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ABSTRACT

Future augmented reality devices have the capacity to enhance
human perception and provide assistive functions in complex com-
munication scenarios. Active speaker detection (ASD) systems
that are robust to egocentric data are critical to this. Egocentric
ASD is challenging due to overlapping speech, single-channel
recording, and dynamic scenes. A novel module that uses a
data-efficient image transformer (DeiT) to extract features encap-
sulating the acoustic properties of each scene, and a positional
conditioning mechanism is proposed. The module is evaluated in
conjunction with TalkNet, an existing ASD architecture, on two
audiovisual datasets: Ego4D (egocentric) and AVA-ActiveSpeaker
(exocentric), achieving 29% and 0.38% relative improvement in
mean Average Precision (mAP), respectively, while retaining a
parameter efficient build. A qualitative analysis is also presented,
implicitly demonstrating that contextual information is leveraged.

Index Terms— Active speaker detection, context modelling,
data-efficient image transformers

1. INTRODUCTION

The ability to determine the identity of an active speaker in
a communication scenario is a fundamental aspect of human
social interaction. Audiovisual diarization aims to identify and
associate speech segments with the relevant identities present in
an audiovisual signal. Audiovisual ASD is a critical component
of modular audiovisual diarization frameworks. The objective
of these frameworks is to detect all active speakers present in
an audiovisual scene given contiguous bounding boxes of faces
and the corresponding audio. This binary classification is often
performed at a video-frame level of temporal granularity [1–4].

Future applications of ASD in the context of augmented re-
ality revolve around data acquired from the egocentric perspective.
Egocentric refers to video or audio recorded from the first-person
perspective, typically by wearable devices such as smart glasses.
Despite this, most existing ASD methods are designed for, and
evaluated using, benchmarks consisting of conventional exocentric
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audio and video captured by microphones and static cameras in rel-
atively favourable recording environments [4,5]. The Ego4D [6]
egocentric audiovisual dataset and benchmark suite has provided
a suitable framework to study ASD for egocentric data in detail.
Such data introduces a notably arduous set of challenges: (i) acous-
tic signal level differences between the signal of the camera wearer
and their interlocutors due to distance differences to the micro-
phone; (ii) generally low signal-to-noise-ratio (SNR) for speech
signals; (iii) significant visual distortion from motion blurring
induced by the dynamics of the camera wearer’s head movement;
(iv) adverse lighting conditions; and (v) prevalent occurrences of
overlapping speech due to highly spontaneous conversations.

For ASD systems which scrutinise the activity of a single
candidate speaker in isolation, these challenges prove partic-
ularly difficult [6, 7]. To mitigate similar difficulties present
in exocentric datasets, such as the standard ASD benchmark
AVA-ActiveSpeaker [4], recent research in the domain has opted
for approaches which leverage information from the context,
e.g. provided by the wider image of each video-frame [1,2,8–11].
Specifically, most work has focused on leveraging information
provided by the facial regions of visible interlocutors surrounding
the candidate speaker. This is typically done in two ways: either by
determining the activity of all candidate speakers within a frame
simultaneously [2, 9, 10], or simply by using them as a source
of contextual information [1]. Other literature has taken a step
further by incorporating the position [8] and physical size of each
speaker’s head [11] within the image. This is based on the heuris-
tic that the active speaker is more likely to be located in the center
of the image and having a larger head size than inactive speakers.

Beyond these features, an intuitively relevant piece of contex-
tual information has previously been overlooked. By modelling
each video-frame holistically, the specific environment in which
the scene encapsulates can act as a relevant prior; the acoustic
properties of the environment can be inferred from the whole
image of each video frame. This is in addition to other features
which can only be inferred from viewing extended portions of the
whole image (beyond conventional facial crops of speakers), such
as the body language and orientation of the visible interlocutors
surrounding the candidate speaker.

