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Abstract. Over 70 million people worldwide face communication
difficulties, with many using augmentative and alternative
communication (AAC) technology. While AAC systems help improve
interaction, the communication rate gap between individuals with and
without speaking difficulties remains significant, and this has led to a
low sustained use of AAC systems. The study reported here combines
human computer interaction (HCI) and language modelling techniques
to improve the ease of use, user satisfaction, and communication rates
of AAC technology in open-domain interactions. A text input interface
utilising word prediction based on BERT and RoBERTa language
models has been investigated with a view to improving communication
rates. Three interface layouts were implemented, and it was found that a
radial configuration was the most efficient. RoOBERTa models fine-tuned
on conversational AAC corpora led to the highest communication
rates of 25.75 words per minute (WPM), with alphabetical ordering
preferred over probabilistic ordering. It was also found that training on
conversational corpora such as TV and Reddit outperformed training
based on generic corpora such as COCA or Wikipedia. Hence, it is
concluded that the limited availability of large-scale conversational AAC
corpora represent a key challenge for improving communication rates
and robust AAC systems.

Index Terms: Text Input Prediction, Language Modelling,
Augmentative and Alternative Communication (AAC), Speech
Synthesis

1 Introduction

Speech impairments can have significant inhibiting effects on affected individuals.
It is estimated that over 0.5% of the UK population and 7.5 million individuals in
the United States have a specific type of vocal impairment [36,14]. The effects of
speech impairments can vary significantly depending on the severity and extent
of the individual’s impairment. The degree of impairment determines whether
an individual may benefit from an AAC device. The primary objective of the
AAC strategy or device is to assist or facilitate a user’s communication ability
[41,42].
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An inhibiting factor in the adoption of AAC is the significant gap in
communication rates between standard spoken conversational interaction and
that experienced by AAC device users [8]. AAC devices have been shown to
reach communication rates of approximately 10-16 WPM whereas conversational
rates can surpass 140-150 WPM [46,38]. Communication rates measure the
rate at which individuals exchange information during an interaction; whereas
conversational rates indicate the pace of a conversation between two or more
individuals which incorporates turn-taking and the flow of a dialogue. The
significant gap between these two rates restricts individuals with communication
difficulties from effective participation in multiparty interactions with minimal
delay [22]. Overall, current assistive technologies cannot enable AAC users to
participate successfully in multiparty interactions due to large time delays and
a lack of expressivity, naturalness and personalisation [46,17,48].

Prediction and predictive technologies are integral to the development
of AAC devices, as these techniques have the potential to decrease the
communication gap between participants by using text or character predictions
(as in Dasher [52], a graphical user interface (GUI) based system presenting
animated character predictions as an innovative text input interface at the
time of its publication). However, for these techniques to be effective, the
phrase, word or character prediction mechanisms must be accurate and have
a minimal delay to ensure that the device is not detrimental towards the
user or interaction [44,24]. If prediction mechanisms are not accurate, they
can amplify the communication gap by increasing delays in the exchange of
information. Nevertheless, AAC users widely use Pictureboards, Pragmatic
Organisation Dynamic Display (PODD), speech generation AAC devices and
predictive systems such as Predictable! [22,49], depending on an individual’s
unique communication abilities. The implementation of advanced text prediction
techniques such as language modelling, topic modelling, using semantic or
syntactic information and conversational context has significantly improved AAC
devices [8,16,22,27].

In the design and evaluation of user interfaces, including assistive technologies
like AAC devices, HCI plays a critical role. User modelling is essential to
determine the efficacy of a system that is aimed at users with a diverse range
of abilities and circumstances. Various models are utilised to understand how
individuals interact with interfaces and systems, and these generate effective
design and evaluation justifications for developing systems, specifically AAC
systems. For instance, ‘task analysis models’ have been used to capture a user’s
ability to achieve a specific task outside of a computer system or interface [1]. In
particular, AAC system designs are able to benefit from HCI modelling as they
can inform the development of personalised and effective AAC strategies and
devices. Furthermore, HCI modelling can identify potential barriers to device
usage as well as be used to design interfaces that are intuitive and accessible
to users with different requirements [1]. Indeed, it has been shown that by
considering the needs and abilities of diverse users, AAC designers can create
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more inclusive and effective assistive technologies [2]. However, despite these
advances, there is still a need for improved prediction-based interfaces for AAC
users.

