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Abstract

Face-to-face dialogue is the natural mode of communication between humans. We see changes in ex-

pression and hear changes in intonation, and the combination of these provides semantic information

that communicates ideas, feelings, and concepts. This is exhibited not only in the changes in speech,

which confers the majority of the meaning, and the properties of vocalisation (e.g. tone, tempo and

loudness), but also in changes of facial expression. This thesis investigates techniques for the synthesis

of visual speech movements from the initial data capture process through to the final animation of a

talking head.

Synthesis can be split into three general processes: modelling, capture, and animation. Modelling

requires techniques to represent and parameterise changes in facial expression during speech produc-

tion. Capture is the retrieval of information about speech articulation from real speakers, which can be

eitherstaticposes (visual-phonemes/visemes) ordynamicspeech movements. Finally, animation tech-

niques take captured information about speech articulation and use it to generate trajectories through

the parametric space of a facial model.

This thesis presents novel methods in each of these categories, in the framework of several systems

for text-to-visual speech synthesis. Modelling is performed using geometric free-form deformation

techniques to manipulate two- (image) and three-dimensional (mesh) representations of faces. Statistical

techniques are used to parameterise the manipulation of facial expression. A novel technique for the

retargetting of captured motions to meshes, which vary in both shape and scale from the original actor,

is introduced. Animation is performed using target-based models of coarticulation, and by concatenating

captured motion fragments. A novel technique for the target-based modelling of coarticulation, based

upon constrained-optimization techniques, is reported.

i



”Language is a process of free creation; its laws and principles are fixed, but the

manner in which the principles of generation are used is free and infinitely varied.

Even the interpretation and use of words involves a process of free creation.”

- Noam Chomsky
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Chapter 1

Introduction

Face-to-face dialogue is the natural mode of communication between humans. We see changes in ex-

pression and hear changes in intonation, and the combination of these provides semantic information

that communicates ideas, feelings, and concepts. This is exhibited not only in the changes in speech,

which confers the majority of the meaning, and the properties of vocalisation (e.g. tone, tempo and

loudness), but also in changes of facial expression. Expressions change not only with the physical

process of creating speech audio (the movement of the lips and tongue), but also with emotion (happy,

sad, etc.) and discourse punctuation and regulation (turn-taking, emphasis, etc., see [Pelachaud, 1991].)

These contribute to the reasons why personal communication is often preferred over remote alternatives

such as telephony and e-mail. In fact, humans often use technology in a way which mimics this form of

personal communication, as is the case with emoticons in e-mail.

Computer-generated facial animation has long been used as a means of reproducing human-to-

human interaction in widely varying settings from desktop assistants and computer games to animation

and even synthetic characters in non-animated film. Traditional animation techniques have long been

used to reproduce the various actions of facial communication [Lasseter, 1987], but whilst these are

adequate for non-real characters (e.g. cartoon characters such asGoofyor Mickey Mouse) the same

techniques do not work well as the animation gets more visually realistic. Statically it is currently pos-

sible to recreate virtual characters to a high degree of realism, and yet dynamic realism lags far behind

and most production involves a large degree of manual artistic involvement.

The difficulty in modelling realistic facial movement is to be expected, given the complexity of the

system we are attempting to simulate. Traditional cell animation works by in-betweening (interpolat-

ing) key poses, and thus cannot hope to adequately model the physical system of muscles, bone, skin

and fatty tissue involved in facial motion. Inevitably, all animation techniques are going to be a com-

promise between the detail in which the model is constructed, and the complexity of the simulation.

Ideally, a physical simulation would be used to model all the complexities of facial action, and yet for

on-line purposes these models are far too computationally intensive to be useful. Thus, much work in

facial animation is directed at approximating facial movement, whilst avoiding any such physical simu-

lation [Cao et al., 2004, Joshi et al., 2003, Noh and Neumann, 2001, Brand, 1999, Guenter et al., 1998,

Pighin et al., 1998, Bregler et al., 1997, Williams, 1990, Waters, 1987, Parke, 1974].

The animation of faces can be split into several sub-problems: representation (e.g. photographic im-

ages, triangulated point geometry), modelling, and motion generation. Any model of facial morphology

1



Chapter 1. Introduction 2

must be capable of representing both the fine and large scale geometric structure of expression, from

wrinkles and skin texture up to the deformation of the skin in smiles, frowns and pouts. There must also

be a way of manipulating this geometric representation to produce novel, recognisably human, expres-

sions. And finally the animation of expression implies the generation of trajectories through whichever

parametric space we use to represent our static expressions.

Representing facial morphology and modelling expression are intrinsically tied together. Modelling

techniques are usually specific to a representation, whether that be a cloud of points, a set of connected

geometric patches, or simply a photographic image. Such representations are often abstract and non-

specific to faces. In order to aid an animator, and to conceptually link the representationto the notion

of facial expression a parameterisation is often imposed as an intermediate layer (e.g. MPEG-4 facial

animation parameters[Koenen, 1999].) It is this intermediate parameterisation that enables the building

of compound expressions from lower level building blocks, and it is the varying of these parameters that

enables the specification of animation.

The animation of faces can be performed at different levels of complexity. Simply in-betweening

targets can be effective for global changes in expression, given appropriate blending functions which

taper the movement between extrema. However, speech animation is a particular example where such

gross simplification is inadequate. The lips, tongue and jaw do not move ina linear fashion between

extrema. Animations where this approach is taken typically appear sped up (over-articulated) and un-

realistic. The reason for this is that there is a causal relationship between the speech audio, which we

hear, and the articulatory movements, which we see. The audio is produced, in part, by the movements

of the lips and tongue, and there is a direct perceptual link between the two. In fact, experiments show

both that seeing someone speak improves the recognition rate of the audio [Sumby and Pollack, 1954]

and that incorrect visual movements can change its perception[McGurk and MacDonald, 1976]. This

necessitates a more thorough handling of speech movements in facial animation.

The major contributory factor to the difficulties in animating speech movements is the physical

phenomenon of coarticulation. Speech is often segmented into atomic units known as phonemes, rep-

resenting constituent elementary sounds and their related vocal tract state. Given that each of these

sounds is related to a shape or transitional movement of the vocal tract, coarticulation describes the

motion of the articulators as they transition between states. In fact coarticulation is difficult to simulate

because some phonemes are lessimportantthan others and disappear in the final transitional movement.

Numerous models have been reported to describe specific effects of coarticulation [Löfqvist, 1990,

Kent and Minifie, 1977, MacNeilage, 1970, Wickelgren, 1969,Öhman, 1967].

Systems for generating speech trajectories can typically be split into three categories: target-based

synthesis, concatenative synthesis, and model-based synthesis. Target-based synthesis uses combina-

tions of static poses to structure a trajectory, usually with some form of approximating curve

[Cosi et al., 2003, Cohen and Massaro, 1993, Waters and Levergood, 1993]. Concatenative synthesis,

similarly to concatenative audio synthesis (e.g. Festival [Black et al., 1999]), uses combinations of cap-

tured units (speech movements) to generate trajectories [Bregler et al., 1997]. Model-based synthesis

attempts to find a relationship between the audio speech signal and the movements of the vocal articu-

lators, usually using some kind of finite-state machine [Ezzat et al., 2002, Brand, 1999].

This thesis presents several novel methods for the animation of visual speech. These span the process

of constructing virtual talking heads, from capture and representation through to animation and synthe-
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sis of speech movements and coarticulation. A method is reported for the use of motion-captured data

from one individual on several different virtual characters which vary widely in facial shape and scale.

A novel method for generating speech trajectories is reported which uses constrained-optimization tech-

niques to resolve transitions between targets according to coarticulation. A second synthesis technique

is reported which generates trajectories by blending short segments of pre-captured speech movements.

These techniques can be used to animate talking heads in varying domains (general vs. limited-domain

synthesis) and with varying computational and memory requirements.

1.1 Main Thesis Contributions

The novel contributions of this thesis to the area of facial animation and visual speech synthesis are:

• A retargetting solution for using sparsely-sampled motion data on meshes of varying structure and

geometry (shape and scale.) The method usesradial basis functions(RBFs) to warp the space

inwhich the motions are embedded to coincide with that of a given target mesh. The relative

motion of the markers before and after retargetting will remain the same. Retargetting is based

upononly the placement of a small number of markers at fiducial points on the surface of the

target mesh. This method has been published in [Sánchez et al., 2003].

• A novel method for the synthesis of speech trajectories based upon constrained-optimization is

presented. Instead of using dominance (basis) functions to model transitions between targets,

any form of spline can be used to represent speech transitions. The optimization minimizes the

distance from the trajectory to a number of speech targets, whilst a global constraint upon accel-

eration models the rôle of coarticulation in speech. Positional, derivative and range constraints

can be used to define the properties of the speech trajectory. An implementation of this method

has been published in [Edge and Maddock, 2004].

• Methods for the adaptation and selection of motion units for concatenative synthesis. A fast

greedy unit selection algorithm for variable length synthesis units is presented. Also methods for

phonetic alignment and resampling based upon the use of RBFs. These techniques are published

in [Edge et al., 2004], which describes the implementation of a limited-domain visual speech syn-

thesizer for the time-domain.

• A method for applying coarticulation rules to image morphing. Such models usually work by

linear interpolation of targets. Because image morphs are parameterised by point geometry

(e.g. sampled splines) coarticulation cannot be modelled because the parameters of the model

are not covariant with muscular action. The geometry of the morph is reparameterised using

principal components analysis(PCA) and dominance functions used to control the variation of

these parameters over time. The principal components correspond to important features, such as

jaw opening, and thus allow coarticulation to be modelled. This method has been published in

[Edge and Maddock, 2003].
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1.2 Thesis Structure

Chapter 2,Background: The Production and Perception of Speech, contains an overview of background

information pertaining to speech and visual aspects of speech in particular. Mostly this concerns the

production of speech, phonetic categorisation of speech sounds and the relationship between phonemes

and articulatory movement. Also, this chapter includes a discussion of coarticulation and numerical

models to represent its effects. The perception of speech, both audible and visible, is also discussed.

Chapter 3,Parameterisation and Modelling of Facial Expression, contains an overview and classi-

fication of techniques for representing and manipulating facial expression. This covers specific facial

parameterisations, such as FACS [Ekman and Friesen, 1978] and MPEG-4 [Koenen, 1999], along with

general geometric modelling techniques and physical models.

Chapter 4,Capturing and Retargetting Facial Motion,introduces techniques developed for the cap-

ture, processing and retargetting of facial motion data. The retargetting method from [Sánchez et al., 2003]

is discussed in detail in this chapter. Also discussed are methods for capturing motion data from actors,

the nature of captured data, and processing techniques for dealing with noise and the removal of rigid

motion.

Chapter 5,Animating Speech, discusses several methods for the generation of speech trajectories.

These include work on dominance function, constrained-optimization, and concatenative methods for

synthesis. The constrained-optimization method from [Edge and Maddock, 2004] is discussed in detail

here, as well as methods developed for concatenative synthesis from [Edge et al., 2004]. A method for

fitting dominance functions to real data is also discussed.

Chapter 6,Implemented Systems, describes the systems used to demonstrate the techniques from

Chapters 3, 4, and 5. Chapter 7,Conclusions, overviews the conclusions and directions of future work.

Appendix A,Mathematical Techniques, contains background and detail on the mathematical techniques

used in the thesis. Appendix B,Audio Speech Synthesis, briefly discusses the common methods used in

audio synthesis, as well as the Festival system [Black et al., 1999] used in the developed systems.



Chapter 2

Background: The Production and

Perception of Speech

Speech synthesis requires not only the modelling of a complex physical system (the tissue and organs of

the vocal tract), but also an understanding of the mechanisms behind speech production and perception.

The production of speech consists of several levels from the communicative intent (the message to be

passed onto a listener), through organisational groupings (phonetic, syllabic, word and sentence level

units), down to the physical level of nerve impulses and coordinated muscular movement. There is

a direct relationship here between the organisation of real speech production and the questions which

must be tackled in synthesis: what do we want to say, how do we represent this internally, and how do

we control a model of the vocal tract to produce the correct movements? Similarly, the effectiveness of

any synthesis technique will be compared to the audience’s experience of speech in real life, and so the

perceptual mechanisms involved in speech communication can influence the design of such systems.

For these reasons this chapter summarises speech production and perception background relevant to the

synthesis of visual speech movements.

Speech communication is a coordinated process between speaker and listener. The speaker for-

mulates an idea to communicate, which is subsequently encoded into a linguistic form consisting of a

sequence of words from a particular language and according to its grammatical rules. These words are

transformed into motor signals controlling the muscular activity of the vocal aparatus (respiration and

movement of the organs involved in speech articulation.) As air is pushed through the vocal tract the

articulatory movements cause pressure changes which result in speech sounds. The sounds of speech are

carried acoustically as pressure waves in the intermediate atmosphere separating speaker and listener.

Finally, the listener’s sense organs, primarily the ears, although vision is also involved (see Section

2.2), recognize the sounds which are then decoded into the corresponding linguistic structures and in-

terpreted. Thus, the speech communication process consists of the following steps: linguistic encoding

→ motor control→ acoustic transmission→ auditory/visual retrieval→ linguistic decoding. This is,

of course, a two-way process with conversation occuring back and forth with speaker and listener rôles

being interchanged. This view of the speech communication process is shown in fig. 2.1.

The speech communication process, as described, is a complex interaction of physical and cogni-

tive linguistic systems to produce and receive speech signals. The system can be considered as mainly

5
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Figure 2.1: A classical view of the speech communication process (after [Denes and Pinson, 1973].)

constituting mechanisms of production (anatomy, motor control etc.) and perception (audio-visual fu-

sion.) Therefore the following sections shall deal with speech using this distinction. First, the process

of speech production between linguistic encoding and acoustic transmission will be described. Second,

the perception of speech focussing mainly upon audio-visual fusion given the importance of this to the

success of audio-visual speech synthesis will be covered.

2.1 Production of Speech

Speech production is a coordinated physical process of the vocal articulators (lips, jaw, velum etc.) to

shape the vocal tract such that intelligible speech sounds are produced. The important matters with

regards this process include: vocal tract anatomy, the physical structure of the main articulatory struc-

tures; phonetics, the underlying structural categorisation of speech utterances; and speech motor control,

transforming speech utterances into low level muscular control - particularly with regards to the context

sensitivity of speech movement and the resulting audio (coarticulation.)

2.1.1 Anatomy of the Vocal Tract

The vocal tract is a complex physical structure which, for the purposes of speech production, regulates

the passage of air from its source (the lungs) and out towards a listener. As the speech organs are moved

the passage of air is constrained, or made turbulent to modify the properties of the resulting speech

sounds. The main structures used in the production of speech are labelled in fig. 2.2 (b). The most

important of these structures in speech production are the lungs, the trachea, the nasal cavity, the jaw

and the mouth (including the hard and soft palates, the teeth, the tongue and the lips.) The structures

above the pharynx are what is commonly referred to as the vocal tract, and the organs within the vocal

tract used for speech production are thearticulators.
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Figure 2.2: Anatomy of the vocal tract: (a) facial muscles (from [Williams et al., 1995]), (b) articulatory

structures.

Table 2.1: Muscles of the lips.

NAME ACTION

Buccinator Compresses the cheek against the teeth, and retracts

the corner of the lip down.

Depressor anguli oris Draws the corner of the lip downward.

Depressor labii inferious Depresses the lower lip.

Incisive inferior Pulls the lower lip toward the teeth.

Incisive superior Pulls the upper lip toward the teeth.

Levator anguli oris Moves the corner of the mouth up.

Levator labii superioris Raises the upper lip.

Levator labii superioris

alaeque nasi

Raises the upper lip and nostril.

Mentalis Raises and protrudes the upper lip.

Obicularis oris Closes the lips, compresses the lips, and protrudes

the lips.

Platysma Pulls the corner of the mouth down and back.

Risorius Pulls the corner of the mouth back.

Zygomaticus major Draws the corner of the mouth laterally and upward.

Zygomaticus minor Draws the outer part of the upper lip upward, later-

ally and outward.
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Articulatory movement is produced by the action of a number of muscles upon the skin, bone and

other subcutaneous tissues of the mouth. Muscles consist of bundles of fibres and are suspended between

other structures such as bones, skin and other muscles. The muscle fibres cause motion by contracting

(shortening in length) and thus applying force to the structures between which they are suspended.

These muscular contractions are controlled by electrical impulses transmitted along associated nerve

fibres. Linguistic units (e.g. words, phonemes etc.) must be transformed into nerve impulses to control

articulatory movement, and therefore speech production. The lips and tongue are both highly muscular

structures which allow a great variety in movement. The muscles of the lips and jaw are shown in fig.

2.2 (a) and table 2.1. More in depth discussion of muscle structure and function during speech can be

found in [Tatham, 1969].

The oral and nasal cavities affect the resonation of the air after it passes out of the pharynx (the

throat.) These cavities are separated by the hard and soft palates. The velum (soft palate) actively

regulates the passage of air into the nasal cavities by raising to block the entrance, and conversely lying

passive to allow air to flow out through the nose.

The mouth contains the most important articulatory structures for speech production. Most speech

sounds are majorly influenced by a combination of tongue and lip movement. The tongue restricts the

passage of air through the oral cavity, and the lips extend and shape the exit to the vocal tract. Lip

shapes are usually categorised as: spread, as in cheese; rounded, as inwitch; unrounded/relaxed, as in

lock. Unfortunately, such categories are rather coarse and do not reflect the full range of lip shapes that

are used in natural fluid speech.

2.1.2 Phases of Speech Production

The anatomical structures briefly described in the previous section provide the means of producing

speech sounds. The process of speech production can be summarised into three general phases:

• Respirationprovides the impetus behind speech production. The lungs force air through the vocal

tract and out through the oral/nasal cavities. This is apulmonic egressive airstream; i.e. the lungs,

via the action of the diaphragm, cause air to be forced out of the body. Respiration provides an

overall structure to speech production as a continuous driving pressure must be maintained. This

structure can be observed in the grammatical constructs of a language which structure sentences

to allow the speaker to breathe (e.g. the length of sentences, and the presence of sentence breaks,

such as commas, to allow a reader to repeat the written word.)

• Phonationdescribes the action of the vocal chords within the Larynx. The vocal folds are mus-

cular bands of tissue which either allow expired air from the lungs to pass through passively

(unvoiced, e.g.sap), or rapidly vibrate to create a pulsating air stream (voiced, e.g.zap.) The

vibration of the vocal folds occurs in the range 80-500 Hz, with varying frequencies giving rise to

the auditory sensation ofpitch1.

• Articulation is the shaping of the vocal tract above the vocal chords (thesupralaryngealvocal

tract) to generate distinct speech sounds. This involves the movement of the major articulators

(the lips, jaw, tongue etc.) to constrain the passage of air through either the oral or nasal cavities.

1Pitch also varies according to other factors such as age and sex.
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Some articulators are passive, such as the hard palate and the alveolar ridge, and some active such

as the tongue and the velum. Articulatory movement typically constrains air passage by regulating

contact between active and passive articulators (e.g. tongue contact with the teeth, hard and soft

palates), or by regulating airflow (e.g. the velum raises/lowers to regulate airflow through either

the oral or nasal cavities.) This shaping of the supralaryngeal vocal tract changes its resonance

characteristics which determines the acoustic properties of the resulting speech sounds.

The process of speech production is often considered as a combination of source and filter: the

source is a combination of respiration and phonation to create a source of sound energy; the filter is the

shaping of the supralaryngeal vocal tract. It is the flexibility of the articulators (lips, tongue, jaw etc.)

which allows the great range of speech sounds to be created.

2.1.3 Phonetics and the Vocal Tract

Phonetics is concerned with the classification of speech sounds with regards to how they are produced

(articulatory), the physical properties of the sound (acoustic), and its perception (auditory.) For the

purposes of synthesis we are most interested in articulatory phonetics and how it allows us to describe

speech movements and gestures according to a number of low level atomic units, i.e. thephonesor

the phonemesof a particular language. The International Phonetic Alphabet (IPA) provides a means

of phonetically transcribing speech, which requires an extended character set. For computer-readable

transcriptions the Speech Assessment Methods Phonetic Alphabet (SAMPA) has been designed which

only relies upon the standard ASCII character set. Table 2.2 shows a comparison of these phonetic

transcriptions with English. It is important to note that the English spelling does not have a direct

symbol-to-sound relationship (particularly true of British English.)

Table 2.2: Comparison of phonetic transcription systems.

ENGLISH the quick brown fox jumps over the lazy dog

IPA D2 kwIk braUn f6ks dZ2mps @Uv3: D2 leIzi dO:g

SAMPA DV kwIk braUn fQks dZVmps @Uv3: DV leIzi dO:g

Phonemes2 are commonly considered to be atomic structures in speech production, however, there

are a number of difficulties with this view of speech (most notably the variation of realised phonemes

in natural speech, see Section 2.1.5) and several different units have also been proposed (e.g. syllables.)

Even so phonemes are interesting because they are small enough in number to be a useful discription

and they denote the articulatory targets in speech production. Phonetic transcription is almost invariably

required at some stage of speech synthesis (both audio and visual.)

The most important categorisation in phonetics is between the vowel sounds and the consonants.

Consonants

Consonants are defined by a place of constriction within the vocal tract. There are three main features

which can be used to describe consonant speech sounds: place of articulation, i.e. where the constriction

of the vocal tract occurs; manner of articulation, i.e. the method by which the sound is produced; and

2From here on where the wordphonemesis used, equally phones could be substituted to refer to the cross-language case.



Chapter 2. Background: The Production and Perception of Speech 10

Table 2.3: Consonant common manners of articulation

NAME DESCRIPTION EXAMPLE

STOP/PLOSIVE Airflow is entirely cut off, followed by a

rapid release.

pat, bat,

mat

FRICATIVE/SPIRANT Airflow is severely constrained, but not

cut off.

thick, this

APPROXIMANT Airflow is partially constrained. well

AFFRICATE Begins like a stop but ends with a fricative

release.

cheek

NASAL Airflow through the oral cavity is entirely

blocked, instead the air flows through the

nose.

moon

LATERAL Approximants where the airflow passes

along the sides of the tongue.

lady

TAP Taps instantaneously block and release

the airflow through the oral cavity.

uttera

TRILL A rapid succession of taps. perrob

Table 2.4: Consonant common places of articulation.

NAME DESCRIPTION EXAMPLE

BILABIAL Constriction of airflow between the lips. pat

LABIODENTAL Constriction of airflow between lip and

teeth.

f ast

DENTAL Constriction of airflow between the top

teeth and tongue tip.

that

ALVEOLAR Constriction of airflow between the gum

ridge and tongue.

debt

POSTVEOLAR Constriction of airflow between the

palatal ridge, behind the alveolar posi-

tion, and tongue.

rush

PALATAL Constrciction of airflow between the

tongue and the hard palate.

yes

RETROFLEX Constriction of airflow between the

tongue and the palate, with the tongue

curled back to face the palate.

nordc

VELAR Constriction of airflow between the

tongue and the soft palate.

rung

UVULAR Constriction of airflow between the

tongue and the uvular.

mâıtred

NASAL Constriction of airflow any of the above,

with the velum lowered.

moon

afrom U.S. English
bfrom Spanish
cfrom Swedish
dfrom French
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Figure 2.3: IPA vowel space with English examples (cardinal vowels are marked with circles.)

Table 2.5: Vowel qualities

QUALITY DESCRIPTION

HEIGHT Refers to the height of the tongue in the

oral cavity.

BACKNESS Refers to the position of the tongues

heighest point in the oral cavity.

ROUNDEDNESS Refers to whether the lips are rounded or

not.

NASALISATION Refers to whether the velum is lowered

allowing air through the nose.

VOICING Refers to whether the vocal chords are

active during production of the vowel

sound.

voicing, i.e. whether the vocal chords are active or passive. The manners and places of articulation for

consonant speech sounds are summarised in tables 2.3 and 2.4 respectively.

Vowels

Vowels are open-mouth sounds in speech. They are best defined by the twin features of tongue position

(height and location), and the roundedness of the lips. Most vowels are monophthongs, meaning that

they are stable and do not include a transitional movement (e.g. hit), however there also exist diphthongs

which include transitions between two or more target articulatory positions (e.g. boy.) Some of the

qualities used to describe vowel articulation are summarised in table 2.5. Voicing is not used as a

distinguishing factor for vowels in most Western languages: vowels are almost invariably voiced, except

in the case of whispered speech.

Vowels are defined in relation to knowncardinal vowelswhich occur at the extrema of tongue

positioning. The cardinals are the extreme front and back vowels, and are used to define a space for all
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Figure 2.4: A selection of visual phonemes showing spread, rounding and constriction of the vocal tract

(bilabial/labiodental/dental.)

vowels (see fig. 2.3.) Note that for some positions in this vowel space there are two distinct sounds,

corresponding to the rounded and unrounded variants.

2.1.4 Visual Phonetics

Articulatory phonetics, as described in the previous sections, relates the production of speech sounds

to the configuration of the main articulatory structures (lips, jaw, tongue etc.) It is also known that the

visual extent of these articulatory structures can be used as a cue in the perception of speech, so called

lipreading or, more generally, speechreading3.

Given that the perception of speech involves visual as well as audio cues, it is sensible to create a vi-

sual phonetic classification of speech. This classification describes speech in terms of visual-phonemes

(often shortened to viseme.) Viseme classifications are non-standard, and no visual-IPA exists as such.

However, visemes are usually reclassifications of their equivalent audio-phonemes4 according to a par-

ticular parameterisation of articulatory gestures. This effectively means that if we have a parameteri-

sation of articulatory gesture (for example using the features in tables 2.3, 2.4, and 2.5), then a viseme

set could be formed by removing parameters which are not directly visible (e.g. nasality.) Mainly this

concerns the place of articulation and the voicing of a speech sound. As a consequence viseme sets are

significantly smaller than phonetic alphabets (like the IPA.) Some of the variation in lip shapes during

speech production is demonstrated in fig. 2.4.

3Lipreading and speechreading differ in that the first assumes that only lip movements are important speech cues, whereas the
latter assumes all visible aspects of speech production are cues in perception.

4From now on the word phoneme shall refer to audio-phonemes and viseme to its visual equivalent, even though phoneme
could (and probably should) refer to a cross-modal speech unit.
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2.1.5 Coarticulation

Coarticulation is the physical phenomenon which describes the blurring of boundaries between, what are

often assumed to be, atomic units of speech, both visiblyandaudibly. Transitions between articulatory

gestures are brought about by a physical system of muscles stretching skin over a boney/cartilegous

substructure. The constraints of that physical system prevent instantaneous transitions between gestures,

and thus coarticulation is the result of a goal-oriented task performed with a physically-constrained

system.

The result of coarticulation is that the articulatory gesture formed for a certain speech unit (and the

resulting sound itself) will vary during the production of natural speech. Some aspects of the gesture

will vary less (e.g. lip contact in bilabial stops), and some more (e.g. jaw rotation in vowels.) In this

regard phones/phonemes are variably dominant (i.e. have varying influence) over a speech utterance.

This varying dominance has been described in [Recasens et al., 1997] using a scale ranking phonemes

according to degree of articulatory constraint (DAC scale); such a scale can be used in conjunction with

coarticulation rules to determine final trajectories through a space (parameterisation) representing vocal

articulatory states.

By its nature coarticulation does not only regard the extent to which a gesture is realised, but also

the influence of that gesture over a period of a speech act. Coarticulation can be anticipatory, i.e. the

vocal tract is preparing for an upcoming important gesture (forward coarticulation, e.g. lip rounding

in
→

two), and also can reflect the effect carried over from a previous gesture (backwards coarticulation,

e.g. lip protrusion in
←

boots.) Contextual effects of coarticulation have been observed up to seven seg-

ments preceeding a gesture in the French vowel /y/ from
→

istrstry in the phrase ‘une sinistre structure’

[Benguerel and Cowan, 1974].

In order to account for the nature of coarticulation, several theories have been proposed. Kent and

Minifie [Kent and Minifie, 1977] categorise these into the following: learnt allophonic models; target-

based models; and hierarchical models. Allophonic models, such as [Wickelgren, 1969], contest that

the lowest level units for speech production are allophones (context-allophones) of some form. These

units are context dependant and invariant, or at least exhibit far less variation than phones/phonemes.

Target-based models [MacNeilage, 1970] assert that speech production is a goal-oriented task, where

neuromotor commands are generated in a lookahead manner to attain contextually-invariant targets.

Finally, hierarchical models place coarticulation as a part of an overall speech production strategy, for

example Kent and Minifie themselves propose a hierarchy which covers the broad range of speech

tasks from neuromotor control up to syllabic grouping. Whilst there are many proposals, with matching

supporting arguments and evidence, few are concrete enough to be put to practical use (e.g. in a synthesis

system.) In the following section the most common are discussed in more detail.

2.1.5.1 Modelling Coarticulation

In order to both understand and reproduce the effects of coarticulation on natural speech, numerical

models have been applied. Such models must reliably reproduce the variation seen in speech, which

means accounting for the physical constraints of articulatorymovement.