This work presents a novel method to leverage the contextual
information provided by the full-scene image of each video frame
using a pretrained DeiT [12] and a positional conditioning mech-
anism. TalkNet, an existing ASD architecture which detects the
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speech activity for a single candidate speaker in isolation (and is
therefore naive to any contextual information) is used as a baseline
to test the efficacy of said extension. This work finds that the pro-
posed extension yields significant improvement upon the TalkNet
baseline on the egocentric dataset Ego4D as well as a modest
improvement on the AVA-ActiveSpeaker exocentric benchmark.

Contributions:
1. A novel context modelling extension for audiovisual ASD

to disambiguate acoustically challenging scenes in egocen-
tric data, all trained models and code are publicly available1.

2. Experiments on both Ego4D and AVA-ActiveSpeaker
datasets which demonstrate the efficacy of the proposed
extension: 29% and 0.38% relative improvement compared
to the TalkNet baseline are acheived, respectively.

3. Qualitative analysis of the performance, including an
ablation study and simulations to demonstrate how the
proposed extension manages populated audiovisual scenes.

The remainder of this work is organised as follows: Section 2
provides the necessary theoretical background and motivates the
architectures used for this work. Section 3 describes the proposed
method to model the context provided by each full-scene image.
Section 4 provides an overview of datasets used and implemen-
tation details. Section 5 discusses experimental results, first a
comparison with the state-of-the-art in both ego- and exocentric
data, then a qualitative analysis, and Section 6 concludes the paper.

2. RELATED WORK

The two architectures fundamental to this work will be introduced
in the following, i.e. the audiovisual ASD system with relevant no-
tation and a technical description of the TalkNet audiovisual ASD
baseline architecture. Then, the DeiT architecture [12] is briefly
introduced and motivated as a context modelling mechanism to
assist in disambiguating acoustically challenging environments.

2.1. Notation and Overview

Fig. 1 shows the audiovisual ASD system to determine the video-
frame-wise speech activity of a candidate speaker S who is visibly
present uninterrupted in a set V = {V1,...,VT} of consecutive
video frames Vt∈RC×H×W with time index t∈{1,...,T} and
C, H, and W being the channels, height, and width dimensions
of each full-scene image, respectively. First, contiguous bounding
boxes encapsulating the facial region of the candidate speaker
VS = {V1

S, ...,V
T
S } are extracted from each full-scene image.

These contiguous bounding boxes are typically referred to as
streams or tracklets. A temporally corresponding audio signal
A = {a1, ...,aTA} is used in conjunction with VS to infer the
speech activity of the candidate speaker S. It is worth noting that
A has a time index tA ∈{1,...,TA} which is distinct from t, to
account for the discrepancy in modality sampling rates.

1https://github.com/sap-shef/full_scene_ASD

Fig. 1. Overall framework of an audiovisual ASD system.

Unsupervised and supervised approaches exist for ASD. For
example, one such unsupervised approach assumes the active
speaker for segment A is the speaker whose VS and A have the
highest audio-visual alignment [13, 14]. This is based on the
assumption that speech present in the audio signal must belong
to one of the speakers visibly present in the field of view (FoV).
Another approach is based on the premise that the faces that
co-occur most frequently with pre-diarized speaker identities
can be matched together [15]. This is based on the assumption
that speaker identities can be robustly diarized beforehand; it
therefore cannot be applied causally. Comparatively, supervised
approaches formulate the task as a binary classification prob-
lem [1, 2, 4, 7, 10, 11], with fewer assumptions. Adversities
encountered when dealing with in the wild data often make the
aforementioned assumptions invalid. Thus, recent literature has
observed the paradigm shift to supervised approaches.

2.2. TalkNet Baseline

This paper proposes a novel approach to enhance the performance
of ASD in the context of acoustically challenging scenes in
egocentric video by injecting contextual information from each
full-scene image. To evaluate the proposed approach, TalkNet [7]
is chosen as an existing baseline system that performs ASD
without any contextual information.

