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Abstract

Face-to-face dialogue is the natural mode of communication between humans. We see changes in ex-
pression and hear changes in intonation, and the combination of these provides semantic information
that communicates ideas, feelings, and concepts. This is exhibited not only in the changes in speech,
which confers the majority of the meaning, and the properties of vocalisation (e.g. tone, tempo and
loudness), but also in changes of facial expression. This thesis investigates techniques for the synthesis
of visual speech movements from the initial data capture process through to the final animation of a
talking head.

Synthesis can be split into three general processes: modelling, capture, and animation. Modelling
requires techniques to represent and parameterise changes in facial expression during speech produc-
tion. Capture is the retrieval of information about speech articulation from real speakers, which can be
eitherstatic poses (visual-phonemes/visemesyignamicspeech movements. Finally, animation tech-
nigques take captured information about speech articulation and use it to generate trajectories through
the parametric space of a facial model.

This thesis presents novel methods in each of these categories, in the framework of several systems
for text-to-visual speech synthesis. Modelling is performed using geometric free-form deformation
techniques to manipulate two- (image) and three-dimensional (mesh) representations of faces. Statistical
techniques are used to parameterise the manipulation of facial expression. A novel technique for the
retargetting of captured motions to meshes, which vary in both shape and scale from the original actor,
isintroduced. Animation is performed using target-based models of coarticulation, and by concatenating
captured motion fragments. A novel technique for the target-based modelling of coarticulation, based
upon constrained-optimization techniques, is reported.



"Language is a process of free creation; its laws and principles are fixed, but the
manner in which the principles of generation are used is free and infinitely varied.
Even the interpretation and use of words involves a process of free creation.”

- Noam Chomsky
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Chapter 1

Introduction

Face-to-face dialogue is the natural mode of communication between humans. We see changes in ex-
pression and hear changes in intonation, and the combination of these provides semantic information
that communicates ideas, feelings, and concepts. This is exhibited not only in the changes in speech,
which confers the majority of the meaning, and the properties of vocalisation (e.g. tone, tempo and
loudness), but also in changes of facial expression. Expressions change not only with the physical
process of creating speech audio (the movement of the lips and tongue), but also with emotion (happy,
sad, etc.) and discourse punctuation and regulation (turn-taking, emphasis, efc., see [Pelachaud, 1991].)
These contribute to the reasons why personal communication is often preferred over remote alternatives
such as telephony and e-mail. In fact, humans often use technology in a way which mimics this form of
personal communication, as is the case with emoticons in e-mail.

Computer-generated facial animation has long been used as a means of reproducing human-to-
human interaction in widely varying settings from desktop assistants and computer games to animation
and even synthetic characters in non-animated film. Traditional animation techniques have long been
used to reproduce the various actions of facial communication [Lassetef, 1987], but whilst these are
adequate for non-real characters (e.g. cartoon characters s@hoésor Mickey Mousgthe same
techniques do not work well as the animation gets more visually realistic. Statically it is currently pos-
sible to recreate virtual characters to a high degree of realism, and yet dynamic realism lags far behind
and most production involves a large degree of manual artistic involvement.

The difficulty in modelling realistic facial movement is to be expected, given the complexity of the
system we are attempting to simulate. Traditional cell animation works by in-betweening (interpolat-
ing) key poses, and thus cannot hope to adequately model the physical system of muscles, bone, skin
and fatty tissue involved in facial motion. Inevitably, all animation techniques are going to be a com-
promise between the detail in which the model is constructed, and the complexity of the simulation.
Ideally, a physical simulation would be used to model all the complexities of facial action, and yet for
on-line purposes these models are far too computationally intensive to be useful. Thus, much work in
facial animation is directed at approximating facial movement, whilst avoiding any such physical simu-
lation [Cao et al., 2004, Joshi et al., 2003, Noh and Neumann, 2001, Brand| 1999, Guenter etlal., 1998,
Pighin et al., 1998, Bregler et al., 1997, Williams, 1990, Waters, 1987, Parkeg, 1974].

The animation of faces can be split into several sub-problems: representation (e.g. photographic im-
ages, triangulated point geometry), modelling, and motion generation. Any model of facial morphology
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must be capable of representing both the fine and large scale geometric structure of expression, from
wrinkles and skin texture up to the deformation of the skin in smiles, frowns and pouts. There must also
be a way of manipulating this geometric representation to produce novel, recognisably human, expres-
sions. And finally the animation of expression implies the generation of trajectories through whichever
parametric space we use to represent our static expressions.

Representing facial morphology and modelling expression are intrinsically tied together. Modelling
techniques are usually specific to a representation, whether that be a cloud of points, a set of connected
geometric patches, or simply a photographic image. Such representations are often abstract and non-
specific to faces. In order to aid an animator, and to conceptually link the representationto the notion
of facial expression a parameterisation is often imposed as an intermediate layer (e.g. MPEG-4 facial
animation parametefs[Koenen, 1999].) It is this intermediate parameterisation that enables the building
of compound expressions from lower level building blocks, and it is the varying of these parameters that
enables the specification of animation.

The animation of faces can be performed at different levels of complexity. Simply in-betweening
targets can be effective for global changes in expression, given appropriate blending functions which
taper the movement between extrema. However, speech animation is a particular example where such
gross simplification is inadequate. The lips, tongue and jaw do not move ina linear fashion between
extrema. Animations where this approach is taken typically appear sped up (over-articulated) and un-
realistic. The reason for this is that there is a causal relationship between the speech audio, which we
hear, and the articulatory movements, which we see. The audio is produced, in part, by the movements
of the lips and tongue, and there is a direct perceptual link between the two. In fact, experiments show
both that seeing someone speak improves the recognition rate of the|audio [Sumby and Pollack, 1954]
and that incorrect visual movements can change its perception[McGurk and MacDonald, 1976]. This
necessitates a more thorough handling of speech movements in facial animation.

The major contributory factor to the difficulties in animating speech movements is the physical
phenomenon of coarticulation. Speech is often segmented into atomic units known as phonemes, rep-
resenting constituent elementary sounds and their related vocal tract state. Given that each of these
sounds is related to a shape or transitional movement of the vocal tract, coarticulation describes the
motion of the articulators as they transition between states. In fact coarticulation is difficult to simulate
because some phonemes areifepsrtantthan others and disappear in the final transitional movement.
Numerous models have been reported to describe specific effects of coarticulaifgmist, 1990,

Kent and Minifie, 1977, MacNeilage, 1970, Wickelgren, 1968man, 196(7].

Systems for generating speech trajectories can typically be split into three categories: target-based
synthesis, concatenative synthesis, and model-based synthesis. Target-based synthesis uses combina-
tions of static poses to structure a trajectory, usually with some form of approximating curve
[Cosi et al., 2003, Cohen and Massaro, 1993, Waters and Levergood, 1993]. Concatenative synthesis,
similarly to concatenative audio synthesis (e.g. Festival [Black et al.,| 1999]), uses combinations of cap-
tured units (speech movements) to generate trajectories [Bregler et al., 1997]. Model-based synthesis
attempts to find a relationship between the audio speech signal and the movements of the vocal articu-
lators, usually using some kind of finite-state machine [Ezzat et al.| 2002, Brand, 1999].

This thesis presents several novel methods for the animation of visual speech. These span the process
of constructing virtual talking heads, from capture and representation through to animation and synthe-
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sis of speech movements and coarticulation. A method is reported for the use of motion-captured data
from one individual on several different virtual characters which vary widely in facial shape and scale.

A novel method for generating speech trajectories is reported which uses constrained-optimization tech-
nigues to resolve transitions between targets according to coarticulation. A second synthesis technique
is reported which generates trajectories by blending short segments of pre-captured speech movements.
These techniques can be used to animate talking heads in varying domains (general vs. limited-domain
synthesis) and with varying computational and memory requirements.

1.1 Main Thesis Contributions
The novel contributions of this thesis to the area of facial animation and visual speech synthesis are:

e Aretargetting solution for using sparsely-sampled motion data on meshes of varying structure and
geometry (shape and scale.) The method uadml basis functiongRBFs) to warp the space
inwhich the motions are embedded to coincide with that of a given target mesh. The relative
motion of the markers before and after retargetting will remain the same. Retargetting is based
upononly the placement of a small number of markers at fiducial points on the surface of the
target mesh. This method has been publishedam¢8ez et al., 2003].

e A novel method for the synthesis of speech trajectories based upon constrained-optimization is
presented. Instead of using dominance (basis) functions to model transitions between targets,
any form of spline can be used to represent speech transitions. The optimization minimizes the
distance from the trajectory to a number of speech targets, whilst a global constraint upon accel-
eration models thedte of coarticulation in speech. Positional, derivative and range constraints
can be used to define the properties of the speech trajectory. An implementation of this method
has been published in [Edge and Maddock, 2004].

e Methods for the adaptation and selection of motion units for concatenative synthesis. A fast
greedy unit selection algorithm for variable length synthesis units is presented. Also methods for
phonetic alignment and resampling based upon the use of RBFs. These techniques are published
in [Edge et al., 2004], which describes the implementation of a limited-domain visual speech syn-
thesizer for the time-domain.

e A method for applying coarticulation rules to image morphing. Such models usually work by
linear interpolation of targets. Because image morphs are parameterised by point geometry
(e.g. sampled splines) coarticulation cannot be modelled because the parameters of the model
are not covariant with muscular action. The geometry of the morph is reparameterised using
principal components analys{®CA) and dominance functions used to control the variation of
these parameters over time. The principal components correspond to important features, such as
jaw opening, and thus allow coarticulation to be modelled. This method has been published in
[Edge and Maddock, 2003].
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1.2 Thesis Structure

Chaptef[ RBackground: The Production and Perception of Speeohtains an overview of background
information pertaining to speech and visual aspects of speech in particular. Mostly this concerns the
production of speech, phonetic categorisation of speech sounds and the relationship between phonemes
and articulatory movement. Also, this chapter includes a discussion of coarticulation and numerical
models to represent its effects. The perception of speech, both audible and visible, is also discussed.

Chaptef BParameterisation and Modelling of Facial Expressi@montains an overview and classi-
fication of techniques for representing and manipulating facial expression. This covers specific facial
parameterisations, such as FACS [Ekman and Friesen| 1978] and MREG-4 [Koenén, 1999], along with
general geometric modelling techniques and physical models.

Chaptef #Capturing and Retargetting Facial Motigintroduces techniques developed for the cap-
ture, processing and retargetting of facial motion data. The retargetting method finohEx et al., 2003]
is discussed in detail in this chapter. Also discussed are methods for capturing motion data from actors,
the nature of captured data, and processing techniques for dealing with noise and the removal of rigid
motion.

Chaptef b Animating Speechiscusses several methods for the generation of speech trajectories.
These include work on dominance function, constrained-optimization, and concatenative methods for
synthesis. The constrained-optimization method from [Edge and MaddocK, 2004] is discussed in detail
here, as well as methods developed for concatenative synthesis from [Edge et al., 2004]. A method for
fitting dominance functions to real data is also discussed.

