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Abstract—Neural-network-based speech enhancement (SE) approaches
have shown to be particularly powerful in combination with perceptually
motivated metrics to produce high-quality enhanced speech signals.
Among these deep learning (DL)-based SE models, MetricGAN and its
extension can generate output signals directly optimising quality met-
rics. The recently proposed Kolmogorov-Arnold networks (KANs) with
learnable activation functions have shown great success replacing multi-
layer perceptrons (MLPs). This work, proposes the use of KANs in a
MetricGAN framework and analyse their performance replacing different
types of network layers. The best-performing proposed MetricGAN+KAN
model uses 79.85% fewer parameters and achieves 13.1% higher SE
performance (measured by PESQ) on the Voicebank-DEMAND dataset,
compared to the MetricGAN+ baseline.

Index Terms—Speech enhancement, quality metrics, Kolmogorov-
Arnold network (KAN), Generative adversarial network (GAN), Met-
ricGAN

I. INTRODUCTION

Single-channel speech enhancement (SE) has been a popular
research field for some decades [1], focusing on improving the qual-
ity [2]–[5] or intelligibility [6], [7] of speech signals in noisy, rever-
berant environments [8]. Machine learning (ML)-based approaches
have led to significant performance gains in recent years, and become
the first choice of modelling for SE [9]–[12]. Generative adversarial
networks (GANs) [13] and conditional GANs (CGANs) [14] which
consist of two sub-models, a generator and a discriminator, have
proven to be effective in SE. The MetricGAN [15] approach and its
extensions [16]–[24] have achieved the-state-of-the-art results on the
Voicebank-DEMAND [25] dataset. However, only limited research
exists for optimising the model structure of the MetricGAN frame-
work even though this was already suggested by the authors of [16].
Furthermore, it is time-consuming to train the model with replay
buffer, which is necessary for addressing catastrophic forgetting [26].

Recently, KANs [27] have been proposed, integrating learnable
activation functions parameterised by B-spline curves into neurons.
Authors of KANs have also mentioned that KANs can overcome
catastrophic forgetting [27]. Hence, this work analyses the use KANs
in the MetricGAN+ framework. The proposed KAN-based SE model
is therefore denoted as MetricGAN+KAN, and this work aims at
validating some advantages of KANs in a MatricGAN setting. We
analyse different model structures, i.e. positions to replace model
layer with KAN-based layers and compare performance as well as
model parameters to MetricGAN+ on the Voicebank-DEMAND task.

II. REVIEW OF THE METRICGAN+ FRAMEWORK

MetricGAN+ [16] is a spectro-temporal masking-based SE ap-
proach. For this, the noisy input signal is first converted to a magni-
tude spectrogram Xf,τ and a phase spectrogram γf,τ by the short-
time Fourier transform (STFT), where f is the frequency index and
τ is the frame index. For the enhancement process, a spectral mask
Mf,τ is computed and multiplied with the magnitude spectrogram

of the noisy signal to obtain an estimate of the clean magnitude
spectrogram

Ŝf,τ = Mf,τXf,τ . (1)

Then, an estimate of the clean signal is re-synthesised using Ŝf,τ and
γf,τ , i.e. by applying the inverse STFT to Ŝf,τe

γf,τ .
MetricGAN+ [16] consists of two neural networks (NNs), a

generator G aiming to estimate the mask Mf,τ and a discriminator D
assessing the quality of the masking-based SE by metric prediction.

The generator G takes a noisy spectrogram Xf,τ as the input and
outputs the mask Mf,τ . Figure 1 visualises the generator G0 of the
MetricGAN+ baseline [16], which can be split into a part containing
recursive layers, i.e. a bidirectional long short-term memory (LSTM)
[28] and a part containing non-recursive layers with a leaky rectified
linear unit (ReLU) activation function. A learnable sigmoid outputs
the mask Mf,τ .
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Figure 1: Generator model G0 (MetricGAN+ baseline)

Figure 2 visualises the discriminator model structure of Metric-
GAN+ D0. After a batch normalisation (BN) layer, it can be split
into a convolutional part and a non-convolutional part. Subscripts 0

in Figures 1 and 2 indicate the baseline [16] model in contrast to
model variants introduced later in this work.
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Figure 2: Discriminator model D0 (MetricGAN+ baseline)

The discriminator D predicts a metric score Q′(·) normalised be-
tween 0 and 1 (often a normalised version of the perceptual evaluation
of speech quality (PESQ) metric) given the noisy (or enhanced)
magnitude spectrogram and the corresponding clean spectrogram
Sf,τ . The discriminator is also a differentiable surrogate function
which imitates non-differentiable intrusive measures of audio quality
such as PESQ [29], subjective mean opinion score (MOS) [30],
or DNSMOS [31] since such perceptually motivated metrics often
correlate better with human perception [2], [32] than traditional loss
functions such as simple mean squared error (MSE) and hence can
address discriminator evaluation mismatch (DEM) [15].