TalkNet follows the paradigm of comprising an audio encoder,
a video encoder, modality fusion, and a temporal modelling mecha-
nism [1,2,4,8–11,16]. The audio encoder embeds 13-dimensional
Mel frequency cepstral coefficients (MFCCs) using a ResNet-34
with squeeze and excitation layers [17], in conjunction with a static
receptive field and a dynamic MFCC window step [7]. The dyan-
mic MFCC window step accounts for the discrepancy in modality
sampling rates and dynamic input sizes. The video encoder uses
a ResNet-18 to model the spatial features of the candidate speaker
followed by a video temporal convolution module that consists



Fig. 2. Left: Crisp image; visual features are indicative of speaker
activity, e.g. open mouths resolvable. Right: Blurred image where
it is difficult to resolve such features. Blurring occurs across
both candidate speaker, and contextual speakers (surrounding
interlocutors). Images from Ego4D dataset [6].

of depth-wise separable convolutions across the temporal dimen-
sion [18]. For modality fusion, two cross-attention mechanisms
perform audiovisual synchronization by aligning the two modal-
ities followed by embedding-dimension concatenation. To model
the interframe dynamics of an encoded input stream TalkNet
makes use of the self-attention mechanism. This enables TalkNet
to infer from the full stream for temporal context when classifying
the activity of each audio and video frame as well as permitting
dynamic sequence lengths of input. Maximising the windows
of temporal context has been shown to be beneficial to ASD
performance [7,8] and the duration of a stream is often variable.

As a result of its strong modality synchronisation capabilities
and the long windows of temporal context it can infer from,
TalkNet retains competitive performance in exocentric ASD de-
spite being several years older and assuming a parameter-efficient
approach relative to more recent work [1,10,11,16]. Additionally,
TalkNet does not require significant architectural modification
to incorporate the proposed visual context modelling extension.
This ensures that its original mechanism for the candidate speaker-
specific visual features and audio is not significantly disrupted by
the proposed extension. These factors make it the optimal choice
as a baseline framework.

2.3. Data Efficient Image Transformers

Several challenges exist for ASD systems in the context of ego-
centric video. From an audio perspective, noisy environments and
frequent occurrences of overlapping speech make it difficult to
determine whether speech present in the audio signal emanates
from the candidate speaker in question, or, whether speech is
present in the audio signal at all [19,20]. Additionally, the visual
degradation which inevitably occurs due to the dynamics of the
camera wearer’s head movement poses a challenge from a visual
perspective. This motion often results in significant distortion
to the candidate speakers’ face crop, rendering the fine-grained

details typically associated with speech activity as unreliable; it is
difficult to recognise an open mouth or cheek posture [21] under
such distortion. To mitigate these challenges, other contextual
information provided by the full-scene image can be leveraged.
Using the full-scene image, a system can be informed of potential
overlapping speech and noisy environments by identifying other
visible persons and inspecting the scene background, respectively
(cf. Fig. 2). Furthermore, inferring from a full-scene image holis-
tically is advantageous because the scene-level information is less
susceptible to visual distortion. For example in Fig. 2, elementary
features such as the interlocutor position, body language, and the
environment the scene encapsulates can still be discerned even
under the presence of aberration. To leverage robust scene-level
information, this work proposes the use of a DeiT [12] as a means
of modeling the visual context provided by each full-scene image
to assist audiovisual ASD.

The DeiT is a type of vision transformer [22] that leverages
self-attention to process images. Unlike convolutional neural net-
works, vision transformers can capture long-range dependencies
and global features in images, with weaker inductive biases [23].
However, vision transformers require a large amount of data
and computing resources to train, which limits their adoption in
lightweight ASD architectures. The DeiT addresses this issue by
using a teacher-student strategy that relies on a distillation token,
which ensures that the student learns from the teacher through
attention. Pretrained on the ImageNet-1K dataset [24], the DeiT
can be finetuned with modest resources for a wide range of tasks.
This paper demonstrates that the DeiT can autonomously extract
contextual information from full-scene images for ASD.