Chaptef b mplemented Systemdescribes the systems used to demonstrate the techniques from
Chapter§ 4,14, arid 5. Chapfg¢rGonclusionsoverviews the conclusions and directions of future work.
Appendi¥ A,Mathematical Techniquesontains background and detail on the mathematical techniques
used in the thesis. Appendi¥ Budio Speech Synthesisiefly discusses the common methods used in
audio synthesis, as well as the Festival sysiem [Black et al.] 1999] used in the developed systems.



Chapter 2

Background: The Production and
Perception of Speech

Speech synthesis requires not only the modelling of a complex physical system (the tissue and organs of
the vocal tract), but also an understanding of the mechanisms behind speech production and perception.
The production of speech consists of several levels from the communicative intent (the message to be
passed onto a listener), through organisational groupings (phonetic, syllabic, word and sentence level
units), down to the physical level of nerve impulses and coordinated muscular movement. There is
a direct relationship here between the organisation of real speech production and the questions which
must be tackled in synthesis: what do we want to say, how do we represent this internally, and how do
we control a model of the vocal tract to produce the correct movements? Similarly, the effectiveness of
any synthesis technique will be compared to the audience’s experience of speech in real life, and so the
perceptual mechanisms involved in speech communication can influence the design of such systems.
For these reasons this chapter summarises speech production and perception background relevant to the
synthesis of visual speech movements.

Speech communication is a coordinated process between speaker and listener. The speaker for-
mulates an idea to communicate, which is subsequently encoded into a linguistic form consisting of a
sequence of words from a particular language and according to its grammatical rules. These words are
transformed into motor signals controlling the muscular activity of the vocal aparatus (respiration and
movement of the organs involved in speech articulation.) As air is pushed through the vocal tract the
articulatory movements cause pressure changes which result in speech sounds. The sounds of speech are
carried acoustically as pressure waves in the intermediate atmosphere separating speaker and listener.
Finally, the listener's sense organs, primarily the ears, although vision is also involved (see Section
[2.2), recognize the sounds which are then decoded into the corresponding linguistic structures and in-
terpreted. Thus, the speech communication process consists of the following steps: linguistic encoding
— motor control— acoustic transmissior> auditory/visual retrieval- linguistic decoding. This is,
of course, a two-way process with conversation occuring back and forth with speaker and |&lener r
being interchanged. This view of the speech communication process is showr in|fig. 2.1.

The speech communication process, as described, is a complex interaction of physical and cogni-
tive linguistic systems to produce and receive speech signals. The system can be considered as mainly
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Figure 2.1: A classical view of the speech communication process (after [Denes and Pinson, 1973].)

constituting mechanisms of production (anatomy, motor control etc.) and perception (audio-visual fu-

sion.) Therefore the following sections shall deal with speech using this distinction. First, the process

of speech production between linguistic encoding and acoustic transmission will be described. Second,
the perception of speech focussing mainly upon audio-visual fusion given the importance of this to the

success of audio-visual speech synthesis will be covered.

2.1 Production of Speech

Speech production is a coordinated physical process of the vocal articulators (lips, jaw, velum etc.) to
shape the vocal tract such that intelligible speech sounds are produced. The important matters with
regards this process include: vocal tract anatomy, the physical structure of the main articulatory struc-
tures; phonetics, the underlying structural categorisation of speech utterances; and speech motor control,
transforming speech utterances into low level muscular control - particularly with regards to the context
sensitivity of speech movement and the resulting audio (coarticulation.)

2.1.1 Anatomy of the Vocal Tract

The vocal tract is a complex physical structure which, for the purposes of speech production, regulates
the passage of air from its source (the lungs) and out towards a listener. As the speech organs are moved
the passage of air is constrained, or made turbulent to modify the properties of the resulting speech
sounds. The main structures used in the production of speech are labelled[in fig. 2.2 (b). The most
important of these structures in speech production are the lungs, the trachea, the nasal cavity, the jaw
and the mouth (including the hard and soft palates, the teeth, the tongue and the lips.) The structures
above the pharynx are what is commonly referred to as the vocal tract, and the organs within the vocal
tract used for speech production are #ntculators
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Figure 2.2: Anatomy of the vocal tract: (a) facial muscles (from [Williams et al., [1995]), (b) articulatory
structures.

Table 2.1: Muscles of the lips.

NAME ACTION

Buccinator Compresses the cheek against the teeth, and retracts
the corner of the lip down.

Depressor anguli oris Draws the corner of the lip downward.

Depressor labii inferious Depresses the lower lip.

Incisive inferior Pulls the lower lip toward the teeth.

Incisive superior Pulls the upper lip toward the teeth.

Levator anguli oris Moves the corner of the mouth up.

Levator labii superioris Raises the upper lip.

Levator  labii  superioris Raises the upper lip and nostril.

alaeque nasi

Mentalis Raises and protrudes the upper lip.

Obicularis oris Closes the lips, compresses the lips, and protrudes
the lips.

Platysma Pulls the corner of the mouth down and back.

Risorius Pulls the corner of the mouth back.

Zygomaticus major Draws the corner of the mouth laterally and upward.

Zygomaticus minor Draws the outer part of the upper lip upward, later-

ally and outward.
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Articulatory movement is produced by the action of a number of muscles upon the skin, bone and
other subcutaneous tissues of the mouth. Muscles consist of bundles of fibres and are suspended between
other structures such as bones, skin and other muscles. The muscle fibres cause motion by contracting
(shortening in length) and thus applying force to the structures between which they are suspended.
These muscular contractions are controlled by electrical impulses transmitted along associated nerve
fibres. Linguistic units (e.g. words, phonemes etc.) must be transformed into nerve impulses to control
articulatory movement, and therefore speech production. The lips and tongue are both highly muscular
structures which allow a great variety in movement. The muscles of the lips and jaw are shown in fig.
[2.9 (a) and tablg 2/ 1. More in depth discussion of muscle structure and function during speech can be
found in [Tatham, 1969].

The oral and nasal cavities affect the resonation of the air after it passes out of the pharynx (the
throat.) These cavities are separated by the hard and soft palates. The velum (soft palate) actively
regulates the passage of air into the nasal cavities by raising to block the entrance, and conversely lying
passive to allow air to flow out through the nose.

The mouth contains the most important articulatory structures for speech production. Most speech
sounds are majorly influenced by a combination of tongue and lip movement. The tongue restricts the
passage of air through the oral cavity, and the lips extend and shape the exit to the vocal tract. Lip
shapes are usually categorised as: spread, aese&hrounded, as iwitch; unrounded/relaxed, as in
lock. Unfortunately, such categories are rather coarse and do not reflect the full range of lip shapes that
are used in natural fluid speech.

2.1.2 Phases of Speech Production

The anatomical structures briefly described in the previous section provide the means of producing
speech sounds. The process of speech production can be summarised into three general phases:

e Respiratiorprovides the impetus behind speech production. The lungs force air through the vocal
tract and out through the oral/nasal cavities. ThispsiEnonic egressive airstregrne. the lungs,
via the action of the diaphragm, cause air to be forced out of the body. Respiration provides an
overall structure to speech production as a continuous driving pressure must be maintained. This
structure can be observed in the grammatical constructs of a language which structure sentences
to allow the speaker to breathe (e.g. the length of sentences, and the presence of sentence breaks,
such as commas, to allow a reader to repeat the written word.)

e Phonationdescribes the action of the vocal chords within the Larynx. The vocal folds are mus-
cular bands of tissue which either allow expired air from the lungs to pass through passively
(unvoiced, e.g.sap), or rapidly vibrate to create a pulsating air stream (voiced, zapg.) The
vibration of the vocal folds occurs in the range 80-500 Hz, with varying frequencies giving rise to
the auditory sensation gitcHl]

e Articulation is the shaping of the vocal tract above the vocal chords Kthpealaryngealvocal
tract) to generate distinct speech sounds. This involves the movement of the major articulators
(the lips, jaw, tongue etc.) to constrain the passage of air through either the oral or nasal cavities.

Lpitch also varies according to other factors such as age and sex.
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Some articulators are passive, such as the hard palate and the alveolar ridge, and some active such
as the tongue and the velum. Articulatory movement typically constrains air passage by regulating
contact between active and passive articulators (e.g. tongue contact with the teeth, hard and soft
palates), or by regulating airflow (e.g. the velum raises/lowers to regulate airflow through either
the oral or nasal cavities.) This shaping of the supralaryngeal vocal tract changes its resonance
characteristics which determines the acoustic properties of the resulting speech sounds.

The process of speech production is often considered as a combination of source and filter: the
source is a combination of respiration and phonation to create a source of sound energy; the filter is the
shaping of the supralaryngeal vocal tract. It is the flexibility of the articulators (lips, tongue, jaw etc.)
which allows the great range of speech sounds to be created.

2.1.3 Phonetics and the Vocal Tract

Phonetics is concerned with the classification of speech sounds with regards to how they are produced
(articulatory), the physical properties of the sound (acoustic), and its perception (auditory.) For the
purposes of synthesis we are most interested in articulatory phonetics and how it allows us to describe
speech movements and gestures according to a number of low level atomic units, iphoriesor

the phoneme®f a particular language. The International Phonetic Alphabet (IPA) provides a means
of phonetically transcribing speech, which requires an extended character set. For computer-readable
transcriptions the Speech Assessment Methods Phonetic Alphabet (SAMPA) has been designed which
only relies upon the standard ASCII character set. Table 2.2 shows a comparison of these phonetic
transcriptions with English. It is important to note that the English spelling does not have a direct
symbol-to-sound relationship (particularly true of British English.)

Table 2.2: Comparison of phonetic transcription systems.

ENGLISH the quick brown fox jumps over the lazy dog

IPA oA  kwik bravn fpks dzamps ouv3:  Oa lerzi  dowg
SAMPA DV kwlk braUn fQks dzVmps @Uv3: DV lelzi dO:g

Phonem@are commonly considered to be atomic structures in speech production, however, there
are a number of difficulties with this view of speech (most notably the variation of realised phonemes
in natural speech, see Sectjon 2,1.5) and several different units have also been proposed (e.g. syllables.)
Even so phonemes are interesting because they are small enough in number to be a useful discription
and they denote the articulatory targets in speech production. Phonetic transcription is almost invariably
required at some stage of speech synthesis (both audio and visual.)

The most important categorisation in phonetics is between the vowel sounds and the consonants.

Consonants

Consonants are defined by a place of constriction within the vocal tract. There are three main features
which can be used to describe consonant speech sounds: place of articulation, i.e. where the constriction
of the vocal tract occurs; manner of articulation, i.e. the method by which the sound is produced; and

2From here on where the wophonemess used, equally phones could be substituted to refer to the cross-language case.
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Table 2.3: Consonant common manners of articulation

NAME

DESCRIPTION EXAMPLE

STOP/PLOSIVE

FRICATIVE/SPIRANT

Airflow is entirely cut off, followed by a pat, bat,
rapid release. mat
Airflow is severely constrained, but notthick, this
cut off.

APPROXIMANT Airflow is partially constrained. well

AFFRICATE Begins like a stop but ends with a fricativecheek
release.

NASAL Airflow through the oral cavity is entirely moon
blocked, instead the air flows through the
nose.