In terms of training, the loss function for the discriminator is given
by

LD =EX,S

[
(D(S,S)−Q′(S,S))2+

(D(G(X),S)−Q′(G(X),S))2+

(D(X,S)−Q′(X,S))2
]

,

(2)



where X is the magnitude spectrogram matrix of the noisy signal
containing Xf,τ∀f, τ and S is the respective clean spectrogram
matrx. The loss function for the generator is given by

LG = EX

[
(D(G(X),S)− w)2

]
, (3)

with w being the desired metric score that the discriminator assigned
to the enhanced speech, which is set to 1 in [16] maximising the
enhancement or varied in [22]. In each epoch, MetricGAN+ is trained
using the following procedure:

1) Train the generator using back-propagation (BP) [33].
2) Store current enhanced signals and the corresponding scores into

the so-called replay buffer.
3) Train the discriminator using clean signals, current enhanced

waves and noisy waves.
4) Repeat 3), but use a part of the enhanced waves in the

replay buffer, which is controlled by the hyper-parameter
history_portion [16], [22].

As mentioned above, the replay buffer is used to address catas-
trophic forgetting in the discriminator. It can greatly improve the
performance of the discriminator, and subsequently improve the
quality of signals enhanced by the generator. However, training with
the replay buffer increases training time. Authors of MetricGAN+
[16] already mention that the structure of the discriminator can be
improved which will be analysed in this work by using KANs in the
recursive and non-recursive parts of the generator as well as in the
convolutional and non-convolutional part of the discriminator.

III. REVIEW OF KOLMOGOROV-ARNOLD NETWORKS (KANS)

KANs [27] are a recently proposed type of NN architecture having
gained considerable attention on GitHub1. The novelty of KANs
is that the activation function is placed within the neuron, and is
learnable. It is inspired by the Kolmogorov-Arnold representation
theorem [34]

f(x) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p (xp)

)
, (4)

where f : [0, 1]n → R is smooth, ϕq,p : [0, 1] → R, and Φq : R →
R. Based on (4), KANs replace the weight matrix in a traditional NN
layer with a matrix of functions, denoted by Φ = {ϕq,p} where p =
1, 2, . . . , nin and q = 1, 2, . . . , nout. ϕ(·) is a learnable activation
function formulated as the scaled sum of a base activation function
b(x) and a learnable curve g(x),

ϕ(x) = w1b(x) + w2g(x), (5)

where w1 and w2 are scaling factors which can be learnable. It is
noteworthy that in the original paper [27], only one scaling factor is
used for ϕ(·). Liu et al. used sigmoid linear units (SiLUs) [35]

b(x) =
x

1 + e−x
(6)

as the base activation functions for KANs. Several implementations
have been reviewed in [36]. For the learnable curves, B-splines, which

1https://github.com/KindXiaoming/pykan.

require basis functions and controlling points were proposed initially
with B-spline basis functions of order k defined as [37], [38]

Bi,0(x) =

{
1 if xi ≤ x ≤ xi+1,
0 otherwise,

(7)

Bi,k(x) =
x− xi

xi+k − xi
Bi,k−1(x) +

xi+k+1 − x

xi+k+1 − xi+k
Bi+1,k−1(x), (8)

with xi for i = −k,−k+1, . . . , G+k being the predefined boundary,
and G the grid size. The spline curve is given by

g(x) =

G+k−1∑
i=0

ciBi,k(x), (9)

where ci for i = 0, 1, . . . , G+k−1 is the trainable controlling point,
and g(x) is defined on [x0, xG].

KANs have also been integrated into convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), called convolutional
KANs (CKANs) [39] and recurring KANs (RKANs) [40], respec-
tively. In CKANs, the kernel becomes a group of learnable activation
functions. The result of a 2-D convolution (with stride 1) is given by

a(l)
x,y =

m∑
i=1

n∑
j=1

ϕ
(l)
i,j

(
a
(l−1)
x+i,y+j

)
, (10)

where a
(l)
x,y is the feature map at layer l. In RKANs, the prediction

at time t is given by
ŷt = Φht, (11)

where ht is the hidden state at time t.
As mentioned in [27], advantages of KANs are that KANs can

overcome catastrophic forgetting, because the update on ci only
changes part of the spline curve, and that KANs have a better scaling
law than traditional NNs, i.e., using fewer parameters to achieve
similar (or higher) performance comparing to traditional NNs. Bodner
et al. [39] have shown that the two advantages also work for CKANs.