Öhman [̈Ohman, 1967] describes a numerical model which accounts for the effects of coarticulation

on non-symetric vowel-consonant-vowel syllables (V1CV2.) In this model themovement of the tongue
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Figure 2.5: Modelling coarticulation: (a) dominance functions (after [Löfqvist, 1990]) representing the

temporal influence of a segment over an utterance for different articulators, (b) dominance functions

(after [Cohen and Massaro, 1993]) - above is the final trajectory generated by a combination of the

below dominance functions.

body in x-ray sequences is predicted by (2.1).

s(x; t) = v(x; t)+k(t)[c(x)−v(x; t)]wc(x) (2.1)

In this equation,s(x; t) represents the shape of the vocal tract at a pointx on the tongue body at

a time tV1 ≤ t ≤ tV2 (i.e. between the centre of the initial and final vowelsV1 andV2.) v(x; t) and

c(x) represent the surrounding vowel and consonant vocal tract shapes respectively. The vowel shape

is related to the current time because it is a transitional function between the initial and final vowel

shapes. Between the initial and final vowels the influence of the central consonant is represented by a

combination ofk(t) ∈ [0,1], which represents the location of the central consonant, andwc(x) which

scales the influence of the consonant according to its dominance.k(t) varies from 0 at timetV1 to 1 attC

and back to 0 attV2, and is a smoothly varying function of time. As a result the consonant has maximum

influence at timetC which occurs at some point betweentV1 andtV2.

This model is a simple extension of interpolation to the modelling of complex coarticulation phe-

nomena. However, the model, asÖhman himself points out, is overly simplified for the purposes

of general modelling or, indeed, the application to synthesis. For example there is no way to model

consonant-consonant coarticulation, and scaling the solution to non-VCV syllables provides significant

challenges. Regardless of these shortcomings this model has been applied to general coarticulation in

theMothervisual-speech synthesis system [Revéret et al., 2000].

Löfqvist extends the ideas from̈Ohman’s simplified coarticulation model to general speech

[Löfqvist, 1990]. In this model each articulator (lips, tongue, jaw etc.) has a number of related domi-

nance functions which determines the influence a segment (phoneme) exerts over its trajectory (see fig.

2.5.) The dominance a segment exerts will vary with each articulator; for example bilabial plosives,

such aspat, will exert a greater influence over the motion of the lips than that of the tongue.

In Löfqvist’s model the shape of the dominance functions will directly determine the trajectory of

a speech utterance. Although only loosly defined these functions are maximal at the centre of a seg-
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ment and decrease with temporal distance. Naturally, the width of a dominance function will determine

the section of an utterance over which the segment will have an influence, and thus must be no more than

seven segments wide to maintain consistency with previously reported results [Benguerel and Cowan, 1974].

Dominance functions of this form easily compare withÖhman’s equivalentwc(x)k(t) term in (2.1); both

describe time-varying influence of one segment over its neighbours.

Cohen and Massaro [Cohen and Massaro, 1993] describe a model which implements Löfqvist’s

model of coarticulation. In this model negative exponential functions are used to represent the time-

varying dominance functions,Dsp in (2.2).

Dsp(τ) =

αspe−Θ←sp|τ|c τ ≥ 0

αspe−Θ→sp|τ|c τ < 0
(2.2)

These functions, as dictated by Löfqvist’s ideas, are maximal (as scaled byαsp) at the centre of the

segment (τ = 0) and decrease to 0 with increasing temporal distance (|τ| → ∞). The shape of these

functions depends upon the power coefficientc. Also the influence of a segment is directional, hence

the difference between−Θ←sp and−Θ→sp, which deals with the differences in forward and backward

coarticulation. Simple additive combination of dominance functions would lead to over articulation

where the dominance of several segments closely overlap. For this reason a normalized contribution of

dominance functions is used to resolve coarticulation across an utterance (2.3).

Fp(t) =
∑n

i=1(Dsp(τi)Tsp)
∑n

i=1Dsp(τi)
(2.3)

In (2.3)Tsp is the target parameter (i.e. the viseme described by the parameter space of the model)

for a segment outside of context. The final speech trajectory formed by this method can be fitted to

real speech motions, demonstrating a relationship between this technique and speech coarticulation

(although this does not imply the use of dominance functions in speech production.) Several limi-

tations of this method for generating trajectories with specific types of speech targets (e.g. bilabial

stops) have been reported [Le Goff and Benoı̂t, 1996]. Despite this the Cohen and Massaro/Löfqvist

model is the most commonly used by the visual synthesis community [Cosi et al., 2003, King, 2001,

Le Goff and Benôıt, 1996, Cohen and Massaro, 1993], probably because it is a fairly simple technique

to implement. A more complete overview of speech synthesis and coarticulation modelling, along with

contributions to the area, is presented in Chapter 5.

2.1.6 Prosody

Prosodic, also known as suprasegmental, features are those aspects of spoken communication that are

evident over several phonemes of an utterance. The most commonly referenced examples are related

to the pitch (fundamental frequency) of the speech audio. Stress and intonation are the speech features

directly related to pitch.

Stress is a means of accentuating a syllable or word, and often emphasises the meaning of a sen-

tence. The cues to stress are increased volume, duration and pitch. Intonation is the pattern of pitch

variation across a sentence. This pattern varies according to whether the sentence carries a statement (a

sharp decrease in pitch at the end), a what/where/who/when question (same as a statement), or a yes/no
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Figure 2.6: Confusion trees for audio and visual speech stimuli (after [Summerfield, 1987]), vertical

axis shows decreasing noise.

question (a rising tone at the end.)5

Prosodic variation of this sort is accompanied by changes in the manner of speech. For example

modifying the pitch of an utterance implies a change in the frequency at which the vocal folds vibrate.

Similarly volume and durational changes have corresponding links with the movement of the vocal

aparatus (e.g. exageration of lip shapes.) Often prosodic variation also implies the mood of the speaker

(high pitched is happy, low pitched is sad), and emotional facial expressions, such as smiles, result in a

variation in the prosodic features of an utterance.

2.2 Perception of Speech

The results of speech production are audio waves to be interpreted by a listener or a group of listeners.

The meaning of speech is entirely contained within the properties of the audio signal, which enables

remote voice communication without the immediate presence of the speaker (e.g. telephone communi-

cation.) Primarily speech is perceived via the ear and the workings of the auditory system. However,

further to the information communicated audibly the visual aspects of speech act in a complementary

manner, helping with the disambiguation of speech audio. This is demonstrated in fig. 2.6 which shows

the confusion of audio and visual signals in the presence of increasing noise. The figure shows that

those distinguishing factors which are invisible, such as voicing or nasalisation, are more important in

the perception of audible speech. In contrast visual cues are more easily confused between lip shapes,

such as rounding or spread lip shapes, or visible tongue movement, such as dentals. Thus easily distin-

guished audible speech is often difficult to separate visibly. A strong example of this is the dentals (T as

5To some extent these prosodic variations are also culturally specific (e.g. statements in Australian English are similar to
British English yes/no questions.)
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Table 2.6: Audio-visual contradictions due to the McGurk effect (adapted from [Summerfield, 1987].)

VIDEO AUDIO PERCEIVED

EXAMPLE #1 goes bows those

PLACE Velar Bilabial Linguodental

MANNER Consonantal, Consonantal, Consonantal,

Voiced, Voiced, Voiced,

Non-nasal Non-nasal Non-nasal,

Interrupted Interrupted Fricative

EXAMPLE #2 tap map nap

PLACE Alveolar Bilabial Alveolar

MANNER Consonantal, Consonantal Consonantal

Voiceless, Voiced, Voiced,

Non-nasal, Nasal, Nasal,

Interrupted Interrupted Interrupted

EXAMPLE #3 map tap pap

PLACE Bilabial Alveolar Bilabial

MANNER Consonantal, Consonantal, Consonantal,

Voiced, Voiceless, Voiceless,

Nasal, Non-nasal, Non-nasal,

Interrupted Interrupted Interrupted

in thing andD as inthese) which are never confused audibly because the voiced/unvoiced distinction is

strong, but visibly are virtually indistinguishable. In contrast, fricatives are difficult to distinguish using

audio cues (f as inf in andT as inthin), yet visibly the labio-dental/dental distinction is strong.

The complementarity of the audible and visible aspects of speech is also demonstrated by the im-

provement in recognition rates of speech when accompanied by visual cues. In [Sumby and Pollack, 1954]

as much as a +15dB improvement in signal-to-noise ratio is reported for speech audio with visual cues;

this leads to a corresponding improvement in the recognition rates and thus intelligibility of speech in

these circumstances. For these reasons speech research has been focussing upon audio-visual speech

synthesis as an aid to communication in noisy environments [Berthommier, 2003, Le Goff et al., 1994].

2.2.1 Conflicting Audio-Visual Signals: The McGurk Effect

One phenomenon which characterises the fusion of audio and visual speech modalities is described by

McGurk [McGurk and MacDonald, 1976]. The so-called McGurk effect occurs with the perception of

directly conflicting audio and visual speech signals. It is found that when conflicting audio is dubbed

onto a video that a subject will perceive a third distinct speech sound. An example of this is the percep-

tion of the audio/ba/ dubbed onto video of the lip movements for the syllable/da/ which leads to the

perceived syllable/va/. Several more examples can be found in table 2.6.

The McGurk effect, whilst by its nature an entirely synthetic phenomenon, demonstrates the fusion

of both audio and visual modalities in the perception of speech. This is a form of synesthesia6 with

6The influence of one sensory experience uponanother, i.e. vision influences the perception of audio.
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the visual information augmenting the audio. Extreme examples such as those used to demonstrate

McGurk would not be expected tonaturally occur using any competant synthesis technique. However,

this does demonstrate the strong link between visual speech movements and the perception of speech.

The possibility that poor synchronisation could create, at the very least, ambiguity is of concern and is

a demonstration of why competant models to generate speech movements are important in animation.

2.3 Summary

This chapter has introduced some of the concepts in speech production and perception necessary for

speech animation. In order to generate visual speech it must be possible to both model static vocal

tract articulations, and to generate movements of the articulators consistent with the nature of speech

production. It is these areas that the main body of this thesis tackles.

The visible extent of the vocal tract (e.g. lips, tongue, etc.) must be modelled for synthesis. The

modelling technique used must be capable of producing the same expressions7 as are created by the

muscles of the face (see table 2.1.) These expressions fit into the phonetic categories in tables 2.3 and

2.4, and are the viseme targets of synthesis. Such modelling techniques do not necessarily need to model

the structure and function of the muscles and skin themselves, only the observed result. Modelling and

parameterisation of facial expression are discussed in detail in Chapter 3.

Given a set of static viseme targets transitional movements must be generated according to the nature

of coarticulation. This means that targets are unlikely to be met during natural speech articulation.

Models relating to coarticulation are often too specific (i.e. related to individual contextual effects

of coarticulation), or too abstract for implementation. The method in most common usage for visual

speech synthesis is the dominance function method (see Section 2.1.5.1), which is an implementation

of [Löfqvist, 1990]. An evaluation of this method along with an alternative formulation of target-based

synthesis is discussed in Chapter 5. These target-based models lie in stark contrast to motion-based

synthesis, which attempts to avoid modelling coarticulation by concatenating fragments of real speech

movements. A comparison of these contrasting techniques is also made in Chapter 5.

The necessity of modelling speech movements correctly, and maintaining audio-visual coherence,

is demonstrated by the McGurk effect. Poor coherence can adversely affect the quality of animation,

as in badly dubbed film, and may change the perception of the speech itself. Whilst it is unlikely that

the McGurk effect will occur accidentally, the implication is that poor speech animation will produce

at least ambiguous visual signals. This is of course undesirable, and provides evidence that a thorough

treatment of animation is required.

7The visual extent of vocal articulation can be considered to be changes in facial expression.



Chapter 3

Parameterisation and Modelling of

Facial Expression

Facial animation relies upon techniques to model and encode expressions in a compact and efficient

manner. Such techniques can relate to the raw storage of facial appearance and geometry (e.g. pho-

tographic images and triangle meshes), and to the modification of these structures to generate novel

expressions (e.g. geometric deformation and physical simulation techniques.) These need to be able

to accurately recreate the soft body deformations caused by muscular action upon the skin of the facial

mask. Given the complexity of facial structure and motor function, this is a complex task especially for

real-time interactive applications.

These topics are obviously important for the animation of visual speech, given that it requires inter-

mediary mouth shapes to be modelled in synchronisation with speech audio. In many systems this is

simply a matter of interpolating visemes [King et al., 2000, Ezzat and Poggio, 1999], however, as im-

plied by coarticulation (see Section 2.1.5) such a trivial technique may not be appropriate. Furthermore,

most motion capture techniques [Williams, 1990] retrieve only the motion of a sparse sampling of points

on the surface of the face; to generate animation from such data (as discussed in Chapter 4) it is nec-

essary to have techniques to interpolate the motion of these feature points across the surface of a target

mesh.

This chapter contains an overview and comparison of modelling techniques which may be used for

facial animation. These can be generally split into two categories:

• Geometric techniques- these deform a facial surface according to the manipulation of a geometric

control structure (see Section 3.2.)

• Physical techniques- these attempt to approximately model the elastic tissue structure of the skin

which is deformed by the application of muscle forces (see Section 3.3.)

Above the technique used to model facial expression there is often a need to provide a parameterisa-

tion. This simplifies the modelling of facial expression by allowing the face to be modified by intuitive

quantities (e.g.jaw opening.) Parameterisation is also important for the generation of speech move-

ments as coarticulation effects different aspects of the vocal tract in different ways (see Chapter 5.) The

parameterisation of facial expression is discussed in Section 3.1.

19
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3.1 Parameterising Facial Expression

The intent of facial modelling techniques is to parameterise expression in such a manner that it can

be consisely described by a small number of variables. Parke’s early work [Parke, 1974] introduced

the concept of an intuitive facial parameterisation. In this work parameters are applied to both change

the basic structural form of the face (conformationparameters), and to directly modify facial expression

(expressionparameters.) Conformation parameters are used to individualize a facial model, in particular

so that it may resemble a particular character. Expression parameters are used to produce particular

gestural (e.g. a nod), emotional (e.g. a smile or scowl), and physical (e.g. blinks) facial expressions.

The completeness of a particular parameterization refers to the ability of the model to recreate ob-

served changes in facial shape and expression. The ideal, often referred to asuniversal, parameterization

is capable of recreating observed changes in facial expression with the following properties:

• Complete- it should be possible to create all possible facial expressions using the parameterisa-

tion. At the very least it should be possible to model all expressions in an identified subset (e.g.

speech lip shapes.)

• Parameter Independence- parameters should not reproduce work, and thus should be independent

(orthogonal.) Truly independent parameter sets prevent additive combinations of parameters from

creating unrealistic expressions. Furthermore, this requirement ensures a one-to-one mapping

between expressions and parameters.

• Minimal - a parameterisation should consist of as few parameters as possible to accurately rep-

resent facial expression. Concise parameter sets for modelling are more usable, and generally

more easily interpreted. This is partially coupled with parameter independence, since if there is

no covariance between parameters the set should also be minimal.

• Intuitive - each parameter should have an easily-recognisable intuitive label (e.g.jaw rotationor

blink.) This aids in the interpretation of parameters and the modelling of specific expressions.

• Physically Plausible- all expressions created with the parameter set should be observable, i.e.

unrealistic facial expressions cannot be created by any combination of parameters.

Obviously from the above requirements direct vertex/control point manipulation is a poor para-

meterization of facial expression: covariance of neighbouring vertices is not taken into account (non-

minimal), and individual vertex displacements do not correspond to recognisable sub-expressions (non-

intuitive.) Numerous parameterisations for facial expression have been defined [Kähler et al., 2001,

King et al., 2000, DeCarlo et al., 1998, Koch et al., 1998, Lee et al., 1995, Kalra et al., 1992, Waters, 1987,

Parke, 1974] in an attempt to fulfill these requirements. However, the only existingstandardmethods

are the Facial Action Coding Scheme and MPEG-4.

3.1.1 Facial Action Coding Scheme (FACS)

FACS [Ekman and Friesen, 1978] is a facial expression parameterization based upon the activation of

individual muscles and muscle groups. The parameters have been attained by experimentation into

which independent sub-expressions, known as Action Units (AUs, see table 3.1), can be physically
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Figure 3.1: MPEG-4 feature points.

Table 3.1: Examples of FACS AUs.

AU NAME MUSCULAR BASIS

1 Inner Brow Raiser Frontalis; Pars Medialis

4 Brow Raiser Depressor Glabellae; Depressor Supercilli; Corru-

gator

8 Lips Together Obicularis Oris

15 Lip Corner Depressor Triangularis

20 Lip Stretcher Risorius

26 Jaw Drop Masseter; relaxed Temporal and Internal Pterygoid

Table 3.2: Examples of MPEG-4 FAPs.

FAP NAME DESCRIPTION

3 openjaw vertical jaw displacement (does not affect mouth

opening)

4 lower t midlip vertical top middle inner lip displacement

5 raiseb midlip vertical bottom middle inner lip displacement

6 stretchl cornerlip horizontal displacement of left lip corner

7 stretchr cornerlip horizontal displacement of right lip corner

8 lower t lip lm vertical displacement of midpoint between left cor-

ner and middle of top inner lip
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produced. The assumption is that combinations of these sub-expressions can be used to recreate more

complex compound expressions.

The scheme, as initially defined by Ekman and Friesen, is not intended for modelling facial expres-

sion, but to be used as a descriptive/evaluative tool. For modelling FACS has a number of disadvantages.

Primarily action units may be independently produced. However, this does not mean that the effect upon

the skin of the facial mask is also independent. Little is known as to how the AUs combine together

to create compound expressions, which limits its use as a generative model. Despite this problem the

presence of a recognized standard descriptive tool for facial expression has led to the use of FACS to

directly model expression [Frydrych et al., 2003, Kalra et al., 1992], and as an influence upon the de-

sign of modelling tools [Waters, 1987]. FACS is also the basis behind the more recent MPEG-4 facial

parameterisation.

3.1.2 MPEG-4 Facial Coding (FDPs/FAPs)

MPEG-4 is an ISO/IEC standard for the production and distribution of digital television, interactive

graphics applications (synthetic content) and interactive multimedia [Koenen, 1999]. The standard de-

fines specifications for synthetic face and body animation which includes both conformation (Facial

Definition Parameters) and expression parameters (Facial Animation Parameters.)

Facial Definition Parameters (FDPs) transform a generic facial model stored at a terminal node such

that it takes on a particular apppearance. Shape and texture can both be controlled using FDPs which

also allow an entire facial model to be downloaded over a network (e.g. the Internet.) FDPs perform the

same r̂ole as Parke’s conformation parameters.

Facial Animation Parameters (FAPs) define changes in expression as offsets from a neutral facial

pose. Feature points located at important locations (see fig. 3.1) are used at the lowest level to define

expression. FAPs relate sub-expressions, similar to FACS action units, with the movement of the feature

points on the surface of the face (see table 3.2.)

To allow FAPs to be applied across faces which vary both in shape and scale the displacement of

feature-points is parameterised according to FAPUs (Facial Animation Parameter Units.) Each FAPU

represents a standard measurement across the face (e.g. eye separation), and thus FAPs can be applied

to models with widely varying FDPs.

FAPs have many of the same problems as AUs in parameterizing facial expression, which is unsur-

prising given that FAPs are based upon FACS action units. The FAPs in table 3.2 demonstrate that the

units are not inpedendent, e.g. jaw rotation has been separated from lower lip movement even though

the two are intrinsically linked. MPEG-4 is becoming increasingly popular in the development of facial

models [Śanchez and Maddock, 2003], which is probably due to the benefits of using a standardized

parameterization.

3.1.3 Statistical Parameterisation of Facial Expression

Whereas most techniques described in this chapter focus uponeither directly manipulating the geometry

of the face or modelling the complex physical process of creating facial expression, generative statistical

techniques provide a data-driven approach to facial modelling. These techniques determine a basis for

facial expression by accounting for the observed variation in a discretely sampled subset of all possible
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1 2 3 4

Figure 3.2: Principal component model of lip and jaw movement created from a database of 16 captured

poses. Upper row showsµ + 3
√

σi , lower row showsµ −3
√

σi . These principal components capture

mouth opening (1), lip rounding (2), asymmetric lip-stretching (3), and smile/scowl (4).

expressions.

The fundamental assumption in the usage of statistical techniques for this purpose relies upon the

completeness of the available data. Because the parameters of a statistical model are directly derived

from an initial dataset, any required variation must be wholly evident in that data.

A benefit of statistical techniques lies in the ability to rank the parameters of these models by the

variation they account for in the observed dataset. This allows for some degree of data compression

and noise removal by culling parameters which account for only a small percentage of the variation

in the data. Examples of models using statistical methods to parameterise facial expression include

[Revéret et al., 2000, Blanz and Vetter, 1999, Cootes et al., 1998, Guiard-Marigny et al., 1996].

Principal Components Analysis

The most commonly used technique for computational multivariate statistics is Principal Components

Analysis (PCA.) This method computes an orthogonal basis for an observed dataset directly from its

covariance matrix.

Any element,v, in the original dataset can be represented using (3.1), whereµ is the mean vector,

ei is theith prinicpal component, and thebi are weights uniquely definingv.

v = µ +
s

∑
i=1

eibi (3.1)

Theei principal components can be directly calculated by finding the eigenvectors of the covariance
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matrix for the observed dataset, with the corresponding eigenvalues,λi , representing the variance,σi ,

accounted for by each component. This means that components with low eigenvalues represent only

small variations in the dataset, and thus may be culled with little loss of accuracy in the model. There

are a number of methods for determining which components to remove, a discussion of which can be

found in [Jolliffe, 1986].

PCA has been used by several authors to create data-driven models of facial expression. In

[Cootes et al., 1998] the principal components representing the change of shape and texture in a database

of facial images are used in combination to model facial variation and to recognise faces in images. The

same method extended to three-dimensional geometry is applied in [Blanz and Vetter, 1999] to provide

a generative model of facial shape, texture and expression.

In fig. 3.2 PCA is applied to several morph targets gathered using a three camera experimental

set-up. The morph targets consist of the a sparse sampling of points which deform an underlying mesh

using techniques described in Section 3.2.2. Applying PCA to the gathered points allows the definition

of a space of expressions, the basis of which are the principal components. This experiment is described

in more detail in [Śanchez et al., 2004].

The first few parameters for PCA Models representing facial expression often intuitively correspond

to parameters in hand-derived models, e.g. FACS. However, parameters representing less of the variance

in the initial dataset can be less intuitive and difficult to use for modelling specific facial expressions

by hand. For this reason PCA models are mostly used for data compression or as an intermediate layer

in facial representation for problems such as computer vision or animation [Blanz and Vetter, 1999,

Cootes et al., 1998].

3.2 Geometric Modelling of Facial Expression

Most methods used for the modelling of expressions rely upon geometric techniques to directly ma-

nipulate the surface representation of the facial mask. These techniques coincide with those Massaro

[Massaro, 1998] refers to asterminal analogue, i.e. methods which have no direct relationship to the

structure and function of facial tissue (muscles, skin, bone, etc.) The advantage here lies in the effi-

ciency of geometric operations in contrast with the computational complexity of physical models of

facial structure.

Each of the methods in the following sections manipulates the low-level representation (e.g. vertices

or control points) of the face using a small number of parameters relating to facial geometry.

3.2.1 Interpolation Techniques

The most basic form of geometric modelling is to form a shape-space for facial expression as a linear

combination of extremes (often referred to as morph targets.) This is simply defined in (3.2).

V ′ = αVexp0 +(1−α)Vexp1 (3.2)

Given two expressions,Vexp0 andVexp1, (3.2) can form a continuous transition between the two for

α ∈ [0,1], or extreme caricatures forα ≤ 0 or α ≥ 1 (i.e. extrapolation.) This form of expression
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Figure 3.3: Interpolation-based model using the six universal emotional expressions (in bold clockwise

from top left: Joy, Surprise, Fear, Sadness, Anger, Disgust; central pose is neutral) as key poses.

modelling is similar to the statistical techniques previously mentioned, albeit with a non-orthogonal

basis.

Unfortunately global morph targets are inadequate, or at least highly inefficient for the modelling

of complex facial expressions. It is necessary to localize the morph targets such that, for example, a

blink morph targetonly affects the region surrounding the eye. This is the case in [Joshi et al., 2003,

Pighin et al., 1998] where masks are used to explicitly define the spatial region over which the morph is

active.

A further extension to the interpolation technique is to define expression not only between two

extreme expressions, but between a range of expressions (3.3).

V ′ =
∑n

i=1 αiVexpi

∑n
i=1 αi

(3.3)

This implies that changes in facial expression can be defined as a manifold in a high-dimensional
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parametric space. This closely relates to the idea of expression from [Russel, 1980] which has been

implemented in [Ruttkay et al., 2003]. Obviously, using a greater number of morph targets to define the

manifold, and/or changing the method of interpolation (e.g. linear vs. spline interpolation), will directly

impact upon the accuracy with which the manifold is approximated. Furthermore, the parameterisation

of each target will determine how compact and intuitive interpolation is as a modelling technique. An

example of the use of morph-targets for facial animation can be seen in fig. 3.3.

3.2.2 Free-form Deformation

Free-Form Deformation (FFD) techniques are applied to general modeling problems, and provide an

interface for the sculpting of surfaces (e.g. a piecewise linear triangulation of vertices.) This sculpting

process implies the definition of a function,f f d : Rd→Rd, which applies the deformation to each point

(vertex or control point) defining the target surface.

FFD tools provide an interface to manipulate a surface using a small, in comparison to the number

of vertices in the target, number of controlling primitives. Typically the controlling structure determines

what type of deformation will be produced. Usually, the shape of the controlling structure, and therefore

the shape of the underlying target surface, is manipulated by a small number of control points. FFD

techniques are best categorised by the form of controlling structure:

Point Deformers

The simplest form of FFD is to use a weighted combination of displacements from defined control points

surrounding, or embedded within, the target surface (3.4).

V ′ = V +
l

∑
i=1

αi(Pi−P′i ) (3.4)

As the control points,Pi , are displaced toP′i , a weighted combination of the displacement vectors

(P′i −Pi) are added to the vertices,Vi , within the control point’s region of influence toproduce the de-

formed vertices,V ′i .

Necessarily, the important factor with point-based deformers is acquiring appropriate weights, the

αi . Often a simple drop-off function can be used with points closest to a control point given greater

weighting than points lying further away, e.g. a cosine drop-off within a given radius,r, (3.5).

αi =

cos
(

π

2

(
r i−‖V−Pi‖

r i

))
‖V−Pi‖<= r i

0 otherwise
(3.5)

Such a parameterization of a surface is by its nature non-continuous, and has the disadvantage that

the radii must be specifically selected in order to fully enclose the target surface. An alternative, as

proposed in [Kshirsagar et al., 2000], is to use a walk across the target surface to determine appropriate

weights. This has the advantage that discontinuities in the target surface will affect the weighting and

thus the resulting deformation should be capable of expanding/compressing gaps (e.g. for facial expres-

sion, parting the lips.) Unfortunately, a walk across the mesh is implicitly dependent upon the topology

of the target surface, and applying the same method to different meshes may produce inconsistent re-

sults.
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Figure 3.4: Image morphing using RBFs. Red points show corresponding features in initial and final

images.

Radial Basis Functions (RBFs), a commonly used technique in scattered data interpolation, can be

used for point-based deformation [Noh and Neumann, 2000, Noh et al., 2000, Ulgen, 1997]

[Ruprecht and Muller, 1995, Arad et al., 1994]. RBFs are defined as functions which vary uniquely

with distance from a defined basis centre. By placing an RBF centre at each of a number of control

points,Pi , an interpolation can be defined as (3.6).

V ′ = pm(V)+
l

∑
i=1

αiφi(‖V−Pi‖) (3.6)

A linear combination of radial basis functions,φ , centered upon each of the control pointsPi can

thus be used to define the location of all points inR3 (or R2 if working with images.) The interpolation

is defined by theαi weights, the polynomial termpm, and the choice of basis functionφ (multiquadric,

gaussian, thin-plate spline, etc.) The weights and polynomial term can be determined by solving a

linear system which places the centres back into (3.6) and mapping onto the deformed control points,

i.e. V ′ = P′i (see Appendix A.1.1.) The choice of basis function depends upon the required properties

of the interpolation, such as locality and continuity. Radial basis function interpolation is thoroughly

discussed in Appendix A.1.1.

RBFs in this case interpolate displacements across the target surface. RBFs are both global and

can be selected to provide the necessary continuity in deformation. For these reasons they provide a

more mathematically acceptable formulation for point-based deformation. Unfortunately, it is difficult

to account for discontinuities in the target mesh using RBFs. This is because a continuous surface

distance metric is required, otherwise the displacement of control points will be interpolated across

mesh boundaries.

An example of point-based deformation using RBFs is image morphing. Given two images,I0

andI1, two warping functions are specified,d0→1 : R2→ R2 andd1→0 : R2→ R2, which respectively
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forward warpI0 to coincide withI1 and backward warpI1 to coincide withI0. Once the geometric

mapping between images is determined the pixels can simply be interpolated between the two images,

both in colour and location. These warping functions can be implemented using RBFs. Figure 3.4

demonstrates image morphing using RBF warping functions.