This paper addresses these issues and is structured as follows: Section 2,
discusses modelling techniques for user interface design. Section 3 describes the
experimental method and interface designs used in modelling user behaviour for
text prediction interfaces and the results are presented in Section 4. Section 5
concludes the paper. The main contributions of this paper are four-fold:

1. A general model for user predictive text-entry has been introduced based on
established HCI laws.

2. Three word-prediction selection interfaces for text input have been modelled.

3. Choice vs. human response time (HRT) has been investigated for word
selection, concluding in the number of optimal choices presented to the user
in a text-input interface.

4. Fine-tuning large language models (LLM) for increased text-entry for AAC
devices have been examined, with conversational data and testing text input
user interfaces across four communication scenarios.

2 User Behaviour Modelling and Text Prediction for
Increased Text Entry

Within the field of HCI there are specific models relating to how users
interact with movements within an interface and how users interact with
choices provided. Models such as ‘Fitts’ Law’ [15] and the ‘Hick Hymen Law’
[21] provide designers with predictability information about user behaviour,
which can be used to justify design decisions and enhance the user experience
[45]. Additionally, predictive models allow for the calculation of metrics in
an analytical manner [35], eliminating the need for time-consuming and
resource-intensive experimentation.

HCI is intrinsically linked to human-motor movement. Therefore, when
designing interfaces and systems, models of movement can be utilised to inform
the best approaches in the design of systems. An early example of such an HCI
modelling is the keystroke level model (KLM) [5]. KLM predicts the approximate
time it takes the user to perform a specific task using a system, assuming that
there are no errors. However, users differ significantly, and some factors have
more impact on performance than others [30]. For example, users have different
ways to use their hands and motor skills. The topic of bimanual (the use of
both hands simultaneously) and laterality (preference of the use of one hand)
has been extensively studied with Guiard’s model [18] being one of the most
notable. The examination of Guiard’s model is critical, due to enhancing user
experience and developing efficient interfaces. This model proposes a framework
for understanding preferred and non-preferred hand movements. Guiard’s model
proposes that individuals have a preferred hand (usually the dominant hand)
that performs tasks that require precision and fine motor control, and a
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non-preferred hand that performs tasks that require less precision and forceful
movements. This understanding is important when analysing the efficacy of user
interfaces, particularly for tasks involving fine motor movements.

Furthermore, other factors are also critical, such as the variety of goals that
can be achieved with a system and the ability to recall a specific function after a
period of not using a system [23]. There are also associated factors such as user
fatigue, concentration, and satisfaction [30].

2.1 Interface Modelling

Fitts’ Law: Fitts’ law [15] states that the time taken for a cursor to move in
a user interface is directly related to the area and width of the target on the
interface. Fitts defines an Index of Difficulty (ID) as a function of the Euclidean
distance D between two points on the screen p; = [z1,71]7 and ps = |29, y2]T

and width W of a target.
2D
ID =1 — 1
082 ( W) (1)

The ID is a measure of complexity or difficulty for a movement in an interface,
such as clicking or selecting a widget via using a cursor or on a touchscreen. The
ID is directly related to a prediction of a Movement Time (MT) as follows:

MTa+b~ID—a+b-log2<2V€) (2)

The constants a and b reflect the efficiency of the interfaces and systems, in
particular pointing and mouse cursor movements. They are constants that are
determined empirically via regression analysis.

Fitts’ Law (and its variants) have become ubiquitous in predicting the
performance and difficulty of movement in interface designs; it is one of the
most widely adopted models for human performance prediction and behaviour
modelling [45,19].

Hick Hymens Law: A second model ubiquitous in HCI is the Hick-Hymens
law [21,45], which states that the reaction time of an individual T' will be
logarithmically correlated to the number of choices n presented to the user. This
model was investigated to determine the optimal number of words presented to
a user in a text-input word prediction interface as follows:

T=b-logy(n+1) (3)
The constant b is determined empirically via experimentation. There are several

time latencies related to human motor and cognitive behaviour that must be
examined to justify design interfaces and layouts.
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2.2 Text Entry Speeds

A significant limiting factor for the sustained use of AAC devices is the difference
between text input rates and spoken conversational rates. The QWERTY
keyboard has become predominant in text-entry layout interfaces, both in
physical text-entry and touchscreen interfaces [33]. Text-entry rates for a typical
QWERTY keyboard can be predicted using a variation of Fitts’ law (the
Shannon formulation [32]) as follows:

D
MT; ; =a+b-log, ( VVJ + 1) (4)

In (4), ¢ and j are the indices of the separate keys and D; ; is the distance
between key ¢ and key j. However, this model does not take into account if a key
is repeated. This was investigated in [33] which predicted a text input rate of 30.1
WPM for a typical soft QWERTY keyboard. This model is in accordance with
studies [26] representing entry speeds aligning to the predictive model established
by [33].

