properties and examples were given in 17.42. 

20.27. Alexandroff-Urysohn Theorem on the Irrationals ( 1928) .  Let X be a non
empty, separable, zero-dimensional, metrizable, topologically complete space, in which no 
nonempty clopen set is compact. Then X is homeomorphic to NN . 
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In particular, lR \ Q = {the irrational numbers} ,  topologized as a subset of IR, is home
omorphic to NN . 
Proof We may equip X with a complete metric d. By 18 .14 , we may assume that diam(X) < 
1 .  We first shall show this preliminary result : 

( q )  Let Y be a nonempty clopen subset of X ,  and let any E: > 0 be given. Then we may 
write Y = Y1 U Y2 U Y3 U · · · , where the }j 's are nonempty, disjoint, clopen sets and 
diam(}j) < E:. 

By assumption, Y is not compact . Since Y is closed, we know by 19 . 18 that Y is not totally 
bounded. Thus (replacing E: by some smaller number if necessary) we may assume that Y 
cannot be covered by finitely many sets that have diameter less than E:. Since X is separable 
and zero-dimensional, X has a countable clopen base A1 , A2 , A3, . . . . Then the Aj 's that 
have diameter less than E: also form a countable clopen base. Hence the sets A1 n Y that 
satisfy diam(A1 ) < E: form a clopen cover of Y. Let those sets be B1 , B2 , B3 , . . . . Let 
C1 = B1 and 

(n = 2, 3, 4 , . . .  ) .  
Then the sets Cn are clopen, disjoint , have diameter less than E:, and have union equal to Y . 
Finally, let the sequence (Yn) consist of those Cn ' s that are nonempty. There are infinitely 
many Yn 's, by our choice of E:. This completes the proof of ( q ) .  

We now define a mapping <p : {finite sequences in N} ----+ {non empty clopen subsets of 
X} ,  by recursion on the length of the finite sequence, as follows. First, let <p map the empty 
sequence to the whole set X itself. 

Now, assume that <p has been defined on all sequences of length k, for some k 2: 0. Thus, 
for each (n1 , n2 , . . .  , nk ) E Nk, we already have <p(n1 , n2 , . . .  , nk ) equal to some nonempty 
clopen subset of X .  Applying ( q ) ,  we can partition that nonempty clopen subset into a 
countably infinite collection of nonempty clopen subsets, each of which has diameter less 
than 2-k- l . Take those sets to be the values of <p(n1 , n2 , . . .  , nk , p) ,  for p = 1 ,  2, 3, . . . . This 
completes the recursive definition of <p. 

Next we define a function <I> :  NN ----+ X, as follows. For any sequence a =  (n1 , n2 , n3 , . . .  ) 
in NN , consider the sets S0 (a) = X and 

These are clopen subsets qf X, satisfying So (a) ;;2 S1 (a) ;;2 S2 (a) ;;2 S3 (a) ;;2 · · · and 
diam(Sn (a)) < 2-n . Since the metric space X is complete, n:=o Sn (a) consists of a 
singleton, whose element we now define to be the value of <I>(a) . Using 15.25.b and the 
fact that the Sn (a) 's are clopen, verify that the mapping <I> is actually a homeomorphism 
from NN onto X .  

20.28. Lemma. Let X be a nonempty, separable, zero-dimensional, complete metric 
space. Let Y � X  be a G6 set that is dense in X ,  such that X \  Y is also dense in X .  Then 
Y is homeomorphic to the irrationals. 

Proof This result is from Mazurkiewicz [1917-1918] .  The set Y is a separable metric space. 
It is zero-dimensional , for if { Ba : a E A} is a clopen base for X ,  then { Ba n Y : a E A} 
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is a clopen base for Y. That Y is complete follows from Alexandroff's Theorem 20. 13. We 
shall apply the Alexandroff-Urysohn Theorem 20.27; it suffices to show that no nonempty 
clopen subset of Y is compact (when we use the relative topology of Y) .  

Indeed, suppose K is a nonempty clopen compact set in Y,  where we use the relative 
topology of Y; we shall obtain a contradiction. Since K is compact in Y, it is also compact 
in X; thus clx (K) = K. Since K is open in Y, we have K = G n Y for some nonempty set 
G which is open in X . Then K = clx (G n Y) 2 G by 15 . 13.b. Since X \  Y is dense in X, 
the nonempty set G must meet X \  Y - contradicting G � K � Y. 

20.29. Theorem. Let X be a nonempty, complete, separable metric space, having no 
isolated points. Then there exists a meager set M � X and a homeomorphism f from 
X \  M onto the irrational numbers (where the irrationals are topologized as a subset of �) . 

Proof. This is from Schechter, Ciesielski, Norden [1993] . For later reference we note that 
the proof of this theorem does not require the Axiom of Choice; at most, it requires DC. 

Since X is a separable metric space, i t has a countable base B1 , B2 , B3 , . . . . Let D be 
the union of the boundaries of the Bj 's; then D i s meager. We easily verify that X \  D 
is a nonempty, separable, zero-dimensional metric space. Moreover, it is a G0 subset of a 
complete metric space; hence it is topologically complete by 20. 13 . 

Let C be any countable dense subset of X \  D. Then any superset of C is also dense in 
X \  D. The set M = C U D is meager in X \  D;  hence X \  M is dense in X \  D, by the 
Baire Category Theorem. Also, M is the union of countably many closed sets, so X \ M is 
a G0 set in X \  D. By the preceding lemma, X \  M is homeomorphic to the irrationals. 

20.30. Corollary. Let X1 and X2 be nonempty, complete, separable metric spaces, that 
have no isolated points. Then there exist meager sets MJ � Xj (j = 1 ,  2) such that X 1 \ M1 
is homeomorphic to X2 \ M2 . 

TAIL SETS 

20.31. Definitions. We consider two different notions of "tail sets." We shall relate them 
in exercise 20.32.c, below. (However, these two notions are unrelated to a third meaning of 
the term, given in 7.7.) 

a. We may sometimes write the set 2N as { 0 , l }N , particularly if we want to emphasize 
that we are viewing it as a collection of sequences of Os and 1s . A set S � { 0, 1 }N is a 
tail set in {0, 1 }N if it has this property: 

Whenever x = (x1 , x2 , X3 , . . .  ) is a member of S, and y = (y1 , Y2 , y3 , . . .  ) 
is another sequence of Os and 1s that differs from x in only finitely many 
components, then y is also a member of S. 

(The idea is that x and y are eventually the same; they have the same "tails. " )  
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b. A dyadic rational will mean a number of the form m/2n , for integers m and n.  A 
set S c;;: [0, 1 )  is a tail set in the interval [0, 1 )  if it has this property: 

Whenever x is a member of S and y is another point in [0, 1 )  that differs 
from x by a dyadic rational, then y is also a member of S. 

20.32. Exercises. Show that 
a. The two kinds of tail sets can also be described as follows: Say that two sequences 

of Os and 1s are equivalent if they differ in only finitely many components; or say 
that two numbers in [0, 1 )  are equivalent if they differ by a dyadic rational. These are 
equivalence relations on { 0, 1 F11 and on [0, 1 ) ,  respectively. In either setting, a set is a 
tail set if and only if it is a union of equivalence classes. 

b. The tail sets in {0, 1 y<� form an algebra of subsets of {0 , 1 F" ;  the tail sets in [0, 1 )  form 
an algebra of subsets of [0, 1 ) .  

c .  The countable sets 

A { x E {0 , 1 }N : x1 = 0 for only finitely many j's } , 

B { x E {0, 1 }N : x1 = 1 for only finitely many j 's } 

are tail sets in { 0, 1 }N . The countable set 

D {y E [0, 1 )  : y is a dyadic rational} 

is a tail set in [0, 1 ) .  Show that the mapping 

X1 X2 X3 = - + - + - + · · · 2 4 8 

is a homeomorphism from {0 , 1 }N \ (AU B) onto [0, 1 )  \ D, where {0 , 1 }  has the discrete 
topology, { 0, 1 }N has the product topology, [0, 1 )  has its usual topology, and subsets 
have their relative topologies. 

Show that a subset of {0, 1 }N \ (A U  B) is a tail set in {0 , 1 }N if and only if the 
corresponding subset of [0, 1) \ D is a tail set in [0, 1 ) .  

20.33. Oxtoby's Zero-One Law. In either {0 , 1 }N or [0 , 1 ) ,  i f  S is a tail set that has 
the Baire property, then S is either meager or comeager. 

Proof This proof is taken from Miller and Zivaljevic [1984] . We first prove this in [0, 1 ) .  By 
assumption, S = G 6 M where G is open and M is meager. We may assume G is nonempty 
(else S = M and we are done) . Take P = G n M; then P is a meager subset of G and 
S ;]  G \ P. 

Since G i s a nonempty open set, it contains a set of the form [2-m (k - 1 ) ,  2-mk)) for 
some positive integers m, k, which will be held fixed throughout the rest of this proof. Let 

[j - 1 j ) 
2m ' 2m for j = 1 , 2, . . .  , 2m . 
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With this notation, G :;;> h. Let Pk = h n P; then Pk is a meager subset of h and 
s :;;> h \ pk · 

Let Pj be the translate of Pk that is a subset of IJ - that is, let P1 = Pk + 2-rn(j - k) .  
Then P1 i s also a meager set, since the operation of translation preserves all the relevant 
topological properties. Then U�:1 P1 is a union of finitely many meager sets, and thus is 
meager. Since S is a tail set, we have 

s :=; u (Ij \ pj )  
j=1 

which is comeager. This completes the proof in [0, 1 ) .  
We can now use 20.32.c to transfer our conclusions to {0, 1 Y '  as well. Admittedly, the 

mapping considered in 20.32.c is not a homeomorphism between {0, 1 }N and [0, 1 ) ;  it is only 
a homeomorphism between {0, 1 }N \ (A U  B) and [0, 1 )  \ D. However, the exceptional sets 
A, B ,  D are meager tail sets and thus have no effect on our conclusion. 

BAIRE SETS ( OPTIONAL) 

20.34. Definition. Let 0 be a locally compact Hausdorff space. Then the Baire a-algebra 
on 0 is 

the a-algebra 131 generated by the compact G6 's in 0; or, equivalently, 

the a-algebra 13'2 generated by the continuous functions from 0 into JR. that 
have compact support - i.e . , the smallest a-algebra on 0 that makes all such 
functions measurable from 0 to JR. (where JR. is equipped with its Borel a-algebra) . 

The members of this a-algebra are called the Baire sets. 

Proof of equivalence. To show that 132 � 131 , let any continuous f : 0 --> JR. with compact 
support be given. For each real number r > 0, the set { w E 0 : f(w) � r} is compact; also 
it is the intersection of the sets {w E 0 :  f(w) > r - � }  (n = 1 ,  2, 3, . . .  ) ,  which are open. 
Thus the set {w E n :  .f(w) � r} is a member of 131 . Similarly, the set {w E 0 :  f(w) ::; -r} 
belongs to 131 . It follows easily that f is measurable from (0, 131 ) to JR.. 

To show that 131 � 132 , let K be a compact Gb . Say K = G1 n G2 n G3 n · · · , where 
the Gj 's are open. Since K is compact, finitely many of the Gy 's suffice to cover K. By 
17. 14.c, there exists a continuous function fJ : n --> [0, 1] with compact support, such that 
f1 = 1 on K and fJ vanishes outside G J .  Then 0ach f1 is measurable from 132 to the reals. 
The characteristic function of K is the pointwise infimum of the sequence (.f1 ) ,  so it too is 
measurable from 132 to the reals. Thus K E 132 ; it follows that 131 � 132 . 

20.35. Observations and remarks. Every Baire set is a Borel set . In many commonly used 
topological spaces, the Baire and Borel sets are the same. For instance, this is true in any 
compact metric space, by 20.2.e and 17.7.f. 
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We shall not need the Baire sets later in this book. We have mentioned them only to 
prevent confusion: Do not confuse the Baire sets with the sets that have the Baire property; 
these are two different a-algebras. In general we have 

{ Borel } 
sets 

c 7: 
{ sets :Vith } 

Bmre . 
property 

The definition of "Baire set" varies somewhat in the literature. For instance, some 
mathematicians prefer to use the a-ring generated by the compact G0 's, rather than the 
a-algebra (see 5 .27) . This has certain advantages in the study of regular measures on 
topological spaces; that is the main setting where Baire sets are important. 



Chapter 2 1  

Positive Measure and Integration 

MEASURABLE FUNCTIONS 

21.1 .  Definitions, review, and remarks. By a measurable space we mean a pair (0, S) 
consisting of a set n and a a-algebra S of subsets of 0; the members of S are then called 
measurable sets. Recall that measurable spaces are the objects for a category, with 
measurable mappings for the morphisms. A measurable mapping f :  (0, S) ---. (0', S') is 
a function f : n ---+ n' that makes the inverse image of each measurable set measurable -
i.e. , that satisfies S' E S' =? f-1  ( S') E S . Recall from 9.8 that a sufficient condition for 
measurability is that G' E 9' =? f- 1 ( G') E S, where 9' is any collection of subsets of n' 
that generates the a-algebra S' . 

Initial a-algebras and product a-algebras are defined as in 9 . 15  and 9 .18 .  
In most cases of interest, the codomain 0' is a topological space. When we speak of a 

measurable function from a measurable space to a topological space, the topological space 
0' will be understood to be equipped with its a-algebra of Borel sets, unless some other 
arrangement is specified. 

An analogous convention is not used for the domain n. For the most basic ideas of 
integration theory, developed later in this chapter, a topology is not needed on n. Even 
when a topology on n is present , several different a-algebras on n may be useful (e.g. ,  the 
Borel sets, the Lebesgue-measurable sets, or the almost open sets) , and so we shall not 
assume any one of them is in use unless it is specified. 

Most of our results about measurable functions f : n ---+ 0' require some sort of sepa
rability condition or small cardinality condition for the topological space n', as in 21 .4 and 
2 1 .7. Without such assumptions, pathologies may arise, as in 2 1 .8 . An interesting exception 
is 2 1 .3 , which is valid for pseudometric spaces regardless of separability. 

21.2 .  Some exercises on measurability. Assume (0, S) is a measurable space, X is a 
topological space, and f : n ---. X is some mapping. 

a. A sufficient condition for measurability of f is that the inverse image under f of each 
open set, or of each closed set, is measurable. 

In particular, any continuous function is measurable, if the domain is a topological 
space equipped with its Borel a-algebra. 

547 
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b. If f : n ----> X is measurable and g : X ----> Y is continuous, then the composition 
g 0 f : n ----7 y is measurable. 

c. A mapping f :  n ----> [-oo, +oo] is measurable if and only if the set {w E n :  f(w) < r }  is 
measurable for each r E IR - or, equivalently, if and only if the set { w E n : f ( w) ::; r }  
is measurable for each r E R 

In particular, if n is a topological space equipped with its Borel a-algebra, and f : 
n ----> [-oo, +oo] is lower semicontinuous or upper semicontinuous, then f is measurable. 

d. If f : n ----> [-oo, +oo] is measurable, then so is the mapping w f---+ l f (w ) IP , for any 
constant p E (0, +oo). 

21;3. Theorem. Let (D, S) be a measurable space, and let (X, d) be a pseudometric 
space (not necessarily separable) .  Let h ,  h ,  h ,  . . .  be measurable functions from n into X ,  
converging pointwise to a limit f . Then f i s  also measurable. 

Proof (following Lang [1983] ) .  Let any open set T <:;;: X be given; we wish to show f- 1 (T) E 
S. We may assume 0 � T � X. We have x E T if and only if dist(x, X \ T) > 0. Consider 
the closed sets Fp = { x E X : dist (x, X \ T) ;::: � } and the open sets Gp = { x E X : 
dist (x, X \  T) > � } ,  for positive integers p. We have 

x E FP for some p x E T  x E GP for some p. 

(Actually, both of those implications are reversible, but we won't need that fact for the 
argument below. ) For fixed p, use the facts that Fp is closed, Gp is open, and f(w) = 

limn_,00 fn (w) , to show that 

f n ( w) E Fp for all n sufficiently large 
fn (w) E GP for all n sufficiently large 

From this conclude that 
00 00 00 

p=l  j= l  n=j 

f(w) E Fp, and 
f(w) E GP. 

00 00 00 

p= l  k= l  n=k 

However, note that Gp <:;;: FP. Hence the inclusions in ( * ) are actually equalities, and 
therefore f- 1 (T) is measurable. 

21 .4. Definitions and proposition. Let rn, S) be a measurable space, and let (X, d) be a 
pseudometric space equipped with : ?bra of Borel sets. 

We shall say that a mapping J v is finitely valued or countably valued 
or separably valued if the ra�ge c _nite set, a countable set, or a separable set, 
respectively. 

Show that the following conditions are equivalent . 
(A) f is separably valued and measurable. 
(B) f is the uniform limit of a sequence (gn ) of countably valued, measurable 

functions. 
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(C) f is the pointwise limit of a sequence (9n ) of finitely valued, measurable func
tions. 

(D) f is the pointwise limit of a sequence of separably valued, measurable func-
tions. 
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Any function satisfying one, hence all, of these conditions will be called a strongly mea
surable function; the collection of all such functions will be denoted Slvf(S, X) .  Of course, 
if Y is separable, then SM(S,  Y) is just the set of all measurable functions from (0, S) to 
the Borel subsets of Y. (The use of the term "strongly" is explained in part by comparison 
with the notion in 23.25 . )  
Further properties. I f f is a strongly measurable function and the range of f is contained 
in a compact subset of X,  then 

(E) f is the uniform limit of a sequence (9n ) of finitely valued, measurable func
tions. 

Proof of proposition. Obviously (B) =? (D) and (C) =? (D) .  For (D) =? (A) , use 2 1 .3 ; 
also show that Range(!) <;;; cl (U�1 Range(9n) ) ,  which is separable. 

It remains to show that (A) implies both (B) and (C) ,  and also that (A) implies (E) 
when the range of f is relatively compact. Let (xk : k = 1 ,  2 ,  3 , . . .  ) be a dense sequence 
in the range of f. For the compact case, choose the sequence (xk ) so that it has the 
further property that for each E > 0, the range of f is covered by u�=l B(xk, E ) for some 
N E N. Now, for (B) and (E) , let 9n (w) be the first term in the sequence (xk ) that satisfies 
d(f(w) , xk) :S 1/n. For (C) ,  let 9n (w) be the closest member of {x1 , x2 , . . .  , xn } to f(w) 
or more precisely (since there may be a tie) , let 9n (w) be the first xk in the finite sequence 
(xl , xz ,  . . .  , xn ) that satisfies d(f(w) , xk )  = dist (f(w) , {xl , Xz ,  . . .  , xn } ) .  We leave it as an 
exercise to prove that, in each case, 9n is measurable. (The exercise makes use of the fact 
that we took 9n (w) to be the first Xk with a specified property, rather than simply some Xk 
with that property. ) 

21.5. A related result. If f : n --+ [0, +oo] is a measurable function, then there exist 
measurable, finitely valued functions 9n : n ___, [o, +oo) such that 9n T f pointwise - i.e. , 
such that 91 :S 92 :S 93 :S · · · :S f  and 9n (w) --+ f(w) for each w E n. 

Hint: Let 9n (w) = max{r : 2nr is an integer, r :S n, and r :S f(w) } .  

JOINT MEASURABILITY 

21.6. Definition. Let (X, S) and (Y, 'J) be measurable spaces. Recall that the product rT
algebra on X x Y is the product structure, as defined in 9.18 , for the category of measurable 
spaces and measurable mappings. Thus, the product u-algebra is the smallest u-algebra 
on X x Y that makes both of the coordinate projections (x, y) >---+ x and (x, y) >---+ y into 
measurable mappings . Equivalently, it is the smallest u-algebra that contains the collection 
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{ S x T : S E S, T E 'J} . We shall denote it by S 0 'J, to emphasize that in general it is not 
equal to {S  x T :  S E S, T E 'J} . 
Proposition on joint measurability. Let (X, S ) , (Y, 'J) ,  and (Z, ll) be measurable spaces. 
Let S 0 'J be the product a-algebra on X x Y. If f :  X x Y ---+ Z is measurable from S 0 'J 
to ll, then 

( i) f ( x, · ) : Y ---+ Z is measurable from 'J to ll (for each fixed x) , and 
( ii) f ( · ,  y) : X ---+ Z is measurable from S to ll (for each fixed y ) .  

In particular, taking Z = {0 ,  1 } ,  we obtain these important special cases: I f A E S0'J, then 

(i') the set Ax = {y E Y :  (x , y ) E A} belongs to 'J, for each fixed x, and 

(ii') the set AY = {x E X :  (x , y) E A} belongs to S, for each fixed y. 
Proof. We first prove (i' ) .  Fix any x E X, and define :fx = {A t;;;; X x Y : Ax E 'J} . It is 
easy to show that :fx is a a-algebra on X x Y, and that :fx contains all sets of the form 
S x T for S E S ,  T E 'J. Hence :fx :2 S 0 'J; this proves (i' ) .  The proof of (ii' ) is similar. 

Now to prove (i ) , let any measurable f :  X x Y ---+ Z and any measurable set Q t;;;; Z be 
given. Then 

f(x, · ) - 1 (Q) = {y E Y :  f(x, y) E Q} = {y E Y :  (x , y) E f- 1 (Q} }  = [f- 1 (Q)t 
is measurable by (i' ) .  

21 .  7. Measurability in separable spaces. Let (X, d )  be a separable metric space. Then: 
a. The product a-algebra on X x X formed using the Borel a-algebras on both X 's is 

equal to the Borel a-algebra determined by the product topology on X. 
Hint: Let '13 be a countable base for the topology on X; then { B1 x B2 : B1 , B2 E '13} 

i s a countable base for the product topology on X x X. 
b. The metric d : X x X ---+ [0, +oo) i s jointly measurable. 
c. Let (!1, S) be a measurable space. Consider mappings from n into IR or C or [0, +oo] or 

[-oo, +oo] (all of which are separable metric spaces) . Then the maximum, minimum, 
sum, difference, product, or quotient of two measurable mappings is measurable, if it is 
defined - i.e . , if it does not involve oo - oo or division by 0 or other illegal operations. 
The set of all measurable real- or complex-valued functions is a unital algebra (see 
1 1 .3) . 

2 1 .8. Nedoma's pathology (optional) . Let S be a a-algebra on a set X ,  with card( X) > 
card(IR) . Then the diagonal set I =  { (x, x) : x E X} is not a member of the product a
algebra S 0 S . 

Corollaries. Let X be a set with card(X) > card(IR). Let d be a metric on X, let S be the 
resulting Borel a-algebra on X, and let S 0 S be the product a-algebra. Then the diagonal 
set I does not belong to S 0 S. Hence 

(i) d :  X x X ---+ [0, +oo) is not a measurable mapping, if we equip X x X with 
the product a-algebra. 
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(i i) In view of 21 .  7.b, X cannot be equipped with a metric that makes X separable. 
(We already established this by other means in 15 .37.a. ) 

( ii i) On the other hand, the diagonal set I does belong to the a-algebra determined 
by the product topology. Thus the functor that maps topologies to their Borel 
a-algebras does not preserve product structures (as discussed in 9.35 ) .  
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Proof of proposition. This proof is from Nedoma [ 1957] . Assume that I E S 0 S; we shall 
obtain a contradiction. 

By definition in 9. 18 , S 0 S is the smallest a-algebra on X x X that makes both of the 
coordinate projections measurable; this is the same as the smallest a-algebra on X x X 
that contains all the sets of the form E x F for E, F E S. 

By 5.26 .h , we know that S 0 S is the union of the a-algebras generated by countable 
subcollections of { E x F : E, F E S} .  In particular, since I E S 0 S, we know that I is a 
member of the a-algebra 'J on X x X generated by {E x F :  E, F E £} for some countable 
set c � S. Say c = {E1 , E2 , E3 ,  . . .  } .  

For each sequence (;3( 1 ) ,  ;3(2) , ;3(3) , . . .  ) of Os and 1s ,  form the set Df3 = n�=l Cf3(n) En , 
where C1 E = CE = X \ E and C0 E = E. Then the sets Df3 (for ;3 E 2N ) form a partition of 
X -- that is, D13 n Df3' = 0 for ;3 -j. ;3' , and the union of the Df3 's is X.  (Some of the Df3 's 
may be empty. ) Each member of c is a union of Df3 's. 

The collection of sets { Df:l x D1 : ;3, 1 E 2N} is a partition of X x X. Hence the sets of 
the form 

M(A) u (Df3 x D1) 
(f:I.I )EA 

form a a-algebra 'J' of subsets of X x X. Note that {E x F :  E, F E  C} � 'J' , and therefore 
'J � 'J'. 

In particular, I E 'J' , and so I is of the form M(A) = U (f3,,) E A  (Df3 x D1) for some 
set A � 2N x 2N . Moreover, any nonempty Dr1 x D1 contained in I is actually of the form 
D!1 x Df:l = D� . Since 

card ( U D�) = card(!) = card(X) > card(IR) = card(2N x 2N ) � card(A) 
{(J ,(3 )EA 

at least one of the sets D& must contain more than one point of I .  That is , there exists 
(;3, ;3) E A and u, v E X  with u -j. v and 

(u, u) , (v , v) E 

Thus, for every n we have u, v E C!J(n)En . We have (u, v) tt I since u -j. v. But 

D� c M(A) I , 

a contradiction. This completes the proof. 
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POSITIVE MEASURES AND CHARGES 

21.9. Remarks about positive charges. Recall from 1 1 .37 that a positive charge i s a 
finitely additive mapping from an algebra of sets to [0, +oo] , and a positive measure is a 
countably additive mapping from a 0'-algebra of sets to [0, +oo] . A measurable space is pair 
(0, S) consisting of a set 0 and a 0'-algebra S of subsets of 0; a measure space is a triple 
(0, S, fL) ,  where the third component is a positive measure 11 on S. 

Let S be an algebra of subsets of a set 0. Note that if 11 is a positive charge on S ,  then 
A <:: B ,  A , B E S 11(A) :S 11(B) ;  

thus 11(A) i s a measurement of how "big" A i s . The largest value taken by 11 i s !1(0) .  If 
/1(0) < oo, the charge 11 i s said to be finite or bounded. 

We can also use 11 to measure how "big" is the difference between two sets. If 11 is 
finite, verify that d(A, B) = 11(A 6 B) is a pseudometric on S; here 6 denotes symmetric 
difference. More generally, if 11 is any positive charge (not necessarily bounded) , then 
d(A, B) = arctan [11(A 6 B) J defines a pseudometric d on S. In place of the arctangent 
function, we could use any other bounded remetrization function; see 18 . 14 . 

Remark. We may define an equivalence relation :::::o on the algebra S using the .pseudomet
ric d as follows: A :::::o B {===} d(A, B) = 0. For many purposes in analysis, equivalent sets 
can be used interchangeably; what is important is not the particular set but the equivalence 
class to which it belongs. The collection of all equivalence classes - i.e . ,  the quotient Sl 11 
- is a Boolean algebra, on which d acts as a metric. This can be verified directly or by 
showing that :J = {A E S : 11( A) = 0} is an ideal in the Boolean algebra S; then S I 11 = S I:J. The quotient Boolean algebra is sometimes called the measure algebra. 

21 . 10. More definitions. By a probability charge or probability measure on 0 we 
shall mean a positive charge or measure that satisfies !1(0) = 1 .  If 11 is a positive charge 
with 0 < !1(0) < oo, then most ideas about 11 are unaffected if we replace 11 with the 
probability charge v defined by v( S) = 11( S) I 11( 0) .  Thus, in many contexts we may restrict 
our attention to probabilities; this restriction often simplifies our notation. 

Note that a probability charge 11 has at least the two numbers 0, 1 in its range. A 
two-valued probability will mean a probability charge that has only the two values 0, 1 
for its range. 

21 .11 .  Some elementary examples. If 0 is any set and p : 0 ---+ [0, +oo] is any function, 
then fL(S) = LsES p(s) defines a positive measure f1 on the measurable space (O , P(O) ) .  
A measure of this type will be called a discrete measure. Note that if 11(S) < oo, then 
p(s) is nonzero for at most countably many points s in S; see 10.40. A few special kinds of 
discrete measures deserve further note: 

a. Counting measure is the measure 11 : P(O) ----> {0, 1, 2, . . .  , oo} obtained by using 
p( s) = 1 for all s. Thus, it is the discrete measure defined by 

fL(S) = { +� if S <:: 0 is a finite set with n elements 
if S is an infinite subset of 0. 
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Note that counting measure does not distinguish between different kinds of infinities. 
For instance. when JL is counting measure on JR, then JL (lR) = JL(Z) , even though 
card(JR) > card(Z) by results of 10.44 .f. 

b. A discrete probability measure is a discrete measure that satisfies JL (rl) = 1 ;  that is, 
LsEO p( s) = 1 .  Clearly, the function p must vanish everywhere outside some countable 
set . 

A discrete probability measure on N may be described as a sequence (PJ ) of non
negative numbers that have sum equal to 1 .  

c .  Let rl be any set , and let � E fl .  Then the unit mass at � is the two-valued probability 
measure JL : P(n) ___, {0, 1 }  defined by 

1s (0 { � if � E S 
if � �  S; 

here 15 is the characteristic function of S. Thus, JL is the discrete probability obtained 
by letting p be the characteristic function of the singleton { 0.  

Exercise. Let JL1 , JL2 be the unit rna::;ses at two distinct points 6 , 6. Let JL (S) = 
max{JLJ (S) .  JL2 (S) } for all S <;;; fl. Show that JL is not a charge. Thus, the setwise 
maximum of two measures ( or charges) need not be a measure ( or a charge) . 

21.12 .  Ultrafilters as charges. Let rl be a set, and let :J be a collection of subsets of n. 
Let 1::r : P(rl) ___, { 0, 1 }  be the characteristic function of :J; that is, 

for S <;;; n. Show that 

if S E :J 
if s � :J, 

a. :J is an ultrafilter on n if and only if the function 1::r : P(rl) ___, {0, 1 }  is a two-valued 
probability charge. 

b. :J is the fixed ultrafilter at a point � E n if and only if 1::r is the unit mass at � . 
c. :J i s a free ultrafilter on rl if and only if 1::r is a two-valued probability charge that 

vanishes on finite subsets of n. 

d. If :J is a free ultrafilter on N, then 1::r is a charge but not a measure - - i .e . , it is finitely 
additive bnt not countably additive. 

21. 13. Preview. Integrals will be defined later in this chapter. In 21 .38(i) we shall prove 
that if (fl. S ,  JL) is a measure space and h : n ___, [0, +oo] is measurable, then another 
positive measure v can be defined by v(S) = Js h (w)dJL(w) . Here is a typical example that 
is important in applications: Let m be a real number, and let s be a positive number. For 
Lebesgue-measurable sets T <;;; JR, we may define 

v(T) J+:x: 1. r (x) [- (x - m )2 ] d � exp 2 ;r 
-ex: s v  27T 2s 

where 1r( - )  is the characteristic function of the set T and the integration is with respect 
to Lebesgue measure (defined later in this chapter) .  Then v is the Gaussian (or normal ) 
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probability measure with mean m and standard deviation s. We omit further details; 
the interested reader is referred to any book on probability and statistics. 

21 .14. Remark. Additional examples of positive measures are given in 2 1 . 19 and 21 .20. 

NULL SETS 

21.15. Let (0, S, J-L) be a measure space. A set N � 0 is a null set (also known as a 
negligible set) if N is a subset of some measurable set that has measure 0. (The set N itself 
is not required to be measurable . ) Note that the null sets form a u-ideal (defined as in 5 .2 ) . 
It is a proper u-ideal, except in the rather uninteresting case where J-L(O) = 0 . 

A condition on points w E 0 i s said to hold JL-almost everywhere, commonly abbre
viated JL-a.e. ,  if the set where it fails to hold is a null set. When J-L is a probability measure, 
then other terms for "almost everywhere" are almost surely or presque partout or with 
probability 1, abbreviated a.s. or p.p. or w.p. 1 .  

Note that i f C1 , C2 , C3 , . . .  is a sequence of conditions, each of which holds J-L-almost 
everywhere, then the condition 

also holds J-L-almost everywhere, since the union of countably many null sets is a null set. 
We emphasize that if {C.\ : .A E A} is an uncountable collection of conditions, each of which 
holds J-L-almost everywhere, it does not follow that the "and" of all the C.\'s necessarily 
holds J-L-almost everywhere. 

21 . 16. A measure space (0, S, J-L) is said to be complete if every null set is measurable 
i.e. , if 

A � B � 0, B E S, J-L(B) = 0 A E S. 

Example. All of our elementary measures in 2 1 . 1 l .a through 2 1 . 12 are complete, since they 
are defined on P(O) . 

Not every measure space is complete, but every measure space (0, S, J-L) can be extended 
to a complete measure space (0, S', J-L1) ,  called its completion, in a natural way: Let N be 
the u-ideal of null sets. The smallest u-algebra that includes both S and N is (as in 5.28) 

S' S 6 N {S 6 N  S E S and N E N} . 

Then J-L : S ----+ [0, +oo] extends uniquely to a complete measure J-L1 : S 6 N ----+ [0, +oo] , 
defined by J-L' (S 6 N) = J-L(S) . This measure is a complete extension of J-L· In fact , it is the 
smallest complete extension, if we order measures by inclusion of graphs. 

Exercise. Verify all the assertions above. In particular, show that if S1 6 N1 = S2 6 N2 , 
then J-L(SI ) = J-L(S2 ) · 

21 .17. Let (0, S, J-L) be a positive measure space, and let :J be the u-ideal of null sets. Let 
X be any set. Two functions j, g : 0 ----+ X are equal JL-almost everywhere if the set 
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where they differ is a null set - i.e. ,  if { w E 0 : f ( w)  -1- g( w)}  is contained in a measurable 
set that has measure 0. It is easy to see that equality 11-almost everywhere is an equivalence 
relation on xn = {functions from 0 into X } ;  two functions f, g that are equal 11-almost 
everywhere may also be called JL-equivalent . 

The set of equivalence classes is the reduced power *X = xn (J , defined as in 9.41 . (In 
general it is not an ultrapower, since :J generally is not a maximal ideal - i.e. ,  not every 
subset of 0 is either a null set or the complement of a null set . )  The members of *X - that 
is, the equivalence classes - are sometimes called X -valued random variables, especially 
if 11 is a probability measure. In particular, members of *IR are real random variables. 

For many purposes, any function can be replaced with any 11-equivalent function. Con
sequently, we may often identify 11-equivalent functions. By a slight abuse of notation, 
sometimes we may discuss a 11-equivalence class of functions as if it were a function. In such 
a context, a function may be defined arbitrarily on any null set or even left undefined on a 
null set. In particular, if f and g are 11-equivalent , X is a metric space, and f is strongly 
measurable (defined in 21 .4) ,  then for many purposes we may treat g as if it were strongly 
measurable. 

A function f : 0 -. X is called almost separably valued (with respect to a given 
measure 11) if it is 11-equivalent to a separably valued function - that is, if by altering f on 
a set of measure 0 we can make it into a separably valued function. For most purposes, an 
almost separably valued function is just as good as a separably valued function. 

If X is a pseudometric space, then we shall abbreviate 

SM(11, X )  { 'P E * X  : 'P meets SM(S, X ) } .  

In other words, a member of SM(11 ,  X)  is a 11-equivalence class of functions that contains 
at least one strongly measurable function from S into X .  

Exercise. Suppose X is a separable metric space, the measure space (0 ,  S, 11 )  is complete 
(as defined in 2 1 . 16 ) ,  and two functions f, g : 0 -.  X are 11-equivalent. Then one of those 
functions is strongly measurable if and only if the other one is. 

21 .18. Let (0, S, 11) be a measure space, and let X be a topological space. Let Un) be a 
net in xn , and let f E xn . We say that (!a ) converges JL-almost everywhere to f if the 
statement fa ( · ) ->  f( · ) is valid almost everywhere - i.e . ,  if the set {w E 0 :  f<> (w) f+ f(w ) }  
is contained in  a measurable set that has measure 0. This condition is also written in 
various other ways, such as fn -> f 11-a.e . ,  or fn 1'�· f. The "11" may be omitted 
from the notation if it is understood. This convergence is also called pointwise almost 
everywhere, almost surely (a.s. ) , or presque partout (p.p. ) . 

It is easy to verify that this convergence is centered and isotone, as defined in 7.34. 
However, it is not necessarily topological, or even pretopological; we shall prove that in 
21 .33.c. 

In most cases of interest, the net (! <> ) is actually a sequence. Then almost everywhere 
convergence is invariant under 11-equivalence: If fn is 11-equivalent to 9n and f is 11-equivalent 
to g, then 

fn -> f 11-a.e. 9n -> g 11-a.e. 

Thus, convergence almost everywhere makes sense for sequences of random variables. 
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LEBESGUE MEASURE 

21 . 19. Preview of Lebesgue measure. If I1 , h ,  . . .  , In are intervals m IR, then the n
dimensional Borel-Lebesgue measure of the "box" 

B I1 X h X · · ·  X In 

is the product of the lengths of those intervals. Here it is understood that the empty set 
and a singleton are intervals of length 0, an unbounded interval has length +oo, and 0 times 
oo equals 0. 

The Borel a--algebra in IRn is the smallest CJ-algebra S that contains all such boxes B; 
it is also equal to the smallest CJ-algebra S that contains all open sets. The volume function 
for boxes extends uniquely to a measure f..L on S; that measure is called Borel-Lebesgue 
measure. Thus, we may think of this measure as the "volume" of a subset of IRn . The 
uniqueness of Borel-Lebesgue measure follows easily ( exercise) from 21 .28. 

Existence of one-dimensional Borel-Lebesgue measure will be proved in 24.35. Then 
n-dimensional Borel-Lebesgue measure is the product of n copies of one-dimensional Borel
Lebesgue measure, using the product construction given in 2 1 .40. Then we can take the 
completion of n-dimensional Borel-Lebesgue measure, as in 2 1 . 16 ; the resulting measure is 
called n-dimensional Lebesgue measure and the members of the resulting CJ-algebra are 
called Lebesgue-measurable sets. (They should not be called "Lebesgue sets" � that 
term unfortunately has another meaning, given in 25. 16 . )  

Further properties of Lebesgue measure. As we have indicated, the volume function 
extends in a natural way, from boxes to a much larger collection of sets. Surprisingly, the 
volume function cannot be extended in a natural way to all subsets of IRn ; we shall prove 
that fact in 21 .22. Thus, we can discuss the volume of a Lebesgue-measurable set, but not 
the volume of an arbitrary subset of IRn . That is our main reason for studying CJ-algebras. 

It is easy to show ( exercise) that the n-dimensional Lebesgue measure of any countable 
subset of IRn is zero. Some uncountable sets also have Lebesgue measure 0; we give examples 
in 24.39 and 25. 19 . In fact, 24.39 is an example of a comeager set with measure 0. Thus, a 
set can be "large" in one sense and "small" in another sense. 

In 23.16 we shall introduce integrals J0 fdf..L with respect to positive measures. The 
Lebesgue integral J0 fdf..L is equal to the Riemann integral JJRn f(x)dx when both are defined; 
we shall prove that fact in 24.36. 

21.20. Lebesgue measure in n dimensions is (i) translation invariant, and ( ii ) positive on 
each ball of positive radius. Banach spaces are a natural generalization of IR.n introduced 
in the next chapter, but it is easy to show (using 23.22) that no positive measure on the 
Borel subsets of an infinite-dimensional Banach space can satisfy both ( i) and ( ii) . 

If we do not insist on translation-invariance, some interesting and useful measures do 
exist on infinite-dimensional spaces. The most famous of these is Wiener measure, which 
we shall now introduce briefly. (The details omitted here are major ones, not intended as 
an exercise. ) 

Let C[O, 1] be the Banach space of continuous functions from [0, 1] into IR, with its usual 
sup norm (discussed in 22 . 15 ) ,  and let 0 = {w E C[O, 1] : w(O) = 0} ;  this is an infinite-
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dimensional vector space. Whenever [a1 , b! ] ,  [a2 , b2] ,  . . .  , [an , bn ] are subintervals of lR and 
0 = to < t 1 < t2 < · · · < t, = 1 ,  the measure of the "box" 

is defined to be 

p,(B) 

n 

B n { w E n  : w(t; ) - w (t;_ I ) E [a; , bi ] } 
i= l 

n 1 II 
i= l 

11!, [ -x2 ] 
exp dx. 

a, 2 (t; - t ;_ I ) 

In the terminology of probability, this says that the increments w(t; ) - w( t;_ I )  are indepen
dent Gaussian random variables with mean 0 and variance t; - t;_ 1 . It can be shown that 
J1 extends to a probability measure on the a-algebra generated by these "boxes." 

The functions w : [0, 1] -+ lR correspond to the continuous but erratic paths taken by a 
particle starting from the origin and exhibiting Brownian motion. For any measurable set 
S � C[O, 1 ] ,  the measure Jl (S) represents the probability that the path w taken by such a 
particle will be an element of S. Although each path w is continuous, it can be shown that 
with probability 1 the continuous function w is nowhere-differentiable. (It is interesting to 
compare this result with 25 .14( ii) . )  

More about Wiener measure can be found in  Freedman [1971] or Kuo [1975] . 

21.21 .  ( Optional. ) Although a translation-invariant Lebesgue measure does not generalize 
naturally to infinite-dimensional spaces, a translation-invariant notion of sets of Lebesgue 
measure 0 can be extended to that setting. 

Definition. Let X be an Abelian group topologized by a complete metric that is transla
tion-invariant (i .e . ,  satisfying d(x + u, y + u) = d(x, y) ; such metrics will be studied further 
in the next chapter) .  A set S � X is called shy if there exists a positive measure Jl on the 
Borel sets of X, with these properties: 

(i) 0 < Jl(K) < oo for some compact set K � X; and 

(ii) there exists a Borel set B with S � B � X, such that Jl(B + x) = 0 for every 
X E X. 

The complement of a shy set is a prevalent set . 
We emphasize that different shy sets may be exhibited using different measures Jl, which 

may be chosen with particular applications in mind. For instance, if X is an infinite
dimensional vector space, then Jl could be a Lebesgue measure on some finite-dimensional 
subset of X. 

Following are some basic properties of  shy sets and prevalent sets. We omit the proofs, 
which can be found in Hunt, Sauer, and Yorke [1992] . 

a. The shy sets form a proper a-ideal; the prevalent sets form the corresponding proper 
8-filter. Thus the shy sets form a collection of "small" sets, and the prevalent sets form 
a collection of "large" sets, in the sense of 5.3. 

b. If S is a shy set (respectively, a prevalent set ) ,  then each of its translates S + x is shy 
(respectively, prevalent) .  
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c. If X = ffi.n , then a set is shy if and only if its n-dimensional Lebesgue measure is zero. 
d. Every shy set has empty interior; every prevalent set is dense in X. 
e .  I f  X i s  an infinite-dimensional Banach space (or, more generally, an infinite-dimensional 

F -space) ,  then every compact set is shy. 
Further remarks. Although "shy" is a more complicated notion than "meager," it plays a 
similar role and may be more natural for some measure-theoretic questions about "small" 
subsets of a topological vector space. 

Here is one particularly interesting application: By 25. 16 and 29.36, we know that any 
Lipschitzian function from ffi. into ffi. is differentiable almost everywhere. A generalization 
due to Rademacher (not proved in this book) says that any Lipschitzian function from 
ffi.n into ffi.n is differentiable except on a set whose n-dimensional Lebesgue measure is 
0. Generalizations due to Christensen and others extend Rademacher's result to infinite
dimensional Banach spaces, with differentiable replaced by slightly weaker notions and with 
Lebesgue measure 0 replaced by shyness or similar notions. 

Many applications and further references are listed in Hunt, Sauer, and Yorke [1992, 
1993] . 

21.22. Vitali's Theorem. There exist subsets of ffi. that are not Lebesgue-measurable. 
Furthermore, one-dimensional Lebesgue measure cannot be extended to a translation-invar
iant measure on all the subsets of R 

Proof. Suppose J.L were such a measure; we shall obtain a contradiction. Consider n = [0, 1 )  
as the circle group, i .e . , the reals modulo 1 (introduced i n  8. 10 .e) . Then J.L also acts as a 
translation-invariant measure defined on all subsets of n = [0, 1 ) ,  with J.L(O) = 1 .  

Define an equivalence relation on [0, 1 )  by x � y i f  x - y is a rational number. Let S 
be a set consisting of one element from each equivalence class. (The existence of such a set 
S follows from the Axiom of Choice or from the slightly weaker principle (ACR) given in 
6 . 12 . ) 

By 8.23.a, the rationals are countable. Let r1 , r2 , r3 , . . .  be an enumeration of the ratio
nals in [0, 1 ) .  Then the sets rj + S, for j = 1 ,  2, 3, . . .  , form a partition of n, and they have 
the same measure by translation invariance. Hence 

00 00 

1 J.L( [O , 1 ) )  

- but there is no number J.L(S) in [0, +oo] that can satisfy this condition. 

21.23. Further remarks on extensions of Lebesgue measure. Vitali 's result , above, shows 
that Lebesgue measure cannot be extended to a translation-invariant measure on all the 
subsets of R Actually, it also shows that 

n-dimensional Lebesgue measure cannot be extended to a translation-invariant 
measure on all the subsets of ffi.n , for any n 2: 1 .  

(Indeed, if J.l were such a measure on ffi.n for some n > 1 ,  then v(S) = J.L (S x [0, 1 )n-
l ) 

would define such a measure on R) 
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What about if we do not require countable additivity? For any n � 1 ,  there does exist a 
positive charge 11 on the collection of all subsets of JRn , which agrees with Lebesgue measure 
on the Lebesgue-measurable sets; that fact will follow easily from 29.32. The existence 
proof will use the Hahn-Banach Theorem, a weak form of the Axiom of Choice. Of course, 
the charge 11 "constructed" in this fashion cannot be countably additive, as we have noted 
in the preceding paragraph. 

On the other hand, what about translation invariance? It can be proved that, on JR1 or 
JR2 , there exists a positive charge 11 that agrees with Lebesgue measure on the Lebesgue
measurable sets and is translation-invariant ; in fact , 11 can be chosen to be invariant under 
isometries. (This includes not only translations, but also reflections, and - in the case of 
two dimensions - rotations. )  The proof is longer and will not be given here; it can be 
found in Wagon [1985] . 

In three or more dimensions, such an invariant charge does not exist. Indeed, in three 
dimensions, this is an obvious consequence of the Banach-Tarski Decomposition, which was 
described (but not proved) in 6. 16. In n � 4 dimensions, we may reason as follows: If 
11 is a positive charge on defined on all the subsets of JRn , invariant under isometry, and 
extending Lebesgue measure, then v(S) = 11 (S x [0, 1 ]n-3) defines such a charge v on JR3 , 
contradicting our previous remark. 

For more about pathological charges, see Moore [1983] and Wagon [ 1985] . 

SOME COUNTABILITY ARGUMENTS 

21.24. Let S be an algebra of subsets of a set n, and let 11 be a positive charge on S. We 
say that 11 is u-finite if n = U;:1 nj for some sequence of sets r.!1 , rl2 , r.!3 , . . .  in S, each 
of which satisfies fl( rlj ) < oo. Two important examples are Lebesgue measure on JRm and 
counting measure on N. 
Some basic properties. Suppose 11 is a a-finite charge on an algebra S of subsets of n. Show 
that 

a. We can choose ( r.!j )  to be an increasing sequence - i.e. ,  to satisfy rl 1 <;;; r.!2 <;;; r.!3 <;;; • · · .  
Proof Replace (r.!j )  with the sequence (Sj ) ,  where Sj = r.!1 u r.!2 u · · · u nj . 

b. Or, if we prefer, we can choose the nj 's to be disjoint. 

Proof Assume (rlj : j E N) is an increasing sequence; let flo = 0; then use the 
sequence (SJ ) ,  where Sj = nj \ nj- l ·  

c .  If f1 is a a-finite measure, then we can write 11 = 2:::;:1 /1j where each /1j is a finite 
measure. 

Proof Let the r.!j 's be disjoint , and let /1j (S) = fl(S n rlj ) · 
d. If 11 is a a-finite measure, then we can construct a probability measure v that is positive 

on the same sets as 11 · 
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Proof Write J.1 = 2::;:1 J.lj as above, and then let 

v(S) (S E S) .  

Remarks. For many purposes in  measure and integration theory, a u-finite charge i s  "as 
good as" a finite one. To prove some result for 0, we can partition 0 into disjoint sets Oj 
and prove the result on each of those; putting all the pieces back together is then generally 
easy. This procedure can be applied in a mechanical way in proofs of many theorems. 

21.25. Some properties of positive charges and measures. Let S be an algebra of subsets 
of a set n.  

a.  Let J.l : S ----> [0, +oo] be a positive charge. Then J.l i s  countably additive i f  and only if 
it satisfies this condition: 

Convergence Property for Increasing Sequences. Whenever (An) is 
a sequence in S with A1 <;;; A2 <;;; A3 <;;; • • • and with U�=l  An E S, then 
J.L(U�=l An ) = limn--.oo J.L(An) = SUPnEN J.L(An) · 

b. Let J.l : S ----> [0, +oo) be a positive, bounded charge. Then J.l is countably additive if 
and only if it satisfies this condition: 

Convergence Property for Decreasing Sequences. Whenever (Bn) is 
a sequence in S with B1 2 B2 2 B3 2 · · · and with n�=l  Bn E S, then 
J.L(n�=l Bn) = limn--.oo J.L(Bn) = infnEN J.L(Bn)  

or, equivalently, this condition: 

Property for Decreasing Free Sequences. Whenever (Bn )  is a se
quence in S with B1 2 B2 2 B3 2 · · · and with n�=l Bn = 0,  then 
0 = limn--.00 J.L(Bn) = infnEN J.L(Bn ) · 

We cannot omit the assumption that J.L(!l) < oo. For example, take J.l to be counting 
measure on N, and let Bn = { n ,  n + 1 ,  n + 2, . . .  } . 

c. Let J.l be a bounded positive measure on a measurable space (0, S) .  Let (Sn) be any 
sequence of sets in S. Define lim supn__,oo Sn and lim infn--.oo Sn as in 7.48. Show that 

J.l (lim inf sn) � lim inf J.L(Sn) :::; lim sup J.L(Sn) :::; J.l (lim sup sn) . n----+oo n---+oo n----+oo n---+oo 

Hence, if Sn ----> S (in the sense of 7.48), then J.L(Sn )  ----> J.L(S) .  
d. Let (J.L6 : t5 E �) be a net of positive charges on S ,  and assume that for each S E S 

the net (J.L6 (S) : t5 E �) increases to a limit J.L(S) in [0, +oo] . Then J.l is also a positive 
charge on S. If each J.l/5 is countably additive, then so is J.l. 

Hint: Use 21 .25.a; observe that sup6 supn J.lt5 (An) = supn sup6 J.lt5 (An ) · 
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21.26. Approximation Lemma. Let (0, S , J.L) be a measure space, and let A be an 
algebra of subsets of 0 that generates the O"-algebra S . Assume J.L is O"-finite on A - that 
is, assume 0 can be written as the union of countably many members of A, each of which 
has finite measure. 

Then A is dense in S, in this sense: If S E S with J.L (S) < oo, and any number f > 0 is 
given, then there exists a set A E A with J.L (A 6 S) < f. 

Proof We first prove the proposition under the additional assumption that J.L(O) < oo .  

The measure fJ defines a pseudometric d on S by d(S, T) = J.L (S 6 T) . Let cl(A) be the 
closure of the set A in the pseudometric space (S ,  d) . Observe that if (Sn ) is an increasing 
sequence in S with union S, or (Sn ) is a decreasing sequence in S with intersection S, then 
d(Sn , S) ---+ 0. Hence any closed subset of (S, d) is a monotone class. In particular, cl(A ) is 
a monotone class. By the Monotone Class Theorem 5.29, cl(A ) = S. Thus, given any set 
S E S and any f > 0, there exists some A E A with J.L(A 6 S) < f. 

We turn now to the O"-finite case. By assumption, 0 = U�=l  On , where each On belongs 
to A and has finite measure. We may assume the On 's are disjoint (see 21 .24 .b) . Fix any 
n. Then An = {A n  On : A  E A} is an algebra of subsets of On, and the O"-algebra that 
it generates on On is Sn = {S n On : S E S} .  Let any S E S be given. Apply the results 
of the preceding paragraph to the set S n On E Sn; thus there exists some set An E An 
with J.L(An 6 (S n On ) )  < 2-"- 1f .  Since f.1 is countably additive and the sets S n On form 
a partition of S, we have J.L (U�=N+l  Sn ) < f/2 for sufficiently large N. Let A =  U�=l An · 
Verify that fJ (A 6 (U�=l Sn) )  < f/2 and J.L ( (U�=l Sn) 6 s) < f/2, hence J.L (A6S) < f. 

21 .27. Corollary. Let 0 be an interval in IR:. (possibly all of IR:.) , and let J.L be a O"-finite 
measure on the Borel subsets of 0. Let any positive number f and any Borel set S � 0 
with finite measure be given. Then there exists a set T � 0 that is a union of finitely many 
intervals, such that J.L (S 6 T) < f. 

Hints: 15 .37.e and 21 .26. 

21.28. Uniqueness Lemma. Let S be the O"-algebra generated on some set 0 by some 
algebra of sets A. Let fJ and v be two positive, O"-finite measures on (0, S ) ; suppose J.L (A) = 
v(A) for all A E A. Then 11 = v on S . 

Proof First suppose both fJ and v are finite. Then the collection M = { M E S : J.L( M) = 
v(M)} is a monotone class; apply the Monotone Class Theorem (5.29 ) . For the general 
case, we may partition 0 into countably many sets, on each of which both fJ and v are 
finite. 

CONVERGENCE IN MEASURE 

21 .29. Definitions. Let (0, S ,  J.L) be a measure space. The outer measure determined by 
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f.l is the function J.L* : P(O) ----> [0, +oo] defined by 

J.L*(A) inf {J.L(S) : S ;;2 A, S E S } for every set A �  0. 

The outer measure has some, but not all, the properties of a measure - it is defined on all 
subsets of n, but it is not necessarily countably additive. 

Note that J.L*(A) = J.L(A) if A E S. For a slightly abridged reading, the beginner may 
restrict his or her attention to measurable functions; then all the sets considered below are 
measurable, so the J.L* 's can all be written instead as J.L's. 

Let (X, d) be a metric space. (We are chiefly interested in the cases where X is either 
[0, +oo] or a normed vector space. )  We now introduce two more types of convergences on 
x!1. Let Uo:) be a net in x!1 ' and let f E x!1. 

• We say (! o: )  converges to f in measure if 

f.l * { W E fl : d ( j o: ( W) , j ( W)) > E} ----> 0 for each E > 0 

or, equivalently, 

for each E > 0, eventually f.l* {w E n  : d (fa (w) ,  f (w)) > E} < E. 

(Exercise. Prove that equivalence. )  This is also called convergence in probability if 
J.L(O) = 1 .  

• We say f o: ----> f J.L-almost uniformly if 

for each E > 0, there exists a measurable set S � n such that J.L(O \ S) < E 
and fo: ----> f uniformly on S. 

It is easy to verify that each of these is a centered, isotone convergence, as defined in 7.34. 
Convergence in measure actually has much better properties. We shall see in 21 .34 that 

it is determined by a pseudometric - or by a metric, if we identify functions that are 
J.L-equivalent . 

Almost uniform convergence is not given by a metric. In fact , we shall show in 2 1 .33.c 
that almost uniform convergence is not topological, or even pretopological. 

Observations. Convergence in measure is preserved if we replace functions with equivalent 
functions. That is, if fo: is J.L-equivalent to 9o: and f is J.L-equivalent to g, then 

f o: ----> f in measure 9o: ----> g in measure. 

Thus, convergence in measure makes sense for equivalence classes of functions. 
Almost uniform convergence makes sense for sequences of equivalence classes of func

tions, just like almost everywhere convergence - see 2 1 . 18 .  

Preview. The following chart summarizes the relations that we shall establish between the 
three kinds of convergences. 
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convergence 
almost uniformly 

convergence 
almost everywhere 

I I 
(assume in 's measurable, 
and either JL(D.) < oo 
or in 's dominated) 
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21.30. Proposition. If io. --+ i JL-almost uniformly, then in --+ i in measure and JL-almost 
everywhere. (Proof. Easy exercise . )  

21.31. Theorem. If gn --+ g in measure, then the sequence (gn) has a subsequence that 
converges to g tL-almost uniformly (and therefore also converges pointwise JL-a.e. ) .  

Hints: For each c > O, eventually JL* {w E D. : d (gn (w) , g(w)) > E } < c by assumption. 

Hence (gn ) has a subsequence (h) that satisfies, for some measurable sets Sk , 

and 

Let Tk = S" u Sk:+1 U Sk+2 U · · · ; then JL(TA: )  < 2-k . Show that i1 --+ g uniformly on D. \  T" 
as j --+ oo .  

21 .32. Egorov's Theorem. Let (!1 )  be a sequence in SM(S,  X) ,  converging pointwise 
to a limit i : II --+ X. Assume also JL(D.) < oo. Then i1 --+ i JL-almost uniformly (hence 
also f1 --+ i in measure) .  

Remarks. Note that we must assume the i1 ' s  are strongly measurable. See also the related 
result in 26. 12 .f. 

Hints: Let any E > 0 be given. For positive integers k and m, let 

Use the strong measurability of the i/s (see 21 .7) to show that Bk:,m is a measurable set. 
For fixed m, show that IL (n%"=1 Bk:.m ) = 0. Using the fact that JL(D.) < oo, show that 
JL(Bk(rn ) .m )  < 2-mE for some integer k(m) .  Let AE = u�=l Bk(m) .1n - Then JL(A: ) < E, and 

f1 --+ i uniformly on D. \ A" .  

21 .33. Examples. 
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a. Let (rl, S, 11) be the real line with Lebesgue subsets and Lebesgue measure. Let fn be 
the characteristic function of the interval [n,  n + � ] .  Then fn ---+ 0 pointwise and in 
measure, but not 11-almost uniformly. 

b. Let (rl, S, 11) be the unit interval [0, 1 ] ,  with Lebesgue subsets and Lebesgue measure; 
thus the measure of an interval is the length of that interval. Let h ,  h ,  h ,  . . .  be the 
characteristic functions of the intervals 

etc . ,  in that order. Show that fn ---+ 0 in measure, but not 11-almost uniformly or 
pointwise 11-a.e. 

c. Example of non-pretopological convergence. Use the preceding example and the 
last few theorems to show that, in general, almost uniform convergence and almost 
everywhere convergence both lack the sequential star property introduced in 15.3.b. 
Hence, in general, those two convergences are not pretopological. 

21.34. Let (rl, S, 11) be a measure space, and let (X, d) be a pseudometric space. For 
j, g E xn , define 

l�� arctan [a +  11* {w E r2 :  d (f(w), g (w)) > a}] . 

(The arctan function can be replaced by any other bounded remetrization function; see 
18. 14 . ) 

Admittedly, this formula is rather complicated. After we use it below to prove a few 
simple, basic properties, we will generally refer to those simple, basic properties, rather 
than the complicated formula for D'"; we will very seldom want to make direct use of that 
formula. Still, the reader will probably find it conceptually helpful to see that there is some 
explicit formula for the pseudometric. 

Show that 

a. D'" is a pseudometric on xn . 

b. D'"(J, g) = 0 if and only if d(J( - ) , g ( - ) )  = 0 11-almost everywhere. Thus, if d is a metric 
on X, then D'" is a metric on the quotient space *X = xn /11 - i.e . ,  on the set of all 
11-equivalence classes of functions. 

c. The convergence determined by the pseudometric D'" is the same as convergence in 
measure. 

d. SM(S, X)  (defined in 21 .4) is a closed subset of the pseudometric space xn ; hence 
SM(11, X) (defined in 21 . 17) is a closed subset of the metric space *X. Hint: 21 .3 and 
2 1 .31 .  

21 .35. Theorem. I f  the pseudometric space (X, d) i s  complete, then the pseudometric 
space (Xn , D'") is complete. 
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Proof. Any D1L-Cauchy sequence has a subsequence (fk )  satisfying 

for k = 1 , 2 , 3 ,  . . .  
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it suffices to show that that subsequence is convergent in measure. By assumption, there 
is a measurable set Sk :2 {w E 0 :  d(fk (w) , fk+1 (w)) > 2-k- 1 } with f.L (Sk )  < 2-k- 1 . Let 
Tk = Sk u  Sk+1 u Sk+2 u · · · ; then f.L(Tk )  < 2-k . Since the Tk 's form a decreasing sequence, 
we have 

for w E 0 \ T1 and i 2': j. 

Fix any k and any w E 0 \ Tk ; consider i 2': j 2': k; the preceding estimate shows that the 
sequence (fk (w) , fk+ 1 (w) , fk+2 (w) ,  . . .  ) is Cauchy in (X, d) . Since that space is complete, 
the sequence (f; (w) : i E N) is convergent . Let f(w) be any of its limits. (This is unique if 
d is a metric on X. )  Take limits in ( * * ) as i -" oo, to establish 

d(f(w), fJ (w) ) < Ti for w E  0 \  TJ . 

Thus for j 2': k we have 

and therefore JJ ---> f in measure. 

INTEGRATION OF POSITIVE FUNCTIONS 

21.36. Definitions. Let (0, S, f.L) be a measure space. Let f :  0 -" [0 , +oo] be a measurable 
functioN., and let S E S .  We shall define a number J5 fdf.L in [0, +oo] , the integral of f over 
S with respect to f.L ,  in two stages. 

First, suppose f is a simple function, as defined in 1 1 .42 - that is, f is measurable and 
its range is a finite set. Then we define the integral as in 1 1 .42 - - that is, 

J f(w) dtL(w) = L f.L (s n r 1 (x)) x = L f.L (s n r1 (x)) x. 5 
,;E [O .+x] J:ERange(f) 

These two summations are the same because when x E [0, +oo] \ Range(!) then f- 1 (x) = 0 
and so f.L(S n f- 1 (x)) = 0. 

Second, when f : 0 -" [0, +oo] is any measurable function, we define 

sup {is gdf.L : g simple, 0 ::;  g ::;  f fL-a.e. } . 

Here the supremum is over all finitely valued measurable functions g that satisfy 0 ::; g ::; f 
f.L-a.e. on n - or equivalently, that satisfy 0 ::; g ::; f tL-a.e. on S; this yields the same 
supremum (easy exercise) . This supremum is well-defined - it is the supremum of a 
nonempty collection of numbers in [0, +oo] , since trivially we could take g = 0; much better 
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choices of g were noted in 21 .5 .  Of course, this definition extends the one in the previous 
paragraph, for if f is finitely valued then we can take g = f. 

We may sometimes refer to the integral defined in this fashion as the positive integral, 
to distinguish it from other kinds of integrals discussed in this book - see 1 1 .4 1 .  The 
positive integral is also sometimes known as the Lebesgue integral, but that term has 
many other meanings as well. 

A measurable function f : n ----> [0, +oo] is said to be integrable if In fdJL < oo. This 
terminology is unfortunately misleading: Some students may think that "integrable" means 
"capable of being integrated." But in fact, any measurable function taking values in [0, +oo] 
can be integrated to some value in [0, +oo] ;  "integrable" means "yielding a finite value for 
its integral." 

21 .37. Observations about integrals. Let (r2, S, JL) be a measure space. Let f and g be 
measurable functions from r2 into [0, +oo] , and let S E S. Then: 

a. f � g JL-a.e. =? In f � In g. 
b. f = g JL-a.e. =? In f = In g. 
c. Is cfdJL = c Is fdJL for any constant c E [0 , +oo] . 
d. Is f dJL = In ls  f dJL, where ls is the characteristic function of the set S. 

e. Is fdJL = Is fdJLs, where JLs is the restriction of JL to subsets of S. 
f. JL(S) = In lsdJL. 
g. (Chebyshev Inequality.) For any r E (0, +oo) ,  

JL ( {w E r2 : f(w) � r} ) 
h. In fdJL < oo =? f < oo JL-a.e. 
i. In fdJL = 0 if and only if f = 0 JL-a.e. 
j. Let h : n ____, [0, +oo] be a simple function. Then h is integrable (i .e . ,  satisfies In hdjL < 

oo) if and only if the set { w E n h(  w) =I- 0} has finite measure and the set 
{w E n  : h (w) = oo} has measure 0. 

k. An equivalent definition of the integral is 

sup {is hdJL : h simple, 0 � h � J, h < f wherever f =I- 0} . 

· Hints: To see this, first note that if g is a simple function with 0 � g � f on some 
measurable set M whose complement has measure 0, then we can replace g with 
the function lM ( · )g ( · ) .  Thus we may assume 0 � g � f everywhere. Now we can 
approximate g from below by the sequence of functions hn = ( 1  - � )g; clearly Is ( l  -
� )g dJL i Is g dJL. 

21 .38. A theorem in two paris. Let (n, S, JL) be a measure space. 
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( i ) Integrals are measures. Let h : 0 ----> [0, +oo] be measurable, and for each 
S E S let v (S) = Is h(w)df..L(w) . Then v is a measure on S . 

( i i ) Lebesgue's Monotone Convergence Theorem. Let fi , h, h ,  . . .  and f 
be measurable functions from 0 into [0, +oo] . Suppose that fn i f pointwise 
f-1-a.e. Then Is fndf-1 i Is fdf-1 for each S E S .  
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Remark. An example of (i) is given in 2 1 . 13 . A variant of (i) for vector-valued integrals is 
given in 29. 10. A partial converse to (i) is given in 29.20. 

Proof of theorem. Result (i) is easy when h is a simple function; we leave that easy case as 
an exercise. We shall now use that easy case as a step in our proof of (i i ) ; then we shall use 
(ii) to prove (i) in its full generality. 

Fix any S E S. Observe that the sequence Is fidf-1, Is hdf-1, Is hdf-1, . . .  is nondecreasing, 
hence converges to some limit L ::::; Is fdf-1. Let h : 0 ----> [0, +oo) be any simple function 
that satisfies 0 ::::; h ::::; f and satisfies h < f wherever f "/=- 0. By 21 .37.k , it suffices to show 
that L 2:: Is h df-1. Alter the fn 's on a set of measure 0, so that fn i f pointwise everywhere. 
From our choice of h it follows that for each w we have f n ( w) 2:: h ( w) for all n sufficiently 
large. Define T(n) = {w E S : fn (w) 2:: h(w) } .  Then T(1 )  <:;;: T (2) <:;;: T (3) <:;;: • · • and 
u�=l T(n) = s. We have Ir(n) hdf-1 ----> Is hdf-1 by 21 .25.a and the special case of (i) already 
proved. Then 

> r hdf-1. 
JT(n) 

Taking limits, we obtain L 2:: Is hdf-1, which proves part (ii) of the theorem. 
Finally, part (i) now follows easily in the general case, by 21 .25.a. 

21.39. Corollaries. Let (0, S, f..l) be a measure space. 
a. For any measurable functions f, g : 0 ----> [0, +oo] and any constant c 2:: 0, we have 

IU + g) = (.f f) + (.f g) and I (cf) = c I f. Hint: Prove this first for simple functions. 
b. Interchange of Limits (B. Levi) . Let h , h ,  h, . . .  : 0 ----> [0, +oo] be measurable 

functions. Then I (2:::::1 f1 ) = 2:::::1 (.f f1 ) ; one side is finite if and only if the other side is. 
c. Fatou's Lemma. Let fi , h, h,  . . .  : 0 ----+ [0, +oo] be measurable functions. Then 

I lim infn�oo fn ::::; lim infn�oo I fn · 
Hint: Let gk = inf{!k, fk+ 1 , fk+2 , . . .  } ;  apply the Monotone Convergence Theorem 

to the sequence g1 , g2 , g3 , . . . . 
d. Suppose that each of g, fi , h ,  h ,  . . .  is an increasing continuous function from [0, 1 ] 

into [0 , +oo). Also suppose that 

g(x) h (x) + h (x) + h(x) + · · · 
for all x in [0, 1 ) .  Then that equation is also valid for x = 1 .  This result will be used 
in 25.29. 

Hint: Obtain a sequence of equations, by taking x = 0, � ,  � ,  � ,  . . . . Then use the 
Monotone Convergence Theorem with counting measure on N. 
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21 .40. Product measures and Tonelli's Theorem. Let (X, S, JL) and (Y, 'J, v) be a
finite measures spaces. Define S Q9 'J as in 21 .6. Then there exists a unique positive measure 
f.L Q9 v on S Q9 'J that satisfies 

(JL Q9 v) (S x T) JL(S)v(T) for all S E S ,  T E 'J. 

That measure has this further property: If f : X x Y --+ [0, +oo] is jointly measurable, then 
both of the iterated positive integrals 

fx [[ f(x, y) dv(y)] dJL(x) , [ [l f(x, y) df.L(x)] dv(y) 

exist and are equal to the positive integral J x x y f d(p Q9 v) . 
Proof Our presentation is based on Cohn [1980] . By a basic rectangle we shall mean a set 
of the form S x T, where S E S and T E 'J. (These basic rectangles may also be called basic 
measurable rectangles, to distinguish them from another sort of "basic rectangle" introduced 
in 15 .35 . )  Let 13 be the collection of unions of finitely many basic rectangles; verify that 13 
is an algebra of sets. Clearly, the a-algebra generated by 13 is S Q9 'J. 

Define sets Ax and AY as in 2 1 .6. We first show that the [0, +oo]-valued mapping 
x �-----+ v(Ax) is measurable. By 21 .24.c, we may write v = 2:::,;:1 Vj for some finite measures 
v1 ;  it suffices to show that each of the mappings x �-----+ vJ (Ax )  is measurable. Fix any j. Let 
NJ be the collection of all sets A E S Q9 'J for which the mapping x �-----+ v1 (Ax )  is measurable. 
Verify that N1 :2 13 , and that Nj is a monotone class. Hence, by the Monotone Class 
Theorem 5 .29 ,  NJ = S Q9 'J. 

Similarly, the [0, +oo]-valued mapping y �-----+ JL(AY) is  measurable. Thus, for any set 
A E S Q9 'J, the integrals 

I(A) = l v(Ax) dJL(x) and J(A) = [ JL(AY) dv(y) 

both exist. Verify that I and J are countably additive; thus they are measures on S Q9 'J. 
Also, verify that I(S x T) = J(S x T) = JL(S)v(T) whenever S E S and T E 'J. It follows 
from 21 .28 that I = J on S Q9 'J. Thus, I and J are two different representations for the 
desired measure f.L Q9 v. From the equation 

(JL Q9 v)(A) 

we immediately obtain 

fxxY f d(JL 129 v) = l [[ f(x, y) dv(y)] dJL(x) = [ [l f(x, y) dJL(x)] dv(y) 

at least when f is finitely valued. For a general choice of f, approximate as in 21 .5 ,  and 
use the Monotone Convergence Theorem 21 .38(ii ) .  

21.41 .  Exercise ( optional) .  Show that Tonelli's Theorem (21 .40) implies Levi's Theorem 
(21 .39.b) , by using counting measure for one of the two factor measures. Then show that 
Levi's Theorem implies Lebesgue's Monotone Convergence Theorem 21 .38(ii) . 
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21 .42. Let (O, S , JL) be a u-finite measure space. Let SM(JL, [-oo, +oo] ) be the collection 
of all JL-equivalence classes of measurable functions from 0 into [-oo, +oo] . Where no 
confusion will result , we shall use equivalence classes and members of those equivalence 
classes interchangeably. Let SM(JL, [-oo, +oo] ) be ordered in the obvious fashion: 

f � g means that f( · ) :::; g( · ) JL-almost everywhere. 

Also, let SM(JL, JR.) and SM(JL, [0, 1 ] ) be the collection of equivalence classes of measurable 
functions with ranges in JR. or in [0, 1 ] , respectively. 

Proposition and definition. The ordered set SM(JL, [-oo, +oo] ) is a complete lattice - i.e. , 
it is a poset in which any nonempty set <I> has a supremum I(! and an infimum '1/J. Those 
functions are known as the essential supremum and essential infimum of <!>; they 
may be abbreviated ess-sup( <I>) and ess-inf( <I>) . They have this further property: ess-sup( <I>) 
(respectively, ess-inf( <I>)) can be represented as the supremum (respectively, infimum) almost 
everywhere of some countable subcollection of <1>. 

Similarly, SM(JL, [0, 1 ] )  is a complete lattice, and SM(JL, IR.) is a Dedekind complete 
vector lattice. 

Caution : Another meaning for "essential supremum" is given in 22.28. 

Proof of proposition. SM(JL, [ -oo, +oo] ) ,  SM(JL, JR.), and SM(JL, [0, 1]) are certainly lattices, 
since the max or min of two measurable functions is measurable by 21 .7.c . It is easy to 
verify that SAf(JL, JR.) is a vector lattice. It remains to prove the assertions about order 
completeness. The Dedekind completeness of SM(JL , IR.) will follow from the completeness 
of SM(JL , [-oc, +oc] ) .  The transformation 7j; : t f-..+ � + � arctan(t) is a strictly increas
ing bijection from [-oo, +oo] onto [0, 1 ] , which is continuous (hence measurable) in both 
directions; thus it suffices to prove the order completeness of SM(JL, [0, 1] ) .  

By 21 .24.d, we may assume �L(O) < oo (explain) .  
The supremum of countably many members of <I> is a measurable function. We may 

replace <I> with {sups of countably many members of <I>} , since that set has the same upper 
bounds as <I> does. Thus we may assume <I> is closed under countable sups. 

Let r = sup{J;1 fdJL : f E <I>} . Then r is some number in [0, JL (O)] . Choose functions 
gl , g2 , g:J , . . . E <I> with fn gndJL -+ r . Let hn = max{g1 , g2 , . . .  , gn } ;  show that (hn) is an 
increasing sequence in <I> and fn hndJL -+ r .  Let I(! =  sup{h1 , h2 , h3 . . . .  } ;  show that I(! E <I> 
and fn ipdfl. = r. 

If some f E <I> does not satisfy f :::; I(! almost everywhere, show that g = max{!, I(!} is 
a member of <I> with integral strictly larger than r, a contradiction. Thus I(! is an upper 
bound for <I>. 

If some function (3 satisfies (3 2: f almost everywhere for each f E <1>, then in particular 
(3 2: h71 almost everywhere for each n; hence (3 2: I(! almost everywhere. Thus I(! is the least 
upper bound for <1>. 

21.43. Further related exercise. Order convergence in a complete lattice was defined in 
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7.45. Show that order convergence in the complete lattice SM(f..L, [-oo, +oo] ) is the same 
as convergence f..L-almost everywhere (defined in 21 . 18 ) . 

Remark. We noted in 21 .33.c that this convergence lacks the sequential star property, 
and thus is not topological or even pretopological. 

21.44. The following result may be postponed; we shall use it in 22.36 and subsequently 
in 30.9. 

Technical lemma on integration over compact sets. Let (0, S ,  f..L) be a a-finite measure space, 
and let (Z, d) be a metric space. Let r :  n X z --+  [0, +oo] be a jointly measurable function 
- or, more generally, assume that the restriction of r to 0 x Z0 is jointly measurable for 
each separable Borel set Z0 c,;;; Z. For each compact set K c,;;; Z, assume that the integral 

exists and is finite. 

r sup r(w, z) df..L(w) 
lo zEK 

Then for each compact set K c,;;; Z there exist an open set H ::J K and a function 
rp E L1 (f..L) with the property that 

whenever v : 0 --+ H is a measurable function with relatively compact range, 
then r(w, v (w) ) :::; rp(w) for almost all w. 

Remarks. We emphasize that the set of almost all w may depend on the particular choice 
of v ; we do not assert that supv r(w, v(w)) :::; rp(w) for almost all w. 

The lemma's conclusion is only slightly weaker than the assertion that the integral 
J0 supzEH r(w, z) df..L(w) exists and is finite. In other words, if r is bounded (in a gener
alized sense) on compact subsets of Z, then r is also bounded on slightly larger subsets 
of Z. The lemma has the advantage that it is applicable even in some situations where 
J0 supzEH f(w, z) df..L (w) may not exist or may be infinite. 

Proof of lemma. Fix K. For each number r > 0, define the open set H(r) = {z E Z : 
dist(z, K) < r } ,  and let Q(r) be the set of all measurable functions v :  0 --+  H (r) that have 
relatively compact ranges. We know Q(r) is nonempty, since any constant function with 
value in K is a member. 

We first claim that there is some r > 0 such that the number 

(3 sup r f(w, v (w) )  df..L(W) vEQ(r) Jo 
is finite. Indeed, suppose not. Then for n = 1 ,  2, 3, . . .  there exist numbers rn 1 0 and 
functions Vn E Q(rn) such that J0 r (w , vn (w) ) df..L(w) > n. However, since the Vn 's have 
relatively compact ranges and are converging uniformly to K, the union of the ranges oJ 
the Vn 's is contained in a single compact set L.  Then r(w, Vn (w) )  :::; SUPzEL r(w, z) , which 
yields a contradiction as soon as n is larger than fo supzEL r(w, z) df..L . This proves our 
claim. 

Fix r and (3 as above; we shall take H = H(r) .  As explained in 21 .42, let rp be the 
supremum in Meas(f..L , [-oo, +oo] ) of the set of functions w f-t r(w, v (w) )  for v E Q(r) . It 
remains only to show that J0 rp df..L is finite. 
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By the proposition in 2 1 .42, there is some sequence (vn ) in Q(r) such that rp is the 
pointwise supremum almost everywhere of the functions r(w, Vn (w) ) .  For fixed w E n  and 
n E N, define Un ( w) to be that member of the finite sequence ( v1 ( w) , v2 ( w) ,  . . .  , Vn ( w)) that 
maximizes r(w, · ) ;  if there is a tie, choose the first of the v1 (w) 's that yields the maximum 
value. Verify that the function Un is a member of Q(r) ,  hence fo. r(w, un (w)) df.l(w) s; 
(3. Since f(w, un(w)) = max {f (w, v1 (w) ) : 1 s; j s; n} , the functions f(w, un (w) )  increase 
pointwise almost everywhere to rp. By Lebesgue's Monotone Convergence Theorem 21 .38 ( ii) , 
the numbers Jn r(w, Un (w) )  dJ.l(w) increase to fo. rp df.l. Therefore fo. rp dJ1 s; (3. 
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Chapter 22 

Norms 

22.1 .  Preview. A Banach space is a complete normed vector space. The following Ch. 
shows the relations between several types of Banach spaces that will be studied in this and 
later chapters. 

I RNP space I 
r--�/ I 
I reflexive I ITiJ 

..-----�---'i/ 

\ L2 (fJ) = Hilbert space \ 

( G- )  ( SEMI) NORMS 

22.2. Definitions. Let X be an additive group. A G-seminorm on X is a mapping 
p : X ----> [0, +oo) satisfying p(O) = 0 and these two conditions: 

p(x + y) 
p( -x) 

< p(x) + p(y) 
p(x) 

for all x, y E X. It is a G-norm if it also satisfies 

575 

(subadditive) 
(symmetric) 
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X -=/= 0 p(x) > 0. (positive-definite) 

In applications, we are usually concerned with either a single G-norm or a collection of 
infinitely many G-seminorms; see 5. 15 .h. 

Most of the additive groups X considered in this book are actually vector spaces. In 
that setting, a G-seminorm p : X --+ [0 , +oo) is a seminorm if it also satisfies: 

p(cx) = l c lp(x) (homogeneous) 

for all scalars c and vectors x, y E X. It is a norm if it is also positive-definite. Clearly, 
any seminorm is a G-seminorm; any norm is a G-norm. In Chapter 26 we shall study some 
G-(semi)norms that are not (semi)norms. 

Below are some basic properties of G-(semi)norms and (semi)norms. Some readers may 
wish to skip ahead to our extensive collection of examples, which begins in 22.9. 

22.3. Notation. A norm is usually denoted by I I I I ; that is, we write l l x l l  instead of p(x) . 
Different norms on different vector spaces may both be denoted by the same symbol II I I , 
when no confusion will result - e.g. , we may write l l x l l  and I I Y I I  when it is clear that x E X 
and y E Y. When clarification is necessary we may use subscripts - e.g. , let vector spaces 
X and Y have norms I I  l lx and II I I Y · 

Norms may also be denoted by I I or I l l I l l - These symbols are used less often in the 
wider literature, but they will be used freely in this book to make it easier to distinguish 
between different norms. Most often, we shall use more bars to represent a "higher-order" 
norm - i.e. , if I I is used for a norm on spaces X or Y, then I I  I I  will be used for a 
norm on some subspace of yx = {functions from X into Y} ;  likewise, if I I  I I is used for a 
lower-order norm, then I l l I l l will be used for the higher-order norm. In particular, I l l I l l 
will be used for an operator norm, introduced in 23. 1 .  Also, we shall use I I for a norm 
especially when we do not wish to distinguish between a one-dimensional normed space 
(i .e . , the scalar field) and higher-dimensional normed spaces - for instance, in 24.8 . 

22.4. If p is a G-seminorm on X, then d(x, y) = p(x - y) defines a pseudometric d on X. 
Moreover, this pseudometric is translation-invariant; i.e. , it satisfies 

d(x + z, y + z ) d(x, y) for all x , y , z E X. 

Conversely, if d is a translation-invariant pseudometric on an additive group X,  then p(x) = 
d(x, 0) defines a G-seminorm p on X. For any additive group X, this correspondence p <--+ d 
is a bijection between the G-seminorms on X and the translation-invariant pseudometrics 
on X.  Positive-definiteness of p corresponds to that of d - that is, p is a G-norm if and 
only if d is a metric. 

Hereafter, each G-seminorm p : X --+ [0 , +oo) will be identified with the corre
sponding translation-invariant pseudometric d : X x X --+ [0, +oo) ; 

we will use the two objects interchangeably. This convention will also apply in more spe
cialized cases; e .g . , a scminorm will be identified with its corresponding pseudometric, and 
in later chapters an F-seminorm will be identified with its corresponding pseudometric. 
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Topologies, uniformities, compactness, completeness, and other notions defined for pseudo
metrics will be transferred to G-serninorms in the obvious fashion. 

22.5. Exercise. Let p and r be G-seminorms on an additive group X. Show that the 
following arc equivalent . 

(A) p is stronger than r -- i .e . , it yields a larger topology. 
(B) p is uniformly stronger than r - i.e . , it yields a larger uniformity. 
(C) For each number c > 0, there exists a number b > 0 such that p(x) < b =? 

r(:r) < c. 

(D) For each sequence (xn ) in X,  if p(xn) ----> 0 then r(xn ) ----> 0. 
(E) For each net (xn ) in X, if p(x,, ) ----> 0 then r(xo: ) ----> 0. 

If X is a linear space and p and r are seminorms, then the preceding conditions are also 
equivalent to: 

(F) there exists a constant k such that r(x) ::; kp(x) for all x E X. 

Further definitions. We say p is strictly stronger than r if p is stronger than r and r 
is not stronger than p. The two G-seminorms are equivalent if they determine the same 
topology i .e . , if each is stronger than the other. Note that they then determine the same 
uniform structure also. Equivalent (G-) (serni)norms can be used interchangeably for most 
purposes, but not for all purposes. 

Further erercise. Two equivalent seminorms on a vector space yield the same collection 
of metrically bounded sets. 

22.6. Remarks. The term "isomorphic" has different meanings in different parts of math
enmtics. Usually (but not always) ,  an isomorphism of normed vector spaces is a linear 
homeomorphism. Occasionally it has the stronger meaning of a linear isometry. 

Mazur-Ulam Theorem. Let X and Y be real normed spaces, and let f : 
X ----> Y be a bijection that is distance-preserving. Then f is also affine - i.e . , 
the map f - f(O) is linear. 

(The proof is long and will not be given here; it can be found in Banach [1932/ 1987] . )  Thus, 
the metric of a normed space is inextricably tied to its linear structure. Contrast this with 
the remarks about isometrics in 22.9.d. 

22.7. Observations. If (X, p) is a G-serninormcd space, then the operation 

x f---c> -x from X into X 

is continuous, and the operation 

(x, y) f---c> x + y from X x X into X 
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is jointly continuous. If (X, p) is a seminormed space, then the operation 

(c, x) f---+ ex from lF x X into X 

is jointly continuous, where lF is the scalar field. 

22.8. Definition. A complete normed vector space is called a Banach space. 
Remarks. For most applications, a normed space can be viewed as a subspace of its 

completion; thus little is lost by restricting our attention to complete spaces. Much is 
gained: Completeness can be used to prove many theorems that make the spaces more 
useful or easier to understand. 

In most of our examples of norms in this chapter, a vector space X is given, and a 
complete norm I I  I I  is given on X. That norm (or any norm equivalent to it) is called the 
"usual norm" for X: It is the norm used most frequently for X in applications. 

The reader may wonder, though, why each space has only one "usual" norm, up to 
equivalence � i .e . , why one particular norm (or equivalence class of norms) is preferred and 
singled out as the usual norm. Is this just a matter of custom and tradition? Or would 
some other complete norm be just as useful? 

It turns out that among the examples one can find in applied analysis, there isn't any 
other complete norm. There are no explicitly constructible examples of inequivalent com
plete norms on a vector space. Thus the "usual norm" is determined uniquely (up to 
equivalence) . In 27. 18(iii) we shall prove the existence of inequivalent complete norms on 
a vector space, but this can only be accomplished by nonconstructive arguments � e.g. , 
using the Axiom of Choice or some weakened form of AC. Applied mathematics generally 
is constructive and does not use the Axiom of Choice; thus it cannot produce inequivalent 
complete norms on X.  

Analogous remarks apply to F-norms, a generalization of norms introduced in 26.2 
for metrizable topological vector spaces; there are no explicitly constructible examples of 
inequivalent complete F-norms. Hence we may refer to "the usual F-norm" on a vector 
space. The proofs of these uniqueness results are rather deep; we postpone them until 
27.47.b. 

These uniqueness results do not generalize still further to G-norms. An Abelian group 
may have two explicitly constructible, inequivalent, complete G-norms; see the elementary 
example in 22.9.d. (But the uniqueness results do apply to separable complete G-normed 
groups. That follows from a version of the Closed Graph Theorem for separable groups, 
which can be found in Banach [1931] or Pettis [1950] . )  

BASIC EXAMPLES 

22.9. Elementary examples. 
a. Each of the scalar fields JR, C is a vector space over itself, and also C is a vector space 

over the scalar field R In each of these cases, the absolute value function is a norm, 
and the metric that it determines is complete. 
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b. If X is a vector space over the field lF (either IR or iC) and f : X ---> lF is a linear map, 
then p( · ) = I J ( · ) I is a seminorm on X. If dim(X) > 1 then p( · ) = IJ ( · ) I  is not a norm. 
Hint : 1 1 .9 .j .  

In particular, the constant function 0 i s a seminorm. 
c. If Pl , P2 , . . .  , Pn are (semi )norms on a vector space X, then Pl + P2 + · · · + Pn and 

max {Pl , P2 , . . .  , Pn } are (semi )norms. 
d. The Kronecker metric (defined in 2 . 12.b) is translation-invariant on any additive group, 

and thus it yields the Kronecker G-norm: 

p(x) { � when x = 0 
when x # 0. 

It is complete. It is not a norm on any vector space X other than {0} - in fact , it is 
not equivalent to a norm, since ( exercise) scalar multiplication is not jointly continuous 
when this G-norrn is used. 

Note that the usual metric on IR and the Kronecker metric on IR are two inequivalent 
complete metrics, both determined by G-norms. Contrast this with the results for 
norms and F-norms discussed in 22.8. 

The Kronecker G-norm of a group is not closely tied to its group structure - e.g. , 
to its group homomorphisms. For instance, if X and Y are two groups equipped with 
their Kronecker G-norms, then any injective map from X into Y is an isometry (i.e. , 
distance-preserving map) from X onto a subset of Y.  Contrast this with the Mazur
Ulam Theorem, discussed in 22 .'6, which shows that any norm on a normed space is 
closely tied to its linear structure. 

e. Suppose n is a set, S is an algebra of subsets of n, and p, is a positive charge on S. As 
we noted in 21 .9 , we can define a pseudometric on S by d(A, B)  = arctan p,(A 6 B) ,  
or more simply by d(A, B)  = p,(A 6 B) i f p, is finite. Show that d i s a translation
invariant pseudometric on the commutative group (S ,  6 ,  ig ,  0) discussed in 8. 10.g, 
hence arctan tL( · ) (or p,, if it is finite) is a G-pseudonorm on S. 

22.10. Exercise. Let (X, I I  I I ) be a normed space. Show that X has a natural completion. 
That is, show that X is a dense linear subspace of a complete normed space Y, such that 
II II is the restriction of the norm of Y. Show that this completion is unique, up to 
isomorphism (where an isomorphism preserves both linear and metric structure) . 

22.11 .  Finite-dimensional spaces. Let n be a positive integer. For any vector x = 

(xl , x2 , · · · , xn ) in !Rn or en , define 
(O < p < oo) 

and l l x l lx = max{ lx1 l , lx2 l , . . .  , lxn l } .  Show that the functions II l lv , for 1 .:S p .:S oo, are 
complete norms on !Rn or C" , all equivalent to one another (as defined in 22.5) . (Hint :  
Show that II l i P is the Minkowski functional of the convex, balanced, absorbing set { x : 
l l x i i P .:S 1 } ;  see 12 .29.g.) If 0 < p < 1 ,  then II l i P is not a norm, but I I I I � is a G-norm 
on !Rn or C' ( hint :  12.25.e) ; in fact , we shall see in Chapter 26 that it is a special kind of 
G-norm, which we call an F-norm. 
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The functions II l iP ( 1 :::; p :::; oo) are sometimes referred to as the usual norms on IR.n 
or en They yield the usual product topology and usual product uniform structure (studied 
in later chapters) . The norm II 1 1 2 is often called the Euclidean norm because it gives 
IR.n the metric of classical Euclidean geometry. Some textbooks use the notation En to refer 
to the vector space IR.n equipped with the Euclidean norm. 

The normed spaces (Fn , II l iP ) are a special case of the normed spaces (LP(JL) , I I  l i p ) ,  
which we shall study in 22.28 and thereafter. 

Additional exercise. Draw graphs of the "unit circle" 

for a few values of p - for instance, for p = t •  � '  � '  1 ,  % ,  2, 5, +oo. (The values for p < 1 
correspond not to norms but to F-norms, which will be studied in 26 .4 .d . ) Observe that 
the "unit circle" is not circular when p =/= 2. In fact, when p = oo or 0 < p :::; 1 ,  the "unit 
circle" is not even round; it has corners. 

Hints : First draw for p = 1 ,  2, +oo; they'll be easiest and they may give you some idea 
of what to expect for the other sketches. For the remaining sketches, use the parametric 
representation 

(o :::; e < 21r ) .  

This i s a good problem to do on a computer. I f you have only a nongraphing calculator, 
just plot some points for 0 :::; e :::; 7f /2 and then use symmetry to finish the sketch. 

22.12. Product norms. We now generalize slightly the computations in 22. 1 1 .  Let n be a 
positive integer, and let (X1 , I 1 ) ,  (X2 , I 1 ) ,  . . .  , (Xn , I I )  be normed spaces. (The norms 
on the n spaces generally are different , but for simplicity we shall denote them all by the 
same symbol I 1 . )  For any vector x = (x1 , x2 , . . .  , Xn ) in the product space X =  TI7=1 Xj , 
define 

(O < p < oo) 

and l lx l loo = max{ lx1 l , lx2 l ,  . . .  , lxn l } . Show that the functions II l l �'in { l ,p} '  for 0 < p :::; oo, 
are G-norms on X, all equivalent to one another, and the topology they determine on X is 
the product topology. When 1 :::; p :::; oo, then II l iP is a norm on X.  

22.13. Quotient norms. Let X be an Abelian group (written as an additive group) ; let K 
be a subgroup; let Q = X/ K be the quotient group; let 7r : X ----+ Q be the quotient map. For 
each G-seminorm p : X ----+ [0, +oo) , we may define an associated function p : Q ----+ [0, +oo) 
by 

p(q) inf {p(x) : x E 1r- 1 (q) } . 

Show that 
a. p is a G-seminorm on Q. In fact , it is the largest G-seminorm on Q that satisfies 

p(1r(x)) :::; p(x) for all x E X. Hint: 4.42 . 
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b. If X is a vector space, p is a seminorm, and K is a linear subspace of X, then p is a 
seminorm on the quotient space X/ K. In some cases it is a norm; then it is called the 
quotient norm. 

c. 7r preserves open balls: 

1r ({x E X  : p(x) < d) {q E Q : p(q) < E} .  

d .  If p-1 (0) :;2 K, then p is constant on each set of the form 1r-1 (q) , and so our definition 
of p simplifies to p(1r(x) ) = p(x). 

e. The map between pseudometric spaces, 7r : (X, p) --> ( Q, p) , is a topological quotient 
map (defined as in 15 .30) .  

More generally, let X be topologized by a gauge D consisting of G-seminorms, and 
let Q be topologized by the corresponding gauge D = {p : p E D} .  Suppose that D 
is directed, in the sense of 4.4 .c . Then 1r : X --> Q is an open mapping (by 22. 13.c) , 
hence it is a topological quotient map (by 15 .31 .e) . 

SUP NORMS 

22.14. As usual, let IF be either IR or <C. If A is any nonempty set, then 

B(A) {bounded functions from A into IF} 

is a linear space. The usual norm on this space is l l f l l x  = sup{ IJ(>-) 1 : ,\ E A} ;  this is 
sometimes called the sup norm. It is complete. We have already seen one example of sup 
norms in 22. 1 1 .  

The metric on B(A) obtained from this norm is the same as the metric given in 4.41 .f. 
The results in 4 .41 .f show that 

every metric space (A, d) may be viewed as a subset of a Banach space. 
Thus, in principle, metric spaces are not really "more general" than subsets of normed 
spaces . 

However, this embedding is seldom used in applications. The additional linear structure 
of B(A) may be merely distracting and not particularly relevant to the properties of the 
metric space (A, d) that one may be studying. For instance, we may gain some under
standing of the "numbers" ±oo by viewing them as elements of the metric space [ -oo, +oo] 
introduced in 18.24, but that understanding is not necessarily increased if we study the 
larger and more complicated space B( [-oo, +oo] ) .  

22.15. More sup-normed spaces. Let n be a topological space; then B(!l) = {bounded 
functions from n into IF} is a Banach space when equipped with the sup norm. We now 
consider some interesting subspaces . First of all, 
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BC(n) = {bounded, continuous functions from n into lF}.  

i s a closed linear subspace of B(n) - hence a Banach space, when equipped with the sup 
norm. If n is a uniform space, show that 

BUC(n) = {bounded, uniformly continuous functions from n into lF} 

is a closed subspace of BC(n) . 
Suppose n is a locally compact Hausdorff space (such as !Rn , for instance) . Then a 

function f : n -+ lF is said to vanish at infinity if for each E > 0 the set { x E n : I f ( x) I > E} 
i s relatively compact. In this setting, 

C0 (n) = {continuous functions from n into lF that vanish at infinity} 

is a closed linear subspace of BC(n) , hence another Banach space. If n is also equipped 
with a uniform structure, show that C0 (n) � BUC(n) � BC(n). Of course, all these 
spaces are the same if n is a compact Hausdorff space. 

A generalization. For any Banach space (X, I l x  ) , we can define BC(n, X) ,  C0 (n, X) ,  
BUC(n, X) i n an analogous fashion; they are closed linear subspaces of the Banach space 

B(n, X) {bounded functions from n into X} 

with sup norm l l f l loo = sup{ l f(w) lx : w E n} . 

A specialization. Let n be the set N = {positive integers} , equipped with this metric: 
d(m,n) = I arctan(m) - arctan(n) l . This gives N its usual topology ( i .e . ,  the discrete 
topology) , but gives N the uniform structure of a subset of the compact space [0, +oo] . 
Then B(N) = BC(N) (since the topology on N is discrete) , and the three Banach spaces 
BC(N) , BUC(N) , C0 (N) can be rewritten respectively as 

€00 {bounded sequences of scalars} , 
c {convergent sequences of scalars} , 

c0 {sequences of scalars that converge to 0} ,  

all equipped with the sup norm. 

22.16. Exercises. 
a. The sup-normed spaces C [O, 1] and C0 (IR) are separable. 

Hint: We prove this for real scalars; the proof for complex scalars is similar. By a 
"rational piecewise affine function" we shall mean a continuous function whose graph 
consists of finitely many line segments, each of which has endpoints with rational 
coordinates; in the case of C0 (IR) we extend such a function by making it equal to 
0 for all sufficiently large or small arguments. Show that there are only countably 
many rational piecewise affine functions. Show that members of C[O, 1] or C0 (IR) are 
uniformly continuous; use that fact to show that the rational piecewise affine functions 
are dense. 
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b. The sup-normed space BUC(lR.) is not separable. 
Hints : This is easiest in the case where the scalar field is <C - that is, in the case 

where BUC(IR.) represents the space of all bounded, uniformly continuous functions 
from JR. into <C. In that case, define fr ( u) = cis( ru) = cos( ru) + i sin( ru) for real 
numbers r and u. Show that II fr - fs II 00 = 2 whenever r -:/- s. 

We can use that result to prove the nonseparability of BUC(IR.) in the case of real 
scalars as well. Indeed, from the equation l l fr - fs l loo = 2 we can prove that (r, s) 
must lie in at least one of the two sets 

A { (r, s) E IR.2 : sup I cos(ru) - cos(su) l 2: 1 } , 
uEIR 

B { (r, s) E IR.2 : sup I sin(ru) - sin(su) l 2: 1 } . 
uEIR 

Since { (r, s ) E IR.2 : r -I- s} is uncountable, at least one of the two sets A ,  B is uncount
able, and therefore BUC(IR.) is not separable. 

c. A Dominated Convergence Theorem for c0 • A set S � c0 is relatively compact 
if and only if it is dominated in c0 - i .e . , if and only if there exists some sequence 
r = (r, ) E co such that l s, l ::::; r, for every sequence s =  (s,) E S and every n E N. 

A sequence of members of c0 converges in norm if and only if it is dominated and 
converges coordinatewise. 

22.17. Lemma on spaces of vector-valued functions. Let r be a set, and let X be 
a Banach space. Let <I> be a collection of seminorms on the vector space xr.  Assume that 
the gauge topology given by <I> is equal to the topology of pointwise convergence on r -
that is, for any net (!<> ) in xr '  

cp(f <> - f) ---> 0 for each cp E <I> fa b) ---> f('y) for each '/ E f. 

Now define 1 1 ! 1 1  = sup{ cp(f) : cp E <I>} for each f E xr ,  and let 
V {f E xr : l i f l l  < oo} . 

Then (V, II I I ) is a Banach space. 
Remarks. This somewhat technical lemma will be used several times to show that certain 
linear spaces V are Banach spaces; see 22. 18.c, 22. 19 .c , 29.6.c, and 29.29.f. 

We emphasize that r need not be a complete metric space. In fact, r doesn't have to 
be equipped with any metric structure at all. Also, we emphasize that the convergence 
given by I I I I  or given by the gauge topology from <I> are, respectively, the convergences 
cp(f, - f) ---> 0 uniformly for all cp or separately for each cp. 
Proof of lemma. It is easy to verify that (V, I I  I I ) i s a seminormed linear space; that 
verification is left as an exercise. We shall show that the seminorm I I  I I  i s a norm and that 
it is complete. 

To see that I I  I I  is positive definite, note that if f E xr \ {0} ,  then cp(f) > 0 for at 
least one cp E <I> (since the product topology on xr is a Hausdorff topology) , so 1 1! 1 1  > 0. 
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It remains to show that ( V, I I  I I )  is complete. Let Un) be a I I  1 1 -Cauchy sequence in V. 
Thus, for each number c > 0 there is some integer NE such that m, n 2 NE :::} l l fm - fn I I :S 
c. Therefore, for each r.p E <I> we have 

Thus the net Um - fn : (m, n) E N  x N) converges to 0 pointwise on r. Since X is complete, 
for each '/ E r there exists J ('!) = limn-->00 fn ('/) . Since fn --+ f pointwise, we have 
r.p(fn - f) --+ 0 for each r.p E <I>. Hold r.p and m fixed and take limits in ( * ) as n --+  oo; thus 

r.p(fm - f) :S c. 

In other words, m 2 NE :::} l l fm - ! I I  :S c. This proves that f E V and that Um) converges 
to J in (V, II I I ) .  

22.18. The space of Holder continuous functions. The definition of Holder continuity, 
given in 18.4, simplifies slightly when the metric space Y is a normed space, with norm I IY . 
Let (X, d) be any metric space, and let o: > 0. For functions f : X --+ Y, we obtain 

Exercises. Show that 
a. Hola (X, Y) = {! E yx : (!)a < oo} is a linear space. The function On is not a norm, 

but rather a seminorm on Hi:ila (X, Y) .  Indeed, we have (!)a = 0 if and only if f is a 
constant function. 

b. To get a norm, select any point in X; let us call that point "0" (although we shall not 
use any additive structure in X) .  Then l l f l l a = (!)a + l f(O) I Y defines a norm II l l a 
on Hi:il"' (X, Y) .  

c .  If Y is complete, then Hol" (X, Y) (normed as above) is complete, regardless of whether 
X is complete. Hint: This is a special case of 22. 17. 

d. If 0 < o: < {3 :S 1 ,  show that 

Hi:il11 ( [0, 1] , Y) c c C( [O, 1 ] ,  Y) ,  

where the last space is the space of continuous functions from [0, 1] into Y, equipped 
with the sup norm. The inclusions are continuous. If Y = !Rn for some positive integer 
n ,  then the inclusions are compact � i.e. , a bounded subset of one normed space is a 
relatively compact subset of the next space. 

Hint: Use the Arzela-Ascoli Theorem 18 .35. 
e. A related exercise. This time we take the domain, rather than the codomain, to be a 

subset of a normed space. 
·' 

Let C be a convex subset of a normed space (X, I l x ) ,  and let (Y, e) be any metric 
space . Show that if o: > 1 ,  then Hi:il"' ( C, Y) contains only constant functions. 
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Hint: Suppose (P) n = k, and let any u, v E C be given. Let n be a large positive 
integer. Define Xj = ( 1 - t )u + tv for j = 0, 1 ,  2, . . .  , n. Then 

n n 

e (p(u ) , p(v) )  "S: L e(p(xJ ) , p(xJ-d) "S: L klxJ - xJ-r lx 
j=l j=l  

k lu - v lx 
n<>- 1  

22.19. Let (X. I I ) be a Banach space. Let BV( [a, b] , X) be the set of all functions from 
[a, b] into X that have bounded variation (as defined in 19.2 1 ) .  Show that 

a. BV( [a, b] . X) is a linear space, and Var( - ,  [a, b] ) is a seminorm on BV( [a, b] , X) .  

b.  I I'P I IBV = l cp (a) lx + Var( · ,  [a , b] ) i s  a norm on BV( [a, b] , X) .  Moreover, I I 'P I I=  "S: I I 'P I I BV · 

c. BV( [a.  b] , X) .  normed as above, is complete. Hint: This is a special case of 22. 17. 
d.  We say f : [a ,  b ]  __, X is a normalized function of bounded variation on [a, b] 

if f has bounded variation on [a , b] , f is right continuous on (a ,  b) , and f(O) = 0. 
The collection of such functions will be denoted by N BV( [a, b] , X); it will play an 
important role in 29.34. Note that N BV( [a ,  b] , X) is a linear subspace of BV( [a ,  b] , X) ,  
and Var( · ,  [a, b] ) acts as a norm on N BV( [a, b] , X) .  

CONVERGENT SERIES 

22.20. By a series in a normed space (X, I I  I I ) we mean an expression of the form 
L.�l XJ = :r 1 + :r2 + .r;; + · · · ,  where the x_/s are members of X. The sum of the series 
is the vector v = limN � x L.�= 1 :r1 . if this limit exists. If it exists, we say the series is 
convergent: we may also write v = L�J Xj . 

A series L� I :rJ is absolutely convergent if L� I l lx.i II < oo. Any absolutely con
vergent series in a Banach space is convergent ; that follows from the completeness of X. In 
fact, ( exercise) a nonned space is complete if and only if every absolutely convergent series 
iu the space is couvergent . 

See also t he related results in 10 .41 .  23.26. and 23.27. 

22.21. Dirichlet 's test. Let V be a Banach space. Let L�=l VA: be a series in V whose 
partial sums 811 = L�'= 1 v,. form a bounded sequence. Let (bk ) be a sequence of real numbers 
decreasing to 0. Then the series L�r bkvk is convergent . 

(A corollary is the Alternating Series Test, given in 10 .4l .g . )  

Proof of Dirichlet 's test. For any positive integers m ,  n with n :::- m ,  verify that 

II 71 

L b,u, b11 + l sn - bm sm- 1 - L (bk+l  - bk)sk . 
h=111 k=ffl 
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By assumption, S = supn l sn l is finite. Hence 

It follows that the partial sums of the series 2:::�=1 bkvk form a Cauchy sequence. 

22.22. Example. If (bk ) is any sequence of positive numbers decreasing to 0, then 
2:::�= 1 bk sin(kx) converges for each real number r. In particular, the series 2:::�1 sin�kx) 
and 2:::� 1 t"�(k��ll both converge. (Contrast this result with 10.43.) 

Proof First show that 

2 (sin �) ( sin x + sin 2x + · · · + sin nx) cos (�x) - cos ((n + � )x) , 

either directly (using trigonometric identities) ,  or by using the formulas sin O = (eili -
e-ili )  /2i, cos B = ( eili + ei0 )  /2 .  Use that formula to show that the partial sums of the series 
2:::�=1 sin kx form a bounded sequence, for each fixed x. Now apply Dirichlet's Test. 

22.23. Let (X, I I I I ) be a complex Banach space. Let c0 , c1 , c2 , . . .  be some sequence 
in X, and let a be a complex number. (In the simplest case we take a = 0. ) Then the 
expression I:�=O cn ( A - a)n is called a power series centered at a; the en 's are called 
its coefficients. Associated with the power series is a number R E [0, +oo] defined by 

1 
R lim sup � .  

n->oo 

This number R is called the radius of convergence of the power series, the set {A E C : 
l A - a l < R} is called the disk of convergence, and the set {A E C :  l A - a l = R} is called 
the circle of convergence. (The following results are also valid with real scalars, with 
intervals for "disks," but for simplicity of notation we shall only consider complex scalars. )  
The series, radius, and disk have these properties: 

a. If only finitely many of the en 's are nonzero, and limn_,00 l l cn l l / l l cn+1 1 1 exists in [0, +oo] ,  
then that limit is equal to R. 

Remark. The expression limn_,00 l l cn l l / l l cn+I i l  is simpler, and thus is preferable in 
those cases where it is applicable. On the other hand, the more complicated expression 
1 / lim supn_,oo y![jCJf has the advantage that it is always applicable. 

b. For each complex number A with l A - a l < R, the series I:�=O cn (A - a)n converges to 
a limit - that is, limN_,oo I:�=O cn (A - a)n exists in X. The series is absolutely con
vergent , and the convergence is uniform on compact subsets of the disk of convergence. 
Thus the power series defines a function on that disk; we summarize this by writing 

00 
!(A) ( IA - a i < R) .  
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Hints : Any compact subset is contained in a set of the form { >. E C : 1 >- - a l ::; r} for 
some number r < R. See 10 .4l .d and 22.20. 

c. The series Ln en (>. - a)n is divergent (i .e . , nonconvergent) for every A E C with 
1>- - a l > R. 

Hint: If the series is convergent for some value of >., then en (>. - a)n ---t 0 as 
n ---t oo. Then for all n sufficiently large, we have l i en (>. - a)n l l  < 1 .  If A i- a, then 
v1cJf < 1/ l >- - a l . 

Further properties of power series are described in 23.29 (iii) and 25.27. 