Planar Deformers

Planar deformers provide a mapping between a collection of linear surface elements (e.g. triangles

or quads) and each point in thetarget surface. This is a surface-to-surface mapping which allows the

deformer structure to be tailored to the specific target surface which is being sculpted. Each planar

deformer will consist ofn control points, and the deformed surface point will be a weighted combination

of only these. The major difference between point and planar-element deformers lies in recovering the

weights for each point in the target surface. For planar elements, spanning a set of control points,

Pi , the parameterisation consists of a mapping between the planar element and the target surface, e.g.

the barycentric coordinates,βi , of the point projected onto the planar element and an offset vector, of

lengthdV along the deformed surface normal,n′, (3.7). This means that planar deformers are fully

parameterising the target surface, whereas point deformers can only interpolate displacements. Figure

3.5 demonstrates a triangular planar-deformer.

V ′ = n′dV +
n

∑
i=1

βiPi (3.7)

In this formulation, each point in the target surface is only bound to a single element in the con-

trol surface. The appropriate element may be determined by projecting (e.g. a cylindrical projection,

projection along the surface normal etc.) the target point onto the control surface or finding the closest

element in the controller surface. This deformation technique requires that the entire domain of the

target surface is encased in a controlling structure, otherwise a decision must be made on how to deal

with points lying outside of all control elements. Optionally a weighting function may be imposed on

top of the basic deformation technique, such as (3.5), which allows the strength of deformation to be

tapered off with distance. Variations upon this method are described in [Sánchez and Maddock, 2003,

Singh and Kokkevis, 2000].

Piecewise-polynomial Deformers

The previously described FFD tools parameterise a target mesh with regards to discrete primitives,

with no regard to higher order continuity in the deformation (with the exception of RBF-based point

deformation.) To provide more complex deformations the number of primitives required could re-

duce the effectiveness of these tools. To allow greater flexibility, without too great an increase in

the complexity of the controlling structure, piecewise-polynomial primitives can be used to control

deformation. The continuity of the deformation in the target surface now becomes a factor of the

continuity of the underlying polynomial basis. Furthermore, continuity across deformer boundaries

can be ensured in the same way that it would be if the deformer primitives were to be used to de-

fine the surface itself. FFD tools for univariate (splines) [Singh and Fiume, 1998, Lazarus et al., 1994],

bivariate (patches) [Śanchez et al., 2004], and trivariate (volumes) [Hsu et al., 1992, Coquillart, 1990,
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Sederberg and Parry, 1986] piecewise-polynomial primitives have been developed. The polynomial ba-

sis for these tools can be changed depending upon the required deformation, e.g. a Bézier or B-spline

(quadratic, cubic, etc.) basis could equally be used.

Splines

Spline FFDs [Lazarus et al., 1994], also known as Wires [Singh and Fiume, 1998], act like a sculptor’s

armature in manipulating a target surface. A combination of splines lying on or close to the target

surface are manipulated to perform a deformation of that surface. As the deformation technique is based

upon the manipulation of a spline, the properties (e.g. derivative continuity) of the spline used will be

transferred to the deformation technique. The properties of the spline basis functions will determine the

form of deformation.

Each vertex in the target surface is parameterized according to its distance to the closest point on the

spline deformer. In this manner the deformation technique is alike linear axial deformations, commonly

known as bone deformers, with the extra degrees of freedom imparted by the spline formulation. De-

termining the closest point on the spline deformer requires an optimization technique, and a method to

resolve ambiguities, e.g. where more than one point on the spline deformer is equidistant to a vertex in

the target surface. Figure 3.7 demonstrates spline FFD deformation.

Spline Axial deformers [Lazarus et al., 1994] manipulate a surface by forming a frame, such as a

Frenet frame, with its origin at the closest point on the controlling spline. This frame will transform ac-

cording to the displacement of control points, and this transformation is applied to the attached vertices

to deform the target surface.

In the Wires [Singh and Fiume, 1998] formulation the FFD is defined by a tuple,〈W,R,s, r, f 〉. W

andRare splines representing wire and its undeformed reference curve respectively,s is a scaling factor,

whilst r is the radius of influence surrounding the wire. The definition is completed by an implicit

function, f : R→ [0,1], which controls the decrease in influence with distance perpendicular to the

wire. According to this definition the wire deforms a vertex,V, with closest point on the reference curve

RV where f
(
‖V−RV‖

r

)
> 0, in the target surface according to the following sequence:

1. ScaleV uniformly aboutR to createVscaled, i.e.Vscaled= V +(V−RV)(1+(s−1) f
(
‖V−RV‖

r

)
)

2. Take the angle,θ , between the tangent of the closest point on the wire,W′V and its reference curve,

R′V , and rotateVscaled by the modulated angleθ f
(
‖V−RV‖

r

)
to createVtwist. This creates a twist

deformation along the wire.

3. Add the translation to the result of scaling and twisting, i.e.V ′ = Vtwist + f
(
‖V−RV‖

r

)
(WV −RV).

In the wires formulation, because attachments to the target surface are weighted according tof ,

combinations of several wires can be used to deform the target. To provide higher-derivative continuity

between wires RBFs could be used to provide the weighting functionf .

Patches

Patches, e.g. B́ezier or NURBS, are commonly used to represent free-form surfaces. They can be used to

produce surfaces of an ascertained degree of continuity by applying constraints to the placement of the

control points which define the surface [Clough and Tocher, 1965]. Similarly networks of patches can
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be used so that they accurately represent a sampled surface [Krishnamurthy and Levoy, 1996]. These

properties of patch surfaces make them particulatly appropriate to the free-form deformation of meshes.

In [Sánchez et al., 2004] a triangulation of feature points on a mesh, using Bézier triangle patches,

is used to parameterise and deform that mesh. The Bézier surface is an approximation to the surface

of the model with only the placement of the control points exposed for user interaction. Each of the

vertices,V, in the target mesh is parameterised according to three parameters: the parametric coordinates

(sV , tV) of the vertex projected onto the closest patch in the deformer surface, and the normal offsetdV

(i.e. dV = ‖V −B(sV , tV)‖, whereB is the parametric definition of the controller patch.) Given this

parameterisation vertices in the target surface may be reconstructed by evaluating the Bézier patches

and their respective normal maps (3.8).

V ′ = dVni(sV , tV)+Bi(sV , tV) (3.8)

By evaluating (3.8) with displaced control points the target surface will deform accordingly (see fig.

3.7.) The deformation of the target surface is both local and continuous as determined by the deformer

surface and the constraints upon its shape.

Identifying the closest point on a surface constructed as a network of Bézier patches is a non-trivial

problem. To solve this a Newton-Raphson steepest descent method (see

[William H. Press and Flannery, 1992] for a description of steepest descent) is used to minimize the

function in (3.9).

(
∂‖V−Bi(s, t)‖2

∂s

)2

+
(

∂‖V−Bi(s, t)‖2

∂ t

)2

= 0 (3.9)

In practice this is expensive for large numbers of patch deformers, so an initial sampling of the

deformer surface is generated. By determining the closest point in the sampled pointset, the closest

patch can be determined and the parametric coordinates of the closest point can be used to initialize the

Newton-Raphson search. The continuity of this deformation technique relies solely upon the continuity

of the deformer surface. In [Sánchez et al., 2004] it is demonstrated that for a surface of continuityCn

the continuity in the deformation will beCn−1.

Volumes

The original FFD formulation, as described in [Sederberg and Parry, 1986], employs a trivariate Bézier

lattice to control an embedded object. The method requires only that the target surface be locally pa-

rameterised within the lattice structure and that (3.10) be evaluated with the displaced control points,

P′i jk .

V ′ =
l

∑
i=0

m

∑
j=0

n

∑
k=0

Bi(s)B j(t)Bk(u)P′i jk (3.10)

WhereB{i, j,k} are the basis functions of the spline representation. The parametric coordinates,

{s, t,u}, of vertices in the target surface are defined by (3.11), where{S,T,U} are the unit axis vec-

tors andXorig is the origin of the local frame containing the FFD lattice (see fig. 3.8.)

s=
T×U(V−Xorig)

T×US
, t =

S×U(V−Xorig)
S×UT

, u =
S×T(V−Xorig)

S×TU
(3.11)
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Figure 3.8: Volume-based free-form deformation.

This form of FFD is limited by its cubic lattice structure. In [Kalra et al., 1992] a rational basis, i.e.

weighted basis functions, is used to apply cubic lattice deformers to facial modelling. This problem

domain requires the manipulation of surfaces which are dissimilar from a cubic lattice, and thus some

modification of the standard technique is necessary.

In [Coquillart, 1990] and later [MacCracken and Joy, 1996], extend the basic method to allow for

arbitrary topology lattices. To allow for arbitrary shaped lattices the parametric coordinates must be

for an embedded object must be obtained, which for the case of non-cubic lattices may not have an

analytic solution. Coquillart uses numerical methods (Newton-Raphson steepest descent) to determine

the parameterisation, with the disadvantages of computational expense and the numerical sensitivity of

the problem. MacCracken uses a Catmull-Clark subdivision approach to parameterise a target surface.

Muscle functions

Geometric muscle functions are a form of univariate FFD which approximates the action of muscles

upon the surface of the skin. These were introduced in [Waters, 1987] where two different types of

muscle are modelled: linear muscles, which pull from an attachment to the skin towards an insertion

into the skull; and sphincter muscles which pull the skin towards a central point.

The action of a linear muscle is modelled by contracting vertices within a conic section towards its

apex (3.12), see fig. 3.9.

V ′ = V +cos(γ)kr (Xins−V)
‖Xins−V‖

r =

cos
(

1−‖Xins−V‖
Rs

)
V ∈ 〈Xins,Pn,Pm〉

cos
(
‖Xins−V‖−Rs

Rf−Rs

)
V ∈ 〈Pn,Pr ,Ps,Pm〉

(3.12)

In (3.12) the displacement of a vertex fromV to V ′ is determined by the distance from the muscles

apex,Xins, and the angle from its central axis,γ. The strength of deformation is controlled by the factor

k. The muscle is split into two regions, with maximum deformation occuring at the meeting of the

central axis at a distanceRf from Xins. At the border of the muscle no deformation occurs, ensuring

continuity across the boundary of the muscle. Sphincter muscles act by displacing vertices towards the

centre of an ellipse (3.13), see fig. 3.9.
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V ′ = V +k f g C−V
‖C−V‖

f =
√

l2yV2
x +l2xV2

y
lxly

g = ‖C−V‖
lx

(3.13)

In (3.13) the displacement of a vertexV to V ′ is determined by the distance between the vertex

and the centre of the ellipse,C. Again the strength of deformation is determined byk, and there is not

deformation at the boundary of the muscle. The geometry of the sphincter muscle is shown in fig. 3.9.

Both linear and sphincter muscle functions are 2D in nature. To apply the deformation to 3D meshes

the functions can be extended to conic (linear muscles) and ellipsoid (sphincter muscles) volumes re-

spectively, or alternatively the vertices of the mesh can be projected into the plane of the muscle. A

weighted combination of muscle functions can be used to produce compound facial expressions. Further

examples of muscle function models can be found in [Breton et al., 2001, Pasquariello and Pelachaud, 2001].

The use of muscle functions to animate speech is further discussed in Section 6.1.

3.2.3 Free-form Deformations and Discontinuities

Free-form modelling techniques typically interpolate the displacement of a set of markers/control points

across the surface of an object or across the space within which the target object is embedded. How-

ever, this is inconsistent with the physical nature of soft body deformations, such as facial skin under

strain. Because topological structure is not taken into account, discontinuities are poorly modelled by

these techniques. This is particularly important for modelling expression because the facial mask has

important functional discontinuities (e.g. the openings between the lips and the eyelids.)

The techniques described can be split two ways depending upon how control elements are bound to

the geometry of an object: techniques in which a weighted combination of control elements are used to

displace a vertex (e.g. bones, wires, etc.), and techniques in which each vertex is bound to only a single

control element (patch- and some planar-element deformations.) To account for discontinuities either

the influence of control elements must be culled, in the case where multiple control elements deform

a single vertex, or some geometric test must be applied to ensure the correct binding between control

element and vertex.
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Figure 3.10: Free-form deformation for modelling facial expressions, from top to bottom: point (RBF),

spline (Wires), surface (BIDS), and volume (Bézier-volume) deformers.
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Directly culling the influence of each control element requires that a mask be defined. This is a

manual, laborious and error-prone process which is also necessarily topology specific, and so must be

repeated when applying the deformation technique to a new mesh. In contrast, for surface-based FFD

techniques there is a similarity relationship between the controlling structure and the target surface,

which can be used to enhance the attachment of vertices to the control elements. Primarily the orien-

tation of the faces in the target mesh and the control elements themselves (or the attachment points on

the control element for patch-based deformations) can be used as a disambiguating factor to rule out the

attachment of vertices. The correlation between surface normals on the target and controller surfaces

can be used to correctly bind surfaces whilst taking into account discontinuities. This can be done by

using a threshold to define the maximum disparity between the vertex normals of the target and the

surface normal at a proposed attachment point on the controller surface, preventing obviously inappro-

priate attachments. Where a discontinuity is present in the facial mask, vertices on either side will have

surface normals facing in opposite directions, in these situations this method works well. A geometric

test is obviously beneficial because it makes the process of attachment automatic, but also has the added

benefit that in geometrically delicate situations (e.g. where the upper and lower lips overlap) it can be

difficult to define masks.

The exception to this is the case of radial basis functions used to interpolate marker displacements.

Because RBFs are global and require a linear system to be solved to calculate the deformation, it is

not possible to directly mask the influences. Instead, the only way to incorporate discontinuities into

RBF interpolation is to use a surface-based distance metric, and so the interpolation is performed across

the surface itself and not in Euclidean space. Unfortunately, it is cumbersome and computationally

expensive to define a general purpose surface distance metric and cheap alternatives such as edge-based

distance metrics [Noh et al., 2000] do not work well.

3.3 Physical Modelling of Facial Expression

Contrasting with geometric models of facial expression, physical models attempt to model both structure

and function of the human face. The facial mask is a complex structure consisting of skin, muscle,

bone and fatty tissue. Expressions are created by muscles applying forces to the facial mask causing

the skin stretch, crease, and wrinkle according to a combination of factors such as age and weight.

Physical models of facial expression require the elastic nature of the facial mask to be simulated. These

techniques can be split into two different areas: tension networks, which model the skin as a network

of masses interconnected by springs; and finite-element models, which attempts to model the skin as an

elastic continuum.

Tension networks [Lee et al., 1995, Platt and Badler, 1981] treat the facial mask as a set of inter-

connected masses and springs modelling the elastic response of skin to muscular forces. As a force is

applied to a node in the network it will be applied to all the interconnected nodes and thus propogated

across the skin until the system reaches equilibrium. The restitution force caused by springs in a tension

network which are displaced from their rest length is simply calculated according to (3.14).

Fi→ j = kspring

(
Xj −Xi

‖Xj −Xi‖

)
(‖Xj −Xi‖−‖X′j −X′i ‖) (3.14)

In (3.14) the force,Fi→ j , on a node atXj due to a spring connected to node atXi is directly related
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Figure 3.11: Tension-net model of facial expression (from left-to-right): original mesh, superimposed

tension-net and muscle vectors, deformed mesh.

to the change from the nodes’ rest positionsX′j andX′i (i.e. due to a change from the rest length of the

spring.) The spring constantkspring determines the magnitude of force caused by a displacement of the

nodes. For more accurate models of elastic behaviour the spring constant becomes a function of spring

length (or equivalently displacement from the spring rest length), i.e.kspring becomeskspring(‖Xj−Xi‖).
Choice of network structure is key to the success of tension-networks. Uniformity in the length

of springs is required to maintain consistency in the elasticity of the skin. However, most models for

convenience use the triangulation of the target mesh to define the structure and connectivity of the

springs [Lee et al., 1995]. This leads to inconsistency in the resistance of the skin to muscle forces.

Forces are applied to the nodes of a tension network to create facial expressions. These forces repre-

sent the action of muscles as well as factors like volume preservation and prevention of skull penetration.

In order to resolve the action of forces on a tension network, a system of second order differential equa-

tions (ODEs) must be solved. A variety of methods are available to integrate the equations of motion,

which each trade off accuracy against speed and complexity; e.g. in [Lee et al., 1995] simple explicit-

Euler integration is used, whilst in [K̈ahler et al., 2001] Verlet-leapfrog is used to improve stability in

the solution.

In [Choe et al., 2001, Koch et al., 1998, Koch et al., 1996] finite-element models (FEM) are used

to model the elastic properties of the skin. These models segment the skin into a number of simple

geometric elements which are used to approximate the solution to a number of differential equations.

The model proceeds by minimizing the overall energy of the surface, which is the combination of

internal (resistance to bending and stretching) and external (muscle) forces, whilst enforcing a number

of boundary constraints. FEM models converge to global solutions given a set of external forces applied

to the surface.

Both tension-network and FEM models require models of facial muscles to produce expressions.

These in general are of a similar form to the functions described in Section 3.2.2. A geometric function

is used to determine the variation of muscle force across some defined volume. This, as in the geometric

case, is a gross simplification of the action of facial muscles. Even so, in [Pitermann and Munhall, 2001]

the model from [Lee et al., 1995] has been demonstrated to reasonably approximate measured human

facial movement. One significant advantage of physics models over geometric deformations is that
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discontinuities do not explicitly need to be modelled. This is due to the fact that the physical system

models the structure of the facial mask, and thus forces will only be propogated across the surface of

the skin (i.e. deformations do not occur in the space surrounding the facial model.) An example of

physically modelling facial expression is demonstrated in fig. 3.11, where muscle functions similar to

[Waters, 1987] are used to deform a tension-net model.

3.4 Summary

This chapter has discussed the wide variety of methods for parameterising and modelling facial expres-

sion. Modelling techniques provide low-level control of facial geometry, whilst parameterisation is used

to provide a key intermediary layer between the manipulation of facial geometry and the animator or

animation technique.

Modelling techniques can be split into two main categories: geometrically-, and physically-based.

Geometric modelling of facial expression either forms novel expressions from combinations of cap-

tured expressions (morphing), or by directly deforming the surface geometry (free-form deformation.)

Physical models attempt to model the structure and function of the skin and muscles in the creation of

expression. Geometric modelling is efficient, but requires explicit modelling of discontinuities in the

skin (e.g. between the lips.) In contrast modelling the elastic properties of the skin is currently not feasi-

ble for real-time applications, except where significant compromises are made in regard to the accuracy

of the simulation. It is likely that in the medium-long term physically-based techniques will become

more popular, if only because geometric techniques are an even coarser approximation to the action of

facial muscles upon the skin. However, currently FFD deformers are the best way of modelling facial

expression in real-time.

Free-form deformation techniques deform a mesh by interpolating the displacement of a few (i.e.

much less than the number of vertices in the mesh) control points. The form of deformation depends

upon the type of the controlling structure. Various geometric primitives have been used as FFD control

structures, including: points, lines (bones), splines, triangles, patches, and volumes. The facial mask is

a surface, and the motion of points on the skin can be measured, thus surface deformer primitives are

intuitively appropriate for modelling facial expression. In Chapter 4, surface-based FFD primitives are

used to interpolate the motion of captured markers across the surface of a mesh representing the face.

In Chapter 6, point-, surface-, and muscle-based FFDs are demonstrated for the purposes of modelling

static visemes, and animating visual speech.

The parameterisation of facial expression is necessary to mediate between modelling (e.g. FFDs)

and animation techniques. This is particularly important for speech animation because coarticulation

effects different aspects of the articulators (e.g. lip width/height) in different ways. The effect of coar-

ticulation does not occur parallel with the axes of 2D/3D Euclidean space. In Sections 6.2 and 6.3 two

systems are described which useprincipal components analysisto parameterise the geometry of speech

articulation. This allows sampled geometry to be decomposed using parameters similar to the action

of individual muscles, or groups of muscles. Such a technique is necessary, in particular for target-

based models of synthesis, where raw geometry is used to define the changes in facial expression during

speech production.



Chapter 4

Capturing and Retargetting Facial

Motion

One of the most significant challenges in facial animation is the generalisation of techniques such that

they are applicable across the entire population of faces. The shape, scale and structure of facial features

will vary with sex, age, and ethnicity. Obviously, with the variety in facial morphology there is a

corresponding diversity in the motions produced by individuals. For these reasons it is necessary to

derive techniques which will not only be applicable to all types of face representation, such as those

discussed in the previous section, but also to retarget captured motions such that they can be used to

animate a whole range of different individuals.

Most animation is conducted using simple blends of acquired static expressions; these systems can

be accused of not portraying the subtle motions inherrent in face-to-face communication. The linearity

of the transitions between morph targets betray the synthesis even when the rendering of individual

frames is highly realistic. In contrast physical models are computationally intensive and require detailed

design. It is interesting to note that the most successful, as yet, computer-generated character in film is

probablyGollum from theLord of the Ringstrilogy; this character was animated using a combination

of artistic effort as well as motions captured from the actor Andy Serkis. Ideally, to streamline the

process of animation, it would be beneficial to derive techniques which are almost exclusively automatic,

although this may be some way off.

The facial retargetting problem is the analog of the similar group of techniques in full-body mo-

tion capture (e.g. [Gleicher, 1998].) Unfortunately, it would be impossible to apply the same tech-

niques to faces as have been used in the case of articulated motion (e.g. [Bruderlin and Williams, 1995,

Witkin and Popovic, 1995]), simply because of the differences between the underlying data. Whereas in

the case of articulated motions the variation is held solely in limb length and joint angles, facial motion

is often represented only as the motion of a cloud of points (possibly, but not necessarily, with associated

topology.) Furthermore, full-body motion capture has been extensively reviewed and used in industry,

and a large body of research has been carried out in the area, yet facial motion capture suites are only

just becoming widely available and relatively few academic publications have demonstrated their use

[Noh and Neumann, 2001, Williams, 1990].

This chapter presents novel techniques for the retargetting of captured motions to models with vary-

38
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ing shape, scale and topology1. Section 4.1 is a discussion of techniques for the capture of human facial

motion, further sections provide detail into the algorithms used for processing (Section 4.3), retargetting

(Section 4.4) and animating meshes from a cloud of surface points (Section 4.5.)

4.1 Capturing Facial Motion

Most methods to capture facial motion rely upon Computer Vision algorithms to measure the motion

of a surface projected onto the image plane of an optical camera [Williams, 1990, Cootes et al., 1998].

At the most trivial level this requires the extraction of markers placed upon the skin within each im-

age in a sequence, and then inferring the motion of each point over time projected back into the real

scene. The markers are often designed to be easily extracted in post-processing, either by using a colour

which stands out against the skin (chroma-key methods), or by using materials which reflect a certain

wavelength of light. Similarly, entire regions of the face can be coloured to enable them to be easily

segmented. The seminal work in facial motion-capture [Williams, 1990] takes this approach. Also, in

[Guenter et al., 1998] a large number of markers placed upon the surface of the face are used to capture

soft deformation of the skin which along with a video-texture accurately capture an actor’s performance.

These methods are consistent with the need to accurately capture the movement of the surface of

the skin, whilst requiring least effort in post-processing. However, the highly error-prone process of

preparing a subject for data capture is less than ideal. Considerable effort has been placed into the

processing of image sequences to infer motionwithout the use of markings of any kind. These methods

typically fall into the following categories: Optical Flow methods; Active Contours/Snakes; Active

Appearance Models/Eigenfaces.

Optical Flow methods [Barron et al., 1992, Quénot, 1992, Horn and Shunk, 1981] use an optimal

pixel alignment between successive frames in a sequence to infer the motion of the underlying object,

in this case the motion of the face. These methods rely upon the following base assumptions:

1. The colour of each pixel remains constant across the entire sequence.

2. The illumination of the scene itself remains constant.

3. The inter-frame motion of pixels in the scene will be smooth, i.e. non-random in nature.

4. The motion of points across the surface of an object will be smooth.

Thus, given inter-frame flow by aligning successive frames, the motion of points within the scene

will simply be the concatenation of these transitions. Optical flow also implies a dense field of mo-

tions at the same resolution as the images in the sequence, which is a far higher resolution than any

marker-based method. Unfortunately, the above assumptions are extremely difficult to maintain in real

scenes. Also, optical flow implies no structure in the motions which are captured, and thus driving

animation from pixel flow is a difficult task requiring manual placement of the model within the scene.

Nevertheless, Essa [Essa, 1995] has implemented a system for the animation of faces directly from the

optical flow captured from a single camera. An example of detected optical flow using the method from

[Quénot, 1992] is shown in fig. 4.1.

1The results of this chapter have been published in [Edge et al., 2004, Sánchez et al., 2003].
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Figure 4.1: Optical flow captured between static images.

Figure 4.2: Active contour used to capture the outer lip contour. The bottom-right image shows an

example of incorrect convergence that does not find the lip-contour.
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Table 4.1: Comparison of vision-based tracking techniques.

OPTICAL

FLOW

Advantages:

• Markerless tracking.

• Motion information can be

measured to the same reso-

lution as the image data.

Disadvantages:

• Fails to track large scale

motion.

• Requires constant lighting

conditions and textured

surfaces.

• Generated flow does not

give structural information.

ACTIVE

CONTOURS

Advantages:

• Captures structural infor-

mation from an image.

Disadvantages:

• Reliant upon strong im-

age gradients to isolate fea-

tures.

• Requires manual initializa-

tion close to desired fea-

tures.

• Can be attracted to groups

of weakimage features.

ACTIVE

APPEARANCE

MODELS

Advantages:

• Specific to capturing facial

expression.

• Takes advantage of both

texture and shape informa-

tion

• Generative model.

Disadvantages:

• Requires large initial data

capture.

• Limited to capturing ex-

pressions which can be

generated by the AAM.

Active Contours [Kass et al., 1988], also called Snakes because of the way in which they work, are

a means of finding structural information within an image. Snakes are splines which either contract

or expand to locate features within an image. Commonly, in the case of faces, they are used to track

the motion of the lip contours and other stand-out features such as the eyes, nose and eyebrows. The

behaviour of these models are defined by internal and external forces. Internal forces define the direction

that the snake would naturally move in, should it find itself in a location where there are no features, i.e.

the spline will either shrink to a point or expand to infinity. External forces define the features the snake

should adhere to, e.g. strong image gradients as defined by a Sobel/Canny edge detector or regions of a

particular colour.

Advantageously, snakes themselves imply structure within the image themselves. This is because

each snake is located upon a salient image feature. By reinitializing snakes in subsequent frames the

motion of the feature can be tracked over time. Unfortunately, the nature of snakes requires that they
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are initialized close to, and in correct relation to the desired feature. For example, if an expanding snake

is initialized outside of the desired contour it will expand to infinity. As a tracking method this can be

problematic as large inter-frame differences can lead the snake to entirely miss the desired contour, or at

worst locate a completely different feature. Snakes are only good at tracking clean image features and

so either processing of the image to make features clearly distinguishable [Lievin and Luthon, 1999], or

some form of marking of the actor’s face, is usually required. An example of using snakes to determine

the outer lip-contour can be seen in fig. 4.2.

Active Appearance Models (AAMs) [Cootes et al., 1998], like snakes, produce a model of the de-

sired features and find an optimal match for that by traversing the image. AAMs produce this model

from a database of samples of the desired features, e.g. images of faces. A statistical model is con-

structed using Principal Components Analysis2 (PCA) for both shape and texture variation. The space

of this model is then traversed as the AAM locates the most optimal location, orientation and internal

parameters to describe the input image.

In order to track facial motion the AAM can be initialized from a sampling of the expected expres-

sions, e.g. speech lip movements. AAMs are perhaps the most developed, state-of-the-art, method for

markerless tracking currently available. Yet these models can still be unstable in the presence of noise,

dropped frames and high frequency movement.

Capturing dynamic changes in facial expression can be a delicate process requiring precise and

consistent experimental setup. The advantages and disadvantages of the described techniques are shown

in table 4.1. No vision-based technique is perfect, and the requirements of the algorithms, along with

the problem of accumulated error, usually prevent their practical use in production. For these reasons

most commercial systems are usually based upon the placement of markers on the surface of the face.

4.2 Facial Motion Data

The nature of facial motion data itself is intrinsically tied to the method by which it is captured. Most

commonly this is a discretised sampling of the surface of an actor’s face over time, often with no

structure. The motion of each sampled point is a composite of both the articulated motion of the neck

and the stretching of the skin by facial muscles over the boney substructure. Most methods can only

retrieve the motion of surface points, and not the motion of the eyes, jaw or the tongue within the oral

cavity. These features are either partially/fully occluded during capture, or it may be difficult to place

markers at those locations (e.g. the inner lip contour.) The occlusion of markers or mis-registration may

lead to significant parts of the motion being unavailable, and require that this is reconstructed using some

data interpolation method. Furthermore, the motions may be noisy either due to error in the tracking or

sensor noise. The final use of the data must take into account all of these factors.

Even given perfect noiseless tracking, animation requires that the course sampling of data points be

interpolated across the surface of the target mesh. Any target mesh is likely to be far higher resolution

than there are points in the motion-tracked data. The fact that the motion points define the surface of

the subject’s face implies that the deformation paradigm should be point or surface-based, and not vol-

umetric (precluding, for example, FFDs.) Necessarily, the modelling technique should be able to fully

2PCA is generally used, although any similar statistical decomposition can be used. See Appendix A.2 for a description of
PCA.
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(a) Frames from captured motions.
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(b) Motion trajectories for captured markers (data captured at 120Hz.)