Spoken conversational rates and text entry rates are considerably different
[3]. There are also consequential differences between spoken and written language
[6]. This was investigated by [29] establishing that the highest text entry rates
that can be achieved are not only dependent on the text entry method, but also
on the user transferring thoughts and information to written text. An ‘inviscid’
text-entry rate of 67 WPM was determined by [29], establishing a grand goal for
text entry input methods. Table 1 summarises text entry rates reported in the
state-of-the-art literature and the respective references.

Table 1: Comparison of text entry rates with varying text input methods.

Text Entry Method ‘ WPM Rate ‘Reference
Inviscid Upper Bound 67 [29]
QWERTY Physical Keyboard 51.56 4+ 20.2 [13]
QWERTY Touchscreen Keyboard 45 [26]
Gesture Keyboards (Swype) 45 [25]
Dasher 17.26 (Upper Bound) [52]

2.3 Language Modelling

Statistical language modelling techniques are utilised in the predictive text input
to increase communication rates [7]. These techniques are thus essential for
text input into AAC devices. Prediction mechanisms can be character-based,
word-based, or phrase-based (multiple words), demonstrated by the Dasher
interface [52], where character predictions are presented to the user in a
streaming interface with low latency. Prediction with gesture keyboards such
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as Swype (virtual touch-based keyboard allowing users to join characters
by a sliding gesture) [25] and phrase prediction techniques such as [27]
have demonstrated the efficacy of language modelling techniques for AAC
devices. LLMs have the ability to generate text based on user input with
the incorporation of contextual history and semantic correctness. LLMs,
such as transformer-based models, Bidirectional Encoder Representations from
Transformers (BERT) [12,43] and Robustly Optimized BERT (RoBERTa)
[65] can be fine-tuned (adapting the pre-trained model to a specific task)
for specifically the use case in conversational open-domain AAC devices
(cf. Section 3.3 for corpora used for fine-tuning). These language models are
chosen because they have been shown to achieve high accuracy on language
generation tasks and to score high on commonly used metrics such as
General Language Understanding Evaluation (GLUE) and BiLingual Evaluation
Understudy (BLEU) [39,51]. RoBERTa has proven to be effective in language
generation due to dynamic masking in model training.

To increase text entry rates and decrease the communication gap between
AAC users and their conversational partners, predictive language modelling is
utilised in this work (cf. Section 3.3), together with various input methods and
interfaces (cf. Section 3.1).

The process of predictive text input: There are associated time latencies
involved when utilising a system. To optimise a system, a functional component
analysis can be conducted to optimise the controllable parameters [38]. A
functional structure, i.e. decomposition of the components of the system into
sub-functions to analyse the system either as a whole or at the component level,
can be critical in analysing certain time latencies and shortcomings of a system.
Figure 1 visualises a general overview of the functional flow and associated time
components in a predictive text input system, which can be summed to equal
the time per utterance (i.e. a sequence of written text):

— Type: time to enter the initial word and type characters for a word, if a
word prediction is not selected by the user

— Tprediction: time necessary for language model to predict the next word

— Tlook: time for the user to scan the search space of word predictions

— TReact: decision time of the user to decide if the word predictions are
satisfactory

— Tselect: time for the user to select a word prediction or revert to typing.

This functional system flowchart, when used in conjunction with envelope
analysis [28], i.e. analysing each sub-component with a user-centric approach, can
be instrumental in improving the efficiency and effectiveness of system designs.
Please note, that timings in Figure 1 do not correspond to the time 7" in (3).

3 Experimental Method

Informal experiments were conducted by the main author, being an AAC user
for many years.
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Fig. 1: Functional system flowchart for the developed interface to select predictive
words, including time delays introduced by system and user.