22.24. Elementary examples. A power series I::=o en (>. - a )n converges inside the circle 
of convergence, and diverges outside that circle. The behavior is more complicated on the 
circle of convergence - i.e. , at points >. satisfying 1 >- - a l = R. A series may converge at 
all, some, or none of these points. Following are a few simple examples with center a = 0 
and with coefficients in X = C. 

a.  Any polynomial (of a complex variable, with complex coefficients) i s a power series 
with infinite radius of convergence. It has only finitely many nonzero coefficients. 

b. The power series j(>.) = I::=o >.'' = 1 + >. + >.2 + >.3 + · · · has radius of convergence 
equal to 1 .  Since 

when >. i- 1 ,  

we easily see that the power series I::=o >.n converges to 1�>. when 1 >- 1  < 1 and diverges 
for every >. such that I >.  I 2 1 .  

c .  The power series j(>.) = 2::::=1 n-2 >.'' = f + >.42 + �3 + · · · has radius of convergence 
equal to 1 .  Show that this series converges ab:solutely at every point on the circle of 
convergence. 

d. Hardy gave an example of a power :series that converges uniformly, but not absolutely, 
on its circle of convergence. Lusin gave an example of a series I::= l anN' such that 
an ---t 0, but such that the series diverges at every point of the circle of convergence. 
These examples are much more complicated and will not be given here; they c;cm be 
found in Landau [1929, pages 68-71] . 

22.25. Sequence spaces. Let lF be the scalar field (JR or C) . For any sequence of scalars 
x = (xl , x2 , x:� , . . .  ) , define l lx l l= = sup { lx1 l , lx2 l , lx3 1 , . . .  } and 

(0 < p < oo) .  

Then define 
(O < p :S: oo) .  
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Then fip is a linear subspace of lFN . If 1 s; p s; oo, then II l l v i s a norm on fip (hint: 1 2 .29.g) ; 
hence sequences of scalars satisfy Minkowski's Inequality: 

( 1 :S p < oo) .  

If 0 < p < 1 ,  then I I  l l v generally is not a norm, but I I  I I �  i s a G-norm on fip (hint : 
1 2.25.e) ; in fact , we shall see in Chapter 26 that it is a special kind of G-norm that we call 
an F-norm. 

The spaces f!p are a simple but important special case of the spaces £P(p,, X) ,  introduced 
in 22.28. The completeness of the spaces fip and £P(p,, X) will be proved in 22.31 (i) . 

The Cauchy-Schwarz Inequality states that l lxY I I l  s; l l x i i 2 I I Y I I 2 , where xy is the 
sequence whose nth term is XnYn · For a proof, take limits in 2 . 10 . 

Exercise. Let 0 < p < oo. Show that a subset S is relatively compact in f!p if and only 
if it is metrically bounded and satisfies limN �oo supxES '£':=N l xk IP = 0. 
A generalization. Let .lJ be any nonempty set. For any function x : .lJ ----> JF, define l lx l loo = 
supjEJJ l xj I and 

(0 < p < oo) . 

(Positive sums over arbitrary index sets are defined as in 10.40. ) Then define 

{x E lF.IJ : l l x l l v < oo} (O < p :S oo) . 
For 1 s; p s; oo, fip(.If) i s a linear subspace of JF.IJ and I I  l l v i s a norm on that space. This 
generalization will be particularly useful in 22.56. 

22.26. The James space J (optional) . For sequences x = (x1 , x2 , x3 , . . .  ) of scalars, let 

l l x l l .1 sup { l xk ( l ) - Xk (2) 1
2 

+ lxk(2) - Xk(3) 1
2 

+ l xk(:.J) - xk(4) 1
2 

2 2 2} 1 /2 
+ · · · + l xk(n-2) - Xk(n- 1 ) I + l xk(n- 1 ) - Xk(n) I + l xk(n) - Xk( 1 ) I 

where the supremum is over all positive integers n and all finite increasing sequences k ( 1 ) < 
k(2) < · · · < k(n) of positive integers. Let J = {x E c0 : l lx i i .J < oo} . This space was 
devised by James [1951 ] to answer several questions about normed spaces; one of those 
questions will be mentioned in the remarks in 28 .41 .  The space J is discussed further by 
James [1982] . Show 

a. ( J, II l l .1 ) is a Banach space. 
b. f!2 � J, and II 1 1 2 is strictly stronger than I I  l l .1 on fi2 . Hint: Use the Cauchy-Schwarz 

inequality. 
c. J � co , and I I  l l .1 is strictly stronger than the sup norm on J. 
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d. For 2 < p < oo, neither of €P or J includes the other, and neither of II l i P or I I  l l .1 is 
stronger than the other on €P n J. Hints: To show l l x l l  J / l lx i i P is unbounded, consider 

X =  ( 1 - " , 0, 2-r , 0, 3-r ,  . . . , 0, n-r ,  0, 0, 0, 0, 0, . . .  ) 

with r E ( � ,  � ) .  To show l lx l l p/ l l x i i .J is unbounded, consider a sequence of n 1s followed 
by infinitely many Os. 

BOCHNER-LEBESGUE SPACES 

22.27. Let (0, S) be a measurable space and (X, I I ) be a Banach space. Let X be equipped 
with its O"-algebra 'B of Borel sets. Show that 

a. The space 

SM(S, X) = {strongly measurable functions from (0, S) to (X, 'B)}  

i s a linear subspace of xn . Hint: Use 21 .4 (C) . 
b. The space 

is a closed linear subspace of 

B (O, X) 

{f  E SM(S, X) f is bounded} 

{bounded functions from 0 into X} 

when that space i s equipped with the sup norm; hence ,C 00 (S ,  X) i s a Banach space. 
When IF is the scalar field, the space ,C 00 (S, IF) may be written more briefly as 

C,c (S) . It follows from 2 1 .4(E) that a dense subset of ,C 00 (S) is given by the set of 
simple functions from (0, S) into IF, defined as in 1 1 .42 � i.e. , the measurable functions 
with finite ranges. 

c. If X is separable, then the set M(S, X) = {measurable functions from 0 to X} is equal 
to SM(S. X) :  thus it is a linear space subspace of X0 . 

d. If card( X) > card(JR) , then there exists a measurable space (0, S) such that M(S, X) = 
{measurable functions from 0 to X} is not a linear space. 

Proof. Let 'B be the O"-algebra of Borel subsets of X. Let S = 'B Q9 'B denote the 
product 0"-algebra on 0 = X X X. By 21 .8 ,  this is not the same as the 0"-algebra of 
Borel subsets of the product topology on X x X; in fact, the diagonal set belongs to that 
product topology but not to S. Let f(x, y) = X and g(x, y) = y. Then j, g : 0 ---> X 
are measurable but h = f - g is not, since h- 1 (0) is the diagonal set. This result is 
from Nedoma [ 1957] . 

e. Rernark8. The results above show why we impose separability requirements throughout 
the theory of measure and integration. 

Besides the cases described above, there is still one more case to consider: There 
exist some nonseparable Banach spaces X satisfying card(X) = card(JR) . (Exercise. 
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Show that £00 is such a space. )  It is not presently known whether, whenever X is such 
a space and (0, S) is a measurable space, then M(S, X) is necessarily a linear space. 
Some related questions are considered by Stone [ 1976] . 

22.28. Definitions. Let (0, S ,  JL) be a measure space, and let (X, I I ) be a Banach space. 
For each f E SM(S, X) ,  the function I J ( - ) 1 : 0 ---+ [O, +oo] is measurable. Hence, using the 
type of integral defined in 21 .36, we can define the quantities 

l l f l l v 
J I J J Joo 

{L IJ(w) IPdJL(w) } l/p (O < p < oo) , 
inf {r > 0 : I f ( - )  I :S: r JL-a.e . } 

- they are numbers in [0 , +oo] . (The case of p = 1 is particularly simple and important , so 
we shall restate it separately: I I J I I I = fn IJ ( · ) I dJL. )  We can also define the set of functions 

U(JL, X) {f  E SM(S, X) : i l f i iv < oo} (0 < p ::;  oo) . 

Then U(JL, X) is a linear subspace of SM(S, X) , for each p E (0, oo] .  When 1 ::; p < oo, 
then II l l v is a seminorm on that space. (Hint: 12 .29.g . ) When 0 < p ::;  1 ,  then I I  I I� is a 
G-seminorm on that space (hint: 12 .25.e) ; in fact, we shall see in Chapter 26 that it is an 
F -seminorm. 

Note that .C00 (S, X) (defined in 22.27.b) includes only functions that are bounded, but 
,C 00 (JL, X) consists of functions that are bounded almost everywhere. In fact , a function 
belongs to ,C 00 (JL, X) if and only if it agrees almost everywhere with some member of 
.c''0 (S, X) .  
Remarks on membership in the Lebesgue spaces. Some mathematicians define the spaces 
,CP (JL, X) a little differently, but in most cases their definitions are equivalent to the one 
given above. Note that f belongs to ,CP(JL, X) if and only if 

1. f is "regular," in the sense that f belongs to SM(S, X), and 
2. f is "not too big," in the sense that there exists some function g E ,CP(JL, JR.) such that 

1 ! ( · ) 1 :::: g ( · ) .  
These two conditions are entirely different in nature and can be studied separately from 
one another. 

Associated metric spaces. For 0 < p ::; oo, in general the spaces ,CP(JL, X) are merely 
pseudometric spaces; we can make them into metric spaces by taking quotients in the usual 
fashion: Observe that I I ! - g J Jv = 0 if and only if f = g JL-a.e. This defines an equivalence 
relation f ::::::; g on the pseudometric space ,CP (JL, X) .  The resulting metric space is denoted 
U'(JL, X) ;  we may call it the Bochner-Lebesgue space of order p. The seminorm I I  l iP 
or G-seminorm I I  I I � on U(JL, X) (for 1 ::; p ::; oo or 0 < p < 1 ,  respectively) acts as a 
norm or G-norm on LP(JL, X) . 

In general , the spaces ,CP(JL, X) and LP (JL, X) are different . Members of ,CP (JL, X) are 
functions, whereas members of LP (JL, X) are equivalence classes of functions. In some con
texts, members of LP(JL, X) are discussed as if they were functions - i.e . , the distinction 
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between a function and its equivalence class is ignored. In certain contexts this abuse of 
language is convenient and does not cause confusion. 

Although the spaces f](J1, X) and U'(/1, X) are different in general, they are the same 
in some special cases - for instance, when 11 is counting measure, for then each equivalence 
class in f](J1 ,  X) contains only one function. 

Notation for scalar-valued functions. When X is the scalar field lF, then we abbrevi
ate U'(J1, X) as f] (tL) and abbreviate V' (J1 ,  X) as V'(J1 ) .  The spaces £1'(11) are called 
Lebesgue spaces. 

When 11 is counting measure on the finite set { 1 ,  2, . . .  , n } ,  then £1'(11) = J:..l(tL) is just 
the finite dimensional space lFn , normed as in 22. 1 1 .  When 11 is counting measure on N, 
then £1'(11) = £P(tL) is just the sequence space Rp ; thus all the results proved below for 
integrals have corollaries about sums. More generally, when 11 is counting measure on some 
set ], then LP (JL) = U'(tL) is the generalized sequence space Rp (.JJ ) introduced in 22.25. 

When n is a subset of !R71 and 11 is n-dimensional Lebesgue measure, then LP(tL) is 
usually written as £P(0) .  For instance, if 11 is one-dimensional Lebesgue measure on the 
interval [0, 1 ] , then £1' (11) is usually written as £1'(0, 1) or £1' [0, 1 ] . There is no substantial 
difference between U'(O, 1) and U' [O, 1 ] since a single point has Lebesgue measure 0. 
Further notation. The number l l f l l x is sometimes called the essential supremum of the 
function f .  Caution: That term has another meaning; see 2 1 .42. 

An integrable function is a member of U (/1,  X) or £1 (/1, X) ;  this terminology is ex
plained in 23 . 16 . 

22.29. Lebesgue's Dominated Convergence Theorem. Let 0 < p < oo .  Let Un) 
be a sequence in £P (J1; X) ,  converging pointwise to a limit f .  Assume that the fn 's are 
dominated by some member of £P (J1 ; lR) - i.e . , assume that l fn (w) l ::; g(w) for some 
function g E U' (JL; IR) . Then f E U' (J1; X) and l l fn - f l i P -+ 0. 
Remarks. This theorem can be proved for Riemann integrals by more elementary methods 
- i.e . , not involving a-algebras and abstract measure theory. See Luxemburg [1971 ] and 
Simons [1995] , and other papers cited therein. 

Proof of theorem. We first prove this in the case of p = 1 .  Observe that l f(w) l ::; g(w) .  
Apply Fatou's Lemma (see 21 .39.c) to the functions 

2g(w) - lfn (w) - f(w) l . 

The remaining details for p = 1 are left as an exercise. 
For other values of p, observe that the functions Fn (w) = l fn (w) - f(w) IP converge 

pointwise to 0, and they are dominated by the function G(w) = 2Pg(w)T' , which lies in 
£1  (/1; IR) .  Hence F71 -+ 0 in £1 (tL; IR) by the case of p = 1 ,  and therefore fn -+ f in 
U(11; X) .  

22.30. Results about dense subsets. Recall from 1 1 .42 that a simple function is a mea
surable function whose range is a finite set. Let X be a Banach space, and let 0 < p < oo .  

Then: 
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a. A simple function f belongs to U (J.L, X) if and only if { w E n : f ( w) -=J 0} has finite 
measure. 

b. The simple functions that belong to J](J.L, X) are a dense subset of J](J.L, X) .  Hint: 
21 .4 and 22.29. 

c. Let n be an interval in lR (possibly all of JR) , and let J.L be a positive measure on the 
Borel subsets of n. Let X be a Banach space, and let 0 < p < oo .  Then the integrable 
step functions are dense in £.-P(J.L, X) .  

Hint : Use 21 .27 to show that any integrable simple function can be approximated 
arbitrarily closely by an integrable step function. 

d. Let J.L be a positive finite measure on the Borel subsets of [a, b] . Then C( [a, b] , X) = 
{continuous functions from [a, b] into X} is a dense subset of £1 (J.L, X) .  

Hints : In view of 22.30.c, i t suffices to show that any step function can be ap
proximated arbitrarily closely by a continuous function. Let us first consider how to 
approximate step functions of the form 1 [p,b] ( · ) ,  for any p E (a, b) .  Define f n as in the 
following diagram. Show that l l fn - 1 [p, b] l l 1  ::::; J.L ( [p - � , p)) . That last quantity tends 
to 0 as n � oo, by 21 .25.b. By left-right symmetry, we may approximate step functions 
of the form 1 [a,p] ( · ) in an analogous fashion. Finally, show that any step function on 
[a, b] is a linear combination of 1 and functions of the forms 1 [a,p] and 1 [p,b] · 

(p, 1 ) 

(a .... , o_) _____ /�_ 
--------· ( b, 1 )  

1 (p - - , 0) 
n 

A continuous, 
piecewise-affine 
function fn 
approximating 
1 [p,b] in L1 (J.L) . 

22.31. Let 0 < p < oo and let X be a Banach space. Then: 
(i) LP (J.L, X) is complete. 
(ii) (Converse to Dominated Convergence Theorem.) Any convergent se

quence in LP(J.L, X) has a subsequence that is convergent pointwise almost 
everywhere and is dominated by some member of £P (J.L, lR) . 

Proof To prove both statements, we shall show that any Cauchy sequence has a subsequence 
that is convergent pointwise almost everywhere and is dominated; then completeness follows 
from 22.29. 

Let p(f) = I I J I I;'in{ l ,p} ; then p is a G-norm on LP(J.L, X) .  Choose some subsequence 
(gk )  satisfying p(gk - gk+I )  < 2-k . Let hN (w) = jg1 (w) j + L�=1 jgk+l (w) - gk (w) j . Since 
p is subadditive, we have p(hN) ::::; p(gl ) + 'L.:�=l p(gk+l - gk) ::::; p(gl ) + 2-N+l . The 
functions hN take values in [0, +oo ) ,  and they increase pointwise to the function h(w) = 
jg1 (w) l + 'L.:�=l jgk+1 (w) - gk (w) j . Use the Monotone Convergence Theorem to show that 
h is a member of £P(J.L, JR) , with p(h) ::::; p(gl ) + 2; clearly h dominates the gk 's . Since 
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p(h) < oo, it follows from 21 .37.h that h(w) < oo for 11-almost every w. From this it follows 
that the sequence (gk ( w) : k E N) is Cauchy in X for 11-almost every w. By assumption, X 
is complete, so its Cauchy sequences converge. 

22.32. Reverse Minkowski Inequality. If f and g are measurable functions taking 
values in [0, +oo) and 0 < s :S 1 ,  then I I ! + g l l s  � II f i l s + l l 9 lk 
Proof By 21 . 5 and the Dominated Convergence Theorem, it suffices to prove the present 
result for finitely valued functions. Let r = 1 /s E [ 1 , +oo) . We are to show that 

for nonnegative numbers x; , y; , fl; .  
By induction on M, Minkowski's inequality yields 

I II::f� 1 v; l lr :S I::f� 1 l l v; l l r for any 
vectors v1 , v2 , . . .  , v M .  When those vectors are members of JR2 , that inequality tells us 

< 

for any positive integer M and real numbers v;1 . Now take the rth power on both sides, 
and then substitute V;1 = xi1r fli and V;2 = Y;l /r fli for i =  1 ,  2, . . .  , M; this yields the desired 
inequality. 

22.33. Let p, q E [1 , oo] with "i; + i = 1 .  (Numbers p and q related in this fashion are 
called conjugate exponents . )  Let f, g be measurable scalar-valued functions, and let f g 
be the pointwise product - i.e . , the function whose value at w is f (w)g(w) . Then we have 
Holder's Inequality: 

I I Jg l l 1 :::: l l ! l l r l l g l l q 
(whether those quantities are finite or not ) .  Moreover, ifp, q E ( 1 , oo) and l f(w) IP = clg(w) I <J 
for all w and some constant c , then we have Holder's Equality: l l fg l l 1 = I I J I I P I I 9 I I q · 

The special case of Holder's inequality with p = q = 2 is important enough to deserve 
separate mention; it is the Cauchy-Schwarz Inequality: 

r l f (w)g(w) l dfl(w) 
ln 

< r l f (w) l 2 dfl (w) 
ln 

r lg(w ) l 2 dfl (w) . 
ln 

Proof The case of p = 1 and q = oo, or vice versa, is easy; we omit the details. Assume 
that p, q E ( 1 , oo) . We may assume both of the numbers l l f l l r and l l 9 l l q are nonzero. 
(Why?) Using homogeneity, we may replace the functions f and g with the functions 
f( · )/ I IJ I I P and g( · ) / l lg l l q , respectively; hence we may assume l l f l l r = l l g l l q = 1 (explain) .  
If lf (w) IP = clg(w) I <J for some constant c, then c = 1 .  By 12 .20.a, we have lf (w)g(w ) l  < 

i l f (w) IP + i lg(w) l '� ,  with equality if lf (w) IP = lg(w l '� .  Now integrate to obtain l l fg lh :S 
i 1 1 ! 1 1� + i l l g l l g = 1 .  
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22.34. Suppose that 0 < a < (3 � oo. Then: 
a. Inequalities for sequence spaces. l l x l l 11 � l lx l l a for sequences x, and l!a � 1!11 . In 

particular, l lx l loo � l l x l l z � l lx l l 1  and 1!1 � /!z � f!oo . 
Hints : Show that if l lx l l a � 1 then lxj I � 1 for all j ,  hence l xj l r � lxj I � l xj I s  

if r 2: 1 2: s .  Also, find some constant t such that the sequence f = ( 1 t , 2t , 3t , . . . ) 
belongs to I! 11 and not to I! a .  

b .  Inequalities for probability spaces. If JL is a probability measure, then l l h l l a � 
l l h l l 11 and L11(JL, X)  <:: Lo: (JL, X ) .  In particular, l l h l l 1 � l lhl l2 � l l h l loo and L00 (JL, X) <:: 
L2 (JL, X )  <:: L 1 (JL, X) .  

Hints : Use 22.33 with f = l h la , g = 1 ,  p = (Jja, q = (Jj((J - a) . Prove separately 
for (3 = oo. 

Remark. For a more general result , see the remarks in 27.29. 

22.35. Clarkson's Inequality. Let p, q E ( 1 ,  +oo) with � + * = 1, and let a = min{p, q} 
and (3 = max{p, q}. Then for any measurable scalar-valued functions f and g, 

I I ! +  g i l� + I I ! - g i l� < 2 ( I I ! I I � + l lg i i� )N
a . 

Note. There are several other inequalities also known as "Clarkson's Inequalities" - and 
in fact, some of' them will appear in the proof below - but the inequality given above is 
the most important one for our applications in 22.4l .a and thereafter. 

Proof This proof follows the presentation of Weir [1974] . For most steps of this proof, 
we shall give inequalities only for p 2: 2 2: q; the reversed inequalities are then valid when 
p � 2 � q. 

It follows from 10.35 that 

l f(w) + g(w) IP + l f(w) - g(w) IP < 2 ( lf (wW + l g(wWt1q if p 2: 2 2: q, 
with inequality reversed if p � 2 � q. Now integrate; this yields 

r ( )pfq I I ! +  g i l � + I I ! - g i l� � 2 lo l f(wW + lg(wW dJL(w) ,  

still assuming p 2: 2 2: q ,  and we have the reverse of this inequality i f  p � 2 � q. 
For any nonnegative scalar-valued measurable functions F and G, we have 

if p 2: 2 2: q (by Minkowski 's Inequality) ,  or the reverse of this inequality if p � 2 � q (by 
the Reverse Minkowski Inequality) .  Raise both sides of this inequality to the power � ,  and 
then multiply by 2 ; thus 

( [ ] qfp [ ] qfp) pfq 
2 L (F(w) + G(w) )pfq dJL(w) � 2 L F(· )Pfq dJL + L G( · )pfq dJL 
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(or the reverse of this inequality) .  Apply this result with F(w) = l f (w) l q and G(w) = l g(w) l q , 
and simplify the right side. We obtain 

21 ( l f(wW + lg(wW f1q d11(w) :::: 2 ( 1 11 1 1� + I I  g i l �  f1q 

n 
if p 2: 2 2: q, or the reverse of this inequality if p :::; 2 :::; q.  

Combine the conclusions of the last two paragraphs. We have established that 

I I ! + g i l � + I I ! - g i l � < 2 ( I I l i i� + l l g l l �) pfq 

I I ! + g i l � +  I I ! - g i l � > 2 ( I I l i i �  + l l g l l �) p1q 
if p :::: 2 :::: q, 

if p :::; 2 :::; q .  

Substituting f = u + v and g = u - v and then rearranging a bit yields 

2 ( l l u l l � + l l v l l �t/P < l l u + v i i� + l l u - v i i �  

2 ( l l u l l � + I I  v i i �) qfp > l l u + v i i � + l l u - v i i �  

i f p :::: 2 :::: q ,  

i f p :::; 2 :::; q. 

The first and last of these four inequalities give us the result stated in the theorem. 

22.36. Definition. Let [a, b] be some interval in IR equipped with its a-algebra of Lebesgue
measurable sets, and let X and Y be Banach spaces equipped with their a-algebras of Borel 
sets. Let G be an open subset of X. Let f : [a, b] x G --+ Y be jointly measurable, and 
suppose f takes separable sets to separable sets. Also assume that for each fixed x0 E G, 
the mapping f( - , x0 )  : [a, b] --+ Y is integrable. We shall say that f is 

integrably Lipschitz if there exists a function >. E L1 [a, b] such that l l f(t ,  xl ) 
f(t, x2) l l  :S: >.(t) l lx l - x2 l l  for all t E [a, b] and x1 , x2 E G; or 

integrably locally Lipschitz if for each compact K <;;;; G there exists a function 
AK E U [a, b] with l l f(t , xl ) - j(t, x2) ll :S: AK(t) l lxl - x2 l l for all t E [a, b] and 
Xl , X2 E K. 

Proposition. Let f : [a, b] x G --+ Y be integrably locally Lipschitz, as above. Then for each 
compact set K <;;;; G there exist an open set H with K <;;;; H <;;;; G and a function rp E U [a, b] 
with this property: Whenever u, v : [a , b] --+ H are continuous functions, then 

l l f(t ,  u(t) ) - f(t , v(t ) ) l l  < rp(t) l l u(t) - v(t) l l  
for almost all t E [a, b] . (This result will be used in 30.9 . )  

Proof Note that any continuous function defined on [a ,  b] is measurable and has compact 
range. It suffices to apply 2 1 .44 with Z = G x G, n = [a, b] , and 

r (t ,  (x, y)) 
{ l l f(t , x l ) - j(t, x2 ) l l  

l l x1 - x2 l l  

0 

(A more complicated but more general argument of this sort by Schechter [1981] dealt with 
not only Lipschitzness, but also uniform continuity. ) 
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STRICT CONVEXITY AND UNIFORM CONVEXITY 

22.37. Observation. Any norm is a convex function. 

22.38. Definitions. Let (X, I I  I I ) be a normed linear space. We say X (or its norm) is 

strictly convex if, whenever l l x l l  = I I Y I I  = 1 and l l x  + Y l l  = 2, then x = y; 

locally uniformly convex if, whenever l l x l l  = 1 and (Yn) is a sequence with 
l l Yn II = 1 and l l x  + Yn l l -+ 2, then l l x - Yn l l  -+ 0; 

uniformly convex if, whenever (xn) and (Yn )  are sequences satisfying l l xn l l = 
l l Yn I I  = 1 and l l xn + Yn l l -+ 2, then l l xn - Yn l l  -+ 0 .  

Clearly, X i s uniformly convex =;. X i s locally uniformly convex =;. X i s strictly convex. 
We remark that strict, locally uniform, and uniform convexity are not topological prop

erties. If we replace a norm with an equivalent norm - i.e. , one that yields. the same 
topology - then the convexity properties described above are not necessarily preserved; 
that will be clear from examples in 22.41 .  Nevertheless, uniform convexity of a norm does 
imply certain topological properties; see 28.46. 

22.39. Reformulations of the definition of strict convexity. Let (X, I I I I ) be a normed 
space, and let S be the unit sphere - i.e. , let S =  {x E X  : l l x l l  = 1 } . Then the following 
conditions are equivalent . If any (hence all) of them is satisfied, then the normed space 
(X, II I I ) is strictly convex. 

(A) If l l u  + v i i  = l l u l l  + l l v l l , then u ,  v ,  and 0 lie on one straight line. 
(B) Any straight line intersects S in at most two points. 
(C) Any convex subset of S contains at most one point. 
(D) If C is a nonempty convex subset of X and u E X,  then at most one point of C 

is closest to u. That is, at most one point c E C satisfies l l u - e l l  = dist ( u, C) .  

(E) Any convex subset of X contains at most one point of minimum norm. (Com
pare with 28.41 (F) . )  

(F) I f l l u l l  = 1 for all u in some line segment [x, y ]  (with notation as in 12 .5. i) , 
then x = y. 

(G) If x, y, z are distinct points satisfying l lx l l  = I IY I I  = l i z I I , then x, y, z are not 
all on one straight line. 

(H) If x and y are points in X satisfying l l x l l  = I I Y I I  = II �x + � Y I I , then x = 
y. (This condition is easily seen to be equivalent to the definition of strict 
convexity given in 22.38. ) 

(I) II II is a strictly convex function (as defined in 12 . 17.c) on each straight line 
that does not pass through 0. In other words, if u and v are points satisfying 



Strict Convexity and Uniform Convexity 

I I  .Au + ( 1 - ,\)v i i  = .A I I u l l  + ( 1 - .A) I I v l l  for at least one ,\ E ( 0 ,  1 ) ,  then u, v , and 
0 are all on one straight line. 
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Proof of (A) =* (B) . Suppose that x, y, z are three distinct points on one straight line, 
with l l x l l  = I I Y I I  = l l z l l ·  By relabeling we may assume that z lies between x and y; thus 
z = .Ax + ( 1  - ,\)y for some ,\ E (0. 1 ) .  Let u = .Ax and v = ( 1 - ,\)y . Then 

l l u + v i i  l i z I I  >- l l z l l  + ( 1 - >-) l l z l l  l l u l l  + l l v l l ·  

Apply (A) ; this tells us that the line through x and y passes through 0 ;  i t  also passes 
through z .  This leads to a contradiction. 

Proof of (B) =} (C) .  Trivial. 
Proof of (C) =* (D) . By translation (i .e . , replacing C with C - u) , we may assume u = 0. 
We may assume dist (O, C) > 0 (explain) .  By homothety (i .e . , replacing C with kC for a 
suitable positive number k ) ,  we may assume dist(O, C) = 1 .  Then {c E C :  l l c l l  = 1 }  = {c E 
C : I I e l l  <::: 1 }  is a convex subset of S, so it contains at most one point. 

Proof of (D) =* (E) =* (F) . Obvious. 

Proof of (F) =} (G) . Assume that x, y ,  z are all on one line. We may assume that 
l lx l l  = I I Y I I  = l i z II = 1 .  One of these points is between the other two; by relabeling we may 
assume z is between x and y. We have l l u l l  <::: 1 for all u E [x , y] , by convexity of I I  I I · If 
l l u1 l l  < 1 for some u1 E [x , y] , then z lies between u1 and x or between u1 and y, hence 
II z II < 1 by convexity of II 1 1 . 
Proof of (G) =} (H) . Trivial. 

Proof of (H) =} (I) . The function t f-+ c(t) = l l tu + ( 1  - t)v l l  is convex. By 12 . 17.c , if 
l l c(.A) I I = >- l l u i i + ( 1 - .A) I I v l l  for at least one ,\ E (0 ,  1 ) ,  then in fact l l c(.A) I I  = >- l l u i i + ( 1 - .A) I I v l l  
for every ,\ E (0 , 1 ) .  We may assume that u and v are both nonzero. Choose ,\ E (0 ,  1 )  to 
satisfy >- l l n l l  = ( 1 - .A) I I v l l ; then let x = Au and y =  ( 1 - ,\)v. Then apply (H) . 

Proof of ( I ) =* (A) . Use ,\ = 1/2. 

22.40. Reformulations of the definition of uniform convexity. Let (X, I I  I I ) be a normed 
space. Then the following conditions are equivalent . 

(A) X is uniformly convex, as defined in 22.38. That is, whenever (xn ) and (Yn ) 
arc sequences with l l xn II = l l Yn II = 1 and l l xn + Yn I I -+ 2, then l l xn - Yn I I  -+ 0. 

(B) Whenever (u., )  and (v, )  are sequences with l l un l l , l l vn l l -+ 1 and l l un + vn l l -+ 
2, then l i n, - v., II -+ 0. 

(C) Whenever (Pn ) is a sequence with I IPn l l -+ 1 and limm .,Hx I IPm + Pn l l -+ 2, 
t lwn (p11 ) is Cauchy. 

(D) For each E > 0, there exists some b = b(c:) > 0 such that l l u l l .  l l v l l  <::: 1 and 
� l l u + I' l l 2 1 - b imply l l v - v i i <::: E.  
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In condition (D) , the largest b that will work is clearly 

b(c) inf { 1 - I I u ; v I I : l l u l l , l l v l l  ::::; 1 and l l u - v i i 2: E} . 

This formula defines an increasing function b : (0, 2) ----+ (0, 1 ) ,  called the modulus of 
convexity of the space. By obvious substitutions, we obtain the following inequality, 
which may be more convenient in some applications: 

l lx - Y l l  2: Er l ip - x; y l l ::::; ( 1 - b(c) ) r. 

Hints for the equivalence proof: For (C) => (B) , let (Pn ) be the sequence ( u1 , v1 , u2 , v2 , . . .  ) . 
For (A) => (D) , let Xn = Un/ l l un l l and Yn = Vn/ l l vn l l · 
22.41. Examples. 

a. Let 1 < p < oo. When l l f l l = l l g l l = 1 ,  then Clarkson's Inequality (proved in 22.35) 
yields modulus of convexity less than or equal to the function b (c) = 1 - [ 1 - ( � )13] 1 113 ; 
thus LP (J-L) is uniformly convex. 

Optional remarks. When p > 2 > q then this estimate is the best possible, and 
so the function b defined above (with {3 = p) is actually equal to the modulus of 
convexity of LP (J-L) ; this is shown by Hanner [ 1955] . However, when p < 2 < q, then 
the estimate can be improved slightly; Hanner shows that the modulus of convexity 
b(c) is the slightly smaller function defined implicitly by the equation ( 1 - b + � ) P + 
( 1 - b - � )p = 2. 

b. In general, norms of type I I  1 1 1  are not strictly convex. For instance, when JR2 is 
equipped with the norm l l (x1 , x2 ) l l 1  = lx1 l  + lx2 l , then the unit sphere contains the 
line segment { (x1 , x2 ) :  x1 , x2 2: O, x1 + x2 = 1 } .  

c .  In general, norms of type I I  l l oo  are not strictly convex. For instance, when 1R2 is 
equipped with the norm l l (x 1 , x2) l l oo = max{ lx1 l , lx2 l } ,  then the unit sphere contains 
the line segment { (x1 , x2 ) : x1 = 1 and - 1 ::::; x2 ::::; 1 } .  

d .  (A renorming example due to Clarkson.) Let lF be the scalar field, and let C[O, 1 ]  = 
{continuous functions from [ 0, 1] into lF}. Let ( tn : n = 1 ,  2, 3, . . .  ) be a dense sequence 
in (0, 1 ) - e.g. , the rationals i� (0, 1 )  or the dyadic rationals. For continuous f :  [0, 1] ----+ 

lF, let 

Show that II l i e  is a strictly convex norm on C[O, 1 ]  that is equivalent to I I  l loc ·  Hint: 
Use the strict convexity of £2 . 

e. (Lovaglia 's example.) Show that Clarkson's norm II l i e , given in 22.4l .d, is not locally 
uniformly convex, by letting x(t) be the constant (3/4) 112 and Yn (t) = x(t) min{ 1 ,  nt} . 
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22.42. If X is a uniformly convex normed space, then the completion of X is also uniformly 
convex; it has the same modulus of convexity. 

( Optional. ) The completion of a strictly convex space need not be strictly convex, 
as the following example shows. For sequences of scalars y = (yo , Y1 , Y2 , · · · ) ,  let I I Y I I  = 
I Yo l  + /''£"F=1 4-i iYJ I 2 . Let Y be the set of all sequences for which I I Y I I  < oo. Let X be the 
subspace consisting of those sequences y that also satisfy limJ�= YJ = 0. Show that 

a. (Y, II I I )  is a Banach space, and X is a dense linear subspace. 
b. X is strictly convex. Hint: Use the fact that £2 is complete and strictly convex. 
c. Y is not strictly convex. Hint: 22.4 l .b. 

22.43. Clarkson's Renorming Theorem. Let (X, I I  I I )  be a separable normed space. 
Then I I I I  is equivalent to a strictly convex norm. 

Proof This short proof is from Riley [1981] . Let lF be the scalar field. Let (xn ) be a 
sequence in X with the property that every point in X is a limit of some subsequence of 
(xn )  (see 15 . 13 .g) . For n = 1, 2, 3, . . .  , let 

fn (Y) dist (y, lFxn ) 

Define 'Y(Y) = I I Y I I  + 2::;',"=1 2-n fn (y) . Then show 
a. Each fn is a seminorm on X, with fn ( · )  :S: I I · I I · 
b. 'Y is a norm on X that is equivalent to II I I ·  

inf I I Y - h, l l · 
.\ElF 

c. Now let y and z be nonzero vectors in X,  with 'Y(Y + z) = 'Y (Y) + 'Y(z ) . It suffices to 
show that y = tz for some t > 0. Show, first of all, that I I Y  + z l l  = I I Y I I  + l l z l l , and 
fn (Y + z) = fn (Y) + fn (z) for all n. 

d. Since (xn ) is dense in X, there is some subsequence (xn(j) ) that is II 1 1 -convergent to 
y + z. That is, I I Y + z - Xn(j ) II ---+ 0 as j ---+ oo. Hence fn(j ) (y + z )  ---+ 0, and therefore 
fn(j ) (Y) ---+ 0. Thus there exist scalars AJ with I I Y - AjXn(jJ I I ---+ 0. 

e. We consider two cases now: First, suppose the sequence (>.1 )  is unbounded. Replacing 
it with a subsequence (explain) ,  we may assume that 1/>..1 ---+ 0. Using the joint 
continuity of multiplication (noted in 22.7) , show that l l xn(j) II ---+ 0, hence I I Y + z l l  = 0, 
hence y = z = 0, a contradiction. 

f. Thus, the sequence (>.J )  is bounded. Replacing it with a subsequence (explain) , we 
may assume that ().. J )  converges to some finite scalar >.. . In that case, again using the 
joint continuity of multiplication, show y = >.(y + z ) ; hence ).. i= 0. 

g. Similarly, z = JL(Y + z) for some nonzero scalar JL, so y = tz for some nonzero scalar t . 
h. Since also I I Y + z l l  = I I Y I I  + l l z l l , show that I I + t l = 1 + l t l , and therefore t > 0. 

22.44. Remarks. The theorem above was originally proved for norms by Clarkson. The 
proof given above can also be applied to F-norms, if interpreted appropriately. 

Still more is true, at least for norms. We have in fact 
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Kadec's Renorming Theorem. Every separable normed space has an equiv
alent norm that is locally uniformly convex. 

The proof of Kadec's theorem is longer and deeper, and will not be given here. 
Some other, related results: Any separable normed space has an equivalent norm that 

makes both X and its dual strictly convex (Klee, 1959) . If both X and its dual are separable 
(Kadec, Klee, Asplund) or if X is reflexive (Troyanski) , then X has an equivalent norm 
that makes both X and its dual locally uniformly convex. For further, related reading and 
references, see Diestel [ 1975] , Istratescu [1984] , and Lindenstrauss [1988] . 

22.45. Theorem on closest points. Let Q be a convex subset of a Banach space X.  
Assume either 

(i) X is strictly convex and Q is compact, or 

(ii) X is uniformly convex and Q is closed. 

Then for each point x E X  there is a unique point 7T(x) E Q that is closest to x - i.e . , that 
satisfies l lx - 7T(x) l l  = dist (x, Q) . Furthermore, this function 7T : X --+ Q is continuous. It is 
called the closest point projection onto Q. 

Proof. Uniqueness follows from 22.39 (D) . 
For any x E X, there exists a sequence (qn ) in Q that satisfies l lx - qn l l --+ dist(x , Q) ;  

any such sequence will be called a minimizing sequence for x in this proof. Note that any 
subsequence of a minimizing sequence is a minimizing sequence. To prove the existence of 
7T(x) it suffices to show that 

( ! ) any minimizing sequence for x has a convergent subsequence. 

That is easy in case (i) , since any sequence in a compact metric space has a convergent 
subsequence. The proof of ( ! )  will take slightly longer for case (ii ) .  Let (qn ) be a minimizing 
sequence, and let r = dist (x, Q) . The result is trivial if r = 0; we shall assume r > 0. By 
rescaling, we may assume r = 1 .  Thus l lx - qrn I I  --+ 1 and l lx - q, II --+ 1 as m, n --+ oo. On 
the other hand, � (qrn + qn ) E Q since Q is convex; thus l lx - � (qm + qn ) l l  2 dist (x, Q) = 1 .  
Therefore l l (x - qrn ) + (x - q, ) l l  --+ 2. By 22.40(C) the sequence (qn )  is Cauchy. This 
completes the proof of ( ! ) .  Thus 7T is defined everywhere on X. 

To show 7T is continuous, suppose (xn ) i s a sequence converging in X to some limit 
x= ; we must show that 7T (xn )  converges to 7T(xx ) .  Suppose not. Replacing (xn ) with a 
subsequence, we may assume 1 1 7T(xn ) - 7T(x= ) l l  > "' for some constant "' > 0. We know 
that dist(xn , Q) --+ dist(x= , Q) by 4.4l .b ; hence (7T(x, ) )  is a minimizing sequence for x= . 
Replacing (x, ) with a subsequence, by ( ! )  we know that (7T(x, ) )  converges to some limit 
q E Q. Then l l q - 7T(x= ) II 2 "' > 0, so q -/:- 7T( Xx ) . Thus, q is not the member of Q closest to 
Xx ,  so l l q - Xcxo l l > dist(xcxo , Q) .  Hence l l q - xx l l > r > dist(xcxo , Q) for some real number 
r. Then for all n sufficiently large we have 1 1 7T(xn ) - xn l l > r > dist(xn , Q) , a contradiction. 
Thus 7T is continuous. 
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HILBERT SPACES 

22.46. Definition. Let X be a linear space over F. An inner product on X is a mapping 
( . ) : X x X ___, II:' that satisfies: 

( - .  y) : X ___, II:' is linear, for each y E X 

:r # 0 =? (x, x) > 0 
(x,  y) = (y, x) . 

(linear in first component) 

(positive-definiteness) 
(conjugate symmetry) 

where the bar denotes complex conjugation. The conjugate symmetry condition is some
times called "antisymmetry." If the scalar field II:' is JR, then the complex conjugate of a 
scalar is equal to that scalar, and so the conjugate symmetry condition becomes 

(x, y) = (y, x) , (symmetry) 

and it also implies that ( , ) is bilinear - �  i .e . , linear in each of its two arguments. 
An inner product space is a linear space equipped with an inner product . A:s we shall 

see in an exercise below, if ( ) is an inner product then l l x l l  = (x, x/ 112 i:s a norm on X. 
An inner product space will always be understood to be equipped with this norm, unless 
some other arrangement i:s specified. If the norm is complete, then the inner product space 
is called a Hilbert space. 

22.47. Examples. If (12, S, JL) is any measure :space, then L2 (JL) is a Hilbert space, with 
inner product defined by 

(f, g) 1 f(w)g(w) dJL(w) .  
n 

The convergence of the integral is guaranteed by Holder's inequality. If the scalar field is 
JR, then the bar over the g(j) may be omitted. We note some important special cases. 

a. Let (12, S, fl) be :smne set .lJ equipped with counting measure. Then we obtain the 
normed space £2 (JJ) introduced in 22.25. It has inner product 

u. g) 2::: J(j )g(j) .  
jE] 

In 22.56 we :shall prove that every Hilbert space can be expressed in this form - i.e. , 
every Hilbert space is isomorphic to :some £2 (JJ) .  However, other representations of 
Hilbert spaces are often useful. 

b. When .lJ is a finite :set containing n elements, we find that Fn is a Hilbert space when 
equipped with the inner product 

(x, y) XtYl + X2Y2 + · · · + XnYn · 
If the scalar field i:s JR, then the bar over the Y.i 's may be omitted. In JRn , the inner 
product is also known as the dot product; it is used in analytic geometry to give 
algebraic formulas for much of Euclidean geometry. 
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22.48. Some elementary properties. Let ( , ) be an inner product on some vector space, 
and let l l x l l  = (x, x) 112 . (We do not yet assert that II I I  is a norm; that fact is shown below.) 
Show that 

a. l l x + Y l l 2 = l lx l l 2 + 2 Re(x, y) + I I Y I I 2 · 

(Hence Re(x, y) is uniquely determined by I I - It follows easily that (x, y) is 
uniquely determined by I I  I I - ) 

b. Schwarz Inequality. l (x, y) l :::; l lx i i i i Y I I -
Hint: Substitute c = (x, y)/ I I Y I I 2 , and use 0 :::; l l x - cy l l 2 . 

c. I I  is a norm on X.  
d .  The mapping (x, y )  f-+ (x, y )  is a continuous map from X x X (with the product 

topology) into lF. 
e. Parallelogram Equation. l lx + Y l l 2 + l lx - Y l l 2 = 2 l lx l l 2 + 2 I I Y I I 2 -

Remark. Clarkson's Inequality may be viewed as a generalization of the Parallelo
gram Equation. Clarkson's Inequality tells us that II l iP norms, for 1 < p < oo, are 
"almost as good as" the norms of inner product spaces. 

f. Any inner product space is uniformly convex. 

22.49. Converse results ( optional) .  Let (X, I I  I I ) be a normed space whose norm satisfies 
the Parallelogram Equality. Then II I I  arises from an inner product ( , ) , which is uniquely 
determined by II 1 1 -

(i) If lF = IR, then � [ l lx + Y l l 2 - l lx - Y l l 2] = (x, y) . 
(ii) If lF = C, then � [ l lx + Y l l 2 - l l x - Y l l 2 + i l lx + iy l l 2 - i l lx - iy l l 2 ] = (x, y) . 

Hint :  22.48.a. 

22.50. Let X be a linear space, and let ( , ) be an inner product on X. In this context , we 
say that two elements x, y E X are orthogonal to each other, denoted x .l y, if (x, y) = 0. 
For any set S � X, the orthogonal complement of S is the set 

sl. {x E X  x .l s for all s E S} .  

This definition is a special case of 4 . 12 , with 

r { (x, y) : x .l y} { (x, y) : (x, y) = 0} ,  

and so the conclusions of 4 .12 are applicable. The mapping S f-+ 51.1. is then a Moore 
closure on X .  (That closure is characterized further in 22.52 . )  

22.51.  Theorem on closest points. Let C be a nonempty closed convex subset ot a 
Hilbert space X.  Then for each u E X ,  there is a among the members of C a unique point 
1r ( u) that is closest to u. It can be characterized as follows: It is the only point � E C that 
satisfies 

for all x E C. 
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(In terms of Euclidean geometry, this inequality says that the directed line segment from � 
to u and the directed line segment from � to x are separated by an obtuse angle -- i .e . , 
an angle greater than a right angle. )  The mapping 1r : X ---> C is also nonexpansive - i.e . , 
it satisfies (1r)Lip :::; 1 .  

If C is a closed linear subspace of X,  then 1r( u)  can also be characterized as follows: It 
is the unique point � E C that satisfies u - � E C.l . 

Proof. Let C be closed, convex, and nonempty, and let u E X.  It follows from 22.45 that 
there is a closest point and that it is unique. 

Now let � be a point in C. Then 

� is the point in C that is closest to u 

� I I � - u l l  < l lx - u l l  for all x E C \ {0 
� I I � - u l l  < p,x + ( 1 - A)� - u l l  for all x E C \ {0 and A E (0, 1] 
� I I � - u l l 2 < I I (� - u) + A (x - 0 1 1 2 for all x E C \ {0 and A E (0, 1] 
� I I � - u l l 2 < I I � - u l l 2 + 2ARe(� - u, x - �) + A2 l l x - � 1 1 2 

for all x E C \ { 0 and A E ( 0, 1] 

0 < 2ARe(� - u, x - �) + A2 l l x - � 1 1 2 

for all x E C \ { 0 and A E ( 0, 1] 
� 0 < 2Re(� - u, x - 0 + A l l x - � 1 1 2 for all x E C \ {0 and A E (0, 1] 
� 0 :::; Re(� - u.  x - �) for all x E C \ { 0 
� 0 :::; Re(� - u,  x - �) for all x E C. 

This proves the first characterization. 
Thus 0 :::; Re(1r(u) - u, x - 1r(u) ) for all u E X and x E C. Apply that result with 

x = 1r( v) to obtain 0 :::; Re( 1r ( u) - u, 1r( v) - 1r( u ) )  for any u, v E X. Reversing the roles of u 
and v yields 0 :::; Re( 1r( v) - v ,  1r( u) - 1r( v ) ) .  Combine that inequality with ( 1 )  and rearrange 
the results to obtain 

l l 1r (v) - 7r(u) l l 2 = Re(1r(v) - 1r(u) , 1r(v) - 1r(u) ) :::; Re(v - u, 1r(v) - 1rc (u) ) 

< l (v - u, 1r (v) - 7r(u) ) l  :::; l l v - u l l l l 1r (v) - 7r(u) l l  

and therefore l l 1r(v ) - 7r(u) l l  :::; l l v - u l l ·  Thus 1r is nonexpansive. 
Now suppose C is a linear subspace of X,  and � E C. Then as x varies over all members 

of C, x - � also varies over all members of C. Hence 

� is the point in C that is closest to u 

� 0 :::; Re(� - u, x - �) for all x E C 
� 0 :::; Re(� - u, y) for all y E C 
� 0 :::; Re(� - u, ry) for all y E C and all scalars c 

� 0 = (� - u, y) for all y E C 
� � - u E c.L . 
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22.52. Theorem on orthogonal complements. Let X be a Hilbert space and S � X. 
Then Sj_j_ is the closed linear span of S. Thus S is an orthogonal complement if and only 
if S is a closed linear subspace of X. 

Furthermore, i f S , T � X with Sj_ = T and Tj_ = S, then S and T form an internal 
direct sum decomposition of X;  that is, S + T  = X  and S n T = {0} . The projections of X 
onto S and T are the closest point mappings; i .e . , for any x E X  the unique decomposition 

X = S + t with s E S, t E T 

is given by s and t being the points in S and T that are closest to x. These are continuous 
linear maps. 

Remark. Compare this theorem with 1 1 .61 . 
Proof of theorem. It is easy to see that any orthogonal complement is a closed linear 
subspace of X.  Let clsp(S) denote the closed linear span of S; then Sj_j_ � clsp(S) . We 
wish to show equality here. Suppose that X E clsp(S) \ sj_j_ 0 Since X tic sj_j_ ' there is some 
y E Sj_ such that (x, y) -I 0. Since y E Sj_ , we have 

(s ,  y) = 0 
for every s E S, hence (by the linearity of ( · ,  y) ) also for every s E span( B) ,  hence (by the 
continuity of ( · ,  y) ) also for every s E cl(span(S)) = clsp(S). But this contradicts (x, y) "I 0. 
Thus, we must have Sj_j_ = clsp(S) . 

Now suppose that Sj_ = T and Tj_ = S. Let s be the point in S that is closest to 
x. By 22.51 ,  x - s is a member of Sj_ = T. This shows that x can be represented as 
the sum of an element of S and an element of T. Since S and T are linear subspaces of 
X and S n T = {0} ,  the representation is necessarily unique (see 8 . 13 ) .  Thus, in such a 
representation, the S component must be the member of S closest to x. By symmetric 
reasoning, the T component must be the member of T closest to x. 

22.53. Remarks. The preceding theorem has a converse: If X is a normed space in which 
every closed linear subspace has an additive complement that is also a closed linear subspace, 
then X is isomorphic to a Hilbert space. This was proved in Lindenstrauss and Tzafriri 
[1971 ] ;  the proof is too long to give here. 

22.54. Definitions. Let X be a Hilbert space. An orthonormal set in X is a set S C X 
with the property that (s ,  t) = 881 , where 8 is the Kronecker delta - i.e . , 

(s ,  t ) { � if s -1 t 
if s = t .  

Some easy obse'f'Vations. Suppose { e 1 , e2 , . . .  , en }  i s an orthonormal set . Then: 
a. i i eJ i i = 1 for each j .  

b. If  x = r1 e1 + r2e2 + · · · + rnen and y =  s 1 e 1 + s2e2 + · · · + snen for some scalars rj and 
Sj , then (x, y) = r1 s1 + r2s2 + · · · + rnsn and l l x l l 2 = h 1 2 + l r2 l 2 + · · · + l rn l 2 . 
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c. The e1 's are linearly independent - i.e . , if r1 e 1 + r2e2 + · · · r11 e11 = 0 then r1 = r2 = 
· · · = rn = 0. 

d. If x = r1 e 1 + r2e2 + · · · + r11e11 and u E X, then 
rt n 

l l u l l 2 + L ic1 - (u, ej ) l 2 - L l (u, eJ ) I 2 . 
j= l j= l 

Hence the member of span { e 1 , e2 , . . .  , en} that is closest to u is the vector x = r1 e 1 + 
r2e2 + · · · + r11en obtained by taking r1 = (u, ej ) for all j .  Its distance from u is 

e. l l u l l 2 2: l.:j'=1 I (u, eJ W for any u E X. 

11 

l l u l l 2 - L l (u . eJW ·  
.i= l 

22.55. Theorem. Let X be a Hilbert space, and let { e1 : j E JJ} be an orthonormal subset 
of X . Then the following conditions are equivalent. If one (hence all three) of them are 
satisfied, we say {c1 : .i E JJ} is an orthonormal basis for X. 

(A) { e1 : j E: JJ}  i s a maximal orthonormal set - i.e. , an orthonormal set that is 
not contained in any other orthonormal set. 

(B) The span of {e1 : j E JJ} is dense in X. 
(C) Parseval's Identity. l l u l l 2 = LJE.IJ l (u, eJ ) I2 for every u E X . 

Remark. By Zorn's Lemma, any orthonormal set can be extended to a maximal orthonormal 
set. However, some Hilbert spaces have natural orthonormal bases that can be constructed 
without the Axiom of Choice. For instance, the space £2 has orthonormal basis consisting 
of the vectors 6 ,  6. 6 ,  . . .  , where E,i = (0 , 0, . . .  , 0, 1, 0, . . .  ) has a 1 in the jth place and Os 
elsewhere. 

Proof of (A) =? (B) . Suppose the span of { e.J } is not dense. Then the closed span of { eJ } 
- which we shall denote by Y ·· is not equal to X. Let 11 E X \  Y. Let y be tlw point in Y 
that is closest to 11. Then z = y - u is nonzero, and z is orthogonal to all of Y - hence to 
all of {e j } .  Let E, = z/ l l z l l - Thm {e./ : j E JJ} U {0 is an orthonormal set : thus {e1 : j E JJ}  
i s not maximal . 

Proof of (B) =? (C) . Let any u E X  and c > 0 be given. Since the span of the e j 's is dense 
in X, there is some finite set 10 <;;; JJ such that some vector x in the span of { e.i : j E 10 } 
satisfies l lx - u l l  < c . Thus. by 22.54.d we obtain 

0 < l l u l l 2 - L l (u, ei ) l 2 = dist (u . span{ej : ) E lo }) < l l .r - u l l  < c  . 

.i E .!o 
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Proof of (C) =? (A) . Suppose {eJ : j E .]"}  satisfies (B) , but is not maximal. Then there is 
some � E X such that { e.i : j E .]"}  U { 0 is orthonormal. Then 1� 1 = 1 and (�, e.i }  = 0 for all 
j, but from (C) we obtain 1� 1 2 = l:.iEJJ 1 (�, eJ / 1

2 , a contradiction. 

22.56. Theorem. Every Hilbert space is isomorphic to some £2 (]) . More specifically: 
Let { ej : j E ]} be an orthonormal basis of a Hilbert space X,  with scalar field IF. For 

each x E X, define a mapping 4Jx : ] ---> IF by 4Jx (j) = (x, ej } .  Then the mapping 4Jx is 
a member of £2 (]) (defined in 22.25) .  Furthermore, the mapping <I> : X ---> £2 (]) given by 
x f--.> 'Px is an isomorphism - i.e. , it is a bijection that preserves all relevant structures. It 
is linear and norm-preserving, and it even preserves the inner product: 

l l x l l 2 = L I'Px (J) I 2 , (x, Yl L 'Px (j )<py(j ) .  
jEJJ jEJJ 

It maps members of the orthonormal basis of X to corresponding members of the usual 
orthonormal basis of £2 (]) - that is, it maps ej to the function �.i : ] ---> IF, which is the 
characteristic function of the singleton {j} .  
Hints : The map <I> is norm-preserving by Parseval's Identity (22.55(C) ) .  It is obviously 
linear. It maps the span of the ej 's to the simple functions - i.e. , the functions f : ]  ---> IF , 
which vanish outside a finite set. 
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N ormed Operators 

NORMS OF OPERATORS 

23.1 .  Let (X, I I  l l x ) and (Y, II I I Y ) be normed vector spaces. Let f :  X ---> Y be a linear 
map. Show that the following conditions are equivalent : 

(A) f is continuous. 
(B) f is uniformly continuous. 
(C) f is Lipschitzian; i .e . , the Lipschitz constant 

1 1 1 1 1 1 1 

is finite. 

{ l l f(x) (- f(x') I I Y  sup l l x - x' l lx 
x, x' E X, x =f. x' } 

(D) f is a bounded linear operator - i .e . , whenever S <;;;; X is a bounded set, 
then f(S) <;;;; Y is also a bounded set . (A generalization of this terminology 
will be given in 27.4 . ) 

(E) The number 1 1 1 ! 1 1 1  = sup { l l f(x) I I Y / I I x l lx : x E X \ {0}}  is finite. 
(F) The number 1 1 1 ! 1 1 1 = sup { l l f(x) I I Y x E X, l lx l l x = 1 }  is finite. 
(G) The number 1 1 1 ! 1 1 1 = sup { l l f(x) I I Y x E X, l l x l l x :::::: 1 }  is finite. 
(H) If (xn ) is a sequence in X with l lxn l lx  ---> 0, then l l f (xn ) I I Y ---> 0. 

(I) If (un ) is a sequence in X with l l un l l x ---> 0, then supn l l f (un ) I I Y < oo. 

Moreover, if these conditions are satisfied, then all the numbers 1 1 1 ! 1 1 1 defined above are 
equal to each other. 

Hint for 23. 1 (1) =} 23. l (H) :  Let Un = Xn/ �-
Further notations. The set of all bounded linear operators from X into Y is a linear subspace 
of yx = {maps from X into Y} ,  which we shall often denote by BL(X, Y) .  It is a normed 
space, with I l l f I l l  (defined as above) for the norm of f. A norm obtained in this fashion 
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is the operator norm determined by I I  l l x and I I  I I Y · A bounded linear operator will 
generally be given this norm, unless some other norm is specified. In most of the literature 
the operator norm is denoted by I I  I I , but in this textbook we shall frequently denote it 
by I l l I l l  to aid the beginner in distinguishing this norm from the "lower-level" norms of X 
and Y. 

23.2. Exercises and examples. 
a. If f : X ---+ Y and g : Y ---+ Z are bounded linear maps, then the composition g o f : 

X ---+ Z is also a bounded linear map, with l l l g o f l l l ::; l l l f l l l l l l g l l l · Also, the identity 
map ix : X ---+ X has operator norm equal to 1 .  Thus, we could take the bounded 
linear maps as the morphisms of a category, with normed linear spaces for the objects. 

b. Let � be a set, and let B(�) = {bounded functions from � into JR} ; then B(�) is 
a Banach space when equipped with the sup norm. Let T : B(�) ---+ lR be a positive 
linear map - i.e . , assume f 2 0 =? T(f) 2 0. Then T is also a bounded linear 
map; in fact, I I IT I I I ::; IT ( 1 ) 1 . In particular, any Banach limit (defined as in 12 .33) is a 
bounded linear operator. 

Similarly, if � is a topological space, then BC(�) = {bounded continuous functions 
from � into lR} is a Banach space when equipped with the sup norm, and any positive 
linear map from BC(�) into lR is a bounded linear map. 

c. The definitions of the vector space BL(X, Y) and its operator norm I l l I l l  depend on 
the norms I I  l l x  and II I I Y  of the spaces X and Y. Show that if I I  l l x  and I I I I Y  
are replaced with equivalent norms II I I � and I I  I I � , then the vector space BL(X, Y) 
remains the same, and its norm I l l I l l is replaced with an equivalent norm I l l I l l ' . See 
also the related result in 23.29(iv) . 

d. If Y is complete, then the normed space BL(X, Y) is complete - regardless of whether 
X is complete. 

In particular, BL(X, F) is complete, since the only scalar fields F that we are 
considering for normed spaces in this book are lR and C,  both of which are complete. 

e. Elementary Extension Theorem. Let Xa be a dense linear subspace of a normed 
space X; let X0 be normed with the restriction of the norm of X. Let Y be a Banach 
space. If fa : Xa ---+ Y is a continuous linear map, then fa extends uniquely to a 
continuous linear map f : X ---+ Y. Furthermore. fa and f have the same operator 
norm. 

Proof This is a special case of 19.27. (However, some readers may prefer to prove 
it directly.) 

23.3. Example: matrix norms. Let T be an m-by-n matrix, with scalar t;1 in row i , 
column j .  Consider elements x E Fn as n-by-1 column vectors and elements y E F"' as 
m-by- 1 column vectors. Then T acts as a linear map from Fn into Fm , with y = Tx given as 
usual by y; = 2:::7= 1  t;JXj ( 1  ::; i ::; m) . The choice of the norms on pn and Fn will affect the. 
value of the operator norm I I IT I I I · For most choices, the value of I I IT I I I is complicated and 
difficult to compute. But for the two following choices, the value of I I IT I I I is fairly simple. 

a. Let Fm and Fn both be normed by their respective I I 1 1 1 -norms, as defined in 22. 1 1 .  
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Then 

I l l  T i l l 
"' 

max L l tu l · l <:;j<:;n i= l  

609 

Hints: Let SJ = I:: , l t ij I · Choose J.: so that sk = max) s) " To show that I I IT I I I 2: sk , 
consider I I Tr l l / l l x l i wherL J"1 = 61, . 

b. Let IF"' and IF" both be normed by their respective I I  l l x-norms, as defined in 22 . 1 1 .  
Then 

I l l T i l l  
Tl 

max "'"""' I t;J I ·  
l < t < m  L - -

.i= l 

Hints: Let S; = I::) l tij l · Choose k so that sk = max; S; . To show that I I I T I I I 2: sk , 
consider I I T:r l l / l l ·r l l  where x1 = l t1 k l /t1 k if tJk i 0. 

c. (The following observations use results developed later in this chapter, so beginners 
may wish to postpone reading this paragraph.) The similarity between the two results 
above is not just coincidental ; either of those formulas can be obtained from the other 
as follows. The normed spaces (IFrn , I I  l l 1 ) and (IFm , I I I I = )  are each other's duals, 
as we shall see in 23 . 10. For any mapping T :  X ---+ Y, the dual map T* : Y* ----> X* 
satisfies I I I T* I I I = I I IT I I I ,  by 23.20. In the case of an operator given by a matrix T, the 
dual opPrator T* is given by the transpose matrix. 

23.4. Example: the norm of an integral transform. (This example requires some 
familiarity with advanced calculus. ) Let IF be the scalar field. Let [a, /3] and [r , b] be two 
closed bounded intervals in JR. Let G[a, !3] and C[r,  b] be the linear spaces of all continuous 
fuuctions from [o . ;3] iuto IF, rPspectively from [!, b] into IF. 

Let h lw a l onl inuous function from [o , (1] x [r , ll] into IF. For each f E G[r , b] , let 

( i  f ) ! s )  jb k: t 8 ,  t )f \ t )  dt 

Using uniform continuity arguments. show that (T f) ( · ) : [a. i3] ----> IF is a continuous function: 
hence T is a linear map from C[r, b] into G[a. (3] . 

The choice of the norms on G[o:. {J] and G[1. b] will affect the value of the operator norm 
I I IT I I I ·  For the two choices given below, the value of I I I T I I I is fairly simple to compute. ( Hint :  
Any continuous function can be approximated uniformly by step funct ions.) 

a. Whe11 qn . l:l l ;:mel C'[{ . 6 J are uornlPd as subspaces of L 1 Ja . f3] and U [r. b] ,  show that 
T is a bounded linecu map from C[r. b] into G[n. (31 with operator norm 

i i i T i i l f,J max lk(s , t) J ds . 
t 9 <:: h ' 0  

b. When C[ n ,  3] ami C h ,  b] an' nonned as subspaccs of L x [a , ;3] and L :x: [r, b] , show that 
T is a bounded linear map from C[!,  b] into C[a, (J] with operator norm 

I J JT I J I 
/·h 

max lk (s , t ) l ds. 
o <; .•<2J3 , 1 
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23.5. Example: quotient maps. Let (X, I I  l l x )  be a normed space, and let V be a 
closed linear subspace. Let Q = X /V be the quotient vector space, and let 1r : X --+ Q be 
the quotient map. Then: 

a. l l q i i Q = inf { l lx l lx : 1r(x) = q} defines a norm on Q; it is called the quotient norm. 
The topology it determines is the same as the quotient topology (defined in 15.30) . 
(This is a special case of a construction given in 22. 13 .e . ) 

b. l l1r(x) I IQ  = inf { l lx + v l lx : v E V} = inf { l lx - v l lx : v E V} = dist(x, V) . 
c. The quotient map 1r : X --+ Q has operator norm equal to 1 .  

23.6. Existence of unbounded linear maps. Let lF be the scalar field (IR or C) . 
a. Explicit example with incomplete domain. Let C[O, 1] = {continuous functions from 

[0, 1 ] lF} ; this is a Banach space when equipped with the sup norm. Let C1 [0, 1 ] = 
{f E C [O, 1] : f has a continuous derivative} ;  this is a dense linear subspace of C [O, 1] . 
Equipped with the sup norm, C1  [0, 1] is a normed vector space but not a Banach space. 
Define T : C1 [0, 1] --+ lF by T(f) = f' ( 0) .  Show that T is discontinuous. 

b. Nonconstructive example with arbitrary domain. Let X be any infinite-dimensional 
normed vector space, with scalar field lF. Then there exists an unbounded linear 
functional T on X - that is, a linear map from X into lF that is not bounded. 

Hints : Let {X a : o: E A} be a vector basis for X.  By assumption, A is infinite; hence 
we may assume N <;;; A .  Define T (xn ) = n l lxn l l for each n E N; define T arbitrarily on 
the rest of the basis; then use 1 1 .30.b. 

c. Remarks. There is no explicitly constructible example with complete domain; that will 
follow from 27.45(ii ) .  

23. 7 .  Let lF be the scalar field. As a special case of the normed space BL(X, Y) introduced 
in 23. 1 ,  we now consider the space 

X* BL(X, JF) {bounded linear maps from X into lF } .  

It has norm 
l l f l l x* sup { lf(x) l : x E X, l lx l l x = 1 } . 

(We emphasize that this supremum is not necessarily a maximum; contrast that with 
28.41 (0) . )  Our notation X*,  used in the remainder of this chapter, reflects the ideas 
of 9.55; the set X* will be called the dual of X. 

Caution: We remind the n;ader that the symbol X* and the term "dual" have different 
meanings in different branches of mathematics; a few of the meanings are indicated by 
the list in 9.55. Also, we remark that X' is another notation often used for the set of all 
bounded linear maps from X into lF. In fact, the notation X' is probably used a little more 
widely in the literature than our own notation X*. We prefer the notation X* because (i) 
it ties in neatly with the other notions of "dual" discussed in 9.55, and (ii) the mark ' on a 
blackboard can be mistaken for a smudge too easily. 

Preview of examples. In 23. 10 we shall prove (co) * = £1 , (£1 )  * = f!oc n and (£00) * � £1 . In 
29.30 we prove that (.C00(S))* = ba(S , lF) and (.C00 (tt) ) *  = ba(tt ) .  In 28.50 and 28.51 we 
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prove that (£.l(p,) )* = J:.,q (JL) i f  1 ::; p < oo and � + � = 1 (though for p = 1 we must assume 
JL is a-finite) .  In Chapter 28 we generalize this notion of "dual" to topological vector spaces 
that are not necessarily normable. 

23.8. Observation. Let X be any normed space. By 23.2.d, we know that X* is complete 
(i .e . ,  a Banach space) ,  regardless of whether X is complete. 

23.9. In many cases we can prove that a dual space X* is isomorphic to some simpler, 
more familiar normed space Y. In this context "isomorphic" means that we must preserve 
the linear structure and the norm. Thus, to each y E Y there is associated some bounded 
linear map Ty : X ----+ IF, satisfying I I ITv i i iX* = I I Y I I Y , and the mapping y f---t Ty must be a 
linear map from Y onto X* . Examples of such a duality are given below. 

Hints on how to prove such a representation: In most proofs of such a representation, it is 
trivial to show that the mapping y f---t Ty is linear. 

The inequality I I ITv l l l x* ::; I I Y I I Y  means that ITv (x) l ::; l l x l l x I I Y I I Y  for all x E X  and 
y E Y. Generally the proof of this inequality is straightforward - e.g. , it may follow 
immediately from some result such as Holder's inequality. 

The inequality I I ITq l l l x* 2 I I Y I I Y  means that sup l l x l l x= l iTv (x) l 2 I I Y I I Y · This may be 
harder to verify, because, as we noted in 23. 7, this supremum is not necessarily a maximum. 
(Conditions for it to be a maximum are considered in 28.4 1 (G ) . )  Instead, for each y E Y we 
must show that there exist Xn 's in X satisfying l lxn l l x = 1 and lim supn�= ITy (x, ) l 2 I I Y I I Y · 
Finding these Xn 's may take some effort ; their choice depends on the choice of y. 

Finally, showing that the mapping y f---t Ty is surjective may be a nontrivial matter. 
Following is one technique that works in several contexts: Let X0 be a dense subset of X 
consisting of particularly nice elements (e.g. , the polynomials are dense in certain spaces of 
continuous functions; the finitely valued functions are dense in certain spaces of measurable 
functions) .  Let f be any given element of X*. Study how f acts on each member of X0 ; 
use that information to find a corresponding y E Y such that f = Tq on X0 . Since f and 
Ty are continuous maps agreeing on a dense set , they must agree everywhere on X. 

23.10. Exercises/examples. For sequences of scalars x and y, define 

when this series converges. With notation as in 22. 15 , 22.25, and 23.9, show that 

(co ) * = f\ , 
(On the other hand, show that the finite-dimensional normed spaces (IFm , I I  I l l ) and (lFm , II l lac ) are each other's duals . ) 

Hint and remarks. The only tricky part of the proof is to show that (Rae ) * :f- R 1 . If the 
scalar field is IR, then any sequential Banach limit is a member of (£= ) * \ £1 . (Sequential 
Banach limits were defined in 12.33; their existence was proved in 12.3 1 . )  For complex 
scalars, the proof of (£= ) * =1- el then follows from 1 1 . 12. 
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We remark that there are other members of (Coo ) * \  C1 besides the sequential Banach 
limits; a complete characterization of (Coo) * is a special case of results in 29.30. We also 
remark that this proof of (Coo) * � C1 , or any other proof, must be nonconstructive - it 
cannot produce a particular example of some f E (Coo) * \ C1 - that is, the proof does not 
give an algorithm that takes a constructive description of a sequence x E Coo and produces 
a constructive description of the corresponding scalar f(x) . In fact, we cannot give such an 
explicit algorithm; the members of (Coo ) * \ C1 form an intangible class. The unavailability 
of explicit examples follows from 14.77 and 29.38. 

For the finite-dimensional case, refer to 1 1 .22. 

EQUICONTINUITY AND JOINT CONTINUITY 

23. 11 .  Remark. Several of the results below involve "an Abelian group equipped with a 
gauge consisting of G-seminorms (defined as in 2 . 13 ,  22 .2 , and 22.4) and with the resulting 
topology (defined as in 5. 1 5.h) and uniformity (defined as in 5.32 ) ." That complicated
seeming object will simplify. It is nothing more than "a topological Abelian group," as we 
shall see in 26. 14, 26.29, and 26.37. 

23.12 .  Additivity and uniform continuity. We now state two analogous theorems 
side by side. Actually, the result in the left column is a special case of the result in the 
right column, with <I> consisting of a singleton; but it is a special case important enough to 
deserve separate mention. 

Let X and Z be Abelian groups, each equipped with the topology and uniform structure 
determined by a gauge consisting of G-seminorms. Let x0 E X. 

Let f : X ---> Z be an additive map. 
Then the following are equivalent: 

(A) f is continuous at x0 .  
(B )  f is continuous at 0. 
(C) f is continuous. 
(D) f is uniformly continuous. 

If X and Z are normed vector 
spaces, f is linear, and I I  I I  is the 
operator norm defined as in 23. 1 ,  
then (A)-(D) are also equivalent to: 

(E) 1 1 ! 1 1  < oo. 

Let <I> be a collection of additive maps 
from X into Z. Then the following are 
equivalent : 

(A) <I> is equicontinuous at x0 .  
(B )  <I> is equicontinuous at 0. 
(C) <I> is equicontinuous. 
(D) <I> is uniformly equicontinuous. 

If X and Z are normed vector spaces, <I> 
is a collection of linear maps, and I I  I I  i s 
the operator norm defined as in 23. 1 ,  then 
(A)-(D) are also equivalent to: 

(E) sup/E<I> 1 1 ! 1 1  < oo.  

23.13. Baire-Osgood Equicontinuity Theorem for Groups. Let X and Y be groups, 
with topology and uniform structure given by gauges consisting of G-seminorms. Assume 
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that X i s a Baire space. (That last condition is satisfied, for instance, if X i s topologized 
by a single G-seminorm that is complete.) 

Let h , h, h, . . . be continuous additive functions from X into Y. Assume that J(x) = 

limn�= fr, (x) exists for each x E X. 
Then {h , h,  h ,  . . .  } is equicontinuous, f is continuous, and fn --+ f uniformly on com

pact subsets of X as n --+  oo. 

Proof It suffices to prove equicontinuity; then the other conclusions follow from 18 .32.b. 
Let R be the gauge on Y. In view of 18.30.b, to prove equicontinuity from X to (Y, R) it 
suffices to prove equicontinuity from X to (Y, p) for each G-seminorm p in R. Fix any p. 
Since the fn 's and f are additive, it suffices to prove that the sequence Un) is equicontinuous 
at some point x E X  (and we may use different x's for different p's) . That fact follows from 
the nonlinear version of the Baire-Osgood Theorem in 20.8. 

23.14. Uniform Roundedness Theorem (normed space version) . Let X and Y be 
normed spaces; assume X is complete. Let if> be a collection of continuous linear maps from 
X into Y. Then these conditions are equivalent: 

(A) if> is bounded pointwise; that is, !J>(x) = { !f(x) : ip E if>} is a bounded subset 
of Y for each x E X. 

(B) if> is uniformly bounded, i .e . , equicontinuous; that is, sup<PE<P I I I IP I I I < oo. 
Proof Obviously (B) =? (A) . For (A) =? (B), suppose on the contrary that if> is not 
equicontinuous. Then we can choose a sequence (IPk )  in if> with I I I IPk l l l  > k .  For each k, 
we can choose some uk E X  with l l uk l l x = 1 and I I IPk (uk ) I I Y  > k. (Remark. These choices 
do not require the Axiom of Choice, but only the Axiom of Countable Choice, discussed in 
6.25.) 

We offer two different methods for finishing the proof. The first method is shorter but 
relies on earlier results that are rather nonelementary: By the Baire Category Theorem 
(a form of Dependent Choice) , the complete metric space X is a Baire space. Since the 
functions IPk are bounded pointwise, the functions k- 112ipk converge pointwise to 0, and 
therefore are equicontinuowi by 23. 13. Since the vectors k- 1 12uk converge to 0 in X, it 
follows that k- 1 /21Pk (k-112uk) --+ 0 in Y. But l l k- 1/2ipk (k-1/2uk ) I I Y  = k- 1 I I1Pk (uk) I I Y  > 1 ,  
a contradiction. 

The second proof, though longer, may be preferable to some readers, because it is self
contained and does not rely on the Baire Category Theorem or other deep topological 
theorems. (In fact, it uses Countable Choice but not Dependent Choice.) It is based on 
Bennefeld [1980] . Recursively define a sequence (xn ) in X and a sequence Un) in if>, as 
follows : Let x0 = 0 and choose any fo E if>. Having chosen x0 , x1 , . . .  , Xn- 1 E X and 
fo , h , . . .  , J, _ 1 E if> (clear for n = 1 ) ,  define the numbers 

n- 1 
A, L sup I I J(xJ ) I I Y  and 

j=O /E<P 
Bn 2" max { 1 ,  l l l fo l l l , l l lh l l l , . . .  , l l l fn- 1 1 1 1 } ;  

these are both finite by our hypotheses. Now let fn be some member of if> that satisfies the 
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inequality l l l fn I l l > (An +n)Bn ; if a canonical choice is desired, we may take fn to be the first 
member of our sequence ( IPk) that satisfies that inequality. Now multiply the corresponding 
vector Uk by a suitable scalar, to obtain a vector Xn E X satisfying l l xn l l x < B;; 1 and 
l l fn (xn ) I I Y  > An + n. This completes our recursive definition; we obtain sequences (xn ) 
and Un) · 

Since l l xn l l x < B;; 1 ::::; 2-n and X is complete, the sum 

X Xo + X1 + X2 + · · · 
is a well-defined member of X.  For all integers j > n, we have 

hence l l fn (Xn+l + Xn+2 + · · · ) I I Y  :S 1 .  Also, l l fn (xo + X1 + X2 + · · · + Xn-d i i Y  :S An by the 
definition of An . Use the fact that 

X (xo + X1  + X2 + · · · + Xn-d + Xn + (xn+ l + Xn+2 + · · · ) . 

It follows that l l fn (x) I I Y  > n - 1 for every n, which contradicts the assumption that 
sup/E<I> l l f(x) I I Y  < oo. 

23.15. Theorems on joint continuity. Let X, Y, Z be groups, each of which is topol
ogized by a gauge consisting of a collection of G-seminorms. Let h : X x Y --> Z be a 
biadditive, separately continuous map - i.e. , assume that z = h(x, y) is a continuous, 
additive function of either of the variables x, y when the other variable is held fixed. Then: 

a. h is jointly continuous if and only if h is jointly continuous at 0 - i.e . , if and only if 
whenever ( (x, , Yn )  : a E A) is a net converging to (0, 0) in X x Y, then h (xa, Yn )  --> 0 
in Z. 

Proof The "only if" part i s obvious. For the "if" part , suppose that (ua , va ) --> 
(u, v) in X x Y. Then (ua - u, va - v) --> (0, 0) in X x Y, hence 

h(ua - U, Va - v) + h(u , va - v) + h (ua - u , v) --> 0 

by joint continuity at (0, 0) and separate continuity. 
b. Suppose that the topologies on X and Y are each given by a single G-seminorm and 

at least one of X, Y is complete. Then h is jointly continuous. 
Proof Say X is complete. Let ( (xn , Yn ) )  be a sequence converging to (0, 0) in 

X X Y;  we wish to show h(xn , Yn ) --> 0 in Z. Define mappings fn : X --> Z by 
fn (x) = h (x , Yn) · Then each fn is continuous and additive, and fn --> 0 pointwise. 
By 23. 13, the sequence Un) is equicontinuous. Since Xn --> 0, we have fn (xn ) --> 0 as 
required. 

c. Suppose X, Y, Z are normed spaces, and let h : X x Y --> Z be a bilinear mapping. 
Then h is jointly continuous if and only if the number 

l l l h l l l sup { l l h(x, y) l l z  : l l x l l x ,  I I Y I IY  :S 1 }  
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is finite. 
Further observations. The jointly continuous, bilinear maps from X x Y into Z 

form a normed space, when normed by l l l h l l l defined in this fashion. It is complete if 
Z is complete. 

THE BOCHNER INTEGRAL 

23.16. Definitions. Let (X, I I )  be a Banach space, let (D, S ,  f.L) be a measure space, and 
let f E L 1 (f.L, X). Then the Bochner integral, or Bochner-Lebesgue integral, of f 
with respect to f.L, denoted by In f df.L, is an element of X defined as follows. 

When f E L1 (f.L, X) is finitely valued, then we can define the integral as in 1 1 .42; that 
is, In fdf.L = L.r f.L u- 1 (x)) X. It is easy to verify that 

1 1 ! 1 1 1  . 

Thus the mapping f >---+ In f df.L is a continuous linear map from a dense subspace of L1 (f.L, X) 
into X . By 23.2 .e , it therefore extends uniquely to a continuous linear map from L1 (f.L, X) 
into X, satisfying ( * ) . 

By a "measurable set" we mean a member of S . For any measurable set S � D, we 
may define the Bochner integral Is f df.L by restricting f to the set S and restricting f.L to 
measurable subsets of S .  However, Is f df.L is also equal to In lsf df.L, where 1s is the 
characteristic function of S. Note also l is f df.L I :::; Is l f l  df.L. 

A few more basic properties of the Bochner integral are given below; some additional 
properties can be found in 29. 10 and in the consequences of that result. The Bochner 
integral should also be contrasted with the Bartle integral, introduced in 29.30. 

Further remarks. Terminology varies. The integral defined above (which we shall call 
the Bochner integral in this book) is often known as the Lebesgue integral - particularly 
in the special cases where f.L is Lebesgue measure and/or X is finite-dimensional. 

When f.L(D) = 1 - i.e. , when f.L is a probability measure - then In f df.L is also called 
the expectation of f. 

Exercise. If f E L1 (f.L, JR) and f 2: 0, then the Bochner integral Jn f df.L is equal to the 
positive integral .hl f df.L defined in 21 .36. 

23. 17. Let nl ' n2 , X be any sets. Then any function f : nl X n2 ____, X  can also be viewed as 
a map 1 :  n2 ____, xn, ,  whose value at any W2 is the mapping [1(w2) ] ( · )  = f ( - , w2 ) : nl ____, X. 
This obviously gives us a bijection between xn, xn2 and (xn, ) n2 • 
Fubini's Theorem. Let (D1 , S 1 , f.LI )  and (D2 , S2 , f.L2 ) be a-finite measure spaces, and let 
(Dl X n2 ,  s l X s2 ,  /.Ll X f.L2 ) be the product measure space, defined as in 21 .40. Let X be 
a Banach space, and let Y = U (tL1 , X) . Then the mapping f >---+ 1 defined above gives an 
isomorphism (i .e. , a linear, norm-preserving bijection) from L 1  (JL 1  x f.L2 ,  X) onto L 1  (f.L2 , Y) . 
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Furthermore, if f E L1 (111 x f12 , X ) ,  then the following two iterated Bochner integrals 
exist and are equal to the noniterated Bochner integral fo, xn2 f d(/11 x /12) · 

(i) For almost every W2 in n2 , the Bochner integral fo, J( - , w2 ) df11 exists in X'  and 
the mapping w2 f---7 fo, !( · ,  w2) d111 (from fl2 into X)  is integrable in X with respect to 
/12 · The resulting iterated integral (in X over 111 and then in X over 112 )  may be denoted 
fo2 [fo, !( · , w2 ) d/11 J d112 (w2) . 

( ii) For almost every W2 in n2' the function [i( W2 ) l ( . ) : n 1 ----+ X is a member of y.  The 
mapping w2 f---7 i(w2 ) (from fl2 into Y) is integrable in Y with respect to 112 .  Integrate in Y 
to obtain rp = J02 f df12 , a member of Y. Then rp E Y = £1 (111 ,  X) may itself be integrated 
in X; thus we obtain the iterated integral fo, rp d111 = fo, [fo2 jd/12 J d/11 (in Y over /12 and 
then in X over 111 ) . 
Proof The map f f---7 f is obviously linear. We shall show that it maps a dense subset of 
L1 (111 x 112 , X)  onto a dense subset of L1 (112 , Y) ,  in a norm-preserving fashion; then the 
linear map obviously extends to an isomorphism between the two spaces. 

By a basic function we shall mean a function f : n1 X n2 ----+ X of the form s ( . ) = 
L:?=1 1Aj xBj ( - )xj , where n is a positive integer, the xj 's are members of X, and l Aj xBj is 
the characteristic function of Aj X Bj ' where Aj c;;; n1 and Bj c;;; n2 are measurable sets 
with finite measure. We shall show that the basic functions s are dense in L1 (111 x 112 , X) ,  
and their images s are dense in £1 (112 , Y) .  

Let any f E L1 (111 x 112 ,  X)  be given. We know that the integrable, finitely valued 
functions are dense in L1 (111 x /12 , X) .  Hence f can be approximated arbitrarily closely by 
a function of the form L:=1 lsk ( · )xk, where each Sk is a member of S1 X S2 with finite 
measure. By 21 .26, each Sk can be approximated arbitrarily closely in measure by a set 
that is a union of finitely many measurable rectangles - i.e. , for any E > 0, there exist 
Ak, 1 '  Ak,2 , . . . ' Ak,N(k) E s1 and Bk, 1 '  Bk,2 ,  . . .  ' Bk,N(k) E s2 such that the sets 

. . . ' Ak,N (k) X Bk,N(k) 
are disjoint subsets of sk and have union s� satisfying (/11 X /12) (Sk \ su < E .  Then f is 
approximated by the basic function s ( · ) = L::=1 I:�(;) lAk , i x Bk , i ( · )xk. 

On the other hand, let f : n1 X n2 ----+ X be a function with i E L1 (f12 ,  Y). Since 
the finitely valued, integrable functions are dense in L1 (f12 , Y) ,  we can approximate j 
arbitrarily closely by a function of the form L:�n=1 IBJ )yk, where Bk is a member of 
S2 with finite measure and y� E Y = L1 (111 , X) .  Each Yk ( · )  can, in turn, be approxi
mated arbitrarily closely by a finitely valued, integrable function I:�(;) l Ak , i ( · )x; .  It fol
lows easily that j is approximated arbitrarily closely by functions of the form s, where 
s( · )  = L::=1 L�(;) lAk , i x BJ)xk. 

Now let any corresponding functions f E xn, xn2 and f E (xn, ) 02 be given. We claim 
that 

f belongs to .C 1 (!11 x /12 , X) if and only if f belongs to .C 1 (/12 , .C 1 (111 , X)) , in 
which case l l ! l l u c11, x 112 ,x) = l l l lf( · ) I I Y I I · L ' (112 ,lF.) 



Hahn-Banach Theorems in Normed Spaces 617 

This is clear for basic functions; equality of the norms follows easily from Tonelli 's Theorem 
(21 .40) . Thus we obtain a norm-preserving linear map between dense subsets of the two 
Banach spaces L 1 (p,1 x p,2 , X ) and L1 (p,2 , Y) .  Taking limits proves this claim for all f. 

It is easy to verify that the three kinds of Bochner integrals agree for any basic function. 
The basic functions are dense in the integrable functions, and the Bochner integrals are 
continuous linear maps; therefore the Bochner integrals agree for all integrable functions. 

HAHN-BANACH THEOREMS IN NORMED SPACES 

23.18. Following are several principles, any one of which may be referred to as "the Hahn
Banach Theorem;" they are equivalent to each other and to the Hahn-Banach Theorems 
presented in 12 .3 1 ,  23. 19 , 26.56, 28.4, 28. 14.a, and 29.32. Most of the principles below refer 
to the dual space X* defined in 23. 7. 

Each of the principles below asserts the existence of some object , but does not specify 
how to find that object. In general, we may not be able to find the object. The existence 
proof is not constructive, and in fact it cannot be made constructive. The Hahn-Banach 
Theorem implies the existence of certain known intangibles; see 14.77 and 29.38. 

The norm-preserving extension A described in (HB7) is not necessarily uniquely deter
mined by A. In 23.21 we consider some conditions for uniqueness. 

Note that (HB10) asserts the equality of an infimum (the distance) and a supremum 
(the maximum) .  The principle (HB10) can be found in Luenberger [1969] or Nirenberg 
[1975] . 

The charge described in (HB12) is closely related to another charge described in 29.32. 

(HB7) Norm-Preserving Extensions. Let (X, I I I I ) be a normed space, 
and let Y be a linear subspace of X.  Let A E Y* -- that is, let A be a bounded 
linear map from Y into the scalar field, where Y is normed by the restriction of 
II 1 1 . Then A can be extended to some A E X* satisfying I IA I I x* = I I A I I y* · 

(HB8) Functionals for Given Vectors. Let (X, I I  I I ) be a normed vector 
space other than the degenerate space { 0} , and let x0 E X .  Then there exists 
some A E X* such that I I A I I  = 1 and A(xo ) = l l xo l l ·  Hence the norm of a vector 
in X can be characterized in terms of the values of members of X*: 

l lxo l l max { l f(xo) l : f E X* ,  l l f l l x* = 1 } · 
(We emphasize that this is a maximum, not just a supremum; contrast that 
with 28.41 (G) . ) Therefore each x E X acts as a bounded linear functional 
Tx : X* ----> lF by the rule Tx (f) = f(x) , with norm I ITx l lx** = l lx l l x · 

(HB9) Separation of Points. If X is a normed space, then X* separates 
the points of X .  That is, if x and y are distinct points of X, then there exists 
some A E X* such that A(x) =1- A(y) . Equivalently, if u E X \ {0} , then there 
exists some A E X* such that A( u ) =1- 0. 
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(HBlO) Variational Principle. Let X be a normed space. Let V be a closed 
linear subspace, let vl_ = {.A E X* : A vanishes on V} ,  and let Xo E X \  v.  
Then Vl_ \ {0} i s nonempty, and 

dist (xo , V) { I .A(xo) l 1_ } max -1-I.A I-I : A E V \ {0} . 

(HBll)  Separation of Subspaces. Let B be a closed linear subspace of a 
Banach space X, and let TJ E X \ B. Then there exists a member of X* that 
vanishes on B but not on TJ. 

(HB12) Luxemburg's Measure. For every nonempty set 0 and every proper 
filter :t of subsets of 0, there exists a probability charge JL on ::P(O) that takes 
the value 1 on elements of :f. 

Proof of (HB2) =? (HB7) . If the scalar field is IR, use p(x) = l lx l l  I I .A I I y* · If the scalar 
field is C, use 1 1 . 12. 

Proof of (HB7) =? (HB8) . Let Y be the linear subspace spanned by x0 ; define .A(rx0) = 

r l lxo l l  for all scalars r .  
Proof of (HB8) =? (HB9) . x - y =1- 0; choose A E X* with A(x - y) = l lx - Y l l ·  
Proof of (HB8) =? (HBlO) . I f  v E V and ). E Vl_ \ { 0 } ,  then 

l l v - xo l l > I .A(v - xo ) l 
I I A I I  

I .A(xo) l 
-1-I.A I-1 . 

Take the infimum on the left over all choices of v, and take the supremum on the right over 
all choices of .A ; this proves that 

dist (xo ,  V) > { I .A(xo) l 1_ } sup -I-I.A I-I : ). E V \ {0} . 

It now suffices to exhibit some particular A E V 1_ \ {0} that satisfies 

dist (xo , V) I .A(xo ) l 
I I  .A l l  ( ! )  

Let Q = X/V be the quotient space, equipped with quotient norm I I  I IQ as in 23.5 . As 
we noted in 23.5 , the quotient map 1r : X ----+ Q has norm 1. As in (HB8) , we may choose 
some functional A E Q* with I I A I I  = 1 and A(7r(xo ) )  = 1 1 7r (xo) I I Q = dist (xo , V) . Let 
). = A o 1r : X ----+ {scalars} . The function ). vanishes on V, since 1r does. Thus ). satisfies ( ! ) .  

Proof of (HB9) =? (HBl l ) . Let Q = X/ B be the quotient space, equipped with the 
quotient topology; let 1r : X ----+ Q be the quotient map. Refer to results in 23.5. Then 
1r(77) is different from the 0 element of Q. By (HB9) , there is some continuous linear map 
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A :  Q ___, {scalars} that does not vanish on 1r(ry) . Then A o 1r : X ___, {scalars} is a continuous 
linear map that vanishes on B but not on ry. 

Proof of (HBlO) =? (HBl l ) .  Obvious. 

Proof of (HB l l )  =? (HB12 ) .  Let J = {fl\S : S E 9'"} ; this is a proper ideal. For each 
E E J, let lE : n ___, [0, 1] be the characteristic function of the set E; also let 1 :  n ___, [0, 1 ] 
be the constant function 1 .  Let X be the Banach space of bounded functions from f2 into 
IR, with the sup norm. Let B be the closed span of the functions lE ,  for E E J .  

We claim that 1 � B. Indeed, consider any function g in the span of the l E 's. It is of 
the form 

g C1 lE1 + C2 lE2 + · · · + Cn lEn 
for some nonnegative integer n, some real numbers ci , and some E; 's in :J. Since J is a 
proper ideal, the set E = E1 U E2 U · · · U En is a member of :J, hence a proper subset of fl; 
let w be some point in n \  E. Then g(w) = 0, while l (w) = 1 .  This shows that any element 
of the span of the lE 's has distance at least 1 from the constant function 1 ,  and therefore 
the constant function 1 does not belong to B. 

Now, using (HB l l ) ,  we find that there is some bounded linear functional A : X ___, IR 
that vanishes on B but not on the constant function 1 .  Take v(S) = A(ls ) ;  then v is a 
bounded real-valued charge on P(rl) that vanishes on each E E J but not on n. As we saw 
in 1 1 .47, the positive part of this charge is given by 

sup{v(A) : A S:  S} . 

This function z;+ is a positive charge on P(rl) that vanishes on each E E :J but not on n. 
Finally, JL( S) = z;+ ( S) I z;+ ( n) is a probability charge with the required properties. 

Proof of (HB12) =? (HBl ) .  Let (�, �) be a directed set, and let B(�) = {bounded 
functions from � into IR} .  Let 9'" be the filter of tails of (�, � ) ,  as defined in 7.9 - that is, 
9'" is the filter on � consisting of the supersets of sets of the form { 8 E � : 8 >,:= 80 } .  

By assumption, there exists a probability charge JL on P(�) that takes the value 1 on 
elements of 9'". Define LIM(u) = J-6. u(o) dJL(D) in the obvious fashion for simple functions 
u. Since simple functions are dense, we can extend this definition to u E B (�) by taking 
limits. (This construction is a special case of the Bartle integral construction described in 
29.30 . ) 

Note that if F E 9'", then LIM(lp ) = JL(F) = 1 (where lp : f2 ___, {0, 1 }  is the character
istic function of F) , and 

JL(� \ F) JL(�) - JL(F) 1 - 1 0. 

If g is a bounded real-valued function on � that vanishes on F, then - l lg l loo l-6.\F :::; g :::; 
l lg l l oo l-6.\F ;  hence 

0 0 

and thus LIM(g) = 0. If h is any bounded real-valued function on �' then h - hlp vanishes 
on F, so LIM( h) = LIM(hlp ) .  
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We shall show that LIM is a Banach limit with the desired properties. Clearly LIM 
is a positive linear functional; it suffices to show that LIM( u) :::; lim sup8E.t> u( b) for each 
u E B(!::. ) .  Fix any number r > lim sup8E.c, u( b) ;  it suffices to show that r 2 LIM( u) . By 
our choice of r, we have r > u(b) for all b sufficiently large - say for all b )r b0 . Thus 
r1p 2 u1p . The set F = {b E /::,. : b )r b0 } belongs to 1', hence 

LIM(u) LIM(r) r. 

23.19. Luxemburg 's Boolean equivalents of HE ( optional ) .  The principle (HB12) involved 
algebras of sets. We shall generalize that principle to Boolean algebras. Admittedly, Boolean 
algebras don't seem to be much more general - - indeed, (UF7) in 13.22 tells us that every 
Boolean algebra is isomorphic to an algebra of sets. However, UF is stronger than HB, so 
we are not permitted to use UF in the next few paragraphs when we prove that certain 
principles are equivalent to HB. 

First , we must generalize some notions of charges and measures to Boolean algebras. 
a. In a Boolean lattice X, we say that two elements x, y are disjoint if x 1\ y = 0. Note 

that 0 is disjoint from any element; 0 is even disjoint from itself. A subset of X is 
disjoint (or, for emphasis, pairwise disjoint) if each pair of elements of that set is 
disjoint. 

b. A probability (or probability charge) on X is a function fL :  X ----+ [0, 1] such that 
M( 1 ) = 1 and 

f.L(x V y) = f.L(x) + f.L(Y) for disjoint x, y E X. 

Of course, if fL is any probability on a Boolean lattice X, then f.L(O) is equal to 0, since 
0 is disjoint from itself. Thus, we have {0, 1 }  <;;: Range(f.L) <;;: [0, 1] . A two-valued 
probability on X is a probability with range equal to {0, 1 } .  EXPrrise. Show that a 
two-valued probability is the same thing as a two-valued homomorphism - (defined 
in 13.8) . 

We can now generalize (HB12) to Boolean algebras. The principle (HB13) was recently used 
by Pawlikowski [ 199 1] to prove that the Hahn-Banach Theorem implies the Banach-Tarski 
Decomposition. It is interesting to compare (UF8) and (HB13) , both of which assert the 
existence of charges. Also, in 29.37 are some even weaker assertions of the existence of 
charges. 

(HB13) On every Boolean algebra there exists a probability charge. 

(HB14) Let X be a Boolean algebra. Then for every proper ideal I in X 
there exists a probability fL on X that vanishes on I. 

Proof of (HB12) =? (HB13) . Let X be a Boolean algebra. By the Tarski-Scott-Luxemburg 
Lemma 13 . 12 , there exists a surjective homomorphism f :  S ----+ X, where S is some algebra 
of subsets of some set n. Then Ker(f) is a proper ideal in S , and so there is a probability 
fL on S that takes the value 0 on elements of Ker(f) . Hence Jl determines a probability v 
on S/Ker(J) , which is isomorphic to X. 
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Proof of (HB13) =? (HB14) . Let 1r : X ---> X/ I be the quotient map, and let v be 
a probability on the Boolean algebra X/ I .  Define JL (x) = v ( 1r(x) ) ;  verify that fi is a 
probability on X that vanishes on elements of I. 

Proof of (HB14) =? (HB12). Obvious. 

A FEW CONSEQUENCES OF HB 

23.20. The dual functor in normed spaces. Let IF' be the scalar field ( IR  or q .  Let 
C and C* both be the category of norrned spaces over IF', with continuous linear maps for 
morphisms. Then we may define a dual functor X t--+ X* as in 9.55 through 9.59, using the 
scalar field IF' for the object � discussed in 9.55. The resulting dual space X *  defined in 9.55 
is the same as the normed vector space X *  defined in 23.7. For any morphism f :  X ---> Y ,  
the dual map f* : Y* ---> X *  is defined by J*(>.. ) = >.. o f . 

By the Hahn-Banach Theorem (HB9) , X* separates points of X .  Therefore, points in 
X may be viewed as distinct functions acting on X* .  1\iioreover, the embedding X __f_. X** 
i s norm-preserving. as we noted in (HB8) in 23. 18 . 

For any morphism f : X ---> Y ,  the bidual function f** : X** ---> Y** i s an extension of 
the function f : X ---> Y.  All of these statements and all of hypotheses (H1 ) through (H5) 
in 9.55 through 9.57 are now easy to verify. 

A Banach space X is reflexive if X**  = X .  Some Banach spaces are reflexive, but others 
are not. For imtance, f!P is reflexive for 1 < p < oo, but £1 , £:)() , and c0 are not. Reflexivity 
of Banach spaces will be investigated further in 213.4 1 (A) . 

A slightly mor-e subtle result: 1 1 ! 1 1  = 1 1 !* 1 1  = I I I** I I  for any continuous linear map f :  X ---> Y 
}wtwPen normed spaces. 

Hints : From the definition f*(>.. ) = >.. o J, prove that l l f* l l  ::; l l f l l - Similarly, I I I** II ::; I I I* I I ·  
On the other hand. use the fact that f** : X * *  ---> Y * *  is an extension of f : X ---> Y to 
show that 1 1 ! 1 1  ::; l l .f** l l - Finally, combine these results: l l .f* l l  ::; l l f l l  ::; l l f** l l  ::; l l f* l l ·  

23.21. Taylor-Foguel Theorem (optional) .  Let (X, I I  I I ) be a Banach space, and 
let (X* , I I I I ) be its dual. Then X *  is strictly convex if and only if every bounded linear 
functional on a subspace of X has a 'unique norm-preserving linear extension. 

Proof. First , suppose there exists some linear subspace X0 � X  and some fo E ( X0 ) *  that 
has distinct extensions /J , h  E X* with l l fo l l  = 1 1 /J I I  = l lh l l · Let f = (/J + h )/2. Then f 
is also an extension of fo , so 1 1 ! 1 1  2 l i fo I I · Now /J . h .  f are collinear, so X *  is not strictly 
convex. 

Conversely. X *  is not strictly convex; we shall show that X does not have unique 
norm-preserving extensions. By assumption, there exist distinct f, g E X *  with l l f l l x* = 

l l g l l x * = I I � (! + g) l l x * = 1. Let M = { :r E X  : f(:r) = g(.r ) } ,  and let rp be the restriction 
of f or g to the linear subspace 1\I. It suffices to show that l l rp l ll\I* = 1, for then f and g 
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are distinct norm-preserving extensions. We know that I I 'P I IM* :::; 1 by the definition of the 
operator norm; thus it suffices to show that I I'P I IM* 2:: 1 .  Since f -j. g, we may choose some 
� E X  with f(�) - g(�) = 1 .  Then each x E X  may be expressed in one and only one way in 
the form x = y+ a� , where y E M  and a is a scalar. Since I I � (! +g) l l x* = 1 ,  we may choose 
a sequence (xn ) in X with l lxn l lx = 1 and � (! + g) (xn ) ____, 1 .  Since l l f l l x* = l l 9 l l x* = 1 ,  
it follows that f(xn) ____, 1 and g(xn ) ____, 1 .  Write Xn = Yn + an� with Yn E M and scalar 
an . Then an = (! - g) (an�) = (! - g) (xn - Yn) = (! - g ) (xn ) ____, 1 - 1 = 0, hence 
I I Yn i i M = I I Yn l l x ____, 1 .  At the same time, 'P(Yn ) = f (Yn) = f (xn) - anf(O ____, 1 .  Thus 
I I'P I I M* 2:: 1 ,  completing the proof. 

23.22. Kottman's Theorem. Let X be an infinite-dimensional normed space. Then X* 
is infinite-dimensional. Furthermore, there exists a sequence (xn ) in X such that l l xn II = 1 
for each n and l l xm - xn l l > 1 whenever m -::f. n. 
Remark. It follows easily from compactness considerations (see 27 . 1 7) that such a sequence 
cannot exist in a finite-dimensional normed space. 

Outline of proof This theorem was first proved by Kottman, but the proof given here is 
due to T. Starbird and was published by Diestel [1984] . 

a. Show there exist x1 E X and )q E X* with l l xd = I I  .Ad = >.1 (xl ) = 1 .  
b .  We now proceed by induction. Assume 

and 

have been chosen, all with norm 1 ,  and with >.1 , >.2 , . . .  , )..k linearly independent . Show 
there exists y E X  such that >.1 (y) , >.2 (y) , . . .  , >.k (Y) < 0. 

c .  Show there exists a nonzero X in n7=1 Ker(>.i ) i here "Ker" denotes kernel. 
d. Show that for any sufficiently large positive number K, we have I I Y I I  < I I Y  + Kxl l · Fix 

some such K. 
e. Using the linear independence of the >.; 's, show that i f a1 , a2 , . . .  , ak are scalars, not 

all 0, then I I:7=1 ai>.i (Y + Kx) l < I I  I:7=1 ai>.i i i i i Y  + Kxl l · 
f. Let Xk+ l = (y + Kx)/ I I Y  + Kx l l , and then by (HB8) choose some >.k+ 1 E X* with 

l l >.k+ 1 1 1 = >.k+1 (xk+1 ) = 1 .  Using 23.22.e, show that >.k+ 1 is not a linear combination 
of >.1 , >.2 , . . .  , >.k ,  completing the induction. 

g. Show that if 1 :::; i :::; k, then >.i (xk+ l ) < 0, and hence l lxk+ 1 -x; l l 2:: I .Ai (xk+1 -x; ) l > 1 .  

DUALITY AND SEPARABILITY 

23.23. If (X, I I  I I ) is a Banach space and X* is separable, then X is separable. 
Proof (following the exposition of M. Schechter [1971 ] ) .  Let ( 'Pn) be a dense sequence in 
X* . For each n ,  choose some Vn E X  that satisfies l l vn l l  = 1 and ('Pn , vn) 2:: � I I'Pn l l · Let 
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V be the closed linear span of the Vn 's. Then V is a separable, closed linear subspace of 
X; it suffices to show V = X. Suppose, on the contrary, that w E X \  V. By (HBl l )  in 
23 .18 , there is some 'lj; E X* that vanishes on V but not on w. By rescaling we may assume 
l l'!j; l l = 1 .  For each n, we have 

1 
2 I I 1Pn l l :S: (ipn , Vn) 

Hence 
1 = l l'!j; l l  :S: I I IPn - '!j; l l + I I IPn l l  :S: 3 I I1Pn - '!j; l l · 

But the IPn 's are dense in X*,  so they should come arbitrarily close to 'lj;, a contradiction. 

Remark. It is possible to have X separable and X* not separable. For instance, £1 is 
separable, but (see 23. 10) its dual is foe, which is not separable. 

23.24. Proposition. Let (X, II I I )  and (Y, II I I )  be real Banach spaces. Assume one is the 
dual of the other (i.e. , assume either X = Y* or Y = X*) .  Let S be a separable subset of 
X.  Then there exists a sequence (Yn) in Y satisfying l l Yn II = 1 for all n, and such that 

l i s II = sup (yn , s) for each s E S. n 

Proof. Note that if I I Y I I  ::; 1 then (y, s) ::; l l s l l - Let (sk) be a dense sequence in S. We 
proceed by two different arguments: 

(i) If Y = X*, we may apply (HB8) . For each k, there exists some Yk E Y satisfying 
I IYk l l  = 1 and (y, sk) = l l sk l l -

(ii) If X =  Y*, we may apply the definition of the operator norm - i.e. , the norm of X.  
For each k ,  we have l l sk I I = sup { (y, sk) : y E Y, I I Y I I  = 1 } .  Hence we may choose a sequence 
(Yk,j : j = 1 ,  2, 3, . . .  ) in Y satisfying I I Yk,j II = 1 and limk�oc (Yk.j ,  sk) = l l sk I I - Now arrange 
the doubly indexed set {Yk.j : j, k E N} into a sequence (Yn) (see 2.20.e) . 

In either case we obtain a sequence (Yn ) in Y, satisfying I I Yn l l = 1 for each n and 
satisfying supn (Yn , sk )  = l l s k l l  for each k .  Now let any s E S be given and any number 
E > 0. Since (sk) is dense in S, we have l i s - sk l l  < E for some k .  For each n, we have 
(yn , s) > (yn , Sk) - E, and therefore supn (yn , s) 2: l l s k l l - E > l i s  I I - 2E. Now let E l 0. 

23.25. Definitions. Let X be a Banach space, and let (rl, S )  be a measurable space. 
A function f : n --+ X is weakly measurable if the scalar-valued function (ip, f( · ) )  is 
measurable for each fixed ip E X* .  A function 'lj; : n --+ X* is weak-star measurable if 
the scalar-valued function ('!j;( - ) ,  x) is measurable for each fixed x E X. A function satisfying 
either of these conditions will be called scalarly measurable. 

Proposition. Any scalarly measurable, separably valued function is strongly measurable 
(defined as in 21 .4) . 

Proof (modified slightly from Hille and Phillips [1957] ) .  Here we assume X and Y are 
Banach spaces, one is the dual of the other, f : n --+  X is separably valued, and (y, f( · ) )  
i s measurable for each fixed y E Y. Replacing each y with Re y , we may assume the scalar 
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field is lR (see 1 1 . 12 ) ;  this simplifies our notation slightly. Let S be the closed span of the 
range of f; then S is separable. As in 23.24, choose a sequence (Yn) in Y with l lYn I I  = 1 for 
all n and l i s I I  = supn (yn , s) for each s E S. 

Temporarily fix any v E S. The function f(w)-v takes its values in S. Moreover. for each 
n E N, the real-valued function w f--+ (yn , f(w) - v) = (yn , f(w)) - (yn , v) is measurable. 
Hence, for each v E S the real-valued function w f--+ l l f (w) - v i i  = supn (yn , f(w) - v) is 
measurable. 

In particular, if (xk ) is a dense sequence in S, then each of the functions w f--+ l l f (w) 
xk l l (for k = 1 ,  2, 3, . . .  ) is measurable. Now, for each w E n and j E N ,  let fJ (w) be the 
first term in the sequence x1 , x2 , x3 , . . . whose distance from f(w) is less than l. .  Show that J 
fJ : n ---+ X is a countably valued, measurable function. Since UJ) converges uniformly to 
f as j ---+ oo ,  it follows that f is strongly measurable. 

UNCONDITIONALLY CONVERGENT SERIES 

23.26. In 10.42 we gave an elementary example of a series whose sum i s affected by a 
reordering of its terms. We now investigate that phenomenon further. 

Definition and proposition. Let 2:::;':1 Xj be a series in a Banach space (X, II I I ) .  Then 
the following conditions are equivalent ; if any (hence all) are satisfied we say the series is 
unconditionally convergent. Furthermore, when those conditions are satisfied, then all 
the series in (A) have the same sum, and that sum is equal to the limit in (B) . 

(A) 2:::%"=1 x1r(k) i s convergent for every permutation 1r of the positive integers. 
(This is the most commonly used definition of unconditionally convergent.) 

(B) The net ( LjEF Xj : F E  :r) is convergent, where :t = {finite subsets of N} is 
directed by inclusion. 

(C) The series 2:::;':1 l u(xJ ) I converges uniformly for all u in the closed unit ball 
of X*. That is, let U = { u E X* : l l u l l  :::; 1 } ;  then 

00 

lim sup L l u(xJ ) I 0. 
N�= uEU . ., J=IV 

In other words, the set of sequences of scalars { ( ux1 , ux2 , ux3 , • . .  ) : u E U} is 
a relatively compact subset of £1 (see the characterization of compactness in 
22.25 ) .  

(D) For each sequence (!31 ) of scalars with 1!31 1 :::; 1 ,  the series 2:::;':1 f3Jx1 Jnverges. 