Figure 4.3: Captured facial motion data (data courtesy of Scott King.)

define all possible expressions within the motion, which may preclude the use of physical or pseudo-

physical techniques. In [Choe et al., 2001, Pitermann and Munhall, 2001] methods are described for

driving physical models direct from motion-captured data. However, these rely either upon high de-

tailed models of the subject’s face, or simplistic projections onto the target model to allow the physical

parameters to be determined.

Some example facial motion trajectories are shown in fig 4.3. From such data it is evident that facial

motion is complex and highly non-linear. The motion of some points on the skin are highly rhythmical,

particularly the movement of the lips during speech, whereas the motion of other points exhibit high

frequency components. The use of such captured motions reduces the difficulty in simulating these

complex trajectories (discussion of the synthesis of speech movements is described in detail in Chapter

5.)
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4.3 Pre-processing Motion Data

Motion data, whether it is gathered from a subject using markers or marker-less vision algorithms, must

be processed in order to make the data readily usable. Importantly any noise in the gathered signal must

be removed, and the data must be rendered into a usable format. Here usable data is defined as containing

only the facial motion of the subject, with no sections of missing data nor movement due to rigid motion

of the head and neck3. The following sections detail the removal of noise and reconstruction of missing

data using Kalman filtering techniques, and the estimation and removal of rigid head motion. The result

of the pre-processing stage is data containingonly the changes in facial expression captured from a given

subject.

4.3.1 Removing Sensor Noise

The nature of motion capture technology is such that the resulting motions are frequently noisy and

incomplete due to self occlusion amongst other factors. Given high frequency sampling of the point

trajectories (e.g. the data used in this thesis is captured using high frequency cameras at 120 Hz),

standard filtering techniques can be used both to smooth the motions and to recover missing data.

One common technique is to apply a Discrete Cosine Transform (DCT) to the data, and remove high

frequencies that can be assumed to be the result of sensor noise. Using this method, missing data can be

reconstructed by extending the sampling of the transform from neighbouring segments. Unfortunately,

this method is highly sensitive to spurious spikes in the data. Spikes will induce significant distortion

in the low frequency components of the DCT. The high frequencies compensate for this, and thus a

low-pass filter can cause severe oscillations in the resulting trajectory.

The unsatisfactory results of applying low-pass filters to removing data noise requires the use of

more sophisticated techniques. By conceptualizing the marker tracking as a stochastic process built

around a linear model (approximating the motion equations of the markers), a Kalman filter can be

applied to both smooth out noise and recover missing data.

Kalman filtering requires that a second order approximation of the position and velocity of a marker

is constructed (4.1). In this equationxi andẋi are thex components of the marker’s position and velocity

at timeti , and∆t is the time interval between neighbouring samples.[
xi+1

ẋi+1

]
=

[
1 ∆t

0 1

][
xi

ẋi

]
+

[
∆t2
2

∆t

]
ẍi (4.1)

The tuple[xi , ẋi ]T is the state vector used to estimate the actual position of a given marker. The

second order term in (4.1),[∆t2
2 ,∆t]T ẍi , is interpreted as the process noise (i.e. due to the difference

between the model and the system being approximated.) This is assumed to follow a bidimensional

Gaussian distribution with zero mean, and covariance matrix given in (4.2). In this covariance matrix,

σ2
a is an estimate of the variance in the acceleration of markers, defined globally for the data.

Q =

[
∆t4
4

∆t3
2

∆t3
2 ∆t

]
σ

2
a (4.2)

3Rigid-head motion can be added back into the animation at a later stage, but for most purposes complicates the use of facial
motion-capture data.
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A separate noise term which must be taken into account is that involved in the actual measurement

of the motion (e.g. due to tracking error.) As with the process noise, it is assumed to have zero mean and

be Gaussian-distributed. However, the measurement noise is due to the nature of the capture devices,

and thus the variance can be estimated empirically.

The Kalman filter defined in this way makes use of the linear equations from (4.1) to derive an

estimate of the position of the marker, ˆx, so that the variance of an error function is minimized. That is,

the difference between the estimate and the actual measurement is reduced for the defined specification

of the system. The resulting trajectories satisfactorily discard the high frequency noise once the filter

parameters are properly attuned. At the same time the estimate is driven by a dynamics model, thus

preventing spurious spikes from being considered as part of the estimate; neither will they destabilize

the estimate as seen with low-pass filtering of the DCT.

4.3.2 Estimation and Removal of Rigid Transformation

Facial motion gathered by motion capture systems may contain both the soft movement of the tissue

under muscular influence as well as the rigid body motions of the head and neck1. For convenience it

is useful to separate these motions thus allowing the animator more freedom to edit the motion of the

head. In this work the rigid-body motions are estimated and separated from facial movementbefore

any advanced processing of the mocap data (e.g. retargetting.) For the retargetting method described

in Section 4.4.2 this is necessary because only small displacements from the surface of the skin can be

accounted for. The estimated rigid movements can be re-applied to the model at a later stage.

Estimation of the translation and rotation transformations of the head can be fraught with difficulties

when only the motion of points on the surface of the face are known. For this reason we use several

points placed on a head-mounted jig to determine rigid movements. In order to determine the rigid

transformation of the head from the, possibly noisy, location of these points a least-squares method is

employed.

Consider the functionfi(Θ,T) as the estimate of the head motion for theith marker, given a rotation

Θ and a translationT in three-dimensional euclidean space. For this marker we define the error in the

estimated location in terms of the tracked pointpi (4.3).

errori(Θ,T) =
1
2
( fi(Θ,T)− pi)T( fi(Θ,T)− pi) (4.3)

Solutions forΘ andT can be found by minimizing (4.3) for the set of rigid markers,R, i.e. (4.4).

minimize ∑
j∈R

error j(Θ,T) (4.4)

It is important to define an adequate parameterisation in order to solve the least squares problem in

(4.4). Rotation matrices could be used, and would allow the expression of the minimization problem in

a linear form. However, the resulting transformation matrices would not necessarily represent the true

transformation of the head. In fact it may not represent an affine transformation at all. This constraint

can be properly enforced by using representations with less degrees of freedom; such as Euler angles

or quaternions. Due to the singularities of Euler angles, quaternions are more appropriate and are used

here.
1This, of course, may not be the case for head-mounted systems.



Chapter 4. Capturing and Retargetting Facial Motion 46

Solving the minimisation problem using quaternions requires only the constraint that they must be

unitary. This can be enforced by penalizing factors in the minimization, or by explicitly imposing the

constraint by means of theexponential mapbetweenR3 and the unit sphereS3 in R4 [Grassia, 1998].

For each vectorr ∈ R3 its mapping onto the unit sphere is defined in (4.5).

exp(r) =

[sin(‖r‖) r
‖r‖ ,cos(‖r‖)] where‖r‖> 0

[0,0,0,1] where‖r‖= 0
(4.5)

This reduces the constrained optimization problem to an exploration overR6 (for both rotation and

translation.) Since the minima of the function is close to 0, a gradient descent method is used. The step

length is computed by (4.6).

[rk+1,Tk+1] = [rk,Tk]+δk∇error|Θ=exp(rk),T=Tk

∇error =

(
1
n

n

∑
i=1

Jfi

)
Jexp (4.6)

δk =
−error

∇error(∇error)T

The initial estimate for the rotation,r0, is computed as the average sum of the rotation observed in

every pair of vectors defined by three non-colinear points in R. Givenr0, the initial translation,T0, is

trivial to compute.

The Jacobian of the exponential map,Jexp, when‖r‖ = 0 has no analytical derivative. This can be

remedied by using a Taylor expansion ofsin(‖r‖)
‖r‖ for r with negligable value. Also, we find singularities

as‖r‖→ 2π, and at multiples of 2π. In practice this is not a problem because there will not be extreme

pose variations for the head.

The numerical method described in this section uses the properties of the minimization problem

to compute the estimates without needing to evaluate second order derivatives. At the same time the

method benefits from the filtering described in section 4.3.1.

4.4 The Retargetting Problem

The retargetting problem for non-articulated motions, such as the movement of the face, can be defined

as follows:

Input: A set of source points at timet ∈ [0,1], Xt = {x0,x1, . . . ,xn}, wherexi ∈ R3.

Output: A mappingR3→ R3 which projects the points inXt onto a surface S, maintaining the

relative positioning of the data points over time.

Obviously there are a number of conditions onS, the surface to which the motion is being retarget-

ted. Most importantly,S must besimilar to the object from which the original motion was gathered.

Similarity, in this case, means an example from the same population; that is if retargetting facial motion

the target surface should also represent a face, with the same structural idiosyncracies such as disconti-

nuities and the general variation of curvature across the surface. Similarity is a condition which ensures

that the motionafter retargetting will be recognisable from the initial data.
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Figure 4.4: The retargetting process.

As the above problem only requires the definition of a mapping, non-similar meshes are not pre-

cluded. However, it is impossible to know how a motion would appear if retargetted onto an entirely

alien object.

The required mapping should handle the composite of scale, rigid and non-rigid disparities between

the source motion and the target surface. The rigid component, which represents the rotation and trans-

lation which would align the motion with the target surface, is to be removed. The scale and non-rigid

components represent the differences in shape and expression over time and should be captured by the

retargeting technique. As a result of mapping the motion each of the data points should be embedded

within the target surface, and the motion of the points over time should maintain the relative motion

in the original mesh. This condition ensures that the resultant motion reflects that of the captured data

points, as though it was being created by the target face.

An overview of the method described here is shown in fig. 4.4. This consists roughly of two phases:

firstly, radial basis functionsare used to transform the motion data to the space of the target mesh;

secondly, the markers are triangulated and a free-form deformation algorithm is used to interpolate the

motion to each of the target vertices. This is an entirely geometric approach, requiring the placement of

only a few points on the surface of the target mesh.

4.4.1 Previous Work

Overall, very little work has been conducted into the retargetting problem for facial motion, certainly

when compared to the research into articulated motion capture (e.g. [Gleicher, 1998].) As with all

models of facial activity, these methods can be distinguished into two areas: physically-based and

non-physical/terminal analog methods. The seminal work in facial motion capture was conducted by

Williams [Williams, 1990] into the use of marked points on an actor’s face to drive expression anima-

tion. The animation was produced using a non-continous point-based deformation technique, where

each marker deformed a local region using a so-called ’warping kernel’. This is similar to modelling

techniques described in the previous chapter which define surface geometry directly in relation to the

displacement of a few control points. Williams’s technique relies upon the surface of the target mesh

being identical to that of the actor’s face (i.e. the surface was gathered using scanning technology),

and performs no retargettingper se. However, the research demonstrated the feasibility of capturing a

sparse sampling of the motion of an actor’s face and directly using that data to drive an animation. In

[Guenter et al., 1998] this approach is extended by taking several views of the scene and thus infering
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three-dimensional geometric deformations, rather than the two-dimensional image plane deformations

used by Williams.

The problems with Williams’s approach lie in the non-continuous nature of the deformation para-

digm, which is extremely evident in the results, and the lack of any retargetting strategy which would

allow the data to animate models which do not directly conform to the surface of the original actor.

In [Noh and Neumann, 2001] a technique is demonstrated which allows both problems to be solved.

Using this technique, a motion embedded within a mesh is retargetted by determining a dense surface

correspondance with a target mesh. Once a surface correspondence has been defined using a small set

of user-defined surface correspondences, the source motion is embedded within the target mesh. Sub-

sequently a number of rules are used to modify the motion vectors such that they correctly deform the

target mesh:

• Motion Vector Direction Adjustment- The motion vectors are rotated such that they lie in the

tangent plane defined by the surface normal at each vertex. This ensures that the motion occurs

across the surface of the target mesh.

• Motion Vector Magnitude Adjustment- The motion vectors are scaled by the relative location

of marked features between the source and target meshes. This prevents disparities between the

scale of the captured motion and the scale of the target mesh from adversely affecting the resultant

animation.

• Lip Contact Alignment- The contact line between the lips on the source and target meshes are

aligned to preserve the discontinuous nature of movement in this area of the face. Without this

step the upper and lower lips may not be able to move independently.

Furthermore, Noh describes a heuristic-driven algorithm to make this method fully automated. The

disadvantage of this technique for the general purpose use of face motions lies in the base assumption

that dense motions are embedded in a source mesh. It is a non-trivial step to apply the motion of a

few control points across the surface of a dense mesh, and as Noh assumes this step has already been

performed there is a large step missing from the technique.

In [Na and Jung, 2004] a similar approach is taken to that described within this chapter. A morphing

approach is used to retarget the coarse motion, whilst high frequency details are retargetted by using

normal disparities between the neutral expression and the frames of motion data which are subsequently

imposed upon the target model. One of the major differences between Na’s approach and the one

described here is that Na requires that several expressions be modelled to define the correlation, whereas

we use only one correspondence. A similar technique to that described by Na & Jung is found in

[Pyun and Shin, 2003].

In [Joshi et al., 2003, Pighin et al., 1999] facial motion is tracked using combinations of morph-

targets. However, this form of technique relies upon a significant capture effort to define the space of

possible facial deformations before any tracking can take place. Tao and Huang [Tao and Huang, 1998]

use FFDs to define a deformable model which likewise tracks movement in video. However, all of

these techniques rely upon expensive optimization procedures to match live video or tracked markers to

three-dimensional model states.

The methods described above exploit the geometric relationships between the motion and the tar-

get mesh to create animation. A significantly different group of techniques use physical models of the
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skin to animate the mesh from the motion of the control points. Physics models of the physiological

structure of the human face, based upon finite-elements or mass-spring networks, are used with muscle

deformation parameters unrelated to the geometric structure of its surface. In order to correctly de-

rive these deformation parameters for a given motion sequence, optimization procedures are required.

In [Pitermann and Munhall, 2001] the Euclidean distance between nodes in the facial model and the

motion-captured points is optimized over short temporal periods given constraints upon legal changes

of system state. This method demonstrates that a physics-based model can be directly driven from

geometric data, however the physical model is far from real-time and thus inappropriate for the ma-

jority of practical applications. A similar, albeit more simplistic, model based upon finite-elements is

demonstrated in [Choe et al., 2001].

4.4.2 Retargetting Motion Data with Radial Basis Functions

The solution to the retargetting problem is a matter of defining a mapping from one set of points which

vary over time,Xt , to their respective counterparts embedded within a target mesh. This problem can

be seen as morphing the space of source points such that they lie upon the target surface; a volume

transformation. One method for morphing volumes relies upon the use ofRadial Basis Functions(RBFs,

see Appendix A.1.1.) RBFs can provide a continuous mapping between two coordinate systems, in this

caseΨ : R3→R3. The mapping function,Ψ, is defined as a linear combination of the basis functionsφ

(4.7).

Ψ(x) = pm(x)+
n

∑
i=1

αiφi(‖x−ci‖) (4.7)

Eachx is a member of the source data points,Xt . The mapped result should be embedded within

the target mesh, reliant upon the correct choice of both theαi weights and the basis centresci . These

values are calculated by solving a system of linear equations (the details of constructing and solving the

interpolant can be found in Appendix A.1.1.) This system requires the basis centres, and their mapped

transformation onto the target mesh. A single frame of the motion captured data is used to provide the

basis centres, and the transformed coordinates for the centres are identified on the target mesh. The

chosen motion-captured frame must represent the same expression as the target surface, e.g. the neutral

expression.

The RBF formulation allows for both rigid and non-rigid components, withpm specifying the affine

transformation from source to target. This allows the mapping to retarget motion data onto a grossly

mis-aligned target surface, without any further user intervention. The polynomial term is the minimal

requirement to at least align and scale the motion data to a surface with no further retargetting. Theαi

weights carry the final non-linear component in matching the motion data to the target surface.

The described mapping function,Ψ, provides a continuous spatial transformation from the source

data points (the motion data) to the labelled target surface. Thus, for relatively small4 deviations from

the basis centres, the mapping will retain the relative location of a transformed point. ApplyingΨ to all

points inXt , for t ∈ [0,1], the motion will be retargetted into the space of the target surface.

4The method is correct for small deviations, orthogonal to the surface constructed by the RBFs through the data points, on
the scale of the source face. This is an adequate assumption for natural facial movement which does not to a great degree bulge
outwards. The method will also be more accurate at regions of more concentrated sampling of the facial motion.
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The Inverse Multiquadric (IMQ) RBF (4.8) is used here due to its global nature, particularly in com-

parison with the Gaussian. The global nature of the IMQ is reflected in the fact that it isC∞ continuous,

i.e. continuous in all derivatives. This is favourable because undulations in the spatial mapping will

cause visually disturbing artefacts in the retargetted motion.

(x2 +δ )−µ with µ > 0,δ > 0 (4.8)

The radius,δ , of each of the basis functions is defined as the minimum distance to a surrounding

basis centre, i.e.δi = min(‖c j − ci‖) where i 6= j. A fixed value ofµ = 2 is used for the locality

parameter, which defines the general shape of the IMQ.

The basic method described here for retargetting facial motion requires only the solution of an

(n+4)× (n+4) linear system, wheren is the number of data points in the motion data. Any common

linear solver, such as Gaussian elimination, can be used to calculate both theαi weights as well as

the polynomial term at the same time. The scaling and rotation of motion vectors, as proposed in

[Noh and Neumann, 2001], implicitly occurs as the three dimensional coordinates at each frame are

retargetted. At this base level the implementation and use of the algorithm is straightforward. However,

it is time consuming and error prone to manually label the transformed motion points on the target mesh.

Incorrect relative placement of the markers can cause scaling and shearing of the motion. Automation

in the labelling of the target surface removes a source of variability in the retargetting of motions.

4.4.3 Preparing the Target Surface

The retargetting technique described here relies upon the placement of markers on the target surface at

equivalent relative positions to those in the original data. This is undoubtedly an error-prone procedure

when performed manually. Ideally the markers should be placed fully or at least semi-automatically

on the target surface. Not only does this reduce the effort required in retargetting the motion data,

removing likely sources of error, but also aids in the repeatability of the method (i.e. retargetting the

same motion onto the same surface should always produce at least a largely similar result.) To this end

a semi-automatic method for labelling a target surface has been devised, requiring only the labelling of

a few key points. The method described here lowers the user workload in retargetting motion data from

tens of points5 to around ten points at easily identifiable locations on the facial surface.

In order to correctly locate the position of data points on the surface of a target mesh several steps

are performed:

• Locate Key Feature Points- A number of fiducial points are manually placed by a user, located

at key features on the face. The tip of the nose, eye corners, and the apex of the chin make good

locations for fiducials.

• Simple Mapping and Projection- Using the fiducial points and their counterparts in the original

data a simple mapping is performed to align and scale the motion with the target surface. The

mapped motion points are projected such that they are embedded within the target surface.

• Triangulation of Data Points- The data points are triangulated to facilitate the energy minimiza-

tion phase and later the deformation of the target mesh.

5Much of the data these techniques have been tested upon hold in the region of 80-90 data points.
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Figure 4.5: Fiducial points used in automatically labelling the target surface.

• Energy Minimization- Given the starting point from the previous stages of the registration process,

a final optimization of the marker locations is performed. This relies upon the deformation of the

mapped points in accordance with an energy function which maintains both their relative structure

and the similarity with the original data.

The manually-placed fiducial points represent key features on the face. It is important that these are

easily and accurately identifiable for the following stages of the mesh registration process to produce

good results, and also to enable the process to be repeatable. The following fiducials are used for

these reasons as well as the consistent coverage across the surface of the face that they provide: Centre

Forehead (CF); Chin Apex (CA); Nose Tip (NT); Upper Lip Centre (UL); Lower Lip Centre (LL);

Right/Left Lip Corner (RLC/LLC); Right/Left Ear (RE/LE); Right/Left Outer Eye Corner (REC/LEC).

These fiducial points are shown in fig. 4.5. Should the technique not produce the desired results with

this set of fiducials, there is the option of supplying more fiducials and thus further constraining the

later stages of the registration process. However, for most purposes the above set are adequate, and

furthermore correspond to a subset of important anthropometric features [Farkas, 1994].

Next a simple mapping between the labelled fiducials and their corresponding data points in the

original motion is created, again using RBFs. Here we are essentially performing the same calculation

as with the final retargetting to move all the motion data points into the space of the target surface. This

is notsufficient to label the target surface because the interpolation formed by only a few (approximately

12 fiducials) will not accurately reflect the structure of the target surface. The mapped points will not

necessarily lie embedded within the surface, apart from those corresponding to the fiducials themselves,

and thus further steps must be taken to ensure that the motion points have been correctly placed in

relation to the target surface.

The projection is a transformation from euclidean coordinates into cylindrical coordinates (4.9) fol-

lowed by a projection onto the target surface in the same coordinate system. The projection takes the
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Figure 4.6: Cylindrical projection of a target mesh and interpolated depth coordinates.

form cylind : R3→ R3, and simply swaps the depth coordinate,r, of the mapped point with that of the

target surface at the same elevation/angle coordinate,{θ ,y}. Interpolated depth coordinates are used

where no target depth coordinate is coincident, which can be optimized by rendering depth coordinates

into a texture map and performing lookup queries directly on the texture (see fig. 4.6.)

cylind : {x,y,z}→ {θ ,y, r} where r =
√

x2 +z2

and θ = tan−1( z
x)

(4.9)

Once the mapped points are cylindrically projected onto the target surface, they will remain em-

bedded within that surface throughout subsequent stages. Unfortunately a cylindrical projection can

lead to the mis-placement of data points, i.e. it will lead to a degradation in the similarity between

the structure of the initial motion data and the labelled points on the target surface. To rectify this an

optimization procedure is used to deform the points so that they move to the correct relative positions

whilst remaining embedded within the target. The previous stages are present to ensure that the points

are close enough to their ’correct’ placement that the optimization finds the global minima.

The global energy term,Emesh, is a sum of three terms (4.10):Edist which pulls the data points so

that they are embedded within the mesh,Estrain which maintains the relative location of each data point

in respect to its surrounding neighbours, andEbend which pulls the data points to a solution with similar

curvature to the original motion data.

minimize Emesh= αEdist +βEstrain+ γEbend (4.10)

This can be seen as an analogous approach to the use of three-dimensional snakes (i.e. active surfaces

[Xu and Prince, 1997]) to locate the correct structure of data points embedded within the target surface.

The internal energy term,Eint , consists of the combination of bend and strain, i.e.Eint = βEstrain +

γEbend. The external energy term,Eext, consists only of the distance term ensuring that the data points

lie embedded in the surface, i.e.Eext = αEdist. The weights,{α,β ,γ}, are tuned to transform the range

of each of the terms such that no one energy term dominates. The three energy terms are defined in

(4.11). The terms require the data points to be triangulated, which is also necessary for the deformation

algorithm and is discussed in Section 4.5.
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Figure 4.7: Fitting a control surface to a target mesh.

Edist =
∑n

i=1dist(xi)
n

Estrain = ∑n
i=1‖len(e′i)− len(ei)‖

n
(4.11)

Ebend= ∑n
i=1‖bend(e′i)−bend(ei)‖

n

The equations in (4.11) rely upon the definitions of the functionsdist, len, andbend, which all

return a scalar value. These functions take either an edge,ei , defined as a pair of mapped data points

and related faces, or an individual data point,xi . The edgesei represent the state after mapping and

projection, whilst thee′i represent the current state in the optimization. The functiondist is defined as

the shortest distance from a data point,x′i , to the surface of the mesh,len is the length of a given edge,

and bend is computed as the angle between the normals of the faces adjacent to an edge. Figure 4.7

shows the features related to the optimization process.

The optimization procedure used is the Downhill Simplex (DS, see appendix A.3.1) method. DS is

used because it does not require explicit derivatives to find the minima of a function. As the optimization

landscape is a complex one, for which we have no analytic definition, blind methods such as DS are the

only ones available. However, DS is workable in this situation as the user-placed fiducials will have

located the mapped points close enough to the minima that DS is likely to be successful. The 3n+ 1

dimensional simplex, wheren is the number of data points in the motion to be retargetted, is initialized

with vertices corresponding to the mapped data points translated by a constant value,λ , along each

coordinate axes, i.e. along each of the axes of each of then data points. The value of the initial offset,λ ,

is calculated as a fraction of the largest dimension of the target surface. This prevents DS steps which

pull the data points far away from the target surface and away from the desired minima.

The result of the three stages: manual location of fiducials; mapping and projection; and finally

energy minimisation is the optimal placement of data points from the original motion onto the surface

of the target mesh. These located points are now used as the target points in providing the mapping used

to retarget the complete motion. The method requires only the labelling of a few points and thus is at

least as time efficient as the basic method described in [Noh and Neumann, 2001]. The fully automatic

retargetting which Noh mentions relies upon heuristics to identify the fiducials on the target surface. A
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similar approach could be used here. However, heuristics are not very consistent in identifying fiducials

accurately and for this reason the method retains an element of user interaction.

4.5 Animation from a Cloud of Points

The result of the described retargetting method is the motion of points on the surface of the target mesh.

These points are not attached to the target mesh, and thus a technique must be applied to transfer the

motion from the sparsely sampled data points to the densely-sampled vertices of the target mesh. This

implies an interpolation of the motion-captured points across the surface of the target mesh to create the

final animation.

Techniques to interpolate the displacement of a few control points across an object have already

been described in Chapter 3. These are free-form deformation techniques that either deform the space

in which an object is embedded (e.g. [Sederberg and Parry, 1986]), or provide a mapping between the

object and a number of deformer primitives (e.g. [Lazarus et al., 1994, Singh and Kokkevis, 2000].)

In the case of facial motion-capture (i.e. as described in Section 4.2), the free-form deformation

primitives represent a sparse sampling of the facial surface. Thus, intuitively, the deformation tech-

nique should use a surface as the deformer primitive. This surface should span the control points, yet

should be capable of maintaining discontinuities (particularly the lip contact line) in the target mesh.

The techniques which best match these criteria are planar-element FFDs [Singh and Kokkevis, 2000,

Sánchez and Maddock, 2003], and patch-based FFDs [Sánchez et al., 2004] (for details of both tech-

niques see Section 3.2.2.) The major difference between the two is that the former technique requires

discontinuity masks to be generated for the target mesh, whilst the latter technique implicitly maintains

discontinuities.

To derive an FFD structure to control the target mesh a triangulation procedure must be defined. De-

launay triangulation can be used, however it must be constrained to maintain a close fit and topological

similarity with the target mesh. In the absence of constraints no discontinuities will be present in the con-

trol surface. Also, the Delaunay method leads to convex hull-like triangulation of control points on the

nose and cheek, and thus constraints must be applied to prevent this. Details of the application of con-

strained Delaunay approach for deriving an FFD control surface can be found in [Sánchez et al., 2004].

Whilst the majority of the motion will be evident in the data itself, there are usually points which

were not, or could not be, captured initially. This is particularly the case for the lip contour line, where

the sorts of markers used in motion capture systems cannot be placed. In these case relationships with

surrounding markers can be used to reconstruct the missing data. The movement of the lips involves a

complex physical deformation, yet the motion of the inner contour can be adequately modelled with off-

set vectors from the outer contour. A more complex model could be constructed, but would require the

modelling of lip contact deformation, which would impact upon the real-time nature of the animation.
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4.6 Results

Frames from an animation6 are shown in figures 4.8 and 4.9. Retargetting produces realistic motions

when the target mesh resembles a human face, i.e. the target has the same general features in the same

general structure. The process from capturing a new motion to animating a mesh is short requiring only

the labelling of a few points on the target mesh. Also, as the deformation is performed using a geometric

FFD algorithm, animation is real-time and non-specific to any target mesh (as would be the case with a

physics-based model.)

Figures 4.8 and 4.9 also demonstrate the use of bump-mapping to add fine detail into the model. By

fading in wrinkles according to the compression of the deformer structure high frequency details can be

added to the animation. This technique is discussed in detail in [Sánchez et al., 2004].

4.7 Summary

This Chapter has discussed the process of capturing and processing motion data, and also introduced a

novel method for the retargetting of motions to animate meshes. Numerous methods have been proposed

for capturing human facial motion, but most extract a sparse sampling of the motion of points on the

surface of the skin7. These motions are often noisy, and contain rigid head motion which complicates

its use. Processing is required to extract the motion of markers in a form that can be used for animation.

In Section 4.3 commonly used techniques are described for the processing of this data.

Given the raw motion of a set of markers, retargetting is required to transform them such that they

can be used to drive a mesh which may vary in both shape and scale. RBFs can be used to warp the

space of the original motion to coincide with that of the target mesh. This relies upon correspondences

between a frame in the original motion and the target mesh. These can either be manually labelled or

semi-automatically positioned according to the placement of a small number of fiducial points. The

retargetting is performed by simply evaluating the spatial warp for each frame of the source motion, no

further processing is required. The retargetted motion will exhibit the same relative motion of markers

as the original captured data.

To animate the target mesh the motion of markers must be interpolated to displace individual ver-

tices. A surface-based FFD technique is used for this (both planar- [Sánchez et al., 2003], and patch-

based [Edge et al., 2004, Sánchez et al., 2004] deformers have been used.) Deformer primitives span

the markers in the retargetted motion data, and thus as the markers/control points move the attached

vertices are displaced. The surface-to-surface mapping provided by these techniques is an intuitive way

to map the sampled motion of points on an actors face onto the target geometry.