3. CONTEXT MODELLING

This section describes the proposed method to extend TalkNet [7],
which does not consider visual context, with a visual context
modelling module. The proposed extension aims to improve ASD
performance by injecting contextual information to compensate
for audible and visual noise inherent to egocentric data. The
upper part in Fig. 3 shows the extension and the lower part shows
the baseline architecture, the latter is identical to its original
implementation (as described in Section 2.2).

The baseline architecture first encodes a stream of the local
visual features of the candidate speaker VS and the audio signal A
yielding video and audio representations FV∈RT×d and FA∈
RT×d, respectively. Here d denotes the embedding dimension.
The embedded modalities are then concatenated to FAV∈RT×2d.
The extension extracts information from the corresponding stream
of full-scene images V and conditions the embedded representa-
tions by the position of the candidate speaker within each full-
scene image PS={p1

S,...,p
T
S }, given pt

S=[x1,y1,x2,y2]∈R4×1

where x1, y1, x2, and y2 denote the upper left and lower right coor-
dinates of the bounding box (shown as orange dots in Fig. 3). This
positionally conditioned representation of each full-scene image
FC ∈RT×dc is then concatenated with FAV along the embed-
ding dimension, yielding an embedded representation of the full



Fig. 3. Visual context modelling extension (upper part) and
TalkNet [7] baseline (lower part) for ASD.

stream FACV∈RT×(2d+dc) from each input. As per the baseline
architecture, to infer from the full temporal context, self-attention
is then applied across the entire embedded stream. Finally, the
network classifies each video frame within the embedded stream
as either being representative of an active speaker or not.

3.1. Full-Scene Feature Extraction

Most ASD systems use contextual information only from the
faces of other visible interlocutors surrounding the candidate
speaker [1,2,9]. This can work well in some situations, like when
the audio signal emanates from one of the non-distorted faces
in the FoV [2]. However, this approach is not robust to the chal-
lenges of egocentric video. For example, if the candidate speaker’s
face is blurred by camera motion, the faces of the surrounding
interlocutors are also likely to be blurred. This makes it difficult to
leverage useful contextual information that indicates the identity
of the active speaker. Therefore, in the context of egocentric data,
this kind of contextual information is susceptible to the same
affliction it is trying to mitigate, as demonstrated in Fig. 2. More-
over, this approach restricts the amount of information the model
can extract from the visual context regarding the audio signal.
It is limited to being informed of the possibility of overlapping
speech. If multiple interlocutors are visible, this would increase
the likelihood that the audio signal contains overlapping speech.
A more informed approach would exploit information regarding
the specific environment each full-scene image encapsulates and
identify potential sources of audible sound. To this end, this work
proposes to model each full-scene image holistically using a DeiT.

First, each full-scene image within a stream is stratified

into a mosaic of fixed-size patches where a single patch is
Φ∈RC× H

PH
× W

PW given PH and PW denoted the total number of
patches in each image in height and width direction, respectively.
Each patch is spatially flattened and projected into a vector
Φemb∈Rdc (where dc refers to the model dimension of the DeiT)
via linear layers, resulting in a matrixVt

emb∈RP×dc for each full-
scene image in the stream. The matrices of all the images in the
stream are stacked along the temporal dimension, forming the ten-
sor Vemb∈RT×P×dc . Subsequent transformer blocks comprising
self-attention and feed-forward layers with residual connections
are then used to autonomously extract information about each
image within the stream, yielding a tensor E∈RT×P×dc .

3.2. Positional Conditioning

Previous work demonstrates that elementary contextual infor-
mation such as the position of the candidate speaker within
each full-scene image is insightful when detecting active speak-
ers [8,11]. To further build on this idea, the use of a positional
conditioning mechanism is proposed. The goal of this mechanism
is to further enrich the full-scene image embedding obtained by the
DeiT, by conditioning it on the position of the candidate speaker
using a cross-attention mechanism. This is based on the premise
that regions of salience within the full-scene image, as determined
by the DeiT, can be further weighted in terms of their relevance
by the position of the candidate speaker. For example, patches
within the image containing persons will be identified by the DeiT
as salient. However, to leverage information within those patches,
such as the head orientation of the recognised person, the position
of the candidate speaker must be known. Additionally, the dis-
tance of potential sources of audible noise from the camera wearer
relative to the distance to the candidate speaker is also a useful
prior. Relationships such as these can be more easily learnt using
a cross-attention mechanism compared to other, simpler methods.