3.1 Fitts’ Law Modelling and Experimentation of User Interfaces

To model the impact of layout changes, Fitts’ law [15] in (2) is utilised and tested
to predict the time of movements, i.e. the time required to move to a target
position on an interface, performed by users during use of the interface. Three
interfaces are tested with differing button sizes, and distance lengths across the
screen which influence the ID.

amazing chilly fantastic great nice nice cold awesome gorgeous horrible

awesome cloudy fine horrible ok beautiful hot fine pleasant terrible
awful IS gloomy hot perfect great cool bad cloudy improving
bad cool good humid pleasant good wonderful sunny perfect awtul

beautiful crazy gorgeous lovely raining lovely warm amazing chilly gloomy

(a) Alphabetical Ordering (b) Probabilistic Ordering

Fig.2: Ordering strategies: Predicted words are presented to the user either in
(a) alphabetical or (b) probabilistic order, i.e. sorted based on the confidence
score of the LLM text prediction model. The word predictions are generated
after the phrase "The weather is’ has been entered.

Further to this, two different ordering strategies of the predicted words are
investigated as visualised in Figure 2: (i) alphabetical ordering (cf. Figure 2a)
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and (ii) ordering via probabilities of the generated words (cf. Figure 2b).
The probabilities are the confidence scores (likelihood of this word prediction
following the utterance) which are generated together with the word predictions
and which can be interpreted as confidence scores of the prediction.

!

(b) Grid Interface

(a) List Interface (c) Radial Interface

Fig. 3: GUI Interface Designs.

Figure 3 shows the three layouts under test. The list layout interface in
Figure 3a was chosen as this is similar to the list style of the Dasher Keyboard
[52], a grid layout (cf. Figure 3b), since it is similar to the auto-predict selection
above a QWERTY keyboard (QWERTY) on a smartphone, with a similar width
to a smartphone auto-predict interface, and the radial interface (cf. Figure 3c),
since it is similar to a hexagonal keyboard, such as e.g. the TYPEHEX
or Hookes Keyboard [40,54]. Coefficients a and b in (2) are determined by
regression analysis with  and y values empirically measured, where x and y
are scalar coordinates on the Fitts’ plots (Movement Time (MT) vs ID) which
are empirically measured, correlated to the distances moved by the user in the
interfaces.

Additionally for accurate measurements, the cursor origin must remain
constant for each distance measurement when empirically evaluating an
interface. For each interface layout in Figure 3, three cursor origin positions were
tested; top of the interface, middle centre and bottom centre of the interfaces.
The purpose of investigating the origin cursor positions was to determine which
cursor origin reduces the ID in (2) for the user and, thereby, increase efficiency.
Cursor movements can vary between different users due to dexterity, fine-motor
movement and also the concentration of the user. However, Fitts’ law provides a
foundation for the predictability and efficacy of user interfaces, which is utilised
to determine an efficient interface for predictive text input.
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3.2 Number of Choice of Words vs Human Response Time

To optimise the time latencies for text entry, controllable parameters in the
system can be refined. An initial experiment is conducted to investigate the
relationship between the number of word choices and the HRT. Users were
provided with lists containing varying numbers of words, denoted as n in (3),
and their reaction times to select a specific word from the list were measured. To
ensure accurate time measurements and to minimise human errors, an automatic
timer was used.

Hick-Hymen’s law according to (3) is commonly used to investigate the choice
paradigm. However, this experiment aimed to investigate word choices given a
list, which is not covered by the choice paradigm. Therefore, the experiment
focused on this aspect. The word ”the” was chosen as the target word for
selection from the list. ”The” was chosen as it is a common English word that is
easily comprehensible to all users. Furthermore, the experiment aimed to validate
and predict the optimal number of words to present to the user for predictive
text input. Human response times were measured with different numbers of
words presented to the user. Random word lists were created, lists consisting of
common English words and users were instructed to select the word ”the” from
each list. Each trial, corresponding to each list size, was repeated 3 times to
ensure fairness and accuracy. The lists increased in length by 5 word increments.

To accurately represent human response times for word selection, factors
and environmental conditions such as screen size, brightness, location, mouse
or cursor speeds, font and button sizes and text colour were kept constant.
Additionally, users were given practice instructions and a warm-up period of 3
minutes enabling them to familiarise themselves with the task.

3.3 Language Model Fine-tuning

A limiting factor in AAC device usage is currently the inability of devices to
support open-domain multiparty interactions. Some devices are only helpful in
very limited domains, e.g. for communication with friends or family.

To enable a greater variety of domains, LLM are trained that have
demonstrated to be successful on various tasks. LLM can be fine-tuned on
specialist corpora for downstream tasks, such as conversational word prediction.
The corpora below are utilised to fine-tune both BERT and RoBERTa models
[12,55].