In Section 6.4 the retargetting technique from this chapter is used as part of a limited-domain con-

catenative visual-speech synthesis system. The advantage of using a retargetting technique, such as

the one described here, is that motions captured once can be used to animate many virtual characters.

Given the difficulty and expense involved in capturing high quality facial motion, maximizing its use

post-capture is important.

6Animations demonstrating the retargetting technique can be found in the folder ‘animations/section4.6/‘ on the accompany-
ing CD.

7Notable exceptions to this attempt to capture the facial surface itself [Zhang et al., 2004, Tibbalds, 1998]. Although the results
are excellent, storing facial geometry for each frame is highly inefficient in storage, and the results are specific to the original actor.
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Figure 4.8: Frames from an animation showing control mesh (in green) and rendered mesh.
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Figure 4.9: Frames from an animation showing control mesh (in green) and rendered mesh.



Chapter 5

Animating Speech

Speech production can be considered as a process balancing the physical properties of the articulators

(lips, jaw, tongue etc.) and a set of ideal objectives. These objectives may be phoneme/visemes, context-

dependant allophones, or larger units such as syllables. The size and nature of these targets is a matter

of debate and a number of theories have been put forward [Löfqvist, 1990, Kent and Minifie, 1977,

MacNeilage, 1970, Wickelgren, 1969,Öhman, 1967] (see Section 2.1.5.)

In order to synthesize the visual extent of speech articulatory movements it is necessary to take these

theories and produce generative models1 which given a target utterance, usually defined by its phonetic

timing, produces trajectories for the vocal articulators. These trajectories are time-varying parameters

defining properties such as: lip width, tongue protrusion, jaw rotation etc. The parameterisation of

speech articulators is dealt with in detail in Chapter 3. The following sections shall deal with the gen-

eration of speech trajectories generically, that is with no reference to particular articulatory parameters.

Thus the methods described here could be used with anatomically inspired parameter sets (e.g. FACS),

physical parameters (e.g. muscle forces), or parameters relating to facial geometry (e.g. surface control

points.) The methods described here are implemented in several systems described in detail in Chapter

6.

The main problem which must be accounted for in speech synthesis is the resolution of coarticu-

lation, the effect of context upon speech movements. Generative models of coarticulation can be split

three ways: target-based models, motion-based models, and finite-state models. The first two represent

the main thrust of work into speech production, i.e. static phonetic units vs. dynamic units (e.g. syl-

lables.) In comparison HMM/neural-net models generate a visual signal directly from an audio signal.

Section 5.1 discusses prior work in the field, and the classification of visual-speech synthesis systems. In

Sections 5.2 and 5.3 the use of dominance functions and optimization approaches to generating speech

trajectories are discussed in detail. Finally, Section 5.4 discusses a contrasting approach to synthesis,

that of concatenating pre-captured speech movements. The approaches taken to generating speech tra-

jectories using optimization techniques, and concatenating motions are significant novel contributions

of this thesis.
1This is the case for Text-To-Visual-Speech-Synthesis (TTVS), however, Audio-To-Visual-Speech-Synthesis (ATVS) systems

typically do not rely upon speech production theory [Ezzat et al., 2002, Brand, 1999].

58
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5.1 Previous Work

Methods for generating speech trajectories in TTVS systems can be split into several broad categories:

• Target-based- where a speech trajectory is generated between several distinct static targets (usu-

ally visemes.) The synthesis technique models the rôle of coarticulation in transitions between

speech targets. The most simple of these methods directly interpolate targets, and so do not model

coarticulation at all with an accompanying loss in naturalness [King et al., 2000]

[Ezzat and Poggio, 1999, Kulju et al., 1998].

• Motion-based- where a selection of motion units are concatenated to generate trajectories. These

are analogous to the concatenative methods in audio synthesis (see Appendix B.3.)

• Model-based- where a model is generated from captured speech motions relating speech audio

to generated trajectories.

Target-based models are the most common in the animation/synthesis community. This is most ev-

ident with the approach in [Cohen and Massaro, 1993] where a number of dominance (basis) functions

are used to generate a trajectory between viseme targets. Essentially the dominance functions act like ba-

sis functions for a spline. This method has been implemented in [Cosi et al., 2003, Albrecht et al., 2002,

Breton et al., 2001, King, 2001, Le Goff and Benoı̂t, 1996], and is discussed in depth in Section 5.2. It

is important to note that there are other models which relate a time-varying dominance to the gener-

ation of a trajectory from static targets [Bui et al., 2004, Fagel and Clemens, 2003, Ezzat et al., 2002,

Rev́eret et al., 2000] and these in effect are all implementations of the ideas in [Löfqvist, 1990] (and

by extension [̈Ohman, 1967].) In [Waters and Levergood, 1993] a similar target-based approximation is

defined using a physical system of nodes and springs which are used to find the motion of points on the

face over time.

Motion-based models take real-life data relating to the articulation of natural speech, decompose the

data into units (e.g. syllables, words etc.), and use combinations of these units to generate natural speech.

An example of this is the Video-Rewrite model [Bregler et al., 1997], where segments of video repre-

senting triphones are concatenated together. In [Kshirsagar and Magnenat-Thalmann, 2003] segments

of motion-captured data representing visual-syllables (i.e. the visual component of a syllable in the same

way that a viseme is the visual component of a phoneme) are concatenated to perform global-domain

synthesis. Similar techniques can be found in [Cao et al., 2004, Huang et al., 2002, Bulut et al., 2002].

The disadvantage of these techniques lies in the size of database required to perform synthesis, as the

data must capture all variations in the target domain. Possible units for synthesis ordered in increas-

ing size include: phones, diphones (phoneme-to-phoneme transitions), triphones, demisyllables (half-

syllables split at the central vowel), syllables, words, and phrases. As the unit size increases so does

the quality of the synthesis, as there are lesssynthetictransitions, but the size of the database increases

exponentially. For comparison consider the number of diphone transitions in British English, number-

ing in the low thousands, versus the number of syllables, numbering in the tens of thousands - thus,

the use of syllables requires significantly greater time in data-capture, labelling and other preparation

before any synthesis can occur. Visually there will be less perceivable units in natural language, yet the

greater difficulty in accurately capturing the movement of the articulators more than makes up for this

(see Chapter 4.) In Section 5.4 techniques required to implement motion-based synthesis are discussed



Chapter 5. Animating Speech 60

in detail. Other models in this group include [Arslan and Talkin, 1998, Hällgren and Lyberg, 1998,

Henton and Litwinowicz, 1994].

Model-based synthesis builds an inverse2 relationship between speech audio and articulatory motion,

and thus given a novel source of speech audio (either natural or synthetic speech) a trajectory can be

generated. In order to capture this relationship Hidden Markov Models (HMMs), finite-state machines

with probabilistic transitions, are trained upon databases of recorded speech audio and movements.

A number of systems based upon this method have been reported [Williams and Katsaggelos, 2002,

Angelfors et al., 1999, Brand, 1999, Brooke and Scott, 1998, Tamura et al., 1998], which mainly vary in

the structure and training of the HMM. Neural networks have been used to similar effect in

[Massaro et al., 1999, Eisert et al., 1997, Frank et al., 1997, Lagana et al., 1996]. Other models which

can be attributed to this group include [Kshirsagar and Magnenat-Thalmann, 2000, Lewis and Parke, 1987]

5.2 Target-based Synthesis using Dominance Functions

The most common technique for the synthesis of speech movements is analogous to target/feature-based

models of coarticulation [L̈ofqvist, 1990, MacNeilage, 1970,̈Ohman, 1967]. In these methods static

target feature sets, representing individual visemes, are approximated using various methods. Here

the wordapproximatedis used to represent the fact that coarticulation cannot be implemented using

an interpolating scheme. The targets will most likely not be met, and thus a synthesis technique is

alike an approximating spline (albeit a complex and highly parameterized one) where the control points

are the relevant target features. Several schemes have been proposed [Cosi et al., 2003, King, 2001,

Rev́eret et al., 2000, Le Goff and Benoı̂t, 1996, Cohen and Massaro, 1993], however, all can be traced

back to L̈ofqvist’s general model [L̈ofqvist, 1990] (and further back to [Öhman, 1967].) The basic

model has already been described in Section 2.1.5.1. Below is a more thorough description of the

method, its properties, advantages and disadvantages.

The basic equation, defined by Cohen and Massaro [Cohen and Massaro, 1993], implementing

Löfqvist’s model of speech production is found in (2.2) and (2.3) (reproduced below for convenience in

(5.1) and (5.2).)

Dsp(τ) =

αspe−Θ←sp|τ|c τ ≥ 0

αspe−Θ→sp|τ|c τ < 0
(5.1)

Fp(t) =
∑n

i=1(Dsp(τi)Tsp)
∑n

i=1Dsp(τi)
(5.2)

In (5.1) a negative exponential3 dominance function,Dsp, is defined which controls the temporal

extent (influence) of a segments (more specifically viseme target) over a particular parameter trajectory,

p. The coefficients{αsp,Θ←sp,Θ→sp,c} determine the shape ofDsp. A combination of these is used

to weight the contribution of each viseme over the final parameter trajectoryFp (5.2). Thus, the final

trajectory can be thought of as a type of approximating non-uniform rationalC0 spline:approximating

2The relationship is inverse because the audio drives the speech movements. This is the opposite of the causal relationship
between the physical movement of the articulators and the resulting speech waveform.

3Most authors use negative exponential functions to model the temporal influence of a segment. However, Cohen and Massaro
[Cohen and Massaro, 1993] propose that different dominance functions could be used to model specific properties of speech
trajectories (although there is no mention of how to do this.) Löfqvist’s original proposal [L̈ofqvist, 1990] does not make any
particular claims as to the shape of these functions.
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because, as implied by coarticulation, the trajectory does not pass through all of the targets;non-uniform

because the targets may occur at arbitrary intervals, as specified by the phonetic timing of the utterance;

andrational because the coefficientαsp defines the degree to which the target is approximated (or, at

extreme values, whether it is interpolated.) This formulation leads to a number of observations:

• By the described formulationonly C0 continuity can be asserted. This leads to problems in realis-

ing physical properties of articulatory movements, for example the onset/offset characteristics of

muscular contractions [Fung, 1993]. Furthermore, as there is no control over higher derivatives it

is impossible to assert, for example, directional control over lip movements (e.g. forcing the lips

to be moving apart.)

• The degree to which a target is realised in the dominance function approach is entirely a function

of context. For example, in no context a target will be met entirely4, and by adding more targets

with overlapping influences the original target will be less well met. This can lead to problems

where the context in which a segment finds itself will prevent that target from being met suffi-

ciently for audio-visual fusion (visually the articulatory movements contradict the audio.) This

has been found to be the case in particular for easily recognised visemes (i.e. those which are

strongly dominant), e.g. bilabial plosives [Le Goff and Benoı̂t, 1996]. Infinite dominance, that is

an absolute guarantee that a target will be interpolated, does not exist in this model.

• In the dominance function, model parameters which affect the resulting speech trajectory are

bound with the visemes themselves. This implies that the physical properties of speech are not due

to the physical system itself (muscles, skin etc.) but by the placement of the targets in an utterance.

If two contradicting, and equally dominant targets are moved increasingly closer together, until

they virtually coincide, they will cancel each other out. Thus, a higher level planning process

must exist, and must have knowledge of which targets can exist in which context and also the

allowable proximity of those targets.

• This model does not define speech as a displacement from a neutral state. For this reason silence

itself is considered atarget and has its own dominance function. That silence has an influence

over speech movement is a strange concept, given that silence is what occurs when there is no

speech movement. This is due to the weighted combination (5.2) used to find the final parameter

trajectory,Fp, which implies that before the beginning of the utterance and after the end the

trajectory will tend to the first and last targets respectively (i.e. not to 0 or the neutral expression

- which for many parameterisations will be the same.)

• There are no global parameters to control articulation. This prevents the modelling of speaker-

independent characteristics (e.g. degree of articulation and speech rate.) In order to model the

degree of variation in speech movements would require the parameters of the model to be modi-

fied.

• It has been reported that coarticulation only occurs over periods of up to seven segments

[Benguerel and Cowan, 1974], and usually far less. However, (5.2) is a summation for all seg-

ments in an utterance, and thus contributions may be occuring over longer durations than are

4In fact in no context the trajectory will be static because there are no contradicting targets.
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Figure 5.2: Fitting dominance functions (after [Cohen and Massaro, 1993]) to real articulatory motion

using Simulated Annealing (solid - real trajectory, dashed - fitted trajectory), from top to bottom:c= 0.5,

c = 1, c = 2.

observed in real-life. This can be remedied in the described model only by correct choice of

dominance function parameters5

These observations indicate possible directions in which to modify the Cohen & Massaro approach.

Examples of modifications include limiting the number of contributions at each point in an utterance

[King, 2001], and changing the dominance functions themselves [Cosi et al., 2003]. Despite any possi-

ble limitations of the described technique it is accepted as thede factostandard for modelling coarticu-

lation in visual speech synthesis. A novel alternative based upon constrained-optimization is described

in Section 5.3.

5.2.1 Fitting Dominance Functions to Speech Trajectories

The quality of a speech synthesis technique is directly related to its ability to reproduce observed articu-

latory movements. Fitting synthesized trajectories to captured data is an optimization problem in several

unknowns: the viseme targets,Tsp; the parameters for each of the related dominance functions,Dsp (i.e.

{αsp,Θ←sp,Θ→sp}); and the shape parameter,c, which controls the properties of the approximation.

The optimization process minimizes (5.3), the square distance between the parameter trajectory in the

initial data,Gp, and the synthesized trajectory,Fp, from (5.2).

5In [King, 2001] this is remedied by only taking into account the closest dominance functions.
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minimize ∑t ‖Gp(t)−Fp(t)‖2 (5.3)

The space of this minimization problem is non-trivial with many local minima which prevent sim-

plex methods from being used. The derivatives of the objective function are also unknown which further

precludes many optimization techniques, e.g. steepest descent methods. For these reasons Simulated

Annealing (SA, see Appendix A.3.3) provides an appropriate alternative, which can find a global min-

ima without the requirement for exact derivatives. SA takes random steps (mutations) in the parametric

space of the model, always accepting improvements in the objective (i.e. minimizing (5.3)), but also

acceptingsomesteps leading to a worse state. This allows SA to perform a semi-global search of the

optimization landscape, and thus find the minima.

Figure 5.2 demonstrates the results of fitting a dominance function model directly to a speech tra-

jectory (in this case the motion-captured trajectory of the upper lip) whilst varying the global shape

parameter,c, of the dominance functions. It can be seen that with high values ofc, and therefore more

continuous dominance functions, that the SA algorithm has more difficulty in matching the captured

trajectory. Asc increases higher frequency characteristics cannot be reproduced. However, with lowerc

the generated trajectory may overshoot and does not closely match the continuity criteria of the original

trajectory. It is possible thatc should vary with different targets, although this would make the fitting

procedure far more complex.

An interesting result of the fitting process is that because theTsp are also being determined directly

from the trajectory they are not ideal targets as would be visualised. In fact theTsp are extreme exager-

ations. Whether this is true of real speech production, i.e. that the aim is to meet exagerated viseme

targets, is a matter for debate. However, dominance functions can be reasonably fit to real speech tra-

jectories and so are at least approximately functionally equivalent to the mechanisms behind speech

production6. In the next section an alternative method for generating speech trajectories is proposed.

5.3 Target-based Synthesis using Constrained-Optimization

The limitations of the Cohen and Massaro approach (and its derivatives) do not necessarily preclude

the use of target-based models for speech synthesis. In fact, even given the limitations such models

can produce good results, and have been shown to reasonably approximate observed speech dynamics

[Cohen et al., 2002] (also see Section 5.2.1.) However, it may be appropriate to reformulate the problem

in order to overcome these problems whilst still conforming to the idea of speech production as a target-

based process.

In [Witkin and Kass, 1988] physics-based articulated body motion is formulated as a global opti-

mization problem. An objective function,Ob j(X), specifies the goodness of the system stateX for each

step in an iterative optimization procedure, whilst a set of bounded constraints,Cj , maintain the physi-

cality of the motion, i.e. solving (5.4). For most spacetime7 constraints problems the objective function

ensures energy conservation (i.e. perform a task with minimum effort), and the constraints define some

physical system within which the task must be solved.

6Of course many forms of spline can be fit to trajectories in much the same manner.
7Spacetime implies problems with objectives in space and time (i.e. animation), which are solved using global optimization

methods.
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minimize Ob j(X)

subject to ∀ j : b j ≤Cj(X)≤ b j
(5.4)

Global optimization of this form fits well with the notion of speechproduction; i.e. a task-oriented

system constrained by the physical nature of the articulatory structures used to produce speech. In order

to use constrained-optimization techniques to generate speech trajectories it must be determined what

function is being optimized, and how this is constrained during natural speech production.

5.3.1 Objective Function

The essential objective of speech production, as maintained by target-based models, is to attain a number

of serially ordered vocal tract targets. By observation there is a high degree of variability in each of these

targets with respect to the immediate context (i.e. due to coarticulation.) Thus it is sensible to include the

variation in targets as a constituent of the system itself; that is if a viseme can include a certain degree of

variability and still produce the appropriate speech sound, that variation should be encoded prior to the

generation of speech trajectories. To this end visemes rather than being static targets (or morph targets

in animation terminology), as is the case with Cohen and Massaro’s model, are distributions within a

spatial coordinate system (parameterisation) representing the vocal tract.

Consider each viseme,Vi , to be represented as a distribution in our parameterisation (be that any

of the methods discussed in Chapter 3), withideal targetVi and lower,Vi , and upper bounds,Vi . In

this notation vocal tract shapes offset in each dimension of our model may still be considered to be

members of the viseme distribution where they lie in the rangeVi ∈ [Vi ,Vi ]. In this manner the variation

of speech poses can be captureda priori in the model, and reasonable limits placed upon generated

speech trajectories.

Given a definition which emphasises the distributed nature of speech targets, the objective function

can be defined (5.5).

Ob j(X) = ∑
i

ωi(S(ti)−Vi)2 (5.5)

This objective function optimizes the difference between the speech trajectory,S, defined by the

system state,X, and the ideal targets,Vi , at the appropriate timesti . The square difference between the

speech trajectory and the ideal targets is however insufficient as some targets will be met more closely

than others. For this reason the difference is weighted by a factor,ωi , which defines the extent of the

dominance that target exerts over the speech trajectory. In this mannerωi performs a similar function

to αsp from (5.1). However, in the presence of no constraints8 ωi will have no effect upon the final

trajectory and each of theVi will be interpolated.

This objective function contrasts withmostspacetime methods in that it does not contain an energy

conservation term. This is due to the fact that in natural speech targets are not met, and thus the solution

will use all the available energy to get as close as possible to the targets. Essentially there is no slack in

speech trajectories to remove.

8A set of constraints which are not violated is equivalent to no constraints at all.
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Figure 5.3: Conceptual view of optimization-based generation of speech trajectories.

5.3.2 Constraints

The previous section discussed the final objective of speech production, i.e. to get as close as possible

to several ideal targets. Now it is important to define the constraints (physical and otherwise) upon a

speech trajectory.

A speech trajectory is a curve passing through a spatial coordinate system which represents vocal

tract gestures. This curve will begin and end atεstart andεend respectively (possibly the same position,

e.g. the neutral expression.) In-between it will pass close to the relevantVi according to (5.5) but

not interpolate them because the parameters may only change with regard to certain restrictions. These

constraints upon the speech trajectory can be classified in two ways: global constraints, which determine

the physical rules of the system; and local constraints which ensure speech-like behaviour is generated.

Constraints can be used to ensure positional and derivative values at specified times (equality con-

straints) and parameter ranges (inequality constraints) across the speech trajectory. Boundary constraints

at the beginning and end of the trajectory are used to ensure that the motion starts and ends with the

correct vocal tract gesture and in a rest configuration (i.e. with no residual forces); several boundary

constraints are listed in table 5.1. Similarly, such constraints can be used to append trajectories together

by matching position and derivatives at the adjoining boundary.

Table 5.1: Boundary constraints.

CONSTRAINT DESCRIPTION

S(tstart) = εstart Ensures trajectory starts atεstart

S(tend) = εend Ensures trajectory ends atεend

S(tstart)′ = S(tend)′ = 0 Ensures the articulators are stationary at

the beginning and end of the trajectory.

S(tstart)′′ = S(tend)′′ = 0 Ensures the articulators are in a rest state

at the beginning and end of the trajectory.

For each of the visemes in an utterance there will be a range of shapes that the vocal tract can take

according to coarticulation. Outside of these ranges the vocal tract shape cannot create the matching

audio. Thus, the extent to which the target is met at the appropriate time,ti , is constrained to lie between
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maximum,Vi , and minimum,Vi , values (5.6).

S(ti) ∈ [Vi ,Vi ] (5.6)

Without the presence of a global constraint the combination of objective function, (5.5), and local

constraints, table 5.1 and (5.6), will simply lead to an interpolation of the viseme targets. The global

constraint is required to prevent the targets from being met, i.e. damping the trajectory. In order to do

this the parametric acceleration is limited across the trajectory, implicitly constraining the parametric

forces and thus a physical constraint on motion, (5.7).

|S(t)′′| ≤ γ where t ∈ [tstart, tend] (5.7)

In (5.7) γ is the maximum allowable magnitude of acceleration across the entire trajectory. As this

constraint becomes more strict, i.e.γ→ 0, the trajectory is not capable of meeting all the targets and thus

in combination with the objective function (5.5) targets will be realised according to their dominance,

ωi . A conceptual view of the optimization and related constraints can be seen in fig. 5.3.

5.3.3 Representing the Speech Trajectory

In order to apply the objective function and constraints defined in the previous sections a concrete

representation forS(t) must be defined. The curve representation must have enough degrees-of-freedom

to represent any particular speech trajectory, and idealy should exhibit at leastC2 continuity to make the

application of (5.7) feasible.

The curve representation used here is a cubic non-uniform B-spline.C2 continuity, as previously

mentioned, allows the global constraint to be applied at a sampling of the spline. Otherwise, there is no

natural way to apply the constraint. Also, because turning points in the spline will only occur at theti

(i.e. the viseme targets will be extrema in the trajectory), the spline is non-uniform requiring onlyn+2

control points to define a trajectory betweenn visemes, and two end conditions (εstart andεend). The

control points of the spline are the members ofX, and there will to ben+ 6 knots to define a spline

betweenn control points (5.8).

X = {X1,X2,X3, . . . ,Xn−2,Xn−1,Xn}
T = {t1, t1, t1, t1, t2, t3 . . . , tn−2, tn−1, tn, tn, tn, tn} where ti−1≤ ti ≤ ti+1

(5.8)

The beginning and end knots are repeated to ensure that the first and last control points are interpo-

lated, although this is not necessary for the method to work. The curve is defined between the fourth

and fourth-from-last knots (i.e. betweenX1 at t1 andXn at tn.) The knot vector,T, is required to define

the basis functions,Bi , which define the curve (5.9). The Cox-deBoor recursion is used for this - see

[Farin, 1997, Bartels et al., 1987] for a discussion of B-splines.

S(t) = ∑
i

XiBi(t) (5.9)

This is the general formula for a B-spline. At any point on a cubic spline only four basis functions

will be non-zero. For this reason (5.9) can become (5.10) within the curve segmentt ∈ [ti , ti+1).
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Figure 5.4: Non-uniform Cubic B-spline and its basis functions

S(t) = ∑1
j=−2Xi+ jBi+ j(t)

= Xi−2Bi−2(t)+Xi−1Bi−1(t)+XiBi(t)+Xi+1Bi+1(t)
(5.10)

Similarly, the first,S′(t), and second,S′′(t), derivatives ofthe spline can be defined using the deriva-

tives of the basis functions (5.11).

S′(t) = ∑1
j=−2Xi+ jB′i+ j(t)

= Xi−2B′i−2(t)+Xi−1B′i−1(t)+XiB′i(t)+Xi+1B′i+1(t)

S′′(t) = ∑1
j=−2Xi+ jB′′i+ j(t)

= Xi−2B′′i−2(t)+Xi−1B′′i−1(t)+XiB′′i (t)+Xi+1B′′i+1(t)

(5.11)

Figure 5.4 demonstrates a Cubic B-spline curve with non-uniform knot spacing, and its basis func-

tions,Bi .

5.3.4 Solving The Constrained Optimization Problem

The constrained-optimization problem described in the Sections 5.3, 5.3.1 and 5.3.2 can be solved by

any of the conventional means (see Appendix A.3.) In the case where the derivatives of the objective

function and constraints are available, the Sequential Quadratic Programming (SQP) method is used

(see Appendix A.3.2.) SQP at each step takes a second order step optimizing the objective function and

a first order step in the constraints to project up to the constraint boundary. The derivatives are available

when the trajectory is being represented by a cubic B-spline, and thus a projection method of this form

can be used. In the case where derivatives are not available finite-differences or some other numerical

method can be used to approximate them with some associated loss of accuracy.
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The SQP method requires the Hessian of the objective function,Hob j, and the Jacobian of the con-

straint functions,JC, to be calculated (5.12).

Hob j =



∂ 2Ob j
∂X1∂X1

∂ 2Ob j
∂X1∂X2

. . . ∂ 2Ob j
∂X1∂Xn

∂ 2Ob j
∂X2∂Xj

... ∂ 2Ob j
∂X2∂Xn

...
...

...
∂ 2Ob j

∂Xn∂X1

∂ 2Ob j
∂Xn∂X2

. . . ∂ 2Ob j
∂Xn∂Xn

 JC =



∂C1
∂X1

∂C1
∂X2

. . . ∂C1
∂Xn

∂C2
∂X1

... ∂C2
∂Xn

...
...

...
∂Cm
∂X1

∂Cm
∂X2

. . . ∂Cm
∂Xn

 (5.12)

As discussed in the previous section, the trajectory is represented with a non-uniform cubic B-spline,

according to (5.9). Given this definition, the objective function becomes (5.13).

Ob j(X) = ∑i ωi(S(ti)−Vi)2

= ∑i ωi((∑ j XjB j(ti))−Vi)2
(5.13)

The matrix elements ofHob j can be generalised to the form in (5.14).

∂ 2Ob j
∂Xj∂Xk

= ∑
i
(2ωiB j(ti)Bk(ti)) (5.14)

This is a summation for alli. However, where the spline is cubic, basis functions,Bl , where(l <

i−2)∨ (l > i +1) will be zero atti . This means thatB j(ti)Bk(ti) = 0 if ( j < i−2)∨ ( j > i +1)∨ (k <

i−2)∨(k> i +1) and thus these terms do not contribute.Hob j will be a symmetric matrix with non-zero

elements lying across the diagonal in the range(k−2)≤ j ≤ (k+1).

The elements of the jacobian,JC, depend upon the individual constraints. These fall into the follow-

ing categories:

• Global Constraint- at a sampling along the trajectory restrict the magnitude ofS′′(t) to prevent

targets from being met (5.7).

• Positional Constraints- at the beginning and end clamp the trajectory to pass throughεstart and

εend respectively (see table 5.1.)

• Derivative Constraints- at the beginning and end of the trajectory constrainS′(tstart) = S′′(tend) =

0 (see table 5.1.)

• Range Constraints- at eachti constrain the trajectory to lie in the rangeS(ti) ∈ [Vi ,Vi ] (5.6).

The global constraint,Cglobal, by substitution from (5.11), will become (5.15) whereS is a cubic

B-spline andt ∈ [ti , ti+1).

Cglobal(t) =


(γ−S′′(t))2 = (γ− (∑1

j=−2Xi+ jB′′i+ j(t)))
2 whereS′′(t) > γ

(−γ−S′′(t))2 = (−γ− (∑1
j=−2Xi+ jB′′i+ j(t)))

2 whereS′′(t) <−γ

0 otherwise

(5.15)

The elements ofJC corresponding to (5.15) will become (5.16).
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Figure 5.5: Effect of varying dominance and global constraint upon speech trajectories generated us-

ing the constrained-optimization target-based approach. Top and second-top trajectories have three tar-

gets:{{t1 = 25,ω1 = 1.0,µ1 =−100};{t2 = 50,ω2 = 1.0,µ2 = 100};{t3 = 75,ω3 = 1.0,µ3 =−100}}.
Top shows increasing global acceleration constraint, from least constrained (solid) to most constrained

(dotted.) Second top demonstrates decreasing the dominance of the first target from equal dominance

(ω1 = 1.0, solid) halving the dominance at each step. Bottom and second-bottom trajectories have five

targets:{{t1 = 10,ω1 = 0.6,µ1 = 20};{t2 = 30,ω2 = 0.1,µ2 = 20};{t3 = 50,ω3 = 0.05,µ3 = 20};{t4 =

70,ω4 = 1.0,µ4 = 90};{t5 = 90,ω5 = 0.6,µ5 = 20}}. Second-bottom shows increasing global accel-

eration constraint, from least constrained (solid) to most constrained (dotted.) Bottom demonstrates

decreasing the dominance of the forth (most dominant) target fromω4 = 1.0 (solid) halving the domi-

nance at each step.
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∂Cglobal(t)
∂Xk

=


−2
(

γ− (∑1
j=−2Xi+ jB′′i+ j(t))

)
B′′k(t) whereS′′(t) > γ

2
(

γ +(∑1
j=−2Xi+ jB′′i+ j(t))

)
B′′k(t) whereS′′(t) <−γ

0 otherwise

(5.16)

This constraint is applied at a sampling along the trajectory, due to its global nature. This is adequate

as the spline is cubic the second derivative,S′′(t) varies continuously along the spline.