First, a multilayer perceptron (MLP) is used to embed the
positions of the candidate speaker within each full-scene image
among the stream Ep∈RT×1×dD . Cross-attention is then applied,
as per (1), where the sequence length of the keys and values is the
patch dimension of E, and the sequence length of the queries is
simply one.

ATT(E)=softmax

(
EpE

⊺

√
dD

)
E (1)

The cross-attention mechanism weights each patch by its
relevance to the task of determining the candidate speaker’s
activity for the corresponding video frame. To obtain the final
context embedding, the patch dimension is collapsed by mean
average, yielding FC∈RT×dD .

4. EXPERIMENTS

Ego4D. The model is first pretrained on the train fold of the AVA-
ActiveSpeaker dataset [4]. Next, 5 separate runs are trained for
25 epochs on the train fold of the Ego4D audiovisual diarization



dataset. For augmentation, during training, negative sampling [7]
is applied to the audio signal, and standard techniques such as
random flipping, rotating, and cropping are applied to the video
modality. For evaluation, the Cartucho implementation of object
detection mAP [25] is used. This follows the mAP criterion
defined in the PASCAL VOC 2012 competition [26], and is the
same evaluation protocol provided by the Ego4D audiovisual
diarization challenge which ensures evaluatory consistency with
recent literature [6].

AVA-ActiveSpeaker. The model is trained on the AVA-
ActiveSpeaker dataset also for 25 epochs with 5 distinct runs
using the augmentation protocol described above. The optimal
checkpoint is then evaluated using the official evaluatory code
provided by the ActivityNet challenge [27].

4.1. Implementation Details

The PyTorch implementation of the DeiT-tiny-patch16-224 from
the Facebook repository on Hugging Face is used as the pretrained
DeiT. It takes 224×224 colour images as input. The TalkNet base-
line architecture is consistent with its original implementation [7],
it uses 13-dimensional MFCCs as input to the audio encoder with
a receptive field of 189 audio frames with dynamic MFCC win-
dow steps. The video encoder accepts 112×112 images of the can-
didate speaker’s face crop in grey-scale. The embedding dimen-
sions for FA, FV, and FC are 128, 128, and 64, respectively. The
loss function used is the weighted cross entropy loss to compen-
sate for the class bias of the data set, with 3 auxiliary losses: audio,
visual, and contextual. It was determined empirically that a larger
contextual loss weighting relative to the audio and visual loss
contributions yields better results, therefore, the auxiliary losses
were weighted as follows: 0.4, 0.4, and 0.7. The temporal context
the model can infer from is dynamic, ranging from 2 to 300 video-
frames (0.67 to 10 seconds assuming a 30Hz video sampling rate).
Since the test folds of Ego4D and AVA-ActiveSpeaker are unavail-
able, i.e. have not been released by the Ego4D audiovisual diariza-
tion challenge and ActivityNet challenge, respectively, this work
follows other literature [1,7,8,10,16] and uses the validation folds
of each dataset for evaluation. The full model is trained in less than
24 hours using a single V100 and a batch size of 900 video frames.

4.2. Datasets

4.2.1. Ego4D Dataset

Ego4D [6] is a large dataset of over 3000 hours of annotated
video recorded from the egocentric perspective. It covers tasks
from episodic memory to audiovisual diarization. This work,
however, only uses the audiovisual diarization component of the
dataset which comprises 572 distinct video clips. Each video
clip is 5 minutes long, some of which are recorded concurrently.
All data is recorded monaurally using a variety of wearable
devices. All video is sampled at 30 Hz and uses high-definition
visual resolution. The dataset is stratified as follows: 379 clips
for training, 50 clips for validation, and 133 clips for testing.