LATERAL Approximants where the airflow passedady
along the sides of the tongue.

TAP Taps instantaneously block and releasmteﬂ
the airflow through the oral cavity.

TRILL A rapid succession of taps. pre:ﬂ

Table 2.4: Consonant common places of articulation.
NAME DESCRIPTION EXAMPLE
BILABIAL Constriction of airflow between the lips. pat

LABIODENTAL

DENTAL

ALVEOLAR

POSTVEOLAR

PALATAL

RETROFLEX

VELAR

UVULAR

NASAL

Constriction of airflow between lip and fast
teeth.

Constriction of airflow between the topthat
teeth and tongue tip.

Constriction of airflow between the gumdebt
ridge and tongue.

Constriction of airflow between therush
palatal ridge, behind the alveolar posi-
tion, and tongue.
Constrciction of airflow between the yes
tongue and the hard palate.

Constriction of airflow between thenorcﬂ
tongue and the palate, with the tongue
curled back to face the palate.

Constriction of airflow between the rung
tongue and the soft palate.

Constriction of airflow between the maftreﬂ
tongue and the uvular.

Constriction of airflow any of the above, moon
with the velum lowered.

afrom U.S. English
bfrom Spanish
®from Swedish
dfrom French
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Figure 2.3: IPA vowel space with English examples (cardinal vowels are marked with circles.)

Table 2.5: Vowel qualities

QUALITY DESCRIPTION

HEIGHT Refers to the height of the tongue in the
oral cavity.

BACKNESS Refers to the position of the tongues
heighest point in the oral cavity.

ROUNDEDNESS Refers to whether the lips are rounded or
not.

NASALISATION Refers to whether the velum is lowered
allowing air through the nose.

VOICING Refers to whether the vocal chords are

active during production of the vowel
sound.

voicing, i.e. whether the vocal chords are active or passive. The manners and places of articulation for

consonant speech sounds are summarised in {ables 2.3 and 2.4 respectively.

\Vowels

Vowels are open-mouth sounds in speech. They are best defined by the twin features of tongue position

(height and location), and the roundedness of the lips. Most vowels are monophthongs, meaning that
they are stable and do not include a transitional movement (g)ghbwever there also exist diphthongs

which include transitions between two or more target articulatory positions (@yg) Bome of the

qualities used to describe vowel articulation are summarised in [tafjle 2.5. Voicing is not used as a

distinguishing factor for vowels in most Western languages: vowels are almost invariably voiced, except

in the case of whispered speech.

Vowels are defined in relation to knowgardinal vowelswhich occur at the extrema of tongue

positioning. The cardinals are the extreme front and back vowels, and are used to define a space for all
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Figure 2.4: A selection of visual phonemes showing spread, rounding and constriction of the vocal tract
(bilabial/labiodental/dental.)

vowels (see fig["2]3.) Note that for some positions in this vowel space there are two distinct sounds,
corresponding to the rounded and unrounded variants.

2.1.4 Visual Phonetics

Articulatory phonetics, as described in the previous sections, relates the production of speech sounds
to the configuration of the main articulatory structures (lips, jaw, tongue etc.) It is also known that the
visual extent of these articulatory structures can be used as a cue in the perception of speech, so called
lipreading or, more generally, speechreaﬁng

Given that the perception of speech involves visual as well as audio cues, it is sensible to create a vi-
sual phonetic classification of speech. This classification describes speech in terms of visual-phonemes
(often shortened to viseme.) Viseme classifications are non-standard, and no visual-IPA exists as such.
However, visemes are usually reclassifications of their equivalent audio-phﬁacnesding to a par-
ticular parameterisation of articulatory gestures. This effectively means that if we have a parameteri-
sation of articulatory gesture (for example using the features in tablgs 2.3, 2[4, and 2.5), then a viseme
set could be formed by removing parameters which are not directly visible (e.g. nasality.) Mainly this
concerns the place of articulation and the voicing of a speech sound. As a consequence viseme sets are
significantly smaller than phonetic alphabets (like the IPA.) Some of the variation in lip shapes during
speech production is demonstrated inffig] 2.4.

3Lipreading and speechreading differ in that the first assumes that only lip movements are important speech cues, whereas the
latter assumes all visible aspects of speech production are cues in perception.

4From now on the word phoneme shall refer to audio-phonemes and viseme to its visual equivalent, even though phoneme
could (and probably should) refer to a cross-modal speech unit.
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2.1.5 Coarticulation

Coarticulation is the physical phenomenon which describes the blurring of boundaries between, what are
often assumed to be, atomic units of speech, both visibtyaudibly. Transitions between articulatory
gestures are brought about by a physical system of muscles stretching skin over a boney/cartilegous
substructure. The constraints of that physical system prevent instantaneous transitions between gestures,
and thus coarticulation is the result of a goal-oriented task performed with a physically-constrained
system.

The result of coarticulation is that the articulatory gesture formed for a certain speech unit (and the
resulting sound itself) will vary during the production of natural speech. Some aspects of the gesture
will vary less (e.g. lip contact in bilabial stops), and some more (e.g. jaw rotation in vowels.) In this
regard phones/phonemes are variably dominant (i.e. have varying influence) over a speech utterance.
This varying dominance has been described in [Recasens et all, 1997] using a scale ranking phonemes
according to degree of articulatory constraint (DAC scale); such a scale can be used in conjunction with
coarticulation rules to determine final trajectories through a space (parameterisation) representing vocal
articulatory states.

By its nature coarticulation does not only regard the extent to which a gesture is realised, but also
the influence of that gesture over a period of a speech act. Coarticulation can be anticipatory, i.e. the
vocal tract is preparing for an upcoming important gesture (forward coarticulation, e.g. lip rounding
in tWo), and also can reflect the effect carried over from a previous gesture (backwards coarticulation,
e.g. lip protrusion irb&ns) Contextual effects of coarticulation have been observed up to seven seg-
ments preceeding a gesture in the French vowdtém istrgtry in the phraseune sinistre structure
[Benguerel and Cowan, 1974].

In order to account for the nature of coarticulation, several theories have been proposed. Kent and
Minifie [Kent and Minifie, 1977] categorise these into the following: learnt allophonic models; target-
based models; and hierarchical models. Allophonic models, such as [Wickelgreh, 1969], contest that
the lowest level units for speech production are allophones (context-allophones) of some form. These
units are context dependant and invariant, or at least exhibit far less variation than phones/phonemes.
Target-based models [MacNeilage, 1970] assert that speech production is a goal-oriented task, where
neuromotor commands are generated in a lookahead manner to attain contextually-invariant targets.
Finally, hierarchical models place coarticulation as a part of an overall speech production strategy, for
example Kent and Minifie themselves propose a hierarchy which covers the broad range of speech
tasks from neuromotor control up to syllabic grouping. Whilst there are many proposals, with matching
supporting arguments and evidence, few are concrete enough to be put to practical use (e.g. in a synthesis
system.) In the following section the most common are discussed in more detail.

2.1.5.1 Modelling Coarticulation

In order to both understand and reproduce the effects of coarticulation on natural speech, numerical
models have been applied. Such models must reliably reproduce the variation seen in speech, which
means accounting for the physical constraints of articulatorymovement.

OhmanPhman, 196]7] describes a numerical model which accounts for the effects of coarticulation
on non-symetric vowel-consonant-vowel syllablggd\,.) In this model themovement of the tongue
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Figure 2.5: Modelling coarticulation: (a) dominance functions (aftéfdlist, 1990]) representing the
temporal influence of a segment over an utterance for different articulators, (b) dominance functions
(after [Cohen and Massaro, 1993]) - above is the final trajectory generated by a combination of the
below dominance functions.

body in x-ray sequences is predicted py|2.1).

s(x;t) = v(x;t) +Kk(t)[c(X) — v(x;t)]we(X) (2.1)

In this equations(x;t) represents the shape of the vocal tract at a poiot the tongue body at
a timety; <t <ty (i.e. between the centre of the initial and final vowelsandV,.) v(x;t) and
c(x) represent the surrounding vowel and consonant vocal tract shapes respectively. The vowel shape
is related to the current time because it is a transitional function between the initial and final vowel
shapes. Between the initial and final vowels the influence of the central consonant is represented by a
combination ofk(t) € [0,1], which represents the location of the central consonantya(x) which
scales the influence of the consonant according to its domin&ftgezaries from O at timéy1 to 1 attc
and back to 0 dt/», and is a smoothly varying function of time. As a result the consonant has maximum
influence at timec which occurs at some point betweigh andty.

This model is a simple extension of interpolation to the modelling of complex coarticulation phe-
nomena. However, the model, &man himself points out, is overly simplified for the purposes
of general modelling or, indeed, the application to synthesis. For example there is no way to model
consonant-consonant coarticulation, and scaling the solution to non-VCV syllables provides significant
challenges. Regardless of these shortcomings this model has been applied to general coarticulation in
theMothervisual-speech synthesis systeém [Best et al., 2000].

Lofquist extends the ideas fro®hman’s simplified coarticulation model to general speech
[Lofqvist, 1990]. In this model each articulator (lips, tongue, jaw etc.) has a number of related domi-
nance functions which determines the influence a segment (phoneme) exerts over its trajectory (see fig.
[2.5.) The dominance a segment exerts will vary with each articulator; for example bilabial plosives,
such agat, will exert a greater influence over the motion of the lips than that of the tongue.

In Lofgvist's model the shape of the dominance functions will directly determine the trajectory of
a speech utterance. Although only loosly defined these functions are maximal at the centre of a seg-
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ment and decrease with temporal distance. Naturally, the width of a dominance function will determine
the section of an utterance over which the segment will have an influence, and thus must be no more than
seven segments wide to maintain consistency with previously reported results [Benguerel and Cowan, 1974].
Dominance functions of this form easily compare withman’s equivalent(x)k(t) term in ); both
describe time-varying influence of one segment over its neighbours.

Cohen and Massar¢ [Cohen and Massaro, 1993] describe a model which impleraéqnistls
model of coarticulation. In this model negative exponential functions are used to represent the time-
varying dominance function8spin (2.).

Dep(7) = s O 720 2.2)
ospe @7 1<0

These functions, as dictated byfigvist’s ideas, are maximal (as scaledday,) at the centre of the
segment { = 0) and decrease to 0 with increasing temporal distajde— ). The shape of these
functions depends upon the power coefficienflso the influence of a segment is directional, hence
the difference between©._ s, and—0_,sp, which deals with the differences in forward and backward
coarticulation. Simple additive combination of dominance functions would lead to over articulation
where the dominance of several segments closely overlap. For this reason a normalized contribution of
dominance functions is used to resolve coarticulation across an utterarjce (2.3).

_n_ Ds iTs
Fp(t) = Zl_zl{‘(lgs(:()n) o) (2.3)

In (2.3) Tspis the target parameter (i.e. the viseme described by the parameter space of the model)
for a segment outside of context. The final speech trajectory formed by this method can be fitted to
real speech motions, demonstrating a relationship between this technique and speech coarticulation
(although this does not imply the use of dominance functions in speech production.) Several limi-
tations of this method for generating trajectories with specific types of speech targets (e.g. bilabial
stops) have been reported [Le Goff and B&ntR96]. Despite this the Cohen and Massatddvist
model is the most commonly used by the visual synthesis commduinity [Cosi et all, 2003, King, 2001,
Le Goff and Bend, 1996, Cohen and Massaro, 1993], probably because it is a fairly simple technique
to implement. A more complete overview of speech synthesis and coarticulation modelling, along with
contributions to the area, is presented in Chégter 5.