(E) For each sequence (EJ ) with Ej = ±1 ,  the series 2:::;':1 EJXJ converges. 
(F) Each subseries 2:::�1 Xjk is convergent - i.e . , the series 2:::%"=1 Xjk is conver

gent for each choice of positive integers J1 < j2 < j3 < · · · .  
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Remarks. A seventh characterization of unconditional convergence will be given in 28.31 .  
This result and proof are taken from Singer [ 1970] . Before plowing through the proof 

of equivalence. some readers may find it helpful to glance ahead to the examples in 23.27. 
Also, this concept should be compared with the one in 10.40. 
Proof that (A ) implies (B ) , and that the sums in (A) all equal the limit in (B) . Fix some 
particular permutation 1 of N, and let x = 2::.:�=1 x-y(k) ; suppose that I.:jEF x1 does not 
converge to x: we shall obtain a contradiction. By our assumption, there exists some E > 0 
such that every finite set F � N is contained in some finite set G such that l lx - I.:jEG Xj 

I I 
> 

E. Since x = I.:�= l x-y( k ) • there is some positive integer N1 such that 

Recursively choose finite sets F1 � G1 � F2 � G2 � F3 � G3 � · · · � N as follows: Let 
F1 = {1( 1 ) ,  1(2) ,  . . .  ' r (Nt )  }. Given Fm , choose Gm � Fm such that l lx - I.:jEGm Xj I I > E. 
Given Gm , choose Fm+1 = {1( 1 ) , /(2) , . . .  , / (Nm+1 ) }  with Nm+1 large enough so that 
Nm+1 ::=: m + 1 and Fm+1 � Grn . This completes the recursion. Since Nm ::=: m, the union 
of the Frn 's is equal to N. Now define a sequence 7r ( 1 ) ,  7r(2) , 7r(3) , . . . by listing first the 
elements of F1 in any order, then the elements of G 1 \ F1 in any order, then the elements of 
F2 \ G 1 , then the elements of G2 \ F2 , etc. The resulting series 2::.:�=1 x1r( k) is not convergent , 
since 

L Xj 
jEGm \F, 

> x - L Xj 
jEGm 

-

2 

Proof of (B) =? (C) .  Let x = limFE:f I.:JEF Xj · Let any E > 0 be given. By (B) , there 
is some positive integer N such that if G is any finite subset of N with G � { 1 ,  2, . . .  , N} ,  
then l lx - I.:JEG xJ I I < � - Fix any u E U; i t  suffices to show that 2:.:;:N+1 \u(x1 ) i  :S E. 
Temporarily fix any integer p ::=: 1. Define the sets 

{J E {N + 1 ,  N + 2, . . .  , N + p} 
{J E {N  + 1 ,  N + 2, . . .  , N + p} 

Also let B = { 1 ,  2 ,  . . .  , N} .  Then 

N+p 
L \ Reu (xj ) l 

J=N+ 1 
2 { <
{; 

X - L Xj + X - L Xj 
jEAk UB jEB 

Reu(x1 ) ::=: 0 } ,  
Reu(x1 ) < 0 } · 

2 
< L L Xj 

k=1 jEAk 

-

2 
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Similarly, I:;=+;+l l lmu(xj ) l  < � - Hence I:;=+J+1 l u(xj ) l  < E. Now let p ---+ oo .  

Proof of (C) ::::? (D) . We must show that the partial sums of 2::;:1 /3jXj form a Cauchy 
sequence. Given any E > 0, choose N by (C) , so that supuEU I:;:N lu (xj ) l  < E. Now for 
any integers n , p  with p 2:: n 2:: N ,  use the Hahn-Banach Theorem (HB8) in 23. 18 to choose 
some u E U (which may depend on n , p) to satisfy the first equation below: 

p 
< L l u (xj ) l  < E . 

j=n 

Proof of (D) ::::? (E) . Obvious. 

Proof of (E) ::::? (F) . Any subseries I:%"'=1 Xjk can be written as the average of the two 
convergent series 2::;:1 Xj and 2::;:1 EjXj , where 

if j is among the numbers j 1 , ]2 , ]3 , . . . 
otherwise. 

Proof of (F) ::::? (A) . Suppose 1r is a permutation of N for which Lk Xrr(k) does not converge. 
Then the partial sums are not a Cauchy sequence. Hence there exists some constant E > 0 
and some sequence of positive integers m1 < m2 < m3 < · · · such that I II:;';;:;_�+l Xrr(k) II > 
E for all n .  That is, I II:kESn Xrr(kJ I I > E, where Sn = {mn + 1 , mn + 2, . . .  , mn+d·  The sets 
7r(Sn) = { 1r(k) : k E Sn} are disjoint, finite sets with union N. Let min 7r(Sn )  and max 7r(Sn) 
be the minimum and maximum elements of 7r(Sn) · Note that limn_,00 min 7r(Sn )  = oo .  

Therefore we can recursively choose positive integers n( 1 )  < n(2) < n(3) < · · · so that 
min 1r(Sn(p+l ) )  > max 7r(Sn(p) ) · Form a subseries 2:::1 Xj; by taking the positive integers 
]I < ]2 < j3 < · · · to be the members of U;':1 1r(Sn(p) ) arranged in increasing order. Then 
for each p, there exist i' and i" such that 

I II::�i' 
Xj; I I 

= 
I I I:kESn(pJ 

Xrr(k) I I  
> E, and the 

numbers i' and i" tend to oo when p ---+ oo. This shows that the series 2:::1 Xj, is not 
convergent . 

23.27. Further exercises, examples, and observations. 
a. A convergent series is not necessarily unconditionally convergent . For instance, in the 

one-dimensional Banach space JR, the series 1 - � + � - � + t - fi + · · · is convergent ; to 
see that, rewrite it as (1 - � )  + (� - �) + ( i - fi )  + · · · . However, not every subseries 
is convergent ; for instance, - �  - � - 6 - · · · does not converge (see 10 .41 .£) .  

b. If 2::;:1 Xj is absolutely convergent - that is, if I:;:1 l l xj I I  < oo - then I:;:1 Xj is 
unconditionally convergent . '' 

c. If the Banach space X is finite-dimensional, then any unconditionally convergent series 
in X is absolutely convergent . 

d. In an infinite-dimensional space, an unconditionally convergent series is not necessarily 
absolutely convergent . An example is given by the series 2::;:1 Xj in the Banach space 
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c0 = {sequences of scalars converging to 0} ,  with 

X1 = ( 1 , 0, 0, 0, . . .  ) , 1 X2 = (0, 2 , 0 , 0, . . . ) , 

Remark. Actually, in every infinite-dimensional Banach space there exists a series that 
is unconditionally convergent but not absolutely convergent . This theorem was proved 
by Dvoretsky and Rogers in 1 950, but its proof is too long to include here. (It is given 
by Diestel [ 1984] , for instance.) 

NEUMANN SERIES AND SPECTRAL RADIUS 
(OPTIONAL) 

23.28. Let (X, I I ) and (Y, I I ) be Banach spaces over the scalar field lF. Let BL(X, Y) = 
{bounded linear operators from X into Y} .  with operator norm I I  1 1 . Let Inv(X, Y) be 
the set of all invertible bounded linear operators - that is, bijections f from X onto Y 
such that both f :  X ----+ Y and f- 1 : Y ----+ X are bounded linear operators. Show that 

a. Let ix : X ----+ X be the identity map. If p E BL(X, X) with I IP I I  < 1 ,  then ix - p E 
Inv(X, X) with 

X 
(ix - p) - 1 L P" ; hence l l (ix - p)- 1 1 1  S ( 1 - I IP I I ) - 1 . 

n=O 

Hint : The series is absolutely convergent in BL(X, X) ;  let s be its sum. Show that 
s(ix - p) = (ix - p)s = ix . 

b. More generally, assume f E Inv(X, Y) and u E BL(X, Y) with l l u l l < l l f- 1 1 1 - 1 . Then 
f - u E lnv(X, Y) with 

(Hint :  Use the preceding result with p = f- 1u or p = uf- 1 . )  This series is sometimes 
called the Neumann series for (f - u) - 1 . Conclude that Inv (X, Y) is an open subset 
of BL(X, Y) .  Also note that l l (f - u) - 1 1 1 :::; ( 1 1 !- 1 1 1 - 1 - l l u l l r1 . 

23.29. Proposition and definition. Let (X, I I ) be a real or complex Banach space; let 
II denote the operator norm on BL(X, X) ;  let g E BL(X, X) .  Then 
( i) the number rad(g) = limn�x l l g" l l 1 /" exists; it is called the spectral radius 

of the operator g. It is also equal to each of the following quantities: 
(ii) rad(g) = infnEN l l g" l l 1 / " . 
( iii) rad(g) = R- 1 , where R is the radius of convergence of the power series 'lj; (t) = 

'\' X t"g" .  L.m=O 
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(iv) rad(g) is the infimum of all the numbers we obtain as operator norms l l g l l  for 
the operator g, when the norm of (X, I I ) is replaced by an equivalent norm 
and I I  I I  is replaced by the resulting operator norm. (Compare 23.2 .c . ) 

Still another equivalent definition of the spectral radius is stated (without proof) at the end 
of 23.30. 

Proof of (i) and (ii ) .  Fix any positive integer m. If n is any positive integer, then n = mp+b 
for some b E  {0 ,  1 ,  2, . . .  , m - 1 } .  Show that 

l l lr l l l 1 1n < l l l fm l l l p/(mp+b) l l l f l l l b/ (mp+b) _ 

Holding m fixed, let n --+ oo to show that lim supn_,oc l l lr iW /n :::::; I I IFn iW/m . 
Proof of (iii) . Immediate from the formula for the radius of convergence of power series, 
given in 22.23. 

Proof of (iv) . Since l lg l l  = l lg1 l l 1 2: infnEN I Ign l l 1 /n = rad(g) , one direction is obvious. 
For the opposite inequality, suppose r is some number greater than rad(g ) .  Define I xI = 

I::=o r-n lgn (x) l . Show that I I is a norm on X that is equivalent to I I , and lg(x)l :::::; 
rlxl. Thus the resulting operator norm satisfies I lgl I :::::; r. 

23.30. Let X be a complex Banach space; let ix : X --+ X be the identity map. Define 
BL(X, X )  and lnv(X, X) as in 23.28. Let g E BL(X, X) .  We define 

p(g) 
a(g) 

Aix - g E Inv(X, X) } ,  the resolvent set of g ,  and 
Aix - g tf. Inv(X, X) } ,  the spectrum of g .  

These two sets form a partition of <C. The function (Aix - g)- 1 i s  sometimes called the 
resolvent of g at A, particularly in the literature of spectral theory. Caution: In some 
parts of mathematics - e.g. , in the literature of semigroups of nonlinear operators - the 
term "resolvent" sometimes refers to the operator (ix - Ag) - 1 . 

From 23.28 it is easy to see that p(g) is an open subset of <C. Furthermore, 

if A E C and I A I > rad(g) ,  then A E p(g) and I I (Aix - g)- 1 1 1 :::::; l >- l -;ad(g) · 

(Here rad(g) is the spectral radius of g, defined in 23.29. Hint : First show that if I A I 2 l lg l l , 
then A E p(g) with I I (Aix - g) -1 1 1 :::::; l >- l�1 19 1 1 . ) Thus a(g) is closed and bounded; hence it is 
a compact set. 

More advanced results. We now state without proof a couple of further results about the 
spectrum. The proofs (which can be found in more advanced or more specialized books) 
depend on some knowledge of analytic functions. 

(i ) The spectrum a(g) is nonempty. 
(ii) The spectral radius rad(g) is equal to sup{ IA I  : A  E a(g) } .  



Chapter 24 

Generalized Riemann Integrals 

24.1 .  Preview. Presumably the reader is familiar with the Riemann integral, which is 
introduced in college calculus. In this chapter we study the Riemann integral for Banach
space-valued functions. We also study the Henstock integral, a slight generalization of the 
Riemann integral. It is conceptually similar to the Riemann integral, but in its power it is 
more like the Lebesgue integral. In fact , for functions f : [a, b] --> [0, +oo) we shall prove in 
24.36 that the Henstock and Lebesgue integrals are the same. 

Still more generally, we shall study the Henstock-Stieltjes integral J: f ( t) d<p( t ) .  Its no
tation is slightly more cumbersome, but the greater generality does not make the proofs 
longer, and the Henstock-Stieltjes integral offers certain advantages - particularly in ex
plaining certain aspects of measure theory (see 24.35) and path integration (used especially 
in complex analysis; see 25.26 ) .  Readers who are entirely unfamiliar with Stieltjes integrals 
may also wish to glance ahead to 25. 17, which shows the relationship between Stieltjes 
integrals and "ordinary" integrals. 

DEFINITIONS OF THE INTEGRALS 

24.2. Assumptions. In this chapter we shall consider integrals only over compact intervals 
[a, b] ; that is, we assume -oo < a < b < +oo. We shall consider integrals of functions 
f :  [a, b] --> X, where (X, I I I I )  is a normed vector space. For many of the results, we must 
assume X is complete; see especially 24.27. 

The most important cases to keep in mind are X = � and X = C, but other Banach 
spaces are also of interest and the more general theory of Banach-space-valued functions is 
not significantly harder; moreover, the greater generality will be needed in Chapter 30. It 
is possible to replace [a, b] with a more general domain - see for instance McLeod [1980] 
- but the notation then becomes appreciably more complicated. 

24.3. Definit'ion. Let f : [a, b] --> X be some function, and let v E X. We say v is a 
Riemann integral of f over [a, b] if for each number c > 0 there exists some number 8 > 0 
such that 

if n E N and a = to :::; t 1 :::; t2 :::; · · · :::; t" = b and Tj E [ t J _ 1 , t 1 ]  with t J - tJ _ 1 < 8 
for all j, then l l v - L.:'=1 (tJ - tj_ I )j(TJ ) I I < c. 

629 
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When such an integral exists, we say f is Riemann integrable. The Riemann integrability 
of certain kinds of functions will be established later in this chapter; a characterization of 
Riemann integrability among real-valued functions will be given in 24.46. 

Any function f has at most one Riemann integral v; this can be proved directly by ad hoc 
methods now (easy exercise) or proved via a broader insight given in 24.7.a. Hence we are 
justified in calling this vector the Riemann integral of f; we shall write it as v = I: f(t)dt. 
For emphasis it may sometimes be called the proper Riemann integral, to distinguish it 
from "improper Riemann integrals" such as I� c112dt = limcto I,1 c112dt, which will not 
be considered here. 

Remarks. The definition of "Riemann integral" given above is essentially the same as 
the definition published by Riemann in 1868 - at least , for real-valued functions f. Some 
calculus books use a different definition, which is equivalent for real-valued functions f but 
does not generalize readily to Banach-space-valued f: Any bounded function f : [a, b] --+ 

lR can be approximated both above and below by step functions (defined in 24.22 ) ,  and 
those step functions can be integrated in an obvious fashion. When the infimum of the 
upper integrals equals the supremum of the lower integrals, the common value is called the 
Darboux integral or the Riemann-Darboux integral. It was used by Darboux in 1875 . 

24.4. We now generalize slightly. Let f : [a, b] --+ X be some function, and let v E X.  We 
say v is a Henstock integral of f over [a, b] if for each number E > 0 there exists some 
function t5 : [a, b] --+ (0, +oo) such that 

if n E .N and a = to :S t 1 :S t2 :S · · · :S tn = b and Tj E [tj- 1 , t1 ] with 
t1 - t1_ 1 < t5(T1 ) for all j, then l l v - I:.7=1 (tJ - tj_ I )j(TJ ) I I < E. 

When such an integral exists, we say f is Henstock integrable. The Henstock integrability 
of certain kinds of functions will be established later in this chapter. 

Any function f has at most one Henstock integral v; this can be proved directly by ad hoc 
methods now (easy exercise) or proved via a broader insight given in 24.7.a. Hence we are 
justified in calling this vector the Henstock integral of f ; we shall write it as v = I: f(t)dt .  

Clearly, any Riemann integral of f i s also a Henstock integral of f. The Henstock 
integral is more general. For instance, I� c 112 dt is a Henstock integral with value 2 (if the 
integrand is defined arbitrarily at t = 0) ,  but it is not a proper Riemann integral. 

The Henstock integral is sometimes known as the generalized Riemann integral. It 
is also known as the Kurzweil integral or the Henstock-Kurzweil integral, although 
that last term also has another meaning - see 24.9. It was introduced independently at 
about the same time by Kurzweil and Henstock. Kurzweil used it briefly as a tool in the 
study of certain kinds of differential equations; see particularly Kurzweil [1957] . Henstock 
developed it in greater detail as part of a wider study of integration theory. The Henstock 
integral is sometimes known as the gauge integral, but that term has also been applied 
to some other integrals. 

The integral studied in this chapter is also known by other names - e.g. , the spe
cial Denjoy integral or the Denjoy-Perron integral, since it is equivalent to a more 
complicated integral worked out earlier by Denjoy and Perron. Research continues on re
lated integrals; some recent references are Bullen et al. [1990] , Henstock [1991 ] ,  and Gordon 
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[1994] . 

24.5. An equivalent definition ( optional) .  One of the chief advantages of the Henstock 
integral is that it so greatly resembles the Riemann integral with which we are already 
somewhat familiar. Thus our intuition about the Riemann integral can be carried over 
to this new, more general integral. Our definition in 24 .4, which follows Henstock [1988] , 
emphasizes this resemblance. However, we note that certain other books (such as McLeod 
[1980] and DePree and Swartz [1988] ) use a slightly different definition for the Henstock 
integral. In those books, v = J: f(t)dt means that 

( * ) for each number E > 0, there exists some function U : [a, b] ----+ {open 
subintervals of IR} satisfying t E U(t) for each t and such that 

if n E N  and a = t0 ::; h ::;  t2 ::; · · · ::; tn = b and Tj E [tj _ 1 , tj ] � U(Tj )  for all 
j ,  then l l v - L,�'=1 ( tj - tj_ l )Jh) l l < E. 

It is easy to show that this definition ( * ) is equivalent to our definition of the Henstock 
integral in 24 .4. Indeed, let any E > 0 be given. If v and f satisfy ( * ) with some U, then we 
can satisfy the definition in 24.4 by taking 8(T) > 0 small enough so that (T-8(T) , T+8(T)) � 
U ( T ) .  Conversely, if v and f satisfy the definition in 24.4 with some 8 , then we can satisfy 
( * ) by taking U( T) = ( T - �8( T ) ,  T + � 8( T) ) .  (Exercise. Fill in the details of this argument . ) 
Hereafter we shall only use the definition in 24 .4. 

24.6. Definitions. We now introduce several auxiliary notations that will be helpful in our 
study of the Riemann and Henstock integrals. 

By a gauge we shall mean any function 8 : [a, b] ----+ (0, +oo ) ; a positive constant may 
be viewed as a constant function and thus as a particularly simple gauge. (Caution: This 
kind of "gauge" is unrelated to the other "gauge," a collection of pseudometrics, defined in 
2 . 1 1 . )  

By a tagged division of the interval [a, b] we shall mean a system of numbers 

where n is some positive integer; we may sometimes abbreviate this as T = (n, tj , Tj ) .  
Some mathematicians impose the further restriction that tj_ 1 < tj for each j ,  t o exclude 

degenerate intervals of length 0. Although that restriction is satisfied in most interesting 
cases, it is has no real effect on the development of the theory, and omitting that restriction 
simplifies the notation in some of our proofs - for instance, see 24. 12. 

A tagged division T = (n, tj ,  Tj ) is called 6-fine for some positive constant 8 if tj - tj_ 1 < 
8 for all j. More generally, a tagged division T = ( n, tj ,  Tj )  is 8-fine for a gauge 8 if 
tJ - tj- 1 < 8 (TJ )  for all j .  

For any function f : [a, b] ----+ X,  the approximating Riemann sum corresponding to 
a tagged division T = (n, tj , Tj )  is defined to be the sum 

n 

�[f, T] L (tj - tj-d j(Tj )  0 

j= l 
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It is an element of the normed space X . 
We can now restate our definitions of the integrals. A vector v E X is a Riemann integral 

(respectively, a Henstock integral) of a function f : [a, b] ----> X if 

for each number E > 0 there exists a number b > 0 (respectively, a gauge b > 0) 
such that whenever T is a b-fine tagged division of [a, b] , then l l v - :E[f, T] l l  < E . 

24.7. The definitions given above are admittedly complicated: "For each E there exists 
a b such that for each T we have . . . . " That grammatical construction contains more 
quantifiers than are commonly used in a nonmathematical sentence. It takes some getting 
used to. 

The Riemann or Henstock integral may be viewed very naturally as the limit of a certain 
net. Let us define the sets 

'D { (T, b) b E (0, +oo) and T is a b-fine tagged division of [a, b] } ,  
£ { (T, b) b is a gauge on [a, b] and T is a b-fine tagged division of [a, b] } .  

Then 'D t,;; £ ,  since every positive constant is a gauge. Both 'D and £ will b e  viewed as 
directed sets, with this ordering: (T1 , bl ) � (T2 , b2 ) if b1 2 b2 .  Unwinding the notation, 
verify that 

"v is a Riemann integral of f" means that the net ( :E [f, T] 
converges in X to v, and 
"v is a Henstock integral of f" means that the net (:E [J, T] 
converges in X to v. 

Here are two immediate applications of this viewpoint: 

(T, b) E 'D) 

(T, b) E [) 

a. Since the normed space (X, I I  I I ) i s a Hausdorff topological space, each net in X has 
at most one limit. Thus we have an immediate proof that each X-valued function has 
at most one Riemann integral or Henstock integral. 

b. Assume the normed space X is complete. Then a function f : [a, b] ----> X is Riemann
or Henstock-integrable, respectively, if and only if the net ( :E[f, T] : (T, b) E 'D) or 

the net ( :E [J, T] : (T, b) E £) is Cauchy in X, where Cauchy nets are defined as in 
19.2. In other words, f is Riemann integrable (respectively, Henstock integrable) if 
and only if 

for each E > 0 there exists some number b > 0 (respectively, some gauge b 
on [a, b] ) such that whenever T, T' are b-fine tagged divisions of [a, b] , then 
I I :E [f, T] - :E [f, T'J I I < E. 

24.8. Definitions. We generalize still further. Let X be a normed space over the scalar field 
JF. (In the simplest case we may take X =  JF, but greater generality is sometimes useful. )  Let 
f and r.p be two functions defined on [a, b] - one of them X-valued, the other scalar-valued. 
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(Throughout most of this chapter, whenever possible, we shall be intentionally ambiguous 
about which of j, 'P is scalar-valued and which is vector-valued, in order to cover both cases 
at once . ) Define the approximating Riemann-Stieltjes sum 

n 

�[f, T, 'P] L j(Tj )  ['{J(tj ) - '{J(tj-d] . 
j=l 

The Riemann-Stieltjes integral and the Henstock-Stieltjes integral are, respectively, 
the limits of the nets 

and (� [j, T, !f?] : (T, t5) E c) , 
where 'D, E are defined as in 24 .7 . The resulting integrals are denoted I fdip or I: j(t)dip(t ) .  
In other words, the integral is a vector v with the property that for each number c > 0 
there exists a number t5 > 0, respectively a gauge t5 > 0, such that whenever T is a t5-fine 
tagged division, then lv - � [!, T, If?] I < c.  

Since most of this chapter concerns itself with Henstock-Stieltjes integrals, when the 
Henstock-Stieltjes integral J:' f dip exists we shall simply say that f is cp-integrable. 

The theory of Stieltjes integrals generalizes that of Riemann and Henstock integrals, 
since we can take ip(t) = t. Readers who are entirely unfamiliar with Stieltjes integrals may 
wish to glance ahead to 24. 18, 24.35, 25. 1 7, and 25.26 for motivation. 

24.9. Remarks on generalizations and variants ( optional ) .  We mention some other integrals 
that will not be studied in this book. 

In defining I fd'fJ, we could let f and IP both be vector-valued. Say they take values 
in vector spaces X and Y, respectively; then form a product using some bilinear mapping 
( , ) : X x Y __, Z. The resulting integral would take values in Z. 

For any mapping U : [a, b] x [a, b] __, X,  we may define the generalized Perron integral 
of U as the limit (if it exists) of surns of the form 

n 

� [U, T] = L [U (Tj , t:J ) - U(Tj ,  tj_ I ) ]  
:J= l 

for tagged divisions T = ( n ,  t1 , Tj ) .  This generalizes the Henstock-Stieltjes integral I: f dip 
since we can take U(T, t) = j(T)ip(t ) .  For an introduction to this generalized integral and 
its applications to generalized differential equations, see Schwabik [ 1992] . 

Still more generally, let h = h (  T, J) be a Banach-space-valued function defined for real 
numbers T and compact intervals J. The limit of the sums 

�[h , T] 
11 2::: h h. [tj - 1 , tJD , 

J= l 

when it exists, is sometimes called the Henstock-Kurzweil integral of h. For details the 
reader may refer to papers and books by Henstock and Kurzweil. 
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The Lebesgue integral is an absolute integral - i .e . , if f is Lebesgue integrable, then 
so is lf ( · ) l ;  this fact is built into our definition of the Lebesgue integral. The Henstock 
and Henstock-Stieltjes integrals are not absolute integrals; the Henstock integral is slightly 
more general than the Lebesgue integral. McShane [ 1983] studies a gauge integral which is 
defined slightly differently from 24.4; McShane's integral turns out to be exactly equivalent 
to the Lebesgue integral. Further information on McShane's integral can be found in R. 
Vyborny [1994/95] and in the appendices of McLeod [ 1980] . 

Another integral, due to Frechet , is particularly simple and noteworthy: Forget about 
gauges. Let :J' be the set of all tagged divisions of [a, b] , with this ordering (which ignores 
the placement of the tags) : T1 � T2 if the partition of T1 is a refinement of the partition of 
T2 - i.e. , if {divison points of T2 }  � {division points of Tt } . The limit of the resulting net 
(r:[f, T] ) is sometimes called the refinement integral. It has the advantage that, although 
it resembles the Riemann integral, it does not depend as heavily on the specialized nature 
of subintervals of JR. - it generalizes very easily to integrals over any measure space. It is 
discussed further by Hildebrandt [ 1963 , pages 320-325] . The refinement integral is slightly 
simpler than the gauge integrals studied in this chapter, and perhaps it is a better approach 
in some respects; that question deserves further study. We prefer the gauge integral chiefly 
because at present it is more compatible with the wider body of mathematical literature. 

24.10. Proposition. If 8 : [a, b] --+ (0, +oo) is any gauge, then there exists a 8-fine tagged 
division of [a, b] . 
Proof Let S = { s E [a, b] : there exists a 8-fine tagged division of [a, s] } .  We are to show 
that b E  S. Trivially, a E S. Let (J = sup(S). There is some s E S such that s > (J - 8((J) .  
Any tagged division of [a, s] can be extended to a tagged division of [a, (J] by tacking on the 
additional interval [s , (J] with tag (J .  This proves (J E S. If (J < b, then any tagged division 
of [a, (J] can be extended to a larger interval [a, (J1] by tacking on an additional subinterval 
[(J, (J1] with tag (J - thereby contradicting the maximality of (J. Thus b = (J, so b E S. 

24.11 .  A useful gauge. The following construction will be used in a few proofs later in this 
chapter. Let any finite, nonempty set Q � [a, b] be given. 

Let p = min{ lq - q' l : q, q' E Q, q =J q'} ,  or let p = 1 if Q consists of just one point. 
Define a gauge 1 : [a, b] --+ (0, +oo) by: 

r(t) { min{p, d�st (t , Q ) } when t � Q 
when t E Q. 

Then it is easy to see that any 1-fine tagged division T = ( n, tJ , TJ ) will have the following 
properties: 

(i) No subinterval [tj_ 1 , tj] .contains more than one member of Q. 
(ii) If q E Q n [tj _ 1 ,  tj ] ,  then q is equal to Tj (i .e . , the tag of the subinterval) .  

24.12.  A useful tagged division. The following construction will be useful in a few proofs 
later in this chapter. Let S =  (m, si , (Ji ) be any tagged division of an interval [a, b] .  We 
can form a related, new tagged division T = (2m, tj , Tj ) by the following rule: We have 
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s;_ 1 ::; u; ::; s ; ,  so we may subdivide each interval [s;- 1 , s;] into the two subintervals 

and 

with both new tags r2;_ 1 and T2; equal to the old tag u; . (Of course, some of the new 
subintervals may have length 0, but that is not a difficulty - see the remarks in 24.6.) This 
tagged division T has the following important properties. 

(i) For any gauge b, if S is b-fine, then T is also b-fine. 
(ii) For any function g :  [a, b] --> X,  we have �[g ,  S] = � [g, T] . 
(iii) Each subinterval [tJ_ 1 , tj ]  in the tagged division T = (2m, tJ , TJ )  has for its 

tag r1 one of the subinterval's endpoints, tJ_ 1 or t1 . 

BASIC PROPERTIES OF GAUGE INTEGRALS 

24.13. Some trivial integrals. 
a. In our definitions of the integrals, we permit a =  b. Trivially, faa f(t )dt and I,� f(t)dip(t) 

always exist and are equal to 0. 
b. Let f be a constant function: f(t) = x for all t E [a, b] . Then we have the Riemann 

integral I: xdt = (b - a)x or, more generally, the Riemann-Stieltjes integral J:' xdcp = 
['f?(b) - cp(a)]x for any function IP· 

24.14. Integrals as linear maps. If T is any tagged division of [a, b] , then f f--7 �[f, T] is 
a linear map from X[a.bJ into X. The Riemann integrable functions form a linear subspace 
of X[a.b] ; it is the set of all f for which the net ( � [f, T] : (T, b) E TI) is convergent. The 
Riemann integral is a linear map from that linear subspace into X; it is the pointwise limit 
of the net of functions � [ · , T] . 

Analogous remarks apply for the Henstock integral, with TI replaced by E. .  
Analogous remarks apply for the Stieltjes integral I: fdip, as a function of f (with cp 

fixed) or as a function of cp (with f fixed) . 

24.15. Negligibility of small sets. 
a. If p : [a, b] --> X is a function that is only nonzero on a finite subset of [a, b] , then the 

Riemann integral I: p(t)dt exists and equals 0. If f, g : [a, b] --> X are functions that 
only differ on a finite subset of [a , b] ,  then the Riemann integral J� f(t )dt exists if and 
only if the Riemann integral I: g(t )dt exists, in which case they are equal. Thus, if 
we change the value of a function at finitely many points, its Riemann integral is not 
affected. 

In the preceding statements, we cannot replace "finite" with ''countable." For 
example, show that liQi ,  the characteristic function of the rational numbers, is not 
Riemann integrable on any interval of positive length . 
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b. If p : [a, b] ----> X is a function that is only nonzero on a countable subset C = { Cj }  
of [a, b] , then the Henstock integral I: p(t)dt exists and equals 0. (Hint : Given any 
number E > 0, choose a gauge tJ so that l lp(cj ) l l b (cj )  < 2-j€ for all j ; choose tJ 
arbitrarily outside C.) For instance, I� lrQ(t )dt = 0. If j, g : [a, b] ----> X are functions 
that only differ on a countable subset of [a, b] , then the Henstock integral I: f(t)dt 
exists if and only if the Henstock integral I: g (  t )dt exists, in which case they are equal. 
Thus, if we change the value of a function at countably many points, its Henstock 
integral is not affected. 

c. Remarks. The value of a Henstock integral is not affected if we change the integrand on 
a set of Lebesgue measure 0; that fact will follow from 21 .37.i and 24.36. However, for 
some purposes involving Henstock integrals, we cannot ignore uncountable sets, even 
if they have measure 0; for instance, see 25. 19 and 25.25. 

d. Let f and r.p be two functions on [a, b] , at least one of them scalar-valued. If r.p vanishes 
at a and b and at all but finitely many points of (a , b) , then the Henstock-Stieltjes 
integral I: f dr.p exists and equals 0. (Hint :  Use 24. 1 1  and 24. 12. ) If 7/J1 , 7/J2 agree at 
a and b, and differ only on a finite subset of (a ,  b) , then I: f d7/J1 exists if and only if 
I: f d1/J2 exists, in which case they are equal. 

24.16. Some elementary estimates. 
a. If f :  [a, b] ----> X and h :  [a, b] ----> IR are Henstock integrable and l l f ( - ) 1 1  :S h( · )  on [a, b] ,  

then I I  I: f( t )  dt l l  :::; I: h (t ) dt . 
More generally, if r.p : [a, b] ----> IR is an increasing function, f : [a, b] ----> X and 

h : [a, b] ----> IR are r.p-integrable, and I I  f ( - ) I I  :S h ( - )  on [a, b] , then II I: f dr.pl l  :S I: h dr.p. 
Hint :  First show that I I � [!, T, r.p] l l  :S �[h, T, r.p] . 

b. A mean value theorem. If f : [a, b] ----> X is Henstock integrable, then b�a I: f(t) dt is 
in the closed convex hull of the range of f. 

More generally, if r.p : [a, b ] ----> IR is an increasing function and f : [a , b ] ----> X is 
r.p-integrable, then [r.p(b) - r.p(a)] - 1 I: f dr.p is a member of the closed convex hull of the 
range of f. 

Hint: First show that [r.p(b) - r.p(a)] - 1� [j, T, r.p] E co(Ran(f)) .  
c .  Let j, r.p be functions defined on [a , b] , at least one of them scalar-valued. Suppose 

r.p has bounded variation and f is bounded and r.p-integrable. Then I I: f dr.pl :S 
l l f l loo  Var( r.p, [a, b] ) .  

Hint : First show that l � [f, T, r.p] l :S l l f l looVar(r.p, [a, b] ) .  

24.17. Theorem on uniform limits. Assume the normed space X i s  complete. Suppose 
that h ,  h ,  h, . . . : [a, b] ----> X are functions converging uniformly on [a, b] to a function 
f :  [a, b] ----> X.  

(i) I f  the fn 's are Riemann integrable or Henstock integrable, then f is integrable 
in the same sense, and I: fn (t)dt ----> I: j(t )dt . 
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(ii) More generally, suppose tp : [a, b] ----+ lR?. is an increasing function. If the fn 's 
have Riemann-Stieltjes or Henstock-Stieltjes integrals with respect to cp, then 
f is integrable in the same sense and I: fn (t)dcp(t) ----+ I: f(t)dcp(t) . 

637 

Hints : It suffices to prove (ii) . By assumption, Ej = I I! - fj l l= = supt l f ( t ) - fj (t) l tends 
to 0 as j ----+ oo. We have l l fj (t) - fk (t) l l  :S Ej + Ek for all t. Hence 

b b b b 
II f fJd'P - J fkdcp l l  = I I  f(JJ - fk)dcp l l  :S j (Ej + Ek)dcp = (cp(b) - cp(a)) (EJ + Ek ) ,  

a a a a 

which tends to 0 as j, k ----+ oo .  Thus the sequence (J fJdtp) is Cauchy and converges to some 
limit v. Now estimate 

24.18. Reparametrization Theorem. Let a : [a, b] ----+ [a, b] be an increasing bijection. 
Let f and tp be functions defined on [a, b] , at least one of them scalar-valued. The� the 
Henstock-Stieltjes integral I: f dcp exists if and only if the Henstock-Stieltjes integral I� (f o 
a) d( tp o a) exists, in which case they are equal. 

Proof. Let J = f oa  and (i5 = cpoa. We are to prove that I: f dcp exists if and only if I� j d(i) 
exists, in which case they are equal. There is a symmetry between the "hat" quantities and 
the "no-hat" quantities, since a- 1 : [a, b] ----+ [a, b] is an increasing bijection and we have 
f = fo a- 1 and tp = (i) o a- 1 . 

Corresponding to each tagged division 

T 
is another tagged division 

T 
defined by tJ = a-1 (t1 ) and Tj = a- 1 (Tj ) · It is easy to verify that �[f, T, cp] = �[j, T, (i)] .  
We are to prove that limy � [!, T, cp] exists if and only if limf �[j, T, (i)] exists, in which case 
the limits are equal. Thus, it suffices !._o prove that the tagged divisions T become fine when 
and only when the tagged divisions T become fine. By symmetry, it suffices to prove half 
of this implication. 

Thus, let any gauge 8 on [a, b] be given; it suffices to prove the existence of a gauge 8 on 
[a, b] with the property that 

whenever T is 8-fine, then T is 8-fine. 
(Caution: The most obvious choice is 8 = 8 o a- 1 , but that choice doesn't work; we need 
something slightly more sophisticated. ) Since a- 1 : [a, b] ----+ [a, b] is an increasing bijection, 
it is continuous; in particular it is continuous at T. For each number T in [a, b) , we can 
choose 8(T) to be a positive number small enough so that T + 8(T) E [a, b] and 
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Also, for each number T in (a , b] , we can choose b ( T) to be a positive number small enough 
so that T - b (T) E [a, b] and 

These conditions can be satisfied simultaneously since �8  ( 0"- 1 ( T)) is a positive number. 
Now suppose T is b-fine. Then for each j, we have Tj E [tj_ 1 , t1 ] and ti - tj_ 1 < b(T1 ) ;  

hence 
and 

We can now prove 0"- 1 (t1 ) < CJ- 1 (TJ )  + �8 (CJ- 1 (T1 )) by two different arguments. If Tj E 
[a, b) , then this inequality follows from ( * 1 ) ; if TJ = b, then we deduce that t1 = TJ . Similarly, 
we obtain 0"-1 (t1_ 1 ) > CJ- 1 (T1 ) - �8 (CJ- 1 (T1 ) ) .  Hence 

tj - tj - 1 0"- 1 ( tj ) - 0"- 1 (tJ-d < 8 (CJ- 1 (Tj ) )  8(rj ) ,  

so T is 8-fine. 

ADDITIVITY OVER PARTITIONS 

24. 19. Theorem. Let Po < p1 < P2 < · · · < Pm ·  Let f and cp be functions defined on 
[po , Pm] - one taking values in a Banach space X, the other in the scalar field IF. Then f 
is cp-integrable on [Prh Pm] if and only if its restrictions to the subintervals [PJ- 1 , PJ] are all 
cp-integrable, in which case 

1Pm 
f dcp "  = Po 

{PI [P2 rPm 
J TI 

f dcp + J n f dcp + • • • + J TI f dcp • 

Po PI Pm- 1  
Proof. I t suffices to show this for m = 2; then apply induction. Let us denote a = p0 , 
q = p1 , b = p2 . Thus, it suffices to consider [a, b] = [a, q] U [q, b] , where a < q < b. 

First suppose that f is cp-integrable on [a, b] ; we shall prove that f is cp-integrable on 
[a, q] . (A similar argument works on [q, b] . ) We shall use the fact that f satisfies the 
Cauchy criterion 24. 7.b on the interval [a, b] to show that this criterion is also satisfied 
on the subinterval [a, q] . Let any E > 0 be given. By assumption, there is some positive 
number b (or some gauge b ) such that if S, S' are b-fine tagged divisions of [a, b] , then 
l l � [f, S, cp] - � [f, S', cp] l l < E. Let 8 be the restriction of b to [a, p] .  Now let T, T' be any 
two tagged divisions of [a, p] that are 8-fine. Using 24. 10, show that T, T' can be extended 
to b-fine tagged divisions S, S' of [a, b] that are identical on [p, b] . Hence I I � [!, T, cp] -
� [f, T' , cp] l l = I I � [!, s, cp] - � [f, S' , cp] l l  < E. 

Conversely, suppose f is cp-integrable on both [a, q] and [q, b] ; we shall show that I: fdcp 
exists and equals Iaq fdcp + I: fdcp. Let any E > 0 be given. It suffices to construct a gauge 
b on [a, b] with the property that if 
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is any b-fine tagged division of [a, b] , then 

� ��[f, S, zp] - Jq fdzp - 1b fdzp l l < E. 

By hypothesis, since the integral exists on [a, q] and [q, b] , there exists some gauge 11 on 
[a, b] such that if U is any 11-fine tagged division of either 1 = [a , q] or 1 = [q, b] , then 
l l � [f, U, zp] - J1 fdzp l l  < c/2. Define a gauge r as in 24. 1 1  with Q = {q} . We shall show 
that the gauge b = min {r1 , r} satisfies condition ( * * ) 

Indeed, let S be a b-fine tagged division of [a , b] . We must have q E [sk_ 1 ,  sk] for at 
least one value of k; fix such a value of k .  (There may be two such values of k, if q is equal 
to one of the division points Sj . In that case, let k be either one of the applicable values; 
let k remain fixed throughout the remainder of this argument . ) Then q = O"k , by one of the 
consequences of 24 . 1 1 .  

Now split S into tagged divisions U1 , U2 of [a , q] , [q, b] , splitting the subinterval [sk_ 1 , sA: ]  
into two subintervals both with tag q. Thus U1 and U2 have these tags and subintervals: 

U1 O"J E [so , s l ] .  0"2 E [s 1 , s2] ,  . . . .  O"k- 1 E [sA:-2 , Sk_ I ] ,  q E [sk- 1 , q] , 
U2 q E [q, sk] ,  O"A-+ 1 E [sk l sk+ l ] ,  . . .  , O"n - 1 E [sn-2 , sn_ i ] ,  O"n E [sn - 1 , sn ] .  

It is easy to see that U1 and U2 are both 1-fine. and that �[f. S ,  zp] = � [f, U1 , zp] +� [f, U2 , zp] . 
This completes the proof. 

24.20. Notation and corollary. It is convenient to define _h� f dzp = - .!,:' f dzp. Thus an 
expression of the form J� f dzp may be defined regardless of whether p < q or p > q. With 
that notation. we have this corollary: 

Let f : [a . b] --> X be zp-integrable. Let p, q, r be any three numbers in [a , b] (not 
necessarily in increasing order) .  Then 

1'1 f dzp + j' f dzp 
• p q 

r 1 dzp . Jp 
24.21 .  Remarks. A theorem analogous to 24. 19 is also valid for Riemann integrals, with 
a similar but slightly longer proof. We shall omit the proof, since that result is not needed 
later in this book. 

An analogous theorem is not valid for Riemann-Stieltjes integrals. Indeed, let 

(t ) 
= 
{ 0 when - 1 <::; t < 0 zp 1 when 0 <::; t <::; 1 ,  f (t ) = 

{ 0 when - 1 <::; t <::; 0 
1 when 0 < t <::; 1 .  

Then it is easy t o  prove that the Riemann-Stieltjes integrals J� 1 fdzp and ftl1 fdzp both exist , 
but the Riemann-Stieltjes integral J� 1 fdzp does not exist. Hint :  24.22.c. 

24.22. Recall from 1 1 .43 that a step function on [a, b] is a function that takes a constant 
value x.J on each open subinterval (p.J _ 1 .  P.i ) ,  for some division 

a = Po < P1 < P2 < · · · < Pm = b. 
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Show that 
a. If f is a step function, then f is Riemann integrable, with I: J(t)dt = "L.';=l (PJ -

PJ-dXJ · Note that the values of f(po ) ,  f (pr ) ,  . . .  , f (Pm) are irrelevant - i.e. , they 
can be altered without any effect on the value of I: f(t)dt - a particular instance of 
the principle observed in 24. 15. 

b. More generally, suppose f is a step function on [a, b] , and tp is a function on [a, b] that 
has right- and left-hand limits 

tp(t+) = lim tp(t) ult and tp(t-) = lim tp(u) uTt 

at every t E [a, b] , with the convention that tp(a-) = tp(a) and tp(b+) = tp(b) . (This 
hypothesis is satisfied, for instance, if tp has bounded variation; see 19 .21 . )  Assume 
that at least one of J, tp is scalar-valued. Then f is tp-integrable, with 

m m 

j=l j=O 
(This formula is taken from McLeod [ 1980] . The constructions 24. 1 1  and 24. 12  may 
be useful in the proof. ) Note that this formula does depend on the values of f at 
po , PI , P2 , . . .  , pm , unless tp is continuous at those points. 

c. If f and tp are any functions on [a, b] - one vector-valued, the other scalar-valued 
- that are both discontinuous at some point p E [a, b] , then the Riemann-Stieltjes 
integral I: f dtp does not exist. 

24.23. Henstock-Saks Lemma. Let f and tp be functions on an interval [a, b] ; assume 
one of them takes values in a Banach space X and the other is scalar-valued. Let f be tp
integrable - i.e. , assume the Henstock-Stieltjes integral I: f dtp exists. Let E be a positive 
number, and (as in the definition of the integral) let 8 be a gauge with the property that 
every 8-fine tagged division T = (n, tj , Tj ) satisfies l l � [f, T, l.fJ] - I: f dtp l l < E. Then: 

(i) Suppose T = (n,  t1 , Tj ) is a tagged division, not necessarily 8-fine, but satis
fying tj - tj- l < 8(Tj )  for all j in some set J � { 1 ,  2, 3, . . .  n } .  Then 

(ii) If T = (n, tj , Tj ) is a 8-fine tagged division and X is a finite-dimensional space 
equipped with any norm equivalent to any of the usual norms, then 

for some constant K that depends only on the choice of the space X and 
its norm I I  I I · In particular, if X = ffi.q with norm l l (x l , x2 , . . .  , xq ) l l = 
l x 1 l + l x2 l  + · · · + l xq l , then we can take K = 2q. 
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Proof of (i) . Let K = { 1 ,  2 ,  3 , . . . , n} \ J. Throughout this argument , the tagged division 
T = (n, t1 , T1 )  and the sets J and K will be held fixed, but we shall consider certain other, 
varying tagged divisions based on T, J, K. 

Temporarily fix any k E K, and consider tagged divisions U of the subinterval [tk- l , tk] . 
We know that f is cp-integrable on [tk- l , tk] (see 24. 19 ) ;  hence the net (I: [j, U, cp] ) converges 
to J11kk- 1 f dcp as the tagged division U becomes finer. 

Now, for the entire interval [a, b] , consider a tagged division 

that is identical to T on each of the intervals [t1 _ 1 , t1] for j E J, but is much finer on each 
of the intervals [tk- l , tk] for k E K. Then 

I:[j, S, 'P] "L ih) [cp(t1 ) - cp(t1-dl 
jEJ 

+ "'L kEK  {i : [s;- l , s;] 
c:;;; [tk- 1 , tk] } 

As the divisions on the intervals [tk- l ,  tk] become finer, we have this convergence: 

L j(Tj ) [cp(tj ) - cp(tj_ I )] + 
jEJ  

On the other hand, by applying 24. 10 on each subinterval [tk- l , t k ]  for k E K, we can 
choose S so that it is 8-fine, hence I I I: [], S, cp] -J: f dcpl l  :::; c. Taking limits in this inequality 
as S becomes progressively finer on the subintervals [tk- l , tk] , we obtain 

Rearranging terms, we obtain conclusion (i) . 

Proof of (ii) . To prove the result for X = JR, use conclusion (i) twice - once with J 
consisting of those j 's for which the number 

is positive and once with those j 's for which that number is negative; then add the results. 
For an arbitrary positive integer q, apply the one-dimensional result to each of the real
valued functions Ir; o j, where Ir; : JRq ---+ lR is the ith coordinate projection. For the 
I I l l 1 norm, we just add the coordinatewise errors. Any equivalent norm I I  I I  satisfies 
cdx l l :::; l l x lh :::; c2 l l x l l  for some positive constants c1 , c2 .  
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24.24. Definition. Let f : [a, b] ---> X be ip-integrable. Then an indefinite integral of f 
is a function F :  [a , b] ---> X of the form F(t ) = x + I: f dip, for any constants c E [a, b] and 
x E X.  Note that any two indefinite integrals of f differ by a constant . For simplicity, the 
most common choice of F is with c = a and x = 0. For most applications, the particular 
choice of x and c does not matter, so we may refer to F as "the indefinite integral of f." 
We may write it as F(t) 1t f dip + constant . 

This is actually a whole collection of functions - one for each choice of the constant - but 
any one of those functions will work equally well in most applications. 

24.25. Continuity Theorem. If f is Henstock integrable on [a, b] , then the indefinite 
integral F(t) = I: f(s)ds is continuous. 

More generally, if f is ip-integrable, then the indefinite integral F(t) = I,: f dip is right 
continuous (respectively, left continuous) at each point where ip is. 

Proof Fix any p E [a, b) where ip is right continuous; we shall show that F is right continuous 
at p. (A similar argument works for left continuity. ) Let any E > 0 be given; choose some 
corresponding gauge 8 as in the definition of the Henstock integral or in the Henstock-Saks 
Lemma. Replacing 8 with a smaller gauge if necessary, we may assume p + 8(p) < b. Now 
consider any q E (p, p + o(p) ) .  By applying 24. 10  on the intervals [a, p] and [q, b] we can 
obtain a 8-fine tagged division T that has as one of its subintervals [t]- l , t� = [p, q] with 
tag T] = p. Apply the Henstock-Saks Lemma 24.23 with J equal to the singleton {]} ; thus 
lf(p) [ip(q) - ip(p)] - I: f dipl < E. This proves that 

q E (p, p + 8(p)) IF(q) - F(p) l < E + lip(q) - ip(P) I I J (p) l .  

Hence lim supqlp I F(q) - F(p) l ::; E .  Since E was chosen arbitrarily, we have 

lim sup IF(q) - F(p) l ::; 0, 
qlp 

hence lim F(q) = F(p) . qlp 

INTEGRALS OF CONTINUOUS FUNCTIONS 

24.26. Advanced calculus theorem: existence of the integral. Assume the normed 
space X is complete, and let f : [a , b] ---> X be continuous - or more generally, piecewise 
continuous (defined in 19.28) .  Then: 

(i) The Riemann integral I: f(t )dt exists. 
(ii) More generally, let ip : [a, b] ---> lF be any function of bounded variation. Then 

the Riemann-Stieltjes integral I: fdip exists. 
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Hints : f is a uniform limit of step functions; we shall apply 24.22 and 24. 17. It suffices 
to consider the case of real-valued "'' since 'P = Re( 'P) + i Im( 'P) . It suffices to consider 
'P increasing, since any real-valued function of bounded variation is the difference of two 
increasing functions. 

Remark. Much weaker hypotheses imply the existence of integrals; see 24.45 and 29.33.b. 

24.27. Converse proposition ( optional ) .  Let (X, I I  I I ) be a normed vector space that is 
not complete. Then there exists a continuous function f : [0, 1] --+ X that is not Henstock 
integrable. 

Proof By assumption, there exists some sequence (xn ) in X that is Cauchy but does not 
converge. Replacing (x, ) with a subsequence, we may assume l l xn - Xn+ l l l  < 4-n for all 
n E N. Let U11 = x, - Xn+l ; then l l un l l  < 4-n but :L:=l Un = limN_,00 2:::=l Un does not 
exist in X. Note that 2:::=1 Un does exist in the completion of X, which we shall denote 
by Y. 

Now let 'P : [0, 1] --+ [0, +oo) be some continuous function satisfying 'P(O) = '1'(1 ) = 0 
and c = J11 'P(t)dt > 0. (The particular choice of 'P does not matter; three such functions 
are ! - I t - H i - ( t - ! )2 , and sin(1rt ) . )  

Define f : [0, 1] --+ X as follows : Let J(O) = 0. For n = 1 ,  2, 3, . . .  , on the subinterval 
[2-" , 2-n+ l ] ,  let f(t) = 2"'P(2"t - 1 )un · Then f is continuous on that subinterval and 
vanishes at each end of that subinterval, and l l f(t) l l :::; 2n i i 'P I Ioo l l un l l < 2-n i i'P I Ioo everywhere 
on that subinterval; hence f is continuous everywhere on [0, 1] . An easy computation shows 

2- n+ l  
J2_ ,  j(t)dt = CUn .  

We may view f as a continuous function from [0 , 1] into the completion space Y .  Then 
f is Riemann integrable in Y, by 24.26(i) . It is intuitively obvious (and an only moderately 
difficult exercise to prove) that J;11 f(t )dt = c 2:::,1 Un , which exists in Y but not in X.  
If f has a Riemann or Henstock integral in X,  then that integral must coincide with the 
Riemann integral in Y; thus f does not have a Henstock integral in X. 

24.28. Proposition. Let IF be the scalar field, and let C[a, b] = {continuous functions from 
[a, b] to IF} .  Let X be a Banach space. Define 

C[a, b] l_ = { 1/J E BV( [a ,  b] , X) : 1b f d1j; = 0 for every f E C[a, b] } . 

Then a second, equivalent definition is 

{ 1j; E BV( [a, b] , X) : 1/;(a) = 1/J(b) and the set 
{ t E [a, b] : 1/J( t) =1- 1/J( a) } is at most countable} . 

The linear space BV( [a ,  b] , X) can be expressed as a direct sum of two linear subspaces, as 
follows: 

BV( [a ,  b] , X) C[a, b] _t EB NBV( [a , b] , X) ,  
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where N BV( [a ,  b] , X) is defined as in 22 . 19.d . That is, any '1/J E BV( [a ,  b] , X )  can be written 
in one and only one way as '1/J = 'I/J1 + 'I/J2 with 'ljJ1 E C[a, b]j_ and 'I/J2 E N BV( [a ,  b] , X ) .  
Furthermore, Var('I/J2 ) :::; Var('I/J) .  

Proof ( following Limaye [1981] ) .  To prove the equivalence of the two definitions of C[a, b] j_ , 
let any '1/J E BV( [a ,  b] , X )  be given. For simplicity of notation, replace '1/J( - ) with the function 
'1/J( · ) - '1/J(a) ;  thus we may assume '1/J(a) = 0. 

First suppose '1/J E C[a, b]j_ using the first definition. If we take f to be the constant 
function 1 ,  we find that '1/J(b) = '1/J(a) . Now let v(t) = Var('I/J, [a, t] ) ;  then v is increasing and 
hence has at most countably many discontinuities. Fix any point t0 where v is continuous; 
it suffices to show that 'ljJ(t0) = 0. For large integers n, define the continuous function 

fn (t) { I - ( t :- to )n 
if a :::; t :::; to 
if to :::; t :::; to + � 
if to + � :::; t :::; b. 

Using 24. 19, we can compute 

0 '1/J(to) + 1to+* fn (t) d'lj! + 0. to 
Since l l fn l loo :::; 1 ,  24. 16 .c shows that 1'1/J(to) l :::; Var('I/J, [to , to + � ] ) = v (to + � ) - v( to ) .  Now 
take limits as n ----+ oo . 

On the other hand, suppose that '1/J E C[a, b] j_ using the second definition. We use the 
fact that J: f d'lj! is a Riemann-Stieltjes integral, not just a Henstock-Stieltjes integral. We 
have .r,: f d'ljJ = limr I.:[f, T, '1/J] for any choice of tagged divisions T that have subinterval 
lengths tending to 0. By our hypothesis on '1/J, we can choose the tagged divisions T so 
that the subintervals [t1_ 1 , t1 ] satisfy '1jJ(t1_ 1 ) = '1jJ(t1 ) = 0. Then I.:[!, T, '1/J] = 0 for all such 
tagged divisions. This completes the proof of the equivalence of the two definitions. 

From the second definition of C[a, b] j_ it is clear that C[a, b]j_ n N BV( [a ,  b] , X) = {0} ;  
hence any '1/J can be written in at most one way as 'I/J1 + 'ljJ2 . Let us show that i t can be 
written in at least one way. Let any '1/J E BV( [a ,  b] , X) be given. Since any constant function 
belongs to C[a, b] j_ , we may replace '1/J( · ) with the function '1/J( · ) - '1/J( a) ;  thus we may assume 
'1/J(a) = 0 to simplify our notation. Now define { 0 when t = a  

'I/J2 (t ) '1/J(t+) when t E (a , b) 
'1/J(b) when t = b. 

Then 'lj!2 is right continuous on (a , b) .  
To show that Var('I/J2) :::; Var('I/J) ,  let any partition a =  to < t 1 < t2 < · · · < tn = b be , 

given and any number E > 0. For j = 1 ,  2, . . . , n - 1 choose some point Sj E (tj , tJ+ I )  with
I'I/J2 (tj ) - '1/J(sJ ) I < �E. That inequality is also satisfied for j = 0 and j = n by taking so = a 
and Sn = b. Hence 

Tl n 

j= I j=l 
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Thus Var(l/!2 ) <::: 2c + Var(�) ; now let c 1 0. This proves Var(�2) <::: Var( 1/J ) , and therefore 
�2 E N BV( [a, b] , X) .  

Since � is continuous except at at most countably many points, the function � 1 = �-�2 
belongs to C[a, b] _L ;  that is clear from the second definition. This completes the proof of 
the theorem. 

MONOTONE CONVERGENCE THEOREM 

24.29. Monotone Convergence Theorem for Henstock-Stieltjes integrals. Let 
JI , f2 , i:J , . . .  be functions from [a, b] into [O, +oo) . For each t E [a, b] assume that 0 <::: 
h ( t) <::: h ( t) <::: h ( t) <::: · · · and that the sequence (fA. ( t ) ) converges to a finite limit .f( t ) .  Let 
rp : [a. b] --+ lR be an increasing function. Assume each .h is rp-integrable, and supk J;� .fk drp < 
oo. Then f is rp-integrable, and J:' fA drp --+ J,:' f drp as k --+ oo. 

Remark. We shall use both this theorem and the analogous theorem for integrals over 
(J-algebras (given in 21 .38(ii)) when we prove in 24.36 that the two kinds of integrals are 
equivalent . 

Proof of theorem (following DePree and Swartz [1988] ) .  Let A = limk�x J;�' fk drp; we 
are to show that the Henstock-Stieltjes integral J:' .f drp exists and equals A. Let any 
c > 0 be given; we are to find a gauge 15 such that every /5-fine tagged division T satisfies 
l A - I: [f. T. -P] I  < c . 

From our hypotheses, we can easily see that: 

• There is some integer v such that 0 <::: A - J:' .fv drp < c/4. 
• For each t E [a , b] , there is some positive integer i(t) such that 0 <::: .f (t) - fi (t ) ( t )  < 

c/4 [rp(b) - rp(a) ] .  
• For each positive integer k ,  there i s some gauge rk such that whenever S i s a lk-fine 

tagged division of [a, b] , then I I: [J, . S, rp] - J;� h drp l < 2-k- l c. 
Now let f.l(t) = max{v, i (t ) } ,  and then define a gauge 15 by taking /5(t) = l,,( t ) ( t ) . Let 
T = (n, t1 , T1 )  be any b-fine tagged division; we shall show that I I: [!, T, rp] - A I < c. We 
may write I:[f. T. rp] - A =  e 1 + e2 + e;3 • with the error decomposed into these three pieces: 

n 

e1 L [rp(tj ) - rp(tj_ l )] [f(Tj ) - .f1,(r1 ) (Tj )] , 
j=l 

,,, � [r\'(f' ) - 1'(1., , , ) ] ft• (c, j (T, ) - J:' ' !,,,, ) dl' l , 
f:;J t f' ' fl t (r, ) drp - A. 

j = l . '} - 1  
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To estimate e 1 ,  observe that JJh ) :2': i(Tj ) ,  so 0 :::; j(T1 ) - fp(TJ ) (Tj )  < E/4[rp(b) - rp(a)] ; 
hence / e1 1 < E/4. To estimate e2 , temporarily fix any positive integer k. Define the set 
Jk = {j : JJ(T1 ) = k} .  For each j E Jk , we have b(T1 )  = "fk (Tj ) ;  hence t1 - t1_ 1  < "fk (T1 ) .  By 
the Henstock-Saks Lemma (24.23) and our choice of 'Yk l  

The sets J1 , J2 , h ,  . . .  form a partition of the set { 1 ,  2 ,  3, . . . , n} , and therefore 

Finally, to estimate e3 , let p = max{JJ( TI ) , JJ( Tz ) ,  . . .  , JJ( T n ) } .  Then v :::; JJ( Tj ) :::; p for all 
j ,  hence 

< < 

and summing over j yields 

Therefore J e3 J  < E/4, which completes the proof. 

24.30. Corollaries. Let rp : [a, b] ---> lR be an increasing function. Then: 

a. Interchange of limits (theorem of Levi type) . Suppose g1 , gz , g3 , . . . : [a, b] ---> 
[0, +oo) are rp-integrable, and 2::�1 g1 (t) is finite for each t. Then Lj J: gj drp is finite 
if and only if Lj g1 is !p-integrable, in which case 

l {� g, (t) } d,o(t) . 

Hint : This is just a reformulation of the Monotone Convergence Theorem (24.29) ,  with 
!h = fJ - IJ-1 and fa = 0. 

b. If S � [a, b] is a union of countably many intervals, then its characteristic function ls  
i s  !p-integrable. In particular, by 15.37.d, we see that the characteristic function of any 
open subset of [a, b] is !p-integrable. 
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ABSOLUTE INTEGRABILITY 

24.31. Notation. Let (X, I I  I I ) be a Banach space, and let 'P : [a, b] --+ lR be an in
creasing function. We shall say that a function f : [a, b] --+ X is tp-integrable if the 
Henstock-Stieltjes integral I: f dtp exists. We shall say that f : [a, b] --+ X is absolutely 
cp-integrable if both the Henstock-Stieltjes integrals I: f( t) dtp( t) and I: I I ! ( t) II dtp(t) exist. 

Recall from 19.21 and 22. 19 the definition of the variation of a function. 

Theorem. Let (X, II I I ) be a Banach space. Let 'P : [a, b] --+ lR be an increasing function. 
Suppose f :  [a, b] --+ X is tp-integrable and has separable range, and let F(t) = I: f(s) dtp(s) 
be its indefinite integral. Then F has bounded variation if and only if f is absolutely 
tp-integrable, in which case Var(F, [a ,  b] ) = I: 1 1 ! 1 1  dtp. 
Proof If f is absolutely tp-integrable, then 

n 
L I IF(tj ) - F(tJ-d l l  
j=1 

and thus Var(F, [a, b] ) :::; I: l l f l ldtp. 

< t JtJ l l f(s) l l  dtp(s) 
j=1 t, - 1 

Conversely, suppose that v = Var(F, [a, b] ) < oo; we shall show that the Henstock-
Stieltjes integral I: l l f l l d'P exists and equals v. We prove this first in the case where X is 
finite-dimensional; then we shall use that case to prove the general case. 

Let any E: > 0 be given. We are to construct a gauge 8 such that whenever S = 
(m, s; , a; ) is a 8-fine tagged division of [a, b] ,  then l v - I: [ I I J I I , S, tp] l :::; c. Let � be the 
constant corresponding to the norm I I I I  in the Henstock-Saks Lemma (24.23(ii) ) .  Since f 
is Henstock integrable, we may choose some gauge 11 such that whenever T = ( n, tj ,  T1 ) is 
a 11-fine tagged division of [a, b] , then I I I: fdtp - I:[f, T, 'Pl l l < c/2�. By the definition of 
v, there is some division a = q0 < q1 < q2 < · · · < qP = b of the interval [a, b] such that 
2::::�=1 1 1 Iq:k_ 1 fdtp l l > v - �c ; this division will remain fixed throughout the remainder of 
the proof. Let Q = { q0 , q1 , . . .  , qP} .  Define a gauge 1 as in 24. 1 1 .  We shall show that the 
gauge 8 = min{/, rd has the required properties. 

Let S = (m, s; , a; ) be any 8-fine tagged division of [a, b] ; we are to show that l v -
I: [ l f i , S, tpJ I  < E . Construct an auxiliary tagged division T = (2m, tj , Tj ) as in 24. 12. By 
24. 1 1  we have Q � {a1 , a2 , . . .  , am }  = {71 , T2 , . . .  , T2m } � {to , t 1 , t2 , . . .  , t2m } ;  hence 

and therefore lv - 2::::�:"1 I I I1:'_ 1 f d'P I I I < �E. The tagged division T is 8-fine, hence 11-fine, 
so we may apply the Henstock-Saks Lemma, which yields the first inequality in the following 
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string of inequalities: 

c - > 
2 

> 

� II t. f d<p - f(r, ) [<p(t, ) - <p (,,_ , �� I I 
� { L f d<p l l - 1 1 /(rj ) l l [<p(tJ ) - <p(t,_ , )] } 
� l it. f d<p l l - E [ [ l / 1 1 , T, 'P] > lv - E[ i l / ( ) I I ,  T, '1'] 1 

This completes the proof for the finite-dimensional case. 

1 
- f; . 2 

For the general case, we may reason as follows: The Banach space X and its dual X* 
will have norms both denoted by I I I I - By assumption, the range of f is separable. By 
23.24, there is some sequence (>.J )  in X* such that ii>.J I I  = 1 for all j and l l u l l  = supj 1 >-J (u) l 
for every u E Range(!) . 

Temporarily fix any positive integer m, and let lRrn be equipped by the sup norm l l l loo , 
defined as in 22. 1 1 .  Define a function f rn : [a, b] -> lRm by 

fm (t) ( >.I f(t) , >.2f(t) , · · · , Arnf(t)) · 

The function frn is �-integrable in JRrn , since we can compute the integrals component
wise. For any s , t E [a, b] , we have l lfm (t) - fm (s) l loo = maxl<::J<::m l>-1 (f(t) - f(s) ) l  :S 
l l f(t) - f(s) l l ;  from this it follows that Var(fm , [a, b] ) :S Var(f, [a, b] ) = v. By the case 
we have already proved in finite dimensions, the integral I: l l fm l lood� exists and equals 
Var(frn , [a, b] ) ;  thus it is bounded above by v . 

As m ->  oo, the function l l fm (t) l loo = max{ l>. l f(t) l ,  l >-2f(t) l , . . .  , 1 >-mf(t) l }  increases 
to l l f(t) l l , by our choice of the >.j 's. By the Monotone Convergence Theorem 24.29, the 
integral I: l l f l l d� exists and is the limit of the integrals I: l lfm l lood�; hence I: l l f l l d� :S v .  

On the other hand, v ::::; I: l l f l l d� as we showed at the beginning of this proof. Thus 
v = I: l lf l l d�, completing the proof. 

24.32. Corollaries. Let � : [a, b] -> lR be an increasing function. Then: 
a. Suppose that f : [a, b] -> X and g : [a, b] -> lR are �-integrable, f has separable 

range, and l l f(t) l l  :S g(t) for all t. Then l lf ( - ) 1 1  is �-integrable - i.e . , f is absolutely 
integrable. Moreover, I I I: fd� l l  :S I: l l f l l d� :S I: gd�. 

Hint: F(t) = I: fd� has bounded variation, since I I F(t) - F(s ) l l  = I I J: fd� l l :S 
I: gd� by 24. 16.a. 

b. The lattice of absolutely integrable functions. The real-valued absolutely �
integrable functions on [a, b] form a vector lattice, with (f V g)(t) = max{f(t) , g(t) } 
and (f 1\ g) (t) = min{f(t) , g(t) } .  Hints: 

1 f v g = 2 [f + g + I f - g i J and 1 f 1\ g = 2 U + g - If - g i J . 
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Also, lf ( t ) + g(t) l <::: l f (t ) l + lg(t) l . 
c. Suppose f1 . f2 , f:J ,  . . .  : [a, b] ---+ [O, +oo) are ip-integrable, and g(t) = supn fn (t ) exists 

for each t. If g <::: h for some ip-integrable function h :  [a, b] ---+ [O, +oo) , then g is 
ip-integrable, too. 

Hint : The functions Fn = max{JI , h, . . .  , fn } are ip-integrable, by 24.32.b. Apply 
the Monotone Convergence Theorem to the sequence F1 ,  F2 , F3 , . . . . 

d. Fatou's Lemma. Let JI , h, f:J , . . .  : [a, b] ---+ [O, +oo) be ip-integrable functions. Sup
pose that lim infn�= I�' fn dip < oo. Then lim infn�= fn (t) is a ip-integrable function 
of t , and I lim infn�= fn dip <::: lim infn�oo I fn dip. 

Hint: Let gk = inf{fk, fk+ 1 , fk+2 , . . .  } .  Apply the Monotone Convergence Theorem 
to the increasing sequence g1 , g2 , g3 , . . .  . 

HENSTOCK AND LEBESGUE INTEGRALS 

24.33. Remark. The proofs in this subchapter, particularly the first one, are rather long 
and technical. In a first reading, beginners may find it helpful to read the statements of 
results but skip the proofs. 

24.34. Technical lemma on regularity. Suppose that ip : [a, b] ____, IR is an increasing 
function, and f : [a, b] ---+ [0, +oo) is a function for which the Henstock-Stieltjes integral fc� f dip exists. Let any number c > 0 be given, and let E = { t E [a, b] : f(t) 2: 1 } .  Then 
there exists an open set G ::2 E such that I: lc dip <::: c + I: f dip. 

(Here ''open'' refers to the relative topology on [a, b] ; for instance, the set [a, b] is open. 
We know that the Henstock-Stieltjes integral J;� lc dip exists by 24.30.b . ) 
Proof (modified from McLeod [1980] ) .  It will be simplest to treat the point a separately 
from the rest of the interval. Let 1 { a }  be the characteristic function of the singleton {a} ,  
and let l (a .b] be the characteristic function of the remainder of the interval. I t suffices to 
prove the lemma for each of the two functions f1 {a }  and Jl (a.b] -- i.e. , it suffices to prove 
the lemma in the two cases where f vanishes outside {a}  and where f vanishes at a. 

First , suppose f vanishes outside {a} . The theorem is trivial if E = 0,  so we may 
assume f(a) 2: 1 .  It is easy to compute fc� f dip = f(a) [ip(a+) - ip(a) ] . Choose a > a  small 
enough so that ip(a) - ip(a+) < c. Then G = [a, a) is an open set containing {a} ,  and 

as required. 
For the remainder of the proof we may assume f(a) = 0; hence a <f. E. We may define 

ip( t) = ip( b) for all t > b; thus ip is right continuous at b. By 15.21 .c , we know that ip is 
right continuous at all but countably many points of (a ,  b] ; hence ip is right continuous at 
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all points in a dense subset of (a, b] . We now form partitions P1 , P2 , P3 ,  . . .  of [a, b] into 
subintervals, 

o 1 2 PJQ. (j )- 1 < PJQ. (J ) -- b a = Pj < Pj < Pj < · · · < 

satisfying these requirements: 

• PH1 is a refinement of Pj (that is, Pj is a subsequence of PHI ) ,  

• rp is right continuous at each of the poirits PJ , PJ , . . . , p �(j) , 

• max {PJ - p� , PJ - p) , . . .  , p�(j) - p�(j)- 1 } < 2-J (b - a) . 

(Although the particular method used for satisfying these conditions is not important , here 
is one way that it can be done, with Q(j) = 3j : Each subinterval in Pj can be subdivided 
into 3 subintervals in PH 1 , where each of those subintervals has length less than half the 
length of the Pj subinterval and rp is right continuous at the endpoints of each subinterval. )  

Since the Henstock-Stieltjes integral I: f drp exists, there is some gauge 8 such that 
whenever T is a 8-fine tagged division, then II: [j, T, rp] - I: f drpl < c/2. We now use 8 
to select a sequence ( (ak , bk] , akhEN of tagged intervals, chosen in stages by the following 
procedure. For the first stage, there are no previously selected intervals. For j 2 1 ,  in the 
jth stage we select all intervals ( ak> bk] that meet the following criteria: 

( ) ( b l . f h . h . I ( 0 1 ] ( Q(J )- l Q(J ) ] h k 1 ak, k 1s one o t e Jt stage mterva s Pj , Pj , . . . , Pj , pj t at ma e up 
partition Pj ; 

(2) (ak, bk] is not contained in any previously selected interval; and 

(3) there is at least one point ak E (ak > bk] n E that satisfies bk - ak < 8(ak) · 

For each interval (ak > bk] selected in this fashion, there may be more than one point that is 
suitable for use as ak l but we choose one particular value for ak . Note that the resulting 
intervals (ak , bk] are disjoint; also note that f(ak) 2 1 .  

We claim that U;;=1 (ak , bk] :2 E.  To see this, fix any z E E .  For some integer j 
sufficiently large, we have 2-j ( b - a) < 8 ( z) .  Since a tt E ,  we have z "/=- a, so one of the 
intervals (p',t 1 , pj] (for u = 1 ,  2, . . .  , Q(j ) ) must contain z, and that interval (pj- 1 , pj] must 
have length less than 2-j (b - a) . That interval must be selected in the jth stage, if it is not 
contained in an interval that was already selected in an earlier stage. Thus z E u;;=l (ak , bk] , 
proving our claim. 

Next we show that 2:::�1 [rp(bk) - rp(ak)] :::; �c + I: f drp. To see that, fix any pos
itive integer K; it suffices to show 2:::�=1 [rp(bk ) - rp(ak) ] :::; �c + I: f drp. The intervals 
(a1 , bl ) , (a2 , b2 ) ,  . . .  , (aK , bK )  are disjoint, and the complement of their union is equal to 
the union of finitely many subintervals of [a, b] . Apply 24. 10 to obtain a 8-fine tagged divi
sion of each of those subintervals. Putting all the subintervals together, we obtain a 8-fine 
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tagged division T = (m, t11 , Tv ) of [a , b] , in which ( [ak , bk] , ak ) l <k<K comprise some of the 
subintervals . Since f(ak: ) :::0: 1 ,  we obtain - -

K m 

L [ip(bk ) - ip(ak)] < L [ip(tv ) - ip(t,_ l )] f(Tv) < 
k=l v=l 

by our choice of 8. This proves the desired inequality. 

s Jb - + f dip 2 a 

For each k, the function ip is right continuous at bk. Hence we may choose some ck > bk 
with ck close enough to bk so that ip(ck) < ip(bk ) + 2-k-1 s; then L�=l [ip(ck ) - ip(bk)] < �s .  
The intervals (a1 , ci ) ,  (a2 , c2 ) ,  (a:3 , c:3 ) ,  . . .  are not necessarily disjoint , but their union is an 
open set G that contains E. It follows from 24.30.a that the Henstock-Stieltjes integral 
Jb 1(; dip exists and is less than or equal to (1 

This completes the proof of the lemma. 

24.35. Theorem on measures. One-dimensional Borel-Lebesgue measure and Lebesgue 
measure (defined as in 21 . 19) exist. Furthermore, a set E <::: [a , b] is Lebesgue measurable if 
and only if its characteristic function 1E is Henstock integrable, in which case the Lebesgue 
measure p,(E) is equal to the Henstock integral J� 1E (t) dt. 

More generally, let ip : [a, b] ---> lR be an increasing function. Let X be the collection of 
all sets S <::: [a, b] for which the Henstock-Stieltjes integral 

/Ltp ( S) j" 15 (t )dip(t) 

exists. Then X is a a-algebra that includes 'B = {Borel sets} ,  and ( [a , b] , X, p,'P ) is a 
complete measure space (as defined in 21 . 16) ; in fact , it is the completion of ( [a ,  b] , 'B , P,cp ) · 
Furthermore, the measure space ( [a ,  b] , X, P,cp )  is regular, in this sense: A set S <::: [a, b] 
belongs to X if and only if there exist an Fa set A and a G0 set B such that A <::: S <::: B 
and P,cp (B \ A) = 0. 

Every positive finite measure 11  on the Borel sets 'B in [a, b] is of the form /Lcp for some 
increasing function ip. 
Remarks. Here G6 is with respect to the relative topology of [a, b] ; thus the set [a, b] itself 
is considered to be open. Note that any measurable set is the union of an Fa and a set of 
measure 0; contrast that with 20.22. 

Proof of theorem. By the definition of X, it is clear that if K1 , K2 E X  and K1 :? K2 , then 
K1 \ K2 E X. In particular, the complement in [a, b] of any member of X also belongs to 
X. By 24.30.a, we see that the union of countably many disjoint members of X is also a 
member of X: hence X is a monotone class (defined in 5.29) . Also by 24.30.a, the mapping 
/Lcp : S �--+ ft11 1sdip is countably additive on X. (We do not yet assert that X is a a-algebra; 
that fact will be established much later in this proof. ) 
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Let 3" be the algebra of all unions of finitely many subintervals of [0, 1 ] . (We shall count 
the empty set and any singleton as subintervals.) Then 13, the O"-algebra of Borel sets, is 
the O"-algebra generated by 3". It is clear that X ::2 3". By the Monotone Class Theorem 
5 .29, X ::2 13 . The restriction of /-L<p to 13 is a measure since fL'P is countably additive on X. 

If E E X and n E N, then (by 24.34 with f = 1E and E = �) there is some open set 
Gn ::2 E with J-L<p (Gn) � � + /-L<p (E) .  Then B = n�=l Gn is a Borel set (in fact , a Gb set) 
with B ::2 E and /-L<p (B) = J-L'P (E) ,  hence J-L'P (B \ E) =  0. 

Let N = {N s;; [a , b] : N s;; B for some Borel set B with J-L'P (B) = 0} .  The completion of 
13 is the O"-algebra 13 6 N, defined as in 2 1 . 16. The inclusion 13 6 N s;; X is an easy exercise, 
using the definition of X; we omit the details. To prove X s;; 13 6 N, let any E E X be 
given. Form a Borel set B as in the preceding paragraph. Then B \ E is not necessarily a 
Borel set , but B \ E is a member of X that has J-L'P (B \ E) = 0. By the results of the last 
paragraph, there is some Borel set B' containing B \ E with J-L'P (B') = 0. Thus B \ E E N; 
hence E = B \ (B \ E) E 13 6 N. This proves X is equal to the O"-algebra 13 6 N. 

The result about Fa sets is obtained by passing to complements. 
If J-L is a positive finite measure on the Borel subsets of [a, b] , then define an increasing 

right continuous function <.p : [a, b] -+ lR by <.p(t) = J-L( [a ,  t] ) ,  and use it to define a measure 
/-L<p as above. We obtain J-L'P ( [a ,  t ] ) = <.p(t) and J-L'P ( [a ,  t ) ) = <.p(t-) = J-L( [a ,  t ) ) .  Thus the 
measures /-L<p and J-L agree on 3"; by the Monotone Class Theorem they agree on 13. 

24.36. Theorem on integrals. Let (X, I I ) be a Banach space, and let f : [a, b] -+ X 
be some function. Then f E £1 ( [a ,  b] , X) if and only if f is absolutely Henstock integrable 
and almost separably valued. Moreover, when those two conditions are satisfied, then the 
Bochner-Lebesgue and Henstock integrals I: f(t)dt are equal. 

More generally, suppose (X, I I )  is a Banach space, f :  [a, b] -+ X  is some function, and 
<.p : [a, b] -+ lR is an increasing function. Define a measure /-L<p on the O"-algebra X of subsets 
of [a, b] , as in 24.35. Then the following two conditions are equivalent. 

(A) f E £1 (J-L'P , X ) .  
(B) f is absolutely <.p-integrable (i.e. , the Henstock-Stieltjes integrals I: f d<.p and 

I: l f ( · ) l d<.p both exist, in X and in lR respectively) ,  and f is almost separably 
valued (defined as in 2 1 . 17) . 

Moreover, when conditions (A) and (B) are satisfied, then the Bochner integral f[a,b] f dJ-L'P 
is equal to the Henstock-Stieltjes integral J: f d<.p. 
Remarks. Of course, the separability condition is satisfied trivially and can be omitted from 
mention if X itself is separable - in particular, if X is finite-dimensional. We emphasize 
that measurability of f (from X to the Borel subsets of X) is an explicit part of condition 
(A) , but not of condition (B) . In fact, most of the proof is devoted to showing that condition 
(B) implies the measurability of f. 
Proo-f of (A) ==? (B) and equality of the integrals. 
(i) We first prove (A) ==? (B) in the case where f is finitely valued. This case is easy; the 
details are left as an exercise. 
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(ii) We next prove (A) ==? (B) in the case where X = IR and f 2 0. Then there exists 
a sequence of finitely valued measurable functions fn , increasing pointwise to f, by 21 .5 . 
We have I fndfl = I fn (t)dip(t) for each finitely valued function fn · The numbers I fndfl 
increase to I f d{l by the Monotone Convergence Theorem for Lebesgue Integrals ( 2 1 .38( ii) ) .  
Hence the numbers I fn (t)dip(t) increase to I f(t)d'P(t) by the Monotone Convergence The
orem for Henstock-Stieltjes Integrals (24.29 ) .  

(iii) Finally, we prove (A) ==? (B ) in full generality: Let any f E L1 (fl'P , X) be given. By 
22.30.b, there exists a sequence of finitely valued functions fn converging in L1 (fl'P , X) to 
f. By 22.3l (ii) , passing to a subsequence, we may assume that fn ----> f pointwise and that 
the sequence is dominated by some nonnegative function h E L1 (fl'P , IR) .  By the remarks of 
the preceding paragraph, h is '{)-integrable. Define v( S) = Is h dfl'P ; this is a measure on X 
by 21 .38(i ) . 

Let any E > 0 be given, and let 8 = Ej6['fJ(b) - 'P(a) ] . By Egorov's Theorem (21 .32) , 
we may partition [a, b] into some disjoint sets J, K E X such that v( J) < E /6 and fn ----> f 
uniformly on K. Choose n large enough so that maxtEK l l fn (t) - f(t) l l < 8. The function 
fn · lK  is also finitely valued, hence '{)-integrable. Since fn · lK and h · l .1 are '{)-integrable, 
we may choose a gauge 1 such that whenever S is a 1-fine tagged division of [a, b] , then 

and � ��[hl .J ,  S, 'P] - 1 hd'P I I < � ·  
Now consider any 1-fine tagged division S. We estimate 

l l � [f, S, 'fJ] - � [f lK , S, 'fJ] I I  
l l � [flK , S, 'fJ] - � [f, lK , S. 'PJ I I 

l l � [fn lK , S, 'P] - J fndfl l l K 
II J fndfl - J fdlt l l K K 
II J fdM - J fdM I I K [a. .b] 

< � [hl ,J , S, '{J] :S: � + f.J hdip = � + v(J) < 26c , 
< �[8, S, 'P] = ['P(b) - 'P(a)J8 = � '  

< � (by our choice of 1) , 

< fK 8dfl :S: M( [a ,  b] )8 = ['P(b) - 'P(a)J8 

= l l f.J fdM I I :s: J.� hdfl = v(J) < � ·  

Putting all these ingredients together, we arrive at I I � [!, S, 'P] - I[a.b] fdfl l l < E . This proves 
that the Henstock-Stieltjes integral I f dip exists and equals I f dfl. 
Proof of (B) ==? (A) . Again we proceed through several cases. 

(i) We first prove (B) ==? (A) in the case where X = IR, f 2 0, and I: f dip = 0. 
Let any numbers r, E > 0 be given. By Lemma 24.34, there is an open set G containing 
{t E [a, b] : �f(t ) 2 1 } ,  such that fl'P (G) :S: E. It follows easily that {t E [a, b] : f(t) 2 r} 
i s a member of X with measure 0. Hence f i s measurable, f = 0 almost everywhere, and 
f E U (M'P ) .  
(ii) We next prove (B )  ==? (A) in the case where X = IR and f 2 0 (but I: f dip is not 
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necessarily 0 ) .  Temporarily fix any number c: > 0. For n = 0, 1 ,  2, . . .  , define the functions 

Un (t) (J(t) - nc:)+ 1\ c: 
{ 0 if f ( t )  :::; nc: 

f(t) - nc: if nc: :::; j(t ) :::; (n + l )c:  
c: if (n + l )c: :::; j(t) . 

Then the functions Un are all absolutely ip-integrable, since the absolutely ip-integrable 
functions form a vector lattice, as noted in 24.32.b. It is easy to verify that I:�=O un(t) = 
j(t) for each t ;  hence I:�=O I: Un dip = I: f dip by 24.30.a. 

By Lemma 24.34, for each n 2 0 we may choose some open set Gn ::2 { t E [a, b] : 
c:- 1un (t ) 2 1 }  = {t  E [a, b] : un(t )  = c:} ,  satisfying 

1 1b 
2-n- l 

+ - Un dip. 
c a 

Then g = c: I:�=O len is Borel measurable, and I[a,b] g df.l'P = I: g dip :::; c: + I: f dip by the 
Levi Theorems 21 .39.b and 24.30.a. Note that the sets Hn = { t E [a, b] : nc: < j(t) < 
(n + l )c:}  (for n = 0, 1 ,  2, 3, . . .  ) are disjoint , and ( len + lHJc: 2 Un · Hence, summing over 
n ,  we obtain g + c: 2 f. 

Our construction of g depended on the choice of c: .  Now construct such a function g = gk 
for each of the values c: = t (for k =  1 , 2, 3, . . .  ) .  Thus we obtain functions gk E L1 (f.L'P , IR) 
with gk + t 2 f and I[a,b] gk df.l'P :::; � I: f dip. Let h = lim infk�oo gk . Then h is Borel 

measurable, h 2 j ,  and by Fatou's Lemma (21 .39.c) we have I: h dip = I[a,b] h df.l'P :::; 

I: f dip . Hence f - h is nonnegative and I: (J - h) dip = 0. By the special case discussed 
earlier in this proof, it follows that f - h E U (M'P ) ,  and therefore f E L1 (M'P ) .  This 
completes the proof in the case where X = IR and f 2 0. 

(iii) We next prove (B) =} (A) in the case where X = IR (but f is not necessarily 
nonnegative) . As we noted in 24.32.b, the absolutely ip-integrable functions form a vector 
lattice. Hence we may write the Jordan Decomposition f = j+ - f- (see 8.42.f) .  The 
functions j+ , f- are absolutely ip-integrable, so the problem is reduced to the previous 
case. 

(iv) Finally, we prove (B) =} (A) in general - i.e. , where X is any Banach space. 
Any complex Banach space may be viewed as a real Banach space, by "forgetting" how 
to multiply vectors by members of C \ JR. This has no effect on conditions (A) and (B) ;  
hence we may assume the scalar field is  JR. By assumption, f is  almost separably valued, 
so by changing f on a set of M'P-measure 0 we may assume f is separably valued. By 
assumption, the vector-valued function f is absolutely ip-integrable; hence the real-valued 
function I f ( - ) I is also absolutely ip-integrable. By the previous case of this theorem, we 
know that I J ( - ) 1 E L1 (f.L'P , IR) .  

Temporarily fix any ,\ E X* .  We claim that the function ,\ of : [a, b] ___, IR is ip-integrable, 

with I: >.(!( · ) ) dip = ,\ (I: f dip) ; indeed, this is clear from the estimate 

� >.(f(ui ) ) [ip(si ) - ip(si_ I )] - ,\ (1b 
f dip) 
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lA (t f(a; ) [so(s; ) - so(s;-d] - 1b 
f dso) I 

< II A l l It f(a; ) [so(s; ) - so(s;-d] - 1b 
f dso l · 
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A similar estimate shows that I; A(j( · ) )  dso = A (I: f dso) for any subinterval [p, q] � [a, b] . 
Hence for any partition a = Po < PI < P2 < · · · < Pn = b we have 

t. A (L f d�) 
< II A l l t. f. f d� l < II A l l l it( ) I d� 

By 24.31 ,  therefore, A o f : [a, b] --+ lR is absolutely so-integrable. Apply the previous case 
(iii ) ;  thus A o f E U (JLop , JR) with I[a.bJ A o f dJL'P = I: A(j( · ) )dso. 

In particular, A o f is measurable from X to the Borel sets of JR. The function f is 
separably valued and weakly measurable, hence (see 23.25) strongly measurable. Since 
l f ( · ) l E L1 (JLop , lR) (established earlier in this proof ) ,  it follows that f E L1 (JLop , X ) .  The 

equation I[a.b] f dJL'P = I: f dso was established when we proved (A) =} (B) . 

24.37. Corollary. Let X be a Banach space with scalar field F (equal to lR or C). If 
so : [a, b] --+ F has bounded variation and f : [a, b] --+ X is bounded and strongly measurable 
(from the Borel sets to the Borel sets) , then the Henstock-Stieltjes integral I: f dso exists. 

24.38. Remarks. The Henstock integral can be generalized, though only with some diffi
culty, to domains more general than an interval [a, b] . The Bochner /Lebesgue approach is 
more powerful, in that it applies easily to a very wide collection of measure spaces (fl, S, JL) . 

In certain other respects, however, the Henstock integral is actually more general. Built 
into the definition of the Bochner /Lebesgue integral are a separability condition and an 
absolute integrability condition (i .e . ,  not only f but l l f ( - ) 1 1  must be integrable) .  These re
strictions are not imposed on the Henstock integral; hence we can devise functions that are 
Henstock integrable but not Bochner /Lebesgue integrable by violating either the separabil
ity condition or the absolute integrability condition. 

Violations of the separability condition are perhaps contrived and artificial, since all of 
applied mathematics (all of "the real world" ) happens in separable Banach spaces, or in 
separable subspaces of Banach spaces. Violations of the absolute integrability condition 
are not so contrived, however. A study of the continuous dependence on parameters and 
asymptotic behavior for solutions to differential equations with rapidly oscillating terms 
leads to functions very much like the pathological function in 25.20, which is Henstock 
integrable but not Lebesgue integrable. In fact, it was the study of such solutions to 
differential equations that led K urzweil to his independent discovery of the Henstock integral 
(also known as the Kurzweil integral) ;  for instance, see Kurzweil [ 1957] . 
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MORE ABOUT LEBESGUE MEASURE 

24.39. Example: meager but full. The sets with Lebesgue measure 0 and the meager sets 
form two a--ideals on IR and thus two different notions of "small" sets. These notions are 
not directly related; a set may be small in one sense while large in the other sense. That is 
evident from the following example. 

Let (rj )  be an enumeration of the rationals. For i , j  E N, define the open interval 
H;,j = (r; - 2-i-j , r; + 2-i-j ) . Then Gj = U�1 H;,j is an open dense subset of IR, and so 
C = n�1 Gj is a comeager set with Lebesgue measure 0. Thus it is "small" with respect 
to Lebesgue measure, but "large" with respect to Baire category. Its complement has these 
properties reversed. Note also that C is uncountable since it is not meager. 

24.40. Proposition on regularity of Lebesgue measure. Let J-L denote Lebesgue measure on 
JR. If S � IR is Lebesgue measurable, then 

J-L(S) sup{J-L(K ) : K � S, K compact} . 

Proof. Let any E > 0 be given. By 24.35, for each integer n E .Z we can find some compact 
set Kn � S n [n, n + 1] such that J-L(Kn) > J-L(S n [n, n + 1 ] ) - 2- ln l -2c. Any overlap among 
the Kn 's or among the sets S n [n, n + 1] is contained in the set .Z, which has measure 0. 
Hence for any N E N, we have J-L(Uini .C:N Kn) = Llni<:::N J-L(Kn) 2': J-L(S n [-N , N]) - E. The 
set Ulni<:::N Kn is compact , and the numbers J-L(S n [-N, N] )  increase to J-L(S) as N ----+ oo .  

24.41. Further results for Lebesgue-integrable functions. Let X be a Banach space. Recall 
that U ( [a ,  b] , X) means the space L 1 (J-L, X) where J-L is Lebesgue measure on the Lebesgue 
measurable subsets of [a, b] . Show the following. 

a. Continuity of the indefinite integral. Let lt (u) = Iau f(t )dt .  Then the map 
f f---7 If is continuous from L 1 ( [a , b] , X) into L00 ( [a , b] , X) .  

Hint :  First show that the map f f---7 If , from L 1 ( [a , b] , X) into L00( [a , b] , X ) ,  is 
nonexpansive. Also show that when f is continuous, If is continuous. Recall from 
22.30.d that the continuous functions are dense in L 1 ( [a ,  b] , X ) .  

b .  Riemann-Lebesgue Lemma. If f E L 1 ( [a ,  b] , X) ,  then I: sin(nt)f(t)dt converges to 
0 as n ----+ oo .  

Hints : Let Rn (f) = I: sin(nt)f(t )  dt. Show that Rn, considered as a mapping 
from L1 ( [a , b] , X) to the scalar field, is nonexpansive. Prove limn__,oo Rn(f) = 0 first 
when f is a step function. Then recall from 22.30.c that step functions are dense in 
L1 ( [a ,  b] , X ) .  

Remark. This result will be generalized in  26.47. 

24.42. Proposition ( optional) .  Suppose a function f : IR ----+ IR is additive; i .e . ,  

f(x + y) = f(x) + f(y) for all x, y E JR. 
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Also suppose f is measurable (from the Lebesgue-measurable sets to the Borel sets) .  Then 
f(x) = xf( 1 )  for all x. Thus, any additive, Lebesgue measurable function from lR to itself 
is continuous. (Compare this with 1 1 .30 .c . ) 
Proof. This proof is based on Hille and Phillips [1957] . 

It is easy to show that f(rx) = r f(x) for all rational numbers r and all real numbers x; 
that does not require measurability. In particular, f(O) = 0 and f( -x) = -f(x) . 

Let f.L denote Lebesgue measure. We first claim that 

if a > O  and S = { .s E [O, a] : f(s) � �f(a) } , 1 
then f.L(S) � 2a . 

To see this, let T = a - S =  {a - s  : .s E S} ;  then f.L(T) = f.L(S) . Also, S U T = [0, a ]  since 
f(s) + f(a - s) = f(a) .  Hence ft(S) � � 11 ( [0 , a] ) =  �a . 

Next we claim that f is bounded above on [ 1 ,  2] . Indeed, suppose not. Then there is 
a sequence (xn ) in [ 1 .  2] with f(x11 )  ---> +oo. Passing to a subsequence, we may assume 
f(x11 ) > 2n . For each n, the Lebesgue-measurable set Sn = {s E [O, xn ] : f(s) � n} has 
measure f.L(S11 ) � �x11 : hence for each n the measurable set M11 = {s E [0, 2] : f(s) � n} 
has measure f.L ( AI11 ) � �. However, the sets Ain form a decreasing sequence with empty 
intersection, hence lim11�x JL(AI77 ) = 0, a contradiction. 

Thus f is bounded above on [ 1 ,  2] . Replacing f with -f (which satisfies the same 
hypotheses) ,  f is also bounded below on [ 1 ,  2] . It follows easily that f is bounded on each 
bounded subinterval of JR. 

Next we show that f is continuous at 0. Indeed, suppose not. Show that there exists a 
sequence (t71 ) converging to 0 in lR with f(t11 ) > E for some constant E > 0. Passing to a 
subsequence, we may assume the t, 's are all positive or all negative. Let us assume they 
are all positive: the proof is similar in the other case. Passing to a subsequence again, we 
may assume t, < 2-" .  Then the numbers s11 = t 1 + t2 + · · · + t11 all take their values in a 
bounded interval , but f( .s11 ) > nE, a contradiction. 

Since f is continuous at 0, it follows easily by translation that f is continuous everywhere 
on JR. Since .f( .r) = x.f ( l )  for all rational :r: , this equation is also valid for all real x. 

24.43. Lemma on the maximal function for Lebesgue measure. Let f.L be Lebesgue 
measure on JR. let X be a Banach space, and let f E L1 (IR, X) .  For each t E IR, let 

g(t) s�p 
JL (�) L l .f (s) l ds. 

where the supremum is over all open intervals B that contain t . Then g is defined uniquely at 
each point of lR (even if .f is left ambiguous on a set of measure 0) ;  g is lower semicontinuous 
(hence measurable) ;  and 

11 ( { t E lR : g( t )  > ex} ) < 
3 
- 1 1! 1 1 1  n 

for any number o > 0. The function g is called the maximal function associated with f. 
(This lemma will be used in the proof of 25. 16. It is somewhat comparable to 29 . 18 . ) 



658 Chapter 24: Generalized Riemann Integrals 

Proof of lemma. (This presentation is from Fefferman [ 1977] . )  The definition of g is not 
affected if we change f on a set of measure 0. To see that g is measurable, note that 

g(t) = sup ga,b ( t ) ,  where a ,b>O 
1 it+b 

ga,b ( t ) = -b lf(s) l ds . a + t�a 
Thus g is a supremum of continuous functions, hence g is lower semicontinuous. 

Fix any o: > 0, and let S = {t E IR : g(t) > o:} .  For each t E S, there is some open 
interval Bt containing t such that Is, lf (s ) l ds > O:JL(Bt ) · Fix any finite number r < JL(S) . 
The set G = UtES Bt is open, hence measurable; it contains S, hence JL(G) > r. By the 
regularity property established in 24.40, there is some compact K t;;; G with JL(K) > r .  

Since it  is  compact, K can be covered by finitely many of the members of � - say by 
Bh , Bt2 , • • •  , Btn . We may assume that these are arranged in order of decreasing length -
that is, JL(BtJ 2: JL(Bt2 ) 2: · · · JL(BtJ ·  

We shall choose a subsequence Bu1 , Bu2 , • • •  , Bum with the property that the Buj 's 
are disjoint and 2::;:1 JL(Buj ) > r /3. Let Bu1 = Bt1 • Thereafter, let Bu,+ 1  be the first 
one of the Bti 's that does not meet any of Bu1 , Bu2 , • • •  , Bu1 • The resulting collection 
Bu1 , Bu2 , . . .  , Bum is clearly disjoint. To see that L:'J'=1 JL(Buj ) > r/3, reason as follows: 
For each j ,  let Lj be the open interval that has the same midpoint as Buj but is three 
times as long. If some Bti is not among the Buj 's , then Bti meets some Bu1 that is at 
least as large as Bti . Then Bti s;; Lj . Hence K s;; U7=1 Bt, s;; ur;=1 Lj ' so r < JL(K) ::::: 
2::';=1 JL(Lj ) = 3 2::';=1 JL(BuJ · 

Let C be the union of the Buj 's. Then 
m 

< f 1 l f (s) l ds 
j= 1 Buj fc l f (s) l ds < o:r 

3 
The desired inequality follows immediately, in view of our choice of r. 

MORE ABOUT RIEMANN INTEGRALS ( OPTIONAL ) 
24.44. Proposition. If f : [a, b] ----+ X is Riemann integrable, then f is bounded. 

Proof of proposition. Suppose. (pk ) is a sequence in [a, b] with l l f (Pk ) l l ----+ oo. Choose some 
number 8 > 0 such that whenever T is a 8-fine tagged division, then I I: [!, T] -I: f(t )dt l < 1 .  
Then whenever T and T' are 8-fine tagged divisions, we have I I: [/, T] -L: [f, T'] l < 2 .  Choose 
a partition a =  t0 < t1 < t2 < · · · < tn = b with maxj (tj - tj�I ) < 8. Show that some 
subinterval [tj� 1 , tj ] contains infinitely many of the Pk 's .  Consider tagged divisions Tk , 
all of which are identical except for their tag Tj in the subinterval [tj�1 , tj ] ;  let Tk use Pk 
for that tag. Then I:[/, Tk] - I: [/, yk' ] = [f(Pk ) - f(Pk' )] (tj - tj� I ) ;  from this obtain a 
contradiction. 

24.45. Theorem. Let (X, II I I ) be a Banach space. Let f : [a, b] ----+ X be bounded, and 
continuous at almost every point of [a, b] . Then f is Riemann integrable. 
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Proof. For simplicity of notation we may assume [a, b] = [0 , 1 ] .  Also, we may extend f to 
all of lR by defining f (t )  = 0 for all t E lR \ [0 , 1 ] . 

For each positive integer p, define a step function Wp : lR -> [0 , +oo) by taking 

{ ( k - 1 k + 1 ] } ( k - 1. k + l. ] 
wp(t) = sup l l f(r) - f(s) l l  : r, s E -

p
- , -p- for t E ----r! , ----r! . 

The functions wp are bounded, since f is bounded. Also, at every point t where f is 
continuous, we have wp(t) -> 0 as p -> oo. Thus I0

1 wp(t)dt -> 0 by the Dominated 
Convergence Theorem. 

Now let us consider any two tagged divisions 

S 0 = So :S CT1 :S 81 :S CT2 :S 82 :S · · · :S Sm- 1 :S CTm :S Sm = 1 ,  
T 0 = to :S T1 :S t 1 :S T2 :S t2 :S · · · :S tn- 1 :S Tn :S tn = 1 ,  

of the interval [a , b] , such that max; (s; - s;_ I ) < 21P and max1 (tj - t1-d  < 21P ; we wish 
to compare the approximating Riemann sums :E[f, S] and :E[f, T] . For each pair i , j ,  the 
set [s;_ 1 , s; ] n [t1_ 1 , t1 ] is either an interval [u;1 , v;1 ]  or the empty set. Let I = { (i , j )  : 
[s;- 1 , s;] n [tj - 1 , tj ] i- 0} ; then 

:E[f, S] = L f(CJ; ) (v;J - u;j ) , 
(i .j )E/ 

I: [f, T] = L j(Tj ) (v;J - uiJ ) · 
(i ,j ) E /  

Therefore :E[f, S ]  = I0
1 Js,r (t)dt and :E[f, T] = I; h.s (t)dt, where fs.r and h.s are the 

step functions that take the values f(CTi )  and f(Tj ) ,  respectively, on the interval (uiJ , vi.J 
For any ( i , j )  E /, consider any point t E (ui1 , v;J ] · Both CTi and TJ lie within distance 

1 ( k- 1.  k+l. ] 
2P from the number t. Choose the integer k that satisfies t E -r! ,  � ; then CJ; , Tj E 

( k;l ,  k;1 J ,  hence l l !s.r (t) - h.s (t) II = l l f (CT; ) - ( Tj ) II :S wp(t) . Thus II :E[f, S] - :E [f, T] l l  :S 
I; wp(t)dt .  This proves that the net :E[f, · ] is Cauchy, and therefore f is Riemann integrable. 

24.46. Theorem (Lebesgue) . A function f : [a, b] -> lR is Riemann integrable if and 
only if it is measurable (from Lebesgue-measurable sets to Borel sets) and bounded and its 
discontinuities make up a subset of [a , b] that has Lebesgue measure 0. 

Proof Parts of this theorem were proved in 24.44 and 24.45. It remains to show that if f 
is Riemann integrable, then its discontinuities make up a set of measure 0. For simplicity 
of notation, we may take [a, b] = [0 , 1 ] ;  also, we may define f(t) = 0 for all t < 0 and for all 
t > 1 .  For positive integers n,  define lower and upper step functions by taking 

ln (t) = inf {J (s) 

Un (t) = sup { J(s) 

k- 1 < < k } � s _ 2n 

} 
k - 1  k 

when -- < t < -
2n - 2n

' 

and taking ln(O) = un (O) = f(O) . Then ln :S f  :S un ; the sequence (ln) increases pointwise 
to a limit l; the sequence ( Un ) decreases pointwise to a limit u. By the Monotone or 
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. r l rl r l r l 
Dommated Convergence Theorems, Jo ln ( t)dt ---> Jo l (t )dt and Jo un (t)dt ---> Jo u (t)dt .  On 
the other hand, we are assuming f is Riemann integrable; since J01 ln (t)dt and J01 un (t)dt 
are equal to approximating sums I:[f, T] , both of these integrals converge to J01 f(t )dt as 
n ---> oo .  Thus u - l is a nonnegative function with Lebesgue integral 0 ,  so in fact u - l = 0 
almost everywhere. Thus, u(t) = l (t )  = f(t) fails only on a set of measure 0 .  The set 
{2-"k : n, k E N} is countable, hence has measure 0. It is easy to see that f is continuous 
at any point t that is not in either of these sets of measure 0. 

24.47. A pathological, Riemann-integrable function. The theorem in 24.46 applies 
to real-valued functions. It extends easily to functions taking values in a finite-dimensional 
Banach space. However, it is not valid for infinite-dimensional Banach spaces, as we shall 
show with an example of Gordon [1991 ] .  

Let £2 be the space of  all square-summable sequences of  real numbers, as in  22.25. 
That space is a separable Hilbert space; thus it is the most nonpathological of all infinite
dimensional Banach spaces. Nevertheless, we shall describe a Riemann-integrable function 
f :  [0, 1] ---> £2 that is discontinuous everywhere. 

For each positive integer m, let ern be the sequence with 1 in the mth place and Os 
elsewhere. Let (rrn : m E N) be an enumeration of the rational numbers in [0, 1 ] . Define 
f(rm ) = ern for all m and f(t) = 0 when t is irrational. Then f is discontinuous everywhere. 

To prove that f is Riemann integrable, let T = ( n, t1 , Tj ) be any tagged division with 
max1 (t1 - t1_ 1 ) < E. We may merge two consecutive subintervals [t1_ 1 , t1 ] and [t.7 ,  t1+d if 
they have the same tag - i.e . , if tJ = Tj- l = T1 , then we may replace the two subintervals 
with a single subinterval; this does not affect the value of the approximating Riemann sum 
I:[!, T] . The resulting new tagged division still satisfies max1 (t1 - t1_ 1 ) < 2E , and no two 
of its tags are identical. Hence (j(T1 ) ,  j(Tk) ) = 0 for j =/= k. Therefore 

I I I: [!, TJ I I 2 

Thus J01 f(t)dt = 0. 

n 
L j(Tj ) ( tj - tj-d 
j=l 

2 n 
L l l f(Tj ) l l 2 (tj - tj _ I )2 < 2E . 
j=l 
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Frechet Derivatives 

DEFINITIONS AND BASIC PROPERTIES 

25.1.  Definitions. Let X and Y be normed spaces, and let f : n --+ Y be some function 
with domain f1 � X.  We say that L is a derivative of f at a point � E f1 if L : X --+ Y is 
a bounded linear map satisfying 

or, in greater detail, 

lim 
T 1 0 

lim 
X --+ �  

l l f(x) - !(0 - L(x - O i l  
l lx - � I I  

0, 

sup 
X E f1, 

0 < l l x - � I I  < r 

l l f(x) - f(O - L(x - �) I I  

l lx - � I I  
0. 

Then f is said to be differentiable at �. This condition says, roughly, that f can be 
approximated closely by a continuous affine operator at points near �- The operator L may 
also be called the Fh�chet derivative of f at �,  to distinguish it from several other kinds 
of derivatives . 

In most cases of interest, we can show that there is at most one operator L satisfying 
the conditions above - see 25.3. Thus we are justified in calling it the derivative of f at � 
It may then be denoted by f'(O ; this is the Lagrange notation for the derivative. The 
Cauchy notation is Dxf(O . Alternatively, the derivative can be written in Leibniz no
tation: df/dx or �� or ��. (0 ;  this can also be written as �; if y = f(x) . Each notation has 
its advantages: Lagrange notation is usually preferable if all of our functions are expressed 
in terms of the same independent variable x. Leibniz notation is usually preferable if we are 
working with several different choices of the independent variable (as in the Chain Rule, in 
25.6) . 

Caution: Leibniz notation makes the derivative look like a quotient of two simpler, 
more elementary quantities. At least in the case where X = Y = IR, it is possible to 
explain the derivative as the quotient of two dependent variables , or even as the quotient 
of two infinitesimals. However, that explanation is not simple and is not recommended for 
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beginners. The beginner is probably safer thinking of dy / dx as just one expression and 
ignoring the fact that the derivative appears to be the quotient of two simpler expressions 
(except when that appearance is helpful for mnemonic purposes, as in 25.6) .  

25.2. Alternate definition for functions of a scalar variable. When X is the scalar field 
(IR or C), then a linear operator L : X ---> Y can be represented by a vector y0 E Y, in 
this fashion: L(t) = tyo for all t E X. (In fact, y0 = L(1 ) . )  Thus f' may be viewed as a 
mapping from 0 into Y. Since it is possible to divide by scalars, the definition in 25 . 1  can 
be restated in an equivalent but simpler form: 

f' (O lim 
x->t; 

f(x) - f(O 
X - �  

In particular, when Y is also the scalar field, then f' (O is just a scalar, as in college calculus. 

25.3. Proposition: uniqueness of the derivative. Let X and Y be normed spaces, let 0 � X ,  
let f : 0 ---> Y be  some mapping, and let � E 0 .  Suppose that either (i) � is i n  the interior 
of n, or (ii) n is convex and has nonempty interior. 

Then the derivative of f at �. if it exists, is unique - i.e. ,  there is at most one bounded 
linear operator L :  X ---> Y satisfying condition 25 . 1 ( *) .  

Remarks. These hypotheses can be weakened, but apparently not without making them 
more complicated. Note that hypothesis (ii) is satisfied if n is an interval in the real line. 

Proof of proposition. By replacing f with the function u f-+ f(E, + u) , we may assume 0 E n  
and E, = 0; this will simplify our notation. By assumption, 

lim sup 
rlO xED, 0< l l x l l <r 

[ [ f (x) - f(O) - L(x) [ [  
[ [x [ [  0 .  

Suppose that L1 and L2 are two bounded linear operators satisfying this condition; we must 
show that the bounded linear operator M = L1 - L2 is equal to 0. We know that M satisfies 

lim sup 
r LO xED, 0< l l x l l <r 

[ [M(x) [ [  
[ [x [ [  0 . 

To show that the linear mapping M equals 0 ,  it suffices to show that M vanishes on some 
nonempty open subset of X; in particular, it suffices to show that M vanishes on int(O) .  
Consider any nonzero point v E int (O) . If either 0 i s  convex or 0 E int(O) , then tv E 0 for 
all t > 0 sufficiently small. Then 0 = limqo [ [M(tv) [ [ / [ [ tv [ [  = [ [M(v) [ [ / [ [ v [ [ ,  so [ [M(v) [ [ = 0. 