The dataset records real-life conversational scenarios, usually
involving multiple speakers, both indoor and outdoor. The dataset
is therefore incredibly diverse and particularly challenging.

4.2.2. AVA-ActiveSpeaker Dataset

The AVA-ActiveSpeaker dataset [4] is the first large-scale standard
benchmark for ASD, with 262 exocentrically recorded Hollywood
movie clips as its source. The dataset is split as follows: 120
training movie clips, 33 validation movie clips, and 109 test movie
clips. Faces are annotated to a video-frame level of temporal
granularity for speaker activity, yielding bounding boxes for 5.3
million faces. The dataset poses various challenges for ASD,
such as occlusions, low-resolution faces, low-quality audio, and
challenging lighting conditions.

5. RESULTS

5.1. Comparison with State-of-the-Art Methods

Primarily the objective of this work is to enhance the performance
of audiovisual ASD in the context of egocentric data. However,
for completeness, it is necessary to assess the performance of the
system in the context of exocentric data as well. To this end the
proposed system is evaluated on the two datasets described in
Section 4.2: the Ego4D audiovisual diarization dataset and the
AVA-ActiveSpeaker dataset.

Table 1. Performance on validation set of the AVA-ActiveSpeaker
dataset. Symbol > refers to a minimum estimate of parameters
present in the model. Cont. Inf. denotes whether the model is
contextually informed. Best performance in bold font.

Model Cont. Inf. mAP [%] Params. [M]
AVA [4] ✗ 82.1 >10.0

Zhang et al. ✗ 83.5 >35.0
ASC [2] ✓ 87.1 23.5

MAAS [9] ✓ 88.1 22.5
UniCon [11] ✓ 92.2 >22.4
TalkNet [7] ✗ 92.3 15.7

Proposed Method ✓ 92.7 21.2
ASDNet [1] ✓ 93.5 51.3

Liao et al. [28] ✗ 94.1 1.00
SPELL [8] ✓ 94.2 22.5

LoCoNet [16] ✓ 95.2 >22.5

When evaluated on the AVA-ActiveSpeaker dataset, as shown
in Table 1, the improvement upon the TalkNet baseline is modest,
resulting in a 0.38% relative improvement in mAP. This might
be for two reasons. Firstly, the challenges the proposed extension
helps to mitigate such as overlapping speech, acoustic noise, and
visual distortion are less prevalent in exocentric data. Secondly,
the baseline performance is already comparable with the current
state-of-the-art, leaving less room for improvement. Furthermore,
due to the subjective nature of the annotation, some disagreement



with the ground-truth ASD labels is likely to occur even with a
perfect ASD system. Therefore, diminishing returns are expected
beyond a certain threshold of improvement.

Table 2. Performance on Ego4D-val [6]. Results reported are
taken from existing literature, except for Liao et al [28]. For
LoCoNet, a minimum number of parameters is stated since the
number of parameters used is variable. All systems shown, exclud-
ing the TalkNet baseline and Liao et al., are contextually informed.

Model Params. [M] mAP [%]
TalkNet [7] 15.7 51.0

Liao et al. [8] 1.00 54.3
LoCoNet [16] >22.5 59.7

SPELL [8] 22.5 60.7
Proposed Method 21.2 65.9

In the context of egocentric data, as shown in Table 2, the
proposed extension significantly improves upon the TalkNet
baseline system, yielding a 29% relative improvement in mAP.
Additionally, it significantly outperforms the current state-of-the-
art system on the Ego4D dataset, SPELL [8], by 5.2% mAP. This
is whilst using less parameters than SPELL which, unlike the
proposed method, is also not trained in an end-to-end fashion
and is non-causal. These results implicitly validate the hypothesis
of this work; contextual information provided by the full-scene
image is beneficial when determining speaker activity. This is
particularly true in the case of egocentric data.