2.1.6 Prosody

Prosodic, also known as suprasegmental, features are those aspects of spoken communication that are
evident over several phonemes of an utterance. The most commonly referenced examples are related
to the pitch (fundamental frequency) of the speech audio. Stress and intonation are the speech features
directly related to pitch.

Stress is a means of accentuating a syllable or word, and often emphasises the meaning of a sen-
tence. The cues to stress are increased volume, duration and pitch. Intonation is the pattern of pitch
variation across a sentence. This pattern varies according to whether the sentence carries a statement (a
sharp decrease in pitch at the end), a what/where/who/when question (same as a statement), or a yes/no
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Figure 2.6: Confusion trees for audio and visual speech stimuli (after [Summerfield, 1987]), vertical
axis shows decreasing noise.

question (a rising tone at the er{ﬂi.)

Prosodic variation of this sort is accompanied by changes in the manner of speech. For example
modifying the pitch of an utterance implies a change in the frequency at which the vocal folds vibrate.
Similarly volume and durational changes have corresponding links with the movement of the vocal
aparatus (e.g. exageration of lip shapes.) Often prosodic variation also implies the mood of the speaker
(high pitched is happy, low pitched is sad), and emotional facial expressions, such as smiles, result in a
variation in the prosodic features of an utterance.

2.2 Perception of Speech

The results of speech production are audio waves to be interpreted by a listener or a group of listeners.
The meaning of speech is entirely contained within the properties of the audio signal, which enables
remote voice communication without the immediate presence of the speaker (e.g. telephone communi-
cation.) Primarily speech is perceived via the ear and the workings of the auditory system. However,
further to the information communicated audibly the visual aspects of speech act in a complementary
manner, helping with the disambiguation of speech audio. This is demonstrated in|fig. 2.6 which shows
the confusion of audio and visual signals in the presence of increasing noise. The figure shows that
those distinguishing factors which are invisible, such as voicing or nasalisation, are more important in
the perception of audible speech. In contrast visual cues are more easily confused between lip shapes,
such as rounding or spread lip shapes, or visible tongue movement, such as dentals. Thus easily distin-
guished audible speech is often difficult to separate visibly. A strong example of this is the deagals (

5To some extent these prosodic variations are also culturally specific (e.g. statements in Australian English are similar to
British English yes/no questions.)
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VIDEO AUDIO PERCEIVED
EXAMPLE #1 goes bows those
PLACE Velar Bilabial Linguodental
MANNER Consonantal, Consonantal, Consonantal,
Voiced, Voiced, Voiced,
Non-nasal Non-nasal Non-nasal,
Interrupted Interrupted Fricative
EXAMPLE #2 tap map nap
PLACE Alveolar Bilabial Alveolar
MANNER Consonantal, Consonantal Consonantal
\oiceless, Voiced, \oiced,
Non-nasal, Nasal, Nasal,
Interrupted Interrupted Interrupted
EXAMPLE #3 map tap pap
PLACE Bilabial Alveolar Bilabial
MANNER Consonantal, Consonantal, Consonantal,
Voiced, \oiceless, Voiceless,
Nasal, Non-nasal, Non-nasal,
Interrupted Interrupted Interrupted

17

Table 2.6: Audio-visual contradictions due to the McGurk effect (adapted from [Summerfield, 1987].)

in thing ando as inthese) which are never confused audibly because the voiced/unvoiced distinction is
strong, but visibly are virtually indistinguishable. In contrast, fricatives are difficult to distinguish using
audio cuesf(as infin and6 as inthin), yet visibly the labio-dental/dental distinction is strong.

The complementarity of the audible and visible aspects of speech is also demonstrated by the im-
provement in recognition rates of speech when accompanied by visual cues. In[Sumby and Pollack, 1954]
as much as a +15dB improvement in signal-to-noise ratio is reported for speech audio with visual cues;
this leads to a corresponding improvement in the recognition rates and thus intelligibility of speech in
these circumstances. For these reasons speech research has been focussing upon audio-visual speech
synthesis as an aid to communication in noisy environménts [Berthommier,[2003, Le Goff et dl., 1994].

2.2.1 Conflicting Audio-Visual Signals: The McGurk Effect

One phenomenon which characterises the fusion of audio and visual speech modalities is described by
McGurk [McGurk and MacDonald, 1976]. The so-called McGurk effect occurs with the perception of
directly conflicting audio and visual speech signals. It is found that when conflicting audio is dubbed
onto a video that a subject will perceive a third distinct speech sound. An example of this is the percep-
tion of the audidba/ dubbed onto video of the lip movements for the syllalla’ which leads to the
perceived syllabléva/. Several more examples can be found in tablg 2.6.

The McGurk effect, whilst by its nature an entirely synthetic phenomenon, demonstrates the fusion
of both audio and visual modalities in the perception of speech. This is a form of syn@m'&bia

6The influence of one sensory experience uponanother, i.e. vision influences the perception of audio.
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the visual information augmenting the audio. Extreme examples such as those used to demonstrate
McGurk would not be expected twaturally occur using any competant synthesis technique. However,

this does demonstrate the strong link between visual speech movements and the perception of speech.
The possibility that poor synchronisation could create, at the very least, ambiguity is of concern and is

a demonstration of why competant models to generate speech movements are important in animation.

2.3 Summary

This chapter has introduced some of the concepts in speech production and perception necessary for
speech animation. In order to generate visual speech it must be possible to both model static vocal

tract articulations, and to generate movements of the articulators consistent with the nature of speech

production. It is these areas that the main body of this thesis tackles.

The visible extent of the vocal tract (e.g. lips, tongue, etc.) must be modelled for synthesis. The
modelling technique used must be capable of producing the same exp@ss'(mxa created by the
muscles of the face (see taple]2.1.) These expressions fit into the phonetic categories fin {ables 2.3 and
[2.4, and are the viseme targets of synthesis. Such modelling techniques do not necessarily need to model
the structure and function of the muscles and skin themselves, only the observed result. Modelling and
parameterisation of facial expression are discussed in detail in Chapter 3.

Given a set of static viseme targets transitional movements must be generated according to the nature
of coarticulation. This means that targets are unlikely to be met during natural speech articulation.
Models relating to coarticulation are often too specific (i.e. related to individual contextual effects
of coarticulation), or too abstract for implementation. The method in most common usage for visual
speech synthesis is the dominance function method (see Sgection]2.1.5.1), which is an implementation
of [Lofqvist, 1990]. An evaluation of this method along with an alternative formulation of target-based
synthesis is discussed in Chagiér 5. These target-based models lie in stark contrast to motion-based
synthesis, which attempts to avoid modelling coarticulation by concatenating fragments of real speech
movements. A comparison of these contrasting techniques is also made in Chapter 5.

The necessity of modelling speech movements correctly, and maintaining audio-visual coherence,
is demonstrated by the McGurk effect. Poor coherence can adversely affect the quality of animation,
as in badly dubbed film, and may change the perception of the speech itself. Whilst it is unlikely that
the McGurk effect will occur accidentally, the implication is that poor speech animation will produce
at least ambiguous visual signals. This is of course undesirable, and provides evidence that a thorough
treatment of animation is required.

"The visual extent of vocal articulation can be considered to be changes in facial expression.



Chapter 3

Parameterisation and Modelling of
Facial Expression

Facial animation relies upon techniques to model and encode expressions in a compact and efficient
manner. Such techniques can relate to the raw storage of facial appearance and geometry (e.g. pho-
tographic images and triangle meshes), and to the modification of these structures to generate novel
expressions (e.g. geometric deformation and physical simulation techniques.) These need to be able
to accurately recreate the soft body deformations caused by muscular action upon the skin of the facial
mask. Given the complexity of facial structure and motor function, this is a complex task especially for
real-time interactive applications.

These topics are obviously important for the animation of visual speech, given that it requires inter-
mediary mouth shapes to be modelled in synchronisation with speech audio. In many systems this is
simply a matter of interpolating visemes [King et al., 2000, Ezzat and Poggio, 1999], however, as im-
plied by coarticulation (see Sectipn 2]1.5) such a trivial technique may not be appropriate. Furthermore,
most motion capture techniqués [Williams, 1990] retrieve only the motion of a sparse sampling of points
on the surface of the face; to generate animation from such data (as discussed in [Ghapter 4) it is nec-
essary to have techniques to interpolate the motion of these feature points across the surface of a target
mesh.

This chapter contains an overview and comparison of modelling techniques which may be used for
facial animation. These can be generally split into two categories:

e Geometric techniqueghese deform a facial surface according to the manipulation of a geometric
control structure (see Sectipn3.2.)

e Physical techniquesthese attempt to approximately model the elastic tissue structure of the skin
which is deformed by the application of muscle forces (see Sectipn 3.3.)

Above the technique used to model facial expression there is often a need to provide a parameterisa-
tion. This simplifies the modelling of facial expression by allowing the face to be modified by intuitive
quantities (e.g.jaw opening) Parameterisation is also important for the generation of speech move-
ments as coarticulation effects different aspects of the vocal tract in different ways (see Chapter 5.) The
parameterisation of facial expression is discussed in Sgctipn 3.1.

19
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3.1 Parameterising Facial Expression

The intent of facial modelling techniques is to parameterise expression in such a manner that it can
be consisely described by a small number of variables. Parke’s early work [Parke, 1974] introduced
the concept of an intuitive facial parameterisation. In this work parameters are applied to both change
the basic structural form of the faceophformatiorparameters), and to directly modify facial expression
(expressioparameters.) Conformation parameters are used to individualize a facial model, in particular
so that it may resemble a particular character. Expression parameters are used to produce particular
gestural (e.g. a nod), emotional (e.g. a smile or scowl), and physical (e.g. blinks) facial expressions.
The completeness of a particular parameterization refers to the ability of the model to recreate ob-
served changes in facial shape and expression. The ideal, often referrechioessal parameterization
is capable of recreating observed changes in facial expression with the following properties:

e Complete- it should be possible to create all possible facial expressions using the parameterisa-
tion. At the very least it should be possible to model all expressions in an identified subset (e.g.
speech lip shapes.)

e Parameter Independene@arameters should not reproduce work, and thus should be independent
(orthogonal.) Truly independent parameter sets prevent additive combinations of parameters from
creating unrealistic expressions. Furthermore, this requirement ensures a one-to-one mapping
between expressions and parameters.

e Minimal - a parameterisation should consist of as few parameters as possible to accurately rep-
resent facial expression. Concise parameter sets for modelling are more usable, and generally
more easily interpreted. This is partially coupled with parameter independence, since if there is
no covariance between parameters the set should also be minimal.

e Intuitive - each parameter should have an easily-recognisable intuitive labejg\.gptationor
blink.) This aids in the interpretation of parameters and the modelling of specific expressions.

e Physically Plausible all expressions created with the parameter set should be observable, i.e.
unrealistic facial expressions cannot be created by any combination of parameters.