25.4. Definitions. We say that f is differentiable on the set n if the Frechet derivative 
f' ( E,) = * ( �) exists for every point � E 0. Thus we define a function f' = * : 0 ---> 
BL(X, Y) , where BL(X, Y) is the normed space of bounded linear operators from X into 
Y (introduced in 23. 1 ) .  We say that f is continuously differentiable on 0 if it is 
differentiable and the mapping f' : n ---> BL(X, Y) is continuous. The linear space of all 
continuously differentiable maps from n into Y is sometimes denoted C1 (0, Y) .  
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If f : n ----) y is continuously differentiable, then the continuous mapping !' : n ----) 
BL(X, Y) might also be differentiable at some point � - Then its derivative is the second 

derivative of f,  denoted f" (O = �:{ (0 .  That operator is a member of BL(X, BL(X, Y ) ) ;  
3 

it may be viewed as a map from X x X into Y. Similarly, we may define f"' (O = 
d !

3 (�) , dx dnj 
etc . ,  and in general f(nl (�) = - (�) .  We denote by cn (n , Y) the class of functions f for dxn 
which j(n) exists and is continuous. When Y is the scalar field (IR or C) ,  then cn (n , Y) 
may be written more briefly as cn (n ) . A function is  called smooth i f  i t  has derivatives of 
all orders - i.e. , if it belongs to c= (n, Y) = n�=l cn (n, Y) .  

Note that f(n) (O = [f("l (O] ( · )  is a mapping from xn into Y; we may write it as 
[j(n) (�)] (x1 , x2 , . . .  , xn ) · It is linear in each Xj if � and all the other x; 's are held fixed. In 
general it is not linear in � if all the x; 's are held fixed. 

25.5. Elementary examples and properties. 
a. If f is differentiable at �' then f is also continuous at �-

b. If f is a constant function, then f'(�) = 0 for all � E D. 
c. Review (from a calculus text) the proof of the product rule: 

:t (f(t)g(t) ) f'(t)g(t) + f(t)g' ( t )  

for scalar-valued functions f and g. 
d. If M : X ----) y is a bounded linear operator and f(x) = M(x) for all X E n,  then 

f'(O = M for each � E D. Thus the mapping f' : n ----+ BL(X, Y) is a constant 
mapping, since it takes the value M at each point of n. Hence f" = 0. 

However, f itself is not constant (unless M = 0) . This is a subtle distinction that 
may confuse some beginners. We have f(x) = M(x) and f' (x) = 1\J, but these are two 
different things: 1\I (x) is a particular member of Y, whereas 1\1 is a mapping from X 
into Y.  

e. If f : X ----+ Y is some mapping and Y is  the scalar field, then f' (x) ( i f  i t  exists) is  a 
member of the dual space X* . This situation should not be confused with the situation 
in 25.2. 

f. When X =  IR, then we can use one-sided limits (as in 15 .21)  to define the one-sided 
derivatives : 

r (0 = lim 
f(x) - f(O 

: d� X - � 
and r (O = lim 

f(x) - f(O . 
:rjl;  X - �  

When � lies in the interior of the set n, then the Frechet derivative f' (O (defined as in 
25. 1 )  exists if and only if both the one-sided derivatives exist and are equal, in which 
case f' ( 0 is equal to their common value. If D is an interval and � is the left endpoint 
of that interval, then the limits and derivatives from the left at � are meaningless and 
the Frechet derivative f' (0 is (by our definition in 25 . 1 )  the same as the right-handed 
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derivative j+ (�) .  Similarly, when � is the right endpoint of the interval, then the limits 
and derivatives from the right are meaningless and f' (�) = f- (0. 

g. If we replace the norms of X and Y with equivalent norms, then the linear space 
BL(X, Y) = {bounded linear operators from X into Y} remains unchanged and its 
norm also gets replaced by an equivalent norm. The existence and value of !' (�) are 
unaffected by these replacements. Thus, our calculations are actually being performed, 
not in a normed space, but in a normable space - i .e . ,  in a topological vector space 
whose topology can be given by various norms but that does not have one of those 
norms specified in particular. 

h. ( Optional.) Let X, Y be Banach spaces. With notation as in 23.28, recall that 
Inv(X, Y) is an open subset of the Banach space BL(X, Y) .  Define a mapping 
2 : Inv(X, Y) ---+ BL(Y, X )  by 2(!) = r1 .  Show that 2 is continuously differen
tiable, with [2' (f)] (h) = -f- 1 hr1 . Hint: Use the series in 23.28.b. 

i. ( Optional.) Let X be a complex Banach space, and let BL(X, X) be the Banach space 
of bounded linear operators from X into X.  Let T be a member of BL(X, X) ,  and let 
p(T) be its resolvent set (defined as in 23.30) . Show that the mapping ,\ �---* (,\! - T) - 1 
is a differentiable mapping from p(T) into BL(X, X) .  What is its derivative? 

Another example of a derivative in infinite dimensions is given in 25.22. 

25.6. Chain rule of differential calculus. Let X, Y, Z be normed spaces. Let S s;;: X 
and T S::: Y be open sets. Let f : S ---+ Y and g : T ---+ Z be some functions. Suppose that 
xo E S and Yo = f(xo) E T. Suppose that the derivatives at these points, f'(x0) and g'(y0 ) , 
both exist. (We do not assume that f and g are differentiable anywhere else, though we do 
not prohibit that either . )  Then the composition g o  f is differentiable at x0 ,  and we have 

(g o  J)' (x0 ) g' (yo) o f'(xo) ,  
or, i n  other terms, (g o !)' (�) = g'(f(0) o f' (O .  This formula is easier to remember in 
Leibniz notation: If z is a function of y and y is a function of x, then 

dz 
dx 

dz dy 
- 0 -
dy dx · 

The dy 's appear to "cancel out" in this formula. The proof of the Chain Rule is similar to 
that given in any calculus book for X = Y = Z = JR, with epsilons and deltas. We leave 
the details as an exercise. (It is interesting to compare this with 29. 12.b. )  

Cautionary remark. When X = Y = Z = JR, as in college calculus, the linear operators 
�� and � are simply the operations of multiplication by a real number (see 25.2) ;  hence 
the composition of those two operators is just the multiplication of those two real numbers. 
In that setting, it does not matter in what order we put the factors �� and � ,  since 
multiplication of real numbers is commutative. However, in the more general setting of 
three arbitrary normed spaces X, Y, Z, the order of the two factors is very important. The 
formula must be stated �� = �� � ;  it is incorrect if written �� = � �� .  Indeed, the 

composition �� �� may not even make sense, for �� is a bounded linear operator from X 
into Y while �� is a bounded linear operator from Y into Z. Even when X = Y = Z, the 
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compositions d
d
z 1:1L

d 
and '!:JL

d
d d

d
z need not be equal, since the composition of bounded linear y X X y 

operators from X into itself generally is not commutative if dim( X) ;::: 2 � see 8.27. 

PARTIAL DERIVATIVES 

25. 7. The matrix of partial derivatives. In some cases of interest , the normed spaces X 
and Y are products of finitely many normed spaces: 

for some positive integers m, n. As we noted in 25.5.g, for our present purposes any norm 
can be replaced by any equivalent norm. Hence the product topology on X can be given by 

l l (x 1 , x2 , . . .  , xm) l l 
l l (x1 , X2 , · · · , Xm) l l  

l l x1 l l  + l l x2 l l + · · · + l l xm l l  
max { l l x1 l l ,  l lx2 l l , · · · , l lxm l l } 

or 

or any other convenient product norm; similarly for Y. Let 0 be a subset of X; then a 
function f : 0 --> Y can be represented by a wide assortment of notations: 

y =  (y1 , y2 , . . .  , yn ) = f(x) = f(x1 , X2 , · · · , xm) = (h (x) , h (x) , . . .  , fn (x)) 
(h (x1 , X2 , . . .  , xm) ,  h (x1 , X2 , · · · , xm) ,  . . .  , fn (X1 , X2 , · · · , xrn )) . 

We shall use these different expressions interchangeably, switching to whichever one is most 
convenient in any particular context � usually suppressing whatever information is not 
currently being used. 

The partial derivative 8yi/ 8xJ is the derivative of the mapping Xj >---+ Yi that we 
obtain when we consider Xj to be the only variable and view all the other xp's as constanto; 
� i.e . ,  hold their values fixed. With j = 1, for instance, �(0 is a bounded linear operator 
L : X 1 --> Y; that satisfies 

lim 
l l /i (u, 6 , 6 , · · · , �m) - /; (6 , 6 , 6, · · · , �rn ) - L(u - 6 ) 1 1  O u--.�, l l u - �1 1 1 

(if such an operator L exists) . We define 8yi/8xj for other j 's analogously. 
Exercise. Let us represent vectors x E X and y E Y as column matrices; that is, 

and 
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Suppose the Fn?chet derivative dy I dx = f' ( x) (defined as in 25. 1 )  exists. Then all the partial 
derivatives exist, and the Fn?chet derivative is equal to the matrix of partial derivatives: 

oy1 oy1 oy1 
OX! OX2 OXm 

oy2 oy2 oy2 

!' (�) 
dy oxl OX2 OXm 

dx 

0Yn oyn 0Yn 
OX! OX2 OXm 

The expression L(x - �) in 25. 1 (* ) is then evaluated by the usual method for multiplying 
a matrix times a vector, as in 8.28. Of course, here we must extend the meaning of the 
term "matrix:" the components oy;joxj of this matrix are not necessarily numbers, or 
even members of a single ring; rather, oy;joxj is a bounded linear operator from xj into 
Y; .  The components of the matrix are numbers (i .e. ,  scalars) when Xj and Y; are both 
one-dimensional, as in 25.2 .  

Example. Here is a typical example in two dimensions. If n = X = Y = JR2 and (y1 , y2 ) = 
(x1 cos x2 , x1 sin x2 ) ,  then 

-x1 sin x2 l
· 

X1 COS X2 

Thus, for instance, oyl I OX! is the function we obtain by viewing X2 as a constant and Xl 
as a variable, and differentiating the function y1 = x1 cos x2 with respect to that variable. 
The other partial derivatives oy; joxj are defined similarly. To say that the formula above 
gives the derivative is to say that this quotient 

] [ c c ] [ cos 6 
<., 1 cos <.,2 
6 sin 6 . c sm ..,2 

converges to 0 when x1 ----+ 6 and x2 ----+ 6.  

6 cos 6 

X1 - 6 ] 
X2 - 6  

Further observations. If the Frechet derivative exists, then the partial derivatives all exist. 
The converse is not valid: There are some functions that possess partial derivatives but do 
not possess Frechet derivatives; one example is the function f given in 15 .28.b .  (Exercise. 
Prove this. )  One convenient sufficient condition for the existence of a Frechet derivative is 
given in the exercise below, but it is not a necessary and sufficient condition. 



Partial Derivatives 667 

Exercise. Let X =  x, X . . .  X Xm and y =  Y, X . . .  X Yn ; let n be an open subset of X; let 
J : n ___, Y be some mapping. Suppose that all the partial derivatives g;j = oy;joxj exist. 
Also assume that each function 9ij (x1 ,  x2 , . . . , xm )  is a jointly continuous function from X 
into Y; .  Then f has a Fnkhet derivative given by the matrix of partial derivatives. 

Hints : We can consider each Y; separately. (Why is that?) Therefore, in the computa
tion below, we shall suppress the subscript i. For simplicity of notation we shall consider 
only the case of m = 3; the proof for arbitrary m is similar. Use the fact that 

3 
J(x, + h , ,  xz + hz , X3 + h3 ) - j(x, , xz , x3 ) - L 9j (x, , xz , x3 )hj 

j=l 
<::: I I J(x, + h, , xz + hz , X3 + h3) - f(x, , xz + hz , X3 + h3 ) - g, (x, , xz , x3 )h, l l  
+ I I J(x, , xz + hz , x3 + h3 ) - f(x, , xz , X3 + h3 ) - gz (x, , xz , x3 )hz l l  
+ l l f(x , ,  Xz ,  X3 + h3) - f(x, ,  xz , x3 ) - g3 (x, ,  Xz ,  x3 )h3 l l ·  

25.8. Real derivatives versus complex derivatives. The spaces !C and IR2 are isomorphic 
when considered as real Banach spaces - i.e. ,  as complete normed vector spaces over the 
scalar field R The obvious bijection preserves the linear structure and also the topology. 
However, the two-dimensional real vector space !C and the one-dimensional complex vector 
space !C have different differentiable structures, as we shall now show. 

Proposition. Let (W, I I I I ) be any complex Banach space (for instance, !C itself ) ,  and let 
f : !C ---> W be some function. We may view W also as a real Banach space and define a 
corresponding function g : IR2 ---> W by g(x , y) = f(x + iy) for real x and y. Suppose g has 

a Frechet derivative g' (xo , Yo ) = [ �(xo , Yo ) ¥u (xo , Yo ) J at some point (xo , y0) . Then f 
has a Frechet derivative at the point z0 = x0 + iy0 if and only if the partial derivatives of g 
satisfy 

in which case J' (z0) = �(x0 , y0 ) . Equation (**) may be called the vector version of the 
Cauchy-Riemann equations. 

Hints : We emphasize that it is assumed that g has a Frechet derivative; this is stronger 
than the assumption that g has partial derivatives. By the definition of Frechet derivative, 
a complex number A is the Frechet derivative of f at z0 if and only if A satisfies 

l. 
f(z) - f(zo) 

Jill 
z�zo Z - Zo 

lim 
(h ,k)� (O,O) 

g(xo + h, Yo + k) - g(xo ,  Yo ) 
h + ik 

If the limit exists, then we must get the same value for the limit no matter how (h, k) 
approaches (0, 0) .  In particular, approach along the horizontal direction or along the vertical 
direction. Thus we get the values 

g(xo + h, Yo ) - g(xo ,  Yo) lim 
h�o h 

g(xo ,  Yo + k) - g(xo ,  Yo ) lim 
k�O ik 

l ag -:- !) (xo ,  Yo ) , 
� uy 
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which must therefore be equal; this proves ( * *  ) . Conversely, if ( * * ) holds, apply the defini
tion of the Frechet derivative. 

Further remarks. A particularly important special case is that of W = C. In that case we 
may write f = u + iv, where u and v are real-valued functions (see 10.25 ) .  Then equation 
( * * ) can be rewritten as gy ( u+ iv) = i gx ( u+ iv) � that is, Uy +ivy = iux -Vx · Since u(x, y) 
and v (x, y) are real functions of real variables, all their partial derivatives Ux , uy, Vx , Vy are 
real. Hence we may equate the real parts of the preceding condition, as well as the imaginary 
parts. Thus, for W = C, equation ( * *) can be rewritten in the form 

au 
ax 

av 
ay ' 

av 
ax 

These are the classical Cauchy-Riemann Equations. 

Example. Let f (z) = z. This is the complex conjugate of z; it is a continuous function of 
z. We have u(x, y) = x and v(x, y) = -y. The real derivative of this function exists: 

However, the complex derivative 

1 
0 

f' (z) r 
f(z + h) - f(z) 

h� h 
does not exist for this function J; the Cauchy-Riemann Equations are not satisfied. 

25.9. The Chain Rule takes a particularly interesting form when the spaces X, Y, Z can 
be factored into simpler spaces, as in 25. 7. If 

then the Chain Rule says 

az1 az1 az1 azl ayl ayl 
axl axrn ayl ayn axl axrn 

azp azp azp azp ayn ayn 
axl axrn ayl ayn axl axrn 

J 

with usual multiplication of matrices. Thus, the entry in row i, column j of the product is 

This formula is sometimes taught in college calculus texts, especially in the special cases 
where one or two of the integers m, n, p are equal to 1 .  
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STRONG DERIVATIVES 

25. 10. Definition. Let X and Y be normed spaces, and let f : n ---+ Y be some function 
with domain n <;;; X. We say that L is a strong derivative of f at a point E E n, denoted 
L = f' ( 0 , if L : X ---+ Y is a bounded linear map satisfying 

or, in greater detail, 

lim r l O 

lim 
x, u ---+ E 

sup 

l l f(x) - f(u) - L(x - u) l l 
l l x - u l l 

X, U E Br (O , 
X ;/c 11 

l l f (x) - f(u) - L(x - u) l l 
l l x - u l l  

0 , 

0 , 

where Br (O is the ball of radius r centered at E .  Then we say f is strongly differentiable 
at E. Clearly, this is a stronger property than Frechet differentiability. 

Note that strong differentiability is a condition at a single point. It is possible for f to 
be strongly differentiable at E and yet be nondifferentiable at every point in n \ { 0 .  We 
shall see in 25.23 that if f is differentiable on an open set , then f is strongly differentiable 
if and only if f is continuously differentiable. 

Our results on strong derivatives are taken from Behrens [ 1974] and Nijenhuis [ 1974 and 
1976] . 

Some basic properties. 
a. Suppose f : n ---> y is strongly differentiable at some point E E n. Then f is Lips

chitzian on some neighborhood of E. In fact, if r > 1 1 1 !' (0 1 1 1 .  then for some neighbor
hood G of E we have U lc)Lip :S: r. 

Proof. Let c = r - 1 1 1 !' (0 1 1 1 ·  Choose G small enough so that u, v E G =? l l f (u) 
f(v) - f' (E) (u - v) l l  :S: c l l u - u l l · 

b. If we merely assume that f is differentiable on a neighborhood of E, then f need not 
be strongly differentiable at � .  

Example. Let f(t ) = t2 sin (C4) with f(O) = 0. Then f i s  differentiable at every 
point of R but f is not strongly differentiable at 0. 

Proof. .f' (O) = 0 since l f ( t ) l  ::; t2 for all t .  For t ;1c 0, we easily compute 
.f'( t )  = 2t sin(C4 ) - 4t-:l cos(t-4 ) .  Now consider U11 = (27rn)- l /·i and v, = u" + b" 
for some very small positive number b71 to be specified. Then f( u" )  = 0 and f' ( U11 ) = 
-4(27rn fl/ 1 ,  hence 

I . f(un + b) - f(un ) 
!Ill h l O  b 

Thus. for b, positive but sufficiently small, 

f( u" ) - f(u" )  
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and therefore [f(vn ) - f(un ) ]  j (vn - un ) does not tend to some finite limit L (O) as 
Un , Vn ---> 0. 

25. 11 .  If f is a (possibly vector-valued) function of a single real variable and f is merely 
assumed to be differentiable at a point � ,  then f still has a property that is nearly as useful 
as strong differentiability: 

Straddle Lemma. If f is differentiable at �' then [f (u) - f (v) ] / (u - v) approaches f'(O 
when u and v approach � from opposite directions (i.e. , when u and v "straddle" 0. That 
is, limuT�. vle (f (u) - f (v) )/ (u - v ) = f'(�) or, more precisely, 

(This result will be used in 25 . 14 and 25. 17. )  

� - 8 ::; u ::; � ::; v ::; � + 8 , } 
u -f= v 

0. 

Proof By the definition of f' (�) , we have f (x) - f (�) - f'(O (x - 0 = (x - Oc-(x), where 
c-(x) is a function satisfying limx_,� c- (x) = 0. Subtract one of the equations 

f (u) - !(0 - f'(�) (u - �) = (u - OE (u) , f(v) - !(0 - f'(�) (v - �) = (v - �)c-(v) 
from the other and then divide through by u - v, to obtain the equation 

f (u) - f (v) 
_ /' (�) 

u - v  

u - � � - v  
-- c- (u) + --c-(v) . 
u - v  u - v  

Because � lies between u and v, the right side of the equation above is a convex combination 
of c-(u) and E (v) , so it tends to 0 as u, v ---> �· 

25.12. Inverse Function Theorem. Let X and Y be Banach spaces, let n � X be 
open, and let p : n -. Y be some function. Assume that p is strongly differentiable at some 
point Xo E n. (We do not assume that p is differentiable anywhere else. )  Assume that the 
linear mapping p' (x0) : X ---> Y is an isomorphism - i.e. ,  a continuous linear bijection with 
continuous inverse. 

Then p is locally invertible, in the following sense: There exist open sets U � n � X 
and V � Y ,  with x0 E U, such that the restriction p lu gives a bijection from U onto V 
whose inverse is strongly differentiable at p(x0) .  The derivative of p- 1 at that point is equal 
to p'(xo )- 1 • 
Proof Let rp = p'(x0 ) .  It suffices to show that the mapping q = rp- 1 o p :  n -.  X is locally 
invertible, for then p = rp o q and p- 1 = q- 1 o rp- 1 have the required properties. Thus, we 
m�y assume Y = X . Replacing p with p(x0 + · ) - p(xo) ,  we may assume xo = p(xo) = 0. 

Denote open and closed balls by B and K, as in 5. 15.g. Let g(x) = x - p(x); then 
g(O) = 0 and g' (O) = 0. By 25.10.a, there is some r > 0 such that g is Lipschitzian on the 
closed ball K(O, r) with Lipschitz constant at most � · Since g(O) = 0, g maps K(O, r) into 
K(O, r/2). For any constant y E K(O, r/2), the mapping gy = y + g  is Lipschitzian with the 
same Lipschitz constant and maps K(O, r) into K(O, r) . By Banach's Fixed Point Theorem 
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( 19.39) , gy has a unique fixed point x in K(O, r) . Unwinding the notation, that says that 
for each y E K(O, r /2) , the problem 

p(x) = y, x E K(O, r) 

has a unique solution x. The same conclusion is reached if we replace r with any slightly 
smaller value. Hence for each y E B(O, r/2) , the problem p(x) = y, x E B(O, r) has a 
unique solution. Let V = B (O, r/2) and U = B(O, r) n p- 1 (V) ;  then U, V are open and the 
restriction of p is a bijection from U onto V. 

Next we show that p- 1 : V ----+ U i s  Lipschitzian. Since (g)Lip � � '  we have 

< 

and therefore l l x1 - xz l l  � 2 l lp(xi ) - p(xz ) l l · Thus (p- 1 )Lip � 2 . 
Finally, we show that p- 1 i s  strongly differentiable at p(x0 ) ,  with derivative equal to 

p' (x0) - 1 . Let rp = p' (x0 ) .  Let y1 = p(xi ) and Y2 = p(xz) .  Then I IY I�Y2 I I � 1 1 , 1 :x2 ll ' since 

(p- 1 )Lip � 2. Then 

< 

I IP- 1 (yi ) - P- 1 (Yz ) - 'P- 1 (Y1 - Yz l l l  
I I Y1 - Yz l l  

I I (x1 - xz) - <p- 1 [p(xi ) - p(xz )J I I 
I I Y1 - Yz l l  

l l <p- 1 {rp(x1 - xz) - [p(xi ) - p(xz ) ] } l l  
I I Y1 - Yz l l  

2 I I I 'P_ 1 I I I l l rp(x1 - xz ) - [p(xi ) - p(xz )] l l  
l lx 1 - x2 l l  

When Y1 , Y2 ----+ p(xo) ,  then x1 , x2 ----+ x0 , and then that last fraction tends to 0 by definition 
of <p = p' (xo ) .  
Remarks. This theorem has many generalizations and variants. For instance, Clarke [1976] 
gives an inverse function theorem for Lipschitzian functions that are not necessarily differ
entiable. The bounded linear operator f' ( x0 ) is replaced by a collection of approximating 
operators. 

25.13. In the next theorem we solve the following problem: Let f(x, y) be some function of 
two variables. When x and z are known, then we may try to solve the equation f(x, y) = z 
for y. Does this make y into a function of x and z? 

Implicit Function Theorem. Let X, Y, Z be Banach spaces, let 0 <;;; X x Y be an open 
set , and let f : 0 ----+ Z be some mapping that is strongly differentiable at some point 
(xo , Yo )  E 0. Also suppose that L = U (x0 , y0) : Y ----+ Z is an isomorphism - i.e. , suppose 
L is a linear bijection from Y onto Z such that L and L - l are continuous. Let z0 = f(x0 , y0) .  
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Then there exists a Lipschitzian mapping q : N ---+ Y ,  defined on a neighborhood N of 
(x0 , z0 ) in X x Z, such that 

q(xo , zo ) = Yo ,  and f (x, q(x, z)) = z for all (x, z) E N. 

Moreover, this mapping q is locally unique, in the following sense: For all (x, y, z) in some 
neighborhood of (x0 , y0 , z0) in X x Y x Z,  we have f(x, y) = z if and only if y = q(x, z) . 
Proof Let Zo = f(xo, Yo ) .  Define a mapping g :  n ---+ X X z by g(x, y) = (g1 , g2 ) 
( x, f ( x, y) ) .  Then g( Xo , Yo) = ( Xo , zo) .  Also, g is strongly differentiable at ( xo , Yo ) ,  with 

g' (x, y) 

In particular, 

g' (xo , Yo )  
[ ix 

L
o l 

fx (xo , Yo )  
has inverse 

Thus the mapping g' (x0 , y0) : X  x Y ---+ X x Z is an isomorphism. By the Inverse Function 
Theorem ( in 25. 12 ) ,  the restriction of g gives a bijection from some open neighborhood of 
(x0 , y0 ) onto some open neighborhood of (x0 , z0 ) ,  and both g and g- 1 are Lipschitzian. Let 
g- 1 (x , z) = (p(x, z ) ,  q(x, z ) ) .  

When z = f(x , y) , then g(x, y) = (x, z) , hence (p(x, z ) , q(x, z) ) = (x, y) . This proves 
that p(x, y) = x for all (x, y) near (x0 , yo) .  Now for (x , y, z) near (xo , yo , zo ) ,  we have 

f(x, y) = z <¢===? g(x, y) = (x, z) <¢===? (x, y) = g- 1 (x, z) <¢===? y = q(x, z ) .  

25.14. Existence of nowhere-differentiable functions. The functions studied in an 
undergraduate course in calculus are, for the most part, piecewise continuously differen
tiable. That is, they are functions from an interval of � to �' which are differentiable and 
have continuous derivatives except at finitely many points. However, those functions are 
atypical if we change our viewpoint slightly. We now present two different proofs of the 
existence of continuous functions that are nowhere-differentiable. 

(i) f(t) = 2::�=1 2-n sin(22n7Tt) is a particular example of a function that is con
tinuous but nowhere-differentiable. 

( ii ) The nowhere-differentiable functions comprise a comeager subset of the sup
normed Banach space C [O ,  1] = {continuous, real-valued functions on [0, 1] } .  
(In other words, most continuous functions are nowhere-differentiable. This 
explains Poincare's remark, on page v at the front of this book. See also 
21 .20. ) 



Strong Derivatives 673 

Proof of (i) . This is similar to a proof given by Billingsley [ 1982] . Since sin( · )  is bounded, 
f(t) is a uniform limit of continuous functions; therefore it is continuous. Fix any t E lR; 
we shall show that [f(b) - f(a)] / (b - a) i s  unbounded as a ,  b --> t with a :::; t < b, and hence 
f is not differentiable at t E lR by the Straddle Lemma (25. 1 1 ) .  

Temporarily fix any large positive integer m; then choose k ,  a ,  b so  k i s  an integer and 

k < k + 1  b .  a < 

We now analyze the number 2-n I sin(22"7ra) - sin(22"7rb) I in three cases: 

• When n is an integer greater than m, then 22"a and 22"b are integers, hence sin(22n 7ra) 
= sin(22117rb) = 0. 

• When n = m, then one of 22na ,  22n b is an integer and the other differs from it by � '  
so 2-" 1 sin(22"7ra) - sin(22"7rb) l = 2-n = 2-m . 

• Since I ,l� sin( x) I :::; 1 ,  the function sin( · )  is nonexpansive; so when n is a positive integer 
less than m we can estimate 2-n l sin (22"a) - sin(22n b) j :=:; 2-n 1 (22na) - (22nb) l = 
2n -21n - l  

Combining these results shows that l f(b) - f(a) l :::0:: 2-m - 2::::�
= 2

n-2m- l = 2-m- l . Thus 
l [f(b) - f(a)J I (b - a) I :::0:: 2m , which is not bounded as m -->  oo. 

Example of 
a zigzag line 

Proof of (ii ) .  For n = 1 ,  2 , 3, . . .  , let Afn be the set of all functions x E C[O, 1] that have the 
following property: 

I x(s) - x(to) I There exists some point to E [0, 1] such that sup 
sE [O. l ]\to S - to < n. 

It is clear that if x is continuous on [0, 1] and differentiable at some point t0 , then x satisfies 
the inequality above for some n, and thus X E u�=l Mn . It suffices to show that each set 
AI, is nowhere-dense. It is easy to see that Mn is closed in C [O, 1 ] ;  thus it suffices to show 
that M11 has no interior. Let y be any continuous function on [0, 1 ] ,  and let any E > 0 be 
given; it suffices to show that some member of C[O, 1] \ A1, is within distance E from y.  
Since y i s  uniformly continuous, we can partition [0, 1] into finitely many subintervals, on 
each of which y changes less than � .  Then we approximate y by a polygonal function -
i.e . .  a continuous function z whose graph is a "zig-zag line" consisting of finitely many line 
segments. We may change those line segments to be very numerous and short and to all 
have slope greater than n or less than -n. Then z � lv1n . 
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DERIVATIVES OF INTEGRALS 

25.15 .  First Fundamental Theorem of Calculus. Let X be a normed vector space. 
Suppose u : [a, b] ----) X is Henstock integrable. Then "the derivative of the integral of u is 
equal to u." More precisely: 

Define a function F :  [a, b] ----) X by F(t) = J� u(s)ds. Then F is differentiable at every 
point t0 where u is continuous, and F' (t0 ) = u(t0) . Likewise, F has a one-sided derivative 
(equal to u) at every point where u is continuous from one side. 

Hints : Suppose u is continuous at t0 . Given any E: > 0, choose 8 > 0 small enough so that 
s E [to - 8, to + 8] n [a, bJ implies l l u(s) - u(to) l l  < c. Then t E [to - 8 ,  to + 8]  n [a ,  bJ implies 

I I F(t) - F(to) - (t - to)u(to) l l  1 11: u (s)ds - 1: u(to)ds l l < I t - to le 

by 24. 16.a. Hence limhto [F(t) - F(to) ]/ ( t - t0) = u(t0 ) .  The same proof applies, with 
obvious modifications, to one-sided continuity and one-sided derivatives. 

25.16. Lebesgue's Theorem on differentiation of the integral. Let u E ,C1 (IR, X) .  
Let F(t) = J� u(s)ds. Then F' (t) exists and equals u(t) for almost every t E JR. In  fact , we 
have a slightly stronger conclusion: There exists a set Lu whose complement has Lebesgue 
measure 0, such that for each t E Lu we have 

1 1t+h 
lim -h 

. 
lu(s) - u(t) lds 0. h--->0 t 

(This is a two-sided limit - i.e . ,  we permit 
h 

to approach 0 from either side, with the 
notational convention of 24.20. ) The set Lu is sometimes called the Lebesgue set for u; 
its members are called the Lebesgue points of u. 
Remark. In most of integration theory we would work with a member of £1 (IR,  X) - that is, 
an equivalence class of functions. However, in the present theorem we work with a member 
of ,C 1 (IR, X) - that is, a particular function from IR into X. Different functions in a single 
equivalence class may have different Lebesgue sets, but those sets will differ by a set with 
Lebesgue measure 0. 

Proof of theorem (following Fefferman [ 1977] ) .  We are to show that the set 

lim sup - lu(s) - u(t) lds > 0 
1 1t+h } 

rlO O< l h l::;r 
h t 

has measure 0. Hence it suffices to show that for each positive integer n, the set 

1 1t+h 1 } 
lim sup 

-h l u(s) - u(t) lds > -
rlO O< l h l::;r  t n 
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has measure less than l .  n 
The continuous functions that belong to £.1 (�, X) are dense in that space. Thus we may 

write u = v+ f, where v E C(�, X) n£.1 (�, X) and f E £.1 (�, X) with l l f l l 1 < 1/8n2 . Let g 
be the maximal function of f (defined as in 24.43) . Since limh__,o i ftt+h l v (s) - v(t ) lds = 0 
for every t, we have 

c 

c 

c 

1 1 1t+h I 1 } lim sup - . l f(s) - f(t) lds > -rlO O< l h l �r h t n 
1 !t+h 1 } sup -h lf(s) - f(t) i ds > -

h¢0 t n 
1 } { l 1 1t+h 

l f(t) l > - U t E � sup -h lf(s) ids 2n h¢0 t 
lf(t) l > � } U {t E � g(t) > � } . 

2n 2n 

Hence (letting f.L denote Lebesgue measure) 

> � } 2n 

JL(Sn )  < f.L ( { t E � : l f(t) l > 
2�}) + f.L ( { t E � g(t) > 

2�}) 
< 2n l l f l l 1 + 6n l l f l l 1 8n l l f l l 1 < 1 

n 
by Chebyshev's Inequality (21 .37.g) and the Lemma on the Maximal Function (24 .43) .  

INTEGRALS OF DERIVATIVES 

25.17. Theorem relating the Henstock and Stieltjes integrals. Let X be a normed 
vector space space with scalar field F. Let f and rp be two functions defined on [a, b] -
one of them vector-valued, the other scalar-valued. Suppose that rp is continuous, and its 
derivative rp'(t) exists except at at most countably many values of t. Then the Henstock-

Stieltjes integral J: f ( t )drp( t) exists if and only if the Henstock integral J: f ( t )rp' ( t )dt exists, 
in which case they are equal. 

Clarification. By J: f(t)rp'(t)dt we mean J�' f(t)G(t)dt , where G is any function that satisfies 
G(t) = rp' (t) except at perhaps countably many points. Thus G may be defined arbitrarily 
on a countable set. It is interesting to compare this theorem with 29. 12 .a. 

Proof of theorem. We wish to show that if either of the nets �[!, T, rp] , � [fG, T] (for tagged 
divisions T) converges to a limit , then the other converges to the same limit. Thus it suffices 
to show that l l � [f, T, rp] - � [fG, T] l l becomes small as T progresses. 

Let S = { a1 , a2 , a2 , . . .  } be an enumeration of the points where rp' does not exist or 
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G -1- r.p'. Let any E > 0 be given. Define a gauge 8 separately on S and on [a, b] \ S, as 
follows: 

Define 8 on S by this rule: Choose 8(a-k ) > 0 small enough so that 

t, t' E [a-k - 8(a-k ) ,  a-k + 8(a-k )] n [a, b] 
=} l l f (a-k) I I { I I 'P(t) - r.p(t' ) l l  + I IG(a-k ) l l ( t - t' ) } < Tk-2E. 

(We can do this since l l f(a-k ) l l and I IG(a-k ) l l  are finite numbers and r.p i s  continuous. )  
Define 8 on [a ,  b ]  \ S by this rule: At each point T in [a, b] \ S, by the Straddle Lemma 

(25. 1 1 ) there is some number 8(T) > 0 with the property that 

U :::; T :::; V, u -j- v 

l lf(T) I I I I r.p(u) - r.p(v)
- G(T) I I  < E 

. 
u - v  2(b - a) 

In this fashion we define a gauge 8 :  [a, b] --+ (O, +oo) .  Now let T =  (n, tj , Tj )  be any 
8-fine tagged division of [a, b] ; we shall show that I I I: [!, T, r.p] - I: [fG, T] l l  :::; E. We may drop 
any degenerate subinterval (i .e . ,  any subinterval with tj- 1 = tj ) since such subintervals 
contribute 0 to I: [f, T, r.p] and I: [JG, T] . Thus we may assume that tJ_ 1  < tj for each j .  
Let Aj = l lf(Tj ) [r.p(tj ) - r.p(tj_ I ) ] - fh )G(Tj ) (tj - tj-d l l ;  then I I I: [f, T, r.p] - I: [jG, T] l l  :::; 
"L7=1 Aj . We shall estimate the Aj 's in two ways, according to whether Tj does or does not 
belong to S. 

If Tj = a-k for some k, then Aj < 2-k-2E by our choice of 8(a-k ) · Any a-k appears at most 
twice among the tags Tj (since we have no degenerate subintervals) . Hence the sum of all 
such Aj 's is less than 2 L,�=1 2-k-2E = �E .  

On the other hand, if Tj tJ. S, then Aj < (tj - tj-dE/2(b - a) by our choice of 8( Tj ) . The 
sum of all such >.j 's is less than E/2 .  This completes the proof. 

25.18. Second Fundamental Theorem of Calculus. Let r.p : [a, b] --+ X be a mapping 
from some compact interval into a normed vector space. Then "the integral of the derivative 
of r.p is r.p." More precisely: 

( i) (College calculus version. )  Suppose r.p is differentiable at every point of [a, b] , 
and assume r.p' is Riemann integrable. Then I: r.p' (t)dt = r.p(b) - r.p(a) .  

(ii) (Henstock integral version . )  More generally, just assume r.p i s  differentiable 
at every point of [a, b] . Then r.p' is Henstock integrable, and I: r.p' (t)dt = 
r.p(b) - r.p(a) . 

(iii) (Henstock integral with bad points . )  Still more generally, let G : [a, b] --> X 
be some function. Suppose that r.p : [a, b] --+ X is continuous, and suppose 
that the derivative r.p' (t) exists and equals G(t) for all but countably many 

points t in [a, b] . Then G is Henstock integrable, and I: G(t)dt = r.p(b) - r.p(a) . 

Proof. It suffices to prove (iii) . Apply 25 . 17  with f(t) = 1 .  
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25.19. Pathological example. In 25 .18(iii) we cannot replace "countable set" with "set 
with measure 0." We shall now exhibit a continuous function f :  [0, 1] ---+ [0, 1] that is not 
constant, but nevertheless satisfies f' ( t) = 0 for all t outside a set of measure 0. 

Our example f is known as the Cantor function. (In chaos theory it is also known 
sometimes as the devil's staircase - see Devaney [ 1989] . )  It is fairly complicated; we 
shall construct it as the uniform limit of a sequence of simpler functions fn · These are most 
easily understood by their graphs; see the graphs of the first few fn 's on the next page. 

In general, fn (t) has a graph consisting of horizontal line segments of varying width, 
alternating with diagonal line segments that have slope (3/2)n , which go up 2-n units 
while going to the right 3-n units. Each fn+ 1 is formed from fn by this procedure: Leave 
unchanged each of the horizontal line segments in the graph of f n . Replace each non
horizontal line segment (which covers a horizontal distance of 3-n) and replace it with 
three new line segments (each of which covers a horizontal distance of 3 -n+ 1 ) ; the middle 
one of these new line segments is horizontal. 

It is easy to see that the functions fn are continuous and converge uniformly to a limit 
f , which is therefore continuous. The function f is constant on each of the open intervals 

and thus we have f' = 0 at every point of the set 

which has measure equal to 

which is 1 (by 10 .41 .d) .  It follows that f' = 0 almost everywhere. 

SOME APPLICATIONS OF THE SECOND 
FUNDAMENTAL THEOREM OF CALCULUS 

25.20. Pathological example. Let f(t ) = t 2 cos(nr2) when 0 < t :S 1 ,  and let f(O) = 0 . 
We shall show that this function's derivative, f'( t ) , i s  Henstock integrable but not Lebesgue 
integrable on [0 , 1 ] .  We easily compute f' ( t) = 2t cos( nt-2 ) + 2nC 1 sin( nC2) for 0 < t :-::; 1 ,  
and f' (O) = 0. Then f' i s  Henstock integrable, by 25. 18 ,  and f(b) - f(a) = J: f'(t)dt for 
any [a, b] � [0, 1] . On the other hand, let 

aj 
= V 4j

: 
1 ' then 
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Approximations to 
Cantor's function 

fo (t) = t for all t in [0, 1 ]  

h (t) = � t  when 0 :::; t :::; k , 
� when k :::; t :::; � '  

� (t - k )  when � :::; t :::; 1 .  

h(t) = �t when 0 :::; t :::; � ' 
i when � :::; t :::; � '  

� (t - � )  when � :::; t :::; k , 
� when k :::; t :::; � '  

� (t - � )  when � :::; t :::; � '  
� when � :::; t :::; � '  

---f---------+- t � (t - & )  when � :::; t :::; 1 .  
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Since 0 < an < bn < an- 1  < bn- 1  < · · · < a1 < b1 < 1 ,  for any positive integer n we have 

fc� l f'(t) ldt 2 L7=l II:: f'(t)dt l = L7=l L . Thus Io1 lf'(t) ldt = oo, so f' 1-. L1 [0, 1 ] , and 

we cannot define I01 f' ( t )dt as a Lebesgue integral. 

25.21. Theorem on differentiation under the integral sign. Let X be a Banach 
space (equipped with its a-algebra of Borel sets, as usual) .  Let (0, S ,  J-l) be a measure space. 
Let f : JR. x 0 --> X be jointly measurable (where JR. is equipped with Lebesgue measure on 
the Lebesgue-measurable sets) .  Assume that 

af 
8s (s, w) l. 

f(s + h, w) - f(s, w) 1m �----�--�--� 
h-->0 h 

exists in X for all ( s, w) E JR. X n, and assume '¥. E £1 (JR. X n, X) (where the product space 
is equipped with the product measure) .  Assume that /(so ) = In f(s0, · )df-l exists for at 
least one real number s0 . 

Then I(s) = In f(s, · )df-l exists for every s E R Also, I' (s) and In 'i/;(s , · )df-l exist and 
are equal for almost every s E R Thus, we have 1s In f(s, · )df-l = In %sf(s, · )dJ-l. 
Proof When we need to write Lebesgue measure explicitly, we shall denote it by >.. 

Let us denote g(s, w) = 'i/;(s, w) . By the Second Fundamental Theorem of Calculus 

25. 18, we have f(b, w) - f(a, w) = I: g(t, w)dt. Hence 

L l l f(b, w) - f(a, w) l l xdJ-l(w) io l ll g(t , w)dt l x dM(w) < I IY I I L ' (h",X ) •  

which is finite by hypothesis. It follows that f(s, · )  E L1 (J-l, X ) , and /(s) exists for every 

s E R Then I(b) - I(a) = In [I: g(t , w)dt] dJ-l(w) . 
Let Y = U (J-l, X). By Fubini's Theorem (23. 17) , £1 (>. x J-l, X) is isomorphic to £1 (>., Y) .  

For each v E £1 (>. x J-l, X) let v be the corresponding member of  £1 (.>.. , Y ) .  The Bochner 
integrals B[a,b] u  = I: u(t)dt and Bnv = In v(w)dw define continuous linear operators B[a,b] : 
£1 ( [a , b] , Y) --> Y and Bn : £1 (J-l, X) --> X; one of the conclusions of Fubini's Theorem 23. 1 7  
is that BnB[a,bJV = In [I: v(t , w)dt] df-l(w) .  

By  Lebesgue's Theorem on Differentiation (25 . 16) applied t o  members of U (>., Y) ,  for 

almost every s E JR. we have g( s) = limh ..... o * Iss+h g( t )dt; the limit and the integral are both 
in the Banach space Y. Fix any s for which that equation is valid. The equation can be 
restated g( s) = limh ..... o * B[s,s+h] g. Apply the operator Bn on both sides of that equation, 
keeping in mind that it is continuous and therefore preserves limits. We obtain 

{ g(s , w)df-l(w) = Bng(s) = Bn lim -h
1 
B[s,s+hJg = lim -h

1 BnB[s,s+h]g J n h-->0 h-->0 

1 1 [1s+h l 1 = lim - g(t , w)dt dJ-l(w) = lim -h [I(s + h) - /(s)] . h-->0 h n s h-->0 
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This completes the proof. 

25.22. Example: differentiation of an integral operator. Let X, (D, S, J.L) , f be as in 25.21 ,  
and in addition assume that J.L(D) < oo ,  n is a compact metric space, and %!- : IR X n ....... X 
is jointly continuous. Let 

BC(IR, X)  {bounded, continuous functions from IR to X};  

this i s a Banach space when equipped with the sup norm. Define 

l ! (  1(t) , w ) d11(w) for 1 E BC(IR, IR) ,  t E R 

We shall show that [F(r)] ( · ) belongs to BC(IR, X) ,  and the mapping 

F BC(IR, IR) ---. BC(IR, X)  

defined in this fashion is Frechet differentiable. The derivative at any 1 E BC(IR, IR) is 
given by the continuous linear map F'(r) : BC(IR, IR) ---> BC(IR, X )  whose value at any 
'lj; E BC(IR, IR) is given by 

l �� ( 1(t) , w )'t/J(t)dJ.L(w) . 
Proof Let g = %f. Since Range( 1) i s a bounded subset of IR, i t i s contained in a compact 
set K. Then j, g : K x n ---. X are continuous functions on a compact set, hence they 
are bounded and uniformly continuous there. For fixed t, the function w f-+ f(r(t) , w) is 
measurable and bounded, hence integrable on the finite measure space n. For t E K, the 
integrand is bounded; hence [F(r) ] (t) is a bounded function of t. That it is also a continuous 
function of t follows easily by Lebesgue's Dominated Convergence Theorem (22.29) . 

To show that F' ( 1) has the indicated value, replace K with a slightly larger compact 
subset of IR, so that ( 1(t) + 'lj; (t) , w) E K x r! for all 'lj; sufficiently small. Let any c > 0 be 
given. Since g is uniformly continuous on K x r!, there is some 8 > 0 such that 

l l't/J I I oo < 8, a E [0, 1] 

Let us denote [E(r)'t/J] (t) = fo. g ( 1(t) , w )'t/J(t)dJ.L(w) . Observe that 

[F(r + 'lj;) - F(r) - E(r)'t/J] (t) 

l {f (1(t) + 'lj;(t) , w) - 1 (1(t) , w) - g (l(t) , w)'t/J(t) }dJ.L(w) 
l {11 g (r(t) + a'lj;(t) , w) 'lj; (t)dt - g ( 1(t) , w ) 't/J(t) } dJ.L(w) 
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and therefore I I  [F(r + 1/J) - F(r) - E(r )1/J] (t) l l x  :::; E I I1/J I IooM(n) .  Finally, take the supremum 
over all choices of t ; this yields I I F(r + 1/J) - F(r) - E(/)1/J I Ioo :::; E I I1/J I IcxoM(n) . Since E is 
arbitrarily small, this proves F' (r) = E(r) .  

25.23. Theorem relating continuous differentiability to  strong differentiability. 
Let X and Y be Banach spaces, let n � X be an open set , and let f : n ----> Y be some 
differentiable function. Let � E n. Then f is strongly differentiable at � (as defined in 
25. 10) if and only if f'( - ) : n ----> BL(X, Y) is continuous at �· 

Proof First suppose f is strongly differentiable at �· Let (xn )  be a sequence in n converging 
to �; we wish to show that f'(xn) ---> f'(O . Since f is strongly differentiable at �' for any number E > 0 there is some number t5 > 0 such that 

l l u - � I I , l l v - � I I  :::; 2t5 =? u, v E n and l l f (u) - f(v) - f' (O (u - v) l l  :::; l lu - v i l E . 

For n sufficiently large (say for n 2" N,J we have l l xn - � I I  < b; then 

l l h l l  :=:; {j =? l l f (xn + h) - f(xn) - J' (Oh l l  :=:; l l h i i E . 

On the other hand, since f is differentiable at Xn , there is some bn > 0 such that 

l l h l l  :=:; bn =? I I J (xn + h) - f(xn) - J'(xn )h l l  :=:; l l h i i E . 

Thus l l h l l  :=:; min{b, bn } =? I IJ ' (Oh - f' (xn )h l l  :=:; 2 l l h i i E . Therefore n 2" NE =? 1 1 1 !' (0 -
f' (xn ) l l l  :=:; 2E, so f'(xn) ---> f' (�) .  

Conversely, suppose f '  ( · ) i s  continuous at �. Temporarily fix any two points x0 ,  x1 near 
�' and let x1 = ( 1 - t)x0 + tx 1 for 0 :::; t :::; 1 .  Then, applying the Chain Rule (25.6) and the 
Second Fundamental Theorem of Calculus (25 . 18 ) ,  

and therefore 

f(x l ) - f(xo ) = t [dd 
f(xt )] dt = t f' (xt ) (x 1 - xo )dt ,  

.fo t .fo 

f(xl ) - f(xo ) - f' (O (x l - xo ) t [J' (xt ) - J' (�) ] (x1 - xo )dt .  
.fo 

When xo and x1 are near �' then all the x1 's are near �' hence l l f' (xt ) - f'(O I I  stays small 
for all t E [0, 1] . This can be made precise with epsilons and deltas; we omit the details. It 
follows easily that l l f (x t ) - f(xo ) - f'(O (xl - xo ) l l / l lx 1 - xo l l ----> 0 as x1 ,  Xo ---> �· 

25.24. Theorem relating Lipschitzness to derivatives. Let n be a convex open 
subset of a Banach space X .  Suppose that f : n ____, Y is differentiable at every point of n. 
(We do not require that the derivative of f be continuous. ) Then (!)Lip = l l f' l l cxo ·  That is, 

sup 
J' j "'"'2 

l l f(xt ) - f(x2 ) 1 1 Y 
l l x 1 - x2 l lx  

sup l l f' (x) I I BL (X. Y ) 
xEn 
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(with one side of this equation finite if and only if the other side is finite) . Thus, f is 
Lipschitzian if and only if f' is bounded. This generalizes a result in 18.3.b. 

Proof First suppose (!)Lip S:: r, and let L = !'(�) and h E X \  {0} ; we wish to show 

I I Lh l l S:: r l l h l l · Replacing h with ch for some small nonzero scalar c if necessary, we may 
assume � + h E 0. Then also � + th E 0 for all t E [0, 1 ] ,  by convexity. Let any E > 0 be 
given. By the definition of derivative we have 

I I !(� + th) - !(�) - tLh l l  
t l lh l l  < E for all t > 0 sufficiently small. 

For those t ,  we have I I !(� + th) - !(�) - tLh l l  < Et l l h l l , and therefore 

t 1 1Lhl l = l l tLh l l  S:: I I !(� + th) - !(�) I I + ct l l h l l s; rt l l h l l  + ct l l h l l · 
Divide by t to obtain I I Lh l l  S:: (r + c) l l h l l ; then let E l 0. 

Conversely, suppose 1 1 !' (0 1 1 < r for all � E 0; we shall show (!)Lip S:: r. Let any 
Xo , X1 E n be given. Since n is convex, the points Xt = tx1 + ( 1  - t)xo lie in n for all 
t E [0 , 1 ] .  By the Chain Rule (25.6) and the Second Fundamental Theorem of Calculus 
(25. 18) , we have 

f(xl ) - f(xo) = 11 [! f(xt )] dt = 1 1 
f' (xt ) (x1 - xo)dt .  

Therefore l l f(x1 ) - f(xo ) l l  S:: J; r l lx1 - xo l l dt = r l lx1 - xo l l  by 24. 16.b or 24. 16.a. 

25.25. Theorem characterizing convex functions on an interval. Let J s;; lR be an 
open interval, and let f : J ----> lR be some function. Then f is convex if and only if 

(i) f is continuous, 

(ii) the derivative f'(t) exists except for at most countably many points t E J, 
and 

(iii) there exists some increasing function g :  J ----> lR such that f'(t) = g(t) for all 
but at most countably many points t E J. 

Moreover, if f is convex, then both of the one-sided derivatives 

j+ (t) 1. f(s) - f (t) 
1m ' slt S - t r (t) 1 .  f(s) - f(t) 

1m ::____:____:___:......:.....:.. sTt S - t 
exist for all t E J, and either of these functions satisfies the requirements on g listed in (iii ) .  

Proof First assume f : J ----> lR i s  convex. Show that 

f(yl ) - f(xl ) 
Y1 - X1 

< 
f(yl ) - f (x2) 

Y1 - X2 
< ( ! )  

whenever X1 S:: x2 , Y1 S:: Y2 , and Xj < YJ for j = 1 ,  2 .  The function [f(y) - f(x2) ] /(y - x2 )  is 
an increasing function of y for y > x2 , and it is bounded below by [f(yl ) - f(xl )J I (Y1 - x i ) .  
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Hence j+ ( x2 ) exists for every x2 E J, and therefore f is continuous from the right at every 
x2 E J. Take limits in ( ! )  as YI 1 XI and Y2 1 x2 , to prove j+ (xi ) ::; j+ (x2 ) for XI < x2 ; 
thus j+ is an increasing function. Similarly, f- exists everywhere on J and is an increasing 
function, and f is continuous from the left . Combining these results, f is continuous on J. 
Since j+ and f- are increasing functions, they are continuous except at at most countably 
many points (see 15 .2 1 .c) . Take limits in ( ! ) as X2 i Y2 and YI 1 XI to prove r (Y2 ) � j+ (xi ) 
when y2 > XI ; or take limits in ( ! ) as Y2 1 x2 and XI i YI to prove j+ (x2 ) � f- (yi ) when 
x2 > YI · Thus, at any point t where f- and j+ are both continuous, they must be equal, 
and there f' exists. Thus (i ) , (ii) , (iii) are satisfied, with g = j+ or g = r.  

Conversely, suppose (i ) , (ii ) ,  (iii) are satisfied. By the Second Fundamental Theorem of 
Calculus (25. 18) ,  g is Henstock integrable on each closed interval [a, b] � J, with J: g(t)dt = 
f(b) - f(a) . We have g(s) ::; g(b) ::; g(t) whenever a ::;  s ::;  b ::;  t ::;  c, hence 

f(b) - f(a) 
b - a 

1 1b 1 1b -- g(s)ds ::; -b - g(b)ds = g(b) b - a  a - a  a 
1 1c 1 1c = -b g(b)dt ::; -b g(t)dt c - b c - b 

when a < b < c. This inequality can be rearranged to yield 

f ( c - b a +  b - a c) = f(b) ::; c - b f(a) + b - a f(c) , c - a c - a c - a c - a 
which proves f is convex. 

f(c) - f(b) 
c - b 

PATH INTEGRALS AND ANALYTIC FUNCTIONS 
(OPTIONAL ) 

25.26. Remark. This subchapter can be omitted. Its results will not be needed later in 
this book, except for a few brief examples. 

Definitions. By a path in C we shall mean a function <p : [a, b] ____, C that satisfies these 
conditions: 

(i) <p is continuous, 
(ii) <p is nondifferentiable at at most countably many points, and 
(iii) <p has bounded variation. 

We say that the path begins at tp(a) and ends at tp(b) , or that tp(a) and tp(b) are the 
initial and terminal points of the path. A closed path is a path <p : [a, b] ____, C that also 
satisfies tp( a) = t.p( b) . 

Let X be a complex Banach space. Let <p : [a , b ] ____, C be a path, and let h : Range( <p) ____, 
X be a function that is measurable (from Borel sets to Borel sets) and bounded, with 
separable range. Then the path integral J"' h( z )dz is defined to be the value of 
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the Henstock-Stieltjes integral J:(h o cp) dcp or, equivalently, 

the Henstock integral J: h(cp(t)) cp' (t)dt . 

The existence of the former integral follows from 24.37; the existence of the latter integral 
and the equality of the two integrals follows from 25. 17. If cp is a closed path (i .e . , if 
cp(a) = cp(b) ) ,  then the path integral J'P h(z)dz is sometimes written f'P h(z)dz for emphasis. 

The terminology varies in the literature. Some mathematicians may prefer a less general 
or more general definition of "path." Also, some mathematicians will call cp1 and cp2 "differ
ent parametrizations of the same path" if cp1 = cp2 o CJ where CJ is some continuous, strictly 
increasing function, because then cp1 and cp2 are interchangeable for the most important 
purposes: We have 

1 h(z)dz 
'1' 1  

1 h(z)dz 
'1'2 

( ! ! )  

as an immediate consequence of 24. 18 . This equation says, roughly, that two motorists 
who drive from New York to Chicago along the same road will get the same value for any 
quantity computed as a path integral (with their driving routes as paths) , even if they 
follow different timetables (different starting times, different speeds, etc. ) when traversing 
that road. 

In the preceding remarks we have established ( ! ! )  for any bounded measurable func
tion h. We emphasize that we have established ( ! ! )  only when cp1 and cp2 are different 
parametrizations of the same path - i.e . , the two motorists must follow the same road. 
However, for certain special functions h considered in 25.27, we obtain equality ( ! !) even if 
the motorists follow different roads - e.g. , if one goes from New York to Chicago by way 
of Nashville, while the other goes from New York to Chicago by way of Buffalo. 

25.27. We now state without proof a few results about analytic functions. Proofs can 
be found in books on functions of a complex variable. (Usually these basic results are 
presented for mappings from subsets of C into C, but the proofs are not much different for 
mappings from subsets of C into a complex Banach space. However, we remark that the 
theory becomes much more complicated when one considers mappings from subsets of en 
into a complex Banach space, or even into C. That theory will not be indicated here. ) 
Theorem. Let X be a complex Banach space, let n be an open subset of C, and let 
h : rl ---+ X be some function. Then the following conditions are equivalent . 

(A) If 1 is a closed path contained in an open convex subset of n, then f, h( z )dz = 
0. (Cauchy called a function holomorphic if it satisfied a condition like this. ) 

(B ) h has a complex derivative on n (as defined in 25.8) . That is, h' (() = 
limz_,( h(z;=�(() exists in X for each point ( E fl. (Riemann called such 
functions complex differentiable. ) 

(C ) Locally, h is a sum of a power series. That is, for each z E n there exist R > 0 
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and vectors Cn E X  (which depend on z) such that 
00 

h(() for all ( with I ( - z l < R. 

(Weierstrass called a function h analytic if it had this property. ) 
Furthermore, if the conditions above are satisfied, then the radius of convergence of the 
series in 25.27(C) is at least as large as the radius of the largest disk centered at z and 
contained in n. The function h has derivatives of all orders, and Cn = h(n) (z)jn! in that 
power series formula. 

Any power series h(() = I::=o cn(( - z)n is analytic inside its disk of convergence 
{( : I ( - zl < R}.  It can be differentiated term by term: h' (() = 2.:.:�=1 ncn (( - z)n- 1 is a 
power series with the same radius of convergence. It can also be integrated term by term: 
J1 h(()d( = I::=o nc+1 (q

n+l -pn+1 ) if 1 is a path inside the disk of convergence with initial 
point p and terminal point q. 
Montel's Theorem. Let n be an open subset of the complex plane, and let h1 , h2 , h3 , . . .  : 
n -> C be a sequence of scalar-valued analytic functions. Suppose the sequence is uniformly 
bounded on compact sets - that is, assume 

sup sup l hk (z) l < oo kEN zEK 
for each compact set K S: fl. 

Then some subsequence (hk1 )  converges uniformly on compact sets, and the limit is also an 
analytic function. 

Remark. This theorem takes an interesting form when restated in the terminology of topo
logical vector spaces; see 26. 10. 

25.28. The following example illustrates the difference between smooth functions and 
analytic functions. Define a function 'lj; : lR -> lR by 

'1/J( r) 

Verify the following: 
a. '1/J(r) > 0 for r > 0, and 'l/;(r) = 0 for r ::::; 0. 

when r > 0 
when r ::::; 0. 

b. There exist some polynomials p0 , p1 , p2 , . . .  such that the derivatives of 'lj; are of the 
form 

when r > 0 
when r ::::; 0. 

Hint :  Don't bother trying to find the polynomials explicitly; that is more work than 
is necessary. Just use induction on n to show that there exist such polynomials. 

c. 'lj; is a smooth function - i.e . , infinitely many times differentiable - with 'lj; (nl (O) = 0 
for all n. 

Hint: Show that limr10 e- l /r rk = 0 for every integer k. 
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d. Conclude that generally 1/J(r) =/= 1/J(O) + r'lj;' (O) + r; 1/J"(O) + . . .  + �� 'lj;(n) (O) + . . . . 
e. Related exercise. Define a function (3 :  lRm --+ lR by (3(x) = 7j;( 1 - l lx l l � ) .  The function 

(3 could be called a smooth unit bump function, because it has these properties: (3 is 
smooth (i.e. , infinitely many times differentiable) , (3(x) > 0 for l l x l l 2  < 1 ,  and (3(x) = 0 
for l lx l l 2 2 1 .  It can be used to define approximate identity functions 

(c > 0, X E lRm) .  

These functions have the following properties: L, is smooth, L, (x) > 0 for l lx l l 2  < E , 
L, (x) = 0 for l l x l l 2  2 E, and JJW.m L, (x)dx = 1 .  Thus, the L, 's have unit weight, but that 
weight is concentrated near the origin when E is small. Moreover, for many types of 
functions g : lRm --+ JR, the function g * L, : lRm --+ lR defined by 

(g * L, ) (x) r g(y) L, (x - y)dy }JW.m 

is smooth and converges to g as E 1 0. The type of convergence � pointwise, uniform, 
etc. � depends on the regularity assumptions about g � integrable, continuous, etc . ; 
we omit the details. 

25.29. An example: series for ln 2 and K/4. The following example answers a question 
that some readers may have wondered about when they studied calculus. 

Begin by forming the geometric series 
1 

1 + x 
1 

1 + x2 

( lx l < 1 ) , 

( lx l < 1 ) . 

Since a power series can be integrated term by term inside its radius of convergence, we 
obtain 

In ( 1  + x) 

arctan(x) 

( lx l < 1 ) , 

( lx l  < 1 ) . 

The reader may wonder: Do these series formulas remain valid at x = 1 ? They do, but the 
proof of that fact is generally beyond the scope of courses in advanced calculus. 

However, the proof is now quite easy, using a corollary of the Monotone Convergence 
Theorem. First, rewrite the series as 

ln ( 1 + x) ( l x l < 1 ) , 

arctan(x) ( lx l < 1 ) . 
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2n - 1  2n 4 n - 3  4n - 1  Observe that the functions �n- 1 - �n and �n-3 - �n- 1 are increasing functions on [0, 1] 
since their derivatives are nonnegative on that interval. Now apply 2 1 .39.d; we find that 
the formulas are valid for x = 1 .  Thus 

1 1 1 1 ln 2 = 1 - - + - - - + - - · · · 

2 3 4 5 4 
1 1 1 1 

1 - - + - - - + - - · · · . 
3 5 7 9 

(The formula for ln 2 was also proved by a different method in 10.42 . )  
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Metrization of Groups and Vector 

Spaces 

26.1 .  Preview. The following chart shows the relations between several types of spaces 
that will be studied in this and later chapters. 

topological vector space 

/ I 
I Lcs l 

I 
I Riesz space I 

I 
I barrelled I 

I Banach space I 
� 

A topological vector space (TVS) is a vector space equipped with a topology that makes 
the -vector space operations continuous. More generally, a topological Abelian group (TAG) 

688 
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is an Abelian group equipped with a topology that makes the group operations continuous. 
This makes the topology translation-invariant , so there is a uniform structure naturally 
associated with that topology. Even when scalars are present (i .e . , in a TVS) , the most 
basic properties of the uniform structure do not involve the scalars; thus it is natural to 
first introduce uniform structure in the simpler and more general setting of TAG's. 

In 5.32, 16 . 16 ,  and Chapter 18 we saw that uniform spaces can be analyzed in terms 
of pseudometrics. Since the structure of a TAG is translation-invariant , it can be analyzed 
naturally in terms of translation-invariant pseudometrics. These are called G-seminorms 
(or group seminorms) in the theory developed below. In special kinds of TAG's we can 
use special kinds of G-seminorms: In TVS's we can use F-seminorms (the "F" stands for 
Fnkhet) , and in LCS's we can use seminorms. 

The following table lists several kinds of distance functions in order of decreasing general
ity. Thus, every Riesz seminorm is also a semi norm, every semi norm is also an F -seminorm, 
every F -semi norm is also a paranorm, etc. 

FUNCTIONAL PROPERTIES SUP TOPOLOGY 
quasipseudometric triangle inequality topological space 

pseudometric symmetric uniform space 
G-seminorm translation-invariant topological additive group 
paranorm continuous multiplication topological linear space 

F-seminorm balanced topological linear space 
seminorm homogeneous locally convex space 

Riesz seminorm isotone locally solid LCS 
Caution: Although the most basic theorems of this subject are fairly well standardized 

by now, the terminology is not; it varies slightly from one book or article to another. 
In particular, different mathematicians attach different meanings to the prefixes "quasi," 
"pseudo," or "semi." The reader is urged to check definitions whenever reading anything on 
this subject . In this text we have chosen an arrangement of terminology that is internally 
consistent , and is in agreement with the literature to the extent that this is possible. Here, 
both "pseudo" and "semi" mean "not necessarily positive-definite." When "pseudo" or 
"semi" appears in parentheses in a sentence, the sentence should be read once with the 
parenthesized term included and once with it omitted. 

F -SEMINORMS 

26.2. The reader will find it helpful to review the definitions of (semi)norm and G
(semi)norm given in 22.2. We shall now define some structures that are midway between 
(semi)norms and G-(semi)norms. 

Definitions. Let X be a real or complex linear space; let F be the scalar field. A 
paranorm on X is a G-seminorm p : X -+ [0, +oo) that makes scalar multiplication jointly 
continuous - i.e . , that satisfies the following. 

If Cn -+ c in F and Xn -+ x in the metric space (X, p ) , then Cn Xn -+ ex in (X, p) . 
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Actually, it suffices to assume that scalar multiplication is separately continuous - i.e. , 
that 

if en ---> c in F and Xn ---> x in the metric space (X, p) , then CnX ---> ex and 
CXn ---> ex in (X, p) 

- for in this context separate continuity implies joint continuity; that rather nontrivial fact 
follows ( exercise) from 23. 15 .  b and the fact that the scalar field F (always JR. or C in this 
book) is a complete metric space. 

An F-seminorm is a paranorm that is also balanced - i .e . , satisfying 

x E X, c E II.", l e i :::; 1 p(cx) :::; p(x) . 

If it is also positive-definite, then p is called an F-norm, and (X, p) is an F-normed space. 
We may refer to X itself as the (F-)normed space, if no confusion will result. 

The definitions above are admittedly complicated, but their importance will become 
evident in 26.29. 

An F-space is a vector space topologized by an F-norm that is complete. (Equivalently, 
it is a complete metrizable topological vector space; we shall prove that equivalence in 
26.29 and 26.32.) Caution: In the modern literature, an "F-normed space," an "F-space," 
a "Fn§chet space," and a "topological space with a Frechet topology" are four different 
things; see 26. 14.  

Any seminorm is also an F-seminorm (easy exercise) .  Other examples of F-seminorms 
and paranorms will be given below. 

Further remarks about terminology. This book's terminology conforms to the literature 
whenever possible, but it is not always possible; the literature varies greatly in its termi
nology for F-norms and related notions. Our definition of "F-norm" is equivalent to the 
definition used by Kalton, Peck, and Roberts [ 1984] and Kothe [ 1969] . Our definition of 
"paranorm" follows that of Wilansky [ 1978] ; Swartz [1992] calls this object a quasinorm. If 
a paranorm is positive-definite, then Wilansky [1978] calls it a "total paranorm," Yosida 
[ 1964] calls it a "quasinorm," and Swartz [1992] calls it a "total quasinorm." Many other 
books and papers- including the classic work of Banach [1932/ 1987] - use positive-definite 
paranorms without attaching any name to them. A very extensive treatment of metric linear 
spaces is given by Rolewicz [1985] . 

26.3. Relations between G-seminorms, paranorms, and F-seminorms. 
a. A function p is an F -seminorm on a vector space X if and only if p is a balanced 

G-seminorm that satisfies this scalar continuity condition: 

For any x E X , if l cn l  ---> 0, then p(cnx) ---> 0. 

Hint: 12. 25.f. 

b. Any paranorm p is equivalent to an F -seminorm a .  
Hint (modified from Rolewicz [1985] ) :  The set { t E F : I t I :::; 1} is compact; hence 

the number a(x) = max{p(tx) : l t l  :::; 1 }  is finite. 
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c. Let X be a linear space, and let p : X ----+ [0, +oo) be some mapping. Then the following 
are equivalent: 

(A) p is a seminorm; 
(B) p is a convex function and an F-seminorm; 
(C) p is a convex, balanced G-seminorm. 

Hints : We shall prove (C) =} (A) ; the other implications are easy. Show that 
p(sx) � sp(x) for x E X  - first for s E N, by the subadditivity of G-seminorms; then 
for s E (0, 1 ] ,  by the assumed convexity of p; then for s > 0 by combining those two 
results . Then show p(sx) 2: sp(x) for s > 0 by replacing s with 1/s . Then what? 

26.4. Basic examples. 
a. Open and closed balls. Let (X, d) be a metric space. As in 5. 1 5.g, define the open ball 

and closed ball 

Bd(z, r) = {x E X  : d(x , z) < r} ,  Kd (z, r) = {x E X  : d(x, z) � r } .  
As we noted in 5. 18.c , cl[Bd (z , r )] s;; Kd(z , r) i n any metric space. Show that 

in any normed space. 
That conclusion is false in some F-normed spaces; for instance, show that it is false in 
lR equipped with the F-norm p(x) = min{ 1 ,  lx l } . 

b. Pathological example. Consider C (the complex numbers) as a vector space with scalar 
field JR; then 

p(z) = IRe z l + lim z l  
i s  a norm. On the other hand, i f we consider C as a vector space with scalar field C,  
then p i s  not a norm or an F-norm (since it i s not balanced) ,  but i t i s a paranorm 
on C. Here we understand that the absolute value of a scalar is defined as usual: 
le i = j(Re c)2 + (Im c)2 . 

c. Another pathological example. Using the identity sin( a + (3) = sin a cos (3 + sin (3 cos a, 
show that the function f(x) = I sin(1rx) l is subadditive on lR - that is, J(x + y) < 
f(x) + f(y) for x ,  y E JR. Then show that the function 

p(x) I sin(1rx) l + min{2, lx l } 
is a paranorm on lR that is equivalent to the usual norm on JR, but p is not balanced. 

d. For 0 < p < 1 ,  the functions 

l lx l l� lx1 IP + lxz iP + · · · + lxn iP 
are F-norms on JH:.n or en that yield the product topology. This follows easily from 
12 .25.e. (Here II l l v is defined as in 22. 1 1 . )  Similarly, the functions 

l lx l l� lx1 I P + lxz iP + lx3 1P + · · · 
are F-norms on £p , defined as in 22.25. We emphasize that the functions I I  l l v are not 
necessarily norms when p < 1 .  
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e. The sum of finitely many paranorms or (G-) (F-)(semi)norms is another object of the 
same type. 

f. The pointwise maximum of finitely many paranorms or (G-) (F-) (semi)norms is another 
object of the same type. 

g. The restriction of any paranorm or (F-) (semi)norm to a linear subspace is a paranorm 
or (F-) (semi)norm. 

h. Bounded equivalents. Let f3 be a bounded remetrization function; in 18 . 14  we saw 
that if d is a pseudometric on a set X, then f3 o d is a bounded, uniformly equivalent 
pseudometric. Show that if p is a G-(semi)norm or an F-(semi)norm, then f3 o p is a 
bounded, uniformly equivalent G-(semi)norm or F-(semi)norm. 

We cannot make an analogous assertion for seminorms, however . If p is a seminorm, 
then f3 o p is an equivalent F -seminorm, but in general it is not a seminorm. Indeed, 
the only bounded seminorm is the constant function 0. 

i. If X is a vector space, p is an F -semi norm on X,  K is a linear subspace, and the 
quotient G-seminorm p is defined as in 22 . 13 ,  then p is an F-seminorm too. 

26.5. Change of scalar field. Let X be a complex vector space. Then X may also be 
viewed as a real vector space, if we "forget" how to multiply members of X by members of 
C \ JR. Show that 

a. If p is a paranorm, F-seminorm, or seminorm on the complex vector space X ,  then p 
is a paranorm, F-seminorm, or seminorm (respectively) on the real vector space X. 

b. If p is a semi norm or F -seminorm on the real vector space X,  show that 

r(x) sup{p(tx) : t E C, i t l :::; 1 } 

defines a semi norm or F -seminorm r on the complex vector space X, which is "semi
equivalent" to p in this sense: p(x) :::; r(x) :::; p(x) + p(ix) for all x E X.  (Hint : 
p(tx) :::; p(Re(t)x) + p(Im(t)ix) . ) 

Moreover, i f X i s equipped with some topology and p : X ---+ [0, +oo) i s lower 
semicontinuous, then r : X ---+ [0, +oo) is lower semicontinuous. (Hint : It is the sup of 
the lower semicontinuous functions x f--+ p(tx) . )  

(This construction is based on Rolewicz [1985] . )  

26.6. Frechet combinations. Let (pj : j E N)  be a sequence of F-seminorms on a vector 
space X. Then <p(x) = 2::.:;': 1 2-j min{ 1 ,  l<flj (x) l }  defines an F-seminorm <p that is uniformly 
equivalent to the gauge {p1 , P2 , p3 ,  . . .  } .  

More generally, let ( aj ) be a sequence of positive numbers with finite sum. Let r : 
[0, +oo) ---+ [0, +oo) be a bounded remetrization function (defined as in 18 . 14 ) .  For x E X, 
let 

<p(x) I: O:j r [pj (x)] . 
jEN 

This sum is called a Frechet combination of the Pj 's; it is a special case of the sum 
developed in 18 . 17. Show that 
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a. For any sequence ( Xn) in X (or, more generally, any net) , we have 

if and only if PJ (xn) ---> 0 for each j .  

b. r.p i s a bounded F -seminorm on X. (Hint :  Use ( * ) for an easy proof that r.p i s scalar 
continuous. ) 

c. r.p is uniformly equivalent to the gauge {p1 , p2 , p3 , . . .  } . Thus, the topology that r.p 
determines on X is the supremum of the topologies of the pseudometric spaces (X, PJ ) , 
and the uniform structure of (X, r.p) is the supremum of the uniform structures of the 
(X, pJ ) 's. (Hint: Again, use (* ) . ) 

d. If we replace r with some other bounded remetrization function and/ or replace ( aj ) 
with some other sequence of positive numbers with finite sum, then condition ( * ) 
remains valid; hence the resulting Frechet combination is equivalent to cp. 

e. r.p is an F-norm if and only if the p/s separate points of X - i.e. , if and only if they 
have the further property that whenever PJ (x) = 0 for all j, then x = 0. 

Remarks. In most applications of this formula, the F -seminorms PJ are actually semi norms 
- i.e. , they are homogeneous. In that case X is locally convex; that will follow from 26.20.d. 
(Hence, if the metric determined by r.p is complete, then X is a Frechet space. ) However, r.p 
cannot be a seminorm, since r.p is bounded. In many applications, r.p is not even equivalent 
to a seminorm; see the examples in 27.7.c and 27.8. 

26.7. Example: the space of all sequences. Let lF be the scalar field - that is, lR or 
C; then JFN = {sequences of scalars} . The product topology and product uniform structure 
on JFN are given by any of the following F-norms: 

� min{ l ,  l xj l } 
� . ,  ' 
j=l J .  

applied to any sequence x = ( x1 , x2 , x3 , . . .  ) . Indeed, these formulas are all special cases 
of 26.6, with PJ (x) = l xJ I · The resulting F-norms are complete; any one of them may be 
referred to as the usual F -norm on lFN . Although all the p/s are seminorms, none of the 
resulting F-norms is a norm or even equivalent to a norm --- i .e . , the product topology on 
JFN cannot be given by a norm; that will be proved in 27.8. 

26.8. Example: the space of all continuous functions. Let C(JR) be the set of all 
continuous functions from lR into the scalar field lF (which may be lR or C). For f E C(JR) , 
let 

Show that r.p is an F-norm on C(JR) that is complete and that gives the topology of uniform 
convergence on compact sets ( introduced in 18 .26) . This F-norrn (or any other F-norm 
equivalent to it ) is the usual F-norm on C(JR) . It is not equivalent to a norm; see 27.8. 
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26.9. Example: the space of locally integrable functions. Let lF be the scalar field (JR. 
or C) . A function f : lR -->  lF is called locally integrable if its restriction to each compact 
interval [a, b] is integrable. More generally, let 0 be an open subset of JRn , equipped with 
Lebesgue measure; a function f : 0 --> lF is called locally integrable if its restriction to 
some open neighborhood of each point in 0 is integrable. The set of all (equivalence classes 
of) locally integrable functions on 0 is denoted by £1

1 (0) . Show that oc 
a. LP(O) � Lf0c (O) for every p in [1, +oo] . (Hint: Holder's Inequality. ) 
b. If f : 0 -->  lF is locally bounded (i.e. , bounded on compact sets) and f is measurable, 

then f E Lf0c (O) . In particular, any continuous function from 0 to lF is locally 
integrable. 

Thus, the function f(t) = exp(t2 ) is locally integrable on JR., even though it does 
not belong to LP (JR) for any p E [ 1 , +oo] . 

c. L}0c (O) can be made into a Frechet space in a natural fashion, using the sequence of 
seminorms PnU) = fen if(t) i dt, where the Gn 's form an open cover of 0 and each Gn 
is contained in some compact subset of 0 (see 17. 18.a) . The resulting F-norm is 

p(f) � Tn max { 1 ,  in if(t) i dt} . 
(In particular, £1

1 (JR.) can be made into a Frechet space using the sequence of semioc 
norms PnU) = f::n l f(t) i dt. )  

Exercise. Different choices of the sequence ( Gn) of relatively compact sets may yield 
different F-norms p. Show that any two such F-norms are equivalent. (Hint :  17. 18.b.) 
In fact, the topology can be described as follows: A sequence Un) is p-convergent to a 
limit f if and only if, for each open set G that is contained in a compact subset of 0, 
we have limn--->oo fa l fn (t) - f(t) i dt = 0. 

Further exercise. Prove the completeness of Lfoc (0) . 
26.10. Example: the space of holomorphic functions. Let 0 be an open subset of 
the complex plane, and let Hol(O) = {holomorphic functions from 0 into C} (defined as in 
25.27) . 

The usual topology for Hol(O) is the topology of uniform convergence on compact subsets 
of 0, introduced in 18 .26. That topology makes Hol(O) a Frechet space; it can be metrized 
as follows. 

Let C1 , C2 , G3 , . . .  be an open cover of 0, where each Gn is contained in some compact 
subset of 0. (See 17. 18.a.) .Define 

Pn (f) max i f (w) i wEGn (n = 1 , 2, 3, . . .  ) .  

Then each Pn i s  a seminorm on Hoi ( 0) , and the seminorms P1 ,  P2 , P3 , . . . determine the 
topology of uniform convergence on compact sets. The particular choice of the sequence 
(Gn) does not matter - see 17. 18 .b . 

A further property of Hol(O) is noted in 27. 10.c. 
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26.1 1 .  Example: convergence in measure. Let (0 , S, p,) be a measure space, and let 
(X, I I ) be a Banach space. Then the pseudometric Di-' defined in 21 .34 on SM(S, X) takes 
a slightly simpler form: It can be rewritten Di-' (f, g) = pi-' (! - g) ,  where 

inf arctan [a + JL {w E 0 : l h (w ) l  > a}] . 
a > O  

Some basic properties: 
a. The function pi-' is a G-seminorm on SM(S, X) or a G-norm on the quotient space 

SM(S, X)/ p,, making those vector spaces into topological Abelian groups. 
b. In general, SM(S, X) is not a topological vector space. That is shown by the example 

below. However, in 26. 12.c we shall consider a smaller subspace on which pi-' is indeed 
an F -seminorm. 

Example. Let (0, S, p,) = (N, :P(N) , counting measure) , and let X = R Define 
fn (j) = f (j) = j for all n , j  E N, and let Cn = � and c = 0. Then fn ---> f in measure 
and en ---> c, but cnfn f. cf in measure. Thus, multiplication of scalars is not jointly 
continuous for this topology. 

26.12. ( Optional. ) Let (0 , S ,  p,) be a measure space, and let (X, I I )  be a Banach space. 
A function f : 0 ---> X is totally measurable if it is a strongly measurable function (as 
defined in 21 .4) that also satisfies 

p, ( {w E 0 : I J (w) l > E} ) is finite for each E > 0 . 

(Of course, if p,(O) < oo, then every strongly measurable function is totally measurable. ) 
Let T M (p,; X) denote the set of all p,-equivalence classes of totally measurable functions. 

Exercises. 
a. TM(p,, X) is a closed linear subspace of the G-normed space (SM(p,, X) , pi-') (which is 

complete) .  
b. The finitely valued members of T M(p,, X) are dense in T M(p,, X) .  
c .  The G-norm pi-' of 26. 1 1  i s  an F-norm when restricted to TM(p,; X) .  The space 

T M (p,; X) , equipped with this F -norm or any other equivalent F -norm, is sometimes 
denoted L0 (p,; X) (especially when p,(O) < oo ) . 

d. When p,(O) < oo, then pi-' is also equivalent to this F-norm: 

rU) L r [l f (w) l ]dp, (w ) ,  

where r i s  any bounded remetrization function (defined as in 18 .14) . Hint : To prove 
1 is scalar-continuous (as in 26.3.a) , use the Dominated Convergence Theorem 22.29. 

e. For any p E (0, oo ) , the vector space LP(p,, X) is a linear subspace of the vector space 
T M(p,, X) , and the F-seminorm II 1 1;in{ l ,p} is stronger than pi-' on LP (p,, X) . 

f. Dominated Convergence Theorem for TM. Let (!1 ) be a sequence in TM(p,; X) 
that converges pointwise p,-almost everywhere to a limit f. Assume that the sequence 
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(fJ )  is dominated by a totally measurable function - i.e . , assume g(w) = supj l fJ (w) l is 
totally measurable. Then fJ ----+ f J-L-almost uniformly (hence also fJ ----+ f in measure) .  

Hints : Let any c > 0 be given. For each positive integer n, let On = {w E 0 :  g(w) > 
1/n} ;  then J-L(On) is finite. Hence fJ ----+ f J-L-almost uniformly on On , by Egorov's 
Theorem. Thus there exists some set An � On such that J-L(An) < 2�nc, and fJ ----+ f 
uniformly on On \ An . Now let A =  U�=l An. Then J-L(A) < c, and we shall show that 
fJ ----+ f uniformly on 0 \ A. To see this, let any 15 > 0 be given; we must show that for 
all j sufficiently large, we have supw l fJ (w) - f (w) l < 15.  Choose some integer n > 2/15 . 
Then 0 \ A  = CA can be partitioned into the sets (CA) n On and (CA) n (COn) · We 
have uniform convergence on On \ An , hence on the smaller set On \ A = (CA) n On . 
The remaining piece, (CA) n (COn) ,  is a subset of COn , and at every w in COn we have 
supj lfJ (w) - f(w) l :::; 2g(w) :::; 2/n < 15.  

For a slightly more general treatment , see Dunford and Schwartz [1957] , which permits J-1 
to be a charge, not necessarily a measure. 

26.13. ( Optional. ) (We omit the proofs of the results below; they constitute exercises that 
are difficult but may be within the reach of some particularly ambitious readers. ) 

By an Orlicz function we shall mean an increasing, continuous function rp :  [0, +oo] ----+ 
[0, +oo] that satisfies cp�1 (0) = {0} . ( Caution: The terms "Orlicz function" and "Orlicz 
space" have slightly different meanings in different books and papers. )  A few examples of 
Orlicz functions are 

tP (for constant p > 0) ,  tP ln( 1  + t ) ,  min{ 1 ,  t } . 

As the last example shows, we permit an Orlicz function to be bounded. 
Let rp be an Orlicz function, let (0, S, J-L) be a measure space, and let (X, I I ) be a 

Banach space. For strongly measurable functions f : 0 ----+ X, define 

inf {r E (O, +oo] : L 'P ( '1�) 1 )  dJ-L(w) < T} . 
Show that 

a. The set £., '�' (J-L; X ) = {f E SM(S; X) : p'P (f) < oo} is a linear space, on which p'P is a 
complete F-seminorm. If we take the quotient with respect to J-L-equivalence classes of 
functions, we obtain an F-space L'�'(J-1; X) .  

b. When cp(t) = tP for some number p E (0 ,  +oo), then LP (J-L; X )  (defined as in 22.28) is 
equal to L'�'(J-L; X) and p'P is equivalent to I I l ip · 

c. The space T M (J-1; X) ,  defined in 26. 12 , is equal to the union of all the spaces L'�' (J-1; X) ,  
as rp varies over all Orlicz functions (defined as above) . 

For a different treatment and references , see Rao and Ren [1991 ] .  
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TAG 's  AND TVS 's  

26.14. Definitions. Let X be an Abelian (i .e . , commutative) group, with group operation 
+ and identity element 0. Let 'J be a topology on the set X.  We say (X, 'J) (or more 
simply, X )  is a topological Abelian group - hereafter abbreviated TAG - if the 
group operations are continuous - i.e . ,  if 

v f--> -v is continuous from X into X, and 
(u, v) f-.> u + v  is jointly continuous from X x X into X .  

Along with the theory of TAG's, we shall also develop the slightly more specialized 
theory of TVS's. Let X be an vector space over the scalar field lF, and let 'J be a topology 
on the set X .  We say (X, 'J) is a topological vector space (or topological linear space) 

hereafter abbreviated TVS - if the vector operations are jointly continuous; i .e . , if 

(c, v) f-.> cv 

(u, v) f-.> u + v  

(from lF x X into X)  and 
(from X x X into X)  

are both jointly continuous. Of course, every TVS i s also a TAG. 
We shall specialize further: A locally convex space- hereafter abbreviated LCS -

is a topological vector space with the further property that 0 has a neighborhood basis 
consisting of convex sets. 

Finally, a Frechet space is an F -space that is also locally convex. (This should not be 
confused with a very different meaning given for "Fn§chet space" in 16.7. ) 

Remarks. Clearly, any Banach space is also a Frechet space. Some other examples are 
noted in 26.20.e. 

It is immediate from 22.7 that any G-seminormed group (when equipped with the pseu
dometric topology) is a TAG. Similarly, any F-seminormed vector space is a TVS, and any 
seminormed vector space is an LCS. We shall see in 26.29 that TAG's, TVS's, and LCS's 
are not much more general than this. 

In our study of TVS's in this and later chapters we shall distinguish between those 
theorems (such as 27.6) that require local convexity and those theorems (such as 27.26) that 
do not. However, this distinction is made chiefly for theoretical and pedagogical reasons 
- i.e. , to make the basic concepts easier for the beginner. Although we do give a few 
examples of non-locally-convex TVS's in 26 .16 and 26 . 17, we remark that most TVS's 
used in applications are in fact locally convex. Thus, it would be feasible to skip TVS's 
altogether and simply study LCS's, equipping some theorems with hypotheses that are 
slightly stronger than necessary; that approach is followed by some introductory textbooks 
on functional analysis. 

Caution: Since most TVS's used in applications have Hausdorff topologies, some math
ematicians incorporate the T2 condition into their definition of TVS or LCS. In the present 
book, however, a topological space will be assumed Hausdorff only if that assumption is 
stated explicitly. 

26. 15. Degenerate (but important) examples. 
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a. The discrete topology. The topology consisting of all subsets of an Abelian group X 
is a TAG topology. However, if X is a vector space (other than the degenerate space 
{ 0} ) ,  then the discrete topology on X does not make it a TVS, because ( exercise) 
multiplication of scalars times vectors is not jointly continuous. In fact , for fixed 
x -/=- 0, the mapping c f---+ ex is not continuous at e = 0. 

b. The indiscrete topology. The topology { 0, X } makes any Abelian group X into 
a TAG and any vector space X into an LCS. Of course, it is not Hausdorff (unless 
X =  {0} ) . 

26.16. Example. For 0 :::; p < 1 , the F-spaces LP [O, 1 ] (defined in 26. 12.c and 22.28, with 
J.L equal to Lebesgue measure on [0, 1 ] ) are not locally convex. In fact , LP [O, 1] has no open 
convex subsets other than 0 and the entire space, and the space LP [0, 1] * = {continuous 
linear functionals on LP [0, 1 ] } is just { 0} . 

Proof The F-space LP [O, 1 ] is topologized by the F-norm p(f) = fo1 r ( lf(t) l ) dt, where 
f( S) = sP in the cases of 0 < p < 1 ,  and f is any bounded remetrization function in the 
case of p = 0 (see 26. 12.d) . In particular, for p = 0, we may take f(s) = s/( 1  + s ) ;  thus 
r( s) :::; 1 for all s in that case. 

Suppose V is a nonempty open convex subset of £P [O, 1 ] .  By translation, we may assume 
0 E V. Since V is a neighborhood of 0, we have V :2 {f : p(f) < r} for some number r > 0. 
Let g be any element of £P [O, 1 ] ; we shall show that g E V. Choose some integer n large 
enough so that p(g) < rn1 -P . Since the function t f---+ J� f( lg(s) l )ds is continuous, we can 
choose a partition 0 = t0 < t1 < t2 < · · · < tn = 1 such that f.t

t1 f ( lg(s) l ) ds = lp(g) 1 - 1  n 
for all j. Let 1 ( t1 _ , , t1 ] be the characteristic function of the interval (tj- 1 , t1 ] ,  and let g1 = 
n1 (t1 _ 1 , t1 ] g· An easy computation shows that 

and thus g1 E V. Since g = � (g1 + g2 + · · · + gn) and V is convex, g E V also. 
If A is a continuous linear functional on LP [O, 1 ] ,  then A- 1 ({e : l ei <  1 }) is an open 

convex set containing 0. Hence it is all of LP [O, 1 ] ; hence A =  0. 

26.17. Example. If 0 < p < 1 ,  then the sequence space Rp is not locally convex. In 
particular, {x : l lx i iP < 1 }  does not contain a convex neighborhood of 0. However, the set 
( Rp) * = {continuous linear functionals on Rp} is equal to Roo; this space is large enough to 
separate the points of Rp . 
Hints: For the first assertion, suppose { x : l lx i i P < 1 }  contains some convex neighborhood 
of 0, which we label V. Show that V :2 {x : l l x i i P :::; s} for some s > 0. Let ej be the 
sequence that has a 1 in the jth place and Os elsewhere. Then se1 E V. By convexity, ,, 
Vn = � (se1 + se2 + · · · + sen) E V for any positive integer n .  However, show that l l vn i i P > 1 
for n sufficiently large. 

Any y E Roo acts as a continuous linear functional on Rp , by the action (x, y) = 

2:�1 XjYJ ; in fact, we have 2:1 lxJYJ I :::; l lx lh i iY I Ioo :::; l l x i iP I I Y I Ioo · Conversely, if t.p E (Rp )* ,  
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let ej be the sequence with 1 in the jth place and 0 elsewhere. Define a sequence y = (YJ ) 
by taking YJ = ip(ej ) · Then I YJ I ::; I I IIP I I I I I eJ I Iv = I I IIPI I I ;  thus y is bounded. The functionals 
( - , y) and IP are continuous on fiv , and they act the same on sequences with only finitely 
many terms. Such sequences are dense in fip , so ( - , y) = ip on fip . 

26.18. Net characterizations of TAG's and TVS's. Let X be an Abelian group, 
equipped with some topology. Then X is a TAG if and only if its topology satisfies these 
two conditions: 

( 1 )  Whenever (xn , Yn )  is a net in X X X satisfying X n  ----+ x and Yn ----+ y ,  then Xa + Ya ----+ 
x + y. 

(2)  Whenever (xo: ) is a net in X satisfying Xn ----+ x, then -x" ----+ -x. 

More specifically, let X be a vector space, equipped with some topology. Then X is a TVS 
if and only if its topology satisfies conditions ( 1 )  and 

(2') Whenever (cn , Xa )  is a net in F x X satisfying Cn ----+ c and Xn ----+ x, then CaXa ----+ ex . 

26.19. Initial object constructions of TAG's, TVS's, and LCS's. Let X be a set, 
let { (Y>. ,  'J >.) : .A E A} be a collection of topological spaces, let ip >. : X ----+ Y>. be some 
mappings, and let S be the initial topology determined on X by the ip>. 's and 'J>. 's � i.e . , 
the weakest topology on X that makes all the IP>. 's continuous (see 9 . 1 5) .  Show that 

(i) If X is a group, the (Y>. ,  'J>. ) 's are TAG's, and the IP>. 's are additive maps, 
then (X, S) is a TAG. 

(ii) If X is a vector space, the (Y>. ,  'J>. ) 's are TVS's, and the IP>. 's are linear maps, 
then (X, S) is a TVS. 

(iii) If X is a vector space, the (Y>. ,  'J>. ) 's are LCS's, and the IP>. 's are linear maps, 
then (X, S) is an LCS. 

Hints : 15 . 14(A) , 15.24, and 26. 18 . 

26.20. Some important special cases of initial objects. 
a. The product of any collection of TAG's or TVS's or LCS's, with the product topology 

and product algebraic structure, is a TAG or TVS or LCS. 
b. Subspace topologies are initial topologies determined by inclusion maps (see 5 . 15 .e and 

9.20) . Thus, any subgroup of a TAG is also a TAG; and a linear subspace of a TVS or 
LCS is another TVS or LCS. 

c. The suprerrmm, or least upper bound, of a collection of topologies is the weakest topology 
that includes all the given topologies (see 5 .23.c) ; it is the initial topology given by 
identity maps. Thus, the sup of a collection of TAG or TVS or LCS topologies is 
another TAG or TVS or LCS topology. 

d. Let D be a collection of G-serninorms on an Abelian group X, or a collection of F
semi norms or seminorms on a vector space X .  Then the gauge topology determined on 
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X by D is a TAG, TVS, or LCS topology, respectively. (Hints : As we noted in 5.23.c, 
the topology determined by a gauge is the supremum of the individual pseudometric 
topologies. It follows easily from 15.25.c and 26. 18 that any sup of TAG or TVS 
topologies is a TAG or TVS topology. ) 

(A converse to this result will be given in 26.29.) 
e.  Let i.p be a Frechet combination of �.pj 's on X (as in 26.6) , and suppose that each IPJ 

is actually a seminorm (i.e. , it is homogeneous) .  Then the F-normed space (X, �.p) 
is locally convex. If it is complete, then it is a Frechet space. These conditions are 
satisfied by the examples in the next few sections after 26.6. 

26.21. Change of scalar field. Let X be a complex vector space. Then X may also be 
viewed as a real vector space (if we "forget" how to multiply members of X by members of 
C \ IR) .  

Let 'J be some topology on the set X. It is easy to show that if the complex vector space 
X is a TVS, then the real vector space X is also a TVS. The converse of that implication 
is false, however, as we now show: 

A pathological example. Let X = {bounded functions from [ 1 ,  +oo) into C} .  That is a 
complex vector space, with vector addition and scalar multiplication both defined pointwise 
on [ 1 ,  +oo) For f E X, define 

l l f l l 1��.foo { IRe f(t) l + � llm f(t) l } . 

Verify that (X, II I I ) is a Banach space, when we use the real numbers for the scalar field. 
However , let fn be the characteristic function of the interval [n, n + 1 ] .  Verify that 

l l fn l l = 1 while l l ifn l l = � · Conclude that the topology of the Banach space (X, I I I I )  
does not make scalar multiplication jointly continuous from C x X into X; hence ( i )  that 
topology does not make X into a complex topological vector space, and (ii) II I I  i s not a 
norm on the complex vector space. 

ARITHMETIC IN TAG 's  AND TVS 's  

26.22. Arithmetic in TAG's. Let X be a TAG, and let S, T be nonempty subsets of X. 
Show that 

a. H S is symmetric (i.e. , if -S = S) , then cl(S) and int(S) are symmetric. 
b. If S is open, then S + T is open regardless of what T is. 
c. If S and T are closed and S is compact , then S + T is closed. 
d. int (S) + int(T) <;;;; int(S) + T <;;;; int (S + T) . 
e. cl(S) + cl(T) <;;;; cl(S + T). 
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Hint : If (sa : a E A) is a net in S converging to x and (tf3 : {3 E B) is a net in T 
converging to y, then (sa + tf3 : (a, {3) E A x B) is a net converging to x + y, where 
A x B has the product ordering. 

f. If S is a subgroup of X ,  then cl(S) is also a subgroup, and int(S) is either a subgroup 
or empty. 

26.23. Arithmetic in TVS's. Suppose X is a TVS and S <:;; X .  Then: 
a. If S is balanced or convex or absolutely convex, then cl(S) has the same property, and 

so does int(S) if it is not empty. 
b. If S is a linear subspace of X ,  then cl(S) is a linear subspace of X ,  and int(S) is either 

0 or all of X .  

c. The closed convex hull of S ,  denoted here by clco(S) , is the smallest closed convex 
set containing S; it is the intersection of all the closed convex sets that contain S. Show 
that it is also equal to the closure of the convex hull of S - that is, cleo( S) = cl( co( S)) . 

d. If S is convex, then S is connected. In particular, X itself is connected. 
e. A set S <:;; X is called midpoint convex if S :2 �S + �S - that is, if S contains the 

midpoint of any line segment whose endpoints are both in S. Clearly, any convex set 
is midpoint convex. Show that any closed, midpoint convex set is convex. 

Example. The rational numbers form a subset of the reals that is midpoint convex 
but not convex. 

f. The convex hull of a finite set is compact. More generally, if A1 , A2 , . . .  , An are compact 
convex subsets of X ,  then co(A1 UA2U· · ·UAn) is compact . If the Aj 's are also balanced, 
then so is co(A1 U A2 U · · · U An) · 

Hints : First show that 

is closed and bounded, hence a compact subset of JR.n . Then define g : C x A1 x A2 x 
· · · X An ---> X by taking g (c, a1 , a2 , . . .  , an ) = c1 a1 + c2a2 + · · · + Cnan . Show that 
co(A1 U A2 U · · · U An) = Range(g) ;  then use the fact that the continuous image of a 
compact set is compact (see 17 .7.h) . 

g. If K is a compact subset of lFn , then the convex hull of K is also compact . Hint : Use 
Caratheodory's Theorem 12 . 10 and the continuity of the vector space operations. 

h. ( Optional.) The preceding result is only true in finite dimensions. If X is any infinite
dimensional F-space, then there exists a compact set K <:;; X whose convex hull is not 
closed and hence not compact . 

Proof Let p be a complete F-norm on X.  Let (xn : n = 1 ,  2, 3, . . .  ) be a linearly 
independent sequence of vectors in X .  Replacing the Xn 's with suitable scalar multiples, 
we may assume Xn ---> 0 as n ---> oo. Then the set K = { x0 , x1 , x2 , x3 , . . .  } is compact, 
where x0 = 0. If c1 , c2 , c3 , . . .  are positive numbers with sum less than 1, then the 
partial sums Sn = c1x 1 + c2x2 + · · · + CnXn belong to the convex hull of K, hence 
s = limn--+oc sn (if it exists) belongs to the closed convex hull of K. If we choose the 
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cj 's small enough so that p(cjxj ) < 2-j , then s does indeed exist, by the completeness 
of p. Let "conv" denote convex hull; we shall choose the cj 's so that s tf_ conv(K). 

For each positive integer n, since en is positive, the vector Sn does not lie in the 
linear span of x0 , X1 , x2 , . . .  , Xn- l · Hence it does not lie in their convex hull, which 
is a compact set. Thus Tn = dist(sn , conv{xo , Xl , x2 , . . .  , Xn-d) is a positive number. 
Note that the definition of Tn depends only on the choices of c1 , c2 , . . .  , Cn- l , Cn · Thus 
we may choose the en 's and r n 's recursively: choose each Cn+ 1 small enough to satisfy 

It follows that 

p(s - Sn) p(cn+lXn+l + Cn+2Xn+2 + · · · ) < L 2-jTn < Tn . 
j>n 

Hence dist(s, conv{xo ,  x1 , x2, . . .  , Xn-d) > 0. By 12.5.d, we have 
00 

conv(K) = U conv{xo , X l , X2 ,  . . .  , xn-d , 
n=l 

so s t/: conv(K) . 
i. Show that in a locally convex space, the convex hull of a totally bounded set is totally 

bounded. Then use that to prove Mazur's Theorem: In a Banach space (or, more 
generally, in a complete LCS) ,  the closed convex hull of a compact set is compact . (A 
still more general result is given in 27.3 .f. ) 

j .  Suppose X and Y are TVS's with scalar field IR, and f :  X ---+ Y is additive - that is, 
f(xl + x2 ) = f(xl ) + j(x2 ) .  Also assume f is continuous. Then f is linear. 

k. Let S be a convex neighborhood of 0, and let p be its Minkowski functional (defined 
in 12 .27) . Then p is continuous. If S is open, then S = {x E X :  p(x) < 1 } .  

NEIGHBORHOODS OF ZERO 

26.24. Discussion. If (X, 'J) is a TAG, then the topology 'J is translation-invariant . 
That is, for any S <:;;; X and x, x' E X, we have S E 'J {=} x + S E 'J {=} x' + S E 'J. 

We saw in 5 .22 that any topology 'J can be characterized in terms of its neighborhood 
filters N(x) . If 'J is translation-invariant , then the neighborhood filters can be translated as 
well: 

x + S E N(x) x' + S E N(x' ) S E N(O). 

Thus, the topology is determined by its neighborhoods of 0. Some simplifications are 
possible at 0, so usually we just work with the neighborhood filter at 0. Likewise, we 
consider neighborhood bases at 0. 
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26.25. Neighborhood characterization of a TAG. Let X be an Abelian group, and 
let N be a proper filter on X. Then there exists a TAG topology 'J on X for which N is the 
filter of all neighborhoods of 0, if and only if N has these properties: 

(i) For each N E N, there is some A E N  satisfying A +  A �  N. 

(ii) N has a filterbase consisting of symmetric sets - i.e. , each N E N contains 
some B E N  that satisfies -B = B. 

Moreover, in that case the topology 'J consists of the collection of all sets T � X that satisfy 
the following condition. 

For each x E T, there is some G E N  such that x + G � T. 

The interior operator of that topology can be expressed as follows: For each S � X ,  we 
have 

int(S) { x E X : x + G � S for some G E N} . 

Hints : If X is a TAG with neighborhood filter N at 0, then (i) follows from continuity of 
addition; for (ii) take B = N n (-N) . Conversely, if (i) and (ii) hold, use 5.22 to show that 
'J, as defined above, is a topology, etc. 

26.26. Neighborhood characterization of a TVS. Let X be a vector space, and let 
N be a proper filter on X. Then there exists a TVS topology 'J on X for which N is the 
filter of all neighborhoods of 0, if and only if N has these properties: 

(i) For each N E N, there is some A E N  satisfying A +  A �  N. 

( i i ) N has a filterbase consisting of balanced sets - i.e. , each N E N contains 
some B E N  that is balanced (as defined in 12.3) . 

(iii) Every member of N is absorbing (as defined in 12 .8) . 
Hints for the "only if" part : ( i) X is a TAG. (ii) By continuity of scalar multiplication there 
is some r > 0 and some neighborhood G of 0 such that le i :S: r, x E G =? ex E N. Then 
B = Uic \:Sr eG is a balanced neighborhood of 0 that is contained in N. (iii) Continuity of 
multiplication. 

Hints for the "if" part : First, define 'J as in 26.25, and show that (X, 'J) is a TAG. 
To prove continuity of x ----+ ex for fixed c E IF, i t suffices to show continuity at x = 0, 

and we may assume e -I 0. Let any balanced B E N  be given; it suffices to show e- 1 B E N. 
By repeated uses of (i) , there is some H E N  such that mH � B for some integer m > le i . 
Then H � m- 1B � c1B .  

Continuity of e ----+ ex follows from (iii) ;  joint continuity of (e, x) ----+ ex at (0,0) follows 
from (ii) . Finally, joint continuity of (e, x) ----+ ex now follows from the fact that that mapping 
is bilinear - if en ----+ e and Xa ----+ x, then 

enXn - ex = (en - e)x + c(xa - x) + (ea - e) (xa - x) ----+ 0 .  

26.27. Further properties of neighborhood bases. Show that 
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a. If X is a TAG, then cl(S) = nNEN(S + N) for any set S <;;; X ,  if N i s the neighborhood 
filter at 0. Hence cl(S) <;;; S + N for any N E N. 

Hint : x E cl(S) if and only if S meets every neighborhood of x, as we noted in 15.4. 
b. If X is a TAG, then X has a neighborhood base at 0 consisting of open symmetric sets 

and a neighborhood base at 0 consisting of closed symmetric sets. 
Hint: If N is a neighborhood of 0, choose some open neighborhood G of 0 such that 

G + G <;;; N; then show that G n (-G) and its closure are symmetric neighborhoods of 
0 contained in N. 

c. If X is a TVS, then X has a neighborhood base at 0 consisting of open balanced sets 
and a neighborhood base at 0 consisting of closed balanced sets. Hint: 26.23.a. 

d. If X is an LCS, then X has a neighborhood base at 0 consisting of open convex balanced 
sets and a neighborhood base at 0 consisting of closed convex balanced sets. 

26.28. Technical lemma on subspaces (Dieudonne-Schwartz) .  (This result will be needed 
in 27.4l .b .) 

Let V be a Hausdorff LCS. Let V be a closed linear subspace of V, equipped with the 
relative topology. Let C be a convex neighborhood of 0 in V, and let z E V \ V. 

Then there exists a convex neighborhood C of 0 in V such that C n V = C and z rf_ C. 

Proof In the following diagram, V i s represented by the entire plane, and V by a horizontal 
line through that plane. The set C is represented by a line segment in that line. This 
line segment is drawn slightly thickes_ only to make it visible in the diagram; it should be 
interpreted as being no thicker than V. 

v 

v 0 

c c 

• z 

By assumption, V \ V is a neighborhood of z that does not meet V. Then N1 = 
-(V \ V) + z is a neighborhood of 0 such that z - N1 does not meet V. 

By definition of the relative topology, since C is a neighborhood of 0 in V, we have 
C = V n N2 where N2 is some neighborhood of 0 in V. 
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Now, N1 n N2 is a neighborhood of 0 in V. Since V is locally convex, N1 n N2 contains 
some convex neighborhood N3 of 0. Observe that V n N3 <;:;: C and (z - N3) n V = 0. In 
the diagram, the set N3 is represented by a square. 

Now let 

c { >.u + ( 1 - >.)v : ).. E [0, 1 ] ,  u E C, v E N3 } 
where "co" denotes convex hull (see 12.6.c) . We leave it as an exercise to verify that 
C n V = C and z � C. 

CHARACTERIZATIONS IN TERMS OF GAUGES 

26.29. Theorem (Birkhoff, Kakutani, and Minkowski) .  Let 'J be a topology on 
an Abelian group X .  Then (i) 'J is a TAG topology if and only if 'J is the gauge topology 
determined by some gauge consisting of translation-invariant pseudometrics. In other words, 
a TAG topology is the same thing as a topology given by a collection of G-seminorms. 

Suppose that X is a vector space. Then ( ii) 'J is a TVS topology if and only if 'J is 
the gauge topology determined by some gauge consisting of F-seminorms, and (iii) 'J is a 
LCS topology if and only if 'J is the gauge topology determined by some gauge consisting 
of seminorms. 

Proof A proof of the "if" parts was sketched in 26.20.d; it remains for us to prove the 
"only if" parts. Suppose 'J is a TAG, TVS, or LCS topology; we shall find appropriate 
G-seminorms. 

Case ( iii) is easiest: Let :B be a neighborhood base at 0 consisting of convex, balanced 
sets. Being a neighborhood of 0, each B E :B is also absorbing. Hence its Minkowski 
functional /1B is a seminorm on X (see 12.29.g) . It is easy to verify that the seminorms /1B 

give the same topology as the neighborhood base :B. 
For case (i) , let :B be a neighborhood base at 0 consisting of symmetric sets; for case 

(ii) we may assume the members of :B are balanced sets. Temporarily fix any B E :B ,  and 
let B1 = B. Since addition is continuous, we may recursively choose B2 , B3 , B4 , . . .  in :B 
with Bn :2 Bn+l + Bn+l + Bn+l · Also let Bo = X. Define relations Vn <;:;: X x X by 
11;, = { (x, y) E X  x X :  x - y E Bn } .  Then the Vn 's are translation-invariant in this sense: 
( x, y) E 11;, ¢===? ( x + u, y + u) E Vn . Also, the Vn 's satisfy the hypotheses of Weil 's 
Pseudometrization Lemma 4 .44. Define a pseudometric d as in that lemma; then it is also 
translation-invariant and thus defines a G-seminorm p. In fact, we have f(x, y) = <.p(x - y) , 
where <.p(u) = inf{2-n : u E Bn} ;  hence p(x) = inf :z=;:1 <.p(xJ ) where the infimum is over 
all positive integers m and all decompositions x = x 1 + x2 + · · · + Xm· Since the sets Bn are 
symmetric or balanced, it is easy to verify that the functions <.p and p are also symmetric or 
balanced. In case (ii ) ,  since the En 's are balanced neighborhoods of 0, it is easy to verify 
that p is an F-seminorm. By Weil's Lemma, we have 

{x E X  : p(x) < Tn} C Bn C {x E X  p(x) $ Tn} 
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for all positive integers n. Recall that B1 = B; let us denote p = PB · Then a net (xa) in 
X satisfies PB (xa) --+ 0 for each B E � if and only if for each B E � we have eventually 
Xa E B. Thus the topology with neighborhood base at 0 given by � is the same as the 
topology given by the p B 's . 