To constrain the trajectory to exactly pass through a point,ε, at timetε ∈ [ti , ti+1) the constraint

equationCpos is used (5.17).

Cpos = (ε−S(tε))2

= (ε− (∑1
j=−2Xi+ jBi+ j(tε)))2

(5.17)

The derivatives ofJC corresponding to (5.17) will become (5.18).

∂Cpos

∂Xk
=−2

(
ε−

(
1

∑
j=−2

Xi+ jBi+ j(tε)

))
Bk(tε) (5.18)

Derivative constraints can be applied in exactly the same way as (5.17), by replacingB(t) with B′(t)

or B′′(t).

Finally to constrain the trajectory at timeti to lie in the rangeS(ti) ∈ [Vi ,Vi ], Crng is used (5.19).

Crng =


(Vi−S(ti))2 = (Vi− (∑1

j=−2Xi+ jBi+ j(ti)))2 whereS(ti) > Vi

(Vi−S(ti))2 = (Vi− (∑1
j=−2Xi+ jBi+ j(ti)))2 whereS(ti) < Vi

0 otherwise

(5.19)

The derivatives ofJC corresponding to (5.19) become (5.20).

∂Crng

∂Xk
=


−2
(
Vi− (∑1

j=−2Xi+ jBi+ j(ti))
)

Bk(ti) whereS(ti) > Vi

−2
(
Vi− (∑1

j=−2Xi+ jBi+ j(ti))
)

Bk(ti) whereS(ti) < Vi

0 otherwise

(5.20)

The complexity of the system is directly related to the number of viseme targets. Increasing the

number of targets will lead to a linear growth in size of bothHob j andJC. Also, the number of parameters

required to represent the vocal tract will increase the time to convergence of the system. This may

possibly be improved by using a windowing approach such as that from [Cohen, 1992].

Several example trajectories demonstrating the application of the global constraint and dominance

are shown in fig. 5.5. In fig. 5.6 trajectories for a complex speech trajectory are shown. As can

be seen the global constraint has the desired effect of dampening the entire trajectory and preventing

all targets (theVi) from being met. As the dominance,ωi , of an individual target is increased the

trajectory will gravitate towards it, at the expense of the surrounding targets. Conversely, asωi is reduced

the surrounding targets are better met at the expense ofVi . The described method is a very powerful

approach, allowing arbitrary extensions to target-based synthesis by changing the objective function, the

global constraints or adding local constraints to get desired changes in generated trajectories.
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Figure 5.6: Speech trajectories generated using the constrained-optimization method for the sentence

‘my name is not baldy’. Trajectories sampled at 25Hz.

5.3.5 Comparison with Dominance Functions

The observations discussed in Section 5.2 can be taken as a set of criteria for comparing the capabilities

of dominance functions (after [Cohen and Massaro, 1993]) and the constrained-optimization technique

introduced in this thesis.

In terms of extensibility the shape of dominance functions can be controlled by changing their pa-

rameters or by allowing different forms of function for differenttypesof speech target (e.g. after tables

2.3 or 2.4.) This requires the manipulation of abstract parameters indirectly related to the appearance

of a speech trajectory. In contrast, the optimization approach allows arbitrary constraints to be applied,

either clamping its position or derivatives, or constraining the range of values the trajectory can take at a

particular time. Thus,speech-likeproperties can be applied directly, e.g. the time at which the lips part

during a bilabial plosive can be directly asserted. This property allows iterative enhancement of speech

trajectories according to known properties of vocal articulators.

The fact that positional constraints can be directly applied prevents the problem of explicitly mod-

elling silence. In the constrained-optimization approach silence is modelled by enforcing the trajectory

to pass through start,εstart, and end,εend, targets. Further positional constraints can be applied across the

trajectory, e.g. to apply emotional expressions between sentences. Thus, the start and end points of the

motion can be asserted and will affect the surrounding speech transitions. Using dominance functions



Chapter 5. Animating Speech 73

the interpolation cannot be asserted except by extremely highαsilence which will adversely affect the

coarticulation modelling. It could be considered inconsistent that silence, the absence of vocalisation,

has a dominance over a speech trajectory.

By applying a range constraint on the trajectory at each of the viseme targets we can assert that the

centre of each viseme is met well enough for audio-visual coherence. Implicitly this is also a constraint

upon how closely targets can be placed, as the global constraint and the range constraints may compete

(i.e. γ could be too strict to allow some of the range constraints to be met.) This is a condition on audio-

visual coherence which cannot be ensured using dominance functions. The only way to ensure this with

dominance functions would be significant tuning of the parameters and applying some constraints upon

the duration and context of each target.

The global constraint (5.7) also provides some control overmannerof articulation. It is obvious that

with no constraint the trajectory will be a simple interpolation of the targets (over-articulation), and that

highly constrained trajectories will exhibit little motion (under-articulation.) This is a continuous range

of articulatory styles, with the extreme values at either end being unrealistic. However, there are a range

of values for the global constraint where articulation is realistic. This variability in generated trajecto-

ries can be considered to provide stylistic control, for which there is no mechanism using dominance

functions.

One disadvantage of the optimization technique is that the coarticulation of adjacent targets will

be a symmetric effect. This is different to dominance functions where each basis,Dsp, is skewed to

provide for the asymmetric properties of coarticulation (i.e. the differences between forward and back-

wards coarticulation.) In order to model this the global constraint must be non-linear in nature, whereas

currently a linear constraint on the acceleration is used. Onset/offset characteristics surrounding each

viseme target would need to be modelled. To apply such a constraint using the optimization method

may require a higher order spline.

It should be pointed out that the optimization-based method described is a member of a class of

techniques. Different methods could be considered for applying the global constraint, and different

constraint and objective functions could be used to improve the approximation to observed speech char-

acteristics. Also, the structure of speech trajectories are manipulated directly in the parametric space of

the model. This is beneficial over the manipulation of abstract dominance parameters which cannot be

directly measured from real speakers, only estimated using methods such as described in Section 5.2.1.

5.4 Motion-based Synthesis

Motion-based synthesis contrasts with target-based methods as, instead of approximating (or interpolat-

ing) a set of discrete positions in parameter space, fragments of captured motions are concatenated to

form the final trajectory. Instead of modelling coarticulation explicitly motion-based synthesis assumes

that themajority of the effects of coarticulation will be captured within the units to be concatenated. It

is at the joins, or concatenation points, between units that the synthetic nature of the motion will be most

apparent. This method is analagous to concatenative audio synthesis; considered to be the most natural

means of synthesizing speech audio (see Appendix B.3.)

This form of synthesis requires the following problems to be tackled:

• Database Design and Capture- From a target domain design a database which will cover all
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possible variations. Capturing motion data is discussed in Chapter 4.

• Unit Selection- Given a new utterance, which is distinct from samples already present in the

database, select fragments which can be combined to produce an appropriate trajectory.

• Alignment of Speech Fragments- Stretch and squash the selected motion fragments so that they

are aligned with the phonetic transcription of the target utterance.

• Resampling of Speech Fragments- Process the fragments to a consistent sample rate.

• Motion Blending- With the results of the previous stages blend the motion fragments to generate

a trajectory for the target utterance.

Database design for concatenative synthesis has been covered in detail for audio synthesis

[Black and Lenzo, 2001]. The same techniques can be directly applied for visual speech synthesis.

Obviously, for large- or general-domain synthesis smaller units will be required to make data capture

feasible. In the following sections are methods for the synthesis of speech trajectories given a data-

base of speech motion samples consisting of variable-length units (word and phrase.) The methods are

equally applicable for different size units.

As a preparatory stage in motion-based synthesis the fragments will already have been filtered,

and rigid-body motion removed. Without rigid-alignment units cannot be blended coherently. For the

purposes of the following sections the data will have been processed according to the methods in Section

4.3.

5.4.1 Unit Selection

The method used for unit selection is dependent upon the underlying speech units. In the case where

units of varying duration are available, a method must be defined to select the most appropriate units

to synthesize a target utterance9. As input to the process the phonetic labels and timing of the target

utterance are required, which can be directly recovered from the audio synthesis procedure. Ultimately

the aim of unit selection is to find the smallest number of fragments that account for the phonemes in

the target utterance (see fig. 5.7.) Pseudocode for the basic algorithm is shown in table 5.2.

In this code FIND-UNIT is a subprocedure which searches for a speech fragment which spans sev-

eral phones in the target utterance, e.g. the closed sequence [’c’,’a’,’t’]. APPEND-UNIT appends the

found unit to the output list of fragments. Primarily this algorithm chooses fragments of longer duration,

which is beneficial to the naturalness of the output speech. However, disambiguation is required where

more than one speech fragment is available within the database for a given sequence. In this case, the

factors which are taken into account when selecting units are: similarity in the phonetic timing to the

target utterance (using the sum of square differences as an indicator), and similarity of context. Where

two units are highly similar context is taken into account by selecting the unit with the closest imme-

diate context (preceding and following phonemes), if this still does not separate the units the algorithm

compares the next surrounding context until the best unit is found. Each of these conditions biases to-

wards using fragments as similar as possible to the target utterance, and thus the synthesized trajectories

9The case of variable length units is the most complex. If only, for example, diphones are available the selection of units is
simpler.



Chapter 5. Animating Speech 75

P1 P2 P3 Pn-2 Pn-1 Pn

F1 F2 Fm-1 Fm...

...

time

Figure 5.7: Unit selection consists of finding the minimal number of fragments,Fi , which account for

the phonemes,Pj , in a target utterance.

F1 F2 F3 F4

Pi Pi+1 Pi+2 Pi+3

time

Figure 5.8: Alignment of fragment,F , with phoneme timingsFj to utterance segment with phoneme

timingsPi . The fragment is stretched and squashed during the alignment.

Table 5.2: Fragment Selection Algorithm.

Input: List of phones

Output: List of f ragments

f rags← []

i← 1

j ← numPhones

while i < numPhonesdo

while not FIND-UNIT(phones, i, j) do

j ← j−1

end while

APPEND-UNIT( f rags, phones, i, j)

i← j

j ← numPhones

end while
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should maintain the naturalness in movement of the captured data. A similar unit selection method has

also been reported in [Cao et al., 2004].

5.4.2 Alignment and Resampling of Speech Fragments

Given an appropriate selection of units, the next stage is to adapt these fragments so that in combination

they can be used to synthesize the target utterance. Essentially, this requires that the units are temporally

aligned with the target utterance. Each speech fragment, whether it be a diphone or a sentence, has a

phonetic labelling, and must be variously stretched/squashed so that the labels are correctly aligned with

the phonetic structure of the synthesized audio. This is visually depicted in fig. 5.8.

This can be achieved by evenly distributing motion samples between repositioned phonetic labels.

However, that will lead to an uneven distribution in the sampling of the speech fragments, which will

give an inconsistent frame-rate for animation. For this reason, having adapted the fragments so that they

are aligned with the target utterance, the fragments must be further resampled to achieve a consistent

frame-rate before blending.

This is the scattered-data interpolation problem, i.e. given a scattered sampling of data form a

continuous curve/surface passing through the points. Many methods, such as B-spline interpolation,

could be used to resample the data, here radial-basis functions (RBFs) are used (see Appendix A.1.1.)

To use RBFs for the purposes of resampling motion fragments, a basis centre is placed at each sampled

point, ensuring that the interpolating curve will exactly fit the known data. The interpolated motions

are in fact a mapping from the time-domain onto the spatial domain, and thus to finally resample the

data requires only querying the interpolated motion at uniform temporal intervals. This is manageable

because any of the motion fragments will only ever be short in duration (up to a couple of hundred

frames, depending upon the sampling rate of the initial data.)

5.4.3 Blending Motions

The final stage of synthesis, given appropriate aligned speech fragments from the previous stages, is to

blend the fragments such that visibly continuous motion is exhibited in the resulting trajectory. This

involves only the overlapping regions of motions at the joints. A small degree of context is required in

the fragments to facilitate this. Within the overlapping section,t ∈ [t0, t1], a weighted blend of the two

motions is used (5.21).

Fblend(t) = g(u)F0(t)+(1−g(u))F1(t)

where u =
(

t−t0
t1−t0

) (5.21)

In (5.21),g(u) is a weighting function (see fig. 5.9) which returns a value in the interval[0,1]. The

weighting function facilitates the blend and ensures a smooth transition between the fragments, which

are represented here as functions of time (Fx(t).) The speed of decay ing will determine how fast the

second fragment is faded in.

The size of the overlapping regions depends upon the frame-rate of the fragments themselves. How-

ever, they should always be a fraction of the smallest phone-to-phone interval to prevent large fragments

dominating over the target utterance. In practice, for animation frame-rates of∼ 30 fps, there will
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Figure 5.9: Example weighting functionsg(u).

never be more than a couple of frames overlap at each join, and for this reason high speed capture is

advantageous as it allows larger blend intervals.

The blending of fragments only has an impact upon the generated trajectory over small periods of the

trajectory. This coupled with the fact that the motions are aligned prior to synthesis means that we do not

need to perform fragment alignment during synthesis, as described in

[Kshirsagar and Magnenat-Thalmann, 2003]. Examples of speech trajectories generated using this tech-

nique compared with captured trajectories can be seen in fig. 5.10.

5.5 Summary

This chapter has discussed methods for the generation of speech trajectories. These can be split into

three broad categories: target-based, motion-based, and model-based synthesis. Target- and motion-

based synthesis are more appropriate to synthesis from text (or equivalently phoneme timing infor-

mation), whilst model-based approaches typically attempt to relate articulatory movements directly to

speech audio.

Target-based models are mainly derivatives of the dominance function approach

[Cohen and Massaro, 1993]. These form a speech trajectory using an approximating spline, with the

control points being the viseme-targets of the utterance. In fact, a NURBS curve provides a similar level

of control, (except for the skewing of the basis functions according to the directional nature of coartic-

ulation using theΘ←sp andΘ→sp parameters in (5.1).) The properties of the trajectory are manipulated

by changing the basis (dominance) functions of the spline, which model the temporal influence of the

viseme over the trajectory. The problem with this formulation is that no assertions can be made as

to the properties of the trajectory. The degree to which a target is realised is determined both by the

context and the parameters defining the dominance functions. Determining these parameters for all pos-

sible speech combinations is a challenging task, and determining the parameters directly from captured

speech trajectories leads to unexpectedly exaggerated viseme-targets.

An alternative, proposed here, is to use a constrained-optimization approach. This technique opti-
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Figure 5.10: Speech trajectories generated by concatenating word and phrase length units (red) com-

pared with natural speech (black.) Trajectories are sampled at 120Hz.

mizes the distance between the trajectory, represented by a spline, and theideal targets for the visemes

in an utterance. The trajectory is represented by a spline, yet the control points are not the visemes.

Instead visemes are defined as parameter ranges through which the trajectory must pass at appropriate

times. By constraining the trajectory so that the targets cannot be met, and relatively weighting the

importance of the targets, the solution approximates the rôle of coarticulation. This method is flexible

because arbitrary constraints can be placed upon the position and derivatives of the trajectory. Another

key difference between this method and dominance functions is that all manipulation of the trajectory

is in the parametric domain, not an abstract dominance domain, and thus observed properties of speech

articulation can be directly applied as constraints upon a synthesised trajectory. The flexibility of this

method lends itself to iterative refinement by applying further constraints, possibly retrieved directly

from real speech movements.

In contrast, motion-based models take fragments of real speech movements and blend them together

to generate novel speech trajectories. The process of concatenative visual synthesis can be split into sev-

eral stages: data capture, unit preparation, unit selection, unit alignment, and blending. The technique
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relies upon collecting an appropriate corpus containing all the variations in the target domain. Once

captured the data must be processed to remove noise, rigid head motion, and to recover missing data

(see Chapter 4.) A phonetic transcription is used to segment the data into arbitrary-length fragments,

according to the target domain (e.g. diphones, syllables, words, phrases, etc.) Synthesis consists of se-

lecting the best units (using the algorithm in table 5.2) to represent the target utterance and then blending

these units to provide a continuous trajectory. The relative difficulty in capturing speech movements, as

opposed to speech audio,acts as a limiting factor in the use of concatenative synthesis forvisual speech.

The physical plausibility of synthesis produced byconcatenating motions is high. This is because the

basis units forsynthesis are real speech movements, yet it is possible thattarget-based models used with

physical modelling of facial expressioncould produce similar results. The techniques from Chapter 4

canbe used to use motions generated in this way on any target mesh, andthus maximize the use of any

captured data.



Chapter 6

Implemented Systems

In order to demonstrate the techniques from Chapters 3, 4, and 5, several full text-to-visual-speech sys-

tems have been implemented. Each uses contrasting methods for modelling, parameterisation, and the

generation of speech trajectories. Table 6.1 overviews the implemented systems. In particular these sys-

tems demonstrate contrasting representations of visual speech units (e.g. dynamic vs. static, geometric

vs. image-based), and methods for generating trajectories through whichever parameterisation has been

chosen (e.g. interpolation vs. dominance functions.)

In the systems which perform complete TTVS, the Festival speech synthesis system is used to gen-

erate audio. Festival [Black et al., 1999] is a concatenative audio synthesis system (see Section B.3)

which, for general synthesis, uses diphones as base units. The system can also provide limited domain

synthesis. Festival is used to generate phoneme timing information as well as other subsidiary infor-

mation (e.g. pitch variation) which it passes to the visual synthesis module as input. Whilst Festival

has been used here, each of the systems could equally be used with any other audio synthesis module

(e.g. MBROLA [Dutoit et al., 1996]) given appropriate means of extracting information from the audio

engine. Audio-To-Visual-Speech (ATVS) could also be provided given appropriate transcriptions (e.g.

Table 6.1: Implemented TTVS systems.

SYSTEM MODELLING SYNTHESIS UNITS

[Edge and Maddock, 2001]a muscle functions linear interpolation visemes

[Edge and Maddock, 2003] image morphing dominance func-

tions

visemes

[Edge and Maddock, 2004] principal compo-

nents model

constraint-based viseme

groups

[Edge et al., 2004] FFD patches unit concatenation

(limited domain)

varying

dynamic

units

aThis system does not perform TTVS, but generates a trajectory from a set of phoneme timings - which is essentially the same

problem.

80
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Figure 6.1: General structure of the synthesis systems.

by using a speech recognition module, such as SPHINX [Ravishankar, 2004].) A general structural

overview of the implemented systems is shown in fig. 6.1.

It is important to note that the synthesis techniques described requirea priori information with re-

gards the phonetic structure of an utterance. This can be seen from the techniques in Chapter 5. The

visual synthesis is not tied into the technique used to generate the audio, i.e. there is no interaction

between the audio and visual synthesis modules. Ideally, a synthesis technique would use the same

parameters forbothaudio and visual synthesis. An example would be to use some form of articulatory

synthesis with parameters analogous to physical states (see Section B.1.) However, in practice articu-

latory synthesis is not necessarily the best quality, and most visual speech synthesis systems take the

approach used here [Cosi et al., 2003, Albrecht et al., 2002, King et al., 2000, Ezzat and Poggio, 1999,

Le Goff and Benôıt, 1996, Cohen and Massaro, 1993, Lewis and Parke, 1987].

6.1 Synthesis using Geometric Muscle Functions

This system represents a baseline standard for visual speech synthesis. The units used are simply

visemes parameterised usinggeometric-muscle functions (see Section 3.2.2.) Each muscle function geo-

metrically warps a region of the mesh according to a muscle actuation value (i.e. the degree to which

the muscle should be contracted.) Thus each viseme,Vi , consists of a set of these actuation values, i.e.

Vi = {k1,k2, . . . ,kn} for the n muscles used to model expression. In the implemented model there are

twenty-five muscles modelled, of which twenty-four are linear muscles (twelve left-right pairs) with one

sphincter muscle surrounding the mouth.

The muscle functions used are derivatives of those described in [Waters, 1987]. These are extended

to provide the ability to seperately move the upper and lower lips, with a discontinuity plane used to

cull the influence of muscle functions in the region of the mouth. Also, the sphincter muscle functions

are extended to allow puckering of the lips. These functions are intended to approximate the action of

facial muscles without any complex physical simulation. Effectively these are free-form deformations

with only one degree of freedom (the actuation of the muscle.) By rotating vertices in the jaw about a

pivot simple mouth opening is achieved.

To synthesise speech, trajectories through the muscle actuation space are generated. The simplest,
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Figure 6.2: Frames from the animation ’one-five-zero-zero-six’, generated using the muscle-based

method.

and most coarse, method is used: interpolation (6.1).

Ti j (t) = (1−φi j (t))Vi +φi j (t)Vj

φi j (t) = sin
(

π(t−ti)
2(t j−ti)

) (6.1)

In (6.1) Ti j is the section of the speech trajectory between visemesVi andVj at timesti andt j re-

spectively. The transition function,φi j : R→ [0,1], smoothly interpolates between the muscle actuation

values representingVi andVj . In this case a sine function is used, but any smooth function which takes

on the valuesφi j (ti) = 0 andφi j (t j) = 1 will be sufficient (e.g. linear interpolation.)

Clearly this does not acurately model coarticulation (see Section 2.1.5 and Chapter 5) as each of the

visemes will be perfectly interpolated. Context plays no rôle in (6.1) and thus the resulting animations

appear over-articulated and thus unrealistic. In fact, the short periods between visemes mean that the

interpolation can appear discontinuous which further impedes realism. Frames from an animation1

generated using this technique can be seen in fig. 6.2. This is a baseline standard because, whilst

coarticulation is not modelled, the phonetic structure of the utterance is used to generate the animation

(i.e. to place the viseme targets.)

1Animations generated using the muscle-based system can be found in the folder ‘animations/section6.1/‘ on the accompa-
nying CD.



Chapter 6. Implemented Systems 83

Figure 6.3: Trajectories generated using the image-based model are bounded by the sampled viseme

targets.

6.2 Image-based Synthesis with Dominance Functions

An alternative to representing facial expression with three-dimensional meshes is to use images. An

image has an advantage over other representations in terms of static realism - given that the image repre-

sents a real face (i.e. photographic images.) Such a model bounds the space of visible speech movements

by a captured sampling of real speech articulation (see fig. 6.3.) Trajectories are generated relative to

these samples to create animation. The method described here differs from [Ezzat and Poggio, 1999]

because coarticulation is explicitly modelled, and so non-linear trajectories between sampled images are

generated.

As with the model in Section 6.1, this model uses visemes to represent the extremes of facial expres-

sion during speech. Each trajectory consists of a sequence of visemes,Vi , at timeti and consisting of

both image,Ii , and geometry,Gi . However, this model includes a model of coarticulation. Dominance

functions from [Cohen and Massaro, 1993] are used to generate speech trajectories. In order to apply

dominance functions a parametric space of facial expressions must be created. This parametric space

must represent the variation of speech articulation in a manner coincident to the effects of coarticula-

tion. Geometric primitives, essentially a labelling of 2D points on each of the viseme-images, are used

to facilitate the morphing of images. In this model eachGi consists of 44 points on the face; points

surrounding the mouth are shown in fig. 6.4. However, 2D points in the image-plane are an inadequate

parameterisation of the articulators for use with dominance functions. This is because the effects of

coarticulation do not happen parallel to the axes of the image plane. An improved parameterisation

can be achieved by processing the labelled points to determine a set of mutually orthogonal parameters.

Such a parameterisation can be created usingprincipal components analysis(PCA, see Section 3.1.3

and Appendix A.2.1.) Applying PCA to the labelled visemes leads to the components shown in fig.
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Figure 6.4: Labelled visemes for the image-based model.

1 2 3 4

Figure 6.5: The first four geometric principal components: top-row showsµ +3
√

σ , bottom-row shows

µ−3
√

σ .

Figure 6.6: Transition between visemes /aw/ and /uw/.
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Figure 6.7: Frames from the animation ’lack of money is the root of all evil’, generated using the

image-based method.

6.5. The first several components (3 or 4, depending upon the labelled data) typically account for over

99% of the variance in the data. The rest of the components are culled providing an efficient representa-

tion of viseme geometry. Each component-viseme pair has a related dominance function to control the

temporal influence of the viseme over time.

Trajectories through the parametric space of the model are generated using the dominance functions

(i.e. according to equations (5.1) and (5.2).) However, this only recovers the geometry of the face at

intermediate frames in the animation,Gcoart(t). Surrounding viseme images in the animation are used to

generate the frame itself. Only the two surrounding images (Ii with geometryGi andIi+1 with geometry

Gi+1, wheret ∈ [ti , ti+1]) are used, with a morph algorithm used to create the blend. This requires two

warping functions:δ→ : R2→ R2, which warpsIi such thatGi = Gcoart(t); andδ← : R2→ R2, which

warpsIi+1 such thatGi+1 = Gcoart(t). These warping functions are created using RBFs (see Section

3.2.2 and Appendix A.1.1.) Once the images are aligned, using the warping functions, an alpha blend is

used to combine the warped images,I ′i andI ′i+1 (6.2).

Icoart = (1−α)I ′i +αIi+1

α = t−ti
ti+1−ti

(6.2)

A transition between two visemes is shown in fig. 6.6 and synthetic frames from a generated anima-

tion2 in fig. 6.7. RBFs are used here, but any image morphing algorithm could be used to provide these

transitions (e.g. [Wolberg, 1998, Beier and Neely, 1992].) The model that is created is similar in nature

to Active Appearance Models(AAM, [Cootes et al., 1998].) However, PCA is only used to represent

2Animations generated using the image-based system can be found in the folder ‘animations/section6.2/‘ on the accompanying
CD.
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the geometry, and not the image. A full AAM could equivalently be used, yet other than perhaps data

compression there is no particular reason to do so.

Image-based models, such as the described system, have a key advantage in static realism over

models which use 3D geometry to model the face. However, the problem with image-based models

lie in the modelling of rigid-body transformations. In the image plane these are complex non-linear

transforms, which require some method to recover texture not present in the original images. View

morphing [Seitz and Dyer, 1996] can be used to improve this, with extra views of the face taken from

different angles providing extra necessary degrees-of-freedom. Also, projecting the animation onto a

simple 3D object can help [Brooke and Scott, 1998], for small variations in pose. The restriction of pose

and expression manipulation to the image plane are important when expressive realism is the goal. For

these reasons the remaining systems use 3D meshes to represent the face.

6.3 Constraint-based Synthesis

Instead of using dominance functions to generate trajectories between targets representing visemes, the

constrained-optimization technique described in Section 5.3 can be used. This requires that a solution

to (6.3) is found given a set of constraints,Cj , on the trajectory.

minimize Ob j(X) = ∑i ωi(S(ti)−Vi)2

subject to ∀ j : b j ≤Cj(X)≤ b j
(6.3)

The constraints prevent targets from being met whilst asserting that certain conditions are met (e.g.

the start and end expressions.) Details of constraints applied to the speech trajectory can be found

in Section 5.3.2. The optimal trajectory matching the requirements of this constrained-optimization

problem is found using theSequential Quadratic Programming(SQP) approach described in Appendix

A.3.2. SQP can be used as the derivatives of the constraints and objective function are available. Of

course, there are combinations of constraints which are unsatisfiable, i.e. they contradict one another.

These situations can be prevented by detecting cyclical steps in the optimization. However, relaxation

of the global constraint will typically remedy these situations.

The size of system required to generate a speech trajectory will be directly related to two factors:

the number of parameters used to model facial expression, and the number of phonemes in the target

utterance. The coarticulation of parameters can be assumed to be independent3 and so (6.3) can be

solved for each parameter separately. It is more efficient to break the solution up into sub-problems

in this way than to solve one large system. It may be advantageous in the future to add constraints

between parameters. This is the case in the original spacetime system [Witkin and Kass, 1988] where

joint angles for an articulated figure are interdependent.

The parameterisation used to control facial expression is based upon morph targets. However, to

create a more efficient representation, PCA is applied to the data to retrieve the components in fig. 6.10.

These components are produced by applying PCA to the geometry (vertices) of the morph targets. Only

the region surrounding the mouth is processed, with the tongue separated for the purposes of parame-

terisation. As with the image-based system, this leads to a reduction in the data, and a parameterisation

more closely related to the action of muscle groups on the face. After culling,∼ 20 morph targets can

3Dominance functions, after [Cohen and Massaro, 1993], implicitly assume that coarticulation of parameters is independent.
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Figure 6.8: Frames from the animation ’I am at two with nature’,generated using the constrained-

optimization method (i).
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Figure 6.9: Frames from the animation ’I am at two with nature’,generated using the constrained-

optimization method (ii).
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1 2 3 4

Figure 6.10: First four principal components of the constrained-optimization model: top-row shows

µ +3
√

σ , bottom-row showsµ−3
√

σ .

be represented accurately with∼ 10 principal components. This is more than the previously described

image-based system, but can be accounted for by the three-dimensional nature of the model and the fact

that emotional expressions are also included. Thus, to generate an animation 10 separate optimization

problems must be solved.