Obviously from the above requirements direct vertex/control point manipulation is a poor para-
meterization of facial expression: covariance of neighbouring vertices is not taken into account (non-
minimal), and individual vertex displacements do not correspond to recognisable sub-expressions (non-
intuitive.) Numerous parameterisations for facial expression have been defiabtefiet al., 2001,

King et al., 2000, DeCarlo et al., 1998, Koch et al., 1998, Lee et al.,| 1995, Kalra et al.| 1992, Watelrs, 1987,
Parke, 1974] in an attempt to fulfill these requirements. However, the only exigtngardmethods
are the Facial Action Coding Scheme and MPEG-4.

3.1.1 Facial Action Coding Scheme (FACS)

FACS [Ekman and Friesen, 1978] is a facial expression parameterization based upon the activation of
individual muscles and muscle groups. The parameters have been attained by experimentation into
which independent sub-expressions, known as Action Units (AUs, see[table 3.1), can be physically
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Figure 3.1: MPEG-4 feature points.

Table 3.1: Examples of FACS AUs.

AU NAME MUSCULAR BASIS
1 Inner Brow Raiser Frontalis; Pars Medialis
Brow Raiser Depressor Glabellae; Depressor Supercilli; Corru-
gator
8 Lips Together Obicularis Oris
15 Lip Corner Depressor Triangularis
20 Lip Stretcher Risorius
26  Jaw Drop Masseter; relaxed Temporal and Internal Pterygoid

Table 3.2: Examples of MPEG-4 FAPs.

FAP NAME DESCRIPTION

3 openjaw vertical jaw displacement (does not affect mouth
opening)

4 lower_t_midlip vertical top middle inner lip displacement

5 raiseb_midlip vertical bottom middle inner lip displacement

6 stretchl_cornerlip  horizontal displacement of left lip corner

7 stretchr_cornerlip  horizontal displacement of right lip corner

8 lower.t_lip_Im vertical displacement of midpoint between left cor-

ner and middle of top inner lip
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produced. The assumption is that combinations of these sub-expressions can be used to recreate more
complex compound expressions.

The scheme, as initially defined by Ekman and Friesen, is not intended for modelling facial expres-
sion, but to be used as a descriptive/evaluative tool. For modelling FACS has a number of disadvantages.
Primarily action units may be independently produced. However, this does not mean that the effect upon
the skin of the facial mask is also independent. Little is known as to how the AUs combine together
to create compound expressions, which limits its use as a generative model. Despite this problem the
presence of a recognized standard descriptive tool for facial expression has led to the use of FACS to
directly model expression [Frydrych et al., 2003, Kalra et al., 1992], and as an influence upon the de-
sign of modelling tools [Waters, 1987]. FACS is also the basis behind the more recent MPEG-4 facial
parameterisation.

3.1.2 MPEG-4 Facial Coding (FDPs/FAPSs)

MPEG-4 is an ISO/IEC standard for the production and distribution of digital television, interactive
graphics applications (synthetic content) and interactive multimedia [Koenen, 1999]. The standard de-
fines specifications for synthetic face and body animation which includes both conformation (Facial
Definition Parameters) and expression parameters (Facial Animation Parameters.)

Facial Definition Parameters (FDPs) transform a generic facial model stored at a terminal node such
that it takes on a particular apppearance. Shape and texture can both be controlled using FDPs which
also allow an entire facial model to be downloaded over a network (e.g. the Internet.) FDPs perform the
same dle as Parke’s conformation parameters.

Facial Animation Parameters (FAPs) define changes in expression as offsets from a neutral facial
pose. Feature points located at important locations (seg fip. 3.1) are used at the lowest level to define
expression. FAPs relate sub-expressions, similar to FACS action units, with the movement of the feature
points on the surface of the face (see tabl¢ 3.2.)

To allow FAPs to be applied across faces which vary both in shape and scale the displacement of
feature-points is parameterised according to FAPUs (Facial Animation Parameter Units.) Each FAPU
represents a standard measurement across the face (e.g. eye separation), and thus FAPs can be applied
to models with widely varying FDPs.

FAPs have many of the same problems as AUs in parameterizing facial expression, which is unsur-
prising given that FAPs are based upon FACS action units. The FAPs irf table 3.2 demonstrate that the
units are not inpedendent, e.g. jaw rotation has been separated from lower lip movement even though
the two are intrinsically linked. MPEG-4 is becoming increasingly popular in the development of facial
models [[$inchez and Maddock, 2003], which is probably due to the benefits of using a standardized
parameterization.

3.1.3 Statistical Parameterisation of Facial Expression

Whereas most techniques described in this chapter focus uponeither directly manipulating the geometry
of the face or modelling the complex physical process of creating facial expression, generative statistical
techniques provide a data-driven approach to facial modelling. These techniques determine a basis for
facial expression by accounting for the observed variation in a discretely sampled subset of all possible
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1 2 3 4

Figure 3.2: Principal component model of lip and jaw movement created from a database of 16 captured

poses. Upper row shows+ 3,/c;i, lower row showsu — 3,/0;. These principal components capture
mouth opening (1), lip rounding (2), asymmetric lip-stretching (3), and smile/scowl (4).

expressions.

The fundamental assumption in the usage of statistical techniques for this purpose relies upon the
completeness of the available data. Because the parameters of a statistical model are directly derived
from an initial dataset, any required variation must be wholly evident in that data.

A benefit of statistical techniques lies in the ability to rank the parameters of these models by the
variation they account for in the observed dataset. This allows for some degree of data compression
and noise removal by culling parameters which account for only a small percentage of the variation
in the data. Examples of models using statistical methods to parameterise facial expression include
[Rekret et al., 2000, Blanz and Vetter, 1999, Cootes et al.,|1998, Guiard-Marigny et al., 1996].

Principal Components Analysis

The most commonly used technique for computational multivariate statistics is Principal Components
Analysis (PCA.) This method computes an orthogonal basis for an observed dataset directly from its
covariance matrix.

Any elementy, in the original dataset can be represented uging (3.1), whésehe mean vector,
g is theit" prinicpal component, and the are weights uniquely defining

v:u+ie|bi 3.1)

Theg principal components can be directly calculated by finding the eigenvectors of the covariance
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matrix for the observed dataset, with the corresponding eigenvayagpresenting the variance;,
accounted for by each component. This means that components with low eigenvalues represent only
small variations in the dataset, and thus may be culled with little loss of accuracy in the model. There
are a number of methods for determining which components to remove, a discussion of which can be
found in [Jolliffe, 1986].

PCA has been used by several authors to create data-driven models of facial expression. In
[Cootes et al., 1998] the principal components representing the change of shape and texture in a database
of facial images are used in combination to model facial variation and to recognise faces in images. The
same method extended to three-dimensional geometry is applied in [Blanz and Vetter, 1999] to provide
a generative model of facial shape, texture and expression.

In fig. [3.2 PCA is applied to several morph targets gathered using a three camera experimental
set-up. The morph targets consist of the a sparse sampling of points which deform an underlying mesh
using techniques described in Secfion 3.2.2. Applying PCA to the gathered points allows the definition
of a space of expressions, the basis of which are the principal components. This experiment is described
in more detail in[[&nchez et al., 2004].

The first few parameters for PCA Models representing facial expression often intuitively correspond
to parameters in hand-derived models, e.g. FACS. However, parameters representing less of the variance
in the initial dataset can be less intuitive and difficult to use for modelling specific facial expressions
by hand. For this reason PCA models are mostly used for data compression or as an intermediate layer
in facial representation for problems such as computer vision or animation [Blanz and Vettér, 1999,
Cootes et al., 1998].

3.2 Geometric Modelling of Facial Expression

Most methods used for the modelling of expressions rely upon geometric techniques to directly ma-
nipulate the surface representation of the facial mask. These techniques coincide with those Massaro
[Massaro, 1998] refers to dsrminal analoguei.e. methods which have no direct relationship to the
structure and function of facial tissue (muscles, skin, bone, etc.) The advantage here lies in the effi-
ciency of geometric operations in contrast with the computational complexity of physical models of
facial structure.

Each of the methods in the following sections manipulates the low-level representation (e.g. vertices
or control points) of the face using a small number of parameters relating to facial geometry.

3.2.1 Interpolation Techniques

The most basic form of geometric modelling is to form a shape-space for facial expression as a linear
combination of extremes (often referred to as morph targets.) This is simply defified in (3.2).

V/ = aVeXFD + (1— a)Vexp]_ (32)

Given two expressiond/exp and Vexp, @) can form a continuous transition between the two for
o € [0,1], or extreme caricatures far < 0 or o > 1 (i.e. extrapolation.) This form of expression
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Figure 3.3: Interpolation-based model using the six universal emotional expressions (in bold clockwise
from top left: Joy, Surprise, Fear, Sadness, Anger, Disgust; central pose is neutral) as key poses.

modelling is similar to the statistical techniques previously mentioned, albeit with a non-orthogonal
basis.

Unfortunately global morph targets are inadequate, or at least highly inefficient for the modelling
of complex facial expressions. It is necessary to localize the morph targets such that, for example, a
blink morph targeonly affects the region surrounding the eye. This is the case in [Joshi et all, 2003,
[Pighin et al., 1998] where masks are used to explicitly define the spatial region over which the morph is

active.
A further extension to the interpolation technique is to define expression not only between two
extreme expressions, but between a range of expresgiohs (3.3).

no. .
. —Z';":\ZZXP' (33)
i=

This implies that changes in facial expression can be defined as a manifold in a high-dimensional
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parametric space. This closely relates to the idea of expression [from [Russeél, 1980] which has been
implemented in/[Ruttkay et al., 2003]. Obviously, using a greater number of morph targets to define the
manifold, and/or changing the method of interpolation (e.g. linear vs. spline interpolation), will directly
impact upon the accuracy with which the manifold is approximated. Furthermore, the parameterisation
of each target will determine how compact and intuitive interpolation is as a modelling technique. An
example of the use of morph-targets for facial animation can be seen(in {ig. 3.3.

3.2.2 Free-form Deformation

Free-Form Deformation (FFD) techniques are applied to general modeling problems, and provide an
interface for the sculpting of surfaces (e.g. a piecewise linear triangulation of vertices.) This sculpting
process implies the definition of a functiohfd : RY — RY, which applies the deformation to each point
(vertex or control point) defining the target surface.

FFD tools provide an interface to manipulate a surface using a small, in comparison to the number
of vertices in the target, number of controlling primitives. Typically the controlling structure determines
what type of deformation will be produced. Usually, the shape of the controlling structure, and therefore
the shape of the underlying target surface, is manipulated by a small number of control points. FFD
techniques are best categorised by the form of controlling structure:

Point Deformers

The simplest form of FFD is to use a weighted combination of displacements from defined control points
surrounding, or embedded within, the target surfacg (3.4).

|
V=V 3 @R -R) (3.4)

As the control pointsB, are displaced t&, a weighted combination of the displacement vectors
(P —R) are added to the verticed, within the control point’s region of influence toproduce the de-
formed verticesy .