IV. EXPERIMENTS

A. Dataset

The Voicebank-DEMAND dataset [25] is used for the following
experiments, created from the Voicebank dataset [41] which contains
300-hours clean speech audio spoken by approximately 500 healthy
speakers from the UK mixed with various types of noises recorded
indoor and outdoor from the DEMAND dataset [42] (cafeteria, car
interior, a kitchen, meeting, metro station, restaurant, train station and
heavy traffic) and two others (babble noise and speech-shaped noise).

The training set of Voicebank-DEMAND consists of 11572 noisy
speech signals at 4 signal-to-noise ratios (SNRs) of 0, 5, 10, and
15 dB paired with the respective clean speech reference signals from
28 different speakers (14 male, 14 female), with English or Scottish
accents. The testset contains 824 utterances, mixed at SNRs of 2.5,
7.5, 12.5 and 17.5 dB, with five different noises which do not appear
in the training set (bus, cafe, office, public square and living room)
and contains speech from two (one male, one female) speakers who
do not appear in the training set.

B. Implementation

Models are trained using the SpeechBrain framework [43]. For
the implementation of KANs, efficient-kan [44] is used, and
torch-conv-kan [36] for CKANs (with parametric ReLU [45]
activation at the output). For RKANs, a gated recurrent unit (GRU)

https://github.com/KindXiaoming/pykan


[46] version of RKANs, namely GRU-KAN, is implemented. GRU-
KAN uses the same formulae as GRU, but uses (11) for computing
the prediction.

C. Experiment Setup

In the future work section of the original paper of MetricGAN+
[16], Fu et al. have indicated that the discriminator can be improved
to achieve better performance, and that the use of replay buffer is
time-consuming. KANs proposed by Liu et al. [27] can be a possible
improvement and mitigate catastrophic forgetting. Thus, it is worth
implementing an improved version of MetricGAN+ basing on KANs,
namely MetricGAN+KAN, and testing some advantages of KANs.

Therefore, the first aim of the experiment is to compare Metric-
GAN+KAN with MetricGAN+ in terms of SE performance. Several
modifications on the discriminator and the generator are experi-
mented. The secondary aim is to validate two advantages of KANs.
One is that KANs have a better scaling law. The other is that KANs
can mitigate catastrophic forgetting.

In the presented experiment, there are six generators (G0 to G5)
and five discriminators (D0 to D4). Generator G0 (see Figure 1) and
discriminator D0 (see Figure 2) are used in MetricGAN+, which is
the baseline, and other discriminators and generators are modified
basing on them respectively (see Tables Ia and Ib). Tables Id and Ie
show the number of parameters of each model. The naming of
MetricGAN+KAN follows the form mgk-g_-d_ <(NHP)>, where
mgk is the abbreviation of MetricGAN+KAN, g_ specifies the
generator, d_ specifies the discriminator, and (NHP) means training
without replay buffer, i.e., history_portion is set to 0. All the
models are trained for 400 epochs. For KAN hyper-parameters, the
range of splines is [−1, 1], the grid size is 5, and the spline order is
set to 3. Other hyper-parameters used in MetricGAN+KAN are the
same as MetricGAN+.

V. RESULTS

Results in Table I show that KANs have a better scaling law.
Discriminators D1 and D2 which integrated with KANs improved
the performance of SE marginally with slightly fewer parameters,
comparing to MetricGAN+. In terms of discriminators integrated with
CKANs, discriminators D3 and D4 showed great improvement with
much more parameters, and discriminator D5 showed slight improve-
ment with much fewer parameters. For generators, generators G1 and
G2 which integrated with KANs slightly degraded the performance
even with much more parameters. Generators G3 uses smaller size
of hidden states and smaller number of layers with significantly
fewer parameters, and still reached similar performance. Generator
G5 showed that GRU worked better than LSTM, and generator G4

showed that KANs further improved the performance of generator
G5 with much fewer parameters. Generator D6 showed that GRU-
KAN also worked well comparing to MetricGAN+. In summary,
the integration of KANs has marginal improvement, while that of
CKANs has significant improvement. Both KANs and CKANs can
have similar performance as traditional NNs using fewer parameters,
and CKANs can even outperform CNNs.