5.2. Ablation Study

To implicitly determine the kinds of information the context mod-
elling extension learns from, an ablation study is conducted in the
following. In total four adaptations of the context modelling ex-
tension are evaluated with the TalkNet baseline: configuration (i)
full-scene image† + position refers to the proposed extension, but
using full-scene images where all regions except for those includ-
ing face crops have been ablated and replaced with pixel values of
zero; configuration (ii) position-only refers to positional informa-
tion being injected without any full-scene image embeddings; con-
figuration (iii) full-scene image, where the positional conditioning
mechanism has been ablated; and finally, configuration (iv) full-
scene image + position which is the proposed extension to TalkNet,
unmodified. From Table 3 it is clear that to effectively leverage the
contextual information provided by the full-scene image, it is nec-
essary to extract holistic information and condition the embedded
representation on the position of the candidate speaker. Surpris-
ingly, configuration (i) performs the worst. This may be due to the
fact that the majority of the embedded patches in this configuration
simply contain no information, since visible faces only consume a
small minority of area within each full-scene image. This means
the model is inundated with noise and has to learn how to selec-
tively ignore certain patches. This experiment also confirms that
using the full-scene image to capture the acoustic features of the en-
vironment can help identify the active speakers in egocentric data.

Table 3. Ablation study for visual context modelling components
evaluated on Ego4D-val [6]. † indicates ablated full-scene images
only comprising the bounding box regions of visible interlocutors.

Model mAP [%]
full-scene image† + position 60.4

position-only 60.5
full-scene image 61.3

full-scene image + position 65.9

5.3. Qualitative Analysis

Table 4 shows a breakdown of the baseline performance compared
with the proposed method in terms of mAP, stratified by the num-
ber of visible interlocutors in each scene. For all strata, excluding
scenes comprising 3 visible interlocutors, the proposed method
produces a significant improvement. In previous studies [1,2,4,
7,9,28], a clear trend of decreasing performance with increasing
number of visible interlocutors in each scene is apparent. This
trend is consistent with what the baseline system exhibits on the
Ego4D validaiton fold. The proposed method, however, does not
abide by this trend, performance increases with increasing visible
interlocutors beyond 3. This may be because information provided
by visible interlocutors in a scene, such as head orientation, is ben-
eficial when determining speaker activity. The proposed extension
potentially leverages this information allowing it to perform better
in particularly crowded scenes. For this phenomena to overcome
the challenges induced by crowded scenes, there must be a signifi-
cant quantity of visible interlocutors; it is unlikely that all interlocu-
tors are looking at the active speaker at all times. For example, in
a scene comprising 3 visible interlocutors, there is an insufficient
number of visible interlocutors for their gaze to not provide an
ambiguous result. This would explain the dip in performance for
scenes comprising 3 visible interlocutors, observed in Table 4.

Table 4. Effect of number of visible interlocutors in the FoV on the
detection performance in terms of mAP and scenario abundance.

# of Visible interlocutors 1 2 3 4 ≥5
TalkNet 58.1 39.4 22.3 22.6 16.0

Proposed Method 71.9 58.0 20.3 25.1 47.5
Abundance [% of val fold] 46 52 0.70 0.63 0.0072

6. CONCLUSIONS

In this study, a context modelling module to extend an existing
audiovisual ASD system to improve its performance in particular
for egocentric data was proposed. The extension uses a pretrained
DeiT and a positional conditioning mechanism to extract and
leverage contextual information reflecting the acoustic properties
of full-scene images. Experimentation on two ASD benchmarks
demonstrate that the proposed extension achieves 65.9% and
92.7% on egocentric and exocentric data, respectively, signifi-
cantly outperforming all other methods on the Ego4D dataset.
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[1] O. Köpüklü, M. Taseska, and G. Rigoll, “How to design a
three-stage architecture for audio-visual active speaker de-
tection in the wild,” in 2021 IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2021, pp. 1173–1183.

[2] J. L. Alcazar, F. C. Heilbron, L. Mai, F. Perazzi, J.-Y. Lee,
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