Necessarily, the important factor with point-based deformers is acquiring appropriate weights, the
o;. Often a simple drop-off function can be used with points closest to a control point given greater
weighting than points lying further away, e.g. a cosine drop-off within a given radi{@.5).

~ feos(5 (“LEAL)) v —R| <=r,

o = (3.5)

0 otherwise

Such a parameterization of a surface is by its nature non-continuous, and has the disadvantage that
the radii must be specifically selected in order to fully enclose the target surface. An alternative, as
proposed in/[Kshirsagar et al., 2000], is to use a walk across the target surface to determine appropriate
weights. This has the advantage that discontinuities in the target surface will affect the weighting and
thus the resulting deformation should be capable of expanding/compressing gaps (e.g. for facial expres-
sion, parting the lips.) Unfortunately, a walk across the mesh is implicitly dependent upon the topology
of the target surface, and applying the same method to different meshes may produce inconsistent re-
sults.
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Figure 3.4: Image morphing using RBFs. Red points show corresponding features in initial and final
images.

Radial Basis Functions (RBFs), a commonly used technique in scattered data interpolation, can be
used for point-based deformation [Noh and Neumann, 2000, Noh et all, 2000, Ulgeh, 1997]
[Ruprecht and Muller, 1995, Arad et al., 1994]. RBFs are defined as functions which vary uniquely
with distance from a defined basis centre. By placing an RBF centre at each of a number of control
points,R, an interpolation can be defined ps {3.6).

|
V= pm(V)‘i‘_ZlOCi@(”V_PlH) (3.6)

A linear combination of radial basis functiong, centered upon each of the control poiRt<an
thus be used to define the location of all point®ih(or R? if working with images.) The interpolation
is defined by thex; weights, the polynomial termp,, and the choice of basis functign(multiquadric,
gaussian, thin-plate spline, etc.) The weights and polynomial term can be determined by solving a
linear system which places the centres back intg (3.6) and mapping onto the deformed control points,
i.e. V' =P (see Appendil.) The choice of basis function depends upon the required properties
of the interpolation, such as locality and continuity. Radial basis function interpolation is thoroughly
discussed in Appendjx A.7.1.

RBFs in this case interpolate displacements across the target surface. RBFs are both global and
can be selected to provide the necessary continuity in deformation. For these reasons they provide a
more mathematically acceptable formulation for point-based deformation. Unfortunately, it is difficult
to account for discontinuities in the target mesh using RBFs. This is because a continuous surface
distance metric is required, otherwise the displacement of control points will be interpolated across
mesh boundaries.

An example of point-based deformation using RBFs is image morphing. Given two imgges,
andly, two warping functions are specifiedy_.1 : R> — R? andd;_,g : R? — R?, which respectively
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forward warplp to coincide withl; and backward warf, to coincide withlg. Once the geometric
mapping between images is determined the pixels can simply be interpolated between the two images,
both in colour and location. These warping functions can be implemented using RBFs. [Figure 3.4
demonstrates image morphing using RBF warping functions.

Planar Deformers

Planar deformers provide a mapping between a collection of linear surface elements (e.g. triangles
or quads) and each point in thetarget surface. This is a surface-to-surface mapping which allows the
deformer structure to be tailored to the specific target surface which is being sculpted. Each planar
deformer will consist of control points, and the deformed surface point will be a weighted combination

of only these. The major difference between point and planar-element deformers lies in recovering the
weights for each point in the target surface. For planar elements, spanning a set of control points,
R, the parameterisation consists of a mapping between the planar element and the target surface, e.g.
the barycentric coordinatef;, of the point projected onto the planar element and an offset vector, of
lengthdy along the deformed surface normal, ). This means that planar deformers are fully
parameterising the target surface, whereas point deformers can only interpolate displacements. Figure
[3.5 demonstrates a triangular planar-deformer.

V' =n'dy ‘f‘_iﬁipl (3.7)

In this formulation, each point in the target surface is only bound to a single element in the con-
trol surface. The appropriate element may be determined by projecting (e.g. a cylindrical projection,
projection along the surface normal etc.) the target point onto the control surface or finding the closest
element in the controller surface. This deformation technique requires that the entire domain of the
target surface is encased in a controlling structure, otherwise a decision must be made on how to deal
with points lying outside of all control elements. Optionally a weighting function may be imposed on
top of the basic deformation technique, such[ag (3.5), which allows the strength of deformation to be
tapered off with distance. Variations upon this method are describédiciez and Maddock, 2003,

Singh and Kokkevis, 2000].

Piecewise-polynomial Deformers

The previously described FFD tools parameterise a target mesh with regards to discrete primitives,
with no regard to higher order continuity in the deformation (with the exception of RBF-based point
deformation.) To provide more complex deformations the number of primitives required could re-
duce the effectiveness of these tools. To allow greater flexibility, without too great an increase in
the complexity of the controlling structure, piecewise-polynomial primitives can be used to control
deformation. The continuity of the deformation in the target surface now becomes a factor of the
continuity of the underlying polynomial basis. Furthermore, continuity across deformer boundaries
can be ensured in the same way that it would be if the deformer primitives were to be used to de-
fine the surface itself. FFD tools for univariate (splinés) [Singh and Fiume| 1998, Lazarus et dl., 1994],
bivariate (patches) hchez et al., 2004], and trivariate (volumes) [Hsu et al., 1992, Coquillart] 1990,
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Figure 3.5: Planar free-form deformation.

Figure 3.6: Spline-based free-form deformation.

Figure 3.7: Patch-based free-form deformation.
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Sederberg and Parry, 1986] piecewise-polynomial primitives have been developed. The polynomial ba-
sis for these tools can be changed depending upon the required deformation, ézijersoBB-spline
(quadratic, cubic, etc.) basis could equally be used.

Splines

Spline FFDs|[Lazarus et al., 1994], also known as Wires [Singh and Fiume, 1998], act like a sculptor’s
armature in manipulating a target surface. A combination of splines lying on or close to the target
surface are manipulated to perform a deformation of that surface. As the deformation technique is based
upon the manipulation of a spline, the properties (e.g. derivative continuity) of the spline used will be
transferred to the deformation technique. The properties of the spline basis functions will determine the
form of deformation.

Each vertex in the target surface is parameterized according to its distance to the closest point on the
spline deformer. In this manner the deformation technique is alike linear axial deformations, commonly
known as bone deformers, with the extra degrees of freedom imparted by the spline formulation. De-
termining the closest point on the spline deformer requires an optimization technique, and a method to
resolve ambiguities, e.g. where more than one point on the spline deformer is equidistant to a vertex in
the target surface. Figure B.7 demonstrates spline FFD deformation.

Spline Axial deformerg[[Lazarus et al., 1994] manipulate a surface by forming a frame, such as a
Frenet frame, with its origin at the closest point on the controlling spline. This frame will transform ac-
cording to the displacement of control points, and this transformation is applied to the attached vertices
to deform the target surface.

In the Wires [[Singh and Fiume, 1998] formulation the FFD is defined by a t¢pleR, s,r, f). W
andRare splines representing wire and its undeformed reference curve respesiwvalgcaling factor,
whilst r is the radius of influence surrounding the wire. The definition is completed by an implicit
function, f : R — [0,1], which controls the decrease in influence with distance perpendicular to the
wire. According to this definition the wire deforms a vertéxwith closest point on the reference curve
Ry wheref (w) > 0, in the target surface according to the following sequence:

1. ScaleV uniformly aboutR to creatéVscaleg i-€. Vscaled=V + (V —Ry)(1+ (s—1)f (M))

2. Take the angleéq, between the tangent of the closest point on the Wi{eand its reference curve,
R/, and rotaté/scaieq by the modulated anglé f (w) to creatéViyist. This creates a twist
deformation along the wire.

3. Add the translation to the result of scaling and twisting,\.e= Viwist + f (w) W —Ry).

In the wires formulation, because attachments to the target surface are weighted accoifding to
combinations of several wires can be used to deform the target. To provide higher-derivative continuity
between wires RBFs could be used to provide the weighting fundtion

Patches

Patches, e.g. &ier or NURBS, are commonly used to represent free-form surfaces. They can be used to
produce surfaces of an ascertained degree of continuity by applying constraints to the placement of the
control points which define the surfa¢e [Clough and Tocher, [1965]. Similarly networks of patches can
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be used so that they accurately represent a sampled surface [Krishnamurthy and Levoy, 1996]. These

properties of patch surfaces make them particulatly appropriate to the free-form deformation of meshes.
In [Sanchez et al., 2004] a triangulation of feature points on a mesh, ugénigBriangle patches,

is used to parameterise and deform that mesh. TémeB surface is an approximation to the surface

of the model with only the placement of the control points exposed for user interaction. Each of the

verticesV, in the target mesh is parameterised according to three parameters: the parametric coordinates

(sv,tv) of the vertex projected onto the closest patch in the deformer surface, and the normaloffset

(i.e. dv = ||V —B(sy,tv)||, whereB is the parametric definition of the controller patch.) Given this

parameterisation vertices in the target surface may be reconstructed by evaluatiregigepatches

and their respective normal maps (3.8).

V' =dvni(sy,tv) +Bi(sv,tv) (3.8)

By evaluating|(3.B) with displaced control points the target surface will deform accordingly (see fig.
[3.7.) The deformation of the target surface is both local and continuous as determined by the deformer
surface and the constraints upon its shape.

Identifying the closest point on a surface constructed as a networkzéBpatches is a non-trivial
problem. To solve this a Newton-Raphson steepest descent method (see
[William H. Press and Flannery, 1992] for a description of steepest descent) is used to minimize the

function in [3.9).

as ot
In practice this is expensive for large numbers of patch deformers, so an initial sampling of the

<anvsi<s’t>|2)1 <WBW)2 _o (3.9)

deformer surface is generated. By determining the closest point in the sampled pointset, the closest
patch can be determined and the parametric coordinates of the closest point can be used to initialize the
Newton-Raphson search. The continuity of this deformation technique relies solely upon the continuity
of the deformer surface. Ih §ichez et al., 2004] it is demonstrated that for a surface of conti@Qity

the continuity in the deformation will b&"~*.

\olumes

The original FFD formulation, as described fin [Sederberg and Parry] 1986], employs a trivédate B
lattice to control an embedded object. The method requires only that the target surface be locally pa-
rameterised within the lattice structure and tfiat (3.10) be evaluated with the displaced control points,

/
ijk-

V-3 3 3 BB, (310)

WhereBjy; j  are the basis functions of the spline representation. The parametric coordinates,
{s,t,u}, of vertices in the target surface are defined|by (3.11), wk&r&,U} are the unit axis vec-
tors andXorig is the origin of the local frame containing the FFD lattice (squ. 3.8)

N TxUS T SxUT T SxTU

(3.11)
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Figure 3.8: Volume-based free-form deformation.

This form of FFD is limited by its cubic lattice structure. |n [Kalra et al., 1992] a rational basis, i.e.
weighted basis functions, is used to apply cubic lattice deformers to facial modelling. This problem
domain requires the manipulation of surfaces which are dissimilar from a cubic lattice, and thus some
modification of the standard technique is necessary.