Corpora Used: The data used for model fine-tuning is outlined below:

— The TV Corpus [10] contains over 325 million words and has collected data
from over 75,000 TV episodes and shows. The TV corpus contains informal
language and dialogues from a collection of TV shows and is considered the
largest corpora of informal language available.

— The Switchboard Corpus [4] consists of spontaneous telephone
conversations between American-English speakers of over 300 hours of
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recorded and transcribed multi-gender and multi-topic speech. There is a
total of 2300 conversations covering 70 topics.

The Corpus of Contemporary American English (COCA) [9] is a
widely used American English corpus and contains over one billion words,
spanning eight genres: fiction, popular magazines, newspapers, academic
texts, TV, Movies and blogs.

The Wikipedia Corpus [11] is one of the largest corpora based upon a large
Wikipedia collection from 2014. The corpus contains over 2 billion words,
covering a variety of genres and topics, together with over 4.4 million pages
of data.

The AAC Corpus [50] is one of a limited amount of specialist AAC corpora
available for AAC applications, especially to train large-scale models on.
The corpus consists of imagined sentences and responses from users who
imagine themselves using AAC devices. The AAC corpus is small in size,
with approx. 6,000 messages from 289 unique workers on glsAMT. However,
it is considered to be beneficial when training language models for specific
AAC applications.

The Reddit Corpus [34] is a collection of cross-domain text, scraped from
Reddit and containing over 256M conversational threads across a variety of
unspecified domains, ranging from 2015 — 2018.

The Daily Dialog [31] corpus is a smaller, fully annotated corpus utilised
for multi-turn dialogues, with 13k dialogues and the average speaker turns
per dialogue of 7.9 turns. It is an open-domain corpus with utterances being
more formal than other widely used corpora, such as Twitter or Reddit
corpora.

The training times for fine-tuning times vary depending on the size of the

training data, between 4 hours to 7 days on 2 NVIDIA V100 GPU’s (each with
32GB RAM). Table 2 summarises parameters for the model adaptation. The
learning rate, weight decay and Adam weights were utilised as the same as
fine-tuning BERT or RoBERTa models in the original tuning parameters.

Table 2: Hyperparameter values used during fine-tuning of LLMs.

Hyperparameter [ Value HHyperparameter[ Value
Learning Rate 5.10°[[Adam Beta; 0.9
Batch Size 16 Adam Betas 0.99
Number of Training Epochs| 50 Adam Epsilon 1-1078
Weight Decay 0.01

3.4 Interface Testing for AAC Scenarios

An informal study was conducted to evaluate the interfaces together with
the fine-tuned language models by the first author of this work. To mimic
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close-to-realistic situations, four communication scenarios and tasks were
defined: a scripted dialogue for ordering coffee, a half-scripted dialogue where
topics were provided but the responses were not scripted an open-ended
question, and a picture description.

Task 1 - Scripted dialogue

— AU: A coffee with cream and sugar, please.

— CP: Which size?

— AU: A small, please. Thanks.

— CP: Here you are.

— AU: [ think I have some change somewhere; let me check.
— CP: Thanks.

— AU: Thanks, have a nice day.

AU is the AAC user utilising the interface and responding to the utterances
given by CP, the conversational participant.
Task 2 - Half prompted dialogue
Task 2 aims to simulate a workplace scenario where the participants are asked to
engage in small talk. They are prompted to start with a general greeting, sustain
the conversation, transition to discussing an after-work event and conclude by
talking about their workload. This dialogue intends to total 9 utterances in
the conversation, between both the AAC user and conversation participant and
mimic a realistic situation.
Task 3 - Open-ended scenario
Task 3 aims to test the accuracy and capability of the language model by
instructing the participant to utilise the interface, the participant is instructed
to answer the following question with the interface: Please describe a weekend
when you have had fun memories
Task 4 - Picture description
Task 4 is primarily aimed at testing the open-domain capabilities of the
fine-tuned language models, as well as assessing their ability to construct long
sentences effectively. To accomplish this, an image depicting a cat trapped on a
tree [20,37] was used. This was chosen due since it allows for the description of
various topics and is commonly used in testing aphasia patients.

During the study of the interfaces, two metrics, i.e.

WPM — number of words typed .