26.30. Remark. Although 16. 16 and 26.29 show that every TVS is completely regular, in 
general a TVS need not have stronger separation properties such as normality. Indeed, an 
example of Stone [1948] showed that the Hausdorff locally convex space JRIR is not normal. 

26.31. Compatibility with a TAG or TVS. Let (X, 'J) be a TAG, TVS, or an LCS, and let 
R = {P.\ :  A E A} be a gauge on X consisting of G-seminorms, F-seminorms, or seminorms, 
respectively. We shall say that the gauge R is compatible with the topology 'J if 'J is the 
topology determined by R - that is, if 

Xa --+ x in (X, 'J) P.\ (Xa - x) --+ 0 for each A. 

Show that the largest gauge that is compatible with 'J is , respectively, the set of all G
seminorms, F-seminorms, or seminorms that are continuous from (X, 'J) to [0, +oo). (This 
is a specialization of 16.20.) 

26.32. Pseudometrizability criteria. Let (X, 'J) be a TAG. Show that the following 
are equivalent : 

(A) 'J is pseudometrizable. 
(B) 'J can be determined by a countable collection of pseudometrics. 
(C) 'J can be given by a single G-seminorm. Hint : 18. 1 7. 
(D) (X, 'J) is first countable - i.e. , it has a countable neighborhood base at 0 -

i.e. , there is a countable collection N0 of neighborhoods of 0, such that every 
neighborhood of 0 includes some element of N0 . 

Suppose, moreover, that (X, 'J) is a TVS. Then the following is also equivalent: 
(E) 'J can be given by a single F -semi norm. 

Finally, suppose (X, 'J) is an LCS. Then the following are also equivalent: 
(F) 'J can be given by a countable collection of seminorms. 
(G) 'J can be given by a single F -semi norm of the form 

00 
p L 2-n arctan Pn , 

n=l 
where the Pn 's are seminorms. 

Remarks. We emphasize that the topology of a pseudometrizable LCS is not necessarily 
obtainable from a single seminorm. An example is given in 27.8. 
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Some readers will be more interested in the metrizability of a TAG, TVS, or an LCS 
rather than the pseudometrizability. But of course, a space is metrizable if and only if it is 
pseudometrizable and Hausdorff; we consider Hausdorffness in the next section. 

26.33. Hausdorffness criteria. Let X be a TAG; let N be the neighborhood filter at 0; 
let R be any determining family of G-seminorms. Then the following are equivalent: 

(A) {0} is closed. 

(B) nNEN N = {0} . 

(C) npE R p- 1 (0) = {0} . 

(D) X is To ( i .e . ,  the topology can distinguish between points of X) . 

(E) X is T1 (i .e . , every point is closed) .  

(F) X is T2 ( i .e . , Hausdorff) . 

(G) X is T3 . 

(H) X is T3.5 ( i .e . , Tychonov) . 

26.34. Corollary on quotients. Suppose X is a TAG, TVS, or an LCS. Let K <;;; X be 
a subgroup, linear subspace, or linear subspace, respectively. Let X/ K have the quotient 
topology. Then: 

a. X/ K is also a TAG, TVS, or an LCS, respectively. 
Hint: The topology on X is determined by a gauge D consisting of G-seminorms, 

F -seminorms, or seminorms, respectively. Replacing D with an equivalent gauge, we 
may assume D is directed. The gauge D on X/ K, defined as in 22. 13.e, also consists 
of G-seminorms, F -semi norms, or seminorms, respectively. 

b.  The topology on Q is Hausdorff if and only if K is a closed subset of X (regardless of 
whether the topology on X is Hausdorff) .  

Hints : Let Oq denote the additive identity of Q. Refer to 26.33. Then Q is Hausdorff 
-¢===} {Oq } is a closed set -¢===} K = 1r-1 (0q) is a closed set, by 15.3l .b. 

c. In particular, if K = cl( {O} ) ,  then Q is the Kolmogorov quotient of X, defined in 16.5. 

26.35. A few properties of the Kolmogorov quotient. Suppose that X is a topological 
Abelian group. Let Q = X/cl( {0}) have the quotient topology. Then: 

a. Q is a Hausdorff space. 
b. Q is the Kolmogorov quotient of X . 
c .  For each G-seminorm p on X, define the corresponding G-seminorm p on Q, as in 22.13 . 

The G-seminorms that determine the topology and uniformity of X are all continuous, 
and so they satisfy p- 1 (0) 2 cl( {O} ) .  By 22 . 13.d, the formula for p simplifies to 
p(1r(x)) = p(x) . 
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d. Let 1r : X ---> X/c!( {0}) be the quotient map. Let a :  X/c!( {0}) ---> X be any selection of 
1r- 1 - that is, let a be any function that satisfies a(q) E 1r- 1 (q) for all q E X/cl( {O}) . 
Then a i s continuous. 

Proof Let (qa )  be a net converging to a limit q in X/cl( {0} ) . Show that p(a(qa ) 
a(q)) = p(qa - q) ---> 0. 

e. The quotient map 1r : X ---> Q is open, closed, and continuous. 

UNIFORM STRUCTURE oF TAG ' s  

26.36. Preliminary lemmas. Let X and Y be TAG's. By 26.29, the topologies of X and 
Y can be determined (not necessarily in a unique fashion) by gauges D and E consisting of 
G-seminorms - i.e . , consisting of translation-invariant pseudometrics. Fix any such gauges 
D and E, and let X and Y be equipped with the uniform structure determinea by those 
gauges. Then: 

a. Let ( (xa , x� )  : o: E A) be a net in X x X. Then D(xa , x� ) ---> 0 in X in the sense of 
18 .7 if and only if Xa - x� ---> 0 in X. 

b.  A function f : X ---> Y is uniformly continuous if and only if i t has this property: 
Whenever ( (X a , x� ) : o: E A) is a net in X x X that satisfies X a - x� ---> 0 in 
X, then also f (xa) - f(x� ) ---> 0 in Y; 

or, equivalently, this property: 
For each neighborhood H of 0 in Y, there is some neighborhood G of 0 in 
X such that x - x' E G =? f(x) - f(x') E H .  

c .  Any additive continuous map f : X ---> Y is uniformly continuous. 

26.37. Discussion: uniqueness of the uniformity. Let (X, 'J) be a topological Abelian 
group (TAG) . As we have noted above, the topology 'J can be determined by some gauge 
consisting of G-seminorms. Such a collection also determines a uniformity on X. The gauge 
is not necessarily unique, but we can now see that the uniformity is unique; any two such 
gauges must determine the same uniformity. (Proof Apply 26.36.c to the identity map . ) 

That unique uniformity will be called the usual uniformity for the topological group. 
It will always be understood to be in use whenever a topological Abelian group is viewed 
as a uniform space (unless some other arrangement is specified) .  It will also be in use for 
special kinds of TAG's - e.g. , for TVS's and LCS's. Note that 

on an Abelian group, a TAG topology and its associated usual uniformity deter
mine each other uniquely. Consequently, we may refer to them interchangeably 
in discussions. 

For instance, we might say something like "the set S is a totally bounded subset of X, when 
X is equipped with the topology of uniform convergence on members of S." Here we are 
really referring to the uniformity, not the topology, of uniform convergence on members of 
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S ,  but in certain parts of the literature it seems to be customary to call this a "topology." 
No harm is done by this abuse of terminology, since the topology and uniformity determine 
each other uniquely. 

26.38. Remarks: nonuniqueness of the topology corresponding to the group structure. The 
result developed above, on the uniqueness of the usual uniformity for a TAG, must be 
read carefully. It does not say that there is only one uniformity compatible with the given 
topology, nor that there is only one translation-invariant uniformity. Even if we restrict 
our attention to the topologies and uniformities given by translation-invariant gauges, an 
Abelian group X may be made into a TAG in more than one way - i.e . , there may be 
several different pairs 

('J1 , Ul ) , ('Jz , llz ) ,  ('J3 , ll3) ,  . . .  
consisting of a topology 'J1 that makes X into a TAG and the associated uniformity U1 . 

We illustrate this by mentioning three different uniformities on R 
• The translation-invariant metric d(x, y) = lx - Yl yields a translation-invariant (and 

complete) uniformity on lR and the usual topology. 
• The metric d(x, y) = I arctan(x) - arctan(y) l is not translation-invariant. It yields 

the usual (translation-invariant) topology on JR, but it yields a uniformity that is not 
translation-invariant or complete. (With this uniformity, the completion of lR is the 
extended real line [-oo, +oo] . )  

• The discrete metric on lR i s  translation-invariant and yields a translation-invariant and 
complete uniformity. It yields, not the usual topology on JR, but rather the discrete 
topology. 

It is also possible to develop a theory of topological groups that are not necessarily 
Abelian, but that theory is more complicated . A topological group that is not Abelian 
does not necessarily have one "preferred" uniformity, analogous to that discussed in 26.37. 
Examples can be found in Wilansky [1970] , and in books on uniform spaces. We shall not 
pursue that topic here. 

26.39. Remarks: irrelevance of scalars. A uniformity is unchanged if we replace the 
gauge with any uniformly equivalent gauge. In a TAG we can choose the gauge to consist 
of G-seminorms. In a TVS or an LCS we can do better: We can choose the gauge to 
consist of F-seminorms or seminorms. However, these "better" gauges do not give us more 
insight into the uniform structure. In the basic theory developed below, we can forget 
about multiplication by scalars, for it has no effect on the uniform structure; we can view 
our TVS's and LCS's as TAG's. (Nevertheless, the uniform structure and the operation of 
scalar multiplication do interact in some interesting ways; see 27.2 . ) 

26.40. Further properties of the usual uniformity. Let X be a TAG, let N be the neigh
borhood filter at 0, and let 1L be the usual uniformity on X. Then: 

a. The usual uniformity can be described directly in terms of the topology, as follows: 
1L {S � X X X S :;2 EN for some N E N} , 
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where 
{ (x , y) E X x X  X - y E N } 

for each neighborhood N E N. The sets EN then form a filterbase for the uniformity. 
b. A net (xa : a  E A) in X is Cauchy if and only if, for each neighborhood N of 0, there 

is some a0 E A such that a, a' � a0 =? Xa - Xa' E N. 
A filter 3'" on X is Cauchy if and only if, for each neighborhood N of 0, there is 

some F E 3'" satisfying F - F c,;;; N. 
c .  Let Ua : a E A) be a net of functions from some set S into X, and let f E X8 also. 

Then f"' --> f uniformly on S if and only if for each neighborhood N of 0 there is some 
ao E A such that Ua(s) - f(s) : a �  ao, s E S} c,;;; N. 

d. Let n be a topological space, and let {f>.. : >. E A}  be a collection of functions from 
n into X.  Then {f>.. } is equicontinuous at a point Wo E n if and only if {f>.. } has this 
property: 

For each neighborhood N of 0 in X, there is some neighborhood G of w0 in 
D such that {f>.. (wo) - f>.. (w) : >. E A, w E G} c,;;; N. 

e. Let S c,;;; X. Then S is totally bounded if and only if S has this property: 
For each neighborhood N of 0, there is some finite set F c,;;; X (or, equiva
lently, some finite set F c,;;; S ) such that F + N � S. 

26.41. ( Optional.) Most of the results on Riemann and Henstock integrals in Chapter 24 
require norms, but the definitions and a few basic properties do not actually require norms. 
The definitions would make as much sense in any topological vector space X, if we replace 

for each number E > 0, there exists . . .  such that . . .  l l v - � [f, T] l l < E 

with 

for each neighborhood N of 0, there exists . . .  such that . . .  v - �[f, T] E N. 
As an exercise, readers may wish to prove the following result. 

Theorem. Suppose the topological vector space X is locally convex, and assume it is 
complete - i.e . , every Cauchy net in X converges. Then any continuous function f : 
[a, b] --> X is Riemann integrable. (Hint : Any continuous function on [a, b] is uniformly 
continuous. ) 

PONTRYAGIN DUALITY AND HAAR MEASURE 
( OPTIONAL ; PROOFS OMITTED) 

26.42. Remarks. We now state a few further results about topological Abelian groups. 
We shall omit the proofs, which are not short or elementary, since these results will not be 
needed later in this book except in some other material marked "optional." 
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26.43. Definitions. By a Pontryagin group we shall mean a locally compact , Hausdorff, 
topological Abelian group. Some examples of Pontryagin groups are: 

• lR or e, with the usual topology and with addition for the group operation. 

• (0, +oo), with multiplication for the group operation. (This is isomorphic to JR.) 
• Z, with the usual (i .e . , discrete) topology and with addition for the group operation. 

• 1!' = {z E e :  l z l  = 1 } ,  with multiplication for the group operation. This group will 
play a special role in the theory developed below. (Of course, it is isomorphic to the 
group [0, r) with the operation of addition modulo r, for any positive number r . ) 

• Any product of finitely many Pontryagin groups, with group operation defined com
ponentwise and with the product topology. (In particular, IRn and en .)  

We may form a category by taking Pontryagin groups for the objects, with continuous 
group homomorphisms for the morphisms of the category. It is easy to see that this satisfies 
the definitions in 9.3. 

For each Pontryagin group G, we now define the dual 

G* { 'P : 'P is a morphism from G into 1!'} .  

This is a special case of the notion of "dual" introduced in 9.55; in this context the object 
� of 9.55 is the circle group 1!'. 

The set G* can be made into a multiplicative group by defining products pointwise -
that is, '{)1/J(g) = '{)(g) 1/J (g) for any '{), 1/J E G* and g E G. The identity element of the 
group G* is the constant function 1 .  The inverse of any element 'PC) E G* is the function 
1/'fJ( · ) .  Note that 1/'fJ(g) = 'fJ(g) ,  since 'fJ(g) takes its values in 1!'. Also, since 'P is a 
group homomorphism, note that 1 j '{)(g) = 'P(-g) if G is written as an additive group, or 
1 /'{J(g) = 'fJ(g- 1 )  if G is written multiplicatively. 

The group G* is called the character group of G; the members of G* are called the 
characters of G. 

Examples. The groups IRn and en are isomorphic to their own character groups; the 
groups 1!' and Z are isomorphic to each other's character groups. 

The preceding assertions are easy to verify; the remaining ones below are not. 

26.44. Pontryagin Duality Theorem. Let G be a Pontryagin group, and let G* be its 
character group. Let G* be topologized by the topology of uniform convergence on compact 
subsets of G. Then G* is also a Pontryagin group; thus the mapping G f--7 G* goes from the 
category of Pontryagin groups into itself. With respect to this mapping, every Pontryagin 
group is "reflexive" - that is, G** = G. If f : G1 ---+ G2 is a morphism, then the dual map 
f* :  G2* ___, G1 * (defined as in 9.3) is also a morphism. If G* = H and H* = G, then G is 
compact if and only if H is discrete. 

26.45. Theorem: existence and uniqueness of Haar measure. Let G be a Pontryagin 
group (as defined in 26.43) . Then there exists a regular Borel measure JL on G that is 
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translation-invariant on G - i .e . , that satisfies f..l(X + S) = f..l(S) for all x E G and all Borel 
sets S � G. It is unique, up to multiplication by a positive constant - i.e . , if /-l l and f..l2 
are two such measures, then /-ll = kf..l2 for some positive constant k. Any such measure is 
called the Haar measure of the group. It is bounded if and only if G is compact. 

Notations. The spaces £P (f..l) may be written instead as LP (G) . When the choice of the 
measure is clear, integration with respect to Haar measure may be written as fc f(x)dx 
instead of fc f(x)df..l (x) . 

Remarks. For simplicity we have only considered commutative groups, but the notion of 
Haar measure generalizes to all locally compact Hausdorff groups; commutativity is not 
actually required. The literature contains an assortment of proofs of the existence and 
uniqueness of the Haar integral. They are based mainly on two proofs. One, due to Cartan, 
is based on an argument involving Cauchy nets and proves uniqueness while it proves 
existence. The other, due to Wei! , is slightly shorter, uses a compactness argument, and 
does not prove uniqueness; it is usually supplemented by a brief proof of uniqueness due to 
von Neumann. Both proofs apply to noncommutative groups; both are given by Nachbin 
[1965] . Simpler proofs are possible if one restricts one's attention to compact groups or to 
commutative groups; for instance, see Izzo [1992] and references cited therein. 

26.46. Examples. Haar measure on zn (or on any discrete group) is counting measure. 
Haar measure on JRn is n-dimensional Lebesgue measure. The circle group [0, r) (with 
addition modulo r, as defined in 8. 10.e) has Haar measure equal to the restriction of one
dimensional Lebesgue measure to subsets of [0, r) . Haar measure on the circle group 1!' = 

{z  E C :  lz l = 1 }  (with the operation of multiplication) can be described in terms of [O, r) 
since those two groups are isomorphic; equivalently, Haar measure on 1!' is arclength times 
any convenient positive constant . 

Haar measure on the multiplicative group (0, +oo) can be described in terms of Lebesgue 
measure on the additive group JR, since those two groups are isomorphic by the mapping 
(0, +oo) 3 x <--> In x E R That isomorphism yields this formula for Haar measure 1-l in 
(O, +oo): 

f..l (S) r � dt }8 t for Borel sets S � (0, +oo) . 

Here the dt is integration with respect to Lebesgue measure. 

26.47. Let G and G* be a Pontryagin group and its dual group (as defined in 26.43). 
Let HSJ,ar measure on both groups be denoted by dx. Of course, Haar measure is only 
determined up to multiplication by a positive constant ; fix some particular version of Haar 
measure on each group. 

The Fourier transform of a function f : G ----+ lF is a corresponding function f : G* ----> lF. 
The transform is defined for f E L 1 (G) , for f E L 2 (G) , and for f in various other classes of 
functions by an assortment of different methods, but the different definitions agree wherever 
the classes of functions overlap. 
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The most basic of these definitions is the following: 

fc f(x)'y(x)dx if f E L1 (G) and "f E G*. 

This makes sense for f E L1 (G), since "f(x) has absolute value 1 for all x. 

Abstract Riemann-Lebesgue Lemma. If f E L1 (G) , then f E Co(G), with l lfl l oo :::; 
II f I l l · Here Co (G) is the set of all continuous functions from G into C that vanish at infinity, 
as defined in 22 .15 . (This result generalizes 24.4l .b; explain how.) 

Plancherel Theorem. The Fourier transform, restricted to U (G) n L2 (G) , is a linear 
map from that set onto a dense subset of L2 (G*) ,  which is distance-preserving - i.e . , 

cl l f i i £2(G) 

(for some positive constant c that depends on the normalizations of the Haar measures; the 
Haar measures can be chosen so that c = 1 ) .  Hence that restriction extends uniquely to a 
linear map f 1---7 j, from L2 (G) onto L2(G*) ,  satisfying (**) .  This map is sometimes called 
the Plancherel transform. It also satisfies Parseval's Identity: 

and the Fourier Inversion Formula: c2 f(x ) = [( -x) . When f E L1 (G* ) ,  then the 
Fourier Inversion Formula can be written in this form: 

Examples. 
a. When G = ]Kn , then G* = ]Kn also. It is convenient to define 

[(�) (21r)-n;2 f f(x) exp( -ix . Odx }JRn 
- other constants can be used, but this constant yields f (x ) = [( -x) .  The term 
"Fourier transform" most often refers to this example. 

b. The group G = '][' can be conveniently viewed as the additive group [0, 21r) ,  with 
addition modulo 27r (see 8. 10.e) . (Functions on 'Jl' are also often viewed as functions on 
lK that are periodic with period 21r. Intervals with length other than 27r can also be 
used, but the formulas are simplest for intervals of length 27r, so that is the only case we 
shall describe here. ) The dual group is G* = Z, and a function on Z is just a sequence 
of numbers indexed by the integers. Thus, the transform of a function f E £1 ('J!') is 
the sequence of Fourier coefficients 

1 !71' . - f(x )e-mx dx 27r - 71' 
(n E Z) 
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Going in the other direction, an "integral" of a function in £1 (Z) is just a sum of real 
numbers. Thus we obtain 

f (x) (x E 'II') 
n=-oo 

This series is to be interpreted not as a pointwise summation but as a summation in 
£2 (1!') . That is, if f E £2 (1!') , then the partial sums SN (x) = 2:.:=-N Cneinx converge 
to f in the sense that limN ..... oo I I ! - sN I I 2 = 0 .  

26.48. Remarks on pointwise convergence. Let f E £2 [ -7r ,  1r] , and define the Fourier coef
ficients Cn = 2� J:.1r f (x )e-inx dx. Then L-:=-oo Cneinx , the Fourier series of J, converges 
to f in the norm topology of L2 [-7r, 7r] . Although the convergence in £P spaces is more 
important for applications, it is of some historical interest to know when the Fourier series 
converges pointwise to f. For instance, a theorem of Jordan shows that if J( -1r) = j(1r) 
and f has bounded variation on [ -1r, 1r] , then L-:=-oo cneinx = � [f(x+) + f(x-)] for all x; 
here f(x+) and f (x-) are the right- and left-hand limits of f at x. If f is also continuous, 
then the Fourier series converges everywhere to f. Georg Cantor tried to investigate the 
sets of points where certain Fourier series converge; this led him to invent cardinalities and 
set theory. 

What about functions that are not necessarily of bounded variation? It turns out that 
"most" continuous functions are ill-behaved at "most" points, in the following sense: Let 
C27r be the collection of all continuous functions f :  [-1r, 1r] -+ C that satisfy J( -1r) = j(1r) ; 
this is a Banach space when equipped with the sup norm. There exists a comeager set 
<I> � C27r such that for each f E <I>, there exists a comeager set E1 � [-1r, 1r] such that the 
Fourier series of f diverges at every point of E f .  

I t  also turns out that "most" functions in £1 [-1r, 1r] are ill-behaved at "most" points, in 
a different sense: The functions whose Fourier series diverge almost everywhere in [-1r, 1r] 
is a co meager subset of £1 [ -1r, 1r] . (Kolmogorov first proved in 1926 that there exists a 
function in £1 [ -1r, 1r] whose Fourier series diverges almost everywhere.) 

However, for p > 1 the spaces £P [-7r, 1r] exhibit much better behavior. If f E £P [-7r, 1r] 
for some p > 1, then the Fourier series for f converges almost everywhere to f. This was 
proved by Hunt [1968] , extending methods developed earlier by Carleson for the case of 
p = 2. 

For proofs or references for most of these results, see Edwards [1967] . The abstract 
approach to Fourier analysis is also introduced by Rudin [1960] . 

ORDERED TOPOLOGICAL VECTOR SPACES 

26.49. Definition and remarks. A ordered topological vector space is a real vector 
space X that is equipped with both 

• a topology, making X into a topological vector space, and 
• an ordering, making X into an ordered vector space (as defined in 1 1 .44) . 
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Many different types of ordered TVS's can be defined by assuming various relations between 
the topology and the ordering. We shall concentrate on just a few basic types of ordered 
TVS's. In order of increasing specialization, these are: 

{locally full spaces} ::2 {locally solid spaces} ::2 {F -lattices} ::2 {Banach lattices} . 

Our treatment is based largely on Fremlin [ 1974] , Peressini [ 1967] , and Wong and Ng [ 1973] . 

26.50. Exercise. Let X be an ordered TVS whose positive cone X+ is closed. Then: 
a. The sets {x E X :  x � u }  and {x E X :  x � u} are closed, for each u E X. 
b. X is Hausdorff. 
c. X is Archimedean. 

Hint: If Ny is bounded above by some x, then for all n E N  we have x � ny, hence 
�x - y E X+ which is a closed set . Since X is a TVS , we have �x - y ----+ -y , and thus 
y � 0. 

d. If ( v0 : 8 E D.) is an increasing net that converges to some limit V00 in the topological 
space X, then v= = sup6E� v15 . 

Hints : For each 80 E D., the set {x E X : x � V150 } is closed, hence contains V00 . 
Also, if w is an upper bound for the set { v6 : 8 E D.} ,  then v= is in the closed set 
{x E X :  x � w} .  

26.51. Recall that a subset S of a preordered set (X, �) i s full (or order convex) if 
a � x � b with a, b E S implies x E S (see 4.4 .a) . The full hull of a set S is the set 
Ua.bES [a, b] ; i t i s the smallest full set that contains S. Exercises. 

a. The full hull of any balanced subset of X is balanced. 
b. The full hull of any convex subset of X is convex. 

26.52. Proposition and definition. Let X be an ordered topological vector space. Then 
the following conditions are equivalent ; if they are satisfied we say X is locally full (or 
ordered by a normal cone) . 

(A) (X, 'J) has a neighborhood base at 0 consisting of balanced, full sets. 
(B ) (X, 'J) has a neighborhood base at 0 consisting of full sets. 
(C) (X, 'J) has a neighborhood base at 0 consisting of sets V with this property: 

lf v E V n X+ , then [O, v] c;;; V. 
(D) If (xo: : a  E A)  and (Ya : a  E A )  are nets in X based on the same directed set 

A and satisfying 0 � Xa � Ya and Ya � 0, then Xa � 0. 

(E) (The Squeeze Property. ) If (uo: ) ,  (va ) ,  (wa) are nets in X based on the 
same directed set A and satisfying Ua � Va � Wa for all a E A and also 

. f . 'J d 'J . h h l. . h 'J sat1s ymg Ua ---> p an Wo: ---> p wit t e same 1m1t p, t en Va ---> p 
also. 
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(F) If V is any neighborhood of 0 , then there exists a neighborhood W of 0 with 
this property: If w E  W n X+ , then [0, w] � V. 

Remark. Note the similarity between 26.52(E) and 7.40 . i . Those two properties are the 
same in IR, since in that setting the order and topological convergences are the same. 

Proof of equivalence. The implications (A) =} (B) =} (C) =} (D) are obvious. The 
implications (D) {=::::} (E) are an easy exercise. It suffices to show (D) =} (F) =} (A) . 

Let N be the neighborhood filter at 0 . 

Proof of (D) =} (F) . Suppose (F) fails. Then there is some V that is a neighborhood of 0, 
for which there is no corresponding neighborhood W. Then for each N E N, there is some 
w N E N such that [0, w N] is not contained in V, and hence there is some x N E [0, w N] \ V. 
Then the net (wN : N E N) converges to 0 . By (D) , the net (xN : N E N) converges to 0 
� but then eventually x N E V, a contradiction. 

Proof of (F) =} (A) . Let G be any neighborhood of 0; we wish to show that G contains 
a balanced, full neighborhood of 0. Let G' be a balanced neighborhood of 0 satisfying 
G' + G' � G; such a set is available since X is a TVS. By (F) , there is some neighborhood 
w of 0 with this property: nwEWnx)O, w] � G' . Replacing w with a smaller set, we 
may assume W � G'. Now let W' be some some balanced neighborhood of 0 satisfying 
W' + W' � W. Let K = G' n W' ; it is a balanced neighborhood of 0. Let F be its full 
hull � that is, F = Ua,bEK [a, b] . The full hull of any balanced set is balanced; thus F is a 
balanced, full neighborhood of 0. It suffices to show F � G. Let x E F. Then a � x � b 
for some a ,  b E  K = G' n W'. Then 0 � x - a �  b - a E W' - W' = W' + W' � W. Hence 
b - a E W n X+ , and thus x - a E [0, b - a] � G'. Finally, x = (x - a) + a E G' + G' � G. 

26.53. A degenerate example. Any topological vector space (X, 'J) can be turned into a 
locally full space by equipping it with the degenerate ordering x � y {=::::} x = y (so 
that the positive cone is {0} ) . Indeed, with that ordering, every subset of X is full , so any 
neighborhood base at 0 consists of full sets. 

Despite its triviality (or because of it ! ) , this example is useful. It shows that any affine 
operator between topological vector spaces can be turned into a convex operator from a 
topological vector space into a locally full space. Thus, the results proved in this chapter 
for convex operators are applicable to affine operators as well. 

26.54. If X is a locally convex, locally full space, then X has a neighborhood base at 0 
consisting of balanced, full, convex sets. 

Hint: Let N be any given neighborhood of 0 in X. Since X is locally full , we have N :2 B 
where B is a balanced, full neighborhood of 0. Since X is locally convex, we have B :2 C 
where C is a balanced, convex neighborhood of 0. Show that the full hull of C is a balanced, 
full, convex neighborhood of 0 that is contained in N. 

26.55. Definitions. Let (X, �) be a Riesz space, i .e. , a vector lattice. By a Riesz F
seminorm we shall mean an F-seminorm p :  X ----+ [0, +oo) (defined as in 26.2) that also 
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has this property: 
jxj � jyj p(x) :S p(y). 

If p is also homogeneous (i .e . , if p(cx) ic lp(x) ) ,  then it is a Riesz seminorm. If p is 
positive-definite (i .e. , if x =f. 0 =;. p(x) > 0) , then it is, respectively, a Riesz F-norm or 
Riesz norm. 

Examples. On any of the Banach spaces LP (p,) for 1 :S p :S oo (with {scalars} = lR) ,  the 
norm II l i P is a Riesz norm. On the F-spaces LP (p,) for 0 < p < 1 ,  the F-norm I I  I I� is a Riesz 
F-norm. 

26.56. The Hahn-Banach Theorem was introduced in 12.30. Two more of its equivalents 
are given by the following principles: 

(HB15) Riesz Seminorms and (HB16) Positive Functionals. Let X 
be a Riesz space, let S be a Riesz subspace, and suppose either 

q is a Riesz seminorm on X, or 

q : X --+ lR is a positive linear functional. 
Let >. : S --+  lR be a positive linear functional, satisfying >. :S q on S+ . Then >. 
extends to a positive linear functional A :  X --+  IR, satisfying A :S q on X+ . 

Proof that (HB2) implies both (HB15) and (HB16) . In either case, the restriction of q to 
X+ is a convex, isotone function q :  X+ --+ lR that satisfies q(O) = 0. Define p(x) = q(x+ ) .  
Then p is convex; this follows from the convexity and isotonicity of q and the fact that 
(ax + ( 1 - a)y)+ � (ax)+ + ( ( 1 - a )y)+ = a(x+ ) + ( 1 - a) (y+ ) if x, y E X  and a E [0, 1 ] .  
For any x E S we have x � x+ , hence >.(x) :S >.(x+ ) :S q(x+ ) = p(x) . Thus (HB2) is 
applicable, and >. extends to a linear functional A : X --+ lR satisfying A :S p on X; hence 
A :S p = q on X+ . To see that A is positive, note that if x ?= 0, then ( -x )+ = 0; hence 
-A (x) = A( -x) ::; p( -x) = q ( (  -x)+ ) = q(O) = 0. 

Proof that either (HB15) or (HB16) implies (HB1 ) .  In either case we take X to be the 
Riesz space B(t:,.) and let S be the subspace consisting of those nets that are convergent 
in the ordinary sense. For a proof with (HB15) , use the Riesz seminorm q(x) = l l x l l= 
sup { lx(b) l : o E !:,.} .  For a proof with (HB16) , use the positive linear functional q(x) = 
lim sup6E6 x(o) . 

26.57. Recall from 8.42.q that, in a vector lattice, a set S is solid if jxj � jyj and y E S 
imply x E S. Note that any nonempty solid set is balanced. 

Proposition and definition. Let (X, �) be a vector lattice and let (X, 'J) be a topological 
vector space, both with the same underlying vector space X . Then the following conditions 
are equivalent. If one, hence all, of these conditions are satisfied, we say X is locally solid; 
some mathematicians call it a topological Riesz space. 

(A) X has a neighborhood base at 0 consisting of solid sets. 
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(B) The topology 'J is the gauge topology determined by a collection of Riesz 
F -seminorms. 

(C) The mapping x f---* I xI is uniformly continuous from X to X (equipped with 
the uniform structure resulting from the topology 'J). 

(D ) The mapping (x ,  y )  f---* x V y is uniformly continuous from X x X (with the 
product uniform structure) to X. 

(E)  The mapping x f---* x+ is uniformly continuous from (X,  'J) into (X ,  'J) .  

(F ) X i s  locally full and the mapping x f---* x+ is continuous at 0 .  

(G ) For any two nets (xa ) and (Ya )  i n X (with the same index set ) ,  i f  lxal =:(, IYal 
'J 'J for all a and Ya ---. 0, then Xa ---. 0. 

Proof of (A) =} (B) . The proof is similar to that of 26.29, case (ii ) , but we may choose the 
sets B E �  to be solid sets. Construct an F-seminorm p as in 26.29 ; we shall now show that 
that function is actually a Riesz F-seminorm. We know that lxl =:(, IYI =} cp(x) =:(, cp(y) 
since each Bn is solid; we are to show that I xI =:(, I y I =} p( x) :::; p(y) . Consider any 
decomposition Y = Yl + Y2 + · · · + Yrn · Then lxl =:(, IYI =:(, IYd + IY2I + · · · + IYrnl, hence 

x E [-lyl / - IY2I - · · · - IYrnl,  IYl /  + IY2I + · · · + IYml] 

[-lyl / ,  IYd] + [-ly2f ,  IY2IJ + · · · + [-IYml,  IYml] 

by 8.36(C) . Thus we can write x = x1 + x2 + · · · + Xm with lx; / =:(, IYJ Hence p(x) :::; 
2::::1 cp(x;) :::; 2::::1 cp(y; ) .  Since p(y) is the infimum of all such summations 2::::1 cp(y; ) , it 
follows that p( x) :::; p(y) . 

Proof of (B) =} (C) . Recall from 8.42.o that I lxl - lx' I I =:(, lx-x' j. Hence for any Riesz 

F-seminorm p, we have p(/xl - lx' I) :::; p(x - x') .  If Xa - x� --L 0, then p(xa - x� ) ----+ 0 
for every p in the determining family of Riesz F-seminorms; hence p(/xal - lx�l) ----+ 0 for 

'J each p; hence lxal - lx�l ---. 0. 

Proof of (C) =} (D). Immediate from 8.42.1. 

Proof of (D) =} (E). Obvious. 

Proof of (E) =} (F) . Obviously the mapping x f---* x+ is continuous at 0. To show that X 
is locally full , we shall verify COI].dition 26.52(F ) .  Let V be any neighborhood of 0. By the 
uniform continuity of the mapping x f---* x+ , there is some neighborhood W of 0 such that 
x - y E W =} x+ - y+ E V. We are to show that if 0 =:(, w E  W, then [0, w] <;;; V. Indeed, 
let x E [0, w] . Then x - (x - w) = w E  W, so x+ - (x - w)+ E V. But x+ = x since x � 0, 
and (+ - w)+ = 0 since w � x. Thus we have shown x E V. 

Proof of (F) =} (G) . Since x f---* x+ is continuous at 0, the function x f---* x- = ( -x)+ is 
also continuous at 0, and therefore so is the function x f---* lxl = x+ + x- . Now, suppose 
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'J 'J /xa / � /Ya / and Ya ------> 0. Then /Ya / ------> 0. Then 

and 

'J 'J H - + _ T O hence by 26.52(D) we have xt -----+ 0 and x;-: -----+ 0. ence X a - xa - xo: -----+ . 
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Proof of (G) =* (A) . Let W be a neighborhood of 0; we wish to show that W contains 
some full neighborhood of 0. Recall from 8.42.q that the solid kernel of W is the set 

sk(W) U { [-u, u] : [-u, u] <:;; W} ; 

it is the largest solid subset of W. It suffices to show that sk(W) is a neighborhood of 0. 
Suppose not. Then there exists a net (Yo: )  that takes values outside sk(W) but converges to 
0. Then for each a, the interval [-/yc,/ ,  /Yo:/] is not contained in W, hence there is some 

'J Xa E [-/ya/ ,  /Ya/] \ W. Then /xo:/ � /Ya/ ,  and so Xa -----+ 0 by (G) . But then eventually 
X a E W, a contradiction. 

26.58. Exercise. If X is a locally solid Riesz space that is Hausdorff, then its positive cone 
is closed; hence all the conclusions of 26.50 are applicable. 

Hint : X+ = cp-1 (0) , where 'P is the continuous function x >--+ x 1\ 0. 

26.59. Definitions. An F-lattice or a Banach lattice will mean a lattice topologized by 
a Riesz F-norm, respectively a Riesz norm, which is metrically complete. Note that any 
F-lattice or Banach lattice satisfies condition 26.57(B) and thus is locally solid. 

Theorem: Continuity of positive operators. Suppose X is an F-lattice and Y is a 
locally full space. Then every positive linear operator f : X --+ Y is continuous. 

Remark. For a more general but more complicated result about convex operators, see 
Neumann [1985] . 
Proof of theorem. Suppose not. Then there exists a sequence (xn) that converges to 0 in 
X, such that f(xn) .;.. 0 in Y. 

Then x;t --+ 0 and x;; --+ 0, by 26.57(E) . Since f(xn )  = f(x;t) -f(x;; ) ,  at least one of the 
sequences (J(x;t ) ) ,  (J(x;; ) )  does not converge to 0 in Y.  Thus, replacing (xn ) with either 
(x;t) or (x;; ) ,  we may assume Xn >,:= 0. Replacing (xn) with a subsequence, we may assume 
f(xn )  stays out of some neighborhood G of 0 in Y.  Choosing a smaller neighborhood, we 
may assume G is full. Replacing (xn) with a subsequence, we may assume p(xn ) < 4-n , 
where p is some complete Riesz F-norm that determines the topology of X. Let Un = 2nxn ; 
then f(un) tJ. 2nG. 

By subadditivity of p, we have p( un) < 2-n . Hence the series Ln Un converges to some 
limit v in X. Since the un 's are in X+ , we have 0 � Un � v in X, so 0 � f(un) � f(v) in 
Y.  For all n sufficiently large, we have f(v) E 2nG, since G is a neighborhood of 0. But G 
is also full, so f(un) E 2nG, a contradiction. 

26.60. Corollaries. 
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a. Any two complete Riesz F-norms on a vector lattice are equivalent. 
Hint: The identity map is a positive operator. 

b. Let X be an F-lattice, and let f : X --+ lR be a linear functional. Then f is order 
bounded ( i .e . ,  the image under f of any order bounded set is an order bounded set) if 
and only if f is continuous. 

Hints : Order-bounded implies continuity, by 1 1 .57 and 26.59. For the converse, 
suppose f is not order bounded. Then there is some set B s;:; X that is order bounded, 
such that f(B) is not bounded in R Choose a sequence (xn) in B with l f(xn) l > n2 . 
Let Yn = *Xn i then lf (Yn) l > n .  However, Yn --+ 0 in X, by 27. 1 1  and 27.2 (D ) . Thus 
f is not continuous. 

c. Example of a continuous operator that is not order bounded. Let C [O, 1 ] = {continuous 
functions from [0, 1 ] into JR} and c0 = {sequences of reals converging to 0} be equipped 
with their sup norms; then both are Banach lattices and c0 is Dedekind complete. 
Define f :  C [O ,  1 ] --+ c0 as follows: For any x E C[O, 1 ] , let f(x) be the sequence whose 
nth term is J01 x(t) sin(27rnt)dt. 

Hints : The sequence f (x) tends to 0 by the Riemann-Lebesgue Lemma (24. 4 1 .b) . 
It is an easy exercise to show that the operator f is continuous. The set B = { x E 
C[O ,  1 ] : - 1  ::; x ::; 1 } is order bounded. However, B contains all the functions 
Xn (t) = sin(27rnt) . Observe that the nth term of the sequence f(xn ) is � ;  show that 
f(B) is not order bounded. 
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Barrels and Other Features of TVS 's 

BOUNDED SUBSETS OF TVS 's  

27 .1 .  Motivating exercises. 
a. Two equivalent seminorms on the same vector space yield the same collection of met

rically bounded sets. 
b. Show by example that equivalent F-seminorms on a vector space may yield different 

collections of metrically bounded sets. 

27.2. Definition. Let X be a TVS, with scalar field F equal to � or C. Let S � X. Show 
that the following conditions on S are equivalent. If any, hence all, of these conditions 
are satisfied, we say that S is toplinearly bounded, or bounded in the sense of 
topological linear spaces, or bounded with respect to the TVS topology on X. 

(A ) The set {m, : s E S} of mappings ms : F ....-. X defined by m8 (c) = c s  is 
equicontinuous. 

(B) For each neighborhood G of 0, there is some scalar c such that S � cG. 
(C)  For each neighborhood G of 0, there is some r > 0 such that S � cG for all 

scalars c with le i > r. 
(D) Whenever (en , Xn ) is a sequence in F x S with Cn ---> 0, then CnXn ---> 0. 
(E) Whenever (ca , Xa ) is a net in F X S with Co: ---> 0, then Co:Xo: ---> 0. 

(Hint for the proof of equivalence : 26.27.c. ) 
A collection of functions <I> = { 'P, : "/ E r} ,  from some set n into X ,  will be called 

toplinearly bounded pointwise if for each w E !1 the set <l>(w) = {tp1 (w) : "( E f} is 
toplinearly bounded in X.  

Caution: Toplinear boundedness is not the same thing as either metric boundedness or 
order boundedness. In 27.5, 27.6, and 27. 1 1  we investigate some of the relations between 
toplinear boundedness and the other two kinds of boundedness. It is unfortunate that 
the term "bounded set" has these three meanings that are sometimes quite different; the 
reader must strive to determine from context which meaning is intended. In the next few 
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paragraphs, of course, "bounded" means toplinearly bounded unless some other meaning is 
specified. 

27.3. Basic properties of bounded sets. Let X be a TVS, with topology 'J, and let S � X. 
Show that 

a. S is bounded if and only if every countable subset of S is bounded. 
b. The bounded sets form an ideal: the union of finitely many bounded sets is bounded; 

any subset of a bounded set is bounded. 
In fact , it is a proper ideal, provided that the space X does not have the indiscrete 

topology. 
c .  Any compact set is bounded. 
d. The closure of a bounded set is bounded. 
e. If X is locally convex, then the convex hull of any bounded subset of X is bounded. 
f. A topological vector space is quasicomplete if each bounded, closed set is complete. 

Prove this more general version of Mazur's Theorem: In a quasicomplete, locally 
convex space, the closed convex hull of a compact set is compact . 

Hint: Refer to the result on totally bounded sets in 26.23. i . 
g. Suppose that the topology 'J on X is the initial topology determined by a collection of 

linear mappings into topological vector spaces, 'P>- : X ---7 (Y>. ,  U>,) .  Show that S � X  
is 'J-bounded if and only if <p>, (S) is U>,-bounded for each .A. 

h. Let X = TI>.EA X>, be a product of TVS's; then (as we have noted in 26.20 .a) X is also 
a TVS. Show that a set B <;;; X is bounded if and only if it is included in a set of the 
form TI>-EA B>, , where each B>, is a bounded subset of X>, . 

i. Change of scalar field. Let X be a complex TVS. Then X may also be viewed as a 
real TVS, with the same topology, if we "forget" how to multiply vectors by nonreal 
scalars. However, the bounded subsets of the real TVS are the same as the bounded 
subsets of the complex TVS . 

Proof This may be easiest to see by considering condition 27.2(D). Any bounded 
subset of the complex TVS is also a bounded subset of the real TVS, since IR � C.  
Conversely, suppose S is real-bounded, and suppose (en , Xn) i s a sequence in C x S 
with Cn ---7 0. Then Cn = an + ibn with an , bn ---7 0 in R Then anXn ---7 0 and bnXn ---7 0, 
since S is real-bounded; hence ( an + ibn )Xn ---7 0. 

27.4. Let X and Y be topological vector spaces. Let f : X ---7 Y be a linear map. 
Suppose f is continuous (i.e. , preserves convergent nets) - or, more generally, suppose f 
is sequentially continuous (i .e . , preserves convergent sequences) .  Let S � X be bounded. 
Then f(S) is a bounded subset of Y.  

In some contexts, a linear map is called bounded i f i t takes bounded sets to bounded 
sets. (This generalizes the terminology of 23. 1 . )  With this terminology, we have just shown 
that 

f is continuous ::::} f is sequentially continuous ::::} f is bounded. 
A partial converse is as follows: 
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Proposition. If X is a pseudometrizable TVS, Y is a TVS, and f : X ___, Y is a bounded 
linear map, then f is continuoul:l. 
Proof By 26.32, the topology of X il:l given by an F-seminorm, p. By 15 .34.d, it i:luffices 
to i:ihow f il:l l:lequentially continuoul:l. Suppol:le not - l:lay (xn) is a l:lequence that convergel:l 
to 0 in X, while (f(xn ) )  doel:l not converge to 0 in Y.  Pal:ll:ling to a i:lUbl:lequence, we may 
al:lsume (f(xn ) ) l:ltayl:l out of i:lOme neighborhood G of 0 in Y.  We have p(xn) ___, 0; passing 
to a subsequence, we may asl:lume p(xn) < 1/n2 . Then p(nxn) :::; 1/n, by the subadditivity 
of any F-l:leminorm p. The l:lequence (nxn ) convergel:l to 0, hence il:l bounded. Since f is 
bounded, the sequence (f(nxn ) ) = (nf(xn )) is bounded in Y. Then the sequence whose 
nth term is � · nf(xn) mul:lt converge to 0, a contradiction. 

Remark. A partial extenl:lion to nonmetrizable spacel:l is given in 27.4l .m. 

27.5. Let X be a topological vector i:ipace. Then any toplinearly bounded set B is metrically 
bounded, in the following sense: If p is any continuous F -l:leminorm (or, more generally, any 
continuoul:l G-l:leminorm) on X,  then :mp:rEB p(x) < oo .  

Proof Suppol:le not. Say there exists a sequence (xn ) E B with p(xn ) > n. Let y, = n- 1xn · 

Since B is bounded, we have Yn ___, 0, hence p(yn ) ___, 0, hence p(yn) < 1 for n l:lufficiently 
large. But then by the subadditivity of p we have p(xn) = p(nyn ) :::; np(y, ) < n, a 
contradiction. 

27.6. Let X be a locally convex space over scalar field F, and let R be any family of semi
norms that determines the topology of X. Let S <;;; X. Then the following are equivalent : 

(A) S is toplinearly bounded (as defined in 27.2 ) .  
(B) S is metrically bounded, in thil:l sense: Each continuous seminorm on X is 

bounded on S. 

(C) Each seminorm in the given family R is bounded on S. 
(D) Each continuous linear map f :  X ___, F is bounded on S. 

Proof The implication (A) =? (B) is a special case of 27.5. The implication (B) =? (C) 
is trivial. 

For (C) =? (A) , let (xn ) be a sequence in S and let Cn ___, 0 in F; we wish to show 
that C71Xn ___, 0 in X. It suffices to i:ihow that p( CnXn ) ___, 0 for each p E R. Observe that 
sup" p(xn ) < oc, hence p(cnxn) = l cn )p(xn ) ---> 0. 

For (B) =? (D) , note that p(x) = l f(x) l defines a continuous seminorm. 
It remains to prove (D) =? (B) . We first prove this under the additional assumption 

that X is a normed space. Then X* is a complete normed i:ipace, as we noted in 23.8. The 
set S il:l a pointwise bounded set of continuous linear maps from X* into F. By the Uniform 
Boundednesl:l Principle (23 . 14 ) ,  S is equicontinuous. Thus S is norm bounded, when viewed 
as a subset of X** . The canonical embedding X � X** is norm-preserving (see 23.20) , 
so S is norm bounded in X. 

Now, for the general case: Let X, denote the vector space X with the given topology. 
Let p be any continuous seminorm on X.  Let X P be the seminormed space (X, p) ; this has 
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a weaker topology than X, , and so the identity map i : X, ----+ Xp is continuous. Form 
the quotient space Z = Xp/ p- 1 ( {0} ) ;  its quotient topology is given by the norm I I  I I  = p 
defined by p(1r (x) )  = p(x) , as in 22 . 13.e. Let 1r : X ----+ Z be the quotient map; it is a 
continuous linear map from Xp into (Z, I I  I I ) .  If A i s any continuous linear functional on 
Z, then the composition 

x, 

is a continuous linear functional on X, . Hence it is bounded on the set S.  It follows that 
A is bounded on 1r(S) .  By the results of the previous paragraph, 1r(S) is a norm bounded 
subset of the normed space (Z, I I  I I ) .  That is , p is bounded on 1r(S) ;  hence p i s bounded 
on S.  

Corollary. In a normed space, a set i s metrically bounded if and only if i t i s toplinearly 
bounded. 

27. 7. A topological vector space X is locally bounded if 0 has a bounded neighborhood 
(or, equivalently, if every point has a bounded neighborhood). Show that 

a. Any locally bounded TVS is pseudometrizable. 
Hint: If B is a bounded neighborhood of 0, show that {B, �B ,  �B ,  �B ,  . . .  } is a 

neighborhood base at 0. Now use 26.32. 
b. A topological vector space is seminormable (i.e. , its topology can be given by a semi

norm) if and only if it is both locally convex and locally bounded. Hence we have the 
following result. 

Kolmogorov Normability Criterion. A TVS is normable if and only if 
it is locally convex, locally bounded, and Hausdorff. 

c. The product of infinitely many nondegenerate TVS's cannot be locally bounded. (Here 
"nondegenerate" means not having the indiscrete topology. ) Hints : Use 15 .26.a and 
27.3.h. 

Corollary. A product of infinitely many nondegenerate TVS's is not seminormable. 

27.8. Examples. 
a. For 0 < p :::; oo, £P(f..L ; X) is locally bounded. (Hint : l l cf i i P = l c l l l f l lp · ) 

However, for 0 :::; p < 1 ,  the F-spaces £P and LP [O, 1] are not locally convex, as we 
saw in 26. 16; hence their topologies are not normable. 

b. The space L0 [0, 1] is not locally bounded. (Also, as we noted in 26. 16 , it is not locally 
convex. ) Hence its F-norm is not equivalent to a norm. 

Proof Let f.-1 denote L�besgue measure. Show that if V is a neighborhood of 0 in 
L0 [0, 1 ] ,  then there is some number c > 0 such that V contains all measurable functions 
f that satisfy f..L ( {w : l f(w) l 2: c } ) :::; c. Now, for positive integers n, define fn = n1 [o,c:] · 
Then f n lies in the set V ,  but the sequence ( * f n) does not converge to 0 in measure, 
80 the set V is not bounded. 

c. The space JF'N , with the product topology, is locally convex but not locally bounded; 
hence it is not normable. Thus the F-norm given in 26.7 is not equivalent to a norm. 
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d. The space C(IR) = {continuous scalar-valued functions on IR} , with the topology of 
uniform convergence on compact subsets of!R, is locally convex but not locally bounded; 
hence it is not normable. Thus the F-norm given in 26.8 is not equivalent to a norm. 

27.9. Let D be a set, let S be a collection of subsets of D, and let Z be a topological 
Abelian group equipped with its usual uniform structure. Let zn be equipped with the 
product group structure (introduced in 9. 18) and with the topology of uniform convergence 
on members of S (introduced in 18.26) . Show that 

a. zn is a topological Abelian group. 
b. The same topology on zn is obtained if we replace S with its U-closure, defined as in 

4.4.d. 
For this reason, in many contexts we may freely assume that S is closed under finite 

union - or we may make this slightly weaker assumption: 
S is directed by inclusion - that is, for each 81 , 82 E S there exists some 
S E S such that S 1 U 82 <;;; S .  

c .  Suppose that S is directed by inclusion and 23 is a neighborhood base at 0 in Z. Then 
the sets 

G(S, B)  {g E zn : g(S) <;;; B} (S E S, B E  23) 

form a neighborhood base at 0 in zn . 

Now suppose that Z is a topological vector space. Then: 
d. The topological Abelian group zn is not necessarily a topological vector space. 

For instance, let JRIR be topologized by uniform convergence on IR (thus S = {IR} ) ; 
then JRIR is a topological Abelian group but multiplication by scalars is not continuous. 

e. Let II> be a linear subspace of zn . Fix any S E S. Then the sets f ( S) (for f E II>) 
are bounded in the topological vector space Z if and only if the sets G(S, B) n II> (for 
B E  23) are absorbing in the vector space II>. 

f. Let II> be a linear subspace of zn . Then the topology of uniform convergence on 
members of S makes II> into a topological vector space if and only if 

( * ) for each f E II> and S E S, the set f ( S) is bounded in the topological 
vector space Z.  

Hints : The topology on Z i s  not affected i f we replace the neighborhood base 23 with 
some other neighborhood base that generates the same neighborhood filter; hence we 
may assume members of 23 are balanced. Also, in view of 27.9.b, we may assume S 
is directed by inclusion. Then the sets G(S, B) n II> are balanced sets that form a 
neighborhood base at 0 for the topological Abelian group II>. Now use the preceding 
exercise and the characterizations of neighborhood bases in 26.25 and 26.26. 

g. Assume condition ( *) above. Then a set F <;;; II> is bounded in the topological vector 
space II> if and only if for each S E S, the set F (S ) = {f(s) : f E F, s E S}  is bounded 
in Z. 
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h. Assume condition ( *) above. If Z is locally convex, then so is <I>. In particular, if Z is 
the scalar field (IR or CC), then <I> is locally convex. 

(Hint :  Apply 27.9.c. If B is a convex subset of Z, then G(S, B) is a convex subset 
of zn . )  

27.10. Definition. A topological vector space i s said to have the Heine-Borel Property 
if every closed, bounded subset is compact . 

Examples. 
a. Any finite-dimensional Hausdorff topological vector space has the Heine-Borel Prop

erty. 
b. A normed vector space has the Heine-Borel Property if and only if the space is finite

dimensional; that fact will follow easily from 27. 17. 
c. The Frechet space Hol(O) described in 26. 10 has the Heine-Borel Property; that fact 

follows easily from Montel's Theorem, stated in 25.27. 

BouNDED SETS IN ORDERED TVS 's  

27.11 .  Exercise. Let X be an ordered TVS that is locally full (defined in 26.52) . Then 
every order bounded subset of X is toplinearly bounded. 

Proof. Let [a, b] be any order interval in X ,  and let G be any neighborhood of 0 in X. Then 
G contains some N that is a balanced full neighborhood of 0. Then a, b E r N for r > 0 
sufficiently large. Hence [a, b] � r N � rG. 

27.12. Theorem. Let X be a TVS, and let Y be an ordered TVS that is locally full . Let 
0 � X be open and convex. 

If f : 0 ____, Y is convex and is continuous at some point of 0, then f is continuous 
everywhere on n. 

More generally, let <I> be a collection of convex mappings from 0 into Y. Assume <I> is 
pointwise toplinearly bounded - i.e. , assume that for each X E 0, the set <J>(x) = {f(x) : 
f E <I>} is toplinearly bounded in Y. Also assume <I> is equicontinuous at some point x0 E 0. 
Then <I> is equicontinuous at every point of 0. 

Proof (following Neumann [ 1985] ) .  Let any Xl E n  be given; it suffices to prove equiconti
nuity at x1 . We may replace the functions f E <I> with the functions f( ·  + xi ) - f(xl ) ;  thus 
we may assume that 0 = Xl E n and that f(O) = 0 for all f E n. Let N be any balanced 
full neighborhood of 0 in Y ;  we are to show that there is some neighborhood G of 0 in X ,  
contained in 0, such that UJE<I> f(G) � N. 

Choose some balanced full set N' that is a neighborhood of 0 in Y and satisfies N' + 
N' + N' � N. By the assumed equicontinuity at x0 , there is some balanced neighborhood 
U of 0 in X ,  contained in 0, such that f(xo + u) - f(x0 ) E N' for all f E <I> and u E U.  
For some 8 E (0, 1 ]  sufficiently small, we have -8xo E 0.  We know 8xo E 0 by convexity of 



Bounded Sets in Ordered TVS's 727 

that set. Since ci> is bounded pointwise, B = Utei>{f(x0 ) ,  f (8xo) , f( -8x0) }  is a bounded 
subset of Y, and hence there is some c E (0, 1] such that cB � N'. Since each f E ci> is 
convex and f(O) = 0, for all u E U we have this estimate: 

- 1�8 J(xa - u) - 1 : 8 t(-8xa) � -�::t C�8
8 u) � -t C-:8

8 u) 
� f c�8 u) � �::J C! 8u) � 1�8 J(xo + u) + 1 : 8 J (-8xa) .  

The vectors on the extreme ends of this estimate belong to N' + N'  + N ' ,  since N' is 
balanced and f(x0 ± u) - f(x0) E N'. Since N' + N' + N' is contained in N, which is full, 
we have f CC:6 u) E N. Let G = 10:6 U; this completes the proof. 

27.13. Proposition. Let 0 be an open convex subset of a real TVS. Suppose f : 0 ---+ IR 
is a convex function - or, more generally, suppose that f : 0 ---+ Z is a convex function, 
where Z is some locally full ordered topological vector space. 

Suppose that f is bounded above on some nonempty open set - i.e . , there exists some 
nonempty open set G � 0 and some zo E Z such that f(x) � zo for all x E G. 

Then f is continuous. (In particular, any real-valued, upper-semicontinuous, convex 
function on an open convex set is continuous. ) 

Proof. By translation we may assume 0 E G and f(O) = 0. Replacing G with a smaller 
open set, we may assume G is balanced. Say f(x) � z0 for all x E G. Then 

0 f(O) 

so f(x) � -zo for all x E G. Thus f is order bounded on G. 
Let any positive integer n be given. If x E lG, then nx E G, so n 

J(x) ( 1 n - 1 ) f ;nx + -n-0 1 n - 1 
-f(nx) + --f(O) � n n 

1 - zo . n 

Thus f is bounded above by �z0 on �G. By the argument of the preceding paragraph, 
f is bounded below by - �zo on �G. By the Squeeze Property (26.52(E)) , it follows that 
limx�o f(x) = 0; thus f is continuous at 0. By 27. 12 ,  f is continuous everywhere on 0. 

Corollary. Suppose n is an open convex subset of JRU. Then any convex function f : n ---+ IR 
is continuous. 

Proof of corollary. For any x E 0, let N(x) be a closed n-dimensional cube centered at x, 
small enough to be contained in 0. That cube has 2n vertices v1 , v2 , . . .  , v2n .  Each point u 
in N(x) is a convex combination of the vj 's, and so supuEN(x) f(u) � maxj f(vj ) ·  

Remark. A convex function on an infinite-dimensional normed space is not necessarily 
continuous; see 23.6 .a and 23.6.b. 
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27. 14. Proposition. Let X be a topological vector space whose topology is given by an 
F-norm. Let n be an open convex subset of X.  If f : n --+ lR is convex and continuous, 
then f is locally Lipschitz. 
Proof Suppose that the topology on X is given by an F-norm p. Let any point Xo E n 
be given; we shall show f is Lipschitzian on some neighborhood of x0 . (This argument is 
based on Roberts and Varberg [1974] . )  Let Br denote the open ball of radius r centered at 
x0 . Choose r > 0 small enough and M large enough so that B2r <;;:; n and f ( ·) ::; M on B2r 
and -f(xo) ::; M; we shall show f is Lipschitzian on Br with (!)Lip ::; 4Mjr. Note that 
for any u E X  with p(u) < 2r, we have 

-M < f(xo) f ( (xo + u) ; (xo - u) ) 
< f(xo + u) f(xo - u) 

2 
+ 

2 
< f(xo + u) M 

2 
+ 2 

and therefore f( -) 2 -3M on B2r · 
Let any distinct points x1 , x2 E Br be given; let o: = p(x1 - x2) .  Let x3 = x2 + � (x2 -

xi ) ;  note that x3 E B2r · Compute 

j(x2 ) 

and thus 

f (-
r

-x1 + _o:_x3) 
r + o:  r + o:  

r o: < --f(xi ) + --j(x3 )  
r + o:  r + o:  

o: 4Mo: 4Mo: 
j(x2 ) - f (xi ) :S: -- [j(x3 ) - f(xi )] < < 

r + o:  r + o:  r 

4M 
-p(x1 - x2) .  

r 

Similarly, f(xi ) - j(x2 ) ::; 4� p(x1 - x2) .  

DIMENSION IN TVS 's  

27.15. Theorem (Tychonov) .  If X is a finite-dimensional vector space over the field 
lF, then there is one and only one Hausdorff TVS topology 'J on X. Moreover, it can be 
specified as follows: If {e 1 , e2 , . . .  , en } is any basis for X, then 

is a linear homeomorphism from lFn (with its product topology) onto (X, 'J) .  

Hints : Certainly f i s  a linear bijection. Let 'J be any Hausdorff TVS topology on X; we 
wish to show f is then a homeomorphism. Certainly f is continuous since (X, 'J) is a TVS 
and therefore the vector operations are continuous in (X, 'J). The product topology on lFn 

can be given by any of the usual norms on lFn (see 22. 1 1 ) ;  let II I I  be any of those norms. 
To show that f� 1 is continuous, let B = {v E lFn : l l v l l  < 1 } ;  it suffices (why?) to show that 
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f(B) is a neighborhood of 0 in (X, 'J) . Let S = { v E lFn : II v i i  = 1 } .  Explain: S is compact; 
f(S) is compact ; f(S) is closed; f (lFn \ S) is a neighborhood of 0; f(lFn \ S) � V where V is 
some balanced neighborhood of 0; lFn \ S � f- 1 (V) and f- 1 (V) is balanced; B � f- 1 (V) ;  
f(B) � V. 

27.16. Corollaries. 
a. Any finite-dimensional subspace of a Hausdorff linear topological space is complete, 

hence closed . 
b. The only Hausdorff topological vector space that is totally bounded is the trivial space 

{0} . 
Hint: If X contains a nonzero vector v, then it contains the one-dimensional space 

lFv, which is isomorphic to lF - which is not totally bounded. 

27. 17. Theorem (F. Riesz) .  Let X be a Hausdorff TVS. Then the following conditions 
are equivalent: 

(A) X is finite dimensional. 
(B) X is locally compact. 
(C) 0 has a compact neighborhood in X. 
(D) 0 has a neighborhood that is totally bounded. 

Proof The implications (A) =? (B) =? (C) =? (D) are clear. It remains only to show 
(D) =? (A) . Let U be a totally bounded neighborhood of 0 in X. Then lU is also a 
neighborhood of 0. By 26.40.e, there is some finite set F <;;; U such that F + fu � U. Let 
M be the span of the finite set F; it suffices to show that M = X. We know that M is 
closed, by 27. 16.a. Hence X/M is a Hausdorff TVS, by 26.34. Let 7f : X  --> X/M be the 
quotient map. 

Note that 1r(F) = {0} . From F + �U :2 U we deduce that �1r(U) � 1r(U) ; that is, 
1r(U) � 21r(U) . By induction, 1r(U) :2 2n1r(U) for all n. Since 7f is an open mapping, 1r(U) 
is a neighborhood of 0 in X/M; hence U�=l  2n1r(U) = X/M. Therefore 1r(U) = X/M. 

Since 7f i s a uniformly continuous mapping and U is totally bounded, we deduce that 
1r(U) = X/M is totally bounded. By 27. 16 .b , 1r(U) = {0} , and thus M = X. 

27.18. Proposition on dimension and norms. As usual, we assume that the scalar field lF 
is either lR or C. Assume conventional set theory (that is, ZF + AC), and the Continuum 
Hypothesis (CH). Then: 

(i) If X is an infinite-dimensional F-space, then dim(X) = card(X) 2 card(IR). 
(ii) If X is an infinite-dimensional separable F-space, then dim(X) = card(X) = 

card(JR) . 
(iii) If X is a vector space with dim(X) = card(IR) , then there exist at least two 

inequivalent complete norms on X. (This conclusion should be contrasted 
with 27.47.b; see also 22.8.) 
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Proof If dim(X) = card(N), then X is the union of countably many finite-dimensional 
subspaces. However, an F-space cannot have that property, by 27. 16.a and 20. 16. Thus 
dim(X) > card(N). By the Continuum Hypothesis, it follows that dim(X) 2 card(JR) . By 
1 1 .34, it follows that card(X) = dim(X) . If X is separable, then card(X) ::; card(JR) by 
15.37.a. This proves (i) and (ii). 

For (iii ) ,  let X be a vector space with dim(X) = card(JR) . For 1 ::; p < oo, define 
the normed space £P as in 22.25; it is complete by 22.31 (i) . The sequences with only 
finitely many nonzero terms are dense in £p ; from this it follows that £p is separable. Thus 
dim(£p) = card(JR). By 1 1 . 18.d, there exists a linear bijection fp from X onto £p . We can 
define a norm II l l (p) on X by taking l l x l l (p) = l l fp (x) l l p ;  then the normed space (X, II l l (p) ) 
is isomorphic to the Banach space (£p ,  I I  l i p) · The norms II 1 1 ( 1 )  and II 1 1 (2) cannot be 
equivalent, since the Banach spaces £1 and £2 have different topological properties. (For 
instance, £2 is reflexive while £1 is not - see 28.41 ,  28.50, 28.51 , and 23. 10.) This argument 
is taken from Day [1973] . 

FIXED POINT THEOREMS OF BROUWER, 
SCHAUDER, AND TYCHONOV 

27.19. Following are several variants of Brouwer's Fixed Point Theorem, in order of 
increasing generality. 

Simplex version. Let n be a positive integer. Let � be the standard n-simplex ; 
that is, the set 

Then any continuous function f :  � -+ � has at least one fixed point. 

Convex finite-dimensional version. Let Q be a compact convex subset of 
]Rn . Then any continuous function f : Q -+ Q has at least one fixed point. 

Schauder's Fixed Point Theorem. Any continuous self-mapping of a com
pact convex subset of a Banach space has at least one fixed point. 

Tychonov's Fixed Point Theorem. Any continuous self-mapping of a com
pact convex subset of a Hausdorff locally convex space has at least one fixed 
point. 

Approximate Fixed Point Theorem. Let K be a compact convex subset 
of a Hausdorff locally convex space X. Let f : K -+ K be any mapping (not 
necessarily continuous or measurable) .  Then there exists some point � E K that 
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is an "approximate fixed point" of f, in the following �en�e: 

� E n cleo f(� + V) .  
VEN 

Here N is the filter of neighborhoods of 0 in X,  cleo stands for clo�ed convex 
hull, and f(� + V) stand� for f ( (� + V) n Dom(f)) . 
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Remarks. Our proof is based on the Second Approximate Fixed Point Theorem in 3.37, 
which we proved using Maaren's Theorem in 3.36. Some analysts may prefer the proof 
of Rogers [1980] , which is shorter but assumes familiarity with the use of Jacobians in the 
formula for a change of variables in integration - a formula that is well known but not at all 
trivial to prove. Still other mathematicians may prefer a proof by �implicial triangulations; 
a fairly brief, �elf-contained pre�entation of that proof is given by Border [1985] . 
Proof of simplex version. Let c: 1 ,  c:2 , c:3 , . . . be a sequence of positive numbers decreasing to 0. 
For each positive integer m, choo�e a �et S = Sm � � satisfying the conditions of the Second 
Approximate Fixed Point Theorem in 3.37 with diameter less than E = Em · Let �m be any 
point in Sm . Since � i� compact , the sequence (�m) has a convergent subsequence. For 
simplicity of notation, replace (em) ,  (Sm) ,  (�m) with subsequences, so that (�m) converges 
to a limit � in � . Since f is continuou�, � satisfies the inequalities that were satisfied by 
the u's and v'� in 3.37, but with E replaced by 0. That is, �i ::::; f(�); for i =  1 ,  2 ,  . . . , n, and 
2::;�1 �i 2 2::;�1 f(�) ; . It follows that !(0 = �· 
Proof of convex, finite-dimensional version. By tran�lation and re�caling, we may as�urne 
that Q is contained in the simplex �. Let �n be equipped with the Euclidean metric, and 
let t>o : �n ---> Q be the closest-point projection; then t>o is continuous by 22.45 or 22 .51 . The 
inclusion maps i1 : � ---> �n and i2 : Q ---> � are also continuous. Hence the composition 

is continuous. By the �implex version of the Fixed Point Theorem, this composition has at 
least one fixed point � in �. Since i 1 and i2 are inclusions and t>o is idempotent with range 
Q, that fixed point must actually lie in Q and mu�t be a fixed point of f. 
Proof of Schauder 's and Tychonov 's Fixed Point Theorems. Schauder's Theorem is a special 
case of Tychonov's Theorem, which is in turn an easy corollary of the Approximate Fixed 
Point Theorem; thus it suffice� to prove that result . 

Proof of Approximate Fixed Point Theorem. This proof is a slight modification of an argu
ment of Marchi and Martfnez-Legaz [ 1991 ] .  Most of this proof will be devoted to showing 
that 

for each V E N, there exists some xv E co f(xv + V) .  

Let any neighborhood V of 0 be given. Replacing V with a smaller neighborhood, we may 
assume V i� open. Define Tv : K ---> { nonempty subsets of K} by 

Tv (x) f ( (x + V) n K) . 
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Since V is open, for each y E K the set Tv1 (y) = {x E X : y E Tv (x) }  is open (easy 
exercise) .  Since K is compact , the open cover {Tv1 (y) : y E K} has a finite subcover; 
say it is given by {Tv1 (y) : y E Y(V)} for some finite set Y(V) <;;; K. (The particular 
finite subcover is not necessarily uniquely determined, but we select some particular finite 
subcover. At this step and at several other steps in this proof, we make arbitrary selections, 
which can be justified most easily by the Axiom of Choice. ) 

Let {,By : y E Y (V)} be a continuous partition of unity corresponding to this covering 
(see 16 .29 and 17.7.g) and define pv : K ----> co Y(V) by 

Pv (x) L ,8y (x)y. 
yEY(V) 

Then Pv is continuous. For each y E Y and x E K, we have ,8y (x) > 0 only if x E T;; 1 (y) ; 
that is, y E Tv (x) . Thus we have in fact pv (x) E co [Y(V) n f ( (x + V) n K)) for all x E K. 

Since Y(V) is finite, its span is a finite-dimensional subspace of X,  which is isomorphic to 
Euclidean space by 27. 15 . Moreover, co Y(V) is compact by 26.23.g. Thus the restriction 
of pv to co Y(V) is a continuous self-mapping of a compact convex subset of Euclidean 
space, which has at least one fixed point xv by the finite-dimensional convex set version of 
Brouwer's Theorem. This completes the proof of ( ** ) .  

Let N be the filter of all neighborhoods of 0 in X,  ordered by reverse inclusion. Then 
(xv : V E N) is a net in the compact set K, so it has a subnet convergent to some limit 
� E K. Fix any V E N; it suffices to show that � E cleo f(� + V). 

Choose a neighborhood U of 0 such that U + U <;;; V. Then for all neighborhoods W 
sufficiently small, we have xw E � + U and W <;;; U, hence xw + W <;;; � + U + U <;;; � + V, 
hence xw E cleo f(xw + W) <;;; cleo f(� + V). Since cleo f(� + V) is a closed set, any cluster 
point of the xw's must lie in that set; in particular, � lies in that set. 

BARRELS AND ULTRABARRELS 

27.20. Remarks. Ultrabarrels are a generalization of barrels. Barrels are simpler to define, 
but they are mainly useful in locally convex spaces; ultrabarrels can be useful in the more 
general setting of topological vector spaces. The theories of barrels in LCS and ultrabarrels 
in TVS are closely analogous; the analogy will be developed in the sections below. 

The definitions of barrels and ultrabarrels involve absorbing sets (defined in 12.8) . In a 
TVS, absorbing sets may be viewed as "generalized neighborhoods of 0" - any neighbor
hood of 0 is absorbing, but not every absorbing set is a neighborhood of 0. For instance, 
sketch a graph of { (x , y) E IR2 : J y J  2 x2 or y = 0} ; show that this set is absorbing but is 
not a neighborhood of (0, 0) when IR2 is equipped with its usual topology. 

27.21 .  Definition. Let X be a topological vector space. A barrel in X is a subset of X 
that is closed, convex, balanced, and absorbing. (Those terms are defined in 5 .13 , 12 .3 , and 
12.8 . ) 
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27.22. Basic properties of barrels. Let X be a topological vector space. 
a. If X is a locally convex space, then X has a neighborhood base at 0 consisting of 

barrels. 
b. If p is a continuous seminorm on X and k > 0, then { x E X : p( x) :::; k} is a barrel. 
c. If B is a barrel in X, then its Minkowski functional JLB is a seminorm on X. Moreover, 

JLB is continuous if and only if B is a neighborhood of 0. 

27.23. Definition. Let X be a vector space. A string in X is a sequence of sets (Sn : n E N) 
that are balanced, absorbing, and satisfy Sn :! Sn+ 1 + Sn+ 1 for all n.  The Sn 's are then 
called the knots of the string. 

In a topological vector space, a closed string is a string whose knots are closed sets; 
those closed sets are called ultrabarrels. We still have a string if we discard the first few 
knots of a string; hence every ultrabarrel may also be viewed as the first knot of a closed 
string. 

In a topological vector space, a neighborhood string is a string, all of whose knots 
are neighborhoods of 0. (Some mathematicians call this a topological string. ) 

27.24. Basic properties of strings and ultrabarrels. 
a. If B is a barrel in a TVS X,  then B is also an ultrabarrel - it is a knot of the closed 

convex string (Sn) defined by Sn = 2-nB . 
b. If ( Sn) is a string in a vector space X, then { Sn } forms a neighborhood base at 0 for 

a TVS topology on X. 
Conversely, i f X i s  a TVS, then X has a neighborhood base at 0 consisting of 

ultrabarrels. 
c. If p is an F-seminorm on a vector space X and k is a positive constant , then the sets 

Sn = {x E X :  p(x) :::; 2-
n } form a string. 

If p is a continuous F-seminorm on a TVS X,  then the sequence (Sn )  defined as 
above is a closed string; thus its members are ultrabarrels. 

d. If ( Sn) is a string in a vector space X,  then there exist an F -semi norm p on X and 
positive numbers an , bn decreasing to 0 that satisfy 

{X E X : p( X) :S an } c c { x E X : p(x) :S bn } 

for all n. (Hint: The sets Vr, = { ( x ,  y) E X x X : x - y E S2n} satisfy the hypotheses 
of 4.44.) 

Suppose, moreover, that X is a TVS. Then p is continuous if and only if (Sn )  is a 
neighborhood string. (Hint: An F-seminorm is continuous if and only if it is continuous 
at 0. ) 

e. If (Sn ) and (Tn) are strings and Sn + Tn = Un , then (Un) is a string. 

27.25. Proposition. Suppose X is a complete metric space or, more generally, a Baire 
space. Then: 

( i) If X is a TVS, then X is ultrabarrelled, as defined in 27.26(Ul ) .  
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(ii) If X is an LCS, then X is barrelled, as defined in 27.27(Bl) . 
Proof It suffices to prove ( i ) , since that result implies (ii) by 27.24.a . Let (5n) be a 
closed string; we wish to show that 51 is a neighborhood of 0. Since 52 is absorbing, 
X = U%':1 k52 . By 20. 15(B) , some k52 has nonempty interior. Hence 52 has nonempty 
interior. Say x0 E int(52 ) .  Thus x0 + G � 52 where G is some neighborhood of 0. Since 52 
is symmetric, we have 0 + (G - G) = (xo + G) - (xo + G) �  52 - 52 = 52 + 52 � 51 . 

27.26. Theorem and definition. Let (X, 'J) be a real or complex topological vector 
space. Then the following conditions on (X, 'J) are equivalent . If any, hence all, of these 
conditions are satisfied, we say (X, 'J) is ultrabarrelled. 

(Ul) Every ultrabarrel in X is a neighborhood of 0. 

(U2) (F-Seminorms Property.) Each lower semicontinuous F-seminorm on X is contin
uous. 

(U3) (Banach's Closed Graph Property.) Let Y be an F-space. Let f : X ---+ Y be 
linear and have closed graph. Then f is continuous. 

(U4) (Neumann's Nonlinear Closed Graph Property.) Let Y be a locally full F
space. Let 0 � X be an open convex set . Suppose f : 0 ---+ Y is a convex operator 
whose graph is a closed subset of 0 x Y. Then f is continuous. 

(U5) (Banach-Steinhaus Uniform Roundedness Property.) Let Y be a topological 
vector space. Let <I> be a collection of continuous linear maps from X into Y that is 
toplinearly bounded pointwise. Then <I> is equicontinuous. 

(U6) (Neumann's Nonlinear Uniform Roundedness Property.) Let Y be an ordered 
topological vector space that is locally full. Let 0 � X be an open convex set. Let <I> 
be a collection of continuous convex maps from 0 into Y. Suppose <I> is toplinearly 
bounded pointwise. Then <I> is equicontinuous. 

Proof of this theorem begins in Section 27.31 . 

27.27. Theorem and Definition. Let (X, 'J) be a real or complex locally convex space. 
Then the following conditions on (X, 'J) are equivalent. If any, hence all, of these conditions 
are satisfied, we say (X, 'J) is barrelled. 

(Bl) Every barrel in X is a neighborhood of 0. 

(B2) (Seminorms Property. ) Each lower semicontinuous seminorm on X is continuous. 

(B3) (Closed Graph Property.) Let Y be a Frechet space. Let f : X ---+ Y be linear 
and have closed graph. Then f is continuous. 

(B4) (Neumann's Nonlinear Closed Graph Property.) Let Y be a locally full Frechet 
space. Let 0 � X be an open convex set. Suppose f : 0 ---+ Y is a convex function, 
whose graph is a closed subset of 0 x Y. Then f is continuous. 
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(B5) (Uniform Boundedness Property.) Let Y be a locally convex space. Let <P be 
a collection of continuous linear maps from X into Y that is toplinearly bounded 
pointwise. Then <P is equicontinuous. 

(B6) (Neumann's Nonlinear Uniform Boundedness Property. ) Let Y be a locally 
full, locally convex space. Let 0 c;;: X be an open convex set. Let <P be a collection of 
continuous convex maps from 0 into Y that is toplinearly bounded pointwise. Then 
<P is equicontinuous. 

Proof of this theorem begins in Section 27.31 .  
Remark. A seventh characterization of barrelled spaces will be given in 28.30. 

27.28. Corollaries: classical versions. Let X be an F-space. By 27.25: 
a. Any lower semicontinuous F-seminorm on X is continuous. 
b. Uniform Boundedness Theorem. If Y is a topological vector space and <P is a 

collection of continuous linear maps from X into Y such that <P(x) = {!(x) : f E <P} 
is a bounded subset of Y for each x E X,  then <P is equicontinuous. 

c. Closed Graph Theorem. If Y is an F-space and f : X --> Y is a linear map whose 
graph is a closed subset of X x Y, then f is continuous. 

d. If 0 is an open convex subset of X and f : 0 __, lR is a convex function whose graph is 
a closed subset of 0 X JR, then f is continuous. 

27.29. Example application. Let (0, S, JL) be a measure space, let X be a Banach space, 
and let a, {J E (O, +oo) be exponents such that L"(JL, X )  c;;: £f3 (JL , X ) .  Then the inclusion 
L" (JL, X )  -S V' (11, X )  is continuous. 

Proof. It suffices to show that the inclusion map has closed graph. Suppose fn --> f in 
L" (JL, X )  and j., --> g in Li3 (JL , X ) ;  we are to show that f = g. By 22 .3l (ii) we may pass to 
subsequences such that fn --> f and fn --> g pointwise 11-almost everywhere. 

Remarks. This example is taken from Villani [ 1985] . That paper also shows the following 
interesting result: Let X be a Banach space, let (0, S, JL) be a measure space, and let 
a, {J  E (O, +oo) with a <  {3. Then 

L" (JL, X )  c;;: L11 (11 , X )  if and only if inf{JL(S) : S E S ,  JL(S) > 0} > 0; 

L" (JL, X )  ::2 L11 (JL, X )  if and only if sup{JL(S) : S E S, JL(S) < oo} < oo. 
Special cases of this were given in 22.34. (Villani's paper only shows this for X = JR, but 
that case easily yields the general case since all the functions in L" (JL, X )  or £f3 (JL, X )  are 
measurable, and we can separate the "regular" condition from the "not too big" condition 
-- see the remarks in 22.28.) 

27.30. Change of scalar field. Let X be a complex topological vector space (respectively, 
a complex locally convex space) . Then X,  with the same topology, may also be viewed as 
a real topological vector space (respectively, a real locally convex space) if we "forget" how 
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to multiply members of X by nonreal scalars. Let us denote these two TVS's by Xc and 
XJR. Note that the choice of scalars affects the definitions of "balanced" and "absorbing;" 
hence it affects the definitions of "barrel" and "ultrabarrel." Show that 

a. If B is an (ultra)barrel in Xc, then B is also an (ultra)barrel in XJR. Likewise, any 
(F-)seminorm on Xc is also an (F-)seminorm on XJR. 

Hence, if XIR is (ultra)barrelled, then Xc is (ultra)barrelled, too. 
b. It is possible for XIR to have more (ultra)barrels than Xc. 

For instance, show that the set B = {z E C :  IRe(z) l :::; 1 and l lm(z) l :::; 2} is both 
a barrel and an ultrabarrel in XIR, but is neither in Xc since B is not balanced in Xc. 

c. Nevertheless, XIR is (ultra)barrelled if and only if Xc is (ultra)barrelled. 
For the moment , we shall prove this equivalence using only definitions (U2) and 

(B2) ; proofs with the other definitions in 27.26 and 27.27 will follow from the arguments 
given in the next subchapter. 

We have already established half of this "if and only if" result . Now assume Xc 
is (ultra)barrelled - i.e. , it satisfies condition (U2) or (B2). To show the same for 
XIR, let p be any lower semicontinuous (F-)seminorm on XIR; we wish to show that p is 
continuous on XJR. Note that XIR and Xc differ only in their algebraic operations -
they are the same set, and they have the same topology; so a function is continuous 
on XIR if and only if it is continuous on Xc. Define "( : X --> [0, +oo) as in 26.5.b. 
As we noted in 26.5.b, this function "( is also lower semicontinuous on X, and "( is an 
(F-)seminorm on Xc. Hence, by our assumption, "( is continuous. From the inequality 
p :::; "(, we see that p is continuous at 0. Since p is a G-seminorm, we have !p(u) -p(v) ! :::; 
p(u - v) , and therefore p is continuous. 

PROOFS OF BARREL THEOREMS 

27.31. We now begin the somewhat lengthy proof of 27.26 and 27.27. We remark that 
shorter proofs of equivalence can be found in the literature (for instance, in Waelbroeck 
[1971]) if one omits the nonlinear conditions (U4) , (U6) , (B4) , and (B6). 

The order of proof will not be the same as the order in which the results were stated. 
We shall cover the barrels and ultrabarrels cases simultaneously. In the discussions below, 
phrases in brackets should be read or omitted for the two cases - e.g. , an [F-]seminorm 
means a seminorm for the argument with barrels or an F -seminorm for the argument with 
ultrabarrels. Also, ( 1 )  will refer to either (U1 ) or (B1 ) ,  and (2) will refer to either (U2) or 
(B2) , etc. We shall prove the equivalence in this order: 

• ( 1 )  � (2) , 

• (4) ::::} (3) ::::} (2) , 

• (6) ::::} (5) ::::} ( 1 ) ,  and 

• ( 1 )  implies both (4) and (6). 
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In each argument the implication will be proved with either choice of scalar field (IR or C); 
in fact, the choice of scalar field will not enter into most of the arguments. Our first few 
proofs are along the lines of Waelbroeck [1971] . Some researchers may also find Adasch, 
Ernst, and Keirn [1978] helpful for further reading on this topic. 

27.32. Proof of ( 1 )  '* (2) . Let p be a lower semicontinuous [F-]seminorm; then the 
sets Sn = { x E X : p( x) :::; 2-n } are closed. Each Sn is also absorbing, since p is scalarly 
continuous (see 26.3.a) . It follows easily that the sequence (Sn) is a closed [convex] string. 
By ( 1 ) ,  then, it is a neighborhood string; thus each Sn is a neighborhood of 0. It follows 
easily that p is continuous at 0. Since I P( u) - p( v) I :::; p( u - v) , it follows that p is continuous 
everywhere. 

27.33. Proof of (2) =* ( 1 ) .  Let Vo be an [ultra]barrel; we wish to show that V0 is a 
neighborhood of 0. It suffices to produce a lower semicontinuous [F-]seminorm p with the 
property that 

{ x E X : p( x) < 1 } C V0 . 
For the locally convex case, let p be the Minkowski functional of V0 ; that is, p(x) = 

inf{k E (0 , +oo] : k- 1x E V0} . Then p is a seminorm satisfying ( q ) ,  as noted in 12.28 and 
12.29.g. To show that p is lower semicontinuous, suppose p(x0) > r > s > 0. Then x0 tf:_ rV0 .  
Since rV0 i s closed, its complement is a neighborhood of x0 , and for x in that neighborhood 
we have r- 1 x tf:_ V0 , hence p(x) 2: r > s. Thus for any s the set {x E X :  p(x) > s} is open. 

For the non-locally-convex case, let (Vj : j = 0, 1 ,  2, 3, . . .  ) be a closed string in X. By a 
dyadic rational in [0, 1 )  we mean a number of the form 

h t2 t3 tn - + - + - + · · · + -2 4 8 2n 

for some positive integer n, where each t1 is either 0 or 1 .  For each number of this type, 
define the set n 

L Vj c Vo . 
{jEN:t1 =1 } 

Verify that the Wa 's are balanced and absorbing. Also, for any dyadic rationals a, (3 with 
a +  (3 < 1 we have and Wa + W,13 <:;;; Wa+f3, hence cl(Wa ) + cl(W,13) <:;;; cl(Wa+,B) by 26.22.e. 
Now define 

p(x) inf {a E [0 , 1 ) : x E cl(Wa ) } , 
with p(x) = 1 if x t/:- UaE [O, l ) cl(Wa ) · Verify ( exercise) that p is an F-seminorm satisfying 
(q ) . To show that p is lower semicontinuous, suppose p(x0) > c. Then p(x0) > a > c for 
some dyadic rational a, and therefore x0 tf:_ cl(Wa) ·  The complement of cl(Wa ) is an open 
set on which p( - ) 2: a >  c. Thus the set {x E X :  p(x) > c} is open for any c. 

27.34. Proof of (3) =* (2) . Let a be a lower semicontinuous [F-]seminorm on X. The 
linear subspace K = a- 1 (0) = {x E X : a- (x) :::; 0} is closed. Let Q = X/K be the 
quotient space, and let n : X ___, Q be the canonical map. Then an [F-]norm (j is defined 
on Q by Ci(n(x)) = a(x) . We topologize Q with this [F-]norm. (We do not claim that the 
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resulting topology is the quotient topology. ) Let C be the completion of the [F-]normed 
space (Q, &) . Let its [F-]norm, an extension of &, again be denoted by &; then (C, &) is a 
complete [F-]normed space. 

Let i : Q --S C be the inclusion. We claim that the composition i o 1r : X � Q _2__. C 
has closed graph. To see this, let ( (X a ,  Qa ) )  be any net in the graph of i o 1r, converging in 
X x C to some point (x, q) ; we shall show that (x, q) actually lies in the graph of i o 1r. Let 
any number c > 0 be given; it suffices to show that (i ( q - ( i o 1r) ( x)) < 2c. Since C is the 
completion of Q, there is some q' E Q with &(q' - q) < c. Since Q = 1r(X) ,  we may choose 
some x' E 1r- 1 (q' ) .  Now compute 

& ( q - (i o 1r) (x)) - c ::; (i (q - q') + (i (q' - 1r(x)) - c 

< (i (q' - 1r(x)) = (i (1r(x' ) - 1r(x)) = a(x' - x) ::; lim inf a(x' - xa ) a 
= lim inf (i (1r(x1 - Xa ) )  = lim inf (i (q' - qa ) = Ci(q' - q) < c. a a 

Hence the linear map i o 1r does indeed have closed graph. 
By (3) , then, i o 1r is continuous. Hence 1r : X ---+ ( Q, &) is continuous; hence a is 

continuous on X.  

27.35. Proof of (5) '* ( 1 ) .  We shall make the proof slightly longer but easier to 
understand by splitting it into two parts. We first prove (5) '* ( 1 )  under the additional 
assumption that X is a Hausdorff space. Let (Vk )  be a closed [convex] string in X;  we wish 
to show that the Vk 's are neighborhoods of 0. We shall construct 

(i) a [locally convex] topological vector space 3, and 
(ii) a sequence (fJk) of neighborhoods of 0 in 3 ,  and 
(iii) a family of continuous linear maps <p7 : X ---+ 3 ( for all '"'/ in some index set 

f) that is toplinearly bounded pointwise and satisfies vk = n-yEr <p:;-1 (fJk) for 
each k.  

By our assumption of (5) , i t will follow that the family { <p7 : 1 E r} is equicontinuous. Then, 
since iJk is a neighborhood of 0 in 3, it follows that vk = n-yEr <p:;-1 (fJk) is a neighborhood 
of 0 in X.  Thus, it suffices to satisfy ( i ) , (ii) , and (iii ) .  

We shall satisfy those conditions with the index set r equal to the set of all [convex] 
neighborhood strings in X. For each [convex] string 1 = (U71 , U72 , U73 ,  . . .  ) belonging to f, 
let H7k = U7k + Vk . Then (H7k : k E N) is also a [convex] neighborhood string in X.  Since 
X is Hausdorff, it follows from our choice of f that Vk = n-yEf' H-yk · 

Form the external direct sums 

3 = EB x  and 
-yEf' 

for k E N. Thus, 3 consists of all functions <p from r into X that vanish at all but finitely 
many points in r, and iJk consists of those functions <p E 3 satisfying the further requirement 
that <p(r) E H7k for all f .  
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Then the sequence (f:Jk) is a [convex] string in 3 .  Hence it is a neighborhood base at 0 
for a [locally convex] vector space topology on the vector space 3. Hereafter we shall view 
3 as being equipped with that topology. 

For each 1 E r, define a linear mapping ({J-y : X ----+ 3 as follows: ({J-y (x) is the function 
from r to X defined by 

{ � when 1' = 1 
when 1' =/= "(. 

Observe that cp::; 1 (f:Jk ) = H-yk ·  Since the f:Jk 's form a neighborhood base at 0 in 3 and each 
H-yk is a neighborhood of 0, it follows that cp1 is continuous. 

Also, since the Vk 's are absorbing, it follows that the functions 'P-y are pointwise bounded. 
Finally, we verify that vk = n'!El H-yk = n'fEl cp::; 1 (f:Jk ) for each k. This completes the 
proof, under the assumption that X is a Hausdorff space. 

We now turn to the general case - i.e. , where X is not necessarily Hausdorff. Let (Sn ) be 
a closed string in X; we wish to show that S1 is a neighborhood of 0. Let K = cl( {0} ). Then 
the quotient space X/ K, equipped with the quotient topology, is Hausdorff. From 26.35 it 
follows easily ( exercise) that X/ K has property ( 5) . Hence, by our preceding arguments, 
X/ K also has property ( 1 ) .  The quotient mapping 1r : X ----+ X/ K is a continuous and 
closed mapping (see 26.35) . The sequence (1r(Sn ) )  is a closed string in X/K, hence it is a 
neighborhood string, hence each set 1r- 1 (1r(Sn )) is a neighborhood of 0 in X. But each Sn 
is a closed set, hence Sn + K = Sn by 26.22.e, hence 7r- 1 (7r(Sn )) = Sn . 

27.36. Proof of (4) =? (3) and (6) =? (5) . Any vector space Y can be given a locally 
full ordering by taking the positive cone to be {0} . When Y is equipped with that ordering, 
then any linear operator from X to Y is a convex operator. 

27.37. Proof that ( 1 )  implies both (4) and (6) . The argument below, due to Neumann 
[1985] , assumes that the scalar field is R The case of complex scalars can be dealt with 
as follows: If X satisfies ( 1) with scalar field C, then X also satisfies (2) with scalar field 
C, by the argument in 27.32; hence X satisfies (2) with scalar field JR,  as noted in 27.30.c; 
hence X satisfies ( 1 )  with real scalars, by 27.33. Hence the argument in the paragraphs 
below is applicable; therefore ( 4) and (6) are valid for X with real scalars. But a glance at 
conditions ( 4) and (6) shows that those conditions do not involve the specification of the 
scalar field at all; therefore X also satisfies (4) and (6) with complex scalars. 

We now turn to the proof of ( 1 ) implies (4) and (6) , with real scalars. 
The proofs of ( 1 )  =? (4) and ( 1 )  =? (6) begin the same. For both proofs we are 

given a pointwise bounded collection <I> of mappings f : 0 ----+ Y, which we want to prove 
equicontinuous, but for (4) that collection consists of just one function. (Of course, a single 
function is pointwise bounded, since any single point is a toplinearly bounded set ) .  Other 
differences between the proofs of ( 4) and (6) will be discussed when they appear, later in 
the argument . 

Fix any � E 0; it suffices to show that <I> is equicontinuous at �· By a translation 
argument given below, we may assume that 

o E n, � = 0, and f (O) = 0 for each f E <I>.  
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(The translation argument is as follows: Let f2 = n - �. For each f E <1> define a corre
sponding function 1 :  n --> y by [(u) = f(u + 0 - !(�). It suffices to show the i's are 
equicontinuous at 0. By a change of notation, we may replace n, f with fi, f) Next, 

let no be a closed, convex, balanced neighborhood of 0 contained in n. 

(To prove the existence of such a set n0 , we do not need to assume X is locally convex. 
For instance, we could take n0 = �cl ( n n ( -n)) ; that this set has the required properties 
follows from 1 2.6.e and 26.27.a.) 

Let K be any given closed neighborhood of 0 in Y.  It suffices to show that nfE<I>{x E 
no : f(x) E K} is a neighborhood of 0 in X.  

Let Ho , H1 , H2 , H3 , . . . b e balanced, [convex,] full neighborhoods of 0 in Y,  satisfying 
H0 � K and Hn + Hn � Hn- l for all n E N; the availability of such sets follows from 
27.24.b, 26.52, and 26.54. For the proof of (4) , since Y is metrizable, we may also assume 
that the sequence (Hn )  is a neighborhood base at 0. 

If u, v E no and f E <1> and 0 :::; t :::; 1, then (using the fact that f is convex, no is convex 
and balanced, and f(O) = 0) we obtain 

-tf( -u) � -f( -tu) � f(tu) � tf(u) , 

( u + v) -f(-u) - f(-v) � -2/ --2-
(u + v) � 2f -2- � f(u) + f(v) .  

For each integer n 2 0, define 

n { x E no : f(x), f( -x) E Hn } · 
fE<l> 

Note that cl(Un )  � no � Dom(f) since no is closed. 

(i) 

(ii) 

We now shall show that each Un is balanced. To see this, let any u E Un, f E <1>, and 
t E [0, 1] be given. Since Hn is balanced and contains f(u) and f(-u) for any f E <1>, it also 
contains tf(u) and -tf( -u) . Since Hn is full, it also contains f(tu) and -f( -tu) , by (i) . 
Thus, tu, -tu E Un , so Un is balanced (since the scalar field is JR) . 

We next show that Un is absorbing. To see this, let any x E X be given. Since Un is 
balanced, it suffices to show kx E Un for some nonzero scalar k. Since n0 is a neighborhood 
of 0, there is some E > 0 such that EX E n0 . Since <1> is pointwise bounded, the set 
UfE<I> {f(Ex) , -f( -Ex) } is bounded in Y. Since Hn is a neighborhood of 0 in Y, there is 
some t E (0, 1 )  such that ufE<I>{tf(Ex) , -tf( -Ex) } � Hn. As a special case of (i) we have 

-tf( -Ex) � -f( -tEx) � f(tEx) � tf(Ex) . 

Since Hn is �alanced and full , we have J(±tEx) E Hn for all f E <1>, and thus tEx E Un. 
This proves Un is absorbing. 

For the proofs of (B4) and (B6) in 27.27, we claim also that Un is convex. To see this, 
let any x0 , x1 E Un and A E (0, 1) be given; let X>. = ( 1 - A)x0 + AX 1 . Let any f E <1> be 
given. Since Hn is balanced, both -f( -xj )  and f(xj )  lie in Hn for j = 0, 1 .  Since Hn 
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is convex, both - ( 1 - >.)f( -xo ) - >.f( -x i )  and ( 1 - >.)f(xo) + >.f(xl )  lie in Hn. By the 
convexity of the function f and the fact that f(O) = 0, we have 

-(1  - >.)f( -xo) - Af( -x i )  � -f( -x;.. ) � f(x;.. ) � ( 1 - >.)f(xo) + >.f(xl ) .  
Since Hn is full, it follows that -f( -x;.. ) and f(x;.. ) both lie in Hn · Thus X;.. E Un . This 
proves Un is convex, under tl:_e hy�othes� of (B4) and (B6) . 

� 

Next , we shall show that Un + Un <;;; 2Un- 1 for all n E N. To show this, fix any u, v E Un 
and any f E <I>. Then f(±u) , f(±v) E Hn , and Hn + Hn <;;; Hn- 1 1 hence f(u) + f(v) 
and f( -u) + f( -v) both lie in Hn-1 ·  Now apply (ii) . Since Hn-1 is balanced and full, 
i� con:_ains 2[ ( ± u!v ) ; hence it contains f ( ± u!v ) . Thus � ( u + v) E Un_ 1 • This proves 
Un + Un <;;; 2Un- 1 ·  

Now let Un = 4-n[Jn ; in particular, Uo = U0 . The sets Un (n = 0, 1 ,  2, . . .  ) are balanced 
and absorbing, and satisfy Un + Un <;;; �Un- 1 <;;; Un- 1 · Then cl(Un ) + cl(Un) <;;; cl(Un-d 
by 26.22.e. Hence the sequence (cl(Un) ) is a closed [convex] string. By our assumption ( 1 ) ,  
the sets cl(Un ) are neighborhoods of 0 in X.  Hence also the sets cl(Un) are neighborhoods 
of 0 in X. 

For the proof of (6 ) ,  we may proceed as follows: f(U0) <;;; H0 , and under the hypotheses 
of (6) we know that each f in <I> is continuous. Hence f(cl(Uo ) )  <;;; cl(Ho) <;;; cl(K) = K since 
K is closed by assumption. Thus cl(U0) is a neighborhood of 0 contained in nfE<I> f- 1 (K) ,  
completing the proof of (6) . 

The proof of (4) will take much longer. For (4) , with <I> containing just a single function 
f ,  we continue our reasoning as follows: We are to show that f- 1 ( K) is a neighborhood of 
0; we shall show that in fact cl(UI ) <;;; f- 1 (K) . Let any x1 E cl(Ul ) be given; it suffices to 
show f(xl ) E K. 

Note that cl(Uj )  <;;; Uj + cl(UJ+I )  since cl(UJ+I )  is a neighborhood of O . Hence, starting 
from the given vector x1 E cl(UI ) we may recursively choose vectors Uj E Uj and XJ+1 E 
cl(UJ+ I )  so that Xj = Uj + Xj+1 . Then 

Now let 
u1 + U2 + . . . + Uj E u1 + u2 + . . .  + Uj c Uo c Dom(f). 

Yj = j(u1 + u2 + · · · + uj ) · 
Note that Yj E f(Uo) = f(U0) <;;; H0 <;;; K. If limJ�= yj exists then that limit must lie in K 
since that set is closed . We shall show that in fact f(xl ) = lim1�= yj ; that will complete 
the proof. 

Let uk = 4kuk . Note that uk E Dk , hence f (±uk) E Hkl hence 4-k f(±uk) E Hk . For 
l , m E N  with l <:: m it follows that 2:;=1 4-kf(±uk ) E H1_ 1 , for all choices of the ± signs. 
Such sums tend to 0 as l -+ oo, since we chose (Hn )  to be a neighborhood base at 0 in Y.  
Hence the sequence of partial sums L�n=1 4-kf(±uk ) (for m =  1 , 2, 3 , . . .  ) i s Cauchy in the 
F-space Y. Therefore the series 2:::�=1 4-k f(±uk) converges to some limit in Y,  for each 
choice of the ± signs. 

Define tj = 1 /(2 + 4-j ) ;  then t = to < t 1 < t2 < · · · and limj�oo tj = � - Temporarily 
fix any positive integers m, n with n < m. Then the numbers 

tm- 1 Pm = -tm 
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all lie in (0, 1 ) .  Verify that these numbers satisfy 

a + 

T + 

n 
( 1 - a) L 4-k 

k=l 
m 

( 1 - T) L 4-k 
k=l 

m 

+ 

+ 

Pm + ( 1 - Pm) L 4 -k + 
k=l 

m 
:L 4-k 1 ,  

k=n+l 
m 

:L 4-k 1 ,  
k=n+ l  

1 .  

Hence the convexity of f tells us that 

Ym 

and similarly 

Yn 

f (a � uk 

=<-

n 
+ ( 1 - a) :L 4-kuk + f 4-kuk) 
ayn + 

k=l k=n+l 
n m 

( 1 - a) :L 4-k t(uk) + :L 
k=l k=n+ l  

m m 

4-kf(uk ) 

TYm + ( 1 - T) L 4-k f(uk) + L 4-k J( -uk) · 
k=l k=n+l 

Also, from f(O) = 0 and the convexity of f we obtain 

-f(u! + · · · + um) =<- f(-UJ - · · · - um) 
f (4- 1 ( -uJ )  + · · · + 4-m ( -um) + ( 1 - 4- 1 - · · · - 4-m) (O)) 

Multiply line (iii) by tm to obtain 

m 
=<- :L 4-k J(  -uk) .  

n m 

k=l 

tmYm - tnYn =<- ( tm - tn) L 4-k f(uk ) + tm L 4-k f(uk ) · 
k=l k=n+l 

Also; multiply line (iv) by tn and line (v) by 2(tm - tn) and add the results to obtain 
m m 

k=l k=n+ l  

(iii) 

(iv) 

(v) 
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The right sides of the last two inequalities tend to 0 as m, n ---> oo, since tm - tn ---> 0 
and the series 2.:::%"=1 4-k f(±ih) are convergent in Y.  Since Y is locally full, it follows that 
lmYm - lnYn ---> 0. 

Thus ( tnYn : n E N) is a Cauchy sequence in the F -space Y and therefore a convergent 
sequence. Since tn ---> � as n ---> oo, the sequence (Yn ) is also convergent. Let y be its limit. 

To show that y = f(xi ) ,  we shall use the fact that the graph of f is closed in 0 x Y.  
Let G and H be any neighborhoods of 0 i n X and Y,  respectively; it suffices to show that (x1 + G) x (y + H) meets the graph of f. 

Note that Xm E cl(Um) <;;; Urn - G, since G is a neighborhood of 0. Th�efore we 
can choose Vm E Urn so that Xm - Vm E -G. Let Vm = 4rnvm ; then Vm E Urn , hence 
J(±vm) E Hm, hence 

as m ---> oo. 

Also note that Pm ---> 1 ,  and therefore the vectors 

-y + PmYrn , Yrn -y + -, Pm 

m 
( 1 - Pm) L 4-k f(uk ) ,  

k=l 
all converge to 0 as m ---> oo. Next, observe that 

X1 - Xm+l + Vm+ l  U1 + U2 + · · · + Urn + Vm+l 

By convexity of f , 
E U1 + U2 + · · · + Urn+l C flo C Uo C Dom(f) . 

m 
� -y + PrnYrn + ( 1 - Pm) L 4-k f(uk ) + 4-m- l f(vrn+d , 

k=l 
which tends to 0 as m ---> oo .  Also by the convexity of f, 

Ym = J (Pm(Xl - Xm+l + Vrn+d + Pm4-rn- l ( -Vm+d + ( 1 - Pm) f 4-kuk) 
k= l 

m 
� Pmf(xl - Xm+l + Vrn+d + Pm4-m- l f( -Vm+d + ( 1 - Pm) L 4-k f(uk ) 

k=l 
and consequently 

which also tends to 0 as m ---> oo .  Since Y is locally full, -y + f(x1 - Xrn+l + Vrn+d ---> 0 as 
m ---> oo. For m sufficiently large we have f(xl - Xrn+ l + Vm+d E y + H, so (xi - Xrn+l + 
Vm+l , f(xl - Xm+l + Vm+d) E (xl + c) X (y + H) . This completes the proof of the 
theorem. 
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INDUCTIVE TOPOLOGIES AND LF SPACES 

27.38. Remarks. LF spaces are used particularly in Schwartz's distribution theory. Al
though we shall not develop that theory in this book, we now include a brief introduction 
to LF spaces, because they provide interesting examples of locally convex spaces that are 
barrelled but not metrizable. Though the definition of LF spaces is slightly complicated, 
we shall see in 27.46 that the LF space construction provides us with the only "natural" 
topology for some vector spaces. 

We begin with a few results in a slightly more general setting; then we specialize to LF 
spaces. Examples are given in 27.42. In 27.43 we briefly sketch some of the basic ideas of 
distribution theory. 

27.39. Theorem. Let Y be a vector space (without any topology specified yet) , and let 
{ (X1 ,  Tj ) : j E J} be a family of locally convex topological vector spaces. For each index j ,  
let 

y1 X1 ___, Y 
be some linear mapping. Then there exists a topology T on Y that is locally convex and 
has the property that T is the strongest locally convex topology on Y that makes all the 
y1 's continuous. It has these further characterizations: 

(i) Let 'B be the collection of all sets G <::;;; Y such that 
G is absorbing, balanced, and convex, and for each j E J, the set 
yj1 (G) is a neighborhood of 0 in X1 . 

Then 'B is a neighborhood base at 0 for T. 
(ii) Let Z be another locally convex topological vector space, and let g : Y ----+ Z 

be some linear map. Then g is continuous from (Y,T) to Z if and only if each 
of the compositions goy1 : X1 ----+ Z is continuous. This property also uniquely 
determines T. 

We shall call T the final locally convex topology induced by the yj 's (since it is on the 
final end of the mappings y1 : X1 ----+ Y) . It is also known as the inductive locally convex 
topology. 

Outline of proof 
a. Let <I> be the set of all locally convex topologies on Y for which all the y1 's are continu

ous. Then <I> is nonempty, since the indiscrete topology {0,  Y} is a member of <I>. Let 
T be the sup of all the elements of <I>; by 26.20.c we know that T is an LCS topology 
on Y. (We do not yet assert that T is a member of <I> . ) 

b. Define 'B as above. Show that N = { S <::;;; Y : S contains some element of 'B} i s the 
neighborhood filter at 0 for a locally convex topology cr on Y. Show that cr E <I>. Then 
cr <::;;; T since T = sup <I>. 

c. Let H be any neighborhood of 0 in (Y, T) . Using the definition of T, show that H � 
n,PEW H1f; , where \[! is some finite subset of <I> (which may depend on H), and each H'lj; 
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is a balanced convex neighborhood of 0 in the topological space (Y, '1/J) . Use that fact 
to show that H is also a neighborhood of 0 in (Y, a) . Thus T � a. This completes the 
proof of (i) and (ii ) . 

d. If g i s continuous from (Y, T ) to Z ,  then each g o  YJ is a composition of two continuous 
maps, and thus it is continuous. Conversely, suppose that each g o YJ : Xj --+ Z is 
continuous. Let H be a balanced, convex neighborhood of 0 in Z. Then (g o YJ )  - 1 (H) 
is a balanced convex neighborhood of 0 in Xj , hence g- 1 (H) is a neighborhood of 0 in 
Y. To see that this condition uniquely determines T ,  suppose that T, T1 are two locally 
convex topologies on Y with this property; show that the identity map i : Y --+ Y is 
continuous in both directions between (Y, T) and (Y, T1) .  

27.40. A peculiar specialization ( optional) .  By taking J = 0 in 27.39, we obtain these 
results: 

Let Y be a vector space over the scalar field IF. Then there exist topologies on Y that 
make Y into a locally convex topological vector space, and among such topologies there is 
a strongest. It is called the strongest (or finest) locally convex topology on Y. It has 
these further properties: 

a. A neighborhood base at 0 for the topology is given by the collection of all absorbing, 
balanced, convex sets. 

b. Any linear map from Y into any other locally convex space is continuous. 

27.41 . Definition. Let X be a vector space. Let X1 c;;;: X2 c;;;: X3 c;;;: · · · be linear subspaces 
with u;: 1 Xj = X. Suppose each xj is equipped with a topology Tj making it a Fn§chet 
space. Assume also that the Tj 's are compatible, in this sense: If j < k, then Tj is the 
relative topology determined on Xj by the topological space (Xk , Tk ) · 

Let T be the locally convex final topology on X (defined as in 27.39) determined by the 
inclusion maps xj � X. Then T is called the strict inductive limit of the rJ 's . A 
locally convex space (X, T) that can be determined in this fashion is called an LF space. 
( Caution: Some mathematicians use a slightly more general definition for these terms.) 