The phonetic structure of a target utterance is also an important factor for this technique. The size

of the Hessian (Hob j from Section 5.3.4) will grow with the number of viseme targets in the trajec-

tory. Smaller systems are obviously beneficial to solving the problem at an interactive rate. However,

splitting up the animation into pieces which are too small will lead to a culling of the effect of coartic-

ulation. Natural phrase boundaries are used to chunk the animation (commas, full stops, etc.), with the

assumption that the effect of coarticulation will be least evident at these points. This is a coarse, but

necessary, assumption where the synthesis of long utterances is required. A better solution would be

to use a windowing approach, by using combinations of sub-problems to generate the entire trajectory.

Such a windowing approach has been described in [Cohen, 1992].

Frames from an animation4 generated using the constrained-optimization technique can be seen in

fig. 6.8 and 6.9.

4Animations generated using the constraint-based system can be found in the folder ‘animations/section6.3/‘ on the accom-
panying CD.
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6.4 Limited-domain Synthesis by Unit Concatenation

The most natural audio synthesis techniques concatenate fragments of speech waveforms to generate

novel utterances. In an analagous manner small fragments of visual speech movements can be con-

catenated for visual synthesis (see Section 5.4.) In this system limited-domain synthesis is achieved by

concatenating small fragments of motion-captured data. This type of system requires a significant data

capture and processing phase before any synthesis can be done.

The data used in this system consists of motion data from a commercial Vicon capture system. High

speed cameras, operating at 120Hz, capture the movement of 66 markers on the surface of an actors

face plus 7 more on a head mounted jig to capture rigid motion. Audio data is captured simultaneously

and synchronized with the motion data. Fifty-five sentences were captured from a limited domain time

corpus. The sentences take the form in table 6.2.

Table 6.2: Time-domain corpus.

prompt := {prolog} / {time-info} / {day-info}.
time-info := {exactness} {minutes} {hours}
prolog := ’the time is now’

exactness := ’exactly’ or ’just after’ or

’a little after’ or ’almost’

minutes := ’five past’or ’ten past’or

’quarter past’or ’twenty past’or

’twenty-five past’or ’half past’or

’twenty-five to’ or ’twenty to’ or

’quarter to’or ’ten to’ or ’five to’

hours := ’one’ or ’two’ or . . . or ’twelve’

day-info := ’in the morning’or ’afternoon’or

’am’ or ’pm’

This corpus can be used to generate simple time sentences such as:

‘ the time is now / exactly one / in the afternoon.’ or

‘ the time is now / quarter to ten / in the morning.’

The data is specific to the time domain, and thus the implemented system is limited in generality.

However, as already mentioned in Section 5.4, the same techniques are equally applicable to the general-

domain, using smaller units (e.g. diphones/triphones) as the building blocks for synthesis. The simple

corpus described is adequate to demonstrate the technique. It is also important to note that increasing the

scope of synthesis, and therefore the size of the dataset, hugely increases the time required to capture,

label and process the data for use. Consistency in the captured data is of key importance, and the greater

the time spent in data capture, the greater the likelihood that there will be inconsistencies in the labelling

of the face which would adversely affect the quality of synthesis.

The captured motions require some processing in order to both remove noise and reconstruct missing

data. Kalman filtering is used to remove noise from the data. The rigid head motion is also extracted at
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Figure 6.11: Frames from the animation ’the time is now, just after twenty-five to six, in the morning’,

generated using motion concatenation (i).
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Figure 6.12: Frames from the animation ’the time is now, just after twenty-five to six, in the morning’,

generated using motion-concatenation (ii).
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this stage using a combination of the estimate from the head mounted jig and a least-squares approach.

This last step has the added benefit that the motion samples are initially spatially aligned enabling

simpler concatenation during synthesis. Detail on the processing applied to motion data can be found in

Section 4.3.

Each of the audio sentences is labelled phonetically. The same labels can be used to provide a

transcription of the aligned motion data. This motion data can then be segmented into variable length

units consisting of phrase (e.g. ‘the time is now’, ‘ in the afternoon’, etc.) and word length units (e.g.

‘one’ → ‘ twelve’.) Smaller units can also be used. However, smaller units lead to more concatenation

points, and thus lower quality synthesis. For a limited domain system, such as this, phrases and words

can be used without unmanagable data-capture and labelling phases. Each unit consists of the frames

from the centre of the first phoneme to the centre of the last, with an additional blend period either side

of the unit to facilitate the concatenation process.

The synthesis process consists of several steps:

• Unit Selection- Appropriate units must be selected from the database to generate the utterance

(see Section 5.4.1.)

• Phonetic Alignment and Resampling- Each of the selected units must be phonetically aligned

such that the movements appear insynchrony with the speech. As a consequence of alignment

speech fragments must be resampled to a consistent frame-rate for animation (see Section 5.4.2.)

• Blending- Having aligned and resampled the motions, overlapping sections are blended to achieve

a consistent trajectory over the synthesized utterance (see Section 5.4.3.)

• Retargetting and Animation- A target face model is animated from the synthesized speech move-

ments (see Chapter 4.)

The synthesis is performed in the space of the original actor’s face, i.e. before retargetting, and at

the original framerate (120Hz) whichtakes advantage of all the data available before it is scaled and

manipulated for final animation. Blending the motions at the original framerate is also advantageous

because at the final framerate (25-30Hz) there will only ever be a couple of frames in the blend intervals

to facilitate the transition between motion fragments. Frames from an animation5 generated using this

method are shown in figures 6.11 and 6.12.

One of the main disadvantages of using motion-capture data for concatenative synthesis is that only

the surface of the skin is present in the data. Thus, the movement of the tongue and teeth must either

be modelled separately or their motion inferred from the markers on the skin. For the teeth this can be

accomplished by recovering the rotation of the chin apex about the jaw axis. The surface of the skin does

not directly move with the jaw, but the approximation is accurate enough for the purposes of animation.

The same can be done for the rigid motion of the tongue. However, when producing sounds such as

thick the tongue must be visibly constraining the flow of air. Thus, a model of tongue deformation is

required to make up for this lack in the initial data. In the implemented system a simple morph-based

model is used to deform the tongue appropriately. This is linear, and could be better modelled using

some form of coarticulation model (see Chapter 5.) However, in most cases the tongue is not very

5Animations generated using the motion-based system can be found in the folder ‘animations/section6.4/‘ on the accompa-
nying CD.
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visible, and it is only required that the tongue be in the right position for a small subset of phonemes

(e.g. dental fricatives.)

One of the major advantages of motion concatenation is that the generated animations achieve a high

degree of dynamic realism. This is due to the non-linear relationship between the motion of markers

on the surface of the skin. A similar effect can be achieved using physical models of the skin, but

such systems are computationally intensive. The described system can animate speech in real-time.

Furthermore, the techniques introduced in Chapter 4 allow the use of motions on any given model, and

thus motion concatenation can be used for generating animations with meshes largely different from the

actor from whom the original motions were captured.



Chapter 7

Conclusions

In this thesis methods for the synthesis of visual speech, from initial data capture through to final an-

imation, have been introduced. The process of creating a talking head can be split into several areas

(discussed in Chapters 3, 4, and 5): modelling, capture, and animation. Most systems for visual-speech

synthesis include aspects of all three, but concentrate upon one particular area above all else. Here,

several systems have been used to demonstrate a variety of methods for text-to-visual-speech synthesis

(see Chapter 6.)

The first system [Edge and Maddock, 2001] acts as a baseline definition for synthesis. Geometric

muscle functions are used to deform a 3D polygon mesh to create facial expressions. The animation

of speech involves the modelling of visemes representing the extrema of visible articulation. These are

interpolated to generate speech movements. Such a system entirely ignores the effect of coarticulation

on speech movement. For this reason the animations are over-articulated and unnatural. The short

temporal periods between targets do not give the physical system of muscles enough time to reach each

of the distinct targets in real speech. This is especially apparent when using interpolation for animation.

As some transitions between visemes may only be one or two frames long this leads to non-continuous

motion. For this reason, interpolation for generating speech animation is of the lowest quality to be

expected from a synthesis system. In fact, worse quality could only be achieved by entirely ignoring

the phonetic structure of an utterance. Even though this system represents the lowest level in terms of

quality, this is as far as many commercial systems, particularly computer games, ever achieve. However,

it should be born in mind that even low quality synthesis can be relatively convincing when there are

other visual aspects to draw the attention of a viewer.

Secondly, an image-based talking head has been developed [Edge and Maddock, 2003]. Instead

of modelling facial expression in three dimensions, photographic images of a speaker are captured.

Animation is produced by generating trajectories through a space bounded by these images. Direct in-

terpolation between targets would produce animations of the same dynamic quality as the muscle-based

system. Instead, dominance functions, after [Cohen and Massaro, 1993], are used to generate smooth

transitions through the space bounded by the viseme images. In order to use dominance functions with

an image-based model of facial expression,principal components analysisis used to provide an inter-

mediate parameterisation. The parameterisation of facial expression is an important aspect of creating a

talking head. The effect of coarticulation is not easily related to a generic spatial parameterisation (such

as vertices or feature-points in an image), and PCA provides a means by which to transform a sam-
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pling of speech motion into components related to muscular action (both individual muscles and muscle

groups.) Advantageously, this can be recovered directly from the data, and does not require further man-

ual classification of facial expression (in contrast to a scheme such as FACS [Ekman and Friesen, 1978].)

Unfortunately, for manual control only the first few principal components, dependent upon the dataset,

provide intuitive control of facial expression. Thus, statistical techniques, like PCA, can be useful in

providing an intermediary layer of control for animation, but are not necessarily useful for direct control

of facial expression.

The main disadvantage of using image-based models of facial expression is that rigid-head motion,

and occluded facial features are difficult to model. This is because the only available geometry lies

in the image plane. Using three-dimensional techniques, rotation and transformation of the head is

simple to model. The only way to do this using images is to capture a sampling of expressions across

pose variations and use view interpolation [Seitz and Dyer, 1996]. Another possibility is to project the

resulting animation onto simple geometry, as in [Brooke and Scott, 1998]. However, in profile such

a model is obviously image-based, and lighting such a model is problematic. An improvement over

current facial models would vary both the texture and the geometry of a mesh over time to generate

high quality animation. This has already been attempted, but only for playing pre-captured animations

[Guenter et al., 1998] and not for synthesis.

As an alternative to the use of dominance functions, a constrained-optimization method for target-

based modelling of coarticulation has been introduced [Edge and Maddock, 2004]. The main problems

with using dominance functions lie in the use of an abstract dominance domain to control the influence

of visemes over neighbouring segments. This is like directly manipulating the basis functions of a spline

to control the spline itself. Instead, an optimization technique can be used to attract a trajectory towards

a number of targets (the visemes), whilst constraining the trajectory to prevent the targets from being

exactly interpolated. This is analogous to the idea of speech production being a target-based system

constrained by the physical properties of the vocal tract. Constraints are applied to the system to assert

properties upon a generated trajectory. This provides a stronger form of control over the final trajectory

than is possible with dominance functions. Also, the global constraint upon the trajectory (i.e. the con-

straint which prevents the targets from being met) can be used to provide stylistic control over the final

utterance. The constraint used here limits the parametric acceleration, and provides a continuous range

of possible trajectories between exact interpolation of the targets (over-articulation), and no motion at

all (under-articulation.) The extensibility of this method is implicit in the constrained-optimization for-

mulation. Arbitrary constraints can be added, allowing iterative refinement of the method. Also, the

objective function and global constraint can be modified to change the properties of convergence. This

is in contrast to dominance function methods which can only be modified by substituting different basis

functions [Cosi et al., 2003].

The main disadvantage to using an optimization approach is the non-linear nature of the solution.

Dominance functions are analytic and thus do not require expensive numerical solutions. However,

the described algorithm could be improved by using a moving window approach and only taking into

account local context when solving the system (e.g. using a method such as [Cohen, 1992].) This is a

natural approach to take given that coarticulation has only been observed over relatively short periods of

an utterance [Benguerel and Cowan, 1974]. A windowing approach could also enable larger utterances

to be generated without the associated problems of solving large numbers of simultaneous equations.
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This would also enable spontaneous speech, whereas currently all articulatory motion must be calculated

prior to animation.

The constrained-optimization method also allows a number of possibilities for future research, par-

ticularly into the individualisation of speech animation. Global parameters can be used to extend the

variation in output speech trajectories (e.g. speech rate, adding emotional expressions, etc.) Another

application would be to use this method to fill gaps in a motion-based synthesis system. Boundary

constraints could be used to append generated trajectories to captured motions thereby extending the

practical use of a set of motion data. It would be difficult to solve similar problems using the standard

dominance function approach, and it is this extensibility/flexibility which is the strength of the described

technique.

In contrast to target-based models for synthesis, motion-based models attempt to avoid directly mod-

elling coarticulation by appending short fragments of real speech movements. A motion-based model for

limited-domain synthesis has been developed [Edge et al., 2004]. This system constructs time-domain

utterances from word and phrase length units. Motion-based systems require solutions to unit selec-

tion, alignment, and blending to produce continuous speech trajectories for novel utterances. A shifting

window approach to unit selection (see algorithm in table 5.2) has been introduced to quickly find ap-

propriate units for synthesis. Alignment is performed by fitting a continuous curve through the sampled

motion data, warping the curve to fit the phonetic timings of the target utterance and resampling. Finally,

overlapping motion sections are used to blend between fragments and determine the final trajectory. In

order to use these trajectories to animate face meshes, which vary significantly in shape and scale from

the original actor, a novel facial motion retargetting technique has been used [Sánchez et al., 2003].

Radial basis functionsare used to warp the space of the original motion to coincide with that of the

target mesh. This is a semi-automatic process, requiring only the labelling of a few points on the target

mesh. By the application of this retargetting technique the use of motion data can be maximised. This

is important because the capture of facial motion data is time-consuming and expensive, especially in

comparison with capturing speech audio.

From the described systems we can draw some general conclusions about motion- and target-based

synthesis of visual speech. Motion-based synthesis exhibits high dynamic quality in comparison with

target-based models. This is to be expected as the initial fragments have been captured from real speak-

ers. However, target-based models are significantly easier to construct, requiring only a few (∼ 10−20)

visemes to be defined. The size of motion database required to generate general speech is large in

comparison. This, along with the expense and difficulties involved in capturing consistent motion data

mean that, for the time-being at least, target-based models will remain. Also, target-based models better

conform to traditional animation techniques used during the majority of the last century. These are well

understood, and by manipulating the targets an animator can directly control the expressive nature of

a generated motion. When using motion data there is no direct way to impose stylistic or expressive

control over the output motion. It may be the case that future research will lead to a merging of these

techniques, e.g. using target-based systems to efficiently encode motion units. Unfortunately, current

target-based models cannot represent features of speech not directly related to visemes. Captured mo-

tions often include high frequency components which cannot be directly related to the phonetic structure

of an utterance, the representation of which is impossible if all parameterisation of speech is directly

related to visemes.
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One important aspect which has not been discussed in this thesis is the formal evaluation of talk-

ing heads. The evaluation of audio speech synthesis has been thoroughly tackled in recent times, and

similar work can be conducted into audio-visual speech synthesis. Speech evaluation is usually con-

ducted with regards to naturalness and intelligibility. Naturalness is necessarily an subjective measure

of the quality of synthesis, whereas intelligibility can provide an objective measure of how the synthesis

technique impacts upon recognition rates. We know, following from [Sumby and Pollack, 1954], that

visual speech movements can provide as much as a+15dB improvement in signal-to-noise ratio, which

indicates that the intelligibility improvement provided by the visual component of a talking head is mea-

surable. Word recognition rates in increasing audio noise can indicate the intelligibility of a talking head

when compared with synthetic audio, natural audio, and natural video. Such an experiment, conducted

with a reasonable number of subjects (∼ 20−30), would allow the perceptual benefits of the described

systems to be directly measured. Naturalness, being subjective, is more difficult to measure. Usually a

five-point scale (e.g. Mean Opinion Score: 5 - Excellent, 1 - Bad) is used to measure naturalness, and

a comparison with and without the synthetic visual component could be used to evaluate the relative

improvement which can be accounted for by the talking head. A thorough evaluation of the systems

desribed in Chapter 6 is an important direction of future research. An overview of speech synthesis

evaluation techniques can be found in [Lemmetty, 1999].

We can speculate that the main application of talking heads will be in entertainment (films and com-

puter games) and human-computer interaction (HCI.) The needs of these two areas vary significantly.

Within HCI a talking head is performing a communicative task where clarity and intelligibility are the

most important factors. Within entertainment expressiveness is far more highly regarded, and is required

to communicate feelings/emotions and to engage a viewer. It is clear that whilst the ultimate goal of

visual speech synthesis is the same, i.e. to accurately render the appropriate articulatory movements for

an utterance, yet the techniques used to do this will vary for different applications. Off-line animated

film can afford to use computationally intensive physical models of the face and manual animation. In

contrast, an interface for a cashpoint, where the number of responses is limited, could use geometric

modelling techniques to drive a motion-based synthesis system. The static realism of a modelling tech-

nique, the dynamic and expressive qualities of an animation technique, and the expense in capturing the

initial data will be the factors which determine how visual speech synthesis is performed for a particular

task. There is no single technique which is ideal for all applications. However, none of the current

methods deals adequately with the dynamic action of muscles on the skin, or the emotional expressivity

of speech. It is the action of physical constraints upon the production of speech and the nature of visual

prosody that must be tackled to improve visual speech synthesis in the future.
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Appendix A

Mathematical Techniques

The following appendices detail several of the methods used in the main body of this thesis for data

interpolation, multivariate statistics and the optimization of functions.

A.1 Scattered Data Interpolation

Scattered data interpolation refers to the class of problems where smooth plots, such as splines or sur-

faces are fitted such that they pass through a set of sampled data points. The data points for these

problems are often sparse and unevenly spaced, and the desired properties of the resulting interpola-

tion favour smoothness and affine invariance. From now on we shall refer to the two-dimensional case

of curves for simplicities sake, all methods are equally applicable in the three-dimensional (or indeed

n-dimensional) case.

The general formulation of the scattered data interpolation problem, givenn pairs of data points

pi ,qi ∈Rd, is the definition of a continuous functionf : Rd→Rd with f (pi) = qi . The most fundamental

concept to this problem is polynomial interpolation. These methods fit a curve to the input data points

given that the interpolation constraint must be satisfied, examples beingAitken’s algorithmandCubic

Hermite interpolation. In the following sections we describe methods for data point interpolation based

upon the use ofradial basis functions.

A.1.1 Radial Basis Functions

All forms of data interpolation use a set of basis functions to represent the influence of each segment

over the length of the curve, in the linear case this is a simple linear dropoff. Basis functions areradial

if the value of the function depend only upon the distance from its centre. Thus,Radial Basis Function

(RBF) interpolation constructs a curve from a linear combination of radial bases (A.1).

f (x) = pm(x)+
n

∑
i=1

αiφi(di(x)) (A.1)

In this equation a linear combination of theφi basis functions weighted by theαi ’s are used to

determine the resulting interpolation. The value of eachφi basis function is determined solely by the

euclidean distance from its centre to the pointx, i.e. di(x) = ‖x− ci‖. Finally, pm(x) : Rd → Rd is

a term which ensures a degreem of polynomial precision; i.e. as∑φi → 0, f (x) will tend solely to
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Figure A.1: Radial basis functions: Linear (solid); Cubic Spline (dash); Gaussian (dot-dash),σ = 0.5;

Thin-plate Spline (dotted),σ = 0.75.

the result of the polynomial term. The polynomial term is simply an affine transformation of the data

points. Where there is no polynomial term the RBF is referred to as apure radial sum; however, such

models may yield a poor approximation to a curve away from the influence of the basis centres (the

result of the interpolation will tend to zero.) Several common basis functions are shown in table A.1 and

demonstrated in figures A.1 and A.2.

Table A.1: Radial basis functions.

FUNCTION φ(x) CONSTRAINTS

LINEAR x -

THIN-PLATE SPLINE (x/σ)2log(x/σ) σ > 0

CUBIC SPLINE ‖x2‖3 -

MULTIQUADRIC (x2 +δ )+µ µ > 0, δ > 0

INVERSE MULTIQUADRIC (x2 +δ )−µ µ > 0, δ > 0

GAUSSIAN e−(x2/σ) σ > 0

Several of the RBFs in table A.1 include locality parameters which allow fine control of the shape

of each basis function. Hardy Multiquadrics are one such example, where exponentµ and localityδ

parameters control the spatial influence of each basis centre. Figure A.2 (c) and (d) demonstrate the

effect of changing the exponent and locality parameters for the inverse multiquadric; it can be seen that

increasingδ leads to a more global function, whilst increasingµ localizes the function but maintains its

extent.

The RBFs introduced here are, of course, global in nature. This means that for each interpolated

point all basis functions must be taken into account, as in equation (A.1). For examples ofφ which tend

to 0 at some finite distancer from the centre evaluation can be culled. This is obviously more efficient,
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Figure A.2: Hardy Multiquadrics. Top left: Inverse Multiquadric withµ = 2 andδ = 0.5 (solid), 1

(dash), 1.5 (dot-dash), 2 (dotted.) Top right: Inverse Multiquadric withδ = 1 µ = 1 (solid), 2 (dash),

3 (dot-dash), 4 (dotted.) Bottom left: Multiquadric withµ = 1 andδ = 0.5 (solid), 1 (dash), 1.5 (dot-

dash), 2 (dotted.) Bottom right: Multiquadric withδ = 2.5 andµ = 1 (solid), 2 (dash), 3 (dot-dash), 4

(dotted.)

and where this strategy is used the basis functions are referred to ascompactly supportedor locally

bounded. Applying this to the Hardy Multiquadric would yield the function in (A.2).

φ(x) =

(x2 +δ )±µ if x < r

0 otherwise
(A.2)

Examples of interpolated surfaces using Hardy Multiquadrics are demonstrated in fig. A.3.

Constructing the Interpolant

In order to acquire the weights to interpolate a set of input data points a linear system is constructed. This

system is formed by placing the points back into equation (A.1), the resulting weights are guaranteed to

interpolate the centres of the basis functions (A.3).

A = Φ−1X (A.3)
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A =


α1

α2
...

αn

Φ =


φ1,1 φ1,2 . . . φ1,n

φ2,1 φ2,2 φ2,n

...
...

...

φn,1 φn,2 . . . φn,n

X =


x1

x2
...

xn

 (A.4)

In this equationφi, j is the evaluation of the basis function centered upon thei’th data point given

the j ’th data point, i.e. φi, j = φi(‖xi − x j‖). In the d dimensional case there will bedn+ (d + 1)

coefficients, including both theα weights and the coefficients of the polynomial term. The simplest

option for the polynomial coefficients would be the identity transform, however this assumes that there is

no underlying rigid transformation of the data points. The polynomial coefficientspi can be determined

at the same time as the basis weights given compatibility constraints which ensure that the result of the

interpolation reduces to the affine component wherever possible, i.e. it is affine reducible (A.5).

n

∑
i=1

α
k
i =

n

∑
i=1

α
k
i xk

i = 0 (A.5)

In (A.5) xk
i refers to thekth component of theith RBF centre, e.g. in two-dimensionsk ∈ {1,2}

representing thex andy components of each centre. Given these compatibility constraints theαi weights

and components of the polynomial termpi can be calculated at the same time by solving the system of

equations in (A.6).

[
A

pm

]
=

[
Φ P

PT 0

]−1[
X

0

]
(A.6)

[
A

pm

]
=



α1
...

αn

p0

p1


[

Φ P

PT 0

]
=



φ1,1 . . . φ1,n x1 1
...

...
...

...
...

φn,1 . . . φn,n xn 1

xT
1 . . . xT

n 0 0

1 . . . 1 0 0


(A.7)

The linear systems in (A.3) and (A.6) can be solved using any standard technique, such as Gaussian

elimination. Theα weights and polynomial coefficients can then be placed back into (A.1) and used to

interpolate the initial set of data pointsx.

A.2 Multivariate Statistics

Multivariate statistical techniques are intended to provide the ability to analyze high-dimensional datasets

where many variables are correlated with one another. The intent is usually to describe the data using

a few highly descriptive variables which are easier to interpret and demonstrate important relationships.

Several techniques are commonly used, these include:factor analysis, principal components analysis,

independent components analysis, andsingular value decomposition. These all provide a basis for an in-

put dataset, and are useful in data compression and parameterisation. In the following sectionsprincipal

components analysisandsingular value decompositionare described in more detail.
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Figure A.3: Interpolated surfaces using Hardy Multiquadrics (top to bottom):δ = 0.05,0.25,1.
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A.2.1 Principal Components Analysis

Principal Component Analysis (PCA) (also known as the Karhunen-Loeve or Hotelling Transform)

is a statistical technique often used in the analysis and compression of datasets consisting of large

numbers of interdependent variables. PCA assumes that the data being represented can be expressed as a

hyperellipse; the axes of which point in the principal directions of variance and are mutually orthogonal.

Describing the initial dataset in terms of its principal components implies rotating the data such that there

is no correlation between variables. Using PCA, a randomly sampled vector populationv= {v1, . . . ,vs}T

can be defined in terms of its mean,µv, and its principle directions of variationei (A.8).

v = µv +
s

∑
i=1

eibi (A.8)

Where each vector in a population is of lengthn, there are potentiallynpc = min(n,s) principal

components, in the case where all variables are mutually independent (and are themselves the principal

components.) However, in most cases the number of components required to accurately represent the

data will be much less than the number of samples in the initial population, i.e.npc� s. This has

important consequences for data compression, as truncating the number of principal components can

lead to a significant reduction in storage requirements. An example of PCA applied to 2D point data

is demonstrated in fig. A.4, notice that the principal components better describe the input data than the

initial x andy axes.

PCA makes several assumptions about the data to which it is being applied:

• Gaussian distributed - PCA assumes that the underlying datset is Gaussian distributed, and only

under this condition will it yield statistically independent variables.

• Linearity - PCA describes a dataset as a linear combination of components, and thus is not good

at representing non-linear relationships.

• Completeness of sample data - As with all multivariate techniques PCA can only represent the

relationships in the provided data, and thus a rich input dataset is required to produce a good

model.

Usually the first few principal components of a dataset will be highly descriptive, with lower com-

ponents unintuitive and describing relationships apparent in the input sample data but not in the entire

population. Despite this PCA is a commonly used method for data compression and reparameterisation

of large sets of variables. It is important to note that principal components are notstatistically indepen-

dent, this is a stronger qualification and can be accommodated usingIndependent Components Analysis

(ICA, see [Hyv̈arinen et al., 2001].) A more complete overview of PCA and methods for determining

which components to select can be found in [Jolliffe, 1986].

Calculating the Principal Components

The principal components for a dataset can be calculated directly from the covariance matrix,Cv, defined

in (A.9).

µv = E{v}
Cv = E{(v−µv)(v−µv)T}

(A.9)
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Figure A.4: Principal components (red arrows) of a gaussian distributed point dataset.

The componentsci j of Cv contain the covariance between the variable componentsvi andv j . If

the components are uncorrelated thenci j = 0. As Cv for a given sample population is symmetric it

can be used to calculate an orthogonal basis, i.e. the principal components of the dataset. In order to

calculate a basis the eigenvalues,λi , and eigenvectors,ei , can be calculated, these are the solutions to

the characteristic equation (A.10).

Cvei = λiei

|Cv−λ I |= 0
(A.10)

In (A.10) I is the identity matrix, and|.| denotes the determinant of a matrix. Each of theλi contains

the variance of theith principal component, which is the eigenvectorei . There are many ways of calculat-

ing the eigenvalues and associated eigenvectors for a matrix, for a thorough discussion of eigen decom-

position routines and the advantages/disadvantages of each technique see [Golub and Van Loan, 1996,

Jolliffe, 1986].

A.2.2 Singular Value Decomposition

Another way to calculate a basis for a number of observations is to calculate theSingular Value Decom-

position(SVD.) The SVD takes a matrix ofn samples,X, and decomposes it into three sub-matrices

(A.11).

X = UΣVT (A.11)
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U andV aren× r andp× r matrices respectively, wherep is the size of each sample vector andr is

the rank ofX (i.e. the number of non-zero principal components.) Both these matrices are column ortho-

normal (i.e.UUT = I andVVT = I .) Σ is a diagonal matrix of lengthr. In fact this is an efficient way to

calculate the principal components of the sample matrix. The principal components (i.e. the eigenvec-

torsei from (A.10)) are the columns ofV, whilst the diagonal components ofΣ are the
√

λ i . An efficient

algorithm for applying this decomposition can be found in [William H. Press and Flannery, 1992].

A.3 Optimization

Optimization problems are those where three factors can be identified: firstly, a set of independent vari-

ables,X, the values of which must be refined; secondly, a measure of thegoodnessfor a particular state

of the independent variables,Ob j : Rd → R, the objective function; and finally, a set of restrictions

upon valid system states,Ci : Rd→ R, the constraints. Given these factors, optimization involves either

minimizing or maximizing the result of the objective function by varying the state of the independant

variables. Of course there can be problems when maximizing a non-finite function, for example max-

imizing Ob j(x) = x2 would never converge, thus we usually formulate optimization problems as the

minimization of an objective function (A.12).

minimize Ob j(X) X ∈ Rd

subject to Ci(X) = 0, i = 1,2, . . . ,m′;

Ci(X)≥ 0, i = m′+1, . . . ,m.