Among the tested variants of MetricGAN+KAN, mgk-G4-D4 is
chosen as the best model. It uses 79.85% fewer parameters (85.35%
fewer for the generator, 468.9% more for the discriminator) and
achieves 13.15% higher PESQ scores comparing to MetricGAN+.

Figure 3 shows the comparison among the clean, the noisy, Metric-
GAN+ enhanced and mgk-G4-D4 enhanced magnitude spectrograms.

Results also show that MetricGAN+KAN still suffers from catas-
trophic forgetting, and the use of replay buffer is still necessary.
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(d) mgk-G4-D4
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1Figure 3: Comparison of magnitude spectrograms
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blue) and epoch 400 (in red). ϕ(ℓ)

i,j represents the learnable activation
function of input dimension i, output dimension j at layer ℓ, with
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j .

Models trained without replay buffer are degraded significantly. A
possible reason is that the locality of splines only exists in Eq. (9). In
Eq. (5), the spline curve is scaled, which may reduce the effectiveness
of the locality. In other words, in some neurons, the base activation
function has much influence than the spline curve (see Fig. 4).
However, this reason needs further experiments to show whether it
holds or not.

VI. FUTURE WORK

In this work, MetricGAN+KAN is tested on Voicebank-DEMAND.
The model needs further experiments on a different dataset. Besides,
the reason for the existence of catastrophic forgetting in Metric-
GAN+KAN (or KANs) needs further investigations. In terms of the
further improvement of MetricGAN+KAN, Close et al. [22] have
shown that introducing a de-generator to MetricGAN+ can improve



(a) Results of only changing generators. Recursive part specifies the type of RNN and non-recursive part specifies the type of feed-forward layers.
The number in the parenthesis specifies the hidden size (or the number of neurons), and × specifies the number of layers (default value is 1).

Recursive part Non-recursive part PESQ CSIG CBAK COVL

Noisy 1.97 3.35 2.44 2.63
MetricGAN+ BLSTM (200× 2) Linear (300, 257) 2.89 3.78 2.92 3.31
mgk-G1-D0 BLSTM (200× 2) KAN (80), Linear (257) 2.85 3.73 2.90 3.26

mgk-G1-D0 (NHP) BLSTM (200× 2) KAN (80), Linear (257) 2.68 3.93 2.73 3.30
mgk-G2-D0 BLSTM (200× 2) KAN (257) 2.82 3.80 2.93 3.28
mgk-G3-D0 BLSTM (40) KAN (257) 2.85 3.69 2.83 3.23
mgk-G4-D0 BGRU (40) KAN (257) 2.94 3.82 2.88 3.35
mgk-G5-D0 BGRU (100) Linear (300, 257) 2.88 3.94 2.80 3.38
mgk-D6-D0 BGRU-KAN (40× 2) KAN (257) 2.93 3.84 2.93 3.36

(b) Results of only changing discriminators. Convolutional part specifies the type of CNN and non-convolutional part specifies the type of feed-
forward layers. The number in the parenthesis specifies the number of output channels. The shape of all the convolutional kernels is 5× 5.

Convolutional part Non-convolutional part PESQ CSIG CBAK COVL

Noisy 1.97 3.35 2.44 2.63
MetricGAN+ Conv2d (15× 4) Linear (50, 10, 1) 2.89 3.78 2.92 3.31
mgk-G0-D1 Conv2d (15× 4) Linear (50), KAN (1) 2.94 4.00 2.91 3.45
mgk-G0-D2 Conv2d (15× 4) KAN (1) 2.93 3.97 3.01 3.44
mgk-G0-D3 CKAN2d (15× 2) KAN (1) 3.02 4.03 3.02 3.50
mgk-G0-D4 CKAN2d (15× 3) KAN (1) 3.30 4.02 3.04 3.63

mgk-G0-D4 (NHP) CKAN2d (15× 3) KAN (1) 2.72 3.96 2.75 3.32
mgk-G0-D5 CKAN2d (20) KAN (1) 2.96 4.15 3.19 3.55

(c) Results of unhandled noisy speeches, the baseline, and some
combinations of discriminators and generators