Basic properties. Let (Xj , T1 ) 's and (X, T) be as above. Then: 
a. If we replace the sequence of spaces ( (XJ ,  TJ ) )  with any subsequence, we still obtain 

the same topology T on X. 
b.  Subspace lemma. Fix any j .  Suppose GJ i s  a convex neighborhood of O in XJ . Then 

there exists a convex neighborhood GJ+1  of 0 in XJ+1 such that GJ = Xj n GJ+1 . 
Furthermore, if some point Yo E XJ+1 \ XJ is given, then GJ+1 can be chosen so that 
Yo � GJ+ I · (This is immediate from 26.28 . )  

c. For some positive integer k, let Gk , Gk+1 , Gk+2 , . . • be a sequence such that GJ i s a 
convex neighborhood of 0 in (Xj ' Tj ) and Gj = xj n Gj+l · Then G = u;:k Gj is a 
convex neighborhood of 0 in (X, T) and GJ = XJ n G. 

d. The original topology TJ given on XJ is equal to the relative topology determined on 
xj by the topological space (X, T) .  

e. Each xj i s a closed subset of (X, T) .  
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f. (X, T) is Hausdorff. 
g. (X, T) is not a Baire space. (Hint : It is the union of the Xj 's, which are closed subsets 

with empty interiors. ) 
h. (X, T) i s barrelled. Hint: Let T be a barrel in (X, T) . Then T n Xj is a barrel in Xi , 

hence a neighborhood of 0 in Xi ; hence T is a neighborhood of 0 in X. 
i . Let S � X. Then S i s  a bounded subset of the topological vector space (X, T ) if 

and only if there exists some j such that S � Xj and S is a bounded subset of the 
topological vector space (X j ,  Tj ) .  

Hints : Suppose S is bounded in X but is not contained in any Xj . Replacing 
the Xj 's with a subsequence, show that there is some sequence ( Sj ) in S with Sj E 
XH1 \ Xj . Using 27.4l .b , choose sets Gj so that Gj is a convex neighborhood of 0 in 
Xj , Gi = Xj n Gj+l , and ysi tt GJ+l · Then G = U;:1 Gj is a neighborhood of 0 in 
X. Since S is bounded in X, we have ]-sj ----> 0 in X, hence ]-sj E G for all j sufficiently 
large, a contradiction. 

j. Let (xn : n E N) be a sequence in X. Then (xn ) is convergent to some limit x0 in X if 
and only if there is some j such that {xn : n = 0, 1, 2, 3, . . .  } � Xj and Xn ----> x0 in Xj . 

k. X is not metrizable. 
Hints : Suppose d is a metric for the topology on X. Choose a sequence (xn ) with 

Xn E Xn \ Xn-1 (with X1 chosen arbitrarily in Xl ) .  Choose numbers En > 0 small 
enough so that d(cnXn , O) < � · Then EnXn ----> 0 in X, hence {cnXn : n E N} �  Xj for 
some j ,  a contradiction. 

I. Let Y be another topological space. Then a map f : X ----> Y is sequentially continuous 
if and only if its restriction to each Xj is sequentially continuous. 

m. Let Y be another topological vector space. Then any bounded linear map f : X ----> Y 
(defined as in 27.4) is sequentially continuous. 

27.42. Examples. Let lF be the scalar field (IR or q .  
a. UkEN JF is the set of all sequences of scalars that have only finitely many nonzero terms. 

(See 1 1 .6.i . ) It is the union of the finite dimensional subspaces Xk = {sequences whose 
terms after the kth are zero}. Thus it can be topologized as an LF space. 

b. Let n be an open subset of IRn or en , for some positive integer n. Let Cc(D) = 
{continuous scalar-valued functions on n with compact support} .  Then Cc(D) is the 
union of the spaces 

CK (n) = {! E Cc(D) : f vanishes outside K} ,  

for compact sets K � n.  Each CK (D) i s  a Banach space when equipped with the sup 
norm. We can write n = U;:1 Gi for some open sets Gi whose closures Kj = cl(Gj ) 
are compact subsets of n (see 17. 18.a) ,  hence Cc(D) can be topologized as the strict 
inductive limit of the spaces CK1 (D) . (Exercise. The topology is not affected by the 
particular choice of the sequence (Gj ) · Hint: See 17. 18 .b . ) 

See also the remarks in 27 .46. 
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27.43. A few remarks about distribution theory. The most important application of final 
locally convex spaces is in the theory of distributions, which was invented by Dirac and 
then formalized by L. Schwartz . This theory is particularly useful in the study of linear 
partial differential equations. Following is a brief sketch of how final locally convex spaces 
are used in that theory. 

We consider a vector space consisting of "nice" functions; a typical example is 

1) (IRM ) = {smooth functions from JRM into C with compact support } . 

Ultimately, the test functions are not the real object of study, for they are fairly simple and 
well behaved, and well understood. The test functions are sufficiently well behaved so that 
they lie in the domain of many ill-behaved differential (or other) operators. Ultimately, it is 
these operators that are the real object of the study; we can study them by "testing" their 
behavior with the test functions. We equip the space of test functions with an extremely 
strong topology; then virtually any linear operator that is defined on all of the test functions 
- including the ill-behaved operator that we wish to study - will in fact be a continuous 
linear operator on that space of test functions. Such a continuous linear operator on the 
test functions is called a distribution. Thus, the distributions are the members of the dual 
space 1J(JRM)* .  

"Ordinary" functions f act as distributions T1 by the following rule: 

�At j(t)lp(t)dt 

This formula makes sense for a rather wide class of f's since the lp's are so well behaved. For 
instance, any function f :  JRM --+ C that is measurable and locally integrable (i .e . , integrable 
on bounded subsets of JRM) defines a distribution TJ in this fashion. The mapping f f--7 T1 
is linear and injective, so it is natural to identify f and Tf ; thus the ordinary functions form 
a subset of the distributions. Because distributions can be used like ordinary functions in 
some respects, distributions are often called generalized functions. 

Many familiar operations on ordinary functions can be extended to operations on gen
eralized functions. For instance, there is a natural way to define the derivatives of distribu
tions. For simplicity of notation we consider only the case of JI,J = 1 ,  but the ideas below 
extend easily to any dimension Af. If f is a continuously differentiable function, then 

J+= -
X 

J' (t)lp(t )dt ( ! )  J+= - - ex;  f(t)lp' (t)dt 

the middle equation ( ! ) follows by integration by parts (with the boundary terms disap
pearing because lp has compact support) .  Since we identify ordinary functions with their 
corresponding distributions, T(f' ) is the "derivative" of TJ . We now generalize: If T is any 
distribution (not necessarily corresponding to some ordinary function) ,  then the derivative 
of T is defined to be the distribution U given by U( lp) = -T(lp' ) .  This definition makes 
sense because when lp is a test function, then lp1 is also a test function. 

It is customary to topologize the space of test functions 1J(JRM ) as follows: For each 
compact set K r;: JRM, let 1) K consist of the smooth functions that have support contained 
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in K. We can topologize 'DK naturally with countably many seminorms, by using the sups 
of the absolute values of derivatives of functions. It turns out that 'D K is then a Frechet 
space. Now 'D(JRM) is the union of the 'D K 's, and in fact it is the union of countably many 
of the 'D K 's. Thus it can be topologized as an LF space. With that topology, 'D(JRM) is not 
metrizable, but it inherits other, more important properties from the 'D K 's. For instance, 
it is barrelled. (It is also complete, but that seems to be less important .) 

The various topologies on the space of distributions 'D(JRM) *  are studied using duality 
theory, a small part of which is introduced in Chapter 28. For further reading on this 
classical theory, a few sources are Adams [ 1975] , Griffel [1981 ] ,  Horvath [ 1966] , and Treves 
[1967] . 

In the classical theory (described above) , distributions form a vector space but not an 
algebra. Although we can certainly talk about Tt9 when f and g are ordinary functions, in 
general it is not possible to multiply together two distributions U and V. In recent years, 
however, new theories of distributions have been developed that permit multiplication of 
generalized functions. The theory of Colombeau [ 1985] is perhaps slightly simpler, but the 
theory of Rosinger [1990] seems to be more powerful. Both theories are based on algebraic 
quotients, as in 9.25. In both theories, we begin with some algebra of smooth functions, 
identify a suitable ideal within that algebra, and then form a quotient algebra, which then 
acts as a sort of completion of the "ordinary functions." 

THE DREAM UNIVERSE OF GARNIR AND WRIGHT 

27.44. Remarks. In this subchapter we consider how functional analysis is affected when 
we replace conventional set theory with an alternative set theory; this will help to explain 
certain intangibles of conventional set theory - i.e. , objects that exist but lack constructible 
examples. This subchapter can be omitted if the reader is only interested in a conventional 
approach to functional analysis. 

H. G. Garnir applied the term "dream space" to any normed space X with the property 
that every linear map from X into a normed space is continuous. (See Brunner [ 1987] ; see 
also the related "good spaces" of Garnir [1974] . )  Any finite dimensional space is a dream 
space. As we noted in 23.6.b, there are no other dream spaces, under conventional set 
theory (ZF + AC) . Garnir investigated dream spaces under some alternative set theories; 
later J. D. M. Wright [1975, 1977] also investigated automatic continuity under alternative 
set theories. Both of these mathematicians were motivated by the earlier consistency results 
of Solovay [1970] discussed in 14.75 of this book, but in retrospect we can say that a better 
motivation is given by the later consistency results of Shelah [1984] discussed in 14.74 of 
this book: If ZF is consistent (something we generally assume), then ZF + DC + BP is 
also consistent . 

The theorem below improves slightly on results of Garnir and Wright by dropping unnec
essary hypotheses of local convexity and Hausdorffness and generalizing to convex operators. 

27.45. Garnir-Wright Closed Graph Theorem. Assume ZF + DC +  BP instead of 
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conventional set theory. Let X be an F -space. Then: 
(i) If 0 is an open convex subset of X and f : 0 ---> lR is a convex functional, then 

f is continuous. 
(ii) If Y is any TVS and f : X ---> Y is any linear operator, then f is continuous. 
(iii) If 0 is an open convex subset of X, Y is a locally full space, and f : 0 ---> Y 

is a convex operator, then f is continuous. 

749 

Remarks. Perhaps it is misleading to call this a "closed graph theorem;" a more descriptive 
term might be "automatic continuity theorem." The fact that the graph is closed is a 
conclusion, not a hypothesis, of this theorem. 

We emphasize that, in (ii ) , the operator f must be defined on all of X - not just a 
dense subspace - and X is complete. Result (ii) implies that every Banach space is a 
"dream space," as defined in 27.44. Contrast this with 23.6.b. 

Result (ii) gives us some explanation of why every linear operator observed in applied 
mathematics that can be defined everywhere on a complete metric TVS is continuous. 
Another explanation, not requiring unconventional set theory, is given by Neumann [1980] : 
The operators arising in applied mathematics generally satisfy some additional condition, 
such as causality or positivity, which guarantees continuity. We saw an example of this in 
26.59. 

Our proof of the present theorem combines ideas from Neumann [1985] , Wright [1975, 
1977] . 

Proof of theorem. Obviously (i) is a special case of (iii ) . We can also make (ii) into a special 
case of ( iii) , as follows. Let 0 = X. Any TVS Y can be equipped with the trivial ordering: 
y1 � y2 if and only if y1 = y2 . This ordering makes Y into a locally full space, and an 
operator f : X ---> Y is convex if and only if it is affine. 

Thus, it suffices to prove (iii) . Fix any x0 E 0; by 27. 12 it suffices to show f is continuous 
at x0 . Replace f with the function f( ·  + x0 ) - f (x0 ) ;  thus we may assume that 0 = x0 E 0 
and that f(O) = 0. Replacing 0 with the set 0 n ( -0) ,  we may assume 0 is open, convex, 
and balanced. It suffices to prove f is continuous at 0. 

Suppose not. Then there exists a neighborhood N1 of 0 in Y and a sequence (xn ) that 
converges to 0 in X, such that f (xn ) stays out of N1 . Replacing N1 with a smaller set, 
we may assume N1 is balanced and full. Let N2 be another balanced, full neighborhood 
of 0 in Y, satisfying N2 + N2 <:;; N1 . The topology on any TVS is determined by its 
continuous F-seminorms; thus there exists some continuous F-seminorm p on Y such that 
{y E Y : p(y) < 1 }  <:;; N2 . Finally, choose balanced, full neighborhood N3 of 0 in Y,  
satisfying N3 <:;; {y E Y :  p(y) < 1 } .  

Extend f to an operator defined on all of X, still denoted f ,  by taking f ( x) = 0 for all 
x E X \  0. (We do not assert that this new operator is convex. ) Let X0 be the closed linear 
span of the sequence ( Xn ) in X ; then X0 is a separable F -space. Hereafter we only concern 
ourselves with the restriction of f to Xo . 

By 20.25.h and 20.30 and our assumption of BP, every subset of X0 has the Baire 
property. Hence the function p o  f : X0 ---> lR is 'BP(X)-measurable - i.e . , measurable when 
Xo is equipped with the O"-algebra of almost open sets and lR is equipped with the O"-algebra 
of Borel sets. By 20.23, there exists some meager set M <:;; X0 such that the restriction of 
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p o f  to X0 \ M is continuous (with respect to the relative topology on X0 \ M). Then the 
set 

L U U (jM + kxn) , 
j,kE'l'. nEN 

being a union of countably many meager sets, is also meager in X0. Since X0 is a Baire 
space, the comeager set X0 \ L is dense in X0 ; hence it meets the nonempty open set X0 n0.  
Fix any z E (Xo n 0) \ L.  Then ±"- ± Xn � M for all j, n E N. J 

Since 0 is a neighborhood of 0 in X and N3 is a neighborhood of 0 in Y,  for all j 
sufficiently large we have ±I E 0 and ±}f(±z) E N3 . Hold any such j fixed. Since 
f(O) = 0 and f is a convex operator, we have 

1 � -:f(z) . 
J 

Since N3 is a full set , both f ( I )  and -!( .... /)  must belong to N3 . Hence p(J (±I ) )  < 1 .  
When n -----+ oo, then ±xn ± "- -----+ ±"- in X0 \ M ,  and p o f  is continuous on that set (with J J 
the relative topology) . Hence for all n sufficiently large, we have p(J(±xn ± I ) ) < 1 (with 
all four combinations of the ± signs) . Also, since 0 is open, for all n sufficiently large we 
have ±xn ± I  E n. Fix any such n. Then ±f(±xn ± I) E Nz (with all eight combinations 
of the ± signs) . Since that set is balanced, the vectors ± � f ( ±xn ± I ) also belong to N2 • 

By the convexity of f, we have 

- �f (- xn - y) - �f (- xn + y) � -f (-xn) 

� f (xn) � �f (xn - y) + �f (xn + y) · 
The left and right ends of this display belong to N2 + N2 <;;; N1 , and that set is full. Hence 
f(xn) E N1 , a contradiction. This completes the proof. 

27.46. Corollary. Assume ZF + DC + BP in place of conventional set theory. Suppose 
X is a vector space, and T is a topology on X that makes X into an LF space. Then there 
is no other topology besides T that makes X into a barrelled space. 
Remark. Thus, though the definition of an LF space is somewhat complicated, for some 
spaces (such as those in 27.42) an LF topology is in some sense the "best" one available � 
i.e . , it is the only barrelled topology. 

Proof of corollary. Say (X, T) is the strict inductive limit of (Xj ) , where X1 <;;; Xz <;;; X3 <;;; 
· · · are compatible Frechet spaces with union X. Let (3 be a topology on X that makes 
(X, (3) barrelled. Each of the inclusions Xj L X  is continuous from Xj (with its Frechet 
topology) to (X, (3) , by 27.45. By 27.39(ii) , then, the identity map i : (X, T) -----+ (X, (3) 
is continuous. Therefore its graph is closed in the product topology. Hence its inverse, 
the mapping i- 1 : (X, (3) -----+ (X, T) , also has closed graph. By the classical Closed Graph 
Theorem (which can be proved in ZF + DC), since (X, (3) is barrelled, it follows that i- 1 
is continuous , too . 
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27.47. Further corollaries. Assume ZF + DC + BP in place of conventional set theory. 
Then: 

a. If X is a reflexive Banach space - e.g. , if X = f!p for some p E ( 1 ,  oo) - then the 
second algebraic dual of X is equal to X. This is in contrast with 1 1 .36 . 

b. Any two complete norms (or, more generally, any two complete F-norms) on a vector 
space are equivalent - i.e . , they yield the same topology. Proof. The identity map 
i :  X ---> X is a linear operator. (Contrast with 27. 18(iii ) . ) 

Remarks. The last result explains , at least in part, the phenomenon described in 22.8. 
Applied mathematicians do not use the Axiom of Choice, and so they cannot prove the 
existence of inequivalent complete norms on a vector space. More precisely, they cannot 
construct two complete norms and prove that those norms are inequivalent . We emphasize 
that they may also be unable to prove that the two norms are equivalent . Thus, it is 
conceivable that an applied mathematician could equip a vector space with two different , 
complete, "usual" norms, which are not known (by the tools of applied mathematics) to 
be equivalent or inequivalent . However, that seems rather unlikely. Any two complete 
norms that can be constructed explicitly can probably be investigated rather extensively 
by constructive means as well; hence we can probably find some answer to the question 
of whether those norms are equivalent or not. The theorem above eliminates one of the 
answers - it says that, using just ZF + DC, we cannot show that the two norms are not 
equivalent. 
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Duality and Weak Compactness 

28.1 .  Preview. A topological vector space can be retopologized - i .e . , its topology can be 
replaced with another, related TVS topology. Among such new topologies, one of particular 
interest is the so-called weak topology; it is weaker than the original topology, and therefore 
has more compact sets that can be used in existence proofs. 

Although our applications later in this book are concerned with weak topologies of 
normed spaces, we shall introduce weak topologies in the more general setting of TVS's and 
LCS's because (i) that seems to be a more natural setting for the theory, (ii) the theory is 
not significantly harder in that setting, and (iii) some readers may be interested in other 
applications not covered in this book. 

A highlight of this chapter is R. C. James's Sup Theorem (28.37) on weak compactness, 
which is quite simple to state but will take much preparation to prove. 

This chapter is based partly on Floret [1980] , Holmes [1975] , Kelley and Namioka [1976] , 
and Schaefer [1971] . 

HAHN-BANACH THEOREMS IN TVS 's  

28.2. Definition. Let X be a topological vector space, with scalar field F .  The dual of X 
is the vector space X* = {continuous linear maps from X into F} .  

There may be several different topologies associated naturally with X* . Unless some 
topology is specified for X*, we shall view it simply as a vector space, not as a topological 
vector space. 

28.3. Lemma. Let X be a topological vector space, and let A E X*. If A -/=- 0, then A is 
an open mapping - that is, A takes any open subset of X to an open subset of F. 

Hints : Show that 
a. If N is a balanced subset of X, then A(N) is a balanced subset of F. 
b. If N is a neighborhood of 0 in X, then A(N) is not just the set {0} . 
c. If N is a balanced neighborhood of 0 in X, then A(N) is a balanced neighborhood of 

0 in F. 

752 
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d. If G is open in X and x E G, then x + N C G for some N that is a balanced 
neighborhood of 0. 

28.4. Following are several principles, any one of which may be referred to as "the Hahn
Banach Theorem." Considered as weak forms of the Axiom of Choice, these principles are 
all equivalent to each other and to the versions of HB presented in 12 .3 1 ,  23. 18 ,  23. 19, 26.56, 
28. 14.a, and 29.32. 

Many of our Hahn-Banach Theorems can be extended to complex vector spaces via the 
Bohnenblust-Sobczyk Correspondence ( 1 1 . 12) : If X is a complex vector space on which 
A is a linear functional, then X can also be viewed as a real vector space on which Re A 
is a linear functional. We shall omit the details of that argument ; for simplicity we shall 
generally only consider real vector spaces. 

(HB17) Continuous Support Theorem. Let X be a real TVS. Then any 
continuous convex function from X into IR is the pointwise maximum of the 
continuous affine functions that lie below it. That is, if p : X __. IR is continuous 
and convex, then for each x0 E X there exists some continuous affine function 
f :  X __.  IR that satisfies f(x) � p(x) for all x E X  and f(xo) = p(x0) .  

(HB18) Separation of Convex Sets in  TVS's. Let A and B be disjoint 
nonempty convex subsets of a real topological vector space X, and suppose A is 
open. Then there exists A E X* such that A(a) < infbEB A(b) for every a E A .  

(HB19) Separation of Convex Sets in LCS's. Let A and B be disjoint 
nonempty convex subsets of a real, locally convex topological vector space X. 
Suppose A i s  compact and B i s  closed. Then there exists A E X* such that 
maxaEA A(a) < infbEB A(b) . 

(HB20) Separation of Points from Convex Sets. Let B be a nonempty 
closed convex subset of a real, locally convex topological vector space X.  Let 
x E X \ B. Then there exists A E X* such that A(x) < infbEB A( b) . 

(HB21 ) Intersection of Half-Spaces. Let X be a real, locally convex 
topological vector space. Then any closed convex subset of X is the intersection 
of the closed half-spaces that contain it. (By a closed half-space we mean a 
set of the form {x E X :  A(x) 2 r} , for some continuous linear functional A and 
some real number r. ) 
(HB22) Separation of Points. If X is a Hausdorff LCS, then X* separates 
points of X. That is, if x and y are distinct points of X, then there exists some 
A E X* such that A(x) =/=- A(y) . Equivalently, if u E X \ {0} ,  then there exists 
some A E X* such that A(u ) =/=- 0 . 

(HB23 ) Separation of Subspaces. Let B be a closed linear subspace of a 
locally convex space X,  and let 7J E X \ B. Then there exists a member of X* 
that vanishes on B but not on 77 ·  
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Proof of (HB4) =? (HB17) .  Immediate from 27. 13 . 

Proof of (HB17) =;. (HB18) . Pick any x0 E B - A. Let C = A - B + x0 . Show that 
C is a convex open neighborhood of 0, and (since A and B are disjoint) x0 ¢:. C. Let p be 
the Minkowski functional of C. By 26. 23.k we know that p is a continuous convex function 
and C = {x E X : p(x) < 1 } .  By (HB17) there is some continuous linear functional 
A : X --+ � satisfying A :::; p everywhere on X, and satisfying A(x0) = p(x0) 2 1 .  In 
particular, A (x) < 1 for each x E C; from this it follows that A (a) < A (b) for all a E A and 
b E  B. Finally, A( A) is open by 28.3, so each A( a) is strictly less than the supremum of the 
A(a) 's. 
Proof of (HB18) =? (HB19) . Each a E A has a neighborhood that is disjoint from 
B. (For instance, X \ B is such a neighborhood. ) That neighborhood contains a smaller 
neighborhood of the form a +  Ga + Ga , where Ga is a convex open neighborhood of 0; then 
( a + Ga + Ga) n B = 0. 

The sets (a + Ga) form an open cover of the compact set A. Let {a + Ga : a  E F} be 
a finite subcover, where F is some finite subset of A. Show that G = naEF Ga i s a convex 
open neighborhood of 0, satisfying (A + G) n B = 0. Then apply (HB18) to the sets A +  G 
and B. 
Proof of (HB19) =;. (HB20) =;. (HB21 )  =;. (HB22) =;. (HB9) . Easy exercise. 

Proof of (HB20) =;. (HB23) =;. (HBl l ) .  Obvious. 

28.5. Pathological example. Because (HB17) has a topology-free analogue (HB4) in 12 .31 , 
we might be tempted to believe that (HB21 ) also has a topology-free analogue - i .e . ,  that 
any convex set in a vector space is the intersection of the half-spaces that contain it. But 
that is not true; for instance, the set 

{ (x, y) E �2 : y > O} U { (x, O) E �2 : x 2:: 0} 

i s a convex set in �2 that is not equal to an intersection of half-spaces (easy exercise) .  

BILINEAR PAIRINGS 

28.6. Definitions. A bilinear pairing will mean a triple (X, Y, ( , ) ) where X and Y 
are vector spaces over the scalar field lF (without any topologies necessarily specified) and 
( , ) is a bilinear map from X x Y into lF (defined as in 1 1 .7) . We may abbreviate this 
arrangement by (X, Y) . 

When (X, Y) is a bilinear pairing, then an associated bilinear pairing [Y, X] can be 
defined by [y, x] = (x, y) . However, we shall usually use the same symbol ( , ) for both of 
these functions. Thus, ( , ) represents two functions, one from X x Y into lF and the other 
from Y x X into lF, related by (x, y) = (y, x) . This ambiguity in our notation should not 
cause any difficulty. 
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Let (X, Y ) be a bilinear pairing. Then each y E Y acts as a linear map ( · , y) : X __, lF; 
thus Y acts as a collection of functions on X. Observe that this collection of functions 
separates points of X (in the sense of 2.6) if 

for each pair of distinct points x1 , x2 in X,  there exists at least one y E Y such 
that (x1 , y) =f. (x2 , y) 

or, equivalently (since the y's act as linear maps) , if 

for each point x =f. 0 in X,  there exists at least one y E Y such that (x, y) =f. 0. 

This condition may or may not be satisfied. If it is satisfied, then the elements of x act as 
different members of Lin(Y, JF) = {linear functionals on Y } , and so we may view X as a 
linear subspace of Lin(Y, JF) .  Similarly, the points of X may or may not separate the points 
of Y ; if they do, then we may view Y as a linear subspace of Lin( X, JF) .  We shall say that 
(X, Y ) is a separated pairing if each of the sets X, Y separates the points of the other 
set. 

Remarks. What we have called a "separated pairing" is called a "dual pairing" in many 
other texts, which assume the separation property throughout the entire development of 
duality theory. We have deviated from that conventional terminology to clarify just where 
the separation property is or is not needed. Admittedly, most pairings arising naturally in 
applications are separated, but a few are not; see 28.7.b. 

28. 7. Examples. 
a. Let X = Y = {continuous functions from [0, 1 ] into lF} ,  and let (x, y) = J01 x(t)y(t)dt . 

Then (X, Y) is a separated pairing. 
b. Let X =  Y = {piecewise continuous functions from [0, 1 ] into lF} (defined as in 19.28) , 

and let (x, y) = J01 x(t)y(t)dt .  Then (X, Y) is a bilinear pairing, but it is not separated. 
For instance, if x is the characteristic function of a nonempty finite set , then elements 
of Y do not distinguish x from 0. 

c. If X is any linear space, and Y is any linear subspace of Lin( X, JF) = { linear functionals 
on X} ,  then the evaluation map (x, y) = y(x) defines a bilinear pairing. With this 
pairing, X separates points of Y, but Y does not necessarily separate points of X,  so 
( , ) is not necessarily a separated pairing. 

d. The preceding case arises, in particular, if X is a topological vector space and Y = X* 
i s its topological dual. We note several subcases: 

(i) If X is not Hausdorff, then X* does not separate points of X.  

(ii) If X is a Hausdorff locally convex space, then X* does separate points 
of X by (HB22 ) in 28.4, and so (X, X*) is a separated pairing. 

(iii) If X is a Hausdorff topological vector space that is not locally convex, 
then X* may or may not separate points of X. We saw examples of those 
two cases in 26. 17 and 26 . 16. 
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28.8. Definition. Let (X, Y) be a bilinear pairing. Let S be a collection of subsets of Y. 
Each element of X may be viewed as a mapping from Y into the scalar field lF, and so we 
may topologize X with the topology of uniform convergence on elements of S , as defined in 
18 .26 . We may refer to that as the S-topology. 

Proposition. Suppose that S satisfies these conditions: 
(i) Each set S E S is pointwise bounded, in the following sense: For each 

x E X, the set of scalars (x, S) = { (x, s) : s E S} is bounded. (This condition 
is reformulated in 28. 12 .b.) 

(i i ) S is directed by inclusion - i.e. , the union of any two members of S is con
tained in some member of S . 

(iii) If S E S and r i s a nonzero scalar, then rS E S. 
Then the S-topology makes X into a locally convex topological vector space. Furthermore, 
{Ps : S E S} is a gauge that determines that topology, and {Sr> : S E S} is a neighborhood 
base at 0 for that topology, where 

ps (x) = sup l (x, s) l ,  
sES 

Sr> = n {x E X :  l (x, s) l :::; 1 } .  
sES 

(The "polar" sets sr> will be studied further in 28.25 and thereafter. ) 

Hints : See 27.9.£, 27.9.h, and 27.9.c. 
Remarks. Condition (i) is essential for a TVS topology, as we saw in 27.9.£. Conditions (ii) 
and (iii) are not so essential, but they are quite convenient ; they yield the characterization 
of neighborhoods in terms of polars. Moreover, conditions (ii) and (iii) are not really 
restrictive: If (i) is satisfied, then we can replace S with a larger collection yielding the 
same S-topology and also satisfying (ii) and (iii ) .  We saw this for (ii) in 27.9.b; for (iii ) ,  
replace S with the collection 'J = {rS : r > 0 ,  S E S} . 

28.9. Preview and definitions. Following are four important cases of collections S satisfying 
the conditions of 28.8. 

a. If S = {finite subsets of Y} ,  then the S-topology is denoted by (j(X, Y) or, more briefly, 
(j or w. (The (] and w stand for "simple" and "weak." ) It has many names - it is 
called the weak topology, the ¥-topology, the ¥-weak topology, the topology 
of simple convergence, or the topology of pointwise convergence. 

In an analogous fashion, we define the (j(Y, X) topology on Y - that is, the topol
ogy on Y given by convergence on points of X. It makes Y into a topological vector 
space, so it can be used to specify certain kinds of subsets of Y - for instance, the 
dY, X)-compact sets. These are used to define some other topologies on X, described 
below: 

b. If S = {pointwise bounded subsets of Y} ,  where "pointwise bounded" is defined as 
in 28.8(i) , then the resulting S-topology is called the strong topology on X ;  it is 
denoted by {3( X, Y) . (The {3 stands for "bounded." ) Clearly, this collection S is the 
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largest collection of subsets of Y that satisfies the conditions of 28.8, so /3(X, Y) is the 
the strongest topology that can be constructed as in 28.8. 

c. Let S1 = { u(Y, X)-compact , convex subsets of Y} and S2 = { u(Y, X)-compact , con
vex, balanced subsets of Y} .  It can be shown that these two collections satisfy the 
requirements of 28.8 and that furthermore they yield the same S-topology. (We shall 
not prove those assertions since they are not needed later in this book.) This topology 
is called the Mackey topology and is denoted by T(X, Y) . 

d. Actually, every locally convex topology can be viewed as an S-topology, by taking S 
to be the equicontinuous subsets of X*; see 28.28. 

The set X equipped with the weak, strong, or Mackey topology may be denoted X, n Xf3 , 
or Xn respectively. The topological vector space Xu may also be denoted Xw in some 
contexts. It is easy to see that 

u (X, Y) C T(X, Y) C /3(X, Y) ,  

since a larger collection S yields a stronger (i .e . , larger) S-topology. 
This chapter is concerned primarily with the weak topology. The Mackey and strong 

topologies are important in distribution theory, but they will not be considered in great 
depth in this book; we introduce them mainly for the sake of some information they yield 
about the weak topology. (See also 28. 17.a.) 

28.10. Retopologizations. We now describe one of the most important ways to form 
S-topologies. 

Let X be a vector space. Let 1 be a topology that makes X into a topological vector 
space; let X-y denote the vector space X equipped with that given topology. (The 1 stands 
for "given," if you like.) Let (X-y)* be its dual - i.e. , the set of all continuous linear maps 
from X-y into F. 

Then (X, (X-y )*) is a bilinear pairing (not necessarily separated) . It can be used to 
define more topologies on X, most notably 

the weak topology u = u(X, (X-y ) * ) ,  

the strong topology /3 = /3(X, (X-y)* ) ,  and 

the Mackey topology T = T(X, (X-y )*) .  

In this context , we may call 1 the given topology or the original topology. (Some math
ematicians also call it the initial topology, but we prefer to reserve that term for the kind 
of topology introduced in 9 .16 . )  

Caution: Because the two topologies used most often are 1 and u, the beginner who 
studies only these two topologies may be tempted to call 1 the "strong" topology, to contrast 
it with the "weak" topology u. However, the term "strong" customarily refers to the 
topology /3(X, (X-y) *) .  The strong topology /3(X, (X-y)* ) is at least as strong as the given 
topology "( , and in some cases it is strictly stronger. 
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We now summarize the relations between these important topologies: If X'Y is a TVS 
with dual (X'Y ) * ,  then 

a(X, (X"� )* ) C "( C T(X, (X"' )* ) C ;J(X, (X"' )* ) . 

These inclusions are justified by conclusions in 28. 13.b and 28.30. 

WEAK TOPOLOGIES 

28.11 .  Characterizations of the weak topology. Let (X, Y) be a bilinear pairing. As we 
stated in 28.9.a, the u(X, Y) topology on X is the topology of pointwise convergence on 
members of Y .  Thus, a net (xa ) converges to a limit x in the topological space (X, a(X, Y) )  
i f  and only i f  (xa , y )  ---+ (x, y )  for each y E Y. This topology can also be characterized in 
other ways: 

a. a(X, Y) is the initial topology (in the sense of 9 . 15 , 9 . 16 , and 15.24) generated by 
elements of Y. In other words, it is the weakest topology that makes all the mappings 
( · , y) : X ---+ lF continuous. 

b. One gauge that determines the topology a(X, Y) is the collection of seminorms {py : 
y E Y} ,  where Py (x) = l (x , y) l .  

c .  A neighborhood subbasis at 0 for this topology is given by the sets 

Sy (E) = {x E X :  l (x , y) l :::; E} , for y E Y, E > 0. 

That is, a set is a neighborhood of 0 in this topology if and only if that set contains 
the intersection of finitely many sets of the form Sy (E) , for various y's and E's. 

28.12. Basic properties of the weak topology. Let (X, Y) be a bilinear pairing, and let 
a =  a(X, Y) be the resulting weak topology. Show that 

a. Xa is a locally convex topological vector space. 
b. A set B � X  is weakly bounded (i.e. , bounded in the topological vector space Xa , in the 

sense of 27.2) if and only if each y in Y is a bounded function on B - that is, if and only 
if supbEB I (b, y) I < oo for each y E Y. (Thus, the "bounded pointwise" requirement 
introduced in 28.8(i) is the requirement that each S E S be a(Y, X)-bounded. ) 

c. Every member of Y i s a continuous linear map from Xa into lF. Thus, y f--+ ( · , y)  i s a 
linear mapping from Y into (X a)* . 

d. That mapping y f--+ ( - , y) ,  from Y into (Xa)* ,  i s surjective. That is, every continuous 
linear map A : Xa ---+ lF is represented by at least one member of Y.  

Hints : {x E X  : IA (x) l :::; 1} i s a a-neighborhood of 0. Use 28. 1 1 .c to show that 
there exists a finite set F <;;; Y such that nyEF Ker(y) <;;; Ker(A) . By the Common 
Kernel Lemma 1 1 . 16, we have A E span(F). 
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e. Suppose X separates points of Y. Then the mapping y f-+ ( - , y) from Y into (Xu)* ,  
described in the last two exercises , i s also injective. Thus i t i s a linear bijection. 
Allowing a change of notation, we therefore have (Xu ) * = Y .  

f. X a is Hausdorff if and only i f  Y separates points of X.  In that case, X may be viewed 
as a subset of Lin(Y, JF) , as explained in 28.6. Then JFY <;;; Lin(Y, JF) <;;; JFY . Show 
that the topology O"(X, Y) is the relative topology on X determined by the product 
topology on JFY . 

28.13. Basic properties of weak retopologizations. Let X be a vector space; let X1 be a 
TVS formed by equipping that vector space with some given topology 1; let (X1 ) *  be the 
resulting dual space; let O" = O"(X, (X,)* )  be the resulting weak topology; let Xu be the 
resulting TVS -- that is, the weak retopologization of X1 , as discussed in 28 . 10. Then: 

a. The weak topology O"(X, (X1 )* )  is a locally convex topology - whether the given 
topology 1 is locally convex or not. 

b. The weak topology O" has fewer open sets and fewer closed sets than the original 
topology 1 - (Here we use "fewer" in the extended sense of mathematics - i.e. , meaning 
"fewer or as many." ) 

In brief, every weakly open set is open, and every weakly closed set is closed. 
c. For any set S <;;; X,  we have 

O"-int(S) <;;; 1-int(S) <;;; S <;;; 1-cl(S) <;;; O"-cl(S) . 

d. The weak topology has more ( i .e . , at least as many) compact sets, bounded sets, and 
convergent nets than the original topology. Thus, every compact set is weakly compact, 
and every bounded set is weakly bounded, and 

1 u 
X, ----+ X Xn ----+ X .  

Compact sets are often used in existence proofs; that is one of our main reasons for 
studying weak topologies. 

e. By 28. 12.d, the original topology 1 and the weak topology O" have the same set X* of 
continuous linear functionals. That is, (X1 ) *  = (X a )* .  Therefore, in discussions of 
the original and weak topologies, we may refer to the dual simply as X *. 

Hence O"(X, (Xa)* )  = O"(X, (X, ) * ) .  That is, the weak topology of the weak topology 
is the weak topology. Thus, repeating this weak retopologization procedure cannot get 
us another, different , still weaker topology. 

We may say that a topological vector space X1 already has the weak topology if 
X1 = X(T - that is, if 1 = O"(X, (X, )* ) .  

28.14. Weak retopologization of locally convex spaces. Additional conclusions can be drawn 
if the original topology is locally convex. Let X1 be a locally convex topological vector space 
and let Xa be its weak retopologization. Then: 

a. We have this principle, which is another equivalent of the Hahn-Banach Theorem: 
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(HB24) Weak closures. In a locally convex space, every !'-closed, convex 
set is o--closed. In brief, every closed convex set is weakly closed. 

For a proof, refer to 28.4; it is easy to see that (HB20) =:;. (HB24) =:;. (HB21 ) .  
Remark. (HB24) will be used to prove the next few results below. The Hahn

Banach Theorem and its consequences are needed frequently in duality theory, and 
will be usyd heavily throughout the remainder of this chapter. Hereafter we shall use 
the Hahn-Banach Theorem freely; we shall discontinue our practice of keeping track of 
its uses and its equivalents. 

b. Let S be a convex subset of X. Then o--cl(S) = 1-cl(S) . 
c. A convex subset of X is closed if and only if it is weakly closed; a linear subspace of 

X is closed if and only if it is weakly closed; a linear subspace of X is dense in X if 
and only if it is weakly dense; X is separable if and only if it is weakly separable. 

d. Every weakly bounded set is bounded. Thus, Xy and Xa have the same bounded sets. 
(Hint :  27.6 . ) 

e. Any weakly convergent sequence is bounded. 

28.15. Let X be a TVS with scalar field lF, and let X* be its dual - i.e. , the vector space 
of continuous linear maps from X into lF. One of the most important topologies on X* is 
the o-(X*, X) topology -- i .e . , the topology of pointwise convergence on members of X. It 

* is called the weak-star topology (or weak-* topology) ; it is often abbreviated as X * ' w 
We caution the reader against referring to "the weak-star topology on Y" since we may 

have Y = X* for more than one choice of X. Different choices of X may yield the same set 
Y = X* but may nevertheless yield different weak-star topologies on that set. 

Here are some basic properties of the weak-star topology: 
* a. X * is a locally convex space. w 
* b. X * is Hausdorff, whether X is Hausdorff or not. (Indeed, X separates the points 
w 

* of X* , by definition of the set X*. ) The topology on X * is the relative topology w 
determined by viewing X* as a subset of JFX , when that product is equipped with the 
product topology. 

* c. Each x E X determines a continuous linear map Ax : X * ----+ lF, by the rule Ax (!) = 
w 

f ( x) .  (This is the evaluation map at x. )  Furthermore, every continuous linear 
* . 

functional on X * can be written in this form. (Hint : 28. 12 .d.) Thus x f----+ Ax is a 
w 

* surjective linear map from X onto (X * ) * . w 

If x* separates the points of X' then the mapping X f----+ Ax is also injective, so 
* (allowing a change of notation) we have (X * ) * = X. That is, X is equal to the dual 
w 

of its own weak dual. 
Remarks. What about other retopologizations besides the weak one? A locally 

* convex space XI' is called semirefiexive if (X * ) *  and X are equal as sets; here 
(3(X ,X) 
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(3 indicates the strong topology. The space is reflexive if in addition 1 = (3(X, X*) -
that is, if the strong dual of the strong dual of (X, r) is equal to (X, r) · We shall not 
study reflexivity in such a general setting; in 28.41 we shall study reflexivity in the 
more specialized setting of normed spaces. 

WEAK TOPOLOGIES OF NORMED SPACES 

28.16. Let (X, I I  I I )  be a normed space over the scalar field lF. The usual topology on X 
is the norm topology - i.e . , the metric topology given by the metric d(x, y) = l lx - Yl l - We 
use it to define continuous linear functionals ,\ : X ---> lF; they make up the dual X*. We 
use that dual to define the weak topology a ( X, X*) as in 28. 10 . 

The norm and weak topologies are the two topologies used most often on a normed 
vector space. The weak topology is weaker than the norm topology. Some of the exercises 
in 28. 1 8  below show that if X is infinite-dimensional, then the weak topology is strictly 
weaker than the norm topology. 

28.17. Exercises. Let (X, II I I ) be a normed space. Show that 
a. The norm topology on X is the same as the strong topology (3(X, X*) and the Mackey 

topology r(X, X*) ,  defined in 28. 10 . 
b. The norm topology on X i s a locally convex topology. Hence X and Xu have the same 

dual, the same bounded sets, and the same closed convex sets. 
c. The weak topology a(X, X*) is a Hausdorff, locally convex topology on X. 

d. I f (xa ) i s a net converging weakly to some limit x, then l lx l l ::; lim info:_,oo l lxa l l · (This 
result should not be confused with 28. 14.e.) 

e. If X is finite dimensional, then the weak topology and the norm topology on X are 
identical. Hint: 27.15. 

28.18. Proposition. Suppose (X, I I  I I ) is an infinite dimensional normed space. Then 
there exists a directed set 9"' and a net ( x F : F E 9"') in X such that x F ---> 0 in the weak 
topology but l lxF I I  ---> oo. 
Hints : We know X* i s infinite-dimensional, by Kottman's Theorem (23.22) . Let H be a 
vector basis for X*; then H is an infinite set. Let 9"' = {finite subsets of H} ,  directed by 
inclusion. For each F E 9"', choose some v E H \ F; then use the Common Kernel Lemma 
( 1 1 . 16)(Qk) to find some vector in X that vanishes on F but not on v. Let Xp be a suitable 
scalar multiple of that vector, chosen so that l l xF I I  2: card( F). 

Corollaries. Suppose (X, I I I I ) is an infinite dimensional normed space. Then: 
a. The weak closure of the unit sphere S =  {x E X :  l l x l l  = 1 }  is the unit ball B = {x E 

X :  l lx l l  :S: 1 } .  
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Hints : Suppose l i z  I I  < 1 .  Choose a net (xF) as in the preceding proposition. Let 
ZF = z + rFXF for some real number rF ; show that a suitable choice of rF yields 
ZF E S and l rF I :::; ( l

l�!� l l ) ----+ 0. Hence (zF) is a net in S converging weakly to z. 

b. If S c:;; X is bounded, then a-int (S) = 0. That is , in the weak topology, any bounded 
set has empty interior. 

Hints : Suppose p is in the weak interior of S. Replacing S with S - p, we may 
assume p = 0. There is a net that converges weakly to 0 but stays out of the bounded 
set S. 

c. The topology of X a is not metrizable. (Of course, certain small subsets of X a ,  equipped 
with their relative topologies, may be metrizable.) 

Hint: If d is a metric for that topology, use the preceding proposition to find a 
sequence (xn) satisfying d(O, Xn ) < 1/n and l lxn I I  > n. This contradicts 28.14.e. 

28.19. Proposition. Let X be a locally uniformly convex Banach space - see 22.38. Let 
(xa ) be a net in X, and also let X00 E X. Then the following are equivalent: 

(A) l lxa - Xoo ll ----+ 0. 
(B) Xa ----+ Xoo weakly and lim sup<> l l xa l l  ::=; l l xoo l l · 

Proof The proof of (A) =? (B) is trivial. Assume (B) ; we shall prove (A). Note that 
Xa ----+ X00 weakly implies l lxoo l l :::; lim infa l lxa l l , and thus l lxa l l ----+ l lxoo l l · We may assume 
X00 ::/:- 0  (why?) , and that all the Xa 's are also nonzero (why?) . Replacing Xa with Xa/ l lxa l l ,  
we may assume l lxa l l  = 1 for all a and l lxoo l l  = 1 (explain) . By the Hahn-Banach Theorem 
(HB8) in 23.18, there exists some >. E X* such that I I A I I  = >.(x00) = 1 .  Then 2 2: l lxa + 
Xoo ll 2: 1>- (xa + Xoo) l ----+ 2. Thus l lxa + Xoo ll ----+ 2. By local uniform convexity, Xa ----+ X00 • 

28.20. Recall from 23. 10 that the dual of the Banach space £1 is £00 • Hence a net (xa ) 
converges weakly in £1 to a limit X00 if and only if 2.::::;:: 1 Xa,jZj ----+ 2.::::;:: 1 X00,jZj for each 
z = (z1 , Z2 , Z3 , . . .  ) in £00 • 

The space £1 has an unusual property, not shared by most Banach spaces. 

Schur's Theorem. Let (xn) be a sequence converging to a limit X00 in the weak topology 
of f! 1 .  Then also Xn ----+ X00 in the norm topology. 

Remarks. We emphasize that Schur's Theorem applies to only to sequences, not to nets. 
That is clear from 28.18 , for instance. 

The proof below is direct. Some mathematicians may prefer a proof using Baire category, 
such as that given by Conway [1969] . 

Outline of proof of theorem. Assume that Xn ----+ X00 weakly but not in norm; we shall obtain 
a contradiction. Say Xn = ( Xn, 1 , Xn,2 , Xn,3 , . . .  ) . Then: 

a. We may assume X00 = 0. (Replace each Xn with Xn - X00 .) 

b. We may assume l lxn l l = 1 for all n. Hints : The sequence ( l lxn l l : n E w) is bounded 
and does not converge to 0. Replacing (xn ) with a subsequence, we may assume that 
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the numbers l l xn II are all positive and converge to some positive number c. Since 
the weak topology makes 1\ a topological vector space, we may replace each Xn with 
Xn/ l lxn l l  (explain) . 

c. For each finite set S <;;: N, we have I:;jES lxn,j I --+ 0 as n --+ oo. 

d. Replacing (xn) with a subsequence, show that there exist disjoint finite sets 5 ( 1 ) ,  5(2) , 
5(3) , . . .  contained in N such that I:;jES(n) lxn,j l > 2/3. 

e. There exists some z E £00 such that l l z l loo = 1 and l zj Xn,j l = l xn ,j l whenever j E S(n) . 
f. I I:;�1 Xn .jZj l > 1 /3 for all n, contradicting the fact that Xn --+  X00 weakly. 

28.21 .  Let [a, b] be a compact interval in JR, and let C[a, b] = {continuous scalar-valued 
functions on [a, b] } ;  this is a Banach space with the sup norm. We emphasize that the 
following result is for sequences, not for nets. 
Proposition. In C[a, b] , a sequence Un )  converges weakly to a limit f if and only if the 
sequence Un )  is uniformly bounded and fn --+ f pointwise on [a, b] . 
Proof. If fn --+ f weakly, then Un) is bounded by 28. 14 .e and each pointwise evalua
tion mapping g f---+ g(t) is a continuous linear functional on C[a, b] , so fn --+ f pointwise. 
Conversely, suppose fn --+ f pointwise and boundedly. By 29.34, each continuous linear 
functional on C[a, b] is represented by a scalar-valued measure fJ on the Borel sets; it suf
fices to show that J fn dfJ --+ J f dfJ. If the scalar field is C, we may consider the real and 
complex parts of {J; thus it suffices to consider real-valued f.L· By the Jordan Decomposition, 
it suffices to consider finite positive measures f-L· Then J fn dtJ --+ J f dtJ by the Dominated 
Convergence Theorem (22.29) . 

28.22. When no topology is specified for X*, then X* is generally understood to be 
equipped with its norm topology, using the operator norm as in 23.7. That topology on X* 
is usually used to define the second dual - i.e., the vector space X** .  

In addition to the norm topology, two other topologies on X* that are occasionally 
useful are the weak topology O"(X*, X**) and the weak-star topology O"(X*, X) .  
Exercises. 

a. The weak topology O"(X*, X**) and the weak-star topology O"(X*, X)  are Hausdorff, 
locally convex topologies on X*. The weak-star topology is weaker than (or equal to) 
the weak topology. (In 28.41 (B ) ,  we shall consider the conditions under which these 
two topologies are equal. ) 

b. The norm-closed unit ball, {v E X* : l l v l l  ::; 1 } ,  i s closed in both the weak and 
weak-star topologies. 

28.23. Example. Let X = c0 = {sequences of scalars converging to 0} ; we have seen in 
23. 10 that X* = t\ and X** = 1!00 . 

Recall from 2 1 . 1 l .b that a probability measure on N is a sequence (pn ) with Pn 2 0 for 
all n and I:;�=l Pn = 1 .  Let P be the set of all such probability measures. Show that P is 
a closed convex subset of £1 , when that space is given its norm topology. Hence P is also 
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weakly closed - i.e. , closed in the a(£1 , £00) topology - by 28. 14.a. 
However, P is not weak-star closed - that is, P is not closed in the a(£1 , co ) topology. 

Indeed, we have 0 tf- P, but the sequence 

( 1 ,  0, 0, 0, 0, 0 0 . ) ,  (0 ,  1 ,  0, 0 , 0, 0 0 . ) ,  (0, 0 ,  1 ,  0 , 0 ,  0 0 . ) , (0, 0, 0, 1 ,  0, 0 0 . ) , 
is easily shown to be weak-star convergent to 0. 

28.24. As we have shown above, a normed space, equipped with a weak or weak-star 
topology, generally is not metrizable. Nevertheless, certain subsets of that nonmetrizable 
TVS may be metrizable, when equipped with the relative topology. Here are two particularly 
important special cases. Let V be a normed space. 

a. If V is separable and <I> is a norm-bounded subset of V*, then the relative topology on 
<I> determined by the weak-star topology is metrizable. 

b. If V* is separable and <I> is a norm-bounded subset of V, then the relative topology on 
<I> determined by the weak topology is metrizable. 

Hints : Show that convergence in <I>, pointwise on the separable space mentioned, is equiv
alent to convergence pointwise on some dense subset of that separable space, since <I> is 
bounded. Convergence on a countable set can be determined by a countable collection of 
seminorms. 

POLAR ARITHMETIC AND EQUICONTINUOUS SETS 

28.25. Definition. Let \X, Y) be a bilinear pairing. For each set R � X, we define the 
polar of R to be the set 

R<J {y E Y :  l (x, y) l :::::: 1 for all x E R}. 

Similarly, we may define the polar of any set S � Y to be the set 

5r> {x E X :  l (x, y) l ::::; 1 for all y E 5} . 

These operations are a special case of 4. 10(D). 
Caution: Notations differ. For instance, some mathematicians call the objects above the 

absolute polars of R and S, and use Re(x, y) instead of I (x, y) I to define "polar." Moreover, 
among many mathematicians, R<l and sr> are denoted by R0 and 5°; we have introduced" 
separate notations to reduce confusion among beginners. 

28.26. Elementary properties. We state results mainly for <l; analogous results obviously 
hold for 1> .  

a .  0<J = Y, X<l = {0 } ,  R<lr> :::2 R,  and R � S =;. R<l :::2 sr> . 
b. (rR) <l = r- 1 (R<l ) ,  for any real number r > 0. 
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c. If (X, I I I I ) is a normed space and (Y, II I I ) is its dual, then the polar of the closed 
ball {x E X : l lx l l  :::; r} is the closed ball {y E Y : I I Y I I  :::; r -

1 } ,  for any real number 
r > 0. In particular, the polar of the closed unit ball is the closed unit ball. 

d. R<J is a a(Y, X)-closed, convex, balanced subset of Y, for any set R <;:; X. 
e. R<l i s  absorbing in Y - hence a barrel in a(Y, X) - if and only i f R i s  a(X, Y)-bounded 

in X. 
f. Let R <;:; X, and let R1 be its a(X, Y)-closed, convex, balanced hull. Then R<l = R� . 

g. Let X be a topological vector space with topology 1 ;  use the bilinear pairing (X, X*) .  
Then a set V <;:; X* is equicontinuous (from X, to F )  i f  and only i f  Vl> is a /
neighborhood of 0 in X .  

h .  Let X be a topological vector space with topology r .  Let V <;:; X* be equicontin
uous (from X1 to F) . Then the a(X* , X)-closed convex balanced hull of V is also 
equicontinuous. (Proof Immediate from the preceding two exercises. ) 

28.27. The Bipolar Theorem. S<ll> is the a (X, Y)-closed , convex, balanced hull of S 
- that is, the smallest a(X, Y)-closed, convex, balanced set containing S. In particular, 
S<ll> = S if and only if S is a(X, Y)-closed, convex, and balanced. 

Proof Let C be the a(X, Y)-closed, convex, balanced hull of S. Then S <;:; C <;:; S<ll> .  
Suppose x0 E S<ll> \ C; we shall obtain a contradiction. Consider X as a locally convex 
space equipped with the a(X, Y) topology. By the Hahn-Banach Separation Theorem 
(HB20) in 28.4 there is some Yo E Y that satisfies supxEC Re(x, Yo) < Re(xo , Yo ) .  (We may 
omit the "Re" if the scalar field is JR.) Since C is balanced, the left side of this inequality 
equals supxEC l (x , y0) 1 . Replacing y0 with cyo for some suitable scalar c, we may assume 
that 

sup l (x, Yo ) l  < 1 < l (xo , Yo ) l . xEC 
Then y0 E C<l <;:; S<l ,  hence x0 E S<ll> <;:; {y0 }l> , a contradiction (explain) .  

28.28. Proposition: the original topology is an S- topology. Let X be a locally convex space. 
Then the topology of X is equal to the topology of uniform convergence on equicontinuous 
subsets of X*; it is also equal to the topology of uniform convergence on a( X*, X)-closed, 
convex, balanced equicontinuous subsets of X*. (Here a subset of X* is considered equicon
tinuous if it is equicontinuous as a collection of maps from X with the given topology to 
the scalar field.) 

Proof Let F be the scalar field. Let S = {equicontinuous subsets of X*}. Refer to the 
characterization of neighborhoods of 0 given in 28.8. If S E S, then Sl> is a /-neighborhood 
of 0, by 28.26.g. Conversely, if N is a /-neighborhood of 0, then N contains a set B that is 
a 1-closed, convex, balanced neighborhood of 0, by 26.27.d. Then B is also weakly closed, 
by 28. 14.a. By the Bipolar Theorem (28.27) , then, B = B<ll> . By 28.26.g, the set S = B<l 
i s equicontinuous, hence belongs to S, and N 2 S'> . 

Finally, note that the a(X*, X)-closed, convex, balanced hull of any member of S is also 
a member of S, by 28.26.h. 
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28.29. Banach-Alaoglu-Bourbaki Theorems. The Ultrafilter Principle, introduced in 
6.32 and studied further especially in 17.22, is equivalent to the following principles: 

(UF26) Let X be a topological vector space with scalar field lF. Let V be 
an equicontinuous set of maps from X into lF. Then V is relatively compact 
in a(X*, X) - that is, V is contained in a a(X* , X)-compact set. (Therefore 
every equicontinuous, a(X*, X)-closed set is a( X* , X)-compact . ) 

(UF27) Let X be a topological vector space with topology 1 and with dual 
X* . If S is a neighborhood of 0 in X, then S<J is a( X*, X)-compact , where 
polars are with respect to the bilinear pairing (X, X*) .  

(UF28) Let (X, I I  I I ) be a normed space with scalar field lF .  Let X* be its 
dual, and let V be the closed unit ball of that dual - that is, {v E X* : l l v l l ::::; 1 } .  
Then V is a(X* , X)-compact. 

For brevity in the proofs, let the a( X* , X) topology be denoted by w* .  The reader may 
find it helpful to review 17 .15 . The equivalence of these principles with other forms of 
UF was first announced, without proof, by Rubin and Scott [1954] ; our proof is based on 
Luxemburg [ 1969] . 

Proof of (UF19) :::} (UF26) . The w* topology is the relative topology induced on X* 
by considering that set as a subset of JFX with the product topology. The closure of an 
equicontinuous set is equicontinuous, as we noted in 18.33.a. For each x E X, the set 
V(x) = { (x , v) : v E V} is a bounded subset of lF, since V is equicontinuous. Hence cl[V(x)] 
is a compact subset of lF. Then V is contained in the set IlxEX cl[V(x)] , which is compact 
by (UF19) .  Therefore cl(V) is itself a compact subset of JFX . It remains to show that cl(V) 
is actually a subset of X*. Any pointwise limit of linear functions is linear, so each member 
of cl(V) is linear. Also, since V is equicontinuous, any pointwise limit of members of V is 
continuous. This completes the proof. 

Proof of (UF26) :::} (UF27) . By 28.26.g we know that S<J is an equicontinuous set of maps 
from X into JF. By 28.26.d we know S<J is a(X*, X)-closed. 

Proof of (UF27) :::} (UF28) . V = S<J where S is the closed unit ball of X . 

Proof of (UF28) :::} (UF 1 ) .  Let n be a nonempty set , and let J' be a proper filter of 
subsets of fl; we wish to show that J' is contained in an ultrafilter. 

Let X =  B(fl) = {bounded functions from f2 into IR} ; this is a real Banach space when 
equipped with the sup norm. Let V be the closed unit ball of the dual of X. There is a 
natural injective mapping r.p :  n ----7 V, as follows: 'Pw (x) = x(w) for w E n  and X E X. Thus 
we may view n as a  subset of V; then members of J' are subsets of V. 

Let X = { w* -cl( F) : F E J'} . Members of X are subsets of V, since V is w* -closed. 
Hence members of X are w*-compact . The collection X has the finite intersection property 
since J' does. Therefore X has nonempty intersection. Choose some v0 in the intersection of 
X. Then v0 E V, so vo is a linear map from X into IR with l lvo l l  ::::; 1 .  Define fJ :  :P(fl) ----+ IR 
by taking fJ(S) = vo( 1 s ) .  
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Fix any F E �. Since v E w*-cl(F), there is some net (w(a) : a E A) in F such that 
* 

'Pw(a) � Vo . Thus, for each x E X, we have x(w(a)) ----> va (x) . 
In particular, for each S E P(O) we have p, (S) = vo ( 1s )  = limaEA 1 s (w (a) ) .  Then p, is 

a charge on the measurable space (0,  P(O) ) ,  and its range is contained in {0, 1 }  since a net 
of Os and 1s can only have limit 0 or 1 .  Moreover, p, (F) = limaEA 1F (w (a)) = 1 .  

The preceding conclusions about p, are valid for each F E �; in particular p,(O) = 1 .  Thus 
p, is a two-valued probability charge that takes the value 1 on �' so p, is the characteristic 
function of an ultrafilter that contains �. (This proof is modified from Luxemburg [1969] . )  
Remark. The Ultrafilter Principle and its consequences are needed frequently in duality 
theory and will be used heavily throughout the remainder of this chapter. Hereafter we 
shall use the Ultrafilter Principle freely; we shall discontinue our past practice of keeping 
track of its uses and its equivalents. 

28.30. Let X be a topological vector space with topology 1 and with dual X*. Consider 
polars with respect to the bilinear pairing (X, X*) .  Let S <;;;; X*. We consider some 
conditions that might be satisfied by S: 

(A) S is equicontinuous from X1 to the scalar field IF - that is , sr> is a "!-
neighborhood of 0. 

(B) S is contained in some a-( X*, X)-compact, convex, balanced subset of X*. 

(C) S is contained in some u(X* , X)-compact subset of X*. 

(D) S is u(X* , X)-bounded; that is, Sf> is absorbing. 

Proposition. In any TVS X1 we have (A) =? (B) =? (C) =? (D) . 
Moreover, suppose X1 is a locally convex space. Then X, is barrelled if and only if (D) 

=? (A) . In other words, a locally convex space X is barrelled if and only if it satisfies this 
condition (compare with 27.27(B5) ) :  

(B5') Another Uniform Boundedness Property. Let <I> be a collection of 
continuous linear maps from X into the scalar field that is bounded pointwise. 
Then <I> is equicontinuous . 

Proof For (A) =? (B) ,  note that S <;;;; sr><J ,  and use 28.26.d and (UF27) in 28 .29. The 
implication (B) =? (C) is trivial. The implication (C) =? (D) is just 27.3.c. 

To show that (D) =? (A) in any barrelled space, note that sr> is a a-( X, X*)-closed, 
convex, balanced subset of Y; hence it is also X1-closed (see 28. 13.b) . If sr> is absorbing, 
then it is a "(-barrel , hence a "(-neighborhood of 0 .  

On the other hand, suppose that (D) =? (A ) ;  let us show X1 i s barrelled. Let R <;;;; X 
be a barrel - i.e. , a "(-closed, convex, balanced, absorbing set; we wish to show R is a 
"(-neighborhood of 0. Since R is "(-closed and convex, it is also weakly closed - i.e. , it is 
o-(X, X*)-closed; see 28. 14.a. Hence R = R<l r> . Let S =  R<l ; then R = sr> . Now apply (D) 
'* (A) . 
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28.31. Orlicz-Pettis Theorem. Let 2:::::;:1 Xj be a series in a Banach space (X, II I I ) .  
Then 2:::::;:1 Xj i s  unconditionally convergent (as in conditions (A) through (F) of 23 .26) if 
and only if 
(G) Each subseries 2:::::�1 XJk is weakly convergent. That is, if S � N, then there exists 

some Ys E X such that the series I::JES Xj converges weakly to ys . 

Proof Obviously (F) '* (G) . We shall prove (G) '* (C) . We may assume that the scalar 
field is JR. For any f E X*, the subseries 

and 

are both convergent; hence 2:::::;:1 l f(xJ ) I  < oo. Thus V : f f-+ {f (xJ ) : j E N} defines a 
linear map V :  X* -+ C1 . 

To show that V is continuous, we shall use the Closed Graph Theorem (27.28.c) : Suppose 
that j(k) -+ f in X* and V (j(k) )  -+ (cj : j E N) in C1 , as k -+  oo. For fixed j ,  the former 
hypothesis yields J(k) (xJ ) -+ f(xJ ) ,  while the latter hypothesis yields J(k) (xj ) -+ CJ . Thus 
CJ = f(xJ ) ,  V has closed graph, and therefore V is continuous. 

Let U be the closed unit ball of X*; then V (U) is a bounded subset of C1 . 
We wish to show that V(U) is relatively compact . Let (uk ) be any sequence in U ; we 

wish to show that (V(uk) :  k = 1 , 2 , 3 , . . .  ) has a subsequence that is convergent in C1 . By 
Schur's Theorem (28.20) , it suffices to show that (V(uk)) has a subsequence that is weakly 
convergent in c 1 .  

Let X0 be the closed span of the sequence (xJ ) ; then X0 is separable. Note that X0 is 
also weakly closed; hence Ys E X0 for each set S � N. 

For each k, let ih be the restriction of uk to X0 ; thus Uk is a member of the closed 
unit ball of X0* . By 28.24.a and (UF28) in 28.29, that closed unit ball is a compact 
metrizable space, when equipped with the a(X0* ,  X0) topology. Therefore, the sequence 
(uk : k = 1 ,  2, 3, . . .  ) has a subsequence (uk(p) : p = 1 ,  2, 3, . . .  ) that is a(X0* ,  X)-convergent 
to some limit u0 in that closed unit ball. That is, uk(p) (y) -+ u0 (y) for each y in X. In 
particular, uk(p) (Ys ) -+ uo (Ys) for each S � N. 

By the Hahn-Banach Theorem (HB7) in 23. 18, we can extend the functional u0 : X0 -+ IR 
to a continuous linear functional u0 : X -+ IR with the same norm; then u0 E U. 

It suffices to show that the corresponding subsequence (V(uk(p) ) : p = 1 ,  2, 3, . . .  ) con
verges weakly in C 1 to V ( u0 ) . That is, we shall show that for each cp E C00 , we have 

as p -+ oo. 

It suffices to show (*) for all cp in a dense subset of C00 , since the V(uk(p) ) 's are bounded. 
By linearity, it suffices to show ( *) for all cp in a set whose span is dense in C00 • One such 
set is the set of all characteristic functions of subsets of N; thus it suffices to show ( *) 
whenever cp = 1s for some S � N. Unwinding the notation, for any u E U we find that 
( l s ,  V (u)) = I::jES u (xj )  = u (ys ) = u(ys ) ,  where u is the restriction of u to Xo . Thus 

( ls ,  V(uk(p) ) J = uk(p) (Ys )  -+ uo (Ys) = ( ls ,  V (uo)) 
when p -+  oo. This completes the proof. 
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DUALS OF PRODUCT SPACES 

28.32. Lemma. The dual of a product of TVS's is (algebraically) equal to the external 
direct sum of their duals; that is, (ILEA X.x) * = U.xEA (X.x * ) .  

In more detail, let F be the scalar field. For each ,\ E A, let X.x be a topological vector 
space, with dual X.x * = {continuous linear maps from X.x into F} . Let P = ILEA X.x be 
the product topological vector space. Let Q = U.xEA  (X.x * )  be the external direct sum of 
the duals - i.e. , Q consists of those functions q E ILEA (X.x *) such that q_x = 0 for all 
but finitely many .A's. For each q E Q, define a corresponding mapping q : P ----+ F by 
q(p) = L.XEA  q.x (P.x ) = L.xEA q_x (n.x (p)) ;  here 7r_x : P ----+ X.x is the .Xth coordinate projection. 
Then the mapping q f--+ q is an algebraic isomorphism (i.e. , a linear bijection) from Q onto 
P*. (We do not consider any topologies on Q or P* here.) 

Hints : Each mapping P � X.x � F is a composition of two continuous maps and there
fore continuous; thus each q is continuous. Purely algebraic considerations (i .e . , without 
regard to topology) show that the mapping q is linear and that the mapping q f--+ q is linear 
and injective. It suffices to show that this mapping is also surjective. Let any 'lj; E P* be 
given. 

For each ,\ E A there is a continuous linear injection t.x : X.x ----+ P, defined by taking 
t_x (x) to be the vector whose .Xth coordinate is x and whose other coordinates are all 0. 
The composition q_x : X.x � P _Y!_, F is a continuous linear functional on X.x , and thus a 
member of X*. 

Since 'lj; : P ----+ F i s continuous, the set N = {p E P : l'l/J(p) I < 1 }  i s a neighborhood of 0 
in P. By the basic properties of the product topology (see 15.24.a) , N ::2 ILEA N.x where 
each N.x is a neighborhood of 0 in X.x and N.x = X.x for all but finitely many .A's. Say we 
have N_x1 � X_x1 for j = 1 ,  2, . . . , m. If p E P is a point that vanishes in all the coordinates 
.-\1 , .-\2 , . . . , Am, then rp E N for every scalar r, and therefore 'lj;(p) = 0. Thus, for any 
p E P, the value of 'lj; (p) only depends on the coordinates P.x 1 , p _x2 , . • • , P.Xm . It follows that 
'l/J(p) = q.x, (p_x, ) + Q.x2 (p.xJ + . . · + q_xm (p_x,J . This completes the proof. 

28.33. A nonmetrizable example. Let F be the scalar field. Then FN is the space of all 
sequences of scalars, and UN F = {y E FN : YJ = 0 for all but finitely many j } . These two 
spaces have a natural separated pairing: (x, y) = 2:::;: 1 Xj Yj . 

When equipped with the product topology, FN is a Fnkhet space, as discussed in 26. 7, 
26.20.a, and thereafter. By 28.32, its dual is UN F. Conversely, a natural topology for UN F 
is the inductive limit topology, making it an LF space, as discussed in 27.42; then it is 
barrelled but not metrizable. We shall now show that its dual is FN . 

First , consider any x E FN . It defines a linear functional ( x, ·) : UN F ----+ F by the bilinear 
pairing defined above. This linear functional is continuous on each of the finite-dimensional 
subspaces Sn = {y E FN : Yj = 0 for all j > n } ;  hence it is continuous on UN F. 

Conversely, let 'lj; be a continuous linear functional on UN F. Define Xj = 'lj;(ej ) , where 
ej = (0, 0, . . .  , 0, 1 ,  0, 0, . . .  ) is the sequence with 1 in the jth place and Os elsewhere. Then 
(x, · ) = 'lj; ( - )  on UN F. 
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28.34. Proposition. The weak topology on a product is the product of the weak topologies. 
In more detail, let P = TisES Ys be a product of topological vector spaces, and let P 

have the resulting product topology, thus making it a TVS also. Let (Ys )a and Pa be the 
spaces Ys and P equipped with their weak topologies, respectively. Then the topology of 
Pa is equal to the product topology on f15Eg ((Ys)a ) ·  

Proof. Let 1rs : P ----+ Ys be the Sth coordinate projection. Recall from 28.32 that P* = 
U5Eg (Ys* ) .  Let (Pa ) be a net in P ,  and let p E P. Then 

Pa ----+ P in Pw 1/J(Pa - p) ----+ 0 in F for each 1/J E P* 
n 

<===? L 'Pj (7rsJ (Pa - p)) ----+ 0 for each finite set 
j= l  

{ S 1 , S2 , . . .  , Sn} <:;; S and each collection of 
functionals lf?l E (Ys, )* ,  . . .  , lf?n E (Ysn )* 

If? (7rs (Pa - p)) ----+ 0 for each S E S and 
each If? E (Ys)*  

<===? 7rs (Pa ) ----+ 7rs (p) in (Ys)a  for each S E S 
<===? Pa ----+ P in IT ( (Ys)w ) · 

SES 

28.35. Theorem on embedding an LCS in a product of Banach spaces. Let X 
be a Hausdorff locally convex space. It is sometimes convenient to represent X as a linear 
subspace of a product of Banach spaces Bs , as follows: 

Let F be the scalar field, and let X* be the dual of X. Let S be the collection of all 
equicontinuous subsets of X* ; here equicontinuous refers to mappings from X with its given 
topology to F. Then the seminorms ps , defined as in 28.8, determine the topology of X, 
and they separate the points of X. 

For each S E S, the seminorm Ps determines a norm l l · l l s = Ps ( · )  on the quotient space 
X/p5 1 (0) , as in 22 . 13.e . Let 1rs : X ----+ X/p51 (0) be the quotient map. Let Bs be the 
completion of the normed space (X/p5 1 (0) , l l · l l s) ; the norm of the Banach space Bs will 
also be denoted by I I  · l i s · Let P = TisES Bs be the product, equipped with the product 
topology. Define a map L :  X ----+ P by taking the Sth coordinate of L(x) to be 1rs (x). Show 
that 

(i) The mapping L is injective. Thus we may view L as an inclusion; then X is 
a subset of the product P. The quotient maps 7rs : X ----+ X/p5 1 (0) are just 
restrictions of the coordinate projections 1rs : P ----+ Bs . 

(ii) The given topology on X is the relative topology determined by P. 
(iii) Let "a" denote weak topology; then Xa has the relative topology determined 

by Pa = f15Eg ( (Bs )a) · (The last equation was proved in 28.34. ) 

Proofs. X i s Hausdorff, so the seminorms ps separate points of X.  I t follows that L is 
injective. The rest of (i) is obvious. 
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For (ii) and (iii ) ,  let any net (xn ) be given in X, and let Xoc E X ; we must show that 
x, --+ .T x: in the given topology (respectively, in the weak topology) if and only if for each 
S E S we have 1r5 (x, ) --+ 1r5 (xoc )  in the norm topology of Bs (respectively, in the weak 
topology of Bs) . By linearity, we may assume Xoc = 0. 

For (ii) the argument is quite simple: Xn --+ 0 in the given topology {===} Ps (xn )  --+ 0 
for each S {===} 1 1 7rs (xn ) l l s --+ 0 for each S {===} 7rs (xn ) --+ 0 in Bs for each S. 

For (iii ) ,  first suppose that x, --+ 0 weakly in X. Let any S E S be given, and let 
f E (Bs)* .  Then X � P � Bs L lF is a composition of continuous linear maps, if 
X is equipped with its given topology and Xs with the norm topology and P with the 
product topology. Thus f o 1rs o i is a member of X* .  Since Xn --+ 0 weakly in X,  we have 
(f o 1rs o i ) (x, ) --+ 0 in lF. Thus 1r5 (x, ) --+ 0 weakly in B5 . 

Conversely, suppose that 7rs (x, )  --+ 0 weakly in Bs for each S. Fix any f E X* ;  
we must show f(xn ) --+ 0. We may assume that f i s not the constant function 0 . Note 
that the singleton {!} is itself an equicontinuous subset of X*;  let us denote it by S. 
Then ps (x) = l f (x) l .  Then X/p,5 1 (0) = X/f- 1 (0) � Range(!) = lF, where � denotes an 
algebraic isomorphism. Thus Bs is one-dimensional, so weak convergence in Bs is the same 
as norm convergence. Hence IJ (xn ) l = p(x, )  = 1 1 7rs (xn ) l l s --+ 0. 

CHARACTERIZATIONS OF WEAK COMPACTNESS 

28.36. Eberlein-Smulian-Grothendieck Theorem. Let X be a Hausdorff locally 
convex TVS, and let X* be its dual. In the conditions below, an equicontinuous subset of 
X* means a collection of linear maps that is equicontinuous from the given topology on X 
to the usual topology on the scalar field. 

Let <I> be a bounded convex subset of X that is complete (in the given topology on X) . 
Then the following are equivalent: 

(A) (Iterated limit condition. ) For every net ( IPn : a E A) in <I> and every 
equicontinuous net (sfi : (3 E IE) in X*, we have 

whenever both sides of the equation exist - - i .e . , whenever all the indicated 
limits exist. 

(B) (Sequential iterated limit condition. ) For every sequence ( IPm) in <I> and 
every cquicontinuous sequence (sn ) in X*,  we have 

lim lim (lfJm ,  s, ) lim lim (ip111 , Sn J rn----+x n--+x n----+x rn--+x 

whenever both sides of the equation exist. 
(C) <I> is weakly compact. That is, each net in <I> has a subnet that converges 

weakly to some member of <I>. 
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(D ) <I> is weakly countably compact. That is, each sequence in <I> has a subnet 
that converges weakly to some member of <I>. 

Moreover, if X is a Banach space, then those conditions are equivalent to this one: 
(E) <I> is weakly sequentially compact. That is, each sequence in <I> has a subse

quence that converges weakly to some member of <I>. 

Proof Note that <I> i s complete, hence closed. Also <I> i s convex, hence <I> i s weakly closed. 
The implications (C ) =} (D ) and (E) =} (D ) and (A) =} (B ) are obvious. 
We may prove (D ) =} (A) as follows: By (UF26) in 28.29, any equicontinuous subset of 

X* is relatively compact in a(X*, X) .  Hence the sequence ( sn) has a sub net that converges 
in a(X*, X)  to some s E X*. By assumption (D) , (�Pm ) has a subnet that converges weakly 
to some ip E <1>. If both limm--->oo limn--->oo (tpm, Sn) and limn--->oo limm_,00 ( tpm ,  Sn) exist, it 
follows easily that those limits must both be equal to ( tp, s) . 

Next we prove that (B ) implies (C ) and (E) when X is a normed space. Let S be the 
closed unit ball of the dual normed space (X*, I I  I I ) .  Since the span of S is all of X*, the 
weak topology on X is precisely the same as the topology of convergence pointwise on S. 
Let S be equipped with the a ( X*, X ) topology; then S is a( X*, X ) compact , by (UF26) 
in 28.29. Since <I> is bounded, the set of scalars { (tp, s) : tp E <I>, s E S} is bounded, and 
thus its closure in the scalar field lF is a compact metric space M. Members of <I> may be 
viewed as distinct maps from S into M; it is easy to verify that those maps are continuous 
when S has the a( X* ,  X)  topology. Then <I> �  C (S, M) � M8 as in 17.50. Then condition 
17 .50(B) is satisfied, hence conditions 17 .50(C ) and 1 7.50(E) are also satisfied. Moreover, 
<I> is weakly closed, by assumption, so the weak limits guaranteed by 17 .50 all lie in <I>. 

Finally we prove (B) =} (C ) , in general. For that purpose we employ the notation and 
conclusions of 28.35 . Note that <I> is complete in X, hence <I> is complete when considered 
as a subset of P ,  hence <I> is closed in P. Also <I> is convex, hence <I> is closed in Pu . Since 
the topology of Xu is the relative topology determined by Pu , we merely need to show that 
<I> is contained in some compact subset of Pu. Recall from 28.34 that Pu = TisEs ( (Bs)w) · 
Certainly <I> is contained in risES 7rs (<I>) . By Tychonov's Theorem (AC21 ) in 17 . 16 (or by 
the weaker version (UF19) in 17 .22) it suffices to show that for each S, the set 7rs (<I>) is 
compact in (Bs)u · Applying the results of the previous paragraph, it suffices to show 7rs (<I>) 
satisfies condition (B ) in Bs; we hold S fixed throughout the remainder of this argument . 
Let (Ym) be a sequence in 7rs (<I>) ,  and let ( tn )  be an equicontinuous sequence in Bs* .  Since 
Bs is a normed space, the equicontinuity of (tn) simply means that ( tn )  is bounded in norm; 
thus for any E > 0 there is some 8 such that 

y E Bs , I I Y I I s ::; 8, n E N  

Define the compositions sn : X �  P � Bs !..::. JF. Then they satisfy 

X E X, Ps (x) ::; 8, n E N  

Thus the sequence (sn) is an equicontinuous subset of X*. For each Ym in 7rs (<I>) ,  choose 
any IPm E <I> n 7rs 1 (yn ) · Then the scalars (tpm, sn) are the same as the scalars (ym , tn ) ,  so 
hypothesis (B) for <I> implies condition (B ) for 1rs (<I>) . This completes the proof. 
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28.37. James's Sup Theorem. Let X be a Hausdorff, locally convex, real TVS, and let 
X* be its dual. Let B be a bounded, weakly closed subset of X. Assume that the closed 
convex hull of B is complete. Then the following are equivalent : 

(A) B is weakly compact. 
(B) Each member of X* attains a maximum on B. 

(C) Each continuous (not necessarily linear) map from Xa to IR attains a maximum 
on B. 

Of course, (A) =;. (C) i s just 17.7 . i , and (C) =;. (B) i s trivial. The new result here is (B) 
'* (A) . 

Remarks. Note that the set B is not required to be convex. 
James's Theorem is something of a "supertheorem." Its proof is quite long, but it 

makes into easy corollaries several substantial theorems that were proven in the years before 
James's Theorem. For instance, in 28.38 we shall use James's Theorem to prove the Krein
Smulian Theorem. 

James originally proved this theorem for normed spaces; the proof was simplified slightly 
and extended to locally convex spaces by Pryce [1966] . For separable Banach spaces X,  a 
substantially shorter proof was later given by Simons [ 1972] ; that proof can also be found 
in Deville, Godefroy, and Zizler [1993] . However, for the more general setting considered 
here, Pryce's proof (given below) still seems to be the shortest . 

Proof of theorem. We may replace B with its closed convex hull, since (i) each f E X* 
attains the same maximum on that set, and (ii) if that set is weakly compact , then so is 
B since B is weakly closed. Thus, we may assume B itself is closed, convex, and complete. 
Replacing X with its completion, we may assume X is complete. 

Assume B is not weakly compact; we shall eventually reach a contradiction. By 28.36, 
there is a sequence (zn) in B and an equicontinuous sequence (e1 )  in X* such that the 
iterated limits limj limn ej (Zn) and limn limj e1 (zn ) exist and are unequal. We may assume 
that 

lim lim ej (Zn) > a > b > lim lim ej (zn) 
J n n J 

for some real numbers a, b. Let r be the linear span of the sequence ( e1 ) ,  and let 

<t> {positively homogeneous, continuous functions from X to IR}.  

Then r, X* , <t> are linear spaces, with r � X* �  <t>. 
Each f E <t> is continuous, and therefore is bounded on some neighborhood of 0. It 

follows that f is bounded on bounded sets, and in particular f is bounded on B. Hence the 
number 

p(f) sup{f (x) : x E B} 

i s  finite. In this fashion we obtain a mapping p : <t> ---+ R We easily verify that p is a 
sublinear functional on the linear space <t>. Also, we verify that if A � <t> is equicontinuous, 
then A is uniformly bounded on some neighborhood of 0, and hence uniformly bounded on 
B. Therefore p is bounded on any equicontinuous subset of <t>. 
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Let (!; ) be a subsequence of (eJ ) - in the next paragraph we shall be more specific 
about our choice of this subsequence, but let us first consider properties of any subsequence. 
Define functions 'P_, (/5 :  X ---+ [-oo, +oo] by 

'P_(X) = lim inf j; (x ) ,  'f5(x) = lim sup j; (x ) . t--+oo i--+oo 
It is easy to verify that 

max { I'£.( X) - 'P_(Y) I , l'f5(x) - 'P(Y) I } < sup I J; (x) - f; (y) l . 

Since the j; 's are equicontinuous and vanish at 0, it follows that cp and (/5 are real-valued and 
continuous. Furthermore, it is easy to verify that both cp and (/5 are positively homogeneous. 
Thus, they belong to the linear space <I>. 

-

We shall now show that the subsequence (fi )  can be chosen so that 
p(h - '£.) p(h - '15) for all h E f. ( 1 )  

To see this, let (hk : k E N) be a sequence that is dense i n  r, when r is equipped with the 
topology of uniform convergence on B. (For instance, the linear combinations of ej 's with 
rational coefficients form a countable dense set; arrange it into a sequence. ) For any fixed k ,  
by 10.38 the given sequence (eJ ) has a subsequence (!; ) that satisfies p(hk - cp) = p(hk - (/5) . 
By a diagonal subsequence argument (similar to that in 17.27) , the given sequence has a 
subsequence (J; ) that satisfies p(hk - cp) = p(hk - '15) simultaneously for every positive 
integer k. Since the sequence (hk ) is dense in r, we obtain ( 1 ) .  

Since (fi )  i s  a subsequence of (eJ ) ,  we have 
lim lim fi (zn) > a > b > lim lim j; (zn ) .  

z n n t 
Deleting the first few terms of the sequences (fi )  and (zn ) ,  we may assume that 

lim fi (zn) > a  for each i , lim fi (zn ) < b for each n. n--+oo t--+oo 
Then for each fixed k, we have 

li� [ f k ( Zn) - liF fi ( Zn )] > a - b > 0. (2) 

For n = 0, 1, 2 , 3, . . .  , let Kn be the convex hull of the set Un+ l , fn+2 , fn+3 , . . . }. Then 
iP � X* � r � K0 � K1 � K2 � K3 � · · · .  Next we claim that 

p(f - '£.) > a - b for each f E Ko . (3) 

To see this, fix any f E K0 . Then f = I:�=l Ak!k for some positive integer N and some 
A1 , A2 , . . .  , AN E [0, 1] with I:�= l  Ak = 1 .  By (2) , choose an integer n large enough so that 
fk(zn) - limm_,00 fm (zn )  > a - b for all k = 1 ,  2, . . .  , N. Then 

p(f - '£.) sup [f(x) - 'P_(x)] > f(zn ) - 'P_(Zn) 
xE B  

N 
I: Ak [fk (zn ) - rl�oo fm(Zn)] 
k= l 

a - b, 
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which proves (3) . 
Next we shall recursively choose g1 E K1 , g2 E K2 , g3 E K3 , . . .  satisfying 

[ N l gn - cp 1 a - b 
p � ----;! + 2 . 

(N + 1 ) !  
< (4) 

for all integers N � 0 (with the convention that any summation 2::�=1 is 0) . For N = 0, 
inequality ( 4) is immediate from (3) . Now assume that [N- 1 l L gn - '!!_ 1 a - b 

p -- + - · --
n! 2 N!  n=1 

< inf p L gn - '!!_ + 
g - '!!_ 

[N- 1 l 
g E KN- 1 n=1 n! N!  

for some integer N � 1 .  Since K N _ 1 :::2 K N , we have also 
L gn - '!!_ 1 a - b 

[N- 1  l 
p -- + - · --

n! 2 N!  n= l 
Now apply the lemma in 12.26, with 

1 a =  
N! ' 

1 {3 
= 

(N + 1 ) ! '  

< . gn - 'P g - 'P [N- 1 

l mf p L � + -----F . g E KN n= l n. N. 

a - b  
'Y = -

2
- ,  

N-1 
� = L gn � '£ ,  n.  n=l 

and with the convex set equal to KN - cp. Take gN = TJ + cp; this proves (4) and completes 
the recursive choice of the gn 's. SubstitUting g = gN+ l in (4),  we obtain also 

Next we shall show that this sequence (gn) satisfies 

cp(x) ::; lim inf gn (x) ::; lim sup gn (x) ::; �(x) - n----+cx:: 

(5) 

for each x E X. (6) 

Fix any x E X; temporarily fix any n E N. Since gn is a convex combination of finitely many 
of the functions fn+ l , fn+2 , fn+3 , . . .  , there exists at least one i E { n + 1 ,  n + 2 ,  n + 3 ,  . . . } 
with fi (x) ::; gn (x) . This proves lim infi_,oo fi (x) ::; lim infn_,00 gn (x) ,  which is half of (6) . 
The other half is proved similarly. 

Next, note that K0 is the convex hull of the equicontinuous set {!I ,  h ,  h ,  . . .  } .  By 28.30, 
the a( X*, X)-closure of K0 in X* is a( X*, X)-compact. The sequence (gn ) lies in K0 and 
therefore has a a(X* , X)-cluster point cp0 in X*. It follows that 

lim inf gn ( x) < cpo ( x) < lim sup gn (x) for each x E X. n---+oc n->oo 

Combine this with (6) to obtain 'P_(x) ::; cp0(x) ::; �(x) for all x E X, and therefore 

h(x) - �(x) ::; h(x) - cp0(x) ::; h(x) - 'P_(x) for all X E X and h E r 0 

(7) 
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Take the supremum over all x E B to obtain p(h - <p) ::; p(h - cp0) ::; p(h - cp) for all h E r. 
Combine that with ( 1 )  to obtain p(h - cp0) = p(h - cp) for each h E r. Since p is positively 
homogeneous, p(o:h - o:cpo )  = p(o:h - o:_ce) for each o:-> 0 and h E r. In particular, 

for any integer N 2': 0. Let "fn = 9n - cpo ; from (5) we now obtain 

"fn 1 a - b [ N l p � n! + 
2 . (N + 1 ) !  

Since the "fn 's lie in the equicontinuous set K0 - cp0 , the summation 1jJ = L�=l "Yn/n! 
defines a functional 1jJ E X*. By the hypothesis of the theorem, 1jJ attains a maximum at 
some point u E B. Also, since K0 - cp0 is equicontinuous and B is bounded, 

the number /3 sup sup l f(x) l is finite. 
f E Ko - cpo x E B 

For each N E N we have 
N 00 

"fn (u) 
00 

"fn (u) L "fn (u) 1/J(u) - 2:::: p( 1jJ) - 2:::: n! n! n! n=l n=N+l n=N+l 

> p [t "Yn ] - p [- f= "Yn ] - f= "fn��) 
n=l n! n=N+l n! n=N+l 

> > 

> �1 "Yn (u) + � . a - b 
_ 

� 2/3 . � n! 2 N! � n! n=l n=N+l 

P [� "fn l + � . a - b _ � 2/3 
� n! 2 N! � n! n= l n=N+l 

Subtract I:::/ "Yn ( u) / n! from both ends of this computation and then multiply the resulting 
inequality by N! ; that leaves 

"fN (u) > a - b  
2 

00 
N! L 2� · n. n=N+l 

Since 0 = limN_,00 N! L::�=N+1 2/3/n! ( exercise) ,  we have lim infN_,oo "fN (u) > a2b > 0, 
contradicting (7) .  This completes the proof of the theorem. 

28.38. Krein-Smulian Theorem. The closed convex hull of a weakly compact subset 
of a Banach space is weakly compact. 
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More generally, let X be a Hausdorff, locally convex space. Let B � X, let C be the 
closed convex hull of B, and suppose C is complete (in the given topology) .  Also suppose 
B is weakly compact. Then C is weakly compact. 

Proof Without loss of generality we may assume the scalar field is R We know B is 
bounded, by 27.3.c and 28. 14.d; hence C is bounded, by 27.3.d and 27.3.e. Let A E X*. 
Since B is weakly compact, we know that A attains a maximum M on B. It follows easily 
that M is also the maximum of A on C. Now apply James's Theorem. 

SOME CONSEQUENCES IN BANACH SPACES 

28.39. Exercise. A subset of €1 is compact if and only if it is weakly compact. 

Proof Immediate from 17.33, 28.20, and 28.36. 

28.40. Goldstine-Weston Theorem. Let (X, I I I I )  be a normed space, with dual X* 
and bidual X** . Let B and B** be the closed unit balls of X and X** . Then B is 
a(X** , X*)-dense in B**. 

Proof Note that B** is closed and convex, hence a( X** , X*)-closed. Also, B � B** . Let 
C be the a(X**, X*)-closure of B in X** ; then C � B** . It suffices to show that C = B** . 
Suppose that � E B** \ C. We know that C is convex by 26.23.a, and a(X** , X*)-compact 
by (UF28) in 28.29. By the Hahn-Banach Theorem (HB20) applied to the locally convex 
space X** with the a( X** , X*) topology, there is some f E X* with c = max17Ec Re f(TJ) < 
Re f(O . Then supxEB lf(x) l S c, hence I IJ I I  S c, and hence 1! (0 1  S 1 1 ! 1 1 1 1 � 1 1  S c, a 
contradiction. 

28.41. Theorem (Banach, Smulian, James, et al. )  Let X be a Banach space, and 
let B be its closed unit ball. Then the following are equivalent: 

(A) X is reflexive. That is, the canonical embedding X L X** is surjective 
i.e. , each continuous linear functional on X* acts the same as the evaluation 
map f f-> f(x) for some x E X. This condition is generally abbreviated as: 
X** = X. 

(B) On X*, the weak topology a(X*, X**) and the weak-star topology a(X*, X) 
are equal. 

(C) B is weakly compact. 
(D) Every closed, convex, bounded subset of X is weakly compact. 
(E) Whenever Q is a nonempty, closed, convex subset of X and x E X, then 

there is at least one point q E Q that is closest to x - i.e. , that satisfies 
l lx - q l l  = dist (x, Q) . 
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(F) Any nonempty, closed, convex subset of X contains at least one point of 
minimum norm. (Compare with 22.39(E) . ) 

(G) For each f E X* , we have l l f l l  = max{ lf (x) l : x E B} . 
(H) B is weakly complete - i.e . , complete when equipped with the uniformity of 

the weak topology. 
(I) The weak topology on X is quasicomplete (as defined in 27.3.f) .  

Remarks. In condition (G) , we emphasize that a maximum i s given, not just a supremum. 
Contrast this with 23.7 and (HB8) in 23. 18. 

Also, we note that some of the conditions are purely topological - i.e . , they are un
affected if we replace the given norm on X with some equivalent norm. Therefore all the 
conditions above are purely topological. Thus, reflexivity should not be viewed as a prop
erty of certain normed vector spaces; rather, it is a property of certain topological vector 
spaces whose topologies are normable . 

In condition (A) , we emphasize that the isomorphism between X and X** cannot be 
just any isomorphism; it must be given by the canonical embedding of X �  X**, which 
was described in 9.57 and 23.20. It can be shown that the space J introduced in 22.26 is 
isomorphic to J** - i.e. , there exists a linear homeomorphism between J and J** - but 
that isomorphism is not given by the canonical embedding, and in fact J does not satisfy 
any of the equivalent conditions listed above. This was proved by James [1951 ] ;  additional 
discussion on this subject can be found in James [1982] . 

Proof of (A) =} (B) . Obvious. 

Proof of (B) =} (C) . By the Alaoglu Theorem (UF28) in 28.29. 

Proof of (C) =;. (D) . Any closed, convex set is weakly closed and contained in the compact 
set rB for some r > 0. 

Proof of (D) =} (E) . Let r = dist (x, Q). Then the sets Sn = { q E Q : l l x - ql l ::; r + � } are 
closed, convex, and bounded, hence weakly compact . Since S1 2 S2 2 S3 2 · · · and each 
Sn is nonempty, the intersection of the Sn 's is nonempty. Any point q in that intersection 
satisfies l lx - q l l  = r. 

Proof of (E) =} (F) . Take x = 0. 

Proof of (F) =} (G). We know that l l f l l = sup{Ref(x) : x E B} ,  and we wish to show that 
that supremum is actually a maximum. We may assume f =f. 0. Let Q = {x E X :  Ref(x) ?': 
l l f l l } .  Let q be a member of Q with smallest norm. It suffices to show that l lq l l ::; 1 .  (Some 
readers may wish to take that assertion as an exercise before reading further.) Choose 
a seguence (bn) with l l bn l l = 1 and Ref(bn ) ---+ I I J I I · Let Qn = (Ref(bn ) )- 1 l lf l l bn ;  then 
Qn E Q. Since q is the member of Q with smallest norm, l lqn l l ?': l l q l l  for all n. We have 
l lqn l l ---+ 1 ,  hence 1 ?': l l q l l · 
Proof of (G) =} (C) . Immediate from James's Theorem 28.37. 

Proof of (C) =} (H) . Obvious. 
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Proof of (H) =? (I) . The weak and norm topologies have the same bounded sets. Any TVS 
topology is invariant under multiplication by a positive scalar. Hence it suffices to consider 
subsets of B. Any weakly closed subset of B is (for the weak topology) a closed subset of 
a complete set, hence complete. 

Proof of (I) =? (A) . Let � E X** be given. By the Goldstine-Weston Theorem, there 
is some bounded net (x.\ : >. E A) that is CT(X** , X*)-convergent to �· Then (x.\) is 
CT(X** , X*)-Cauchy, hence CT(X, X*)-Cauchy, hence CT(X, X*)-convergent to some x E X. 
It follows that �(f) = f(x) for all f E X* . 

28.42. Exercise. Let X be a Banach space, with dual X*. Then X i s reflexive i f and only 
if X* is reflexive. 

Hints : Let X** and X*** be the second and third dual spaces. Let T : X ----+ X** 
and U : X* ----+ X*** be the canonical embeddings; these maps are linear and distance
preserving. We are to show that (i) T is surjective if and only if (ii) U is surjective. 

The proof of (i) =? (ii) involves little more than unwinding the notation and "chasing 
some arrows around a diagram." Let � be any member of X*** . The composition >. : X _I__. 
X** ----L IF is a member of X*. Using the definitions of T and U, verify that U (.A ) = �· 

The proof of (ii) =? (i) is a bit more substantial - it uses the Hahn-Banach Theorem. 
Suppose T is not surjective. Then T(X) is a proper closed subspace of X** ; say cp E 
X** \ T(X) . By (HBl l )  in 23. 18, there exists some continuous linear functional � E X*** 
that vanishes on T(X) but not on cp. Unwind the notation to arrive at a contradiction. 

28.43. Exercise. Show that the weak topology on t\ is sequentially complete but it is not 
quasicomplete. 

28.44. Let (X, II I I )  be a real Banach space, with dual space X*. (For simplicity we 
consider only real scalars.) The normalized duality map of X is the map J : X ----+ 
{subsets of X*} defined by 

J(x) {>. E X* : I I .A I I  = l l x l l  and .A(x) = l lx l l 2 } . 

Such a map will be used in 30.20 and thereafter. Here are some of its basic properties: 
a. The set J(x) is nonempty, by (HB8) in 23. 18. 
b. The set J(x) is convex and weak-star compact (hence also norm-closed) . 

Hint: Show that i t i s the intersection of the two sets { .A E X* : I I .A I I  :S l l x l l } and 
{A E X* : .A(x) 2: l l x l l 2 } ,  both of which are convex and weak-star closed. Refer to 
(UF28) in 28.29. 

c. J(cx) = cJ(x) for any real number c. 

d. If X* is strictly convex, then J is single-valued - i.e. , J(x) is a singleton for each 
X E  X. 

Hint: J(x) is a convex subset of the sphere {A E X* : I I.A I I  = l lx l l } ;  see 22.39(C) . 
e. Example. If X is a Hilbert space with inner product ( , ) , then X* = X  (see 28.50) , 

and .J(x) is the singleton {.A:r } ,  where Ax (u) = (x, u) . 
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f. Example. Let X = LP (J-1) for some measure space (fl, S ,  J-1) and 1 < p < oo. Then 
X* = Lq (J-1) (see 28.50) , and J(x) is a singleton {y} ,  where y E Lq (J-1) is given by 

y(w) { x(w) lx(w) IP-2 I I x l l�-p wherever x(w) =/= 0 
0 wherever x(w) = 0. 

g. Example . Let 1-1 be u-finite, and let X =  L1 (J-1) ; then X* = L00 (J-1) by 28.5 1 .  For any 
x E X, the set J(x) consists of all measurable real-valued functions y that satisfy these 
two conditions: 

y(w) 
ly(w) l < 

l lx l l 1 sign( x(w) )  
l lx l l 1 

whenever x(w) =/= 0, 
whenever x(w) = 0. 

MORE ABOUT UNIFORM CONVEXITY 

28.45. Remark. The results below, and more on this subject, can be found in Goebel 
and Reich [ 1984] . Some of the results below and in Chapter 29 can be proved more "con
structively," in one sense or another of that word - e.g. , without relying on the Banach
Alaogl u Theorem, the Hahn-Banach Theorem, and other weak forms of the Axiom of Choice. 
See Ishihara [1988] , for instance. However, the nonconstructive arguments used below are 
quicker and (in this author's opinion) prettier. 

28.46. Milman-Pettis Theorem. Any uniformly convex Banach space is reflexive. 
Actually, reflexivity is a topological property, but uniform convexity is not. Thus we 

might reword the theorem in this slightly more precise fashion: 
If X is a topological vector space whose topology can be given by a norm, and at least 

one such norm is uniformly convex, then the topological vector space X is reflexive. 

Proofs of theorem. This is immediate from 28.41 (E) and 22.45. However, we proved 28.41 
using James's Theorem 28.37, which had a very long proof. For readers who wish to skip 
James's Theorem, we shall present another, more elementary proof, from Ringrose [1959] : 

Let (X, I I  I I ) be a uniformly convex Banach space . We have X c;;; X** with the canonical 
embedding, as in 23.20. Let B be the closed unit b.all of X . Let � E X** ; we want to 
show � E X. By rescaling, we may assume 1 1� 1 1  = 1 .  By the Goldstine-Weston Theorem 
28.40, there is some net (x.A : A E A) in B that converges in u(X**, X*) to �· Then 
1 1 � 1 1  :::; lim inf.A l lx-A I I ,  as in 28 . 1 7.d, so we have l lx-A I I  ___, 1 .  We may replace the vectors X.A 
with the vectors X.A / I I x-A I I ;  thus we may assume l lx-A I I  = 1 for all >.. 

We shall show that this net is Cauchy in the norm topology of X. Let any E > 0 be 
given; let 8 = 8(E) be the modulus of convexity of the space (as in 22.40) . By definition 
of the norm of X** , there is some f E X* with l lf l l = 1 and Re(�, f) > 1 - 8. Then for 
all A E A sufficiently large, Re(x.A ,  f) > 1 - 8. Hence for all A, 1-1 sufficiently large, we have 
� l lx .A + x!ll l 2: Re \ � (x.A + x!l) , f) > 1 - 8 . Therefore l lx.A - x!ll l :::; E .  
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Thus the net (x>-) is Cauchy in the normed space (X, I I  I I ) ,  which is complete. Therefore 
(x>- ) is norm convergent to some x0 E X . Since (x>- ) is also O'(X**, X*)-convergent to �' it 
follows that x0 = � , and thus � E X.  

28.47. Lemma on asymptotic centers. Let C be a nonempty, closed, convex subset of 
a uniformly convex Banach space (X, I 1 ) .  Let (xn) be a bounded sequence in X .  Define 
a mapping f :  C ---> [0, +oo) by f(u) = lim supn�oo lu - xn l · Then there is a unique point 
u0 E C satisfying f (u0) = min{f(u) : u E C} .  

(The point u0  i s  called the asymptotic center of  the sequence (xn) with respect to 
the set C.)  

Proof The function f = limm�oo supn>m lxn - x i is  a limit of convex functions; hence it  is 
convex. Also, it is continuous � in fact, it is nonexpansive, for if we take limsup on both 
sides of the inequality lxn - xi ::; lxn - x' l + lx' - xi we obtain f(x) ::; f (x' ) + lx' - x i .  Also, it 
is easy to see that if C is not bounded then limlu l�oo f(u) = oo . Let I =  inf{f(u) : u E C} .  
Then the sets Cn = {u E C :  f(u) ::; I + * }  are nonempty, closed, convex, and bounded; 
hence they are nonempty and weakly compact. Moreover, C1 2 C2 2 C3 2 · · · . Hence the 
Cn's have nonempty intersection, so f does assume a minimum � i .e . ,  f (u0) = I for at 
least one point u0 E C. 

To show that u0 is unique, suppose that f(u0) = f(u l )  = I where u0 =/= u1 . Let 
v = � (u0 + u l ) .  Let any E > 0 be given. By the definition of f ,  there is some N(c) such 
that 

whenever n 2:: N(c) . 
Therefore 

whenever n 2:: N(c) , 

where b is the modulus of convexity. Taking the limsup, we obtain 

contradicting the fact that I is the minimum value of f. This proves the uniqueness of the 
asymptotic center. 

28.48. Browder-Gohde-Kirk Fixed Point Theorem. Let C be a closed, convex, 
bounded subset of a uniformly convex Banach space. Let g : C ---> C be nonexpansive. 
Then g has at least one fixed point. 

In fact, if x0 is any point in C, and a sequence (xn ) is defined by Xn+ l = g(xn ) ,  then 
the asymptotic center of the sequence (xn ) with respect to C is a fixed point of g. 

Proof Let u be that asymptotic center. Since g is nonexpansive, lxn+l - g(u) i ::; lxn - u l  
for all n ,  and thus lim supn l xn - g( u) I ::; lim supn lxn - u l .  Since lim supn lxn - ( · ) I achieves 
its unique minimum at u, we have g( u) = u. 

28.49. Optional example. We cannot replace "uniformly convex" with "strictly convex" 
in the preceding theorem. 
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Let C[O, 1] = {continuous scalar-valued functions on [0, 1 ] } ;  this is a Banach space when 
equipped with the sup norm. Show that l l f l l s = l l f l loo + l l f l l 2 is a strictly convex norm on 
C[O, 1] that is equivalent to the usual sup norm II l loo · Also show that 

F {f E C[O, 1] : f(O) = 0, f ( 1 )  = 1 ,  and Range(!) <:;;; [0, 1 ] }  

i s  a closed, convex, bounded subset of C[O, 1 ] .  Show that ('Pf)(t) = tf(t) defines a mapping 
'P :  F ---> F that is nonexpansive when the norm I I  l i s is used, but 'P has no fixed point. 

DUALS OF THE LEBESGUE SPACES 

28.50. Theorem. Let p, q E ( 1 ,  oo) with 1. + 1. = 1 .  Let (n, S , f.L) be a measure space (not 
p q necessarily finite or O"-finite) . Then the Banach spaces £P (f.L) and Lq(f.L) are the norm duals 

of each other, with elements of one space representing elements of the other space's dual by 
the bilinear pairing 

[T(y)] (x) (x, y) L x(w)y(w)df.L(w) . 

In particular, L2 (f.L) is its own dual. In view of 22.56, any Hilbert space is its own dual. 

Remark. Compare this result with the remark at the end of 29.21 . 

Proof of theorem. We shall show that (£P(f.L)) * = Lq(f.L) . More precisely, for each y E Lq(f.L) , 
let T(y) be the mapping ( - , y) : £P (f.L) ---> {scalars} defined above; we shall show that T is 
an isomorphism from Lq(f.L) onto (£P (f.L)) * .  

It follows from Holder's Inequality that if  y E Lq(f.L) ,  then T(y) = ( · , y) (defined as 
above) is a continuous linear functional on LP (f.L) , with operator norm I I IT(y) l l l ::; I IY I I q · To 
show that we have equality here, define a function x E £P(f.L) by choosing x(w) to satisfy 
l x (w) IP = l y (wW and x(w)y(w) 2: 0 for all w. Then we can apply Holder's Equality (see 
22.33) ; it is easy to verify that (x , y) = l l x i iP I I Y I I q ; from this it follows that I I IT(y) l l l  2: I I Y I I q · 
Thus the mapping y �----+ T(y) is a norm-preserving linear map from Lq (f.L) into (£P (f.L)) * ;  it 
suffices to prove that this map is surjective. 

Suppose not. Then T(Lq(f.L)) is a proper, closed, linear subspace of (£P(f.L)) *. By the 
Hahn-Banach Theorem (HB23) in 28.4, there is some �0 in (£P (f.L)) ** that vanishes on 
T(Lq (f.L)) but does not vanish on some vo E (£P (f.L)) * .  

By 22.4l .a and 28.46, LP(f.L) i s  reflexive. Thus there i s  some x0 E £P(f.L) that represents 
�0 , in this sense: We have u(x0 ) = �0 (u) for every u E (£P(f.L)) *. Define a function 
Yo E Lq (f.L) by taking I Yo (w) l q = lxo (w) IP for all w, with xo (w)yo (w) 2: 0. Since �o vanishes 
on T(Lq (f.L) ) ,  we have 0 = �o (T(yo ) )  = [T(yo) ] (xo) = (xo , Yo) = l l xo l l � = l l �o i iP .  Thus 
�0 = 0, contradicting our assertion that �o does not vanish on some vo . 

28.51. Theorem. Let (rl, S , f.L) be a O"-finite measure space. Then the dual of L 1 (f.L) is 
£00 (f.L). 
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Proof. Let IF be the scalar field. For any y E L00 (JL) , we may define a mapping Ty : L1 (JL) ---+ 
IF by the rule 

1 x(w)y(w)dJL(w) 
n 

and obviously I I ITu l l l -:::; I I Y I I oc · Now let any T E L1 (JL)* be given. It suffices to show that 
(i) T = Ty for some y E uxJ(JL) , and (ii) I I Y I I oc -:::; I I IT I I I · 

Let us first fix our attention on any measurable set flo � fl that has finite measure. Let 
JLo denote the restriction of JL to flo and its measurable subsets. If f E £1 (JLo ) ,  then we may 
extend f to a member of L1 (JL) by defining f = 0 on fl \ 00 .  We have L2 (JLo) � L1 (JLo) with 
continuous inclusion, by Holder's inequality: l l g lh = l l 1g lh 'S: 1 1 9 1 1 2 1 1 1 1 1 2  = VJL(flo) l l9 l l 2 ·  
Hence the composition cp :  L2 (JLo) -S £l (JLo ) -S £l (JL) :!.., IF is continuous, and thus cp i s  a 
member of L2 (JL0 ) .  However, L2 (JLo ) *  = L2 (JLo) by 28.50. Unwinding the notation, we see 
that there is a uniquely determined function y0 E L2 (JLo )  that satisfies T(x) = Ino xy0dJLo 
for all x E L2 (JL0 ) .  

We claim that ! Yo ( · )  I -:::; I l l T i l l almost everywhere on flo . Indeed, suppose on the contrary 
that {w E flo : I Yo (w) l > I I IT I I I } has positive measure. Then the set 

S {w E flo : r < I Yo (w) l } 

has positive measure, for some number r > I I IT I I I · Define 

x(w) = { I Yo (w) I /Yo (w) when w E  S 
0 when w E flo \ S. 

Then the function x belongs to L00 (JLo )  � £2(110 ) .  Then 

TJL(S) -:::; r I Yo ( · ) ldJLo = r xyo dJLo = T(x) -:::; I I IT I I I I Ix lh Js J/\1 
a contradiction. This proves our claim; we have I I Yo l l cx: 'S: I I IT I I I ·  

I I IT I I I JL( S) ,  

By our choice of  Yo , we have Ino xyo djL = T(x) for all x E L2 (tto ) .  However, both sides 
of that equation are continuous functions of x E L1 (JLo ) ,  and L2 (JLo) is dense in £1 (110 ) .  
Thus, that equation is valid for all x E £1 (JLo ) .  