In [Coquillart, 1990] and later [MacCracken and Joy, 1996], extend the basic method to allow for
arbitrary topology lattices. To allow for arbitrary shaped lattices the parametric coordinates must be
for an embedded object must be obtained, which for the case of non-cubic lattices may not have an
analytic solution. Coquillart uses numerical methods (Newton-Raphson steepest descent) to determine
the parameterisation, with the disadvantages of computational expense and the numerical sensitivity of
the problem. MacCracken uses a Catmull-Clark subdivision approach to parameterise a target surface.

Muscle functions

Geometric muscle functions are a form of univariate FFD which approximates the action of muscles
upon the surface of the skin. These were introduced in [Waters] 1987] where two different types of
muscle are modelled: linear muscles, which pull from an attachment to the skin towards an insertion
into the skull; and sphincter muscles which pull the skin towards a central point.

The action of a linear muscle is modelled by contracting vertices within a conic section towards its

apex[(3.1P), see fi§. 3.9.

V' =V +cogy)kr (‘X‘”S‘V)

Xins— V1|
B COS(%ZVVH) V € (Xins, Pn, Pm) (3.12)
cos(%) V € (Ph, R, Ps, Pm)

In (3.13) the displacement of a vertex framto V' is determined by the distance from the muscles
apex,Xins, and the angle from its central axis, The strength of deformation is controlled by the factor
k. The muscle is split into two regions, with maximum deformation occuring at the meeting of the
central axis at a distand®; from Xj,s. At the border of the muscle no deformation occurs, ensuring
continuity across the boundary of the muscle. Sphincter muscles act by displacing vertices towards the

centre of an ellips¢ (3.13), see fig.]3.9.
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Figure 3.9: Geometric muscle function free-form deformation.
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In ) the displacement of a vert®¥xto V' is determined by the distance between the vertex
and the centre of the ellips€, Again the strength of deformation is determinedkbyand there is not
deformation at the boundary of the muscle. The geometry of the sphincter muscle is shown i fig. 3.9.

Both linear and sphincter muscle functions are 2D in nature. To apply the deformation to 3D meshes
the functions can be extended to conic (linear muscles) and ellipsoid (sphincter muscles) volumes re-
spectively, or alternatively the vertices of the mesh can be projected into the plane of the muscle. A
weighted combination of muscle functions can be used to produce compound facial expressions. Further
examples of muscle function models can be foundin [Breton et al. | 2001, Pasquariello and Pelachaud, 2001].
The use of muscle functions to animate speech is further discussed in $egtion 6.1.

3.2.3 Free-form Deformations and Discontinuities

Free-form modelling techniques typically interpolate the displacement of a set of markers/control points
across the surface of an object or across the space within which the target object is embedded. How-
ever, this is inconsistent with the physical nature of soft body deformations, such as facial skin under
strain. Because topological structure is not taken into account, discontinuities are poorly modelled by
these techniques. This is particularly important for modelling expression because the facial mask has
important functional discontinuities (e.g. the openings between the lips and the eyelids.)

The techniques described can be split two ways depending upon how control elements are bound to
the geometry of an object: techniques in which a weighted combination of control elements are used to
displace a vertex (e.g. bones, wires, etc.), and techniques in which each vertex is bound to only a single
control element (patch- and some planar-element deformations.) To account for discontinuities either
the influence of control elements must be culled, in the case where multiple control elements deform
a single vertex, or some geometric test must be applied to ensure the correct binding between control
element and vertex.
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Directly culling the influence of each control element requires that a mask be defined. This is a
manual, laborious and error-prone process which is also necessarily topology specific, and so must be
repeated when applying the deformation technique to a new mesh. In contrast, for surface-based FFD
techniques there is a similarity relationship between the controlling structure and the target surface,
which can be used to enhance the attachment of vertices to the control elements. Primarily the orien-
tation of the faces in the target mesh and the control elements themselves (or the attachment points on
the control element for patch-based deformations) can be used as a disambiguating factor to rule out the
attachment of vertices. The correlation between surface normals on the target and controller surfaces
can be used to correctly bind surfaces whilst taking into account discontinuities. This can be done by
using a threshold to define the maximum disparity between the vertex normals of the target and the
surface normal at a proposed attachment point on the controller surface, preventing obviously inappro-
priate attachments. Where a discontinuity is present in the facial mask, vertices on either side will have
surface normals facing in opposite directions, in these situations this method works well. A geometric
test is obviously beneficial because it makes the process of attachment automatic, but also has the added
benefit that in geometrically delicate situations (e.g. where the upper and lower lips overlap) it can be
difficult to define masks.

The exception to this is the case of radial basis functions used to interpolate marker displacements.
Because RBFs are global and require a linear system to be solved to calculate the deformation, it is
not possible to directly mask the influences. Instead, the only way to incorporate discontinuities into
RBF interpolation is to use a surface-based distance metric, and so the interpolation is performed across
the surface itself and not in Euclidean space. Unfortunately, it is cumbersome and computationally
expensive to define a general purpose surface distance metric and cheap alternatives such as edge-based
distance metrics [Noh et al., 2000] do not work well.

3.3 Physical Modelling of Facial Expression

Contrasting with geometric models of facial expression, physical models attempt to model both structure
and function of the human face. The facial mask is a complex structure consisting of skin, muscle,
bone and fatty tissue. Expressions are created by muscles applying forces to the facial mask causing
the skin stretch, crease, and wrinkle according to a combination of factors such as age and weight.
Physical models of facial expression require the elastic nature of the facial mask to be simulated. These
techniques can be split into two different areas: tension networks, which model the skin as a network
of masses interconnected by springs; and finite-element models, which attempts to model the skin as an
elastic continuum.

Tension networkg [Lee et al., 1995, Platt and Badler, 1981] treat the facial mask as a set of inter-
connected masses and springs modelling the elastic response of skin to muscular forces. As a force is
applied to a node in the network it will be applied to all the interconnected nodes and thus propogated
across the skin until the system reaches equilibrium. The restitution force caused by springs in a tension
network which are displaced from their rest length is simply calculated according td (3.14).

C— Kenri Xj =X X — X = X!
s =k (13— ) (D =X 1= =X 19

In (3.14) the forceF ., on a node akK; due to a spring connected to nodexats directly related
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Figure 3.11: Tension-net model of facial expression (from left-to-right): original mesh, superimposed
tension-net and muscle vectors, deformed mesh.

to the change from the nodes’ rest positioqsandx{ (i.e. due to a change from the rest length of the
spring.) The spring constakd,ring determines the magnitude of force caused by a displacement of the
nodes. For more accurate models of elastic behaviour the spring constant becomes a function of spring
length (or equivalently displacement from the spring rest length)sdgang becomes pring( || Xj — Xi|| ).

Choice of network structure is key to the success of tension-networks. Uniformity in the length
of springs is required to maintain consistency in the elasticity of the skin. However, most models for
convenience use the triangulation of the target mesh to define the structure and connectivity of the
springs|[Lee et al., 1995]. This leads to inconsistency in the resistance of the skin to muscle forces.

Forces are applied to the nodes of a tension network to create facial expressions. These forces repre-
sent the action of muscles as well as factors like volume preservation and prevention of skull penetration.
In order to resolve the action of forces on a tension network, a system of second order differential equa-
tions (ODEs) must be solved. A variety of methods are available to integrate the equations of motion,
which each trade off accuracy against speed and complexity; e/g. in [Lee etal., 1995] simple explicit-
Euler integration is used, whilst in pdler et al., 2001] Verlet-leapfrog is used to improve stability in
the solution.

In [Choe et al., 2001, Koch et al., 1998, Koch et al., 1996] finite-element models (FEM) are used
to model the elastic properties of the skin. These models segment the skin into a number of simple

geometric elements which are used to approximate the solution to a number of differential equations.
The model proceeds by minimizing the overall energy of the surface, which is the combination of
internal (resistance to bending and stretching) and external (muscle) forces, whilst enforcing a number
of boundary constraints. FEM models converge to global solutions given a set of external forces applied
to the surface.

Both tension-network and FEM models require models of facial muscles to produce expressions.
These in general are of a similar form to the functions described in Sgcfioh 3.2.2. A geometric function
is used to determine the variation of muscle force across some defined volume. This, as in the geometric

case, is a gross simplification of the action of facial muscles. Even $0, in [Pitermann and Munhall, 2001]
the model from[[Lee et al., 1995] has been demonstrated to reasonably approximate measured human
facial movement. One significant advantage of physics models over geometric deformations is that
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discontinuities do not explicitly need to be modelled. This is due to the fact that the physical system
models the structure of the facial mask, and thus forces will only be propogated across the surface of
the skin (i.e. deformations do not occur in the space surrounding the facial model.) An example of
physically modelling facial expression is demonstrated in[fig.|3.11, where muscle functions similar to
[Waters, 198J7] are used to deform a tension-net model.

3.4 Summary

This chapter has discussed the wide variety of methods for parameterising and modelling facial expres-
sion. Modelling techniques provide low-level control of facial geometry, whilst parameterisation is used
to provide a key intermediary layer between the manipulation of facial geometry and the animator or
animation technique.

Modelling techniques can be split into two main categories: geometrically-, and physically-based.
Geometric modelling of facial expression either forms novel expressions from combinations of cap-
tured expressions (morphing), or by directly deforming the surface geometry (free-form deformation.)
Physical models attempt to model the structure and function of the skin and muscles in the creation of
expression. Geometric modelling is efficient, but requires explicit modelling of discontinuities in the
skin (e.g. between the lips.) In contrast modelling the elastic properties of the skin is currently not feasi-
ble for real-time applications, except where significant compromises are made in regard to the accuracy
of the simulation. It is likely that in the medium-long term physically-based techniques will become
more popular, if only because geometric techniques are an even coarser approximation to the action of
facial muscles upon the skin. However, currently FFD deformers are the best way of modelling facial
expression in real-time.

Free-form deformation techniques deform a mesh by interpolating the displacement of a few (i.e.
much less than the number of vertices in the mesh) control points. The form of deformation depends
upon the type of the controlling structure. Various geometric primitives have been used as FFD control
structures, including: points, lines (bones), splines, triangles, patches, and volumes. The facial mask is
a surface, and the motion of points on the skin can be measured, thus surface deformer primitives are
intuitively appropriate for modelling facial expression. In Chapier 4, surface-based FFD primitives are
used to interpolate the motion of captured markers across the surface of a mesh representing the face.
In Chaptef B, point-, surface-, and muscle-based FFDs are demonstrated for the purposes of modelling
static visemes, and animating visual speech.

The parameterisation of facial expression is necessary to mediate between modelling (e.g. FFDs)
and animation techniques. This is particularly important for speech animation because coarticulation
effects different aspects of the articulators (e.g. lip width/height) in different ways. The effect of coar-
ticulation does not occur parallel with the axes of 2D/3D Euclidean space. In S¢ctipns 6.Z2]and 6.3 two
systems are described which ymencipal components analysie parameterise the geometry of speech
articulation. This allows sampled geometry to be decomposed using parameters similar to the action
of individual muscles, or groups of muscles. Such a technique is necessary, in particular for target-
based models of synthesis, where raw geometry is used to define the changes in facial expression during
speech production.