(A.12)

The objective function,Ob j(X), and the constraints,Ci(X), are all scalar valued functions. Two

different forms of constraints are applicable: equality and inequality constraints. Inequality constraints

set bounds upon the set of possible solutions, and can be transformed into equality constraints by intro-

ducing a slack variable (A.13).

Ci(X)≥ 0

becomes Ci(X)−y2
i = 0

(A.13)

This implicitly constrainsCi(X) to be greater than 0, given thaty2
i can only be positive. Thus all

constraints may be considered uniformly as equalities and the same methods can be applied to both.

Alternative methods for enacting inequality constraints can be found in [Gill et al., 1995]. A further

distinction to make is between active and inactive constraints. Constraints are only active when for a

given state of the system̃X the constraintCi(X̃) is violated. Inactive constraints can be disregarded

in the solution of the optimization problem until they become active, i.e. are violated by a step in the

optimization procedure.

The final solution to an optimization problem will occur once any further improvement would

lead to violation of active constraints. Thus, to halt iterative optimization routines requires that the

objective step,∆Xob j, be compared to the constraint step,∆Xcstr; i.e. the routine should halt when

∆Xob j→ −∆Xcstr. It is also useful to maintain a count of the number of iterations to detect noncon-

vergent behaviour. The methods in the following sections can be used to solve general optimization or

constrained optimization problems of the form defined in (A.13).
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Figure A.5: Steps in the downhill simplex method (after [William H. Press and Flannery, 1992].)

A.3.1 Downhill Simplex

The downhill simplex method is a special form of optimization method as it does not require derivatives

of the objective or constraint functions. One important feature is that the optimization requires only

function evaluations, and not derivatives of the objective function. The method relies upon the definition

of a simplex, a geometric figure consisting ofn+ 1 vertices inn dimensions, i.e. a triangle in two-

dimensions or a tetrahedron in three-dimensions. In constructing a simplex from an initial pointp0∈Rd

the remaining vertices,pi , are defined as offsets by a scalarλ along unit vectors,ei , usually aligned with

the axes of the parameter space (A.14).

pi = p0 +λei (A.14)

At each of the vertices the objective function will take on a particular value, thus the simplex is

a discrete representation of the objective over a small area of the optimization landscape. In order to

perform the optimization the simplex must traverse the optimization landscape from its highest vertices

towards its lowest, and therefore more optimal vertices. In this manner the simplex can be visualised

as sliding down the slopes of an optimization landscape towards the minima. The simplex proceeds by

taking a number of steps depending upon the objective value at each of the vertices, these steps are (see

also fig. A.5 for a graphical depiction of the steps) :

• reflection- a reflection pushes the worst point through the opposite face towards the minima of

the function.

• reflection and expansion- if a reflection yields a worse vertex, the vertex is projected back through

the face and expanded.

• contraction- contraction along one edge from the worst point towards the best.

• multiple contraction- contraction of all vertices toward the best vertex.
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The downhill simplex method will continue with the above steps until it converges upon a minima.

The action of the simplex implicitly calculates the derivatives in a manner similar to the method of finite

differences, and is thus sensitive to the same problems with the choice ofλ particularly problematic.

Simplex methods are inappropriate for non-smooth optimization landscapes, however this can be ame-

liorated in the case where the procedure is initialized close to the minima and locally the landscape is

relatively smooth.

A.3.2 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is a generalization upon Newton’s method for unconstrained

optimization. The variant described here computes a second order Newton step in the objective function,

Ob j, and a first order step in theCi constraints. These two steps are combined by projecting the result of

the first onto the null space of the second. Contrasting with the downhill simplex method, SQP requires

derivatives of both the objective and constraint functions; theHessianof the objective function,Hob j,

andJacobianof the constraints,Jcstr, are defined in (A.15).

Hob j =



∂ 2Ob j
∂X1∂X1

∂ 2Ob j
∂X1∂X2

. . . ∂ 2Ob j
∂X1∂Xn

∂ 2Ob j
∂X2∂Xj

... ∂ 2Ob j
∂X2∂Xn

...
...

...
∂ 2Ob j

∂Xn∂X1

∂ 2Ob j
∂Xn∂X2

. . . ∂ 2Ob j
∂Xn∂Xn

 Jcstr =



∂C1
∂X1

∂C1
∂X2

. . . ∂C1
∂Xn

∂C2
∂X1

... ∂C2
∂Xn

...
...

...
∂Cm
∂X1

∂Cm
∂X2

. . . ∂Cm
∂Xn

 (A.15)

The first step,∆Xob j, optimizes a second order approximation of the objective function (A.16).

∆Xob j =−H−1
ob j


∂Ob j
∂X1
...

∂Ob j
∂Xn

 (A.16)

The second step,∆Xcstr, drives the constraints to 0 whilst simultaneously projecting∆Xob j onto the

null space ofJcstr (A.17).

∆Xcstr = J+
cstr(Jcstr∆Xob j−C) (A.17)

The matrixJ+
cstr is the pseudoinverse ofJcstr. For a non-square matrix the inverse,J−1

cstr cannot be

calculated using the standard techniques, this is because the equation no longer has a unique solution.

Thus the pseudoinverse is chosen to find the optimal solution. The pseudoinverse can be calculated

directly from the SVD (see Appendix A.2.2) (A.18).

if A = UΣVT

then A+ = VΣ−1UT
(A.18)

As Σ is a diagonal matrix of the singular values, the inverse,Σ−1, is the matrix with the reciprocal

diagonal elements (A.19).
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if Σ =


σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

0 0 0 σ4

 then Σ−1 =


1

σ1
0 0 0

0 1
σ2

0 0

0 0 1
σ3

0

0 0 0 1
σ4

 (A.19)

Where the inverse,A−1, does exist the inverse and pseudoinverse are the same, i.e.A−1 = A+. This

follows as the inverse will drive the error inAx= b to zero.

The next step,Xj+1, in the SQP method is a linear combination of the optimization and constraint

steps (A.20).

Xj+1 = Xj +(∆Xob j +∆Xcstr) (A.20)

The iteration continues until the optimization criteria are met. This is the variant of SQP described

in [Witkin and Kass, 1988]. For a more thorough overview of quadratic programming methods and

optimization procedures in general see [Gill et al., 1995].

A.3.3 Simulated Annealing

Simulated Annealing (SA) methods are techniques which apply ideas from the Bolzman probability

distribution to global optimization (A.21).

prob(E)≈ e−E/kT (A.21)

This equation describes the probability of a system being in thermal equilibrium with energyE at

a temperatureT (k is the Boltzman constant and not significant with regards the SA algorithm.) This

allows for a system to be in a high energy state whilst still being at a low temperature, albeit with a

relatively low probability. In order to minimize a function it can be advantageous tonot only travel

down the steepest slope, but to sometimes take uphill steps to avoid local minima, and to therefore find

a global solution to the problem; this is the same notion as expressed in (A.21).

At each step of the SA algorithm the current state of the system,X, is mutated to explore the space

of the objective function, i.e.Xmutated← X + δX. If Xmutated is betterthanX (i.e. EX > EXmutated) then

Table A.2: Simulated annealing algorithm.

Input: List of init if mutantEval< bestEvaldo

Output: List ofvars bestEval←mutantEval

best←mutant

vars← init vars←mutant

i← 0 else ifBOLZMAN(mutant) = truedo

best← vars vars←mutant

bestEval← EVAL(best) end if

while i < maxDepthdo i← i +1

mutant←MUTATE(vars) end while

mutantEval← EVAL(mutant) vars← best
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X← Xmutatedand the algorithm continues. This means that in general the algorithm will proceed in a

downwards direction towards the minima of the objective function, in a similar manner to the previous

methods. IfEX < EXmutated then a random decision is taken according to the probability distribution

in (A.21) to determine whether the mutated state should be kept or not. This ensures that uphill steps

may be taken and thus globally optimal solutions can be found. The convergence properties of the SA

algorithm are determined by the temperature,T, and the algorithm used to mutate the system state.

A pseudo-algorithm for the SA optimization procedure is shown in table A.2. In this code:EVAL

returns the result of the objective function;MUTATEmutates the current state according to some pro-

cedure, e.g. random variable perturbation; andBOLZMAN returnstrue if the mutant, which is less

optimal than the best encountered solution, should be kept.
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Audio Speech Synthesis

Audio speech synthesis is the generation of audio waveforms that mimic the patterns and vocal prop-

erties of natural human speech. Usually synthesis systems provide text-to-speech conversion with the

input being unparsed text, possibly with some form of markup language, and the output being a digi-

tally encoded waveform. Two main stages are involved: firstly, text is transformed into some linguistic

representation (usually phonemes) which unambiguously represents the sounds in the utterance and

processed to determine its prosodic features (duration, intonation, stress etc.); secondly, the linguistic

representation and prosodic features are used by the low level synthesis procedure to generate the final

waveform.

Linguistic transcription of text requires procedures which are highly language specific. In some lan-

guages, such as Spanish, there is a high degree of correlation between the written word and its phonetic

representation. However, other languages, in particular British English, require complex transcription

procedures. This can be split into several stages (see also fig. B.1):

• Preprocessing - Usually text is preprocessed to expand numbers (e.g. 1750 becomesone thousand

seven hundred and fifty), abbreviations (e.g. Dr. becomesdoctor), and special characters (&

becomesand) into the appropriate words. In some cases this is context dependent (e.g. time

vs. currency) or particular to the symbol/abbreviation (e.g. N.A.T.O. is pronounced as written,

whereas S.A.S. is pronounced letter-by-letter.)

• Pronunciation - For many words the pronunciation will be fixed for a particular regionalisation

of a language. However, some words are so-calledhomographs, that is they have different pro-

nunciation according to context (e.g. ‘threeliveswere lost’ vs. ‘onelives to eat’.) Thus context-

dependent rules must be produced to deal with these situations. This is particularly the case for

proper names, such as the French townNice.

• Prosody - Prosodic features, such as duration and stress, are products of the individual speaking

(e.g. because of gender and sex), the emotional content of the utterance (e.g. anger, happiness

etc.), and the meaning of the utterance itself (e.g. statement, question etc.) Some of these can

be directly determined from or are implied by the input text. Unfortunately, phrase breaks are

sometimes not textually indicated and accentuation is rarely indicated. This is important because

incorrect prosodic features can entirely change the meaning of a sentence (e.g. ‘John says: Peter

is a liar’ vs. ‘John, says Peter, is a liar’.)

112
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Figure B.1: Sequence of audio speech synthesis processes.

A number of different methods have been described to take the output of the described stages and

transform this phonetic/prosodic encoding of speech into a waveform. The methods for low level speech

synthesis can be summarised into the following categories: articulatory synthesis, source-filter synthe-

sis, and concatenative synthesis. A thorough discussion of audio speech synthesis technologies can be

found in [Lemmetty, 1999].

B.1 Articulatory Synthesis

Articulatory synthesis attempts to produce speech by modelling the vocal tract and the process of speech

production itself. Conceptually this is the best means by which to produce natural-sounding audio. How-

ever, the complexity of the underlying processes make this a highly difficult challenge and synthesisers

of this form this form tend to be computationally intensive.

In order to fulfill the challenge of articulatory synthesis each of the organs in the vocal tract are

functionally modelled. One of the first articulatory models used a table of vocal tract area functions

between the larynx and lips for each phoneme as the basis for synthesis. Other example parameters for

rule-based synthesis include: lip aperture, lip protrusion, tongue tip height, tongue tip position, tongue

height, tongue position, and velic aperture. These are clearly related to the phonetic structure of an

utterance (as shown by the consonant and vowel classifications in tables 2.3, 2.4 and 2.5.)

By its nature articulatory synthesis is attempting to model the complex three-dimensional system

of the vocal tract and its dynamic changes. Necessarily, all current systems simplify the nature of

real articulation considerably, and yet are still more complicated than other systems described in this

appendix. Few articulatory systems are in development in comparison with those which use formant

and concatenative methods. However, it is the case that the nature of the parameters for articulatory

models fit best with visual synthesis and this may be a source of research in the future.
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B.2 Source-filter Synthesis (Formant Synthesis)

Speech production can be considered as a combination of acoustic source and vocal tract filter (i.e. the

source-filter model), and it is this notion on which formant synthesis is based. Parameters and rules

which determine the frequency and amplitude of the first several formants1 and the characteristics of the

excitation source are used to control the output speech waveform. Because the formants are related to

the filtering caused by the vocal tract by imposing formants at appropriate frequencies synthetic speech

can be produced (synthetic music can be produced in a similar manner.)

Formant synthesisers can be either structured as a cascade of resonators, with formants added one

after the other to an excitation signal, or in a parallel structure. The cascade structure is considered

better for non-nasal voiced sounds, whilst parallel structures are better for nasals, fricatives, and stop-

consonants - due to this many formant synthesisers now consist of both parallel and cascade resonator

arrays. Newer formant synthesisers may also have parameters to control the source, glottal waveform,

and radiation characteristics of the mouth.

B.3 Concatenative Synthesis

Concatenative synthesis works by taking parts of real speech waveforms and combining them to create

novel utterances. The parts used depend upon the domain of the synthesis (e.g. unrestricted domain vs.

limited domain), and the quantity of available data. For general text-to-speech synthesis the units used

are typically much smaller than in limited domain systems, this is because with increased unit size the

number of units required will exponentially increase, and thus using syllables for synthesis will require

many thousands more units than, for example, diphones.

The size of unit used will impact directly upon the quality of synthesis. This is because less concate-

nation is being performed, and if these joints coincide with natural word, phrase, or sentence boundaries

then the synthetic transitions will be less obvious. The quality of limited domain concatenative synthe-

sis is very high, and is the only method to be commonly used in a commercial situation (e.g. railway

anouncements.) General synthesis is of a lower quality, yet still produces the most natural audio of all

the methods for synthesis. The reason for this is that the non-stationary aspects of speech are captured

well in waveform fragments and prosodic qualities can be included in the data capture.

To generate an utterance from a sequence of waveform fragments a synthetic transition must be

produced at a blend region where the fragments overlap. The most common method for this is Pitch-

Synchronous-Overlap-and-Add (PSOLA.) In this method short-term signals created by multiplying the

original signal with a pitch-synchronous Hanning window are overlap-added to produce the resulting

waveform. By separating or compressing the short-term signals in recombination the pitch of the output

signal can also be modified. This is Time-Domain PSOLA (TD-PSOLA); other PSOLA methods exist

including Linear-Predictive PSOLA (LP-PSOLA) and Frequency-Domain PSOLA (FD-PSOLA.)

The main problem with concatenative synthesis lies in the amount of data that must be captured and

labelledbeforeany utterances can be generated. Also, by the nature of the waveform fragments, the

synthesised utterance will always sound like the individual from whom the data is captured.

1Formants are pole frequencies, and antiformants are zero frequencies.
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6 odd u two b be k key T theta

æ at E Ed m me d dee f fee

2 hut 3 hurt p pee t tea v vee

O ought e ate tS cheese h he g green

Aw cow I it dZ gee l lee s sea

aI hide i eat S she n knee w we

U hood o oat Z seizure N ping j yield

Oy toy D thee r read z zee

Table B.1: English phoneme classification used in Festival.

B.3.1 Festival

Festival is a general multi-lingual concatenative text-to-speech synthesiser developed at Edinburgh Uni-

versity [Black et al., 1999]. The low-level units for general synthesis are diphones. New voices can

be created using the FestVox building tools, requiring a database of1̃500 mono-syllabic utterances to

create an English voice. The system also provides the ability to define limited domain voices (e.g. time

or rail announcements) using a cluster unit selection algorithm (CLUnits.) The phonetic categorisation

used by Festival is shown in table B.1.
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engine for real time applications. InProceedings of the 6th international conference on 3D web

technology, pages 15–22.

[Brooke and Scott, 1998] Brooke, N. and Scott, S. (1998). Two and three-dimensional audio visual

speech synthesis.Proc. AVSP’98, pages 213–220.

[Bruderlin and Williams, 1995] Bruderlin, A. and Williams, L. (1995). Motion signal processing. In

Proceedings of SIGGRAPH’95, pages 97–104.

[Bui et al., 2004] Bui, D., Heylen, D., and Niyholt, A. (2004). Combination of facial movements on a

3d talking head. InProceedings CGI’04, pages 284–291.

[Bulut et al., 2002] Bulut, M., Narayanan, S., and Syrdal, A. (2002). Expressive speech synthesis using

a concatenative synthesizer. InProceedings of ICSLP’02, pages 1265–1268.

[Cao et al., 2004] Cao, Y., Faloutsos, P., Kohler, E., and Pighin, F. (2004). Real-time speech motion

synthesis from recorded motions. InProceedings SCA’04, pages 225–231.

[Choe et al., 2001] Choe, B., Lee, H., and Ko, H.-S. (2001). Performance-driven muscle-based facial

animation.Journal of Visualization and Computer Animation, pages 67–79.

[Clough and Tocher, 1965] Clough, R. and Tocher, J. (1965). Finite element stiffness matrices for

analysis of plates in bending. InProceedings of Conference on Matrix Methods in Structural Analy-

sis.

[Cohen, 1992] Cohen, M. (1992). Interactive spacetime control for animation. InProceedings of SIG-

GRAPH’92, pages 293–302.

[Cohen and Massaro, 1993] Cohen, M. and Massaro, D. (1993). Modeling coarticulation in synthetic

visual speech. InProceedings Computer Animation ’93, pages 139–156.

[Cohen et al., 2002] Cohen, M., Massaro, D., and Clark, R. (2002). Training a talking head. InPro-

ceedings of the 4th IEEE International Conference on Multimodal Interfaces, pages 499–510.

[Cootes et al., 1998] Cootes, T., Edwards, G., and Taylor, C. (1998). Active appearance models. In

European Conference on Computer Vision, pages 484–498.

[Coquillart, 1990] Coquillart, S. (1990). Extended free-form deformation: a sculpturing tool for 3d

geometric modeling. InProceedings of SIGGRAPH’90, pages 187–196.

[Cosi et al., 2003] Cosi, P., Fuysaro, A., and Tisato, G. (2003). Lucia a new italian talking head based

on a modified cohen-massaro labial coarticulation model. InProceedings of Eurospeech’03, pages

2269–2272.

[DeCarlo et al., 1998] DeCarlo, D., Metraxas, D., and Stone, M. (1998). An anthropometric face model

using variational techniques. InProceedings of SIGGRAPH’98, pages 67–74.



Bibliography 118

[Denes and Pinson, 1973] Denes, P. and Pinson, E. (1973).The speech chain: the physics and biology

of spoken language. Anchor (New York).

[Dutoit et al., 1996] Dutoit, T., Bataille, F., Pagel, V., Pierret, N., and Van Der Vreken, O. (1996). The

mbrola project: towards a set of high-quality speech synthesizers free of use for non-commercial

purposes. InProceedings of ICSLP’96, pages 1393–1396.

[Edge et al., 2004] Edge, J., Lorenzo, M. S., and Maddock, S. (2004). Reusing motion data to animate

visual speech. InProceedings of AISB’04.

[Edge and Maddock, 2001] Edge, J. and Maddock, S. (2001). Expressive visual speech using geometric

muscle functions. InProceedings of EGUK’01, pages 11–18.

[Edge and Maddock, 2003] Edge, J. and Maddock, S. (2003). Image-based talking heads using radial

basis functions. InProceedings of EGUK’03, pages 74–80.

[Edge and Maddock, 2004] Edge, J. and Maddock, S. (2004). Constraint-based synthesis of visual

speech. InProceedings of SIGGRPAH’04 Sketches Programme.

[Eisert et al., 1997] Eisert, P., Chaudhuri, S., and Girod, B. (1997). Speech driven synthesis of talking

head sequences. InProceedings of 3D Image Analysis and Synthesis, pages 51–56.

[Ekman and Friesen, 1978] Ekman, P. and Friesen, W. (1978).Facial action coding system. Consulting

Psychologists Press inc. (Palo Alto).

[Essa, 1995] Essa, I. A. (1995).Analysis, interpretation, and synthesis of facial expressions. PhD

thesis, Massachusetts Institute of Technology.

[Ezzat et al., 2002] Ezzat, T., Geiger, G., and Poggio, T. (2002). Trainable videorealistic speech anima-

tion. In Proceedings of SIGGRAPH’02, pages 388–398.

[Ezzat and Poggio, 1999] Ezzat, T. and Poggio, T. (1999). Visual speech synthesis by morphing

visemes. Technical Report AIM-1658, Massachusetts Institute of Technology.

[Fagel and Clemens, 2003] Fagel, S. and Clemens, C. (2003). Two articulation models for audio-visual

speech synthesis - description and determination. InProceedings of AVSP’03, pages 215–220.

[Farin, 1997] Farin, G. (1997).Curves and surfaces for computer aided geometric design. Academic

Press.

[Farkas, 1994] Farkas, L. (1994).Anthropometry of the head and Face. Raven Press.

[Frank et al., 1997] Frank, T., Hoch, M., and Trogemann, G. (1997). Automated lip-sync for 3d-

character animation. InProceedings of the 15th IMACS World Congress on Scientific Computation,

Modelling and Applied Mathematics.

[Frydrych et al., 2003] Frydrych, M., K̈atsyri, J., Dobśık, M., and Sams, M. (2003). Toolkit for anima-
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[Revéret et al., 2000] Rev́eret, L., Bailly, G., and Badin, P. (2000). Mother: a new generation of talking

heads providing a flexible articulatory control for video-realistic speech animation.Proceedings of

ICSLP’2000, pages 755–758.

[Ruprecht and Muller, 1995] Ruprecht, D. and Muller, H. (1995). Image warping with scattered data

interpolation.IEEE Computer Graphics and Applications, 3:37–43.

[Russel, 1980] Russel, J. (1980). A circumplex model of affect.Journal of Personality and Social

Psychology, 39:1161–1178.

[Ruttkay et al., 2003] Ruttkay, Z., Noot, H., and ten Hagen, P. (2003). Emotion disc and emotion

squares: tools to explore the facial expression space.Computer Graphics Forum, 22(1):49–53.

http://cmusphinx.sourceforge.net/sphinx3
http://cmusphinx.sourceforge.net/sphinx3


Bibliography 123
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[Sánchez et al., 2004] Śanchez, M., Edge, J., and Maddock, S. (2004). Realistic performance-driven

facial animation using hardware acceleration. Technical report, University of Sheffield.

[Sánchez and Maddock, 2003] Sánchez, M. and Maddock, S. (2003). Planar bones for mpeg-4 facial

animation. InProceedings of EGUK’03, pages 81–88.

[Sederberg and Parry, 1986] Sederberg, T. and Parry, S. R. (1986). Free-form deformation of solid

geometric models. InProceedings of SIGGRAPH’86, pages 151–160.

[Seitz and Dyer, 1996] Seitz, S. and Dyer, C. (1996). View morphing. InProceedings of SIG-

GRAPH’96, pages 21–30.

[Singh and Fiume, 1998] Singh, K. and Fiume, E. (1998). Wires: a geometric deformation technique.

In Proceedings of SIGGRAPH’98, pages 405–414.

[Singh and Kokkevis, 2000] Singh, K. and Kokkevis, E. (2000). Skinning characters using surface

oriented free-form deformations. InProceedings of Graphics Interface’00, pages 35–42.

[Sumby and Pollack, 1954] Sumby, W. and Pollack, I. (1954). Visual contribution to speech intelligi-

bility in noise. The Journal of the Acoustical Society of America, 26(2):212–215.

[Summerfield, 1987] Summerfield, Q. (1987).Hearing by Eye: The Psychology of Lipreading, chap-

ter Some preliminaries to a comprehensive account of audio-visual speech perception, pages 3–51.

Lawrence Earlbaum Associates Ltd.

[Tamura et al., 1998] Tamura, M., Masuko, T., Kobayashi, T., and Tokuda, K. (1998). Visual speech

synthesis based on parameter generation from hmm: speech-driven and text-and-speech-driven ap-

proaches. InProceedings of AVSP’98, pages 221–226.

[Tao and Huang, 1998] Tao, H. and Huang, T. (1998). Bezier volume deformation model for facial

animation and video tracking. InProceedings of CAPTECH’98, pages 242–253.

[Tatham, 1969] Tatham, M. (1969). The control of muscles in speech. Technical report, University of

Essex.

[Tibbalds, 1998] Tibbalds, A. (1998).Three dimensional human face acquisition for recognition. PhD

thesis, University of Cambridge.

[Ulgen, 1997] Ulgen, F. (1997). A step toward universal facial animation via volume morphing. In

Proceedings 6th IEEE International Workshop on Robot and Human communication, pages 358–

363.

[Waters, 1987] Waters, K. (1987). A muscle model for animation three-dimensional facial expression.

In Proceedings of SIGGRAPH’87, pages 17–24.

[Waters and Levergood, 1993] Waters, K. and Levergood, T. (1993). Decface: an automated lip-

synchronization algorithm for synthetic faces. Technical report, DEC Cambridge Research Labs.



Bibliography 124

[Wickelgren, 1969] Wickelgren, W. (1969). Context-sensitive coding, associative memory, and serial

order in (speech) behaviour.Psychological review, 76:1–15.

[William H. Press and Flannery, 1992] William H. Press, Saul A. Teulkolsky, W. T. V. and Flannery,

B. P. (1992).Numerical recipes in C: the art of scientific computing. Cambridge University Press.

[Williams and Katsaggelos, 2002] Williams, J. and Katsaggelos, A. (2002). An hmm-based speech-to-

video synthesizer.IEE Transactions on Neural Networks, 13(4):900–915.

[Williams, 1990] Williams, L. (1990). Performance-driven facial animation. InProceedings of SIG-

GRAPH’90, pages 235–242.

[Williams et al., 1995] Williams, P., Bannister, L., Berry, M., Collins, P., Dyson, M., Dussec, J., and

Ferguson, M. (1995).Gray’s anatomy. Churchill Livingston (NY).

[Witkin and Kass, 1988] Witkin, A. and Kass, M. (1988). Spacetime constraints. InProceedings of

SIGGRAPH’88, pages 159–168.

[Witkin and Popovic, 1995] Witkin, A. and Popovic, Z. (1995). Motion warping. InProceedings of

SIGGRAPH’95, pages 105–108.

[Wolberg, 1998] Wolberg, G. (1998). Image morphing: a survey.The Visual Computer, 14:360–372.

[Xu and Prince, 1997] Xu, C. and Prince, J. (1997). Gradient vector flow: a new external force for

snakes. InProceedings of CVPR’97, pages 66–71.

[Zhang et al., 2004] Zhang, L., Snavely, N., Curless, B., and Seitz, S. (2004). Spacetime faces: high

resolution capture for modelling and animation. InProceedings of SIGGRAPH’04, pages 548–558.


	List of Figures
	List of Tables
	Supporting Publications
	Introduction
	Main Thesis Contributions
	Thesis Structure

	Background: The Production and Perception of Speech
	Production of Speech
	Anatomy of the Vocal Tract
	Phases of Speech Production
	Phonetics and the Vocal Tract
	Visual Phonetics
	Coarticulation
	Prosody

	Perception of Speech
	Conflicting Audio-Visual Signals: The McGurk Effect

	Summary

	Parameterisation and Modelling of Facial Expression
	Parameterising Facial Expression
	Facial Action Coding Scheme (FACS)
	MPEG-4 Facial Coding (FDPs/FAPs)
	Statistical Parameterisation of Facial Expression

	Geometric Modelling of Facial Expression
	Interpolation Techniques
	Free-form Deformation
	Free-form Deformations and Discontinuities

	Physical Modelling of Facial Expression
	Summary

	Capturing and Retargetting Facial Motion
	Capturing Facial Motion
	Facial Motion Data
	Pre-processing Motion Data
	Removing Sensor Noise
	Estimation and Removal of Rigid Transformation

	The Retargetting Problem
	Previous Work
	Retargetting Motion Data with Radial Basis Functions
	Preparing the Target Surface

	Animation from a Cloud of Points
	Results
	Summary

	Animating Speech
	Previous Work
	Target-based Synthesis using Dominance Functions
	Fitting Dominance Functions to Speech Trajectories

	Target-based Synthesis using Constrained-Optimization
	Objective Function
	Constraints
	Representing the Speech Trajectory
	Solving The Constrained Optimization Problem
	Comparison with Dominance Functions

	Motion-based Synthesis
	Unit Selection
	Alignment and Resampling of Speech Fragments
	Blending Motions

	Summary

	Implemented Systems
	Synthesis using Geometric Muscle Functions
	Image-based Synthesis with Dominance Functions
	Constraint-based Synthesis
	Limited-domain Synthesis by Unit Concatenation

	Conclusions
	Appendices
	Mathematical Techniques
	Scattered Data Interpolation
	Radial Basis Functions

	Multivariate Statistics
	Principal Components Analysis
	Singular Value Decomposition

	Optimization
	Downhill Simplex
	Sequential Quadratic Programming
	Simulated Annealing


	Audio Speech Synthesis
	Articulatory Synthesis
	Source-filter Synthesis (Formant Synthesis)
	Concatenative Synthesis
	Festival


	Bibliography