The function y0 i s  uniquely determined on each set flo of finite measure. By  covering 
fl with an increasing sequence of sets of finite measure, we see that there is a measurable 
function y :  fl ---+ IF, with I I Y I Ioc -:::; I I IT I I I , such that I xy dJL = T(x) whenever x is a member 
of £1 (JL) that vanishes outside some set of finite measure. Such functions are dense in £1 (JL) , 
and both sides of the equation I xy dJL = T( x) are continuous in x. Hence the equation 
holds for all x E £ 1 (JL) . 

28.52. If (fl, S, JL )  is not 0'-finite, then (L1 (M) ) *  is not necessarily equal to L00 (fL) . 
Example (from Holmes [ 1975] ) .  Let (O , S , tt) be the interval [0, 1] equipped with counting 
measure. Here S = Jl(fl) , so every function f :  [0, 1] ---+ IF is measurable (where IF is the scalar 
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field lR or q.  The integral of a function f :  [0, 1] ---+ IF' is the sum LtE [O, l ] f(t) E [0, +oo] , 
provided that l l f lh = LtE [O, l] l f (t ) l  is finite. 

Now let So be the O"-algebra of countable or cocountable subsets of [0, 1 ] ,  and let Jlo be 
the restriction of J1 to S0. Thus a function f : [0, 1] ---+ IF' is measurable with respect to 
S0 if and only if, for each Borel set B <:;; IF', the set f- 1 (B) is countable or cocountable. 
The integral of such functions is the same as in the previous paragraph. If f E L1 (J.Lo) ,  
then the function g(t) = tj(t) is not necessarily measurable with respect to S0, but we still 
have lg(t) l :::; l f(t) l ,  and so g E L1 (J.L) . Thus we can define a bounded linear functional 
A :  L1 (J.Lo) -+/IF' by A(J) = LtE [O, lJ tf(t) . It is an easy exercise that there does not exist a 
function h E  L00 (J.Lo) satisfying A(J) = LtE [O,lJ f(t)h(t) for all f E L1 (J.Lo ) .  

28.53. Remark. The dual of L00 (J.L) will be characterized in 29.3l .c .  
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Vector Measures 

BASIC PROPERTIES 

29.1 .  Definition. Let (X, I I ) be a Banach space. By an X-valued charge we mean 
a finitely additive mapping J-l : A -+ X ,  where A is an algebra of sets. By an X-valued 
measure we mean a countably additive mapping J-l :  S -+ X ,  where S is a <T-algebra of sets. 
See 1 1 .37. Such objects will be investigated in this chapter. Vector measures are used in 
spectral theory, but that subject will not be pursued in this book. This chapter covers only 
a very small portion of the subject of vector measures; the interested reader should refer to 
the encyclopedic work of Diestel and Uhl [ 1977] for a broader treatment. 

Caution: The terminology varies. For instance, what we have called "charge" and "mea
sure" are what Diestel and Uhl [ 1977] call, respectively, "vector measure" and "countably 
additive vector measure on a 0'-algebra." 

29.2. Observation. If J-l : S -+ X is a Banach-space-valued measure and S1 , S2 , S3 , . . .  
are disjoint measurable sets, then the series t-t(U;:1 Sj ) = 2:.:;:1 J-I (Sj ) is unconditionally 
convergent (defined in 23.26) . 

Proof: U;:1 Sj is not affected if we change the order of the Sj 's. 

29.3. Theorem. Any Banach-space-valued measure is bounded. 

Proof of proposition. Let >. : S -+ X be a Banach-space-valued measure, where S is a 0'
algebra of subsets of 0. Then I.X(S) I  is a finite number for each S E S; we must show that 
sup8ES I .X(S) I is finite as well. Suppose not . Call a set S E S "fat" if it has the property that 
sup{ I>.(A) I : A  E S ,  A s;; S} = oo; then our assumption is that n is fat. We now recursively 
choose fat sets So ;;? sl ;;? s2 ;;? 0 0 0 with I .X (Sn+ l ) l  > I .X(Sn ) l  + 1 ,  by the following procedure: 
Let S0 = !l; this is fat . Given a fat set Sn , choose some measurable set B s;; Sn such that 
I .X( B) I > 2 1.-\(Sn ) l  + 1 .  Since Sn is fat , at least one of the sets B,  Sn \ B must be fat. Call 
that set Sn+l ;  we easily verify that I .X(Sn+d l  > I .X(Sn ) l  + 1 .  This completes the recursion. 
Now, for n = 1 ,  2, 3, . . .  , let Tn = Sn-1 \ Sn . Then the Tn 's are disjoint and have union 
equal to 0, hence 2:.::=1 >. (Tn) = >.(!1) . However, 

785 
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so the series 2::�=1 >..(Tn )  diverges. This contradiction proves sup5Eg 1>-.(S) I < oo. 

29.4. Theorem and definition. Let (0, S ,  J.l) be a measure space; assume /-1 is finite. Let 
(X, I I ) be a Banach space, and let A :  S ----+ X be a vector charge. Then the following two 
conditions are equivalent. 

(A) limJ.L(S)--->O >.. (S) = 0. That is, for each number E > 0, there exists some number 
8 > 0 such that if S E S with J.l(S) < 8, then 1>-.(S) I < E. 

(B) A is a measure, and A vanishes on sets of J-1-measure 0 - that is, J.l(S) = 0 =} 
>.. (S) = 0. 

If either (hence both) of these conditions is satisfied, we say that A is absolutely contin
uous with respect to J.1 or that it is J.t-continuous; this is abbreviated A < < J.t. Some 
examples will be given in 29.7 and 29.10 .  

Proof of equivalence. First assume (A) . Obviously J.l(S) = 0 =} >.. (S) = 0. Let the sets 
E1 , E2 , E3 , . . .  be disjoint with union E; we want to show that 2::;":1 >..(E1 ) = >.. (E) . Let 
F1 = E \ (E1 U E2 U · · · U E1) ;  we want to show that >.. (F1 )  ----+ 0 as j ----+ oo. We know 
that F1 2 F2 2 F3 2 · · · and the F1 's have empty intersection . Hence J.l(F1 )  1 0. By 
J-1-Continuity, I >.. (F1 ) 1 ----+ 0. Thus (A) =} (B) . 

We shall prove (B) =} (A) first in the case where ).. is real-valued. Note that if J.l(S) = 0, 
then J.1 vanishes on every measurable subset of S; hence so does >.. ; hence so does j>..j; hence 
so do A+ and A- .  By the Jordan Decomposition, it suffices to consider ).. + and ).. - ;  thus 
we may assume A 2: 0. Suppose that ).. does not satisfy the condition in (A) . Then there 
exist a number E > 0 and measurable sets Sn such that >.. (Sn )  > E and J.l(Sn)  ----+ 0. Passing 
to a subsequence, we may assume J.l(Sn )  < 2-n . Let T =  lim supn_,oo Sn = n;":1 U�=i Sn . 
Then for each j we have T s;; n�j Sn , hence J.l(T) :::; L�=j J.l(Sn )  < 2-1+ 1 ' hence J.l(T) = 0. 
On the other hand, by 21 .25.c we have E :::; lim supn_,oo >.. (Sn )  :::; >.. (lim supn_,oo Sn) = >.. (T).  
This is a contradiction, proving (B) =} (A) in the case of real-valued >.. . 

Now we prove (B) =} (A) for an arbitrary Banach space X. We may assume the 
scalar field is R Suppose (B) holds but not (A) ; thus there exist measurable sets Sk with 
1>-.(Sk ) l  > E and J.l(Sk )  < 2-k . We have limm_,oo /-1 (Uk2:rn Sk) = 0. For each u E X* ,  the 
real-valued measure u>.. is J-1-continuous and therefore satisfies 

��00 sup { lu>.. (S) I : s E s, s s;; u sk } 
k2:rn 

0. 

Recursively choose positive integers m(p) as follows: Let m(O) = 1. Given m(p - 1 ) ,  use the 
Hahn-Banach Theorem (HB8) to choose some Up E X* with luP I = 1 and up>.. (Srn(p- 1) ) > E. 
Then choose m(p) > m(p - 1 )  large enough so that 

eup { lu,A(S) I s E s ,  s s;; U sk } 
k2:rn(p) 

< 1 
-E 2 0 

This completes the recursion. Now define the sets Fp = Srn(p- 1 )  \ Uk2:m(p) Sk . The 
sets Fp are disjoint, and 1 >-.(Fp ) l  2: lup>.. (Fp) l > �E. Since A is a measure, we have 
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A (U;:1 Fp) = 2.:.::;: 1 A(Fp ) ,  and therefore the series 2.:.::;: 1 A (Fp)  is convergent , and there
fore limp_,= I A (Fr ) l  = 0 ,  a contradiction. 

THE VARIATION OF A CHARGE 

29.5. Definition. Let A be an algebra of subsets of 0, let (X, I I ) be a Banach space, and 
let A : A  --+ X be a charge. The variation of A is the function I AI : A --+ [0, +oo] defined 
by 

I AI(A) 

where the supremum is over all positive integers n and partitions of A into disjoint subsets 
sl ' 52 , . . .  ' Sn E A .  (Much of the literature denotes the variation by I A I ' but we prefer I AI 
for reasons indicated in 8.39 . )  

For further clarification, we may refer to  I AI as the variation in the sense of charges 
or measures to distinguish it from another type of "variation" introduced in 19.21 .  The 
relation between the two notions of "variation" will be considered in 29.33 and 29.34. 

If IAI(O) < oo, we say A has bounded variation. The number IAI(O) may also be 
written as Var(A) or as Var(A, A) if several different algebras of sets are being considered. 

29.6. Basic properties of the variation of a charge. 
a. I AI is a positive charge. 
b. sup{ IA(S) I :  S E A} ::;  IAI(O) . Thus, any charge with bounded variation is a bounded 

charge. 
c. The space of all X-valued charges on A with bounded variation is a Banach 

space, with the variation for a norm. We may denote this space by BV(A, X ) . 
Proof of completeness. Apply 22. 17 with r = A, with � consisting of all functions 

of the form If?( A) = I A(SI ) I + I A (S2 ) 1  + . . .  + I A(Sn ) l  for disjoint sets sj E A. 
Remark. For a still larger space, see the space of bounded charges in 29.29.f. 

d. If X = lR, then IAI(A) sup { I A (S) I + IA(A \ S)l : S E S, S S: A}. Thus the 
definition of "variation" given in this chapter agrees with the definition of "variation" 
given in 1 1 .47. As we noted in 1 1 .47, any bounded real charge has bounded variation; 
hence any real-valued measure has bounded variation. 

e. If A is countably additive, then IAI(A) is also equal to sup L.::;: 1 I A (SJ ) I , where the 
supremum is over all partitions of A into countably many disjoint sets Sj E S. 

Hints : Any finite partition can be written as a countable partition, by taking all 
but finitely many of the Sj 's to be empty; thus IAI(A) ::; sup L.::;: 1 I A(SJ ) I . On the 
other hand, if IAI(A) < r < L.::;: 1 I A(SJ ) I for some countable partition (SJ )  and some 
real number r, then choose N large enough to satisfy r < L.::f=l I A (SJ ) I ; then we have 
I AI(A) < l A (  A \  u;=l Sj ) l  + L.::f=l I A (SJ ) I ,  a contradiction. 

f. If A is countably additive, then I AI is too. Thus, if A is a measure , then I AI is too. 
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Hints: Let A1 ,  A2 , A3 , . . .  be disjoint members of A with union A E A. Since / >..j 
is a positive charge, for any positive integer N we have 

and taking limits we obtain 2:::;':1 j>..j(A1) :::; />../ (A) . For the reverse inequality, let 
(Bk : k E N) be any partition of A into countably many disjoint members of A. Then 
(Aj n Bk : k E N) is a partition of A1 , and (A1 n Bk : j E N) is a partition of Bk . 
Hence L:k i>.. (Bk ) l = L:k IL:j >.. (Aj n Bk) l :::; L:j,k i >.. (Aj n Bk) l :::; L:j 1>../ (Aj ) · Taking 
the supremum over all choices of the sequence (Bk ) yields j>..j (A) :::; 2:::;': 1 j>..j (A1 ) .  

g. If >.. is a vector measure with bounded variation, then >.. < < / >..j .  
h. Any real-valued measure - or, more generally, any measure taking values in a finite

dimensional Banach space - has bounded variation. (Proof 29.3 and 29.6.d.) 

29. 7. Example: a pathological vector measure. We exhibit a bounded vector measure that 
has infinite variation on every nontrivial set. (This example is taken from Diestel and Uhl 
[ 1977] . )  

Let (0 ,  S ,  J.L) be  the measure space [0 , 1 ]  with Lebesgue measure on the Lebesgue
measurable sets. Let X =  £2 [0 , 1] . Define >.. : S ---+ X by >..(S) = 18 ( i .e . ,  the characteristic 
function of S) . Then >.. is J.L-continuous - i.e . ,  >.. vanishes on sets that have J.L-measure 0. 

To show that >.. is countably additive, verify that if (En )  is a sequence of disjoint mea
surable subsets of [0, 1] , then 

which tends to 0 as N ---+ oo. 

On the other hand, if E is a measurable set with J.L(E) > 0, we shall show that j>..j (E) = 

oo. Indeed, let N be any positive integer. By 24.25, J0u 1E (t)dt is a continuous function of 
u ,  so it must pass through each number between 0 and J.L(E).  Hence we can partition E 
into disjoint measurable sets E1 , E2 , . . .  , EN that have equal Lebesgue measure - i.e. ,  they 
all have J.L(E1 )  = 1:JJ.L(E) . Then 

N N 
I >..j (E) > 2::: i>..(Ej ) lx 2::: /NJ.L(E) ,  

j= 1 j=1 

which can be made arbitrarily large. 

29.8. Nikodym Convergence Theorem (optional) . Let (X, I I )  be a Banach space, 
and let Pn : n E N} be a sequence of X-valued measures on a measurable space (0 ,  S) .  As
sume >.. (S) = limn�oo >..n (S) exists in X for each S E S. Then >.. is a measure. Furthermore: 
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The An 's are uniformly countably additive. That is, if Sk l 0 in S ,  then An ( Sk ) --+ 0 (as 
k --+ oo) uniformly in n. In other words, the sequence-valued function 

is a c(X)-valued measure. 

Explanation of notations. The expression Sk l 0 means that S1 :2 S2 :2 S3 :2 · · · and 
n�=1 Sk = 0. Also, c(X) means the Banach space of all convergent sequences in X ;  it is 
normed by l l (x 1 , x2 , x3 , . . .  ) I I  = supnEN l xn l · 

Proof of theorem. We first prove this theorem in the classical case, where X is the scalar 
field lF. In that case, each variation /An/ is a positive, finite measure. Hence 

JL(S) 

defines a probability JL on (fl, S)  with the further property that An << JL for all n. 
Define a pseudometric d on S ,  by 

d(S, T) = JL(S 6 T) = L l l s (w) - lr (w) l dJL(w) = I l ls - lr l l 1 ; 

the last expression is a norm in the Lebesgue space L1 (p,) . The space L1 (JL) is complete,  
by 22.31 ( i ) ;  and { 15 : S E S} = {f E L1 (JL) : Range(!) r:;;: {0,  1 }

} 
is a closed subset of 

L1 (JL) , by 22.31 (i i ) ;  hence the pseudometric space (S ,  d) is complete. By the Baire Category 
Theorem (20 . 16) ,  (S ,  d) is a Baire space, and so any comeager subset of S is dense and thus 
nonempty. 

From An < < JL it follows easily that each An is a continuous map from the pseudometric 
space (S ,  JL) into IR, and each An is a continuous map from (S ,  JL) into X .  By the Baire
Osgood Theorem (20.8) ,  (An ) is equicontinuous on a subset of S that is comeager, hence 
nonempty. 

Say (An ) is equicontinuous at some particular T E S. Let Sk l 0.  We verify that the 
sequences (T U Sk )  and (T \ Sk ) both converge to T in the metric space (S ,  JL) . Since the 
sequence (An) is equicontinuous at T, the sequences An(TUSk) and An (T\Sk) both converge 
to An (T) uniformly in n as k --+ oo .  Then An (Sk )  = An (T U Sk ) - An (T \ Sk ) converges to 0 
uniformly in n as k --+ oo. Thus (An ) is uniformly countably additive. It follows easily that 
the limit A is a measure. This completes the proof in the case where X is the scalar field. 

We now turn to the general case. For each u E X*, we know that u o A is a measure, 
by the scalar case. Let us next show that A itself is a measure: If (Tn) is any sequence of 
disjoint measurable sets, we know that 2:::�=1 A(Tn) converges weakly to A (U�=1 Tn) · Since 
the same type of conclusion holds when we replace (Tn) with a subsequence, we know that 
any subseries of 2:::�=1 A (Tn ) converges weakly. By the Orlicz-Pettis Theorem (28.31 ) ,  it 
follows that 2:::�=1 A(Tn) converges in X to a limit. That limit can only be A (U�=1 Tn ) ,  
since X *  separates points of X .  Thus A is a measure . 
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Replacing (An) with the sequence (An - A) ,  we may assume A =  0. That is, An (S) ----+ 0 
for each S E S.  

Suppose the sequence (An) is not uniformly countably additive. Thus there exists a 
sequence sk 1 0 in s ,  which does not satisfy supn I An (Sk ) l  ----+ 0 as k ----+ 00. That is, 
some constant E: > 0 satisfies lim supk__,oo supnEN I An(Sk ) l  > E: .  Replacing (Sk )  with a 
subsequence, we may assume supn I An (Sk ) l  > E: for all k. Thus, for each k there is some 
n(k) satisfying I An(k) (Sk ) l  > E:. 

Since sk 1 0,  we also have maxl:Sn:SN I An (Sk ) l ----+ 0 as k ----+ 00 for each fixed N. Thus, 
the sequence (n(k)) cannot take all its values in some finite set { 1 ,  2, . . .  , N} .  That is, 
the sequence (n(k)) is unbounded. Replacing (Sk )  and (n(k)) with subsequences, we may 
assume n ( 1 )  < n (2) < n(3) < · · · . Replacing (An) with the subsequence (An(k) ) ,  we may 
assume I Ak(Sk ) l  > E: for all k. 

Choose some Uk E X* satisfying l ukAk(Sk ) l  > E: and luk l = 1 .  For each fixed S E S, we 
have l ukAk (S) I � I Ak(S) I ----+ 0. By the scalar case that we have already proved, 

is a c-valued measure. Since Sk 1 0, it follows that A(Sk ) ----+ 0. However, IA(Sk )
l 

> 
lukAk(Sk ) l  > E: , a contradiction. 

29.9. Corollary: Nikodym Roundedness Theorem. Let (X, I I ) be a Banach 
space, and let A be a collection of X-valued measures on a measurable space (D, S) .  If 
sup>.EA I A(S) I < oo for each S E S, then in fact sup>.EA supsES I A(S) I < oo. 
Proof Suppose not. Then we may choose sequences (An) i n  A and (Sn)  in S ,  with IAn(Sn ) l  > 
n2 . The measures rn = 

�
An satisfy lrn (Sn ) l  > n and limn__,oo rn (S) = 0 for each S. 

By the Nikodym Convergence Theorem (29.8) , f(S) = (ri (S) , r2 (S) , r3 (S) ,  . . .  ) defines a 
c(X)-valued measure. By 29.3 ,  any Banach-space-valued measure is bounded; but that 
contradicts l f(Sn ) l  > n. 

Remark. With a longer proof, a slightly weaker hypothesis suffices; see Diestel and Uhl 
[ 1977] . 

INDEFINITE BOCHNER INTEGRALS AND 
RADON-NIKODYM DERIVATIVES 

29.10. Example: the Bochner integral as a vector measure. Let (D, S, J.L) be a 
measure space, let (X, I I ) be a Banach space, and let h E  U (J.L, X) .  We shall show that the 
function A : S ----+ X defined by the Bochner integral 

A(S) L 1s (w)h(w)dJ.L(w) 

is an X-valued measure on S .  Obviously it is J.L-continuous (as defined in 29.4) . It is 
sometimes called the indefinite integral of h. Also, we say that h is the Radon-Nikodym 
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derivative of A with respect to f.L· We say "the derivative" rather than "a derivative," 
because - as we shall show below - there is at most one h E £1 (tJ, X) satisfying this 

dA relation with measures A and f.L· Thus we may write h = - .  dtJ 
Proofs. Let h E £1 (tJ, X ) .  Obviously A is a vector charge. To show that it is a vector 
measure (i .e . ,  countably additive) and is absolutely continuous, we may reason as follows: 
The function l h ( - )  I is measurable and is a member of £1 (tJ, JR.) (see 22.28) .  By 21 .38(i ) ,  the 
function 1 defined by 1(S) = Is lh( · ) l dtJ is a finite positive measure. Since I A(S) I ::::; 1(S) 
for every measurable set S, it is easy to see that the vector charge A satisfies A < < 1 by 
criterion 29.4(A) .  Therefore A << 1 by criterion 29.4(B) ,  and so A is a vector measure. We 
have A << fJ by criterion 29.4(B ) .  

To show h is uniquely determined, suppose h1 , h2 are both Radon-Nikodym derivatives 
of A with respect to f.L· Then g = h1 - h2 is a member of £1 (tJ ,  X) that satisfies Is g dtJ = 0 
for every S E S; we are to show that g = 0. Suppose that g is not the zero function. Altering 
g on a set of measure 0, we may assume g has separable range. Let X0 be the closed span 
of the range of g; then X0 is a separable closed subspace of X. We can cover Xo \ {0} with 
countably many closed balls B1 that do not contain 0. The set S =  g� 1 (B1 )  has positive 
measure for at least one j; fix that j .  Since B1 is a closed convex set that does not contain 
0, by the Hahn-Banach Theorem (HB20) in 28.4 there exists some functional 'P E X* that 
is positive everywhere on B1 . Then 

0 cp(O) 

a contradiction. 

dA 
29.11 .  Proposition. Suppose h = - ,  as above. Then A has bounded variation. In  fact ,  dfJ 

and in particular 

Proof. It will be helpful to denote A instead by Ah , to display its dependence on h. The in
equality / Ah/ ( S) ::::; Is lh( · ) I dfJ follows easily from the definition of the variation. Therefore 
the mapping h �---t Ah is a nonexpansive linear map from £1 (tJ ,  X) into the Banach space of 
X-valued functions of bounded variation, normed by the variation as described in 29.6.c. 
Since the map h �---t Ah is continuous, it suffices to prove the equation /Ah/(S) = Is lh( - ) 1 dtJ 
for all h in some dense subset of U (tJ, X) .  The integrable simple functions are dense in 
£1 (tJ, X) ,  and the proof is easy for such functions. 

Remarks. A converse question is this: If A < < fJ and A has bounded variation, when does 
dA/dtJ exist? That question is addressed in 29.20 through 29.26.  

29.12. Some further properties of the Radon-Nikodym derivative. 
a. Change of Variables Formula. If g = dfJ/ dv where fJ, v are positive, finite measures, 

then Is h dtJ = Is hg dv for any function h E £1 (tJ, X) and any measurable set S. 
(Compare with 25. 17 . )  
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Hints : Show this first when h is a simple function. Then prove this for any mea
surable function h : n -+ [0, +oo) ' by taking limits of simple functions and using the 
Monotone Convergence Theorem. Finally, prove it for arbitrary f E £1 (fl, X) by tak
ing limits of simple functions and using the Dominated Convergence Theorem; the 
dominating functions take their values in [0, +oo) .  

b. Chain Rule for Vector Measures. From the Change of Variables Formula i t  follows 
that 

d>.. d>.. dfl 
dv dfl dv 

whenever the right side exists. More precisely, if h = d>..fdfl and g = dflfdv, where 
fl, v are positive finite measures and >.. is a vector measure, then the Radon-Nikodym 
derivative d>..jdv also exists; it is equal to hg. (Compare with 25.6.) 

CONDITIONAL EXPECTATIONS AND MARTINGALES 

29. 13. Notations/assumptions. Throughout this subchapter, we assume (X, I I ) is a 
Banach space and (!1,  S, 11) is a probability space - i.e . ,  a set equipped with a O"-algebra of 
subsets and a probability measure. We consider various sub-O"-algebras A, 13, e, . . . � S. The 
restriction of fl to those sub-O"-algebras will be denoted flA , fl13 , fle , etc. Thus LP(flA , X) 
consists of those members of LP(fl, X)  that are equivalence classes of functions measurable 
from (!1, A) to the Borel subsets of X. Note that LP(fl A' X) is a closed linear subspace of 
LP (J.l, X) ;  this follows from 2 1 .3 and 22 .31 (ii) . 

Conditional expectations and martingales are used extensively in probability theory; 
this book will use them to prove Theorem 29.26. 

29.14. Proposition and definition. Let f E L1 (fl, X) ,  and let A �  S be a sub-O"-algebra. 
Then there exists a unique (up to 11-equivalence) function g E £1 (fl A , X) with this property: 
JA g dfl = JA f dfl for every A E A. Such a function will be denoted by E(J IA) ; it is 
called the conditional expectation of f with respect to A. In this fashion we define the 
conditional expectation operator 

E( - IA) 

It has these further properties: 

(i) It is linear. 

(ii) It is nonexpansive from L1 (fl, X)  to L1 (flA , X) - that is, I IE (J IA) I I l :::; l l f l l 1 ·  
(iii) It is idempotent - that is, E( · IA) o E( - IA) = E( · IA) .  
( iv) Let F be the scalar field. If f E L2 (fl, F) , then E(J IA) i s  the closest vector to 

f in the closed linear subspace L2 (flA , F). 
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Proof We first prove uniqueness. Suppose that g1 , gz E £1 (J.L A , X) satisfy fA g1 dfl = 
fA g2 dfl for every A E A. Then h = g1 - g2 is a member of L 1 (J.L A , X) that satisfies 
fA h dfl = 0 for every A E A. It suffices to show that h = 0 almost everywhere. Suppose, 
on the contrary, that { w E 0 : h( w) -# 0} has positive measure. Since the range of h is 
separable, its points are separated by the functions Rw ¢n for some sequence ( 'l/Jn ) in X* -
see 23 .24. Then {w E 0 :  Re 'l/Jnh(w) -# 0} has positive measure for at least one n. Replacing 
'l/Jn with -'l/Jn if necessary, we may assume that the set A = { w E 0 : Re 'l/Jnh (  w) > 0} has 
positive measure. But fA Re '¢nh dJ.L = Re '¢n fA h dJ.L = 0, a contradiction. This proves 
uniqueness. 

Let us define a linear map E( - IA) from some linear subspace of £1 (J.L, X) into £1 (J.L A , X) , 
by writing g = E(J IA) whenever g E L1 (J.LA , X) satisfies fA g dJ.L = fA f dJ.L for all A E A. 
(The fact that the operator's domain is all of £1 (J.L, X) will not be established until the 
end of this proof. ) Clearly, E(J IA) exists and equals f whenever f E £ 1 (J.L A , X) ; thus 
the domain of the conditional expectation operator contains £1 (J.L A , X) and the operator is 
idempotent. 

We next show that E( - IA) is nonexpansive. Say g = E(JIA) . Define measures .Ag , ,\A 
on S ,  A, respectively, by 

.Ag (S) = is f dJ.L for S E S, .AA (A) = i g dJ.L for A E A. 

Then l lf l l 1 = Var(.Ag ) = /.Ag/ (0) and l lg l f i = Var(.AA ) = /.AA /(0) , by 29. 1 1 .  However, 
,\A is just the restriction of .Ag to the smaller a-algebra A, so Var(.AA) :::; Var( .Ag ) ;  thus 
I I E(J IA) I I l :::; 1 1 ! 1 1 1 · 

Next we consider f E L2 (J.L, If) . Let g be the closest point to f in the closed linear 
subspace L2 (J.LA , If) . Then g - f is orthogonal to L2 (J.LA , If) ,  as we noted in 22.51 .  That 
is, f0 (g - f)h dfl = 0 for every h E  L2 (J.LA , If) . In particular, taking h = lA shows that 
fA g dfl = fA f dfl for every A E A. (We can take h = IA because fL is a probability measure, 
hence l A E L2 (J.L, !f) s;; U (J.L, !f) . ) Thus, for scalar-valued functions, the domain of E(· IA) 
contains £2 (J.L, If) ; note that that linear space is dense in U (J.L, If) . Since E( · lA) : £2 (J.L, If) ----> 
L1 (J.LA , If) is nonexpansive for the II l l 1 norms (as noted in the preceding paragraph) ,  the 
operator extends uniquely to a nonexpansive linear operator r : U (J.L, If) ----> £1 (J.L A , If) 
(which, however, we have not yet established to be a conditional expectation operator) .  For 
fixed A E A, the mappings f r---; fA f dJ.L and f r---; fA r f dJ.L are continuous linear maps from 
£1 (J.L, If) into If, and they agree on the dense set £2 (J.L, If) , hence they agree on £1 (J.L, If) . 
This proves r is indeed a conditional expectation operator, defined everywhere on £1 (J.L, If) . 

For f E U (J.L, X) with a general Banach space X, we construct E(JIA) first in the 
case where f is a simple function. Say f = 2.::7=1 1s1 ( · )x1 where the ls1 ( · ) 's are char
acteristic functions of disjoint sets S1 E S, and the xj 's are members of X. Define 
E(J IA) = 2.::::;'= 1 E ( 1s1 ( · ) 1A) x1 . It is easy to verify that this defines a linear, nonex
pansive mapping E( · lA) from the simple functions in £1 (J.L, X) into £1 (J.L A , X) , satisfying 
fA E(J IA) dJ.L = fA f dJ.L for all A E A. Those properties are preserved when we take limits, 
and the simple functions are dense in £1 (J.L, X); thus the conditional expectation operator 
extends to a mapping with those properties on all of £1 (J.L, X) . 

29.15. Corollaries. 



794 Chapter 29: Vector Measures 

a. fK IE (J IA) (w) ldtL(w) :S fK lf (w) ldtL(w) for any K E A. That is, the conditional 
expectation operator is nonexpansive from L1 (MSnK ' X) to L1 (11AnK ' X) ,  where S n K  
and A n  K denote the traces of the a-algebras S and A on the set K. 

Proof Replace 1 1  with its restriction to  K, and apply the preceding results. 
b. If A �  13 � S, then E (E (f i13) IA) = E(JIA) . 
c. Example. Let 81 , 82 , 83 , . . .  be disjoint members of S with union equal to n. Let A be 

the a-algebra generated by the 8j 's; thus A =  {unions of 8j 's} . Verify that 9 = E(JIA) 
can be represented as follows: 

if w E  81 and tL(8J )  > 0 
9(w) 

if w E  81 and tL(8J )  = 0. 

29.16. Definition. Let r be a collection of sub-a-algebras of S that is directed by inclusion 
- i.e. ,  assume that for any A, 13 E r there exists some e E r with e :;2 A U 13. An X-valued 
martingale indexed by r will mean a net (9A : A E f) in L1 (11, X) satisfying 

- that is, satisfying 

whenever A � 13 

whenever A �  13 and A E A. 

An important special case is that in which r consists of an increasing sequence of sub
a-algebras A1 � A2 � A3 � · · · � S, with conditional expectation operators E1 = E( · IAJ ) · 
Then the corresponding functions form a sequence 91 , 92 , 93 , . . . that satisfies 9J = Ej (9k) 
whenever j :::; k - that is, fA 9J d11 = fA 9k d11 whenever j :S k and A E Aj . We may refer 
to such martingales as sequential martingales. 

Two examples of methods for constructing martingales are given in 29. 17 and 29.24. 

29.17. Mean Convergence Theorem for martingales. Let (9A : A  E r) be a net in 
L1 (11, X) where r is a collection of sub-a-algebras directed by inclusion. Then these two 
conditions are equivalent: 

(A) (9A : A  E r) is a martingale that converges in L 1 (11, X) to some limit 9oo · 
(B) There is some function 9 E L1 (11, X) such that 9A = E(9 IA) for each A E r. 

Moreover, if those two conditions are satisfied, then 

where S00 is the a-algebra generated by UAa A. (Remark. The function 9oo is determined 
uniquely almost everywhere by these conditions, but the function 9 might not be.) 

Proof of (A) =} (B). Fix any A E r. Since E( · IA) : L1 (11, X) --+ L 1 (11A , X) is a nonexpan
sive mapping and 0 = lim13 1 1 913 - 9oo lh , it follows that 0 = lim13 II E(913 IA) - E (9oo lA) lh . 
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For 'B sufficiently large, we have 'B -;-;:> A, hence E(9'B lA)  = 9A ; thus 0 = lim'B I I 9A -
E(9x iA) I I t · But I I 9A - E(9IA ) I I t  does not depend on 'B,  so 9A = E(9oc iA) .  

Proof of (B) =? (A) and (*) .  Let 9A = E(9 IA) .  That (9A : A E r) i s  a martingale follows 
immediately from 29 . 15.b. 

Let 9x = E(9 I S:x: ) ;  it remains to show that 0 = lim A I I 9A - 9oc l i t .  Note that if E E 'B 
then E E S :x: ,  hence 

l 9x dp, l 9 df1 l 9'B dp,; 

this proves E(9:x: I'B )  = 9'B . The function 9oc is S:x:-measurable, hence by 22.30 we can 
approximate 9= arbitrarily closely in Lt (p, , X) by an S=-measurable simple function. The 
algebra of sets 'U = UAa A generates the ()-algebra S:x: ' so by 21 .26 each member of s= 
can be approximated arbitrarily closely in measure by some member of 'U. Combining these 
two results, we can approximate 9= arbitrarily closely in U (p, , X)  by a simple function 
of the form h = "L_7=t lu, ( - )xj where the U; 's belong to 'U; here l u1 is the characteristic 
function of UJ . Thus we can satisfy l l 9x - h i l t < c for any given c. Temporarily hold c 
fixed; then we may fix n, h , and some particular A that contains all of Ut , U2 , . . .  , Un- For 
all 'B E r sufficiently large, we have 'B -;-;:> A, and therefore E(h i'B )  = h. Since E( - I'B )  is 
nonexpansive. we obtain 

I I 9'B - 9x l i t < I I 9'B - h i l t + 1 1 9= - h i l t 
I I E(9x i'B ) - E(h i'B) I I t + l l 9x - h i l t < 2 l l 9x - h i l t < 2c. 

Thus lim sup'B I I 9'B - 9oc lh S 2c. Now let c 1 0; this proves lim'B I I 9'B - 9x lh = 0 .  

29.18. Maximal lemma for martingales. Let (9n ) be a sequential martingale, with 
cr-algebras At � A2 � A3 � · · · � S. Let some number c > 0 be given . Then 

< � sup j l9n ( · ) ldp,. c nEN 0 

(Compare with 24.43 . )  

Proof. Let E = {w E 0 : sup" l9n (w) l  > c} .  A point w belongs to E if  and only if l9n (w) l > 
c for some n E N. We shall classify the w's in E by considering which is the first value of n 
satisfying this condition. In other words, let Et = {w E  0 :  c < l9t (w) l } ,  and for n > l let 

En {w E  0 : max I9.J (w) l S c < l 9n (w) l } . t :SJ<n 

Then the E, 's form a partition of E ,  so p, (E) = "L:=l p,(E11 ) .  Since 9n is An-measurable 
and the An 's arc increasing, it follows that En E An . Observe that 
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for any m 2 n; the last inequality follows from 29. 15.a since gn = E(gm
J
An ) · Therefore, 

for any integer m 2 1 we have 

Finally, take limits as m -; oo. 

29.19. Pointwise Convergence Theorem. Let ( (fn , An ) : n = 1 , 2 , 3 ,  . . .  ) be a sequen
tial X-valued martingale, which converges in L1 ({-l, X)  to a limit f. Then also fn -; f 
pointwise {-l-almost everywhere. 

Proof. Say the conditional expectation operators are En = E( · IAn ) i  thus the functions are 
fn = En (f) .  Let any numbers 8, c > O be given. By 22.30 and 21 .26, we have l l f-g

J J
1 < 8c-/2 

for some simple function g that is Ak-measurable for some positive integer k. Then Eng = g 
for all n 2 k. For all m, n 2 k, we have 

def ::=:; IEng - Emg
J + JEn (f - g) - Em (f - g)

J 
::=:; 2 sup 

J
Ej (f - g)

J 
= h .  

J2' l 

Taking limits, we have lim supm.n->oo lfn (w) - fm (w) J ::::; h(w) for each w. Therefore 

f-l ({w E O :  ��_:
� l fn (w) - fm (w)

J
> c-}) < f..l ( {w E O : h(w) > c-} ) 

2 < - I I ! - g l l 1  < 8, 
E 

where the next-to-last inequality follows from Lemma 29. 18  with p = f - g. Letting 8 l 0 
shows that f-l ( {w E n  : lim SUPm,n->oo l fn (w) - fm (w) l > E } ) = 0. Since E is arbitrary, this 
shows that lim supm n->oo l fn (w) - fm(w) l = 0 almost everywhere, and thus limn_,00 fn (w) 
exists almost everywhere. We established earlier in this proof that fn converges to f in 
U (f-l, X) ;  hence fn -; f pointwise almost everywhere. 

EXISTENCE OF RADON-NIKODYM DERIVATIVES 

29.20. Classical Radon-Nikodym Theorem. Let (0, S,  f-l) be a finite measure space. 
Let A be a scalar-valued measure on S. Assume that A is {-l-continuous (as defined in 29.4) . 
Then there exists a Radon-Nikodym derivative h = dA/df-l, as defined in 29. 10. 

Remark. An analogous result can be proved for <T-finite measures f-l, but to keep our defini
tions simple we shall only consider finite measures f-l· 
Proof of theorem. Any complex measure can be decomposed into its real and imaginary 
components; for any real measure A we have the Jordan Decomposition A = A+ - A- . Thus, 
it suffices to consider the case of A 2 0. By assumption, A is scalar-valued, so A(O) < oo .  
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We prove existence of h first under the additional assumption that .A(S) :<::: JL(S) for all 
S E S .  In that case, it is clear that fo. l f( · ) ld.A :<::: fo. lf ( - ) ldJL for every measurable function 
f. Thus we have the inclusion L : £} (JL) � ,£} (.A ) ,  and in fact that inclusion is a continuous 
linear map from one seminormed space into the other, with operator norm :<::: 1 .  

Note that i f  two measurable functions f ,  g are p,-equivalent , they are also .A-equivalent , 
since .A is p,-continuous. Therefore the inclusion L : ,C 1 (JL) � ,C 1 (.A) determines a continuous 
linear mapping ! >  L1 (p,) ----. L1 (.A) with norm :<::: 1 .  (We do not assert that this is an injective 
map - after all, two functions which are not p,-equivalent may possibly be .A-equivalent . )  

The integral mapping I : f f---+ fn f d.A i s  a continuous linear map from L 1 ( .A )  into the 
scalar field lF. The composition I o 1: : U (p,) ----. L1 (.A) ----. lF is a continuous linear map. By 
28.51 ,  we know that that linear map is given by some h E  L 1 (p,)* = L= (p,) . Thus , there is 
some function h E  L=(JL) ,  determined uniquely up to JL-equivalence, such that 

1 f d.A n 1 fh dp, 
n 

( 1 )  

for every f E L1 (JL) . Since p, and .A are nonnegative, i t  follows easily that h is nonnegative. 
By the Monotone Convergence Theorem, ( 1 )  holds for any positive measurable function J, 
whether it is integrable or not. 

In particular, when f is the characteristic function of a set S E S, we find .A ( S) = J 5 h dp,. 
In particular, fo. h dJL = .A(D) < oo, so h E L1 (p, ) .  This completes the proof of existence of 
the Radon-Nikodym derivative d.A/dJL in the case where .A :<::: f-L· 

We now remove the assumption that .A (S) :<::: p,(S) for all S. (We continue to assume that 
.A 2 0. The reduction used here is taken from Bradley [1989] . )  Let 1r = .A + p,. Then .A and JL 
are scalar-valued, 1r-continuous measures, and .A , p, :<::: 1r. By the preceding arguments, there 
exist Radon-Nikodym derivatives d.Ajd1r and dJL/d7r; these are members of L1 (1r) . Note that 
dp,/ d1r satisfies the condition analogous to ( 1 ) ;  thus, 

L f dJ-1 (2) 

for every nonnegative measurable f .  Now define the set D0 = {w E D : �� (w) = 0} and 
the nonnegative measurable function 

h(w) 
when w E D \ Do 

0 when w E Do . 

Then J-l(Do) = J00 � d1r = 0. Since .A is p,-continuous, we have also >.(Do) = 0. Apply (2) 
with !( · ) = 1s ( - )h ( - ) .  By the definitions of d.Ajd1r, dp,jd1r, and h, for any measurable set 
S <;;;; D \ Do we have 

1 d.A 1 djL 1 .A (S) = -d d1r = h - d1r = h dJL. s 7r s d7r s 
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Since >. and I( · ) h df.L both vanish on subsets of 00 , we have >.(S) = Is h df.L for all S E S .  
This completes the proof in the case of f.L(O) < oo. 
29.21. Definition. We say that a Banach space (X, I I ) has the Radon-Nikodym 
Property, or RNP, if this condition is satisfied: 

(A) (RNP with respect to arbitrary measure. )  Suppose (0, S ,  f.L) is a finite measure 
space and >. : S --+ X is a f.L-Continuous measure with bounded variation. Then 
there exists some g E £1 (f.L; X) such that >.( S) = Is g df.L for all S E S .  

Summary of results. We saw in  29.20 that the scalar field has the RNP. I t  follows easily 
that any finite-dimensional Banach space has the RNP. More generally, we shall prove in 
29.26 that every reflexive Banach space has the RNP. We shall see by simple examples that 
some nonreflexive Banach spaces have the RNP (see 29.22) and some do not (see 29.23) .  

Other characterizations (proofs omitted) .  Many other conditions are equivalent to the 
Radon-Nikodym Property. Here are a few of them: 

(B) (RNP with respect to Lebesgue measure. )  Let (0, S, f.L) be the unit interval 
equipped with Lebesgue measurable sets and Lebesgue measure. Suppose that 
>. : S --+ X is a f.L-continuous measure with bounded variation. Then there 
exists some g E £1 (f.L; X) such that >.(S) = Is g df.L for all S E S.  

(C) (Riesz Representation Property. ) Suppose (0, S ,  f.L) i s  a finite measure space 
and T : L 1 (f.L) --+ X is a continuous linear operator. Then there exists some 
g E L00 (f.L; X)  such that T(f) = I0 fg df.L for all f E L1 (f.L) . 

(D) (Huff and Morris Property. ) If D is a nonempty closed bounded subset of X, 
then some continuous real-linear functional on X assumes a maximum value 
on D. 

Many more formulations and the proofs of equivalence can be found in Diestel and Uhl 
[ 1977] . That book also includes this interesting result : 

Let X be a Banach space, let (0, S, f.L) be a finite measure space, and let p E 

[l , +oo) and q E ( l , +oo] with 1. + 1.  = 1 .  Then the dual of £P (f.L, X) is Lq (f.L, X*) 
p q if and only if the dual space X* has the Radon-Nikodym Property. 

Thus, (LP(f.L, X)) * = Lq(f.L, X*) is true for "nice" Banach spaces X, but not more generally. 

29.22. Example. The space £1 has the RNP. 

Proof Let lF be the scalar field (IR or C). Let (0, S ,  f.L) be a finite measure space and let 
>. : S --+ £1 be a f.L-continuous vector measure with bounded variation. We are to exhibit a 
function g E L1 (f.L, €1 ) satisfying >.(S) = Is g df.L for all S E S .  

We may write >.(S) = ( >.1 (8), >.2(8), >.3 (S) , . . .  ) ; then each Aj : S --+ lF i s  a f.L
continuous, scalar-valued measure with bounded variation. It follows easily from the defi
nition of the norm of £1 and the definition of the variation of a charge, that 

/>.f(S) j>.I /(S) + /Az/(S) + j>.3j(S) + · · · . 
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(Hint: To prove that 2::� 1 l>.j i (S) :::; I>.I(S) , it suffices to show that 2::�= 1 l>.j i (S) :::; 
I >.I(S) for any positive integer N.) 

Since the scalar field has the RNP, for each j we have Aj (S) = Is gj dJ1 for some gj E 
L1 (J1; lF) . Define g(w) = (g1 (w) , g2 (w) , g3 (w) ,  . . .  ) . Observe that 

00 
I >.

1
(0) , 

which is finite; this proves that g E £1 (J-L, €1 ) .  
Define a "truncation map" TN : €1 -+ €1 by 

Then for any x E €1 , we have limN�oo TN (x) = x - or, more precisely, 

O · 
' 

this follows from the definition of €1 and its norm. Now, for any S E S and N E N it is easy 
to verify that TN ( >.(S)) = TN Us g dJ1) . Taking limits yields >. (S) = Is g dJ1 . 

29.23. Example. The space c0 lacks the RNP. 
Let (0, S, J-L) be the interval [0, 21r] equipped with Lebesgue measure. For S E  S, let >.(S) 

be the sequence whose nth term is 

1211" 
ls( t )  sin(nt)dJ-L(t) 

() 
(n = l , 2, 3 ,  . . .  ) .  

By the Riemann-Lebesgue Lemma (24.41 .b) , An (S) -+ 0 as n -+ oo .  Thus ).. is a map from 
S into the Banach space c0 = {sequences of real numbers converging to 0} ,  which we equip 
with the sup norm as usual. Obviously ).. is finitely additive - i.e . , a vector charge. Also, 
I I >.(S) I I  :::; J-L(S) , so ).. is a J-L-continuous vector measure with bounded variation. However, 
we shall show that there does not exist an integrable function g : [0, 21r] -+ c0 with the 
property that 

>.(S) is g(t )dJ-L(t) for every S E S.  

Indeed, suppose there were such a function. Then g(t) is a member of co - i.e. , a sequence 
(g1 (t) , g2 (t ) , g3 (t ) ,  . . .  ) .  Applying the nth coordinate projection to the equation above, we 
obtain 

is sin( nt )dJ-L(  t) for every S E S 

and therefore gn(t) = sin(nt) for almost every t. However, we shall show that the function 
g(t) = (sin(t) , sin(2t ) , sin(3t ) ,  . . .  ) defined in this fashion generally does not take values in 
c0 -- in fact, we shall show that g(t) E c0 only for t in a set of measure 0. Fix any 
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small number E > 0, and let En = {t E [0, 2Ir] : l9n ( t ) 1  ::;:: E} .  It is easy to show that 
p (En) = 27r - 4 arcsin(E) for each n. Define limsups as in 7.48 and 21 .25.c; then 

{t : g (t) tic co } :J {t : lgn (t) l ::;:: E for infinitely many n} 

Hence 

p({ t  E [0, 2Ir] g(t ) tic co} )  > p(lim sup En) n-+oo 

lim sup En . n-+oo 

> lim sup p(En)  2Ir  - 4 arcsin( E ) .  n-+oo 

Now take limits as E l 0. 

29.24. Definition/example. The rather complicated definitions in this section and the 
related lemma in the next section are in preparation for the major theorem given in 29.26; 
some readers may find it helpful to glance ahead to that result . 

The collection J = {finite subalgebras of S }  is directed by inclusion. Let p be a prob
ability measure on (D, S) ,  let >. be an X-valued measure on (D, S ) ,  and suppose that >. 
is p-continuous - that is, >. vanishes on p-null sets. We use >. to define a martingale 
(gA : A E J) as follows. 

For each finite subalgebra A �  S ,  observe that 1r(A) = {minimal nonempty members of 
A} is a finite partition 1r (A) of n, and A =  {unions of members of 1r(A) } .  Define a simple 
(i .e. ,  finitely valued) integrable function gA : n ----+ X by { .A(T) 

p(T) 

0 

if w E T E 1r(A) and p(T) > 0 

if w E T E 1r(A) and p(T) = 0. 

Some observations: 
a. The function gA is defined uniquely everywhere on n, not just p-almost everywhere. 
b. The restriction of >. to A has bounded variation and has Radon-Nikodym derivative 

equal to gA ; thus we obtain Var(>., A) = I I 9A I I c  
c .  fA 9A dp = .A (  A )  when A E A. 
d. (gA : A E J) is an X -valued martingale. For purposes of the discussion in the next 

few sections, we shall call this the full sieve martingale associated with >..  
e. If A 1 � A2 � A3 � · · · is an increasing sequence of finite subalgebras of S, then the • 

sequence 9n = gAn (n = 1 , 2, 3, . . .  ) ,  with IT-algebras An ,  is a martingale. We shall 
call it a sequential sieve martingale associated with >.. Different sequential sieve 
martingales are obtained from different sequences (An) · 

29.25. Sieve Convergence Lemma. Let (D, S, p) be a probability space. Let >. be 
an X-valued measure on (D, S) that is p-continuous. Define sieve martingales as in 29.24. 
Then the following conditions are equivalent : 
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(A) There exists a Radon-Nikodym derivative h = d>./dJL That is, there exists 
some h E U (JL, X) that satisfies >. (S) = Is h dJL for every S E S. Hence 
gA = E (h iA) for each A E �-

(B) The full sieve martingale (gA : A  E �) associated with ).. converges in £1 (JL, X) 
to some limit h .  

(C) For each increasing sequence of  algebras A1 � A2 � A3 � · · · contained in S ,  
the sequential sieve martingale (gn ) associated with ).. converges in £1 (JL, X) 
to some limit gx . 

(D) For each increasing sequence of algebras A 1 � A2 � A3 � · · · contained in 
S, there exists some function goc E £1 (JL, X) with the following property: For 
each zp E X* , the scalar-valued sequential sieve martingale ( zp o gn : n = 
1 ,  2, 3, . . . ) converges in L1 (JL, IF) to zp o goc . (Here IF is the scalar field . )  

801 

Furthermore, when these conditions are satisfied, then the functions h in (A) ,  (B) are the 
same, and the limits goc in (C) , (D) are equal to E(h iAoo ) ,  where A00 is the a-algebra 
generated by UnEN An . 

Proof of theorem. The implication (A) =? (C) follows from 29 . 17; the implication (C) =? 
(B) follows from 19.7 . To prove (B) =? (A) ,  fix any set S E S. For all A E � sufficiently 
large, we have S E A, hence Is gA dJL = >. (S) . Take limits as gA -> h in U (JL, X) to obtain 
Is h dJL = >.(S) . 

The implication (C) =? (D)  is obvious. For (D) =? (C) ,  let any sequence A 1 � 
A2 � A3 � · · · � S be given, and suppose the conclusion of (D) holds. Temporarily fix any 
zp E X* . It is easy ( exercise) to verify that the sequence ( zp o gn ) is a martingale in £1 (JL, IF) .  
Since that martingale converges in  L 1 (JL ,  IF)  to  zp o gx , we know from the implication (A) 
=? (B) in  29. 1 7  that zp o gn = E(zp o g= IAn) for each n. That is, zp o gn i s  An-measurable, 
and Is zp o gn dJL = fs zp o g00 dJL for each set S E An. Since zp is continuous and linear, it 
commutes with the Bochner integral; thus we obtain zp (J gn dJL) = zp (J goo dJL) for each 
zp E X* . Since X* separates the points of X, it follows that I gn dJL = I g= dJL for each 
S E A71 • That is, gn = E(goo iAn) · By the implication (B) =? (A) in 29. 17, it follows that 
gn -> g00 in £1 (Jl, X) .  

29.26. Theorem (Phillips) .  Every reflexive Banach space has the RNP. 

Proof (following R0nnow [1967] and Chatterji [1968] ) .  Let (X, I I )  be a reflexive Banach 
space. Let (n, S, JL) be a positive measure space, and let ).. be an X-valued JL-continuous 
vector measure that has bounded variation. We are to show that the Radon-Nikodym 
derivative d)..j dJL exists. 

If S is not complete, we may extend ).. and JL to the completion of S, by taking them both 
to be 0 on any 11-null set. Thus we may replace S with its completion - we may assume S 
is complete (i .e . ,  every null set is measurable) .  

Since ).. < <  JL ,  we know that /)../ < <  JL. By the classical Radon-Nikodym Theorem, we 
know that the Radon-Nikodym derivative d��/ exists. It suffices to show that the derivative 
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d>. . d>. d>. d 1 >.; 
d

l
>.

l exists, for then we may apply the Cham Rule 29. 12 .b to obtain 
dp 

= d
l
>.

l �-
Hence we may replace J.L with I >.I; thus we may assume hereafter that J.L = I >.I. By rescaling, 
we may also assume that J.L is a probability measure. 

Let A1 c;;; A2 c;;; A3 c;;; · · · be an increasing sequence of finite algebras contained in S . 
Define the X-valued martingale (gn ) as in 29.24.e It suffices to verify condition 29.25(D) .  

Let X0 be the closed linear span of  the union of the ranges of  the 9n 's; then X0 is 
separable and weakly closed. Since I >. (S) I � 1>-I(S) = p(S) ,  from our definition of the 9n 's 
in 29.24 we see that l 9n ( w) I � 1 for all n, w. Let B be the closed unit ball of X; the 9n 's 
take their values in B n X0 . The set B is weakly compact by 28.41 (C) ;  hence B n X0 is 
weakly compact . Therefore B n X0 is weakly sequentially compact , by 28.36(E) . 

Temporarily fix any w E 0. The sequence (gn (w) ) has a subsequence (gnk (w)) that 
converges weakly to some limit g00 (w) E B n Xo . Many choices of g00 (w) may be possible, 
using different subsequences; we use the Axiom of Choice to select some particular 9oo (w). 
Making a choice for each w, we define a function 9oo : 0 -+ B. (Different w's may use 
different subsequences; we do not yet assert anything about measurability of g00 . )  

Let F be the scalar field. Temporarily fix any <p E X* . By the classical Radon-Nikodym 
Theorem, the scalar-valued measure <p o >. has a Radon-Nikodym derivative d(�= >.) . By 
the implication (A) :=:;. (C) in 29.25 (with the scalar field used as a Banach space) , the 
sequence ( <p o 9n : n E N) converges in £1 (p, F) to some limit h'P . By 29. 19, we also have 
<p o 9n -+ h'P almost everywhere. Thus there is some set N'P with measure 0, such that for 
any w E  0 \  N'P we have (<p, gn (w) )  -+ h'P (w) . On the other hand, holding w fixed, some 
subsequence (gnk ( w)) converges weakly to g00 ( w) . It follows that 

for all w E 0 \ N 'P . 

Since h'P is measurable and N'P is a null set, the function w f---+ (<p, g00 (w)) is measurable. 
Thus g00 is weakly measurable. It is also separably valued and bounded, since it takes its 

values in B n X0 . Therefore it is strongly measurable (by 23.25) and belongs to L00 (J.L, X) .  
As  we noted above, for each <p E X* we have <p o 9n -+ h'P = <p o g00 as n -+  oo .  This 

completes the verification of 29.25 (D) , and thus the proof of the theorem. 

SEMIVARIATION AND BARTLE INTEGRALS 

29.27. Notations. Throughout the next few sections, we shall assume A is an algebra of 
subsets of some set 0. Also, we 'assume (X, I I ) is a Banach space, and U is the closed 
unit ball of the dual of X - that is, 

U { u E X* : l u lx* � 1 }  . 

29.28. Definition. With notations as in 29.27, let >. : A -+ X be a vector charge. Then for 
each u E U, the function u>. = u o >. is a scalar-valued charge; its variation is the positive 
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charge juA.j . The semivariation of ).. is the function /)../ : A ---+ [0, +oo] defined by 

/A./ (A) sup juA./(A) . 
uEU 

Caution: A more commonly used notation is I I A. I I ; see for instance Diestel and Uhl [1977] . 
Our notation / )../ is unconventional, but perhaps more suggestive. 

29.29. Basic properties of semivariations. 
a. /)../ is monotone - that is, A <:;; B =} /A./ (A) :::; /A./(B) . Hence the largest value 

taken by /)../ is the (not necessarily finite) number /A./(n) . 
b. /A./ is finitely subadditive - that is, /A./ (U7=1 cj) :::; "L;'=1 /A./ (Cj )  whenever n 

is a positive integer and C1 , C2 , . . .  , Cn are members of A. 
c. If the scalar field is lR, our formula for the semivariation can be rewritten 

/A./ (A) sup { luA.(S) I + IuA.(A \ S) I : u E U, S E S, S <:;; A} . 
This follows from 29.6.d. 

d. For any set A E S, we have 

� /A./ (A) 4 
< 

If the scalar field is IR, we can use � in place of -! .  
< /A./(A) . 

Hints : This follows from the previous observation; for the second inequality use 
also (HB8) in 23 .18 . 

e.  In particular, -l /A./ (n) :::; sup AEA I A.(A) I :::; /A./ (n) . Thus, A. is bounded (i .e . , has 
bounded range) if and only if its semivariation over n is finite. Instead of saying that 
a charge has "bounded semivariation," we may just say that the charge is bounded. 

f. The space of all bounded X-valued charges on A is a Banach space, when normed 
by either I I A. I I = sup{ IA. (A) I : A E A} or I I A. I I = /A./(n) ; these two norms are equivalent. 
The norm /A./ (n) is more convenient for some purposes, particularly 29 .30 below. The 
space of bounded charges will be denoted ba(A, X ) . (For proof of completeness, apply 
22. 1 7 with r = A . ) 

In general, ba(A, X) i s larger than the space BV (A , X) of charges with bounded 
variation, which was introduced in 29.6.c . However, when X is finite-dimensional, then 
the two spaces ba(A, X) and BV(A, X) are the same, and the variation is another norm 
equivalent to the semivariation. When X is the scalar field, then the variation is equal 
to the semivariation. 

g. Let S be a (}-algebra of subsets of n. The space of X-valued measures ( i .e . , 
countably additive charges) on S will be denoted ca(A, X ) . It is a closed subspace of 
ba(A, X)  and is normed by the semivariation or the sup norm, as in 29.29.f. 

(Again, we note that if X is finite-dimensional, then another equivalent norm is 
given by the variation; if X is the scalar field, then the semivariation is equal to the 
variation. )  
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29.30. Notations. For the discussions below, let 0 be a nonempty set, and let A be an 
algebra (but not necessarily a a-algebra) of subsets of 0. Let IF' be the scalar field (equal 
to � or C) .  Let 

B(O) {bounded functions from 0 into IF'}; 

this is a Banach space when equipped with the sup norm. 
In this context , a simple function will mean a function f : 0 -> IF'  whose range is a finite 

set and that satisfies f- 1 (c) E A for each c E IF'. Equivalently, f is a linear combination of 
finitely many characteristic functions of members of A. ) Observe that the simple functions 
form a linear subspace of the Banach space B(O) .  Now define 

Unif(A) {uniform limits of simple functions} ; 

thus Unif(A ) is the closure of the simple functions in B(O) .  It is a closed linear subspace 
of B(O) , and thus it is a Banach space when equipped with the sup norm. 

Elementary exercise. If the algebra A is a a-algebra, then Unif(A ) is equal to the set of 
all bounded measurable real-valued functions on 0. 
Definition. Let (X, I I ) be a Banach space, with scalar field IF'. Let 0, A, Unif(A) , etc . ,  
be as above. Define the Banach space ba(A, X) of bounded charges as in 29.29.f, with 
the semivariation for the norm: I I .A I I  = /.A/ (0) . By the Bartle integral we shall mean a 
continuous bilinear map 

L ( · ) d( - ) Unif(A) x ba(A, X) -> X 

defined as follows. When f is a simple function (i .e . , a finitely valued measurable func
tion) , then define the integral in the obvious fashion, as in 1 1 .42 � that is, In f d). = 
L:c ). u- l (c) ) c. It is easy to verify that 

IL f d,\ 1 < I I J I I oo II .A l l · ( ! )  

Thus the mapping f ......_. In f d). is continuous, and so it extends uniquely (see 23.2.e) to a 
linear map on all of Unif(A ) , also satisfying ( ! ) .  

We emphasize that the charge >. need not be scalar-valued or countably additive, but the 
integrand f must be scalar-valued and bounded. (Contrast this with the Bochner integral 
� defined in 23. 16 � for which the measure must be positive and countably additive, but 
whose integrand may be vector-valued and unbounded. ) 

Remarks. The definition given above is convenient for our purposes, but the literature 
sometimes uses the term "Bartle integral" with wider choices of f and .A. In particular, 
Bartle himself permitted all of f, >., and I f  d). to take values in vector spaces X, Y, Z; 
where we have used multiplication of a scalar times a vector, he used a bilinear map ( , ) : 
X x Y ->  Z. What we have called the "Bartle integral" is what some mathematicians would 
call the Radon integral, but that term has other meanings, too. 

29.31. Further properties of the Bartle integral. Let 0, A, Unif(A) , etc . , be as in 29.30. 
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a. In the fashion indicated above, each A E ba(A, X) defines a continuous linear map 
!3>. : Unif(A) -+ X, defined by !3>. (!) = fn f dA. The preceding argument shows that 
this linear map has operator norm 1 1 1 !3>. 1 1 1 :::; I I A I I · 

Actually, from the definition of semivariation it follows easily ( exercise) that 1 1 1!3>. 1 1 1 
is equal to I I A I I - That is, 

sup { ll f dA I : f E Unif(A) ,  1 1 ! 1 1= :::; 1 } .:"A/(0) .  

(For this and related purposes, the semivariation works much better than the sup of 
the charge, even though the semi variation and sup are equivalent norms. ) 

b. Furthermore, every continuous linear map from Unif(A) to X is of this form. Thus, 
the mapping A f--7 !3>. is an isomorphism (i.e. , norm-preserving linear bijection) from 
ba(A, X) to the operator-normed space 

BL ( Unif(A) , X) {bounded linear maps from Unif(A) to X} 

(defined as in 23. 1 ) .  
In particular, ba(A, JF) = (Unif(A)) * . 

c. The dual of L= (J.L).  Let (0, S, J.L) be a measure space (i.e. , assume S is a a-algebra and 
J.L is countably additive) . Show that the mapping A f--7 !3>. gives an isomorphism from 
ba(J.L, X) onto BL (L= (J.L) , X) ) ,  where ba(J.L, X) is the subspace of ba(S , X) consisting 
of those charges that vanish on J.L-null sets. 

(Hints: Since S is a a-algebra, U nif(S) is the space of bounded measurable functions. 
Then L= (J.L) is a quotient space of Unif(S) , obtained by identifying those functions that 
are J.L-equivalent .) 

In particular, ba(J.L, lF) = (L= (J.L) ) * . 
29.32. The following principles are equivalent to the Hahn-Banach Theorems, which were 
presented in 12 .3 1 ,  23. 18 , 23. 19, 26.56, 28.4, and 28. 14.a. Notation is as in 29.30. 

(HB25) Banach's Generalized Integral. Let O, A, B(O) , lF, etc . , be as in 
29.30, with X = lF = JR. Let A be a bounded charge on A. Then the Bartle 
integral f f--7 J f dA, already defined on Unif(A) in 29.30, can be extended 
(not necessarily uniquely) to a continuous linear map § : B(O) -+ JR, satisfying 
l §f l :::; l l f l loo .:"A/ . If A is a positive charge, then § can be chosen so that it is also 
a positive linear functional. 

(HB26) Banach's Charge. Let A be an algebra of subsets of a set 0, and 
let A be a bounded real-valued charge on A. Then A can be extended to a real
valued charge A on all of P(O) .  If A is a positive charge, then we can also choose 
A to be a positive charge. 

(See also the related remarks in 2 1 .23.) 

Proof that (HB2) and (HB7) imply (HB25) . The first statement is obvious from (HB7) ; 
the result about positive charges will take a little more work. Observe that the mapping 
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f r--+ l l f+ l loo is convex, since l l f+ l loo is the supremum of the linear functionals 0 and f(w) 
(for w E  0). For f E Unif(A) ,  we have I f d).. :::; I f+ d).. :::; l lf+ l loo/).../ ,  hence by (HB2) we 
can extend the Bartle integral to a linear map § that satisfies §f :::; l lf+ l loo />../ .  When f :::; 0, 
then l lf+ l loo :::; 0; this proves § is a positive linear functional. However, we still need to show 
that a functional chosen in this fashion will also satisfy the inequality l§f l :::; l lf l l oo/>../ . Any 
f E B(O) can be expressed in terms of its Jordan Decomposition: f = f+ - f- with 

f+ (w) = f(w) and r (w) = 0 wherever f(w) 2 0, 

r (w) = -f(w) and f+ (w) = 0 wherever f(w) :::; 0. 
Then §(!+ ) and §(!-) are both nonnegative, so 

l §f l I § (J+ ) - §(f- ) 1 < max{§(!+ ) , § (!- ) }  
< max { l l f+ l loo , l lf- l loo } /).../ 

Proof of (HB25) '* (HB26) . Define A(S) = § ( 1 5 ) .  

Proof of (HB26) =} (HB12) . Let :J = {0 \ F : F E 3"}; this is the proper ideal that i s dual 
to 3". Let A = 3" U :J = { S s;;; 0 : S E 3" or S E :J} ;  verify that A is an algebra of sets. 
Define )... : A  __. {0, 1 }  by taking >. (F ) = 1 for each F E 3" and >.(I) = 0 for each I E :J; verify 
that this is a positive charge on A. Now extend to A =  JL 

MEASURES ON INTERVALS 

29.33. Theorem: scalar-valued measures on an interval. Let lF be the scalar field 
(JR or q.  Let r.p : [a, b] __. lF be a function that has bounded variation (in the sense of 
intervals - i.e. , as in 19 .2 1 ) .  Then: 

a. The Henstock-Stieltjes integral J.Lrp (S) = J: 15 (t)dr.p(t) exists for every Borel set S s;;; 
[a, b] , and thus defines a scalar-valued measure f.Lrp on those sets. (That measure has 
bounded variation in the sense of measures, as in 29.5 - see 29.6.h. )  

b .  Let f : [a, b] __. lF be bounded and measurable (from the Borel sets to the Borel sets) . 
Then the Henstock-Stieltjes integral I: f dr.p exists and is equal to the Bartle integral 
I[a,b] f df.Lrp · 

Proof If r.p is complex-valued, we may write it as Re r.p + i Im r.p; thus it suffices to consider 
real-valued r.p. Any real-valued function of bounded variation can be written as the difference 
of two increasing functions. Thus we can apply 24.35; f.Lrp is a linear combination of positive 
finite measures on the Borel sets, and thus it is a scalar-valued measure. 

By the definition of f.Lrp , the equation I: f dr.p = I[a,b] f df.Lrp is clear when f is the charac
teristic function of a measurable set - hence also when f is a simple function, by linearity. 
The simple functions are dense in ,C 00 (S) ,  and the Henstock-Stieltjes and Bartle integrals 
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are continuous on ,C oc (S) (see 24. 1 7 and 29.30) . Take limits to prove .!,: f d'fJ = I[a .b] f dp,'P 
for all f E .c''0(S) .  

29.34. Riesz Representation Theorem for intervals. Let n = [a, b] be a compact 
interval in JR, and let 'B be its a-algebra of Borel subsets. Let lF be the scalar field (JR or 
q,  and let 

C[a, b] {continuous functions from [a, b] into lF} . 
Then these three Banach spaces are isomorphic: 

• the space C[a, b] * of continuous linear functionals A : C [a, b] -+ lF, equipped with the 
operator norm; 

• the space ca('B ,  JF) of scalar-valued measures p,, normed by the variation / p,j as in 
29.29.g; 

• the space N BV ( [a ,  b] , JF) of normalized functions of bounded variation, equipped with 
the norm I I 'P I I = Var('fJ, [a, b] ) as in 22. 19.d. 

In fact, the following maps are linear norm-preserving bijections: 

• the mapping ]\.[ : 'P f---> p,'P from N BV( [a , b] , JF) to ca('B,  JF) defined by the Henstock
Stieltjes integral p,'P(S) = I: 1s d'fJ as in 29.33; 

• the mapping B : p, f---> (311 from ca('B ,  lF) to C[a, b] * defined by the Bartle integral 
/3p (J)  = In f d11, as in 29.30; 

• the mapping A : 'P f---> A'P from N BV( [a, b] , JF) onto C[a, b] * given by the Riemann-
Stieltjes integral A'P(j) = J�' f d'fJ, as in 24.26(ii ) .  

(In fact, the mapping A i s actually equal to B o M. )  Thus, the two kinds of "variations" 
defined in 19.21 and 29.5 are equal, for 'P and p, corresponding as above. 

Proof (based on Limaye [ 198 1 ] ) . The equation A = B o M follows from 29.33. It follows 
from 24.28 that the mapping A is injective when considered only from N BV( [a ,  b] , JF) to 
C[a , b] * .  We saw in 29.30 and 24 . 16.c that I I I B I I I <:::: 1 and I I IM I I I <:::: 1 ;  hence I I I A I I I <:::: 1 . 
It suffices to show that the mapping A : N BV( [a , b] , JF) -+ C[a, b] * is surjective and that 
I I I A - 1 1 1 1 <:::: 1 .  Thus, let any A E C[a, b] * be given; it suffices to show that there is some 
'P E N  BV( [a , b] , lF) satisfying A =  A'P and I I 'P I I <:::: I I A I I · 

Let � be any Hahn-Banach extension of A to Cxo ('B) - that is, let � : Cx: ('B) be any 
continuous linear map from Cxo ('B) to lF that extends A and satisfies 1 1 � 1 1  = I I A I I · Define 
1/J(t )  = �( 1 (a. tj ) . where 1 (a . t ] is the characteristic function of the interval (a , t] . In particular, 
1/J(a) = �( 1 0 )  = �(0) = 0. 

Note that if a =  t0 < t1 < t2 < · · · < tn = b is any partition and k1 , k2 , . . .  , kn are any 
constants, then the function u : [a, b] -+ lF defined by 

n 
u ( - ) l..:>J 1 u , - J . tJ J ( · ) 

j= l  L kj ( 1 (a .11 j ( · )  - 1 (a . t1 _ 1 J ( · ) ) 
j= l 
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satisfies X(u) = L.7=1 kj ['!{!(tj ) - '!{l(tj_ I ) ] .  
We claim next that '!{! E BV( [a , b] , lF) ,  with Var('!{l) :::; 1 1X 1 1 - To see this, let any partition 

of [a, b] be given; define u as in ( **) with constants { i '!{! ( tj ) - '!{!( tj-d l 
'!{!(tj ) - '!{!(tj-d 

0 

We may assume that the kj 's are not all zero; hence l lu l loo = 1 and 
n n 

I: i'!{l(tj ) - '!{l(tj- 1 ) 1 L: kj ['!{! (tj ) - '!{l(tj_ I )J X(u ) < 1 1X 1 1 -
j=1 j=1 

This proves our claim. 
Next we claim that I: f d'!{! = >.(!) for every u E C[a, b] . Indeed, since f is continuous 

and '!{! has bounded variation, the integral I: f d'!{! is a Riemann-Stieltjes integral, not just 
a Henstock-Stieltjes integral. Thus, in the approximating Riemann sums :E[f, T, '!{!] , we 
may take the tags Tj to be any points in the subintervals [tj_ 1 , tj ] · In particular, we may 
take Tj = tj . Let kj = f(tj ) ,  and define u as in (**) ;  then :E[f, T, '!{I] = L.7=1 kj ['!{l(tj ) -
'!{l(tj_ I ) ] = X( u ) .  The Riemann sums of this type converge to the Riemann-Stieltjes integral 
I: f d'!{!. Meanwhile, the approximating functions u defined in ( **) converge uniformly to 
the continuous function J, and so X(u) converges to X(!) = >.(!) . This proves our claim. 

By 24.28 we may write '!{! = '1{11 + '1{12 where '1{11 E C[a, b] j_ , '1{12 E N BV( [a, b] , X) ,  and 
Var('!{l2) :::; Var('!{l). Take r.p = '1{12 ; this completes the proof of the present theorem. 

29.35. We now state a more general theorem. We omit the proof, which is quite long; it 
can be found in books on measure and integration. 

Riesz Representation Theorem (general version; proof omitted) .  Let 0 be a locally 
compact, Hausdorff topological space. Let Cc (O) be the ordered vector space of all real
valued, continuous functions on 0 that have compact support. Then each positive linear 
functional A on Cc (O) is of the form 

A(!) L f dj1 

where J1 is a positive measure <m the Borel subsets of 0. There may be more than one 
measure satisfying this requirement, but there is only one satisfying the following further 
conditions: Each compact subset of 0 has finite measure; J1 is outer regular, in the sense 
that J1(B) = inf{J1(G) : G is an open superset of B} for each Borel set B; and J1 is inner 
regulaT, in the sense that J1( G) = sup{J1( K) : K is a compact subset of G} for each open 
set G. 

29.36. Theorem. Let r.p be some mapping from an interval [a, b] into the scalar field (IR 
or C). Then the following conditions are equivalent: 
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(A) ip(x) = IP (a) + J: g(t)dt for some function g E L1 [a, b] . 
(B) IP is absolutely continuous in the classical sense; that is, for each number 

E > 0 there exists some number 8 > 0 such that 
whenever a :::; s1 :::; t 1 :::; s2 :::; t2 :::; · · · :::; Sn :::; tn :::; b with 
:Z::7= 1 I sJ - tJ I < 8, then :z=;'= 1 I IP(sj ) - ip(tJ ) I < E. 

In this case we might also describe phi as absolutely continuous in the 
sense of intervals. 

(C) ip is continuous, and IP has bounded variation in the sense of intervals (see 
19.21 ) . Moreover, if we define a measure /-L<p on the Lebesgue measurable 
sets by the Henstock-Stieltjes integral J-L'P (S) = J: 1s (t )dip( t ) ,  then /-L<p is 
absolutely continuous (in the sense of measures, as in 29.4) with respect to 
Lebesgue measure. 

Proof. Throughout the proof, let A denote Lebesgue measure on [a, b] . 

809 

Proof of (A) =? (B) . Define a positive finite measure "( by "f(A) = JA lg ( · ) l dA, as in the 
proof of 29. 10 . Compute 

n 
< t lt, lg(r) ldr 

j=l s, 
'Y(A) L I IP(sj ) - ip(tJ ) I 

j=l 

where A =  U7=1 (s1 , t1 ) . Since 1 << A (as noted in 29 . 10) ,  for each E > 0 there is some 
8 > 0 such that A(A) < 8 =? 1(A) < E . 
Proof of (B) =? (C) . That ip is continuous and has bounded variation in the sense of 
intervals is an easy exercise. To prove /-L<p < < A, let E > 0 be given; choose 8 > 0 as in 
(B) . Let S be any Lebesgue-measurable subset of [a, b] with A(S) < 8 ; we shall show that 
I J-L<p (S) I :::; E .  

By 24.40, there is some open set G -;2 S with A( G) < 8 . (Here "open" refers to the 
relative topology on [a, b] ; thus [a, b] itself is open. )  By 15.37.d we know that G = U;:1 H1 
for some disjoint open intervals H1 (not necessarily arranged from left to right across the 
the interval [a, b] as j increases) ;  again "open" refers to the relative topology. 

Form a gauge 1 : [a, b] --+ (0, +oo) with the following property: Whenever T is a point 
in H1 for some j E N, then "f(T) is a positive number small enough so that [a, b] n [T 
"f(T) , T + "f(T)] S: H1 . Let T =  (m, t i ,  Ti ) be any tagged division of [a, b] that is "(-fine; let 
I =  {i E { 1 , 2 , . . .  , m} Ti E S} . Then /-L<p (S) = J: 1s ( t)dip(t) is approximated by the 
Riemann-Stieltjes sum 

m 

I:[1s ,  T, IP] L 1s (Ti )  [IP (ti) - ip(ti-d] L [IP(t i ) - ip(ti_ l ) ] . 
i= l iE l 

Whenever i E I, then Ti E G, hence Ti E H1 for some j ,  and therefore [ti- l , ti ] s;; H1 by 
our choice of the gauge "( . The intervals (ti- l , t i )  are disjoint, and therefore the sum of 
the lengths of the (ti- l , t ; ) 's (for i E I) is less than or equal to the sum of the lengths of 
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the Hj 's. That sum is less than or equal to A( G) , and thus is less than 8. Hence, by our 
hypothesis (B) , we have LiE/ I IP( t; ) - ip(t;- 1 ) 1 < c. Thus II:: [ 1s , T, If?] I < c. Taking limits 
as the tagged division T becomes finer, we see that IJL'P (S) I ::; c . 
Proof of (C) =} (A) . The measure JL'P has bounded variation by 29.6.h, and JL'P << A. By 
the Radon-Nikodym Theorem (29.20) , there is some g E £1 [a, b] such that JL'P (S) = Is g dA 
for all Lebesgue-measurable sets S � [a, b] . In particular, when S is the interval [a , x] ,  then 
by 24.22.b and the continuity of ip we have ip(x) -ip(a) = I: 1s (t)dip(t) = JL'P (S) = I: g(t)dt .  

PINCUS ' S  PATHOLOGY (OPTIONAL) 

29.37. The following three principles are equivalent to one another, in the sense of weak 
forms of the Axiom of Choice. All of these principles assert the existence of intangibles 
� i .e . , we can use the Axiom of Choice to prove that these objects exist, but we cannot 
find explicitly constructible examples of any of these objects. Condition (A) , below, is a 
consequence of the Hahn-Banach Theorem, as we noted in 23. 10. 

Recall that a measurable space is a set equipped with a O"-algebra of subsets. 

(A) (£00) * � £1 � that is, there exists a bounded linear functional on £00 that 
cannot be represented by a member of £1 . 

(B) There exists a measurable space (0 , S) and a bounded scalar-valued charge 
on S that is not a measure. 

(C) There exists a probability charge on (N, P(N)) that vanishes on finite sets. 

Proof (based on Wagon [1985] ) .  For (C) =} (A) , it is an easy exercise to show that if 
JL : P(N) --+ IR is a bounded charge that is not countably additive, then the Bartle integral 
A(!) =  IN f dJL (defined as in 29.30) satisfies the requirements of (A) . For (A) =} (B) , it is 
an easy exercise to show that if A :  £00 --+ IF satisfies (A) , then JL(S) = A(1s )  satisfies (B) , 
where 1 s  i s the characteristic function of any set S � N. 

It remains to show (B) =} (C) . Let "' be the given scalar-valued charge. If the scalar field 
is C, then we may write "' = Re "' + ilm "'; thus at least one of Re "'' Im "' is a real-valued 
bounded charge JL that is not countably additive. Next, use the Jordan Decomposition 
JL = JL+ - JL- (see 8.42.f and 1 1 .47) ; thus at least one of JL+ , JL- is a positive, real valued, 
bounded charge v that is not countably additive. Since v is positive and finitely additive, 
for any disjoint measurable sets S1 , S2 , S3 , . • .  � 0 we have 

hence L::;: 1 v(S1 ) ::; v (U;: 1 s1) , and similarly L::'F::J v(S1 ) ::; v (U'F::J s1) for any set 
J � N. On the other hand, since v is not countably additive, there is some sequence ( S1 ) 
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that satisfies I:;:1 v(Sj ) =J v (U.�1 sj) , and therefore I:;:1 v(Sj ) < v (U;:1 sj) < oo .  
Define 

>.(J) for all J � N. 

Then ).. takes values in [0, +oo) and, in particular, >.(N) > 0. Also, ).. is finitely additive but 
vanishes on finite subsets of N, since the mappings J f--7 v ( ujEJ sj) and J f--7 LjEJ v(Sj ) 
are both finitely additive. Finally, let 1r(J) = v(J)jv(N) ;  then 1r is the required probability. 

29.38. We shall now show that any of the equivalent principles listed in 29.37 implies the 
following principle: 

(NBP) There exists a subset of {0, 1 F'� that lacks the Baire property. 

Here {0, 1 }  has the discrete topology and {0 ,  1 }N has the product topology, as usual. 
This implication was first stated without proof in Solovay [ 1970] ; the first published 

proof apparently is that of Pincus [ 1974] . The slightly shorter proof below is essentially 
that of Taylor; it was published in Wagon [1985] . 

Proof. We assume 29.37(C) .  As usual, we shall identify P(N) = {subsets of N} with 
{0, I V� =  {sequences of Os and ls} , by identifying each subset of N with its characteristic 
function. However, for clarity we shall use different notations in these two settings. For 
any sequence a =  (a1 , a2 , a3 , . . .  ) E {0, l } N ,  the corresponding member of P(N) is the set 
N(a) = {j E N : aJ = 1 } .  Similarly, for any finite sequence a = (a1 , a2 , . . .  , am ) of Os and 
ls, the corresponding set is Nm(a) = {j E { 1 ,  2, . . .  , m} : aj = 1 } .  

The given probability measure J.L P(N) ---> [0, 1 ]  yields a corresponding function 
v : {0, l }N  __, [0, 1] . Let T =  {a E {0, l } N  : v(a) = 0} .  We shall show that T lacks the 
Baire property. Assume, on the contrary, that T has the Baire property; we shall obtain a 
contradiction. 

Since the measure J.L vanishes on finite subsets of N, it follows that v takes the same 
value on any two sequences that differ in only finitely many terms; thus T is a tail set in 
{0, l }N .  By 20.33, T is either meager or comeager. 

Note that if a' is the sequence obtained from a by switching all the Os to ls and all 
the ls to 0::;, then v(a) + v(a') = 1 ,  since J.L is finitely additive. Also, the mapping a f--7 a' 
is a homeomorphism from { 0, 1 }N onto itself, preserving all topological properties. If T is 
comeager, then the set 

u 
is meager, and so the set 

U' 

{0, 1 }N \ T 

{a' : a E U} 

{a E {0 ,  l } N  v(a) > 0 }  

{b E {0 , 1 } N : v(b) < 1 }  

is also meager. But then {0, 1 } N  = U U U '  is also meager, contradicting 20. 17. Thus T 
cannot be comeager. 

Hence T is meager. Say T = upEN 
Qp, where each Qp is nowhere-dense in {0 ,  1 }]\/ .  
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When a and b are finite sequences, let a EB b denote their concatenation - i.e. , the 
sequence a followed by the sequence b. For instance, ( 1 , 2, 3) EB (4, 5) = ( 1 , 2 , 3 , 4 , 5 ) . An 
extension of a finite sequence ( a1 , a2 , . . .  , am) is a longer sequence, either finite or infinite, 
whose first m terms are a1 , a2 , . . .  , am in that order. For any finite or infinite sequence 
a =  (a1 , a2 , a3 , . . .  ) ,  let 7rj (a) = aj . 

We shall now recursively construct integers 0 = >.(0) < ..\( 1 ) < >.(2) < · · · and functions 
Fp : {0, 1 }P ----+ {0, l } .X(p) with certain properties described below. 

(i) The function Fp maps sequences of Os and 1s of length p to sequences of Os 
and 1s of length >.(p) . (The function F0 maps the empty sequence to the 
empty sequence. ) 

(ii) If q > p and b E  {0, 1F is an extension of a E {0, 1 }P , then Fq (b) i s an 
extension of Fp(a) . 

(iii) When p is a positive integer, no infinite sequence contained in Qp will be an 
extension of any of the finite sequences in Range(Fp) · 

(iv) For each positive integer j E { 1 ,  2, . . .  , >.(p) } ,  there is at most one sequence 
a in {0, 1 }P with the property that 7rj (Fp(a)) = 1 .  In other words, the sets 
N.x(p) (Fp(a)) (a E {0, 1 }P) are disjoint . 

The definition of >.(0) and Fo is clear. Now suppose that some >.(p) and Fp have already 
been specified, satisfying the conditions above; we wish to determine >.(p + 1 )  and Fp+ 1 . 
They will be constructed in several steps. 

As a first step, define a function Gp on {0, 1 }P+1 by taking 

Gp (a EB b) = FP (a) EB a EB b for a E {0, 1 }P and b E  {0, 1 } .  
In other words, 

Gp (OOO · · · 00) consists of the sequence Fp(OOO · · · 0) followed by 000 . . .  00 
Gp(OOO · · · 01 ) consists of the sequence Fp(OOO · · · 0) followed by 000 . . .  0 1 
Gp(OOO · · · 10) consists of the sequence Fp(OOO · · · 1 ) followed by 000 . .  · 10 
Gp(OOO · · · 1 1 )  consists of the sequence Fp(OOO · · · 1 ) followed by 000 . .  · 1 1 

Gp ( 1 1 1 · · · 10) consists of the sequence Fp( 1 1 1 · · · 1 ) followed by 1 1 1 · . .  10 
Gp( 1 1 1 · · · 1 1 )  consists of the sequence Fp( 1 1 1 · · · 1 ) followed by 1 1 1 · . · 1 1  

Thus, all the sequences Gp(a) (for a E {0, 1 }P+ 1 ) have length >.(p) + 2P+l . 
For our next step, we shall extend all these sequences Gp(a) to new sequences Hp(a) , 

all of which have different lengths. Let a1 , a2 , . . .  , a2v+ ! be the 2P+l elements of {0, 1 }P+ l , 
listed in any convenient order. Say we have already formed extensions 

for some n (or take n = 1 if we haven't formed any of these extensions yet) .  We now 
wish to extend Gp(an ) to a longer sequence Hp(an ) having certain properties. First , add 
Os to the end of the sequence Gp (an ) , to make a sequence that is as long as any of the 
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extensions Hp(al ) ,  Hp(a2 ) ,  . . .  , Hp (an-d already formed (or skip this operation if n = 1 ) .  
Now, by 20.5.c, we can extend the sequence further, to get a new sequence Hp (an ) having 
the property that no infinite extension of this new sequence Hp (a) is a member of Qp+l · 

With this construction, we now have 

< [length of Hp(a2r+l ) ] .  

Thus, the longest of these sequences is Hp (a2r+l ) .  Take the length of that sequence as our 
definition of .\(p+ 1 ) .  Now extend all the other Hp (an ) 's to that length by adding Os to the 
ends of those sequences. The resulting sequences are our definition of the Fp+ l (an ) 's. This 
completes our recursive construction of the Fp's and .A(p) 's . 

Now define a mapping Foe : {0, l }N ----+ {0, 1 }N as follows: For each a =  (a1 , a2 , a3 , . . .  ) 
in {0, 1 }N , let F00 (a) be the sequence that is an extension of all the finite sequences 
Fp (a1 , a2 , . . .  , ap) for p = 1 , 2 , 3 , . . . . The set B = Range(F= ) � {0, 1 }N now has these 
properties: 

(a) The set B is disjoint from all the Qp's and hence from T. (This follows from property 
(iii) of the Fp 's . ) 

(b) If a, b are two distinct members of B, then N(a) n N(b) = {j E N  : aj = bj = 1 }  is a 
finite set. (This follows from property (iv) of the Fp's . ) 

(c) B is uncountable. (Indeed, F = is injective, because of our method of constructing the 
Gp's from the FP's . ) 

For each b E B, we have b tf_ T, and therefore v(b) > 0. Hence v(b) > t for some 
positive integer b. Since B is uncountable, there is some positive integer k such that 
Bk = {b E A : v(b) > t } is uncountable. Hence that Bk has at least k distinct elements 
b1 , b2 , . . .  , bk E { 0, 1 }N . If we change finitely many 1s to Os in any fashion whatsoever, then 
the resulting new sequences c1 , c2 , . . . , ck E {0, 1 }N will also satisfy v(cJ ) > t · However, 
by property (b) it is possible to choose the Cj 's so that their corresponding sets of integers 
51 = N(ci ) are pairwise disjoint. Thus JL(Sj ) > t while 

a contradiction. 
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Initial Value Problems 

30.1 .  Overview. This chapter is concerned with initial value problems in a Banach space 
X; these take the form 

u' (t ) = f(t , u ( t ) )  
u(O) = xo . 

(0 � t � T) , } (IVP) 

Here xo is a given element of X,  called the initial value, and f is a given mapping (not 
necessarily linear or continuous in either variable) from some subset of lR x X into X. 
The function u i s the solution of the initial value problem - it is not necessarily given; it 
may be viewed as the "answer" of the initial value problem. The problem (IVP) is called 
nonautonomous because the function f(t ,  x) may depend on both t and x. We shall devote 
some extra attention to the autonomous problem 

u'(t) = f(u(t ) ) 
u(O) = Xo 

(0 � t � T) , } 
wherein f is a mapping from some subset of X into X. 

(AIVP) 

The vector u(t ) may represent the state of some system at time t .  The differential 
equation u' (t ) = j(t , u ( t ) )  is also called an evolution equation, because it describes how 
the system evolves as time passes. In the real world, all things change as time passes , 
so the initial value problem described above is very general; it represents many different 
phenomena. 

Various questions can be asked about the solution u. For instance: What additional 
assumptions about X, j, x0 are sufficient to ensure that a solution exists? That the solution 
is unique? That the solution depends continuously on the data- i .e. , that a small change in 
f or x0 results in only a smalr change in the solution? Can the solution be found exactly, or 
approximated by some effective algorithm? How quickly do the approximations converge? 
Some of these questions can be addressed and partially answered in a very general and 
abstract setting. This chapter will concentrate mainly on the existence of solutions. 

·Here is a preview of some basic results: 

• If f is continuous and X is finite-dimensional, then a solution exists - see 30. 12. 

• Continuity of f does not imply existence of solutions in infinite-dimensional spaces 
see 30.4. 

814 
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• However, in any Banach space, most differential equations with continuous right-hand 
sides have solutions - see 30. 1 1 .  

• Existence of solutions is guaranteed by certain additional assumptions e.g. , Lips-
chitz conditions (see 30.9) , compactness (see 30. 12) , isotonicity (see 30. 14) , or dissi
pativeness (see 30.28) . Some of these conditions do not require continuity of f. 

A more extensive survey can be found in Schechter [1989] . 

ELEMENTARY PATHOLOGICAL EXAMPLES 

30.2. Nonuniqueness of solutions. Even if an initial value problem has a solution, 
the solution might not be unique. For instance, in the Banach space X = JR, consider the 
autonomous initial value problem 

{ u'(t ) = y'u(t) 
u(O) = 0. 

( t ;::: 0) '  

This problem has infinitely many solutions. For each number c ;::: 0, a solution u : [0, +oo) --. 
lR is given by the function 

u(t ) (O :::; t :::; c) 
( c :::; t ) .  

30.3. Existence only locally, not globally. Even i f  a differential equation has a solution 
for every initial value, the solution might not exist for all time. For instance, in the Banach 
space X = JR, consider the autonomous initial value problem 

{ u'(t ) = (u(t ) ) 2 
u(O) = xo . 

It is easy to verify that the solution is given by 

u(t ) = (x0 1 - t )- 1 
u(t ) = 0 

for all t ;::: 0 
for all t ;::: 0 

( t  ;::: 0) ,  

u(t ) = (xfj 1 - t) - 1 for all t E [O, xfj 1 ) 

if xo < 0,  
i f xo = 0, 
if x0 > 0. 

Moreover, the solution is uniquely determined by x0 ; that fact will follow from 30.9. Note 
that if x0 > 0, then a solution does not exist for all positive time; rather, the solution u(t) 
blows up when t increases to the finite time xf) 1 . Thus, we say a solution exists locally in 
time, but perhaps not globally. 

30.4. Existence not even locally. Let X be a Banach space, and let f : X --. X be 
continuous. The autonomous initial value problem (AIVP) in 30 . 1  has a solution under 
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certain additional assumptions � e.g. , if f is locally Lipschitzian (see 30.9) or X is finite
dimensional (see 30 . 12) � but without additional assumptions, a solution might not exist 
even locally. The following example was given by Dieudonne [ 1950] . 

Let X = co = {sequences that converge to 0} ;  this is a Banach space when equipped 
with the sup norm. Define 

( vlxJ, �' yfx;l, . . .  ) . 
It is easy to verify that f is a continuous map from X into X. However, we claim that the 
autonomous initial value problem (AIVP) with initial value x0 = ( 1 ,  � ' t ,  . . .  ) does not 
have any solution for any T > 0 . 

Indeed, suppose that u(t ) = (u1 (t) , u2 ( t) , u3 ( t ) ,  . . .  ) were such a solution. Then each 
component Uj would be the solution of this one-dimensional initial value problem: 

u; ( t )  = JfUiTtTI 
Uj (O) = 1/j. 

(0 :::; t :::; T), } 
Since the function x 1--+ JiXI is positive, any solution Uj of this problem must be increasing. 
Since x 1--+ JiXI is Lipschitzian on [} , +oo) , there is a unique solution for t 2: 0, by 30.9. It 
is easy to verify that that solution is 

( t 1 ) 2 Uj (t ) 2 + VI 
But then uj ( t) > t2 /4, so u(t) tJ_ c0 for any t > 0 . 
Further remarks. After Dieudonne published this example for c0 , other mathematicians 
gave similar examples in other spaces. Finally Godunov [1975] proved that 

if X is any infinite-dimensional Banach space, then there exists x0 E X and a 
continuous function f : lR x X --> X such that the initial value problem (IVP) 
does not have any solution for any T > 0 . 

The proof of that result is long and complicated; it will not be given in this book. 

CARATHEODORY SOLUTIONS 

30.5. A precise notion of "solution. " The term "solution" has many different meanings 
in the literature. Precision was not needed for the preceding elementary examples � they 
would make sense with any reasonable notion of "solution" � but for the theorems devel
oped later in this chapter we will need precise definitions. 

The most obvious kind of "solution" for a differential equation is a continuously differ
entiable function that satisfies the equation. However, we will find it advantageous to study 
a slightly weaker and more general notion of "solution:" 
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Let X be a Banach space, and let f be a function (not necessarily continuous) from 
some subset of lR x X into X. By a Caratheodory solution of the differential equation 
u'(t) = f(t , u( t ) )  on an interval J <;: IR, we mean a function u :  J ---> X such that Graph(u) <;: 
Dom(f) and 

(*) whenever a <  b in J, then the Bochner integral I: f(t , u ( t ) )dt exists and 
equals u(b) - u(a) . 

This notion of "solution" will suffice for most of this chapter. (More general notions of 
"solution" will be introduced in 30. 16 . )  

Any Caratheodory solution is continuous, by 24.4l .a. Furthermore, if u i s a Caratheo
dory solution of u'(t) = f(t , u ( t ) )  on J, then 

( ! )  for almost every t E J, the Fnkhet derivative u'(t ) exists and equals f(t , u(t ) ) ,  

by 25.16 . We remark that condition ( ! )  is slightly weaker than (* ) .  For many purposes, 
integrals are easier to work with than derivatives; thus they yield a simpler and more 
satisfactory theory. We retain the differential equation u'(t) = f(t , u ( t ) )  as a shorthand 
notation and as a source of intuition, but the theory developed below is really concerned 
with integral equations. 

30.6. The question of whether a solution exists globally in time (as in 30.2) often can be 
separated into two component questions: (i) Do solutions exist at least locally in time (as in 
30.3)? and (ii) Can solutions be continued further in time (as in the next theorem below)? 

Definition. Let n be a subset of a Banach space X' and let f : lR X n ---> X be some 
mapping. We shall say that f is locally generative on 0 if: 

For each (to , x0) E lR x 0, there exist some c: > 0 and some Caratheodory solution 
of u'(t ) = f(t ,  u( t ) )  on the interval [t0 , t0 + c:] with u(t0) = x0 . 

Remarks. ( 1 )  We emphasize that no assertion is made about uniqueness of the solution. (2) 
Necessary and sufficient conditions for a mapping f to be locally generative are not known. 
Later in this chapter we shall give several different sufficient conditions for f to be locally 
generative, using Lipschitzness, compactness, or isotonicity conditions. 

Continuability Theorem. Let X, 0, f be as above; assume f is locally generative on 0.  
Then for each (to , x0 ) E lR x 0, there exists some Caratheodory solution of u' ( t )  = f(t ,  u ( t ) )  
on an interval [t0 , t l ) ,  satisfying the initial condition u(to) = x0 , which is "noncontinuable" 
(i .e . , it cannot be continued further) because it satisfies at least one of the following three 
conditions: 

(i) t 1 = +oo. 

(ii) u(t l ) = limtl t , u(t )  exists and lies outside 0. 
( iii) It:,' l l f (t ,  u( t ) ) l l dt = +oo, and thus the Bochner integral It:' f(t ,  u(t ) )dt cannot 

exist. 
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Remarks. In many applications, additional information about u or f or 0 allows us to 
eliminate possibilities (ii) or (iii) . For instance, (ii) cannot occur if 0 is closed, and (iii) 
cannot occur if f is bounded and t 1 is finite. 
Proof of theorem. Let any (to, x0) E IR x 0 be given. Consider all Caratheodory solutions u 
of the differential equation u'(t ) = f(t ,  u( t ) )  with initial condition u(to) = x0 , on intervals 
of the form [to , t l ] or [t0 , h ) .  Partially order these solutions by inclusion of their graphs � 
i.e. , u1 � u2 if Graph(ul ) c:;; Graph(u2 ) .  It is easy to see that Zorn's Lemma is applicable, 
and thus there exists a maximal solution, which we shall denote by u. 

First, we show that the domain of u is not an interval of the form [t0 , h ]  for some 
h < oo. Indeed, if it were, we could use the local generativeness of f to find a solution 
on [t 1 , i} + c:] with initial value u(l} ) .  Combining the two solutions yields a solution on 
[to , t 1 + c:] , contradicting the maximality of [t0 ,  t l ] .  

Thus, a maximal solution u exists, with domain of the form [to , t l ) .  Now assume that 
none of conditions (i) , (ii) , or (iii) are satisfied; we shall obtain a contradiction. 

Since It:1 l l f ( t , u ( t ) ) l l dt < oo, the quantity I: l l f ( t , u ( t ) ) l l dt must become small as a and 
b increase to t 1 . Therefore l l u(b) - u(a) l l  = I I  I: f(t , u ( t ) )dt l l becomes small, and u(t )  is 
Cauchy as t I t 1 . Thus u(h ) = limqt1 u(t ) exists. By our assumption, u(t l ) E 0. But then 
we have a Caratheodory solution on [to , l } ] ,  contradicting the maximality of [t0 , t l ) .  This 
completes the proof. 

30. 7. Caratheodory solutions as fixed points. A Caratheodory solution of the initial 
value problem (IVP) in 30. 1  is a function u :  [0 , T] ----+ X that satisfies the integral equation 

u(t ) = xo + lo t 
f(s ,  u(s) )ds for all t E [0 , T] . (IE) 

This integral equation often can be transformed to a fixed point problem in the following 
fashion: Let 

C ( [0 , T] , X) {continuous functions from [0 , T] into X} .  

Define a operator 1> from some appropriate subset of C ( [0, T] , X) into C ( [0 ,  T] , X) by the 
formula 

[1> (u)] ( t ) xo + 1t 
f(s ,  u(s) )ds for all t E [0, T] . 

Then a solution of the integral equation (IE) is the same thing as a function u that satisfies 
1>(  u) = u; that is, a fixed point of 1>.  

Thus, to prove the existence and other basic properties of a function u : [0, T] ----+ X in an 
abstract setting, we shall apply theorems about fixed points for a function 1> : Dom( 1>) ----+'• 

C( [0, T] , X) in an even more abstract setting. In the next few pages, we shall apply fixed 
point theorems of Banach, Vidossich, Schauder, and Tarski, to obtain several different easy 
results about initial value problems. Deeper theorems about differential equations can be 
proved by longer, more specialized methods, which do not involve fixed point theorems. 
One such result is the Crandall-Liggett Theorem, presented in 30.28. 
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LIPSCHITZ CONDITIONS 

30.8. Gronwall's Lemma. Let 15 ,  A be two mappings from an interval [0, S ] into [0, +oo) . 
Assume 15 is continuous, A is integrable, C E [0, +oo ) , and 

Then 

15(t) < C + lot A(s)15(s )ds 

15(t ) < C exp [lot A(s)ds] 
for all t E [0 , SJ . 

for all t E [0, SJ . 

Proof Let R(t) = C + J� A (s)l5(s)ds and Q(t) = R(t )  exp [- fc: A(s )ds] . Then 15(t) ::; R(t ) ,  
and R' (t ) = A (t )15( t ) ::; A(t )R(t ) for almost all t .  Also, 

Q' (t ) = [R' (t ) - A(t)R(t )] exp [- lot A(s )ds] ::; 0. 

Integrating yields Q(t) ::; Q(O) = C; the conclusion of the lemma follows immediately. 

30.9. Cauchy-Lipschitz Existence Theorem. Let G be an open subset of a Banach 
space X,  and let f : G ---> X be locally Lipschitzian. Then for any x0 E G, there exists a 
solution of the autonomous initial value problem (AIVP) for some T > 0. The solution is 
unique and depends continuously on the initial value. In fact, if u1 , u2 are two solutions of 
u'(t) = J(u(t ) ) on some interval [O , T] ,  and f has Lipschitz constant A on the compact set 
Range(ul ) U Range(u2 ) ,  then 

/ /u1 ( t ) - u2 (t ) / / < e>-t / /u1 (0) - u2 (0) / / 
for all t E [0, T] . If G = X  and f is Lipschitzian, then the solution can be continued for all 
positive time. 

More generally: Let G be an open subset of a Banach space X. Let f :  [0, T] x G ---> X 
be integrably locally Lipschitz, as defined in 22.36. Then for each x0 E G, there exists a 
Caratheodory solution of the initial value problem { u' ( t) = f ( t ,  u ( t ) )  

u(O) = xo 
(0 ::; t ::;  S) , 

for some number S = S(x0) with 0 < S ::; T. The solution is unique and depends contin
uously on the initial data: If u 1 , u2 are two solutions of u'(t) = j(t , u ( t ) )  on any interval 
[0, S] , then 

(CD) 

for all [r, t] <:;; [0 , SJ , where K = Range(ul ) U Range(u2 )  and AK is as in 22.36. If G = X  
and f is integrably Lipschitz (as defined in 22.36) , then we can take S = T -- that is, the 
solution is continuable across the entire time interval where f is defined. 



820 Chapter 30: Initial Value Problems 

Proof First we shall prove continuous dependence. Suppose u1 and u2 are two Caratheodory 
solutions of u'(t) = f(t, u(t)) on an interval [0, S] , and let K = Range(ui ) U Range(u2 ) .  Let 
b(t) = l lu1 (t) - u2 (t) l l ·  Then 

b(t) = l l u1 (r) - u2 (r) + Jt [f(ui (s)) - f(u2 (s)) ]ds l l :::; b(r) + Jt )..K (s)b(s)ds 

for any [r, t] S: [0, S] . Hence Gronwall 's Inequality 30.8 applies; it proves the continuous 
dependence condition (CD) . 

Next we prove local existence. Let x0 E G be given. Let B be the closed ball centered at 
x0 with radius R; for R sufficiently small we have B S: G. By the proposition in 22.36, with 
R sufficiently small there is some integrable function <p such that whenever u, v : [0, T] ----> B 
are continuous functions, then 

l l f(t , u(t)) - f(t , v(t)) l l  :S: <p(t) l l u(t) - v(t) l l for almost all t . 
In particular, taking v = x0 , we see that u also satisfies 

l l f(t , u(t)) l l < l l f(t, xo ) l l + ( R  + l lxo l l ) <p(t) def 1( t) ; 
the function 1 thus defined is integrable too. Now choose some S > 0 small enough so that 
S :::; T and J08 <p(t)dt < 1 and J05 1(t)dt :::; R. Let C ( [0, S] , X) and C ( [0, S] , B) be the sets 
of all continuous functions from [0, S] into X and into B, respectively; then C ( [0, S] , X) 
i s a Banach space (with the sup norm) and C ( [0, S] , B) i s a closed subset of that Banach 
space. Since B S: G, for each u E C ( [0, S] , B) we can define 

(<Pu) (t) Xo + 1t f(s, u(s) )ds (0 :::; t :::; S) . 

Since J05 1 :::; R, it follows easily that <I> maps C ( [0, S] , B) into itself. Also, for any u1 , u2 E 
C ( [0, S] , B) we have 

I I (<Pui ) (t ) - (<Pu2) (t) l l 

and therefore (<P)Lip :::; J05 <p·< 1 .  By Banach's Theorem on strict contractions ( 19.39) , <I> 
has at least one fixed point u E C ( [0, S] , B) ; thus the initial value problem has at least one 
solution. 

If f is integrably Lipschitz and X = G, we shall modify the local existence argument 
of "the preceding paragraph to prove the continuability result . Take R = oo and B = X. 
Since f i s integrably Lipschitz, there is a function <p E £1 [a , b ] (which does not depend on 
the choice of x0) such that 

for all t E [a, b] , XI , x2 E X. 
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The condition J05 r(t)dt :::; R may be omitted, since R = oo. Form a partition 0 = t0 < 
t 1 < t2 < · · · < tm = T fine enough so that J1:J_ 1 r.p(t)dt < 1 for each j . The argument of 
the preceding paragraph establishes the existence of a Caratheodory solution to each of the 
initial value problems { u'(t) = �t , u(t ) ) 

u( tJ-d - XJ- 1 
for j = 1 ,  2, . . .  , m. Use the final value of one initial value problem as the initial value of 
the next problem. Put the m solutions together to obtain a solution on [0, T] . 

30.10. Theorem on continuous dependence. Let G be an open subset of a Banach 
space (X, II I I ) .  Let g : [0, T] x G ---> X be a function that is integrably locally Lipschitz 
(as defined in 22 .36). Let h ,  h, h, . . .  be functions from [0, T] x G into X (not necessarily 
satisfying any Lipschitz conditions or other regularity conditions) .  Let u 1 , u2 , u3 , . . .  and v 
be Caratheodory solutions of 

U� ( t) = J n ( t ,  Un ( t ) ) , v'(t) = g(t , v(t ) ) 
on [0, T] . Suppose that un(O) ---> v(O) as n ---> oo ,  and fn ---> g uniformly on [0, T] x G as 
n ---> oo . Then Un ---> v uniformly on [0, T] as n ---> oo . 

Proof Since Range( v) is a compact set, by 22.36 there exist some number r > 0 and some 
function r.p E L1 [0, T] with this property: Whenever p1 and p2 are continuous functions 
from [0, T] into G such that 

max max dist (Pj (t ) ,  Range(v)) < r, J=1 ,2 O<t<T 
then l l g (t , p1 ( t ) ) - g(t , p2 (t) ) l l :S rp(t) I IP1 (t) - P2 (t) 1 1 for almost all t .  

Choose some partition 0 = t 0  < t 1 < t2 < · · · < tm = T that is fine enough so that 
f1:1_ 1 [1 + 2rp(s) ]ds < 1/2 for all j .  Fix any j , and assume that un ( tJ-d ---> v (tJ-d as n ---> oo; 
it suffices to show that Un ---> v uniformly on [ t j - 1 , t j ] .  

Let any E in (O, r/2) be given; choose n large enough so that l l un ( tJ-d - v(tJ-d l l :S E 
and I I  fn - g i l= :S E ;  i t suffices to show that l lun ( t ) - v (  t ) I I  :S 2E for all t E [tj- 1 , tj ] .  Suppose 
the contrary; let T be the first point in [tJ _ 1 , tJ] satisfying l l un (T) - v (T) I I  � 2E. Then for 
all s in [tJ_ 1 , T) ,  we have l l un (s) - v(s) l l  < 2E < r. For such s we have 

Therefore 

l l fn (s, Un (s)) - g(s, v (s)) l l 
< l l fn (s, un(s) ) - g(s, un (s) ) l l  + l l g(s, un (s) ) - g(s, v(s) ) l l 
< l l fn - g i l= + rp(s) l l un (s) - v(s) l l  < E + 2Er.p(s) . 

2E l l un (T) - v (T) I I  

Un (tJ-d - v(tJ-d + 1,7_ 1 [fn (s, un(s) ) - g(s, v(s)) ]ds 

< l l un (tJ-d - v(tJ-d l l  + 17 [E + 2Er.p(s) ]ds t] - I  
< 1 E + -E 2 ' 
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which is a contradiction. This completes the proof. 

GENERIC SOLVABILITY 

30.11 .  Notation. In the following discussion, whenever 0 is a topological space and X is 
a Banach space, let 

BC(O, X )  {bounded, continuous functions from 0 into X} ;  
this is a Banach space when equipped with the sup norm. 

Theorem on generic solvability. Let X be a Banach space, let x0 E X,  and let T be 
a positive number. Then there exists a comeager set F � BC( [O, T] x X, X) with the 
following properties: For each f E F, the initial value problem (IVP) in 30. 1  has a unique 
solution u f E BC( [0, T] , X ) ,  and the solution map f f--+ u 1 is continuous from F into 
BC( [O ,  T] , X ) .  (Thus, "most" differential equations with continuous right-hand sides have 
unique solutions, and the solutions depend continuously on the right-hand sides. ) 

Remark. A similar result was first proved by Lasota and Yorke [1973] ; our own proof follows 
that of Vidossich [ 1974] . For related results and additional references, see Myjak [ 1983] . 
Proof of theorem. Each f in B( [O, T] x X, X) can be used to define a continuous mapping 
if>t : BC( [O, T] , X) ----t BC( [O, T] , X) by the rule 

xo + fat f(s , u (s ) )ds .  