60 5
time taken in seconds ’ (%)

and
number of words selected in utterance

Accuracy = 100 (6)

total number of words in utterance
were calculated for each utterance. Subsequently, the average WPM and
accuracy rates were computed across all utterances in the given communication
scenario.

To minimise and mitigate any unnecessary delays during the use of the
AAC system, the predictions generated from the language models are processed
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through a stemmer [47] to remove any individual punctuation predictions. The
decision to remove individual punctuation predictions is in line with previous
work [27]. By this, the AAC system offers a more efficient and streamlined user
experience.

4 Results

The results of the initial experiments conducted by the main author to
investigate the speed of text input and the various factors involved in users’
text entry are presented in the following.

4.1 Fitts’ Law Experimentation for User Interfaces

Time (Seconds)

15 /
=1 i Lk

hdi8t § ST
=081 P L

=57
b=-7600
r=0897

Movement Time (Seconds)

Y= T35 603 Y=+ 45845 R RSN

XN A R SN B/ 1§20 22 4 % 28 D S | A
Index of Diffculty (Bits Index of Dificuly (Bis) Index of Difiulty (Bis)

(a) List Interface (b) Grid Interface (c) Radial Interface

Fig.4: Comparison of movement time in seconds over ID for the three user
interfaces shown in Figure 3.

Figure 4 shows movement time in seconds over ID for the interface layouts
shown in Figure 3, determined by the methodology described in Section 3.1. The
interface buttons have a constant size (width W). Points in Figure 4 represent
ID for each button on the interfaces, and the time MT necessary for the user
to move towards the target selection area of the button according to (2). The
coefficients of Fitts’ law, a and b, were determined by regression analysis and
are summarised in Table 3.

The results indicate that the list interface Figure 3a is the slowest and
most difficult for the user. The results align with Fitts’ law; the user has to
move further in the list interface and cover longer distances to reach the target
selection area, consequently resulting in higher ID and MT. The grid interface
(cf. Figure 3b) is less efficient for text entry. Fitts’ law is indicative of preferring
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Table 3: Fitts’ law’s parameters for the user interface layouts.
Interface Layout‘Cursor Position‘Equation of Regression Line

List Middle MT = 35.73 — 76.00 ID
Grid Middle MT =27.21 —45.84 ID
Radial Middle MT =6.21 - 1.63 ID

radial layouts (as in Figure 3c) over list layouts, which is reflected in Figure 4.
Radial layouts offer shorter and closer movement distances for the users, resulting
in lower ID.

|
I EE——

Decorrective ™

Fig.5: Representing a corrective distance by a user if the user has missed the
target selection area and has to revert back.

The experiments also show that radial layouts are not always preferred by
users. This is because the options in radial layouts are in close proximity to
each other, therefore increasing the risk of error selection. The experiments
also assume that the distances and timings measured follow one single smooth
movement by the user and no corrective movements are considered. Corrective
movements occur when the user moves towards a target selection area and misses
the target; therefore introducing a corrective distance as visualised in Figure 5,
which can affect the MT. Faster movements do usually result in increased errors,
particularly with small target widths [53].

Fitts’ law indicates a strong correlation between the ID and MT. For the
three interfaces tested, only the list and grid interfaces depicted in Figure 3a
and Figure 3b show a strong correlation between the target areas (buttons) and
ID in Figure 4. The list layout interface shows the strongest correlation. The
radial layout shown in Figure 4c shows a weaker correlation, however, the Fitts’
law coefficients a and b were also low, indicating a radial layout is effective, if
the target selection areas (i.e. the buttons for selecting the word predictions) are
closely aligned in the interface. The distances between the buttons are in close
proximity in the interface, so the user’s MT is reduced, therefore decreasing the
ID.
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4.2 Number of Choice of Words vs Human Response Time

Number of Words vs Human Response Time (HRT)
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Fig. 6: Relationship between the number of words presented to a user in a list,
and the response time taken to select a specific word from the list.

The graph depicted in Figure 6 analyses results generated from the
methodology described in Section 3.2. The results indicate that the HRT
increases as the number of words presented to the user increases, which is
consistent with Hick-Hymen’s law as expressed in (3). However, it is noteworthy
that the observed relationship is not logarithmic, deviating from Hick-Hymen’s
law in (3). While the correlation between the number of words presented and
the HRT does appear to be linear, there are noticeable outliers that become
prominent when the number of words exceeds a search space of 200.