PESQ CSIG CBAK COVL

Noisy 1.97 3.35 2.44 2.63
MetricGAN+ 2.89 3.78 2.92 3.31
mgk-G4-D3 3.00 3.98 2.95 3.46

mgk-G4-D3 (NHP) 2.66 3.85 2.88 3.24
mgk-G4-D4 3.27 3.97 2.97 3.59
mgk-G5-D3 3.07 4.10 3.00 3.57
mgk-G5-D4 3.08 4.08 2.99 3.56
mgk-D6-D3 2.99 4.03 3.04 3.49
mgk-D6-D4 3.12 3.90 2.95 3.48

(d) Generator parameter conunt
G0 1 895 514
G1 2 038 674
G2 2 725 857
G3 301 537
G4 277 617
G5 353 314
D6 361 267

(e) Discriminator parameter count
D0 19 010
D1 18 989
D2 17 839
D3 57 531
D4 108 157
D5 9 205

Table I: Experimental results in terms of PESQ and composite metrics on test set, and parameter count of generators and discriminators

SE peroformance and become more robust to unseen noises, which
may also work in MetricGAN+KAN. Additionally, Drokin’s study
[36] have presented several implementations of the learnable curve,
which can be a possible direction for experiments.

VII. CONCLUSION

This work analysed the use of KANs for a MetricGAN+ SE
system. The integration of KANs, CKANs and RKANs can improve
the SE performance of MetricGAN+. The best model, mgk-G4-D4,
achieves 13.15% higher PESQ scores with 79.85% fewer parameters
comparing to MetricGAN+, which shows a better scaling law. Exper-
imental results also show that the use of KANs in MetricGAN+KAN
cannot mitigate catastrophic forgetting, and the replay buffer is still
necessary.
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[12] N. Moritz, K. Adiloğlu, J. Anemüller, S. Goetze, and B. Kollmeier,



“Multi-channel speech enhancement and amplitude modulation analysis
for noise robust automatic speech recognition,” Computer Speech &
Language, vol. 46, 2017.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems (Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, eds.), vol. 27,
Curran Associates, Inc., 2014.

[14] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
CoRR, vol. abs/1411.1784, 2014.

[15] S.-W. Fu, C.-F. Liao, Y. Tsao, and S.-D. Lin, “MetricGAN: Generative
Adversarial Networks based Black-box Metric Scores Optimization for
Speech Enhancement,” in Proc. 36th Int. Conf. on Machine Learning,
Jun 2019.

[16] S. Fu, C. Yu, T. Hsieh, P. Plantinga, M. Ravanelli, X. Lu, and Y. Tsao,
“MetricGAN+: An Improved Version of MetricGAN for Speech En-
hancement,” CoRR, vol. abs/2104.03538, 2021.

[17] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial networks
for efficient and high fidelity speech synthesis,” Advances in neural
information processing systems, vol. 33, pp. 17022–17033, 2020.

[18] C. Donahue, B. Li, and R. Prabhavalkar, “Exploring speech enhancement
with generative adversarial networks for robust speech recognition,” in
ICASSP, pp. 5024–5028, 2018.

[19] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An experimental study on
speech enhancement based on deep neural networks,” IEEE Signal
processing letters, vol. 21, no. 1, pp. 65–68, 2013.

[20] Y. Wang, A. Narayanan, and D. Wang, “On training targets for super-
vised speech separation,” IEEE/ACM transactions on audio, speech, and
language processing, vol. 22, no. 12, pp. 1849–1858, 2014.

[21] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement based
on deep denoising autoencoder.,” in Interspeech, vol. 2013, 2013.

[22] G. Close, T. Hain, and S. Goetze, “MetricGAN+/-: Increasing Robust-
ness of Noise Reduction on Unseen Data,” in EUSIPCO 2022, 2022.

[23] G. Close, T. Hain, and S. Goetze, “PAMGAN+/-: Improving Phase-
Aware Speech Enhancement Performance via Expanded Discriminator
Training,” in AES 154th Conv., May 2023.

[24] G. Close, W. Ravenscroft, T. Hain, and S. Goetze, “CMGAN+/+: The
University of Sheffield CHiME-7 UDASE Challenge Speech Enhance-
ment System,” in Proc. 7th Int. Workshop on Speech Processing in
Everyday Environments (CHiME 2023), Aug. 2023.

[25] C. Valentini-Botinhao, X. Wang, S. Takaki, and J. Yamagishi, “Investi-
gating RNN-based speech enhancement methods for noise-robust Text-
to-Speech,” in SSW, pp. 146–152, 2016.

[26] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An
empirical investigation of catastrophic forgetting in gradient-based neural
networks,” arXiv preprint arXiv:1312.6211, 2013.

[27] Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljačić, T. Y.
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