A solution of (IVP) is the same thing as a fixed point of if> f .  It suffices to verify the 
hypotheses of 20. 10. Note that different f 's yield different if> j 's. Indeed, if h ( T, �) -1- h ( T, �) , 
then any continuous function u with u (  T) = � will yield if> h ( u) -1- if> h ( u ) ;  verifying this is 
an easy exercise. 

Let Ill be the set of all such mappings if>t · Then Ill is a bijective copy of B( [O, T] x X, X) ,  
and so we may topologize Ill by copying the topology of BC( [O, T] x X, X) .  Then Ill is 
a complete metric space. It is easy to verify that the topology on Ill is stronger than the 
topology of uniform convergence on BC( [O ,  T] , X ) .  

When f is locally Lipschitz, then ( IVP) has a unique solution - i.e . , if>t  has a unique 
fixed point. Define 1!10 as in 20. 10; then 1!10 contains the locally Lipschitz functions, by 
30. 10 . The locally Lipschitz maps from [0, T] x X into X are dense in BC( [O, T] x X, X ) ,  
by 18 .6.c . This completes the proof. 

COMPACTNESS CONDITIONS 

30.12. Peano's Existence Theorem. Let 0 be an open subset of a Banach space X .  
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Let f : [0 , +oo) x 0 --> X be jointly continuous (or, more generally, assume f is jointly 
measurable and f(t ,  · ) : 0 -->  X is continuous for each fixed t ) .  Suppose that 

(CM) f is a compact mapping - i.e. , f maps bounded sets to relatively 
compact sets. 

Let x0 E 0. Then the initial value problem (IVP) in 30. 1 has at least one solution for some 
T > 0. 
Remarks. We can weaken ( CM) slightly: it suffices to assume that f maps closed, bounded 
sets to relatively compact sets. This condition can be omitted altogether if X is finite
dimensional and f is jointly continuous, since this condition follows from those assumptions 
- see 17.7 .h and 17. 17. The finite-dimensional case can be found in most books on ordinary 
differential equations. Hypothesis ( CM) can not be removed when X is infinite-dimensional; 
see 30.4. 

Proof of theorem. Let R be some positive number small enough so that the closed ball B 
centered at x0 with radius R is contained in 0. Then f ( [0, 1 ] x B) is relatively compact , 
hence bounded; say l lu l l  :s; M for all u E f ( [0, 1 ] x B) .  Choose some positive number 
T :s; min{ 1 , R/M} . Let C ( [O, T] , X) and C ( [O, T] , B) be the sets of continuous functions 
from [0, T] into X and into B, respectively; then C ( [0 ,  T] , X) is a Banach space (with 
the sup norm) and C ( [0, T] , B) is a closed convex subset of that Banach space. Define a 
mapping <f> :  C ( [0, T] , B) --> C ( [0 ,  T] , X )  by 

( <f>v) ( t )  xo + lot 
f(s ,  v(s) )ds (0 :s; t :s; T) . 

It is easy to show that this mapping is continuous. By our choice of T, it follows eas
ily ( exercise) that <f> maps C ( [O, T] , B) into itself. Furthermore, l l (<f>v) (t ) - (<f>v) (r) \ 1 = 
II J: f(s ,  v(s) )ds l l  :s; I t - r iM , and thus the range of <f> is equicontinuous. 

Recall from 26.23.i that, in a Banach space, the closed convex hull of a compact set 
is compact . The set f ( [0, T] x B) is relatively compact; hence its closed convex hull is a 
compact set K1 c;;; X.  Any function <f>v has range contained in x0 + TK1 , which is also a 
compact subset of X.  By the Arzela-Ascoli Theorem ( 18.35 ) ,  the range of <f> is contained in 
a compact set X1 c;;; C ( [0, T] , X ) .  Let X2 be the closed convex hull of X1 ; then <f> has range 
contained in X3 = Xz n C ( [0 ,  T] , B) ,  which is a compact convex subset of C ( [0, T] , X ) .  

The restriction of <f> to X3 is a continuous self-mapping of the compact convex set X3 . 
By Schauder's Fixed Point Theorem (27. 19 ) ,  <f> has at least one fixed point in X3 ; that fixed 
point is a solution of (IVP) . 

30.13. Remarks on generalizations. Instead of assuming that f maps bounded sets to 
relatively compact sets, we could make the weaker assumption that r (f(t ,  S)) :s; w (t ,  r(S)) 
for all t and all bounded sets S; here 1 is one of the measures of noncompactness a or (3 
(defined in 19 . 19 ) and w is some suitable function. Some results in this direction are given 
by Mi:inch and von Harten [1982] , Heinz [1983] , Banas [1985] , Song [1987] , and other papers 
cited by those. 
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ISOTONICITY CONDITIONS 

30.14. Biles-Schechter Theorem. Let (X, I I  I I , �) be a Dedekind complete Banach 
lattice. Let [0, T] and X be equipped with their a-algebra of Lebesgue-measurable sets and 
Borel sets, respectively. Let f : [0, T] x X ---+ X be a mapping with the following properties: 

(i) f is jointly measurable and maps separable sets to separable sets (or, more generally, 
f has the property that whenever x : [0, T] ---+ X is continuous, then the mapping 
t �---+ f(t , x( t ) )  is measurable and separably valued) .  

(ii) For each fixed t ,  the function f(t , · )  : X ---+ X is increasing. 
(iii) There exist functions b, c E £1 ( [0, T] , X) such that b(t) � f(t , x) � c(t ) for all ( t , x) E 

[O, T] X X. 
Then for each x0 E X ,  there exists a Caratheodory solution to (IVP) .  Among the solutions 
there is a largest; it is the pointwise supremum of all the solutions. We may refer to it as 
the maximal solution. In fact, it is also equal to the pointwise supremum of all the solutions 
of the integral inequality 

u(t )  � xo + lot 
f(s , u(s) )ds (0 :::; t :::; T) .  

Remarks. If we also assume 

(� ) there exists a function m E  L 1 [0, T] such that l l f (t , x) l l :::; m (t )  for all ( t , x) E 
[O, T] X X,  

then we do not need X t o be a lattice; i t  suffices to assume that X is a Dedekind complete 
ordered Banach space whose positive cone is closed and whose topology and ordering make 
X a locally full space (defined in 26 .52) . Condition (� ) can be replaced by still other, weaker, 
more complicated conditions, but we shall not pursue those here. 

Isotonicity conditions have not yet been used extensively in applications in the literature. 
We include this theorem not so much for its usefulness, but for its theoretical interest. The 
present argument was first given in finite dimensions by Biles [1995] ; it was subsequently 
extended to Banach lattices by Schechter [1996] . 
Proof of theorem. We shall first use the fact that X is a Banach lattice to prove condition 
( � ) ;  in fact we shall prove it with m(t )  = l l b(t) l l  + l l c(t) l l · The proof is just an application 
of ordinary lattice arithmetic. For any t ,  x we have 

hence 

f(t ,  x) 
-f(t ,  x) 

/ f(t, x)/ 

c( t) 
-b(t) 

� /c(t)/ � 
� /b(t)/ � 

/b(t)/ + /c(t)/ 
/b(t)/ + /c(t)/ ,  

and 

f(t , x) V (-f(t , x) )  � /b(t )/ + /c(t) /  / /b(t)/ + /c(t)/ j. 
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Then 

l l f(t , x) l l � 1 1 /b(t)/ + /c(t )/ 1 1  � 1 1 /b(t)/ 1 1  + l l /c(t) / 1 1  = l l b(t) l l  + l l c(t ) l l · 

This proves ( q ) .  

825 

Let C([O, T] , X) = {continuous functions from [0, T] into X} .  Let [;;; denote the pointwise 
ordering on C( [O, T] , X) -- that is, u [;;; v if u(t) � v(t) for all t E [0 , T] . Observe that if 
v E C( [O, T] , X) ,  then the mapping s r---> f(s, v(s) ) is measurable and I I  1 1 -dominated by 
the integrable function m; hence it is integrable. Therefore we can define the function 

(ll>v)(t ) = xo + 11 f(s, v(s) )ds. 
Then I]> maps C( [0, T] , X) into itself. It is clear that a solution of the initial value problem 
is the same as a fixed point of 1>, and a solution of the integral inequality is the same as 
a solution of u [;;; IJ.>u. Since each mapping f(s, · ) : X --.. X is �-increasing, it follows that 
I]> :  C([O, T] , X ) --.. C( [O , T] , X) is [;;;-increasing. Let 

f3(t) = x0 + 11 b(s)ds, 
() 

those are continuous functions of t . Define the set 

r(t) = Xo + 11 c(s)ds; 
() 

V { v E c ( [o, TJ , X) : f3(t) � v(t) � r(t) and 

J,1 b(s)ds � v(t) - v(r) � J: c(s)ds for all [r, t] c::;: [0, T] } . 

Clearly, 1> maps C([O, T] , X) into V; hence V is nonempty and 1> maps V into V. 
We next show (V, [;;; ) is a complete lattice. (We note that C( [O, T] , X) is not Dedekind 

complete, in general; thus f3 and 1 are essential for the following argument . ) Let V be any 
nonempty subset of V, and define �T(t) = sup{v(t) : v E V} and t(t) = inf{v(t) : v E V} ;  
these functions are well defined since X is Dedekind complete. It suffices to show that IT E V 
(for then t E V by similar reasoning) . Clearly, f3(t) � �T(t) � r(t) . Fix any [r, t] c::;: [0, T] . 
For each v E V we have 

v(r) + !1 b(s)ds � v(t) and v(t) � v(r) + Jt c(s)ds , 
hence 

v(r) + !1 b(s)ds � �T(t) and v(t) � �T(r) + Jt c(s)ds, 
hence (taking the supremum on the left side) 

�T(r) + Jt b(s)ds � !T(t) and !J(t) � IT (r) + Jt c(s)ds, 
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and therefore I: b(s)ds � a(t) - a(r) � I: c(s)ds. We shall use that inequality, finally, 
to prove that a is continuous. To show that a is continuous from the right, let tn l r; 
then J:n b(s)ds ---. 0 and J:n c(s)ds ---. 0 (see 26.52(E) ) .  Since X is a Banach lattice (or, 
more generally, since X is locally full) ,  it follows that a(tn ) - a(r) ---. 0. Similarly, a is left 
continuous. Thus V is order complete. 

We can now apply Tarski's Fixed Point Theorem in the form of 4.30; this completes the 
proof of the present theorem. 

30.15. Corollary on comparison of solutions. Let /I ,  h be two functions satisfying 
the conditions of the preceding theorem, let x1 , x2 E X, and let u1 , u2 be the maximal 
solutions of the initial value problems 

uj (t) = f1 (t, uj (t)) 
Uj (O) = Xj 

(0 � t � T), } 
for j = 1 , 2. Suppose that x1 � x2 , and JI (t, x) � h(t, x) for all (t , x) E [O, T] x X.  Then 
u1 (t) � u2(t) for all t E [0, T] . 

Proof We have u1 (t) = x1  + I� /I (s, u1 (s) )ds � x2 + I� h (s, u1 (s) )ds. Thus u1 is a solution 
of the integral inequality given by h and x2 . However, u2 is the largest solution of that 
integral inequality. 

GENERALIZED SOLUTIONS 

30.16. The preceding subchapters were concerned mainly with Caratheodory solutions of 
differential equations. Such solutions are differentiable almost everywhere, as we noted in 
30.5. In the remainder of this chapter we consider "generalized solutions" - i.e . , functions 
that are are not necessarily differentiable, but nevertheless "solve" the differential equation 
in some natural sense. We shall briefly discuss why generalized solutions are sometimes 
needed; then we discuss some of the main types of generalized solutions. 

Let us begin with the world's simplest partial differential equation: 

au 
at 

au 
ax 

or , more briefly, Ut = Ux . 

We seek real-valued solutions u =;= u(t, x) ,  defined for real t, x. It is easy to verify that a so
lution is given by u(t, x) = p(t + x) , if p is any real-valued differentiable function. We could 
refer to Ut = Ux as a very simple wave equation, because the function u(t, x) = p(t + x) 
behaves much like a wave at the seashore: it retains its shape while moving horizontally. 
( Caution: The term "wave equation" is commonly applied to several other, more compli
cated equations that model water waves more accurately.) 

Classically, a solution u = u(t, x) is viewed as a real-valued function - i.e. , a mapping 
u : IR2 ---. R A different viewpoint, closer to the ideas at the beginning of this chapter, 
views u(t , x) as a continuous function of x for each fixed t. Thus, for each t, u(t , · )  is a 
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member of some space of continuous functions - e.g . , the Banach space BC(JR) of bounded, 
continuous functions from lR into JR, equipped with the sup norm. Then we may suppress 
the x variable from our notation and write u(t ,  · ) instead as u(t ) E BC(JR). We may view 
u as a Banach-space-valued function u : [a, b] ----> BC(JR) .  With this viewpoint, we may 
attempt to apply theorems like the ones developed earlier in this chapter. 

However, it is important to understand that the Frechet derivative v = u'(t0) of the 
Banach-space-valued function u : [a, b] ----> BC(JR) is a much stronger derivative than the 
classical, pointwise derivative v (x) = Ut (t0 , x) of the real-valued function u : JR2 ----> R In 
both cases we have 

u(to + h, x) - u(to , x) ( ) ----> V X h as h ----> 0. 
For the pointwise derivative the convergence is pointwise in x; for the Frechet derivative 
the convergence is uniform in x. If p is a differentiable function but p' rf:. BC(JR) ,  then 
u (  t ,  x) = p( t + x) only satisfies Ut = Ux in the classical (pointwise) sense, not in the sense 
of Frechet derivatives. Thus theorems of the type developed earlier in this chapter are not 
directly applicable. 

It is natural to view u(t ,  x) = p(t + x) as the "solution" of the initial value problem 
Ut (t , x) = Ux (t , x) 
u(O, x) = p(x) 

(t � 0), } (WIVP) 

for any differentiable function p. By taking limits, we may extend this definition; it is natural 
to view u(t ,  x) = p(t + x) as the "solution" of the wave initial value problem (WIVP) for 
any function p - even one that is not differentiable. Thus, some differential equations have 
natural "solutions" that are not differentiable in any sense. Such nondifferentiable solutions 
turn out to be the correct answers to many physical problems. 

30.17. The need for nondifferentiable solutions becomes even more evident when we turn 
to nonlinear problems, such as Burgers's Equation: 

Even if the initial data u(O, · ) is continuously differentiable, the solution u(t ,  · ) may develop 
discontinuities at some later time t .  We shall demonstrate this with some simple examples. 
Let q : lR ----> lR be some continuously differentiable function that satisfies q( z) = z for all z 
in [ - 1 ,  1 ] ,  and q' ( z) � 1 for all z E R The particular choice of q will not affect our main 
reasoning below, but we mention a couple of examples for concreteness. A trivial example 
is given by q(z) = z; more complicated examples can be devised by the reader. 

For any fixed t in [0, 1 ) ,  the function 7/J( t, z) = q( z) - tz satisfies gz 7/J( t ,  z) � 1 - t > 0. 
Hence 7/J( t ,  · ) is strictly increasing and is a bijection from lR onto R Let u( t ,  · ) be its inverse; 
thus 

u(t ,  q(z) - tz) z .  
(In the example of q(z) = z we obtain 7/J ( t ,  z) = ( 1 - t )z and u(t ,  x) = ( 1 - t )- 1x . )  

Now differentiate both sides of ( q q ) with respect to t to obtain 

0 d 
dt [u(t , q(z) - tz) - z] Ut (t ,  q(z) - tz) - ux (t ,  q(z) - tz)z . 
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Then substitute q(z) - tz = x to obtain 0 = Ut (t , x) - ux (t , x)u(t , x) .  Thus u(t , x) is 
a solution of Burgers's Equation Ut = uux , at least for 0 :::; t < 1 .  The initial data is 
u (O , x) = q� 1 (x) , which is continuously differentiable since q is. 

Observe that u (t , x) :::; - 1 for all x :::; -1 + t ,  and u (t , x) ;:::: 1 for all x ;:::: 1 - t .  If u 
extends to a continuous function on 0 :::; t :::; 1 ,  it must satisfy u( 1 ,  x) :::; - 1  for all x :::; 0 
and u ( 1 ,  x) ;:::: 1 for all x ;:::: 0, a contradiction. 

Thus the solution u(t , x ) ,  which is continuously differentiable for all (t , x) in [0, 1 )  x IR, 
becomes discontinuous at time t = 1 ; we say that it develops shocks. After time t = 1 ,  
the solution may still be physically meaningful, but its mathematical theory becomes more 
complicated. We shall not pursue that theory here, other than to mention that one must 
deal with "generalized solutions" - i.e . , discontinuous functions u( t ,  x) that correspond 
somehow to the equation Ut = uux but do not satisfy it in a classical sense. The development 
of shocks is quite typical of nonlinear partial differential equations and is explained further 
in books on that subject - see Lax [ 1973] , for instance. 

SEMIGROUPS AND DISSIPATIVE OPERATORS 

30.18. Motivation for the Crandall-Liggett Theorem. Let A be an operator for which the 
differential equation u' ( t) = A( u( t ) )  has "solutions" of some sort. More precisely, suppose 
that M is a subset of a Banach space, and for each x0 E M there is a unique solution 
u : [0, +oo) ----+ M of the initial value problem 

{ u' (t) = A(u(t) ) 
u(O) = xo . 

(t ;:::: 0 ) ,  

We may denote that solution by u( t )  = S(t)x0 to display its dependence on both the time 
t and the initial value x0 . In this fashion we define a family of mappings S(t) : M ----+ M for 
t :2': 0, with S(O)x = x. 

For most reasonable notions of "solution," the solutions of the two initial value problems 

{ u'(t) = A(u(t ) )  (0 :::; t ) ,  } 
u(O) = xo and { v'(t) = A(v(t ) )  (0 :::; t ) ,  } 

v(O) = u(t 1 ) 
are related by u(t 1 + s )  = v(s ) .  From this it follows that the mappings S(t) satisfy the 
semigroup property: S(t)S(s)z = S(t + s)z . 

In some of the most interesting cases, the semigroup of mappings satisfies an exponen
tial growth condition: 

(S(t) )Lip :::; exp(wt )  
for some constant w. For example, if A : X ----+ X i s a Lipschitzian mapping, then A 
generates a semigroup satisfying an exponential growth condition; that follows from 30.9. 

However, a semigroup arising from differential equations may satisfy an exponential 
growth condition even if the operator A is not Lipschitzian - in fact, even if the operator 
A is not continuous . In 30.24 we shall show that if the semigroup S(t) is differentiable at 
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t = 0, then the operator A must satisfy a dissipativeness condition; this is a generalization 
of Lipschitzness. Conversely, even for semigroups that are not differentiable, an operator 
A that satisfies a dissipativeness condition plus a mild "range condition" must generate a 
semigroup that satisfies an exponential growth condition; this is established in 30.28. 

We might denote the semigroup S (t) instead by SA (t) , to display its dependence also 
on the choice of the operator A. A still more suggestive notation is S(t)x = e1Ax, where A 
is the operator appearing in the differential equation. If A is a continuous linear overator, 
then etA can be defined in several different equivalent fashions: ( tA ) n lim I + -n---+00 n 

( A) -n lim I - !__ n--+oo n 
If the operator A is discontinuous and/or nonlinear, then most of these formulas become 

meaningless or incorrect , but the limit of (I - �A rn may still be meaningful and useful. 
Even if A is a badly behaved operator - e.g., a differential operator, which is discontinuous 
in most of the usual Banach spaces of functions - the operator (I - >.A)- 1 may be quite 
well behaved when >. is a small positive number - e.g. , it may be an integral operator, 
which is continuous or even compact on many of the usual Banach spaces. 

30.19. Although the abstract theory applies to both linear and nonlinear operators, for 
illustrative purposes we shall give just one very elementary linear example. (For more ad
vanced examples, the reader should consult books devoted specifically to partial differential 
equations and evolution equations. )  Let us use the Banach space C0 (IR) of continuous func
tions from IR to IR that vanish at infinity (as explained in 22. 15 ) ,  with the sup norm. Let 
A be the operator d� ' with domain D(A) equal to the set of all functions f E C0 (IR) such 
that f is differentiable and f' E C0(!R). Then the differential equation u'(t) = A(u(t)) is a 
reformulation of "the world's simplest partial differential equation," discussed in 30. 16 . We 
shall now show that (I - >.A) - 1 is very well behaved for any positive number >.. 

Let g E C0 (IR) be given; then (I - >.A) - 1g has what value? Assuming that it exists, it 
is a function f E D(A) that satisfies f - >.Af = g. Let us find that function f. Rewrite its 
equation as f(x) - >.f'(x) = g(x) . Multiply both sides of this equation by ->.- 1 exp(-x/.X) , 
to obtain 

d� [f(x) exp
( -
>.
x) ]  1 ( -X ) --;xg(x) exp T . 

Integrate both sides - starting from x = 0, say - to obtain 

f(x) exp( �x ) 
for some constant C. To find the value of C, take limits on both sides of this equation as 
x -->  oo. We have f(x) --> 0 since f vanishes at oo, and thus C = ± J000 g(t) exp(-tj>.)dt . 
This integral converges, since g vanishes at infinity and exp( -t/ >.) vanishes exponentially 
fast . Therefore the last displayed equation can be rewritten 

where f(x) = � exp(�) 100 
g(t) exp( -t )dt . ). ). X ). 
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It is easy to verify that j, defined by the last equation, is indeed a member of D(A) that 
solves (I - >..A)j = g; and the preceding computations show that there is no other solution. 
A further computation shows that l lf l l sup ::::; l l g l l sup· Thus 

(I - >..A) - 1  is a nonexpansive linear operator defined everywhere on C0 (IR) . 

This is typical of the kind of operator to which the Crandall-Liggett Theorem is applicable 
- but we emphasize that that theorem applies to much more complicated operators as well. 

Exercise. Modifying the computations above, show that (I +  >..A) - 1  is also a nonexpansive 
linear operator defined everywhere on C0 (IR) , for each ).. > 0. 

30.20. Let X be a Banach space, and let J :  X -+  P(X*) be its duality mapping (defined 
as in 28.44 ) .  Let A be some mapping from a subset of X into X.  Then the following two 
conditions are equivalent; if either (hence both) are satisfied, we say A is dissipative (or 
-A is accretive) : 

(A) Whenever ).. > 0, then the mapping (I - >.A) : Dom(A) -+ X  is injective, and 
its inverse mapping (I - >..A) - 1  : Ran(I - >.A) -+ Dom(A) is nonexpansive. 

(B) Whenever x1 , x2 E Dom(A) , then there is some r.p E J(x1 - x2) such that 
r.p [A (xl ) - A(x2)] ::::; 0 . 

Proof (following Cioranescu [ 1990] ) .  Let Y1 = A(xl ) and Y2 = A(x2 ) .  Let x = x1 - x2 and 
fi = Y1 - Y2 ; then we are to show that 

(A') l l x - >.fil l � l lx l l  for all >.. > o 

if and only if 

(B') there is some r.p E J(x) such that r.p(fi) ::::; 0. 
For (B') =;. (A') we simply compute 

l lx l l 2  = r.p(x) ::::; r.p(x) - >..r.p(fi) = r.p(x - >..fi) ::::; l lx l l  l lx - >.fil l ·  

The proof of (A') =;. (B') is longer. We may assume x and fi are both nonzero (explain) , 
hence x - >..fi is also nonzero for each ).. > 0. For each ).. > 0 choose some 6 E J(x - >..fi) ; 
this vector is also nonzero. Form the unit vector 7]>. = �>./ 1 16 1 1 ·  Then 

l lx l l  ::::; l lx - >.fil l = T/>. (x - >..fi) = T/>. (x) - >..ry>. (fi) ::::; l lx l l - >..ry>. (fi) 

from which we conclude both 

l lx l l ::::; T/>. (x) + >. ! Ifil l and 7]>. (fi) ::::; 0. 
' 

Since the vectors 7]>. all lie in the unit ball of X*, which is weak-star compact by (UF28) in 
28.29. the net ( T/>. : ).. l 0) has a subnet converging in the weak-star topology to some limit 
'T]o in that unit ball. Then l l 77o I I ::::; 1 .  Now we may take limits in ( ** ) ; we obtain 

l l xl l ::::; T/a (x) and 'T]o (fi) :S 0. 
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Since TJo is in the unit ball, we can conclude l!:rl l = TJo (x) and I I TJo l l  = 1 .  Then cp = l lx i i TJo is 
a member of J(x) , satisfying cp(fj) 'S 0. 

30.21. A generalization. Let X be a Banach space, and let J : X ----+ :P(X*) be its duality 
mapping. Let A be a mapping from some subset of X into X,  and let w be a nonnegative 
number. Then the following three conditions are equivalent ( exercise) ;  if they are satisfied 
we say A is w-dissipative: 

(A) Whenever ,\ E (0, � ) , then the mapping (I - .\A) : Dom(A) ----+ X is injective, 
and its inverse mapping 

R(.\) = (I - .\A)- 1 Ran(! - .\A) ----+ Dom(A) 

is Lipschitzian with (R(.\) )Lip 'S ( 1 - .\w) - 1 . 

(B) Whenever x1 , x2 E Dom(A) , then there is some cp E J(x1 - x2 ) such that 
cp[A(xl ) - A(x2)] 'S w l l x1 - x2 l l 2 . 

(C) A - wl is dissipative. 

30.22. Remarks. If A is a Lipschitzian mapping, with (A)Lip 'S w, then A and -A are both 
w-dissipative. For this reason, dissipativeness conditions are sometimes called one-sided 
Lipschitz conditions. 

However, that terminology may be misleading. For instance, define A as in 30.19. Then 
A and -A are both dissipative, but A is not Lipschitzian; in fact, A is not even continuous. 

30.23. Example. Let X be a real Hilbert space with inner product ( , ) . Then an 
operator A is dissipative if and only if it has this property: Whenever x1 , x2 E Dom(A) , 
then (x1 - x2 , A(yl ) - A(y2) )  'S 0. 

If X is one-dimensional - i.e. , if X is just the real line - then A is dissipative if and 
only if (x1 - x2) ( A(yl ) - A(y2 )) 'S 0; that inequality is satisfied if and only if A is a 
decreasing function. 

30.24. Proposition. Let C be a subset of a Banach space X, and let S be a semigroup of 
self-mappings of C. Assume that (S(t))Lip 'S ewt for some constant w 2': 0 and all t 2': 0. 
Define a mapping from a subset of C into X by 

A(x) = lim S(h)x - x 
hlO h 

where the domain of the operator A is the set of all x E C for which the limit exists. Then 
A is w-dissipative. 

Proof Fix any x1 , x2 E Dom(A) and A E (0, � ) ; let h > 0. Then 
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1 1 ( 1 + � ) (xi - x2) - � [S(h)xi - S(h)x2] 1 1 
> 1 1 ( 1 + � ) (xi - x2) 1 1 - 1 1 � [S(h)xi - S(h)x2] 1 1 
> ( 1 + � ) l lxi - x2 l l - � ewh l l xi - x2 l l [1 - >. e

wh
h 
1 ] l lxi - x2 l l · 

Ta){e limits as h 1 0, to prove 

30.25. Lemma. Let A be an w-dissipative mapping, and let R(>.) = (I - >.A)- I .  Then for 
any numbers o:, (3 E (0, � ) and any vectors u E Ran( I - o:A) and v E Ran( I - (3A) , we have 

(o: + f3 - wo:f3) 1 1 R (o:)u - R ((J)v l l  ::::; o: I IR (o:)u - v i i + f31 1u - R ((J)v l! . 

Proof Let x = R(o:)u and y = R((J)v ; thus u = x - o:A(x) and v = y - (3A(y) . Choose 
some <p E J(x - y) such that <p[A (x) - A (y)] ::::; w l lx - Y l l2 . Then 

(o: + f3 - wo:f3) 1 1x - Y l l 2 
(o: + f3)<p(x - y) - wo:f31 1x - Y l l 2 

< (o: + (3)<p(x - y) - o:(J<p{A(x) - A(y) } 
<p{ (o: + (3) (x - y) - o:(J[A(x) - A (y)] } 
o:<p{ (x - y) + (3A(y) } + f3<p{ (x - y) - o:A(x) } 

< o: l lx - Yl l l lx - Y + f3A(y) l l  + f31 1x - Y l l l lx - Y - o:A(x) l l · 
Divide through by l lx - Y l l  to obtain the desired inequality. 

30.26. Rasmussen-Kobayashi Inequalities. Let o: and (3 be positive numbers. Let Cj,k 
be nonnegative real numbers that satisfy 

Cj,O ::::; jo:, co,k ::::; k(3, 

for all nonnegative integers j, k. Then Cj,k ::::; J(jo: - k(3)2 + jo:2 + k(32 for all nonnegative 
integers j, k. 

More generally, let o:, (3 > 0 and w 2: 0 with max{ wo:, wf3} < 1 . Let Cj,k be nonnegative 
real numbers that satisfy 

Cj,O ::::; ( 1 - wo:) -j jo:, 

Cj+I ,k+l < O:CJ+I ,k + (3cj,k+I 
o: + (3 - wo:(3 

( 1 ) 
(2) 
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for all nonnegative integers j, k. Then 

Cj,k < (RK) 
for all nonnegative integers j, k. 
Remarks. This inequality will be used in 30.27. It shows that Cj,k may be small even with 
j, k large, provided that a, /3, and ja - k/3 are small. In a first reading, the reader may 
wish to concentrate on the special case of w = 0, stated in the first paragraph of the lemma, 
since that case is slightly simpler in notation and still contains most of the main ideas. 

Outline of proof. First, a few preliminary computations. Show that 

a{ [ja - (k - 1 )/3] 2 + ja2 + (k - 1 )/32 } 
+ !3{ [(j - 1 )a - k/3]2 + (j - 1)a2 + k/32 } 

(a + !3) { [ja - k/3]2 + ja2 + k/32 } · 

Also, from w(a + /3) 2 - 2(a + /3) ::; 0 ::;  a{Jw we obtain 
(a + /3) [a( 1 - w/3)2 + /3( 1 - wa)2] < (a + /3 - wa/3)2 . 

Also, by the Cauchy-Bunyakovski1-Schwarz Inequality (2 . 10) , 

(3) 

(4) 

a ( 1 - wf3)y'P + /3( 1 - wa)JQ ::; ja( 1 - w/3)2 + /3( 1 - wa)2 jap + f3q (5) 
for any nonnegative numbers p and q. 

Now, the Rasmussen-Kobayashi Inequality (RK) is clear from ( 1 )  when j = 0 or k = 0. 
The inequality will be proved for larger j and k by double induction. In the computations 
below, step (Ind) is by the induction hypothesis. Compute 

(2) 
< 

(Ind) 
< 

(5)  
< 

(3) 

(4)  
< 

. k ( 1 - wa)1 ( 1 - w/3) [acj,k- 1 + /3cj- 1 , k] 

a ( 1 - wf3) )[ja - (k - 1 )/3] 2 + ja2 + (k - 1)/32 
+ /3( 1 - wa)j[(j - 1)a - k/3] 2 + (j - 1 )a2 + kf32 

ja( 1 - w/3)2 + /3( 1 - wa)2 
(a { [ja - (k - 1 ){3j 2 + ja2 + (k - 1 )/32 } 
+ /3 { [(j - 1)a - k/3] 2 + (j - 1 )a2 + k/32 } ) 1 12 

ja( 1 - w/3)2 + /3( 1 - wa)2 j(a + /3) { [ja - k/3] 2 + ja2 + kf32 } 
(a + /3 - wa{J)j(ja - k/3)2 + ja2 + kf32 . 

This completes the induction step, and thus the proof of (RK) . 
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30.27. Discussion. The Crandall-Liggett Theorem is generally viewed as a theorem about 
differential equations in Banach spaces. The Crandall-Liggett Theorem has no applications 
except in that setting. However, a large part of the proof can be presented in the sim
pler setting of a complete metric space. We shall take that approach because it may be 
conceptually simpler to grasp without the distractions of linear structure, and because it 
provides an interesting application of metric completeness. It is one of the few cases known 
to this author where we use Lipschitz mappings without using the Contraction Fixed Point 
Theorem. 

In the theorem below, we permit T = +oo if w = 0. The computations are slightly 
simpler in that case and so beginners may wish to concentrate on that case. 

Crandall-Liggett Theorem (metric space version) . Let (M, p) be a complete metric 
space. Let T E (0, +oo] and w E  [0, +oo) with wT < 1 .  For each t E [0 , T) , let R(t) : M --+ 
M be some Lipschitzian mapping, with 

(R(t) )up < ( 1 - wt) - 1 ( 1 )  
and 

s + t - wst P( R(s)x, R(t )y) < (2) 
for all s ,  t E [0, T) and x, y E M. Let R(tjj )k denote the kth iterate of the mapping 
R(t/j )  : M --+ M. (This is defined for all integers j > tjT.) Define the function 

r(x) sup 1 - wt p (R(t)x, x) , 
tE (O ,T) t 

and assume that the set D = {x E M :  r(x) < oo} is dense in M. 

(3 ) 

Then for each t ;:::: 0, the sequence of functions R(tjj)J (j E N, j > t/T) converges 
pointwise on M to a Lipschitzian function S(t) : M --+ M, with \ S(t) )Lip :::; ewt . In fact , 
for x E D we have this estimate of the convergence rate: 

< t wt 
wt ( ) -j VI 1 - ] e r(x) . (a) 

The map ( t , x) f---7 S(t)x is jointly continuous from [O, +oo) x M into M. It is also Lips
chitzian in t for fixed x E D and bounded t :  

P ( S(t)x, S(s)x) < e(t+s)w I t - s l r(x) . (b) 
Moreover, the mappings S(t) : M --+ M form a semigroup: 

S(O)x = x and S(t + s)x = S(t)S(s)x (c) 

for t , s ;:::: 0 and x E M. 

Outline of proof Temporarily fix any o:, (3 E [0, T) and any x E D. We may assume r(x) > 0; 
a separate but easy argument for the case of r(x) = 0 is left as an exercise. We shall 
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apply the Rasmussen-Kobayashi Inequality in 30.26, with Cj ,k = p(R(oYx, R(f3)kx)lf(x) . 
Hypotheses ( 1 ) ,  (2 ) ,  (3) of the present theorem imply the hypotheses of the Rasmussen
Kobayashi Inequality; thus we obtain 

With a = t fj and (3 = t I k this yields 

y'(ja - k/3)2 + ja2 + 
k
kf32 

r (x) . ( 1 - wa)1 ( 1 - wf3) 

tJ] + i . r(x) , ( 1 - w/ ) J ( 1 - �t ) k 

(4) 

which proves that the sequence ( R(tjj)1x : j E N, j > tiT) is Cauchy for fixed t 2: 0 and 
x E D; denote its limit by S(t)x. Hold j fixed and let k -+  oo to prove the convergence rate 
(a) . 

Since (R(s ) )Lip � ( 1 - wt ) - 1 on all of M, it follows that S(t) = limj-+oo R(tjj)1 exists 
and is Lipschitzian on all of M, with (S(t ) )Lip � limj-+oo ( 1 - w/ )-j = ewt . 

Now apply (4) with a = tjj and (3 = slk, and take limits to prove (b) . Since S(t) is 
Lipschitzian on M, it follows easily that ( t ,  x) r--+ S(t)x is jointly continuous. 

Finally, by induction on n show that S (sln)nx = limk-+oo R(slkn)knx = S(s)x. Use 
this to prove (c) when tIs is rational; then use continuity to prove (c) for all s and t in 
[0, +oo) . 

30.28. Crandall-Liggett Theorem. Let X be a Banach space, and let A be a mapping 
from some set Dom(A) � X into X.  Assume A is w-dissipative for some w > 0. Also 
assume this range condition: 

Ran(! - >.A) � cl(Dom(A)) for all sufficiently small >. > 0. 
Then the limit 

S(t)x 

exists for each x E cl(Dom(A)) and each t 2: 0. In fact, the functions R(>.) = (I - >.A)- 1 
satisfy the hypotheses and hence the conclusions of 30.27, with M = cl(Dom(A) ) .  

Proof Choose T > 0 small enough so that the range condition is satisfied for all >. E (0, T) , 
and also so that wT < 1 .  It is easy to verify that f(x) � I I A(x) l l  for x E Dom(A) ; hence 
Dom(A) � D; hence D is indeed dense in M. The other hypotheses of 30.27 follow from 
properties of w-dissipative operators developed in the last few pages - see 30.2 1  and 30.25. 

30.29. Remarks on extensions and generalizations. For simplicity we have only considered 
w 2: 0; with some effort it is possible to generalize so that w may also take negative values. 
Actually, much of the literature concerns itself only with the case of w = 0, because the 
most interesting ideas are already present in that case and the computations are tidier. We 
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have considered positive values of w so that beginners may more easily contrast Lipschitz 
mappings with w-dissipative mappings. 

To avoid burdening beginners with more complicated notation, we have only considered 
dissipative operators that are mappings A : Dom( A) ---+ X. However, most of the ideas about 
dissipative operators developed above can be generalized readily to set-valued mappings 
A :  Dom(A) ---+ {subsets of X} .  The proofs for that generalization are similar to the proofs 
we have presented above; for the most part, one simply replaces "=" with "E" in appropriate 
places. Thus, instead of just differential equations u' (t) = A(u(t) ) ,  it is possible to consider 
differential inclusions u' (t) E A(u(t) ) .  This greater generality is useful in various ways 
- e.g. , for implicit differential equations p( u (  t ) ,  u' ( t ) )  = 0 or for differential inequalities 
p(u(t) )  � u' (t) � q(u(t ) ) .  

Additional properties of the semigroup S(t) can be proved under additional assumptions 
about the operator A and/or the Banach space X.  When X is a Hilbert space, the resulting 
theory is particularly elegant; much of it can be found in Brezis [ 1973] . The book by Haraux 
[1981] covers some of the Banach space theory but also devotes particular attention to the 
Hilbert space case. 

The Crandall-Liggett Theorem, as we have presented it, extends readily to the differ
ential inclusion u' ( t )  E A( u (  t ) ) .  If we strengthen the range condition, and require that 
Ran(! - >.A) = X for all sufficiently small >. > 0, then it is possible to prove the existence 
of solutions to the initial value problem { u' (t) E A(u(t) ) + f(t) 

u(O) = xo 
(0 � t � T) ,  

for any f E L 1 ( [0 , T] , X) and x0 E X. A very elegant theory for problems of this type 
was developed in Benilan [ 1972] , Crandall and Evans [ 1975] , Crandall and Pazy [ 1979] , and 
elsewhere. 

Much has also been written about differential inclusions of the form u' (t) E A(t , u(t ) ) ,  
where A( t ,  · ) is a w-dissipative operator for each fixed t .  One reference for this subject is 
Pavel [ 1987] ; that book also introduces many applications to partial differential equations. 
This subject's theory is not so elegant , but there is good reason. For maximum applica
bility to partial differential equations, researchers have been interested in problems where 
the different operators A( t ,  · ) ,  for different fixed values of t, have different domains, and 
where Dom(A(t , · ) )  varies erratically with t. This makes the problem considerably more 
complicated. 

30.30. Remarks on the lack of a "Grand Unified Theory" of initial value problems. In the 
preceding pages we have developed several substantially different theories of initial value 
problems, using hypotheses of Lipschitz conditions, compactness, isotonicity, and dissipa
tiveness. Historically, these theories developed separately, for different kinds of applications. 
It is tempting to try to make these theories into special cases of a single, more general the
ory. Certainly . it is possible to prove at least a few weak results in a more general setting 
- see for instance 30.6. 

However, in truth we are very far from a complete or unified theory. The several main 
subtheories - Lipschitzness, compactness, isotonicity, etc. - are very different in nature; 
large conceptual gaps lie between them. The literature contains only a handful of examples 



Semigroups and Dissipative Operators 837 

of nonexistence of solutions, most of them similar to Dieudonne's example 30.4; the examples 
of nonexistence are not sufficiently diverse to explain the gaps between our theories of 
existence. Thus, we are very far from a clear understanding of what "really" makes initial 
value problems work. 

More modest than the search for a grand unified theory is the program to solve problems 
of the form u' (t) = A( u(t) ) + B( u(t) ) ,  where A and B are operators of two different types 
e.g. , where A satisfies a dissipativeness condition and B satisfies a compactness condition. 
A theory of this sort would include the dissipativeness and compactness theories as special 
cases , since we could take A = 0 or B = 0 (since the operator 0 is both dissipative and 
compact) .  This program has met some success, at least when the operators are continuous 
- for instance, the sum of a continuous dissipative operator, a continuous compact operator, 
and a continuous isotone operator is known to generate an evolution; see Volkmann [1991 ] .  
But without continuity the problem is still open. For the compact plus dissipative problem, 
some discussions and partial results can be found in Schechter [ 1987, 1989] and Vrabie 
[1988] . 
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Symbols are listed at the end of this index. 

AA ( Aarnes and Andemes) 
equivalent nets, 163 
subnet , 162 
subsequences, 167 

Aarnes, see AA 
Abelian, see commutative 
absolute integral, 632 
absolute value 

in a field, 259 
in a lattice group, 198 

absolutely 
consistent , 399 
continuous, 783, 806 
convergent, 583 
convex, see convex 
integrable, 645 

absorbing set, 307 
absorption law of lattices, 89 
AC, see choice 
accretive, 827 
ACF, see choice for finite sets 
ACR, see choice for the reals 
actual infinity, 14 
addition or additive 

commutative operation, 24 
complements, 185 
group, 182 
identity (zero) , 180, 187 
mapping, 180, 183 
modulo r, 183 
monoid, 180 
uniform continuity, 705 

adjoints, 238 
a.e. (almost everywhere) , 553 
affine, see convex 
agnostic mathematics, 404 
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agree, 36 
Alaoglu et a!. Theorems, 762 
alephs, 126 
Alexandroff et a!. Theorems, 535, 540 
algebra 

Boolean, 329 
classical (linear ring) , 273 
lattice, 292 
norm, 406 
of sets, 1 15 ,  also see a-algebra 
universal, 202 

algebraic 
categories, 214 
closure, see closed, closure 
system, 202 
topology, 228 

almost 
all, always, true, 101 ,  230 
everywhere, surely, 553 
open, 538 
separably valued, 554 

alphabet, 354 
analytic, 682 
Andenres, see AA 
anticommutative, 275 
antisymmetry, 5 1 ,  599 
antitone, 57 
apartness, 137 
Approximate Fixed Point Theorem, 70 
approximating Riemann sum, 629 
Approximation Lemma 

measures, 560 
AR, see Regularity 
arbitrarily large, 158 
arbitrary choices, see choice 
Archimedean, 243, 248 
Argand diagram, 255 
argument of a function, 19 
arity, arity function, 25, 202, 356 
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arrow, see morphism 
Arzela-Ascoli Theorem, 495 
a.s. (almost surely) , 554 
Ascoli-Arzela Theorem, 495 
assignment (in logic) ,  381 
associative, 24, 1 79 

matrix multiplication is, 193 
asymptotic center, 778 
atom, 27, 396, 476 
atomic formula, 361 
aut, 4 
automorphism, 2 16, 384 
axiom, see choice, constructible, equality, 

identity, logical, Regularity, scheme, 
Zermelo-Fraenkel Set Theory 

Baire 
category (first or second) ,  531 
Category Theorem, 536 
-Osgood Theorem, 532 
property or condition, see almost open 
sets and a-algebra, 544 
space, 536 

balanced, see convex, 687 
ball, 108 
Banach, 687 

-Alaoglu Theorem, 762 
Contraction Fixed Point Theorem, 515 
lattice, 716 
limit, 318, 320 
space, 576 
-Tarski Decomposition, 142 

band, 300 
barrel, 729 
barrelled TVS, 731 
Bartle integral, 290, 801 
barycentric algebras, 306 
base or basis 

for a filter, 104 
for a topology, 428 
for a vector space, 281 
of a pointed space, 214 
of neighborhoods of a point, 426 

basic rectangle, 428, 567 
belongs, 1 1  
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Bernstein-Schroder Theorem, 44 
Berry's Paradox, 351 
Bessaga's Contraction Theorem, 524 
bidual functor, 239 
big, bigger, see large, larger 
biggest, see maximum 
bijective, bijection, 37, also see isomorphism 
bilinear map f : X x Y -+ Z, 277 
bilinear pairing ( , ) -> lF, 751 
binary operation, 24 
binary relation, see relation 
binding, 358 
binomial coefficient, 48 
Binomial Theorem, 48 
Bipolar Theorem, 762 
Bochner integral, 613 
Bochner-Lebesgue space, 588 
Bohnenblust-Sobczyk Correspondence, 280 
Boolean 

algebra or ring, 329, 334 
homomorphism, 329, 336 
lattice, 326 
space, 472 
subalgebra, 330 
subring, 335 
-valued interpretation, model, universe, 

381 ,  383 
Borel sets and a-algebra, 1 16, 289, 555 
Borel-Lebesgue measure, 555 
bound, bounded 

above or below, 59 
function, 97, 293, 579 
greatest lower, see infimum 
hyperreal, 251 
least upper, see infimum or supremum 
linear map ( normed) ,  605 
linear map (TVS) ,  719 
locally, see locally bounded 
lower or upper, 59 
metrically, 97, 1 1 1  
order, 57 
order-bounded operator, 296 
remetrization function, 486 
sets form an ideal, 104 
subset of a normed space, 580, 718 
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subset of a TVS, 718 
totally, see totally bounded 
variable (not free) ,  355, 358 
variation, 507, 784 

boundary, 530 
Bourbaki-Alaoglu Theorem, 762 
BP, 401 
Bronsted ordering, 5 19 
Brouwer's Fixed Point Theorem, 727 
Brouwer's Triple Negation Law, 342 , 370 
Brouwerian lattice, 341 
Browder's Fixed Point Theorem, 778 
Bunyakovski1 Inequality, 39 
Burali-Forti Paradox, 127 
Burgers's Equation, 824 

Caccioppoli Fixed Point Theorem, 515 
canonical 

choices, see choice 
embedding in the bidual, 240, 775 
isomorphism, 240 
net, 159, 160 
shoe, 140 
well ordering, 7 4 

Cantor 
construction of the reals, 513 
founder of set theory, 43, 71 1 
function, 67 4 
space, 462 
theorem on card(2x ) ,  46 
theorem on card(N x N),  45 

Caratheodory Convexity Theorem, 307 
Caratheodory solution of ODE, 814 
card, cardinality, 14, 43 

and AC, 145 
and compactness, 468 
and dimension, 282, 286 
and metric spaces, 429 
and O"-algebras, 549 
and ultrafilters, 151  
collapse, 348 
numbers (cardinals) ,  126 
of the rationals, 190 
of wosets, 7 4 
also, see countable, Hartogs number 

Caristi 's Fixed Point Theorem, 518 
Cartan's Ultrafilter Principle, 151  
category 

Baire (first or second) ,  531 
concrete, 210 
inverse image, 212  
nonconcrete, 2 16 
objects and morphisms, 208 
of sets, 212  

Cauchy 
completeness, 501 
continuity, 510 
derivatives notation, 659 
filters, nets, sequences 

in metric spaces, 502 
in TAG's and TVS's, 706 
in uniform or gauge spaces, 498 

Intersection Theorem, 502 
-Lipschitz Theorem, 816 
-Riemann Equations, 666 
-Schwarz Inequality, 39, 586, 591 
space, 5 1 1  

CC, see choice 
Ceitin's Theorem, 136 
centered convergence, 170 
CH, see Continuum Hypothesis 
chain (ordering) , 62 
Chain Rule 

for Frechet derivatives, 662 
for Radon-Nikodym derivatives, 789 

change of variables, 788 
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chaotic topology, see indiscrete topology 
character group, characters, 708 
character, finite, see finite character 
characteristic function, 34 
charge, 288, 618 
charts, tables, diagrams 

A 6. :J (algebra plus ideal) ,  1 17 
Argand diagram, 255 
arithmetic in [-oo, +oo] , 13 
arithmetic in z6 , 188 
arity function of a ring, 206 
bal( co(S)) not necessarily convex, 305 
Banach spaces, 573 
Bessaga-Brunner metric, 522 
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Boolean and set algebras, 327 
Cantor's function, 675 
categories (dual) ,  238 
categories (elementary) ,  208 
Choice and its relatives, 131 
compactness and its relatives, 452 
Condorcet 's Paradox, 63 
convergence spaces, 155 
convex and nonconvex sets, 302 
convexity and its relatives, 303 
Dieudonne-Schwartz Lemma, 701 
distances, F-norms, etc. , 686 
dual concepts ,  6 
functions that agree, 37 
Hausdorff metric, 1 12 
injective, surjective, etc . ,  37 
Intermediate Value Theorem, 433 
lattice diagrams, 89 
measure convergences, 561 
monotone maps, 58 
Moore closures, 79 
numbers, common sets of, 12 
preorders, 49 
regularity and separation, 434 
Schroder-Bernstein Theorem, 44 
"sets" that violate ZF, 32 
topological vector spaces, 685 
typographical conventions, 3 
uniformity, distances, etc . ,  480 
Venn diagram, 18  
zigzag line, 671 

Chebyshev's Inequality, 565 
choice 

AC (Axiom of) ,  equivalents, 139, 144-146, 
285, 424, 425, 460, 461 ,  503 

arbitrary or canonical, 74, 77, 140, also 
see canonical 

countable (CC) ,  148, 466, 502 
dependent (DC) ,  149, 403, 442 , 446, 525, 
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finitely many times (FAC) ,  141 
for finite sets (ACF) ,  141 
for the reals (ACR),  140, 152 
function, 139 
Kelley's, 147 
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multiple (MC) , 141 
pathological consequences, 142 
Russell's socks, 140 

circle group, 183, 238, 260 
circle of convergence, 584 
circled (same as balanced) ,  see convex 
cis (cos + i sin) , 256 
clan, 1 1 7  
Clarkson's Inequality, 262, 592 
Clarkson's Renorming Theorem, 597 
class, 26 
classical (in IST) , 398 
classical logic, 363 
clopen, 106, 107, 328, 472 
closed, closure 

algebraic, 84 
ball, 108, 688 
convergence, 410 
convex hull, 698 
down- or up-, 80 
formula, 375 
Graph Theorem, 731 ,  732, 745 
half-space, 750 
Hausdorff metric, 1 12 
interval, 57 
Kuratowski's Axioms, 1 12 
mapping, 422 
Moore, 78, 225, 303, 4 1 1  
neighborhood base, 427 
path, 681 
relativization, 416 
string, 730 
topological, 106, 1 1 1 ,  4 1 1  
under operations, 19, 83, 179, 330 

closest point, 470, 598, 602 
cluster point, 430, 452, 453, 456, 466 
coarser (weaker) ,  see stronger or weaker 
codomain, 19, 210, 2 16, 230 
coefficients, 584 
cofinal, see frequent 
cofinal subnet , 163 
co finite 

cardinality, 43, 158 
filter, see filter 
topology, 107, 461 
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collapse, 348 
column matrix, 20, 192, 606 
combination 

convex, 305 
Frechet, 487, 689 
linear, 275 

combinatory logic, 360 
comeager, 531 
Common Kernel Lemma, 281 
commutative, 24 

algebra, 273 
composition isn't ,  35 
fundamental operation, 203 
group, 182 
matrix multiplication isn't, 192 
monoid, 179 
ring, 187 

compact , compactness 
Cauchy structure, 504 
mapping, 820 
principle of logic, 391 ,  464 
spaces or sets, 452 
uniform continuity, 489 

comparability of wosets, 7 4 
comparable, 52 
Comparison Law, 135 
compatible 

topology with distances, 1 10, 703 
uniformity with distances, 1 19 
uniformity with topology, 1 19 

complement 
additive, 185 
in a lattice, 326 
orthogonal, 86, 300, 600 
sets, 16 

complete, 253 
assignment , 65 
Boolean lattice, 326 
Dedekind, 87 
measure space, 553 
metrics and uniformities, 501 
ordered field, 246 
ordered group, 242 
ordering (lattice) , 87 
theory, 204 

completely 
metrizable, 535 
regular, 441 
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Completeness Principle of Logic, 386, 390 
completion 

of a measure space, 553 
of a normed space, 577 
of an ordered group, 243 
order (Dedekind) , 93 
order (MacNeille) ,  94 
uniform or metric, 512  

complex 
charge or measure, 288 
conjugate, 255 
derivative, 666 
differentiable, 682 
linear functional, 280 
linear map, 277 
linear space, 279 
numbers ( q ,  255 

complexification of real linear space, 279 
component , componentwise, 20, 192, 422, 

also see pointwise, product 
composition 

of functions, 35 
of morphisms, 216 
of relations, 50 

Comprehension, Axiom of, 30 
concatenation, 181  
concave, 310 
concrete category, 210 
condition of Baire, 538 
conditional expectation, 789 
Condorcet 's Paradox, 63 
cone, 712 
congruent modulo m, 183, 188 
conjugate 

complex, 255 
exponents, 591 
symmetry, 599 

conjunction, 4, 357 
connected, 106 
connective, 357 
consequence, 352 
conservative, 395 
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consistent , consistency, 368, 399, 401 ,  402 
constructive, constructible 

Axiom of, 130 ,  348 
example with irrationals, 134 
in the sense of Bishop, 133, 403, 576 
in the sense of Godel, 129, 348 
Intermediate Value Theorem isn't, 432 
numbers, 270 
relative to the ordinals, 1 30 
Trichotomy Law isn't, 135, 271 , 349 

contains, 12  
continuous 

absolutely, 783, 806 
at a point, 417 
from the left or  right , 420 
function (on a set) ,  212 ,  417 
indefinite integral is ,  640, 654 
scalar, 687 

continuously differentiable, 660 
Continuum Hypothesis (CH), 47 
contraction, 481 
Contraction Mapping Theorem, 515 
contradiction, 377, also see proof by 
contrapositive, 6 ,  341 ,  370 
contravariant functor, 227 
convergent, convergence 

almost uniformly, 561 
along a universal net or ultrafilter, 454 
centered, 170 
closure, see closed, closure 
Hausdorff, 170 
in a limit space, 168 
in a metric space, 155 
in complete lattices, 17  4 
in measure, 561 
in posets, 171 
in probability, 561 
interior, see interior 
isotone, 170 
martingales, 791 ,  793 
monotone, see monotone 
of a net or filter, 1 69 
order, 171 
preserving, 169 
pretopological, 409 

series, 266, 583 
space, 168 
topological, 412 
uniform, 490 

converse, 5 
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convex, and similar algebraic notions (affine, 
balanced, star, symmetric, absolutely 
convex) 

combination, 305 
derivatives, 3 1 1 ,  680 
function, 309, 313 
hull, 303 
infimum, 313 
order convex, 80,  712 
set, 302 

convolution, 275 
Cook-Fischer filter condition, 413 
coordinate projection, 22 ,  236, 422 
coordinatewise, see pointwise, product 
coproduct, 227 
countable, countably, 15, 43 

8 (products or intersections) , 43 
a (sums or unions) ,  43 
additive, 288 
boundedness in TVS's, 719 
choice (CC) ,  see choice 
compact, 466 
Fa and G15, 529 
gauge, 486 
infinite, 15 ,  43 
model, 378 
N x N is, 45 
products or intersections (8), 43 
pseudometrizability criteria, 703 
recursion, 47, 148 
sums or unions (a) , 43 
union of countable sets, 149 
valued, 547 

counting measure, 551 
covariant functor, 227 
cover, covering, 17, 504 

Lemma of Lebesgue, 468 
Cowen-Engeler Lemma, 152 
Crandall-Liggett Theorem, 832 
cross product, 275 
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crystal, 66 
cubic polynomial equation, 257 
cumulative hierarchy, 129 
cut, 93 

6, see countable products, Kronecker 
6-fine, 629 
Darboux integral, 628 
DC, see choice 
De Moivre's formula, 256 
De Morgan's Laws 

for Boolean algebras, 329 
for logic, 6 
for sets, 1 6  

decimal representation, 269 
decomposition 

Banach-Tarski, 142 
direct sum in Hilbert space, 602 
direct sum of groups, 185 
Jordan, 199 
Riesz, 300 
sums in lattice groups, 199 

decreasing, see increasing or decreasing 
Dedekind complete, see complete 
Dedekind finite or infinite, 149 
deduce, 363 
Deduction Principle, 373 
definable, 139 
defined on, 19  
degenerate Boolean lattice, 327 
degree of a polynomial, 191 
Denjoy-Perron integral, 628 
dense, 416 
Density Property of Fields, 248 
denumerable, 43 
dependence, linear, 280 
Dependent Choice (DC) ,  see choice 
derivation, 352 
derivative, 659 
detachment, 363 
devil's staircase, 674 
diagonal set, 50 
diagrams, see charts 
diameter, 97 
dictionary order, see lexicographical 

differ, 36 
differentiable, 659 
dimension, 282, 284, 286 
Dini's Convergence Theorem, 456 
direct product, 219 
direct sum 

external, 227 
internal, 184 

directed order, directed set, 52, 156 
disconnected, 106 
discrete or indiscrete 

absolute value, 261 
G-norm, 577 
measure, 551 
metric, 41  
(a--)algebra, 115 
topology, 107 
TVS topology, 695 
uniformity, 120 

disjoint, 16, 618 
disjunction, 4, 357 
disk of convergence, 584 
dissipative, 827 
distance 

between closed sets, 1 12  
between two points, 40 
from a point to a set, 97 

distance-preserving, 40 
distribution, 744 
distributive 

for functions, 24 
for sets, 18 
in a ring, 187 
lattice, 90, 326 

divergent series, 266 
Dom, domain 

in a model, 377 
in a nonconcrete category, 216 
of a function, 19 
of a morphism, 210 

Dominated Convergence Theorem 
for co , 581 
for Lebesgue spaces, 589 
for totally measurable functions, 692 

dot product , 599 
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double elliptic geometry, 346 
Double Negation Law, 342 , 370 
Dowker's Sandwich, 449 
down-closed, see lower or upper 
dual, duality, 6 

Boolean algebras and spaces, 337, 474 
closed sets and open sets, 106 
closures and interiors, 410 
covering and free collection, 17  
distributive laws, 18 ,  90 
Euclidean space is its own, 283 
eventual sets and infrequent sets, 159 
exponential functor, 238 
filters and ideals, 10 1 ,  336 
functor, 238 
map of a normed space, 776 
of a linear map, 283 
of a linear space, 277 
of a normed space, 608 
of a Pontryagin group, 708 
of a TVS, 749 
of L00 , 802 
of ordered vector space, 299 
of the Lebesgue spaces, 779 
order and its inverse, 50 

in a Boolean algebra, 329 
in an ordered group, 195 
l.s.c. , u.s .c. ,  421 

pairing of vector spaces, 751 
sets and their complements, 1 6  
two families o f  functions, 23, 751 

Duns Scotus Law, 363 
dyadic rational, 542 

E-induction and E-recursion, 33 
earlier, 5 1  
Eberlein-Smulian Theorem, 4 77, 768 

effective domain, 3 1 1  
effectively equivalent or proved, 56, 144 
Egorov's Theorem, 562 
Eisenstein function, 259 
element , 1 1 ,  20, 27, 192 
embedding, 209 
empirical consistency, 401 
empty 

function, 22 
relation, 50 
set, 14 ,  30 
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endpoints, 305 
Engeler-Cowen Lemma, 152 
enlarging a filter, 103 
entities, 396 
entourage, 1 18 
entry, 20 
epigraph, 309 
Epimenides, 9 
equality, equals 

axioms for, 364 
ordered pairs, 20 
sets, 1 1  

equational axioms and varieties, 204 
equiconsistent, 402 
equicontinuous, 493 
equivalence 

defined by 
a filter or ideal, 230 
a linear subspace, 278 
a subgroup, 186 
meager differences, 538 

relation or classes, 52, 54 
used to define 

field of fractions, 190 
operations on quotient, 223 

also, see equivalent 
equivalent 

consistency assertions, 402 
definitions, phrases, statements, 5, 55, 

1 38, 328 
(F-) (G-) (semi)norms, 575 
gauges or pseudometrics 

topologically, 109 
uniformly, 1 19 

homotopy-, 216 
nets, 163 
of choice, see choice 
structure-determining devices, 2 1 1  
topologically or uniformly, 2 1 1  
also, see equivalence 

essential infimum, 568 
essential supremum, 568, 589 
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Euclidean norm, 578 
Euler's constant, 267 
evaluation map, 240, 757 
eventual, eventually, 158 
eventuality filter, see filter, eventuality 
eventually constant, 165 
examples (or lack of) , see intangible 
Excluded Middle, see Law of the E.M. 
existence of 

atoms, 28 
Banach limits, 318, 321 
bijection (Schri:ider-Bernstein) ,  44 
Boolean prime ideal, 339 
canonical net, 159, 160 
cardinalities between N and JR, 4 7 
closest point, 470, 598, 774 
cluster point, 452, 768 
common superfilter, 103 
common supernet, 410 
completion of a uniform space, 514 
completion of ordered group, 243 
completion of poset, 93 
explicit examples, xvi, 133, 404 
free ultrafilters, 1 5 1  
hyperreal numbers, 250 
inaccessible cardinal, 46, 401 
infinitesimals, 398 
initial structures, 218 
integrals, 630, 640, 656 
intermediate value, 432 
Lebesgue measure, 649 
liminf and limsup, 175 
locally finite cover, 448 
maximum value, 456, 465 
measurable cardinal, 254 
model, 386 
Moore closure, 79 
nonconstructive proof, 8 ,  133 
nowhere-differentiable functions, 670 
objects proved by showing 

int(S) =f. 0, 4 1 1  
set i s  comeager, hence nonempty, 531 

partition of unity, 445 , 448 
quotient of algebraic systems, 223 
Radon-Nikodym derivative, 793 

real numbers, 249, 270, 513 
set lacking Baire property, 132, 808 
sets, 30 
shrinking of a cover, 445 
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solutions to polynomial equations, 257, 
470 

sup-completion of poset, 96 
uniformity generated (not) , 120 
universal subnet, 166 
unmeasurable set or map, 549, 557, 587 
U rysohn function, 445 
Weil's pseudometric, 98 
well ordering, 74, 144 
witness for a formula, 380 
also, see AC, DC, HB, UF, fixed point 

existential quantifier, 357 
expectation, 613 
explicit example, 404 
exponential functors, 238 
exponential growth condition, 825 
exportation law, 363 
extended real line, 13 
extension of a function, 36 
Extensionality, Axiom of, 29 
external direct sum, 227, 276 
external object, 397 
extra-logical axioms, 364 

F-lattice, 716 
F-(semi)norm, F-space, 686, also see norm, 

seminorm, G-(semi)norm 
Fu , Go ,  529 
FAC, see choice 
factorial, 48 
false, falsehood, see truth 
Fatou's Lemma, 566, 647 
Fermat's Last Theorem, 134 
field, 187 
field of sets, see algebra of sets 
figures, see charts 
filter, 100, 336 

base or subbase, 104 
cofinite (Fn§chet) ,  103, 105 
correspondence with nets, 158 
enlarge, 103 
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eventuality (tails) , 159 
iterated, 103, 413 
maximal, 105 
neighborhood, 1 10, 409 
proper or improper, 100, 336 
ultra- , see ultrafilter 

final topology, 426 
locally convex, 7 41 

8-fine tagged division, 629 
finer (stronger) , see stronger or weaker 
finest locally convex topology, 7 42 
finitary, 25, 202 
finite, 15 ,  43 

character, 77, 144 
charge, 551 
choice (ACF, FAC) , see choice 
dimensional, 282, 284 
intersection property, 104 
sequence, 20 

finitely 
additive, 288 
subadditive, 800 
valued, 547 

F.I .P. ,  see finite intersection property 
first , see minimum 
first category of Baire, see meager 
first countable, 427, 703 
first-order language, logic, theory, 354 
Fischer-Cook filter condition, 413 
fixed or free collection of sets, 16 ,  also see 

ultrafilter 
fixed point, 36, 70, 92, 128, 515-519, 524, 

533, 534, 668, 727, 778, 815 
Foguel-Taylor Theorem, 619 
Folkman-Shapley Theorem, 308 
forcing, 383 
forgetful functors, 228 
formulas, 361 
forward image, see image 
Foundation, Axiom of, see Regularity 
Fourier transform, 709 
fraction, 190 
Frechet 

combination, 487, 689 
derivative, 659 

filter, see filter 
space, 694 
topology, 437 
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free, see fixed or free 
free variable, 355, 358 
frequent subnet, 163 
frequent , frequently, 158 
frontier, see boundary 
Fubini's Theorem, 613 
full (order convex) , 80 ,  712 

components, 80 
full subcategory, 212  
function, 19 ,  22 

of classes, 27 
functional, 277 
functor, 227 
fundamental group, 228 
fundamental operations 

algebraic system, 202 
barycentric algebra, 306 
Boolean algebra, 329 
group, 182 
lattice group, 225 
monoid, 179 
ring or field, 187 
variety with ideals, 221 

Fundamental Theorem of Algebra, 4 70 
Fundamental Theorem(s) of Calculus, 671 ,  
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G-(semi)norm, 573, also see norm, semi-
norm, F- (semi)norm 

Go , Fa , 529 
Garnir's Closed Graph Theorem, 745 
gauge (collection of pseudometrics) , 42 

equivalent topologically, 109 
Hausdorff or separating, 42, 43 
topology, 109 
uniformity, 1 19 

gauge (Henstock) integral, 628 
gaugeable 

topology, 109, 441 
uniformity, 1 19 

Gaussian probability measure, 552 
generalized 
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Continuum Hypothesis (GCH) ,  47 
functions, 7 44 
Perron integral, 631 
Riemann integral, 628 
sequences, see nets 

generated, generating 
Boolean subalgebra, 330 
by operations, 83 
filter or ideal, 102, 226 
Moore closure, 79 
preuniformity, uniformity, 121  
(a-)algebra, 1 16 
subalgebra, 220 
subgroup, 182 
topology, 1 14 

generative, 814 
generic, 101 ,  531 ,  also see comeager, large 
Gherman's conditions, 414 
given topology, 754 
g.l .b. (inf) , see infimum, supremum 
Godel 

Completeness Principle, 386, 390 
consistency of AC and GCH, 348 
constructible, 130 
Incompleteness Theorems, 392, 400 
number, 393 
operations, 129 

Gohde's Fixed Point Theorem, 778 
Goldbach's Conjecture, 134 ,  270 
Goldstine-Weston Theorem, 77 4 
googol, 267 
Gr, graph 

of a function, 22 
of a relation, 50 

grammar, 360 
greatest, see maximum 
greatest lower bound, see infimum 
Gronwall's inequality, 816 
Gross-Hausdorff Theorem, 469 
Grothendieck et al. Theorem, 768 
group, 181 

Haar measure, 708 
Hahn-Banach Theorem 
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equivalents, 318, 3 19, 615 ,  616 ,  6 18, 714, 
750, 756, 802 

nonconstructive (discussion) ,  135, 143 
half-space, 750 
Hall's Marriage Theorems, 153 
Halpern's vector bases, 285 
ham sandwich, 14  
Hamel basis, 281 ,  286 
harmonic series, 267 
Hartogs number, 127 
Hausdorff 

compact metric space theorem, 469 
convergence space, 170 
Maximal Chain Principle, 144 
measure of noncompactness, 506 
metric for closed sets, 1 12 
topological space, 439 

HB, see Hahn-Banach Theorem 
Heine-Borel Property, 723 
Helly's Intersection Theorem, 308 
Henstock 

integral, integrable, 628 
-Kurzweil integral, 631 
-Saks Lemma, 638 
-Stieltjes integral, 631 

hereditary, 450 
Heyting algebra, 341 
Heyting implication, 340 
highest , see maximum 
Hilbert space, 599 
Hilbert 's program, 399 
Holder continuity, 482, 582 
Holder Inequality, 591 
holomorphic, 682 
homeomorphism, 418 
homogeneous function, 313 
homogeneous polynomial, 191 
homomorphism 

algebraic systems, 203 
barycentric algebras, 307 
from Q into any field, 190, 247 
from Z into any ring, 188, 247 
groups and monoids, 179 
ideals, kernels, quotients, 222 
lattices, 91 ,  205 
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rings or fields, 187 
homotopy-equivalent , 216 
hull, 79 

affine, balanced, convex, star, symmetric, 
absolutely convex, 303 

closed convex, 698 
hyperfinite, see bounded hyperreal 
hypernatural numbers, 252 
hyperreal line, hyperreal numbers, 14, 250 

ideal 
(homomorphism kernel) ,  222 

generated, 226 
maximal, 336 
prime, 336 
-supporting variety, 221 
also, see homomorphism 

(ideal of sets) , 100 
generated by a collection, 102 
of bounded sets, 104 
of equicontinuous sets, 493 
of finite sets, 103 
of infrequent sets, 159 
of meager sets, 531 
of nowhere-dense sets, 531 
of subsets of compact sets, 455 
of totally bounded sets, 504 
also, see a-ideal, small 

point(s) adjoined, 13 
proper or improper, 100 ,  224, 336 
also, see lower set 

idempotent, 36, 82, 4 1 1 ,  414 
identification of isomorphic objects, 209 
identification topology, 425 
identity 

(axiom) in an algebra, 204 
element of a monoid, 179 
function or map, 36 
morphism, 216 

if, 4 
iff, 5 
image, 37, 122 
imaginary part, 255 
Implicit Function Theorem, 669 
implies, 4 
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importation law, 363 
inaccessible cardinal, 46, 402 
includes, 12  
inclusion map, 36 
inconsistent , 368 
increasing or decreasing 

function, 57 
net, 171 
to a limit , 171 

indefinite integral, 640, 787 
independence, linear, 280 
index set, 1 1 ,  230 
indicator function, 35, 3 1 1 ,  also see charac-

teristic function 
indiscrete, see discrete or indiscrete 
indistinguishable, 435 
individuals, 355, 377, 396, also see atom 
induction, 33, 47, 72, 99, 127 
inductive locally convex topology, 7 4 1  
inequality 

Bunyakovskil, 39 
Cauchy-Schwarz ,  39, 586, 600 
Clarkson, 262, 592 
Gronwall, 816 
Holder, 591 
Minkowski, 586 
reverse Minkowski, 591 
triangle (in a lattice group) , 200 
triangle (in metric space) , 40 
ultrametric, 42, 261 

infer, inference, 363 
infimum (inf) or supremum (sup) ,  59 

1\ (meet, inf, g.l.b. ) ,  59 
V (join, sup, l .u.b . ) ,  59 
associative and commutative, 88 
complete lattice has /\(S) , v(S) ,  87 
coordinatewise, pointwise, 6 1  
dense, 92 
depends on the larger set, 60 
inf of infs, sup of sups, 6 1  
inf sum i s  pseudometric, 98 
inf- or sup-closed, 80 
lattice has x 1\ y, x V y, 87 
of structures (in category theory) ,  218 
preserving, 62 
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sup completion, 96 
topology, 1 14 
using sup to define norms, 579 

infinitary, 202 
infintte, 13 ,  15 ,  43, 46, 149 

Axiom of the, 31 
dimensional, 282 
distributivity, 18, 90 
regress, 150 
sequence, 20 
series, 266 

infinitely close, 251 
infinitesimal, 251 ,  398 
infrequent , 158 
initial 

end of a path, 681 
gauge, 484 
ordinal, 126 
property, 450 
segment , see lower set 
structure (topology, uniformity, etc . ) ,  217, 

696 
injective, injection, 37 
inner product, 599, also see product: dot, 

scalar 
intangible, xvi, 105, 133, 137, 140, 142, 151 ,  

166, 404, 538, 610,  807 
integers modulo m, 188 
integrable, 290, 565, 589, 631 ,  691 

absolutely, 645 
simple function, 291 

integrably (locally) Lipschitz, 593 
integral, 564, 613, 627 
integral domain, 189 
integrally closed, 242 
integrand, 289 
intentional ambiguity, 261 
Interchange of Hypotheses, 341 ,  370 
interior, 1 1 1 ,  410 
Intermediate Value Theorem, 432, 433 
internal direct sum, 184 
internal object, 397 
interpolating polynomial, 35 
interpretation, 134, 143, 377 
intersection, 15 

interval, 56 
intuitionist logic, 363, 370, 371 
inverse, 181 

function, 37 
image, 39, 122 
left or right, 283 
relation, 50 

Inverse Function Theorem, 668 
inverse image categories, 212 
involution, 36 
irrationals homeomorphic to NN , 540 
irrefiexive, 51  
isolated, 41 ,  106 
isometric, 40 
isomorphism 

Dom(f) /Ker(f) c::' Ran(!) 
for groups, 186 
for linear spaces, 278 
for varieties with ideals, 225 

in a category, 216 
informal definition, 209 
of monoids, 179 
of normed spaces, 575 
uniqueness of JR., 249 
X and subgroup of Perm( X) ,  184 
X and submonoid of X x , 181  

isotone 
convergence, 170 
also, see increasing 

iterates, iterated 
filter, 103 
fixed points of, 524 
function, 36 
limits, 413 ,  477, 768 

James space, 586 
James's Sup Theorem, 769 
join (sup, V) ,  see infimum, supremum 
joint continuity, 423 
joke, 14, 48, 145 
Jordan Decomposition, 199 

Kadec's Renorming Theorem, 598 
Kantorovic-Riesz Theorem, 298 
Kelley subnet, 162 
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Kelley's Choice, 147 
kernel, 186, 200, 281 
Kirk's Fixed Point Theorem, 778 
knob space, 120 
knots, 730 
Kolmogorov Normability Theorem, 721 
Kolmogorov quotient space, 437 
Kolmogorov space, 436 
Kottman's Theorem, 620 
Kowalsky's iterated filter, 103, 414 
.Krein-Smulian Theorem, 773 
Kronecker delta, 35, 194, 602 

absolute value, 261 
G-norm, 577 
metric, 4 1 ,  120 ,  488, 502 

Kuratowski 
axioms for closed sets, 1 12 
Continuity Lemma, 539 
inclusion, 4 1 1  
measure of noncompactness, 506 

Kurzweil integral, 628 
Kurzweil-Henstock integral, 631 

labeling, 65 
Lagrange notation, 659 
Lagrange polynomials, 35 
language, 9, 55, 134 ,  242, 328, 350 
large, 10 1 ,  231 
larger, later, 51  
largest or last, see maximum 
lattice, 87 

algebra, 292 
Boolean, 326 
complemented, 326 
complete, 87 
diagrams, 89 
distributive, 90, 326 
group, 197 
homomorphism, 91 ,  205 
meet-join characterization, 89 
relatively pseudocomplemented, 340 
vector, 292 

Law of the Excluded Middle, 1 34, 142, 363, 
370, 371 ,  400 

LCS (locally convex space) , 694 
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leading coefficient , 191 
least, see minimum 
least upper bound (sup) , see infimum or 

supremum 
Lebesgue 

-Bochner space, 588 
Covering Lemma, 468 
Differentiation Theorem, 672 
Dominated Convergence Theorem, 589 
integral, 564, 613 
measurable sets, 555 
measure, 555 
Monotone Convergence Theorem, 565 
number, 468 
point and set, 672 
space, 589 

left inverse, 181 ,  283 
left-hand limit, left continuous, 420 
Leibniz notation, 659 
Leibniz's Principle, 394 
L.E.M. ,  see Law of the E.M. 
length 

of a sequence, 20 
less, 51  
Levi 's Theorem, 566 
lexicographical order, 75 
LF space, 742 
liar, 9 
Liggett-Crandall Theorem, 832 
liminf, limsup, 17 4 
limit, limit space, 168 
limit from the left or right, 419 
limit ordinal, 126 
limited, see bounded hyperreal 
Lindenbaum algebra, 368 
line, line segment, 305 
linear 

combination, subspace, 275 
dependence, independence, 280 
isomorphism, 278 
map, functional, dual, 277, 310 
order, see chain 
space, algebra, 272 
span, 276, 303 

Lipschitz conditions, 481 ,  816, 828 
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little, see small 
littler, 5 1  
littlest, see minimum 
LM, 401 
locally 

bounded space, 721 
compact space, 457 
continuous mapping, 418 
convex space, 694 
finite collection of sets, 444 
full space, 712 
generative, 814 
integrable, 691 
Lipschitz mapping, 482 
solid space, 714 
uniformly convex norm, 594 

logical axioms, 362 
Lovaglia's example, 596 
love, 14 
lower or upper 

bound, 59 
limit, 174 
lower limit topology, 451 
lower set topology, 107 
lower set, down-closed set , 57, 80 
semicontinuous (l .s.c. or u.s.c. ) , 420 
upper set , up-closed set, 80 

lowest ,  see minimum 
Lowig's Theorem, 286 
l .s .c . ,  420 
l .u.b. (sup) , see infimum, supremum 
Luxemburg et al. Theorem, 322, 333, 616, 

618 

Mackey topology, 754 
MacNeille completion, 94 
magnitude, see absolute value 
Mal'cev-Godel Theorem, 386, 390 
map or mapping, see function 
maps to, 23 
Marriage Theorems (Hall) , 153 
martingale, 791 
material implication, 5 
matrix, 192 
matrix norms, 606 

max, maximum, 59 
max-closed, max-closure, 81 

maximal, 59 
chain, 144 
common AA subnet, 164 
filter, 105 
function for Lebesgue measure, 655 
ideal, 224, 336 
lemma for martingales, 792 
linearly independent set, 281 
orthonormal set, 603 
principles equivalent to AC, 144 
principles equivalent to DC, 525 
also, see minimal 
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Mazur et al. Theorem, 575, 699, 719 
Mazurkiewicz-Alexandroff Theorem, 535 
MC, see choice 
meager, 531 
mean, 553 
measurable 

cardinal, 253 
mapping, 212 ,  546 
sets, 1 15 ,  546 
space, 1 15, 289, 546 

measure, 288 
measure algebra, 551 
measure of noncompactness, 506 
measure space, 289, 551 
meet 

have nonempty intersection, 16, 103 
1\ ,  see infimum, supremum 

member, 1 1  
membership (E )  induction or recursion, 33 
metalanguage, metatheory, 351 
metavariables, 361 
metric, metrizable 

completion, 512  
defined, 40 
metrically bounded, see bounded 
subset of Banach space, 579 
topology, 108 
also, see pseudometric 

Meyers' Contraction Theorem, 519 
midpoint convex, 698 
Milman-Pettis Theorem, 777 
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min, minimum, 59 
minimal, 3 1 ,  59 

spanning set, 281 
also, see maximal 

Minkowski 
functional, 316 
inequality, 586 
reverse inequality, 591 

model, 381 
model theory, 353 
models of set theory, 34 7 
modulo, 183, 188 
modulus 

absolute value, 260 
of convexity, 596 
of uniform continuity, 484 

modus ponens, 363 
monoid, 179 
monomial, 191 
monotone 

class, 1 17 
convergence, 171 
Convergence Theorem 

Dini, 456 
for Henstock-Stieltjes integrals, 643 
Lebesgue, 565 

function, 57 
net, 172 

Montel's Theorem, 683 
Moore closure or collection, see closed 
Moore-Smith sequences, see nets 
more, 51  
morphism 

concrete category, 210 
general category, 216 

Mostowski's Collapsing Lemma, 347 
Multiple Choice Axiom (MC) , see choice 
multiplication or multiplicative, 24 

identity (one) , 180, 187 
in a group, 182 
in a linear space, 272 
in a monoid, 180 
in a ring, 187 
of matrices, 192 

n-ary operation, 24 
name, 378 
NBP, 808 
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Nedoma's Pathology, 549, 587 
negation, 4, 357 
negative part , 198 
negative variation, 294 
negligible set, 101 ,  553 
neighborhood; neighborhood filter 

base, 426 
finite, see locally finite 
in a pretopological space, 409 
in a topological space, 1 10, 4 1 1  
string, 730 

net, 157 
Neumann series, 625 
Niemytzki-Tychonov Theorem, 506 
Nikodym et al . Theorem, 785, 787, 793 
noncompactness, 506 
nonconcrete category, 216 
nondecreasing, 58 
nondegenerate Boolean lattice, 327 
nondense, see nowhere-dense 
non-Euclidean geometry, 346 
nonexpansive, 481 
nonlogical axioms, 364 
nonmeager, 531 
nonprincipal ultrafilter, see ultrafilter 
nonstandard 

analysis, 394 
enlargement , 231 
object, 397 

norm, 314, 574 
equivalent norms, 575 
operators, 605 
the "usual norm" is complete, 576 

Normability Theorem, 721 
normal 

cone, 712 
Form Theorem, 330 
probability measure, 552 
sublattice, 300 
topological space, 445 

normalized duality map, 776 
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normalized function of bounded variation, 
583 

nothing, 14 
nowhere-dense, 530 
nowhere-differentiable, 556, 670 
null set, 14, 10 1 ,  553 
nullary operation, 25 
numbers, 12 

object 
concrete category, 210 
language, 351 
nonconcrete category, 216 

obtuse angle, 601 
one, see multiplicative identity, 187 
one-sided 

Boolean algebras, 340 
derivatives , 661 
limits, 420 
Lipschitz conditions, 828 

one-to-one, see injective 
one-to-one correspondence, see bijection 
onto, see surjective 
open 

almost , see almost open 
ball, 108, 688 
interval, 57 
mapping, 422 
neighborhood base, 427 
sets, 106 

operator norm, 606 
operator or operation, see function 
oracle, 137 
order, ordered 

bounded, see bounded 
bounded operator, 296 
by a normal cone, 712 
by reverse inclusion, 157 
complete, see complete 
convergent, 171 
convex, 80, 712 
dual, 299 
equivalents of AC, 144 
group, 194 
ideal, see lower set 

interval, 56 
interval topology, 108 
isomorphism, 58 
monoid, 194 
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n-tuple, 20 
pair, 20 
preserving or reversing, see increasing 
ring or field, 245 
topological vector space, 7 1 1  
vector space, 292 

ordinal, ordinal type, 124, 125 
original topology, 754 
Orlicz function, 693 
Orlicz-Pettis Theorem, 764 
orthogonal, 86, 300, 600 
orthonormal set or basis, 602 
Orwell, G . ,  3 
oscillation, 492 
Osgood-Baire Theorem, 532 
outer measure, 560 
Oxtoby's Zero-One Law, 543 

p-adic absolute value, 261 
pairing, 30, 751 
pairwise disjoint , 16 ,  618 
paracompact, 447 
paradox, 142 

Banach-Tarski's, 142 
Berry's, 351 
Burali-Forti's, 127 
Condorcet's, 63 
Epimenides's, 9 
existence without examples, see intangible 
liar, 9 
Quine's, 10 
Russell's, 25 
Skolem's, 389 

Parallel Postulate, 346 
Parallelogram Equation, 600 
parameter, 1 1 ,  2 1  
paranorm, 686 
Parseval's Identity, 603, 710 
partial derivative, 663 
partial sum, 266 
partially ordered set (poset) ,  52, 56 
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partition, 16 
partition of unity, 444 
Pascal's Triangle, 48 
patching together, 445 
path, path integral, 681 
pathological, 142 
Peano arithmetic, 382 
permutation, 37, 184, 194 
perpendicular, 86 
Perron integral, 628, 631 
Picard condition, 525 
piecewise continuous, 5 1 1  
piecewise-linear, 310 
Plancherel transform,  710 
Poincare 

fundamental group, 228 
pathological functions remark, 670 

point finite, 444 
pointed topological space, 214 
points, 27 
pointwise 

almost everywhere, 554 
convergence, 422 
inf, sup, max, min, 6 1  
also, see product 

polar, 761 
polynomial, 191 

Fundamental Theorem of Algebra, 4 70 
Lagrange interpolation, 35 
leading coefficient , 191 
ring of, 190, 247 
solution of quadratic, cubic, etc. ,  257 

Pontryagin Duality Theorem, 708 
Pontryagin group, 707 
poset, see partially ordered set 
positive 

charge, 288 
cone, 196 
definite, 40, 260 
homogeneity, 313 
integral, 564 
logic, 362 
operator, 296 
part, 198 
variation, 294 
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potential infinity, 13 
power of a set , 22 ,  46 
power series, 584 
power set, 15,  30, 46 
power set functor, 228 
p.p. (presque partout) , 553, 554 
precedes, 5 1  
precise refinement, 17  
precisely subordinated, 444 
precompact, 505 
predecessors, 57 
predicate calculus or logic, 354 
predicate logic with equality, 365 
predicate symbols, 356 
preimage, see inverse image 
prenex normal form, 375 
preorder, preordered set, 52 
preregular space, 438 
prerequisites, xx 
presque partout , 553, 554 
pretopological, 409 
preuniformity, 1 1 8  
prevalent, 556 
prime ideal, 336 
prime number, 48, 188 
primitive objects, see atom 
primitive proposition symbols, 356 
principal lower and upper sets, 57 
principal ultrafilter, see ultrafilter 
probability, 330, 551 ,  618 
product 

and Cauchy nets, 499 
and equicontinuity, 495 
Eberlein-Smulian Theorem, 477 
inner, 599 
nonempty by AC, 139 
of bounded sets in TVS, 719 
of closures, 424 
of compact sets, 461 
of complete spaces, 503 
of complex numbers, 256 
of convex functions, 312 
of gauges, 485 
of ideals, 226 
of linear spaces, 273 
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of matrices, 192 
of measures, 566 
of morphisms, 219 
of numbers, 34 
of orderings, 53, 88, 292 
of pseudometrics, 487 
of rings, 189 
of scalar and vector, 272 
of sets, 21  
of IT-algebras, 548 
of structures (in a category) ,  218 
of subalgebras, 221 
of TAG's, TVS's, LCS's, 696 
of topologies, 422 
of totally bounded spaces, 504 
of ultrapowers, 233 
of wosets, 75 
uncountable ==? nonmetrizable, 488 
also, see coordinate projection, pointwise 

productive, 450 
projection 

coordinate, 22, 218, 236, 422, 426 
for internal direct sum, 185 
idempotent morphism 

closest point, 598 , 602 
linear, 286, 300 

quotient , 54 
proof, 352 
proof by contradiction, 7, 134, 370, 400 
proof theory, 353 
proper or improper 

class, 26 , 398 
filter, 100, 336 
ideal, 100, 224, 336 
lower or upper set, 57 
Riemann integral, 628 
subset, superset , 12 

propositional calculus or logic, 362 
Pryce sequence, 264 
pseudo-Boolean algebra, 341 
pseudocompact, 465, 469 
pseudocomplement , 340, 341 
pseudometric, pseudometrizable 

Baire Category Theorem, 536 
Cauchyness, 500 

compactness, 469 
completeness, 501 
completion, 512  
defined, 40 
defined by inf I:, 98 
equivalent (topologically) ,  109 
equivalent (uniformly) ,  486 
first countable, 427 
Niemytzki-Tychonov Theorem, 506 
product, 487 
TAG or TVS, 703 
topology, 108 
totally bounded, 504 
translation-invariant , 57 4 
uniformity, 1 19 
Weil Lemma, 98 
also, see metric, norm, seminorm 

quadratic, cubic, quartic formulas, 257 
quantifiers, 357 
quartic equation, solution, 258 
quasicomplete, 719 
quasiconstructive, 404 
quasiconvex, 310 
quasigauge, l lO 
quasi-interpretation, 377 
quasimodel, 38 1 
quasinorm, 687 
quasipseudometric, 40 
Quine's Paradox, 10 
quining, 10 
quintic, 258 
quotient 

group, 186 
map or projection, 54 
norms, 579, 608 
object , 223 
set, 54 
topology, 425 

radial, see absorbing 
radius of convergence, 584 
Rado's Selection Lemma, 152 
Radon 

Affineness Lemma, 307 
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integral, 801 
Intersection Theorem, 307 
-Nikodym derivative, 787 
-Nikodym Theorem and Property, 793 

random variables, 232, 554 
range, 19, 38 
range condition, 832 
rank, 1 29, 356 
rare, see nowhere-dense 
rational functions, 191 ,  247 
rational numbers, 190, 247 
real 

derivative, 666 
-linear functional, 280 
-linear map or operator, 277 
linear space, 279 
numbers modulo r, 183 
part, 255 
random variables, 232, 554 
-valued charge or measure, 288 

real number system (JR.) 
Cantor's construction, 513 
cardinality of, 269 
Dedekind's construction, 249 
defined, 246 
uniqueness, 249 
usual metric and topology, 109 

realization, 381 
recursion, 33, 47, 73, 128 
reduced power, 229 

nonstandard analysis, 394 
of algebraic system, 236 

refinement integral, 632 
refinement of a cover, 17  
reflective subcategories, 229 
reflexive 

Banach space, 619, 774 
LCS, 757 
object in a category, 240 
relation (xRx for all x) ,  51  

regress, 150 
regular open, 328 
regular topological space, 427, 440 
Regularity, Axiom of, 3 1 ,  138, 150 
relabeling, 9, 165 

relation, 50, 356 
relative 

compactness, 459 
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complement (of a set) ,  see complement 
consistency, 401 
pseudocomplement, 340 
topology, 107 

remetrization function, 486 
renorming, 596 
Reparametrization Theorem, 635 
Replacement , Axiom of, 30 
residual, 101 ,  158, 531 

also, see eventual, generic, large, comeager 
resolvent, resolvent set , 626 
respect an equivalence, 55 
restriction 

Axiom of, see Regularity 
of a function, 36 
of a relation, 50 
also, see trace 

reverse inclusion, 157 
Reverse Minkowski Inequality, 591 
Riemann 

-Cauchy Equations, 666 
-Darboux integral, 628 
geometry, 346 
integral, integrable, 627 
-Lebesgue Lemma, 654, 709 
-Stieltjes integral, 631 
sum, 629 

Riesz 
Decomposition Property, 196 
Decomposition Theorem, 300 
(F-) (semi )norm, 713 
-Kantorovic Theorem, 298 
Representation Theorem, 804, 805 
space or subspace, 292 
Theorem on Locally Compact TVS's, 726 

right half-open interval topology, 451 
right inverse, 181 
right-hand limit, right continuous, 419 
ring, 187 

of sets, 1 17 
RNP (Radon-Nikodym Property) , 795 
row matrix, 192 
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rule, 19 
rule of detachment, 363 
rule of generalization, 375 
rules of inference, 363 
Russell, Bertrand 

Paradox, 25 
quotation about truth, 345 
socks and shoes, see choice 

u, countable sums or unions, 43 
u-additive, 288 
u-algebra, 1 15 
u-field, 1 15 
u-finite charge or measure, 558 
u-ideal, 101 
u-ring, 117 
sandwich, 14, 319, 449 
satisfy, 353 
saturated, saturation, 79, 8 1 ,  82 
scalar continuity, 687 
scalarly measurable, 621 
scalars, scalar multiplication, 272, 283 
Scedrov-real number, 349 
Schauder's Fixed Point Theorem, 727 
schemes for axioms, 363 
Schroder-Bernstein Theorem, 44 
Schur's Theorem, 759 
Schwarz Inequality, 39, 600 
Scott et al. Epimorphism Theorem, 333 
second category of Baire, see nonmeager 
second derivative, 661 
segment 

initial, see lower set 
line, 305 

self-mapping, 35 
semantic implication, consequence, theo-

rem, consistency, 204, 353 
semigroup of operators, 825, 831 
semi-infinitely distributive, 90 
seminorm, 314, 574, also see norm, (F-) 

(G-) (semi) norm 
semireflexive, 757 
semivariation, 800 
sentence, 375 
sentential calculus or logic, 362 
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separable ( i .e . ,  has countable dense set ) ,  416 
separably valued, 547 
separated pairing, 752 
separated spaces, 439 
separately continuous, 423 
separation of points, using: 

(F-) (G-)pseudonorms, 704 
a collection of functions, 37 
convergences, 170 
gauge or uniformity, 42, 43, 442 
sets and/or functions, 434 

Separation, Axiom of, see Comprehension 
sequences, sequential, 20, 157 

Banach limit, 320 
closure, 427 
cluster point, 430 
compactness, 466 
completeness, 501 
continuity, 719 
generalized, 157 
martingales, 791 

series, 266, 583 
set, 1 1 ,  26 
set theory with atoms, 28 
Shapley-Folkman Theorem, 308 
Shelah's alternative, 344, 402 , 405 , 745 
shrinking, 445 
shy, 556 
sign function, 35 
Sikorski's Extension Criterion, 331 
simple function, 291 
simplex, 71, 306, 727 
singleton, 14  
Skolem's example, 394 
Skolem's Paradox, 389 
Slow Contraction Theorem, 517 
small, 101 ,  654, also see ideal 
smaller, 51  
smallest , see minimum 
smooth, 661 
Smulian et al. Theorem, 477, 768, 773 
Sobczyk-Bohnenblust Correspondence, 280 
socks and shoes, 140 
solid, solid kernel, 200, 714 
Soundness Principle, 385 
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space, see linear, measurable, topological, 
uniform 

span, 276 
special Denjoy integral, 628 
spectrum and spectral radius, 625 
square matrix, 192 
stabilizer group, 384 
stage, 129 
staircase, 67 4 
standard 

basis for lFn , 282 
deviation (of Gaussian probability) , 553 
in Internal Set Theory, 397 
object (in nonstandard analysis) , 397 
part (of a hyperreal) ,  251 
real numbers, 251 

star property, 410, 414 
star set, s e e  convex 
step function, 292, 637 
Stieltjes integrals, 631 
Stone 

-Cech compactification, 462 
mapping, 338 
Paracompactness Theorem, 449 
Representation Theorem, 327 
space, 472 

straight line, straight line segment , 305 
strict contraction, 481 
strict inductive limit, 7 42 
strictly convex 

function, 310 
norm, 594 

strictly larger, stronger, etc. ,  5, 5 1 ,  58 
string, 730 
strong topology, 753 
stronger or weaker, 5, 109, 2 1 1 ,  575 
strongest locally convex topology, 7 42 
strongly inaccessible cardinal, 46 
strongly measurable, 548 
subadditivity, 260, 314 ,  573 
subalgebra, 220 
subbase or subbasis 

for a filter, see filter subbase 
for a topology, 1 14 
for a uniformity, 1 18 

subcategory, 212 
subcover , 17 
subgroup, 182 
sublattice, 89 
sublinear, 314 
submonoid, 179 
subnet , 1 62 
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Aarnes and Andenres, 162 
cofinal, 163 
frequent , 1 63 
hereditary property, 165 
introduction, 161  
Kelley, 162 
Willard, 162 

subobject, 220 
subordinated, 444 
subsequence, 20, 161 
subseries, 622 
subset, 12  
subspace 

linear, 275 
topology, 107 

succeeds, 5 1  
successor 

function, 382 
ordinal, 126 

sufficiently large, 158 
sum, 34, 184, 583 
sup, supremum, see infimum or supremum 
superfilter, 102 
supersequentially compact , 468 
superset , 12  
superstructure, 396 
support, 1 1 1  
surjective, surjection, 1 9  
surprise, xvi, 13 ,  105, 145, 270, 317, 403, 

460 
syllogism law, 362 
symmetry, symmetric 

difference, 17, 326 
entourage, 120 
G-seminorms are, 573 
group of order n, 184 
pseudometrics are, 40 
relation, 51  



Index and Symbol List 

set, see convex 
topological space, 437 

syntactic implication, consequence, theo
rem, consistency, 204 , 352 

T0 , T1 , T2 , . . .  (separation axioms) , 434 
T0 quotient space, 437 
tables, see charts 
TAG (topological Abelian group) , 694 
tagged division of an interval, 629 
tail set 

in [0,  1 ) , 542 
in 2N , 542 
of a net, 158 

Tarski et al. Theorem, 92, 142, 151, 333 
tautology, 353, 377 
Taylor-Foguel Theorem, 619 
Teichmuller-Tukey Principle, 144 
term ( in a first-order language) , 360 
term ( in an algebraic system) , 203 
terminal end of a path, 681 
tertium non datur, 363 
then, 4 
theorem, 353 
Tonelli 's Theorem, 566 
toplinearly bounded, 718 
topological 

Abelian group (TAG ) , 694 
closure, 1 1 1  
convergence, see convergence 
linear space (TVS) , 694 
quotient map, 425 
Riesz space, 714 
space, 106 
vector space (TVS) , 694 

topologically 
complete, 535 
equivalent , 109 ,  2 1 1  
indistinguishable, 435 
stronger, 109, 2 1 1  

topology, 106 
gauge, gaugeable, 109, 441 
generated by a collection of sets, 1 14 
of pointwise convergence, 753 
of simple convergence, 753 

of uniform convergence, 491 
(pseudo )metrizable, 109 
uniform, uniformizable, 1 19 

total order, see chain 
total paranorm, 687 
total preorder, 63 
total quasinorm, 687 
total variation, see variation 
totally bounded, 504, 707, 726 
totally measurable, 692 
trace, 50, 103, 220 
Transfer Principle, 395 
transfinite, 47 
transitive 

closure, 123 
relation, 51  
set, 122 

translation-invariant 
neighborhood filter, 699 
ordering, inf, sup, 194, 199 
pseudometric, 574 
topology, 699 
uniformity, 705 

transpose (of a matrix) , 192 
triangle inequality, see inequality 
tribe, 1 17  
trichotomy 

not constructive for IR, 135, 271 , 349 
of cardinals, 145 
satisfied by chains, 62 

trivial ordering, 197 
trivially true, 6 
true love, 14 
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truth, 9, 101 ,  134, 139, 143, 145, 349, 353, 
377, 461 

truth table, 5 
Tukey-Teichmuller Principle, 144 
TVS (topological vector space) , 694 
two-valued homomorphism, 330 
two-valued probability, 551, 618 
Tychonov 

Fixed Point Theorem, 727 
-Niemytzki Theorem, 506 
product of compacts, 460, 461 
Theorem: Finite Dimensional TVS's, 725 
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topological space, 442 
type (for algebraic systems, etc . ) ,  202 
typographical conventions, 3 

UF, see ultrafilter equivalents 
Ulam-Mazur Theorem, 575 
ultrabarrelled TVS, 731 
ultrabarrels, 730 
ultrafilter, 104 

and compactness, 454 
and total boundedness, 505 
and universal net, 166 
Boolean, 336 
equivalents of UF, 151 ,  152, 166, 237, 338, 

339, 386, 387, 390, 391 ,  454, 462, 473, 
505, 762, 763 

fixed (principal) ,  103, 105 
free (nonprincipal) ,  105 

existence, 151  
intangible, 133 

ultrametric ,  42 
ultranet, see universal net 
ultrapower, see reduced power 
unary operation, 25 
unconditionally convergent , 622 
uncountable, 15, 43 
underlying set, 179, 210 
Uniform Roundedness Theorem, 731 ,  732, 

764 
uniformity, uniform space, 1 18, 441, 483 
uniformly 

bounded, 6 1 1  
continuous, 213, 483 
convergent, 490 
convex, 594 
equicontinuous, 494 
equivalent or stronger, 2 1 1  

union, 1 5 ,  30 
uniqueness of 

choices if canonical, 148 
closest point projection, 594 
complete (F- )norm on a vector space, 576, 

748 
completions, 95, 514 
continuous extension from dense set, 439 
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direct sum decomposition, 185 
Hahn-Banach extension, 619 
identity element in a monoid, 179 
Jordan Decomposition, 199 
limit in Hausdorff space, 409 
linear extension to span, 279 
natural uniformity for a TAG,  705 
preimage by an injective function, 37 
real number system, 249 
topology having a given base, 429 
topology having a given closure, 1 1 2  
topology having a given convergence, 4 12  
uniformity for a compact space, 489 
value given by a function, 19  

unit circle, 578 
unit mass at a point, 552 
unital algebra, 273 
universal 

algebra, 202 
net , 165 

and compactness, 454 
and completeness, 499 
and convergence, 170 
and total boundedriess,  505 
subnet theorem, 166 

ordering, relation, 50 
used to construct canonical net, 159 

quantifier, 357 
set, 17, 26 

universe, 17, 26 
unordered set, see set 
up-, upper, see lower or upper 
urelements, see atom 
Urysohn's Lemma, 445 
Urysohn-Alexandroff Theorem, 540 
u.s.c. , 421 
usual 

absolute values on lR and C, 260 
metric and topology on JR, 40, 109 
metric on [-oo, +oo], 41  
norms are complete, 576 
norms on ]Rn and en

' 578 
uniformity on a TAG,  705 

V (von Neumann's universe) , 129 
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vacuously true, 6 
valid, 353, 381 
valuation (in logic) ,  381 
value, valuation, s e e  function, component, 

absolute value 
vanishes, 37 

at infinity, 580 
variation, 294, 507, 784 
variety (algebraic) ,  204 
vector, 272 

basis, see basis 
charge, 288 
lattice, 292 
space, see linear 

vel, 4 
Venn diagram, 17 
vicinity, s e e  entourage 
Vitali's Theorem, 557 

w-dissipative, 828 
wave equation, 823 
we may assume, 8 ,  165 
weak 

-star measurable, 621 
-star topology, 75 7 
structure, 217 
topology, 42 1 ,  753 
Ultrafilter Principle, 151  
Universal Subnet Theorem, 166 

weaker, see stronger or weaker 
weakly increasing, 58 
weakly measurable, 621 
Weil's Pseudometrization Lemma, 98 
well defined, 23, 55 
well-formed formulas, 361 
well ordering, 72, 74, 144 
Weston-Goldstine Theorem, 77 4 
wff, 361 
Wiener measure, 555 
Willard subnet , 162 
with probability 1 ,  553 
witness, 376 , 512  
woset , 72 
Wright 's Closed Graph Theorem, 745 
WUF, see Weak Ultrafilter Principle 

Zermelo 
Fixed Point Theorem, 128 
-Fraenkel Set Theory, 29 
Well Ordering Principle, 144 

zero, see additive identity, 187 
zero-dimensional, 472 
Zero-One Law, 543 
ZF, see Zermelo-Fraenkel Set Theory 
Zorn's Lemma, 144 

LIST OF SYMBOLS 

The Greek alphabet : 
A, a alpha 
B, {3 beta 
r, , gamma 
!::,. ) {j delta 
E, E epsilon 
Z, ( zeta 
H, 'l] eta 
e, e theta 
I, L iota 
K, "' kappa 
A, >.. lambda 
M, J-l mu 
N, v nu 
3, � xi 
O, o om1cron 
II, w pi 
P, p rho 
I:, a sigma 
T, T tau 
T, v upsilon 
<I>, r.p phi 
x, x chi 
iJ!, � psi 
O, w omega 

Sets of Numbers: 
A, Ia, IDl directed sets, 157 
C complex numbers, 255 
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lF a field (usually IR or IC) ,  261 
lHI hyperreal numbers, 250 
N natural numbers, 12 ,  180 
Q rational numbers, 189 
IR real numbers, 246 
'][' circle group, 260 
Z integers, 12 ,  183 

*N hypernatural numbers, 252 

*IR hyperreal numbers, 252 

Special objects and sets: 
{a ,  ,8, 0 0 0 } set, 1 1  
[a, b] , [a, b) intervals, 56 
[-oo,  +oo] extended real line, 13 ,  91, 109 
Pre( a)  predecessors, 57 
a, w, ,8, r, "( dual topologies, 753, 754 
0 empty set, 14  
oo infinity, 13 
Nn cardinals, 14 ,  126 
w infinite ordinal, 14, 124 
(yj ) sequence, 20, 157 
(Ya )  net, 157 
P(X) power set, 15,  46 
X/8 quotient set, 54 
Bd( o )  open ball, 108 
Kd( o )  closed ball, 108 
a(9)  a-algebra generated, 1 16 
N(x) neighborhood filter, 1 10 ,  409, 412 
F(T , GtJ some types of sets, 529 

Unary symbols: 
c 

Gr( o )  
sgn 
cis 
1s 
is 
Is 
x- 1  
-x 
f(x) 
1 1s 

complement , 1 6  
negation, 4 ,  357 
graph, 22, 50 
sign function, 35 
cos + i sin, 256 
characteristic function, 34 
identity function, 36 
indicator function, 3 1 1  
inverse, 182 
inverse (additive) , 182 
value of function, 19 
restriction, 36 

f : X -+ Y  function, 19  

Index and Symbol List 

domain, 19 
range, 19 
kernel, 186 
forward image, 37 
inverse image, 39 
inverse function, 37 
reduced power, 231 
dual, 238 

Dom(f) 
Ran(!) 
Ker(f) 
f(S) 
r1 (s) 
r1 (x) 
*X, *f 
X* , f* 
Con( ) 0 

X+ 
consistency of, 401 

positive cone, 196 
positive part , 198 
negative part , 198 

x+ 
X 
/x/ 
lx l 
:'J.l:' 
lSI 
lx l 
l lx l l  
l l lx l l l  
J(x) 
Re(a) 
Im(a) 
a 
T 
_L 
lim 
LIM 
cl 
int 
co 
hal 

absolute value (lattice group) ,  198 
absolute value (real-valued) ,  260 
semivariation, 800 
cardinality, 43, 145 
norm, 574 
norm, 574 
(operator) norm, 574, 605 
normalized duality map, 776 
real part, 255 
imaginary part, 255 
complex conjugate, 255 
transpose, 192 
orthogonal, 86, 600 
limit, 168, 169, 17 4 
Banach limit, 320 
closure, 78, 1 1 1 ,  410, 412  
interior, 1 1 1 ,  410 ,  412  
convex hull, 303 
balanced hull, 303 

Binary symbols: 
� maps to, 23 
1 decreases (to) , 172 
i increases (to) , 171  
--+ converges to, 1 69 
--+ implies, 4 
=> implies, 4, 340 
{::::=} iff (if and only if) , 5 

1-- syntactic implication, 352 
F semantic implication, 353 
V universal quantifier, 357 
3 existential quantifier, 357 
E, ¢'c element, member, 1 1  
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X 

member or equal, 124 
subset, 1 1  
relative complement , 16 
product, 2 1  

c 
---=--. inclusion map, 36 
R-1 inverse relation, 50 
� , = symmetric relations, 5 1  
-< , C::: irreflexive orders, 5 1  
=:;< ,  r;;;; reflexive orders, 51 
8xy Kronecker delta, 35 
xDy binary operation, 24 
St:J..T symmetric difference, 1 7  
xOy (used briefly in Ch. 16) , 438 
J o g  composition, 35, 50 
x · y product, 87, 180, 599 
d( , ) distance, 40 
osc( · ) oscillation, 492 
Var( · ) variation, 507 
( nk )  b inomial coefficient , 48 

( , ) bilinear pairing, 23, 751 
J f dJ.L integral, 564, 613, 627 
J f dJ.L integral, 289 
df /dx derivative (Leibniz notation) , 659 
d>./dJ.L Radon-Nikodym derivative, 788 

n-ary symbols: 
u 
u 
n 
n 
ll 
I: 
v 
(\ 
® 
EB 
u 

union, disjunction, 15  
union, disjunction, 4 ,  357 
intersection, conjunction, 15 
intersection, conjunction, 4, 357 
product, 2 1 ,  218 ,  274, 421 
sum, 34, 184, 266, 583, 629 
sup, l.u.b. , join, vel, 4, 59 
inf, g.l .b. , meet, and, 4, 59 
product O"-algebra, 34, 549 
internal direct sum, 185 
external direct sum, 226, 276 

Spaces of Functions: 
xv 
2y 

ba, ca 
ba, ca 

power of a set , 22 
power set, 15, 46 

B(X, Y) 

spaces of charges, 293 
spaces of charges, 800 
bounded, 97, 277, 579, 801 

C(X, Y) 
C(X, Y) 
BC(X, Y) 
BUC(X, Y) 
Lip(X, Y) 
BV( · ) 
Hol" (X, Y) 
Hol(fl) 
Co (X, Y) 
C0(X, Y) 
Cc , CK 
TI(JRM) 
SM( · )  
TM( · ) 
c, co , £p , FN 

f.,P' LP 
f.,'P , L'P 
Lfoc (n ) 
Lin(X, Y) 
BL(X, Y) 
Inv(X, Y) 

continuous, 690 
continuous, 495 
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bounded continuous, 277, 580 
bdd. unif. contin. ,  277, 580 
Lipschitz, 277, 481 
bounded variation, 583, 784 
Holder continuous, 482, 582 
holomorphic, 691 
contin. vanish at ends, 580 
smooth vanish at ends, 277 
contin. compact support, 7 43 
smooth, compact support, 744 
strongly measurable, 548, 554 
totally measurable, 692 
sequence spaces, 580, 585, 690 
Lebesgue spaces, 588 
Orlicz spaces, 693 
locally integrable, 691 
linear, 277 
bounded linear, 605 
invertible linear, 625 
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