Figure 6 show a strong correlation between HRT and the number of words
presented for a small search space, below 100 words. However, as the search
space becomes larger, there is an increased number of observed outliers. Thus, for
efficient text entry, the search space n must be limited to mitigate and minimise
latency.

4.3 Language Model Fine-tuning and Interface Testing for AAC
devices

Results for fine-tuning of the LLM as described in Section 3.3 are presented
in Figure 7, highlighting the advantages of utilising conversational corpora
for fine-tuning language models, particularly for AAC systems. Results show
that the baseline models BERT and RoBERTa show lower performance and
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Fig.7: Comparison of WPM across four communication scenarios utilising a
radial interface with BERT and RoBERTa fine-tuned language models.

are therefore less suitable for predictive text entry, both, in terms of accuracy
and WPM rates. The results for the baseline models can be attributed to the
model’s inability to provide accurate or satisfactory predictions across the four
communication scenarios. In comparison, fine-tuning with conversational corpora
produces higher accuracy and WPM rates compared to using more generic
corpora such as the Wikipedia or COCA Corpus. However, results also show that
specific corpora, such as the Switchboard and Reddit corpora, were not especially
useful for open-domain applications (across the four communication scenarios
when testing the interfaces) because of their limited domain applications.

To determine the best ordering of the word predictions, i.e. alphabetical
or probabilistic (cf. Figure 2), subsequently, interface testing was conducted
across the four communication scenarios. Initial experiments and use of the
interfaces indicated that alphabetical ordering via the first character of the word
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predictions was preferred over probabilistic order (ordering via the confidence
scores of the generated predictions). The alphabetical ordering preference did
result in higher communication rates. However, further experimentation is
necessary to investigate the impact of changing the layout or style of how the
word predictions appear to the user on text input rates.

The results presented in Figure 7 indicate that RoBERTa models
outperformed BERT models, with higher resulting communication rates,
primarily due to RoBERTa models having higher prediction quality.
Consequently, the RoBERTa models outperformed certain fine-tuned BERT
models. However, the difference in certain fine-tuned models is marginal.
This study emphasises the importance of selecting appropriate corpora for
specific applications. While conversational corpora are useful for open-domain
applications, domain-specific corpora may be more suitable for limited certain
tasks, specifically helpful for long-term AAC usage. The limited robustness of
AAC systems and the lack of adaptability of AAC systems in various domains
pose challenges. However, the lack of available and open-source AAC corpora
makes training such open-domain models challenging. The results also showed
that both fine-tuned BERT and RoBERTa models that were fine-tuned on
the smaller specialist AAC [50] corpora achieved higher communication rates,
compared to other generic corpora fine-tuned models. These fine-tuned models
consistently outperformed the other models across the four communication
scenarios.

Experiments also show that the fine-tuned models achieve higher accuracy
rates in both scripted and prompted communication tasks, as described in
Section 3.4. This higher accuracy can be attributed to the specific communication
scenarios being scripted, allowing the models to generate more accurate
predictions. However, when tested on open-domain communication scenarios,
the fine-tuned models did not perform as well. Resulting in consistently lower
communication rates. This emphasises a limitation in AAC devices, where the
systems are more effective in short scripted or prompted dialogues and not
open-domain tasks.

The four communication scenarios described in Section 3.4 aimed to simulate
realistic situations and varied topics. However, these experiments are still not
indicative of the long-term usage of AAC systems. The study could benefit from
a long-term longitudinal study, to gain a comprehensive understanding of the
capabilities of the system and to test the robustness of the interface. Overall, this
study highlights the benefits of leveraging conversational data and fine-tuning
language models for improving the performance and usability of AAC systems.

5 Conclusion

The limited communication output rates of individuals using AAC systems
significantly hinder their ability to engage in multiparty open-domain
interactions. This paper proposed a solution by combining techniques from HCI
and language modelling to bridge the communication rate gap between AAC
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users and typical speakers. The preliminary results demonstrate that a radial
text input interface integrated with a RoBERTa language model fine-tuned
on conversational corpora, specifically fine-tuned on AAC, outperforms other
text input interfaces, such as a grid or list interface. This approach achieves a
communication rate output of 25.75 WPM across four simulated communication
scenarios. Although the text input methods do not match the typical typing rate
of a QWERTY keyboard, the communication rates surpass those of other AAC
devices. Future research has to focus on refining user interfaces by minimising
redundant time latencies and improving language prediction capabilities in
conjunction with HCI modelling.
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