Chapter 4

Capturing and Retargetting Facial
Motion

One of the most significant challenges in facial animation is the generalisation of techniques such that
they are applicable across the entire population of faces. The shape, scale and structure of facial features
will vary with sex, age, and ethnicity. Obviously, with the variety in facial morphology there is a
corresponding diversity in the motions produced by individuals. For these reasons it is necessary to
derive techniques which will not only be applicable to all types of face representation, such as those
discussed in the previous section, but also to retarget captured motions such that they can be used to
animate a whole range of different individuals.

Most animation is conducted using simple blends of acquired static expressions; these systems can
be accused of not portraying the subtle motions inherrent in face-to-face communication. The linearity
of the transitions between morph targets betray the synthesis even when the rendering of individual
frames is highly realistic. In contrast physical models are computationally intensive and require detailed
design. Itis interesting to note that the most successful, as yet, computer-generated character in film is
probablyGollum from theLord of the Ringdrilogy; this character was animated using a combination
of artistic effort as well as motions captured from the actor Andy Serkis. ldeally, to streamline the
process of animation, it would be beneficial to derive techniques which are almost exclusively automatic,
although this may be some way off.

The facial retargetting problem is the analog of the similar group of techniques in full-body mo-
tion capture (e.g.|[[Gleicher, 1998].) Unfortunately, it would be impossible to apply the same tech-
nigues to faces as have been used in the case of articulated motioh (e.g. [Bruderlin and Williams, 1995,
Witkin and Popovic, 1995]), simply because of the differences between the underlying data. Whereas in
the case of articulated motions the variation is held solely in limb length and joint angles, facial motion
is often represented only as the motion of a cloud of points (possibly, but not necessarily, with associated
topology.) Furthermore, full-body motion capture has been extensively reviewed and used in industry,
and a large body of research has been carried out in the area, yet facial motion capture suites are only
just becoming widely available and relatively few academic publications have demonstrated their use
[Noh and Neumann, 2001, Williams, 1990].

This chapter presents novel techniques for the retargetting of captured motions to models with vary-

38
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ing shape, scale and topol@fjBectior] 4.11 is a discussion of techniques for the capture of human facial
motion, further sections provide detail into the algorithms used for processing (§ecjion 4.3), retargetting
(Sectior] 4.4) and animating meshes from a cloud of surface points (Secfion 4.5.)

4.1 Capturing Facial Motion

Most methods to capture facial motion rely upon Computer Vision algorithms to measure the motion
of a surface projected onto the image plane of an optical cafnera [Williams,[1990, Cootes et al., 1998].
At the most trivial level this requires the extraction of markers placed upon the skin within each im-
age in a sequence, and then inferring the motion of each point over time projected back into the real
scene. The markers are often designed to be easily extracted in post-processing, either by using a colour
which stands out against the skin (chroma-key methods), or by using materials which reflect a certain
wavelength of light. Similarly, entire regions of the face can be coloured to enable them to be easily
segmented. The seminal work in facial motion-capture [Williams, 1990] takes this approach. Also, in
[Guenter et al., 1998] a large number of markers placed upon the surface of the face are used to capture
soft deformation of the skin which along with a video-texture accurately capture an actor’s performance.

These methods are consistent with the need to accurately capture the movement of the surface of
the skin, whilst requiring least effort in post-processing. However, the highly error-prone process of
preparing a subject for data capture is less than ideal. Considerable effort has been placed into the
processing of image sequences to infer motighoutthe use of markings of any kind. These methods
typically fall into the following categories: Optical Flow methods; Active Contours/Snakes; Active
Appearance Models/Eigenfaces.

Optical Flow methods [Barron et al., 1992, €not, 1992| Horn and Shunk, 1981] use an optimal
pixel alignment between successive frames in a sequence to infer the motion of the underlying object,
in this case the motion of the face. These methods rely upon the following base assumptions:

1. The colour of each pixel remains constant across the entire sequence.
2. The illumination of the scene itself remains constant.
3. The inter-frame motion of pixels in the scene will be smooth, i.e. non-random in nature.

4. The motion of points across the surface of an object will be smooth.

Thus, given inter-frame flow by aligning successive frames, the motion of points within the scene
will simply be the concatenation of these transitions. Optical flow also implies a dense field of mo-
tions at the same resolution as the images in the sequence, which is a far higher resolution than any
marker-based method. Unfortunately, the above assumptions are extremely difficult to maintain in real
scenes. Also, optical flow implies no structure in the motions which are captured, and thus driving
animation from pixel flow is a difficult task requiring manual placement of the model within the scene.
Nevertheless, Essa [Essa, 1995] has implemented a system for the animation of faces directly from the
optical flow captured from a single camera. An example of detected optical flow using the method from
[Quénot, 1992] is shown in fig. 4.1.

The results of this chapter have been published’in [Edge et al.| 2884h&z et al., 2003].
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Figure 4.2: Active contour used to capture the outer lip contour. The bottom-right image shows an
example of incorrect convergence that does not find the lip-contour.
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Table 4.1: Comparison of vision-based tracking techniques.

OPTICAL Advantages: Disadvantages:
FLOW e Markerless tracking. e Fails to track large scale
motion.

e Motion information can be
measured to the same reso- e Requires constant lighting
lution as the image data. conditions and textured

surfaces.

e Generated flow does not
give structural information.

ACTIVE Advantages: Disadvantages:
CONTOURS e Captures structural infor- e Reliant upon strong im-
mation from an image. age gradients to isolate fea-
tures.

e Requires manual initializa-
tion close to desired fea-
tures.

e Can be attracted to groups
of weakimage features.

ACTIVE Advantages: Disadvantages:
APPEARANCE e Specific to capturing facial e Requires large initial data
MODELS expression. capture.

e Takes advantage of both e Limited to capturing ex-
texture and shape informa- pressions which can be
tion generated by the AAM.

o Generative model.

Active Contours|[Kass et al., 1988], also called Snakes because of the way in which they work, are
a means of finding structural information within an image. Snakes are splines which either contract
or expand to locate features within an image. Commonly, in the case of faces, they are used to track
the motion of the lip contours and other stand-out features such as the eyes, nose and eyebrows. The
behaviour of these models are defined by internal and external forces. Internal forces define the direction
that the snake would naturally move in, should it find itself in a location where there are no features, i.e.
the spline will either shrink to a point or expand to infinity. External forces define the features the snake
should adhere to, e.g. strong image gradients as defined by a Sobel/Canny edge detector or regions of a
particular colour.

Advantageously, snakes themselves imply structure within the image themselves. This is because
each snake is located upon a salient image feature. By reinitializing snakes in subsequent frames the
motion of the feature can be tracked over time. Unfortunately, the nature of snakes requires that they
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are initialized close to, and in correct relation to the desired feature. For example, if an expanding snake
is initialized outside of the desired contour it will expand to infinity. As a tracking method this can be
problematic as large inter-frame differences can lead the snake to entirely miss the desired contour, or at
worst locate a completely different feature. Snakes are only good at tracking clean image features and
so either processing of the image to make features clearly distinguishable [Lievin and Luthan, 1999], or
some form of marking of the actor’s face, is usually required. An example of using snakes to determine
the outer lip-contour can be seen in fig.]4.2.

Active Appearance Models (AAMs) [Cootes et al., 1998], like snakes, produce a model of the de-
sired features and find an optimal match for that by traversing the image. AAMs produce this model
from a database of samples of the desired features, e.g. images of faces. A statistical model is con-
structed using Principal Components Anal@s{BCA) for both shape and texture variation. The space
of this model is then traversed as the AAM locates the most optimal location, orientation and internal
parameters to describe the input image.

In order to track facial motion the AAM can be initialized from a sampling of the expected expres-
sions, e.g. speech lip movements. AAMs are perhaps the most developed, state-of-the-art, method for
markerless tracking currently available. Yet these models can still be unstable in the presence of noise,
dropped frames and high frequency movement.

Capturing dynamic changes in facial expression can be a delicate process requiring precise and
consistent experimental setup. The advantages and disadvantages of the described techniques are shown
in table[4.]. No vision-based technique is perfect, and the requirements of the algorithms, along with
the problem of accumulated error, usually prevent their practical use in production. For these reasons
most commercial systems are usually based upon the placement of markers on the surface of the face.

4.2 Facial Motion Data

The nature of facial motion data itself is intrinsically tied to the method by which it is captured. Most
commonly this is a discretised sampling of the surface of an actor's face over time, often with no
structure. The motion of each sampled point is a composite of both the articulated motion of the neck
and the stretching of the skin by facial muscles over the boney substructure. Most methods can only
retrieve the motion of surface points, and not the motion of the eyes, jaw or the tongue within the oral
cavity. These features are either partially/fully occluded during capture, or it may be difficult to place
markers at those locations (e.g. the inner lip contour.) The occlusion of markers or mis-registration may
lead to significant parts of the motion being unavailable, and require that this is reconstructed using some
data interpolation method. Furthermore, the motions may be noisy either due to error in the tracking or
sensor noise. The final use of the data must take into account all of these factors.

Even given perfect noiseless tracking, animation requires that the course sampling of data points be
interpolated across the surface of the target mesh. Any target mesh is likely to be far higher resolution
than there are points in the motion-tracked data. The fact that the motion points define the surface of
the subject’s face implies that the deformation paradigm should be point or surface-based, and not vol-
umetric (precluding, for example, FFDs.) Necessarily, the modelling technique should be able to fully

2pPCA is generally used, although any similar statistical decomposition can be used. See ndix A.2 for a description of
PCA.
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(a) Frames from captured motions.
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(b) Motion trajectories for ce{ptu(red mi)arkers (data captured at 120Hz.)

Figure 4.3: Captured facial motion data (data courtesy of Scott King.)

define all possible expressions within the motion, which may preclude the use of physical or pseudo-
physical techniques. I [Choe et al., 2001, Pitermann and Munhall] 2001] methods are described for
driving physical models direct from motion-captured data. However, these rely either upon high de-
tailed models of the subject’s face, or simplistic projections onto the target model to allow the physical
parameters to be determined.

Some example facial motion trajectories are shown in fig 4.3. From such data it is evident that facial
motion is complex and highly non-linear. The motion of some points on the skin are highly rhythmical,
particularly the movement of the lips during speech, whereas the motion of other points exhibit high
frequency components. The use of such captured motions reduces the difficulty in simulating these
complex trajectories (discussion of the synthesis of speech movements is described in detail in Chapter

)
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4.3 Pre-processing Motion Data

Motion data, whether it is gathered from a subject using markers or marker-less vision algorithms, must
be processed in order to make the data readily usable. Importantly any noise in the gathered signal must
be removed, and the data must be rendered into a usable format. Here usable data is defined as containing
only the facial motion of the subject, with no sections of missing data nor movement due to rigid motion

of the head and ne@<The following sections detail the removal of noise and reconstruction of missing
data using Kalman filtering techniques, and the estimation and removal of rigid head motion. The result
of the pre-processing stage is data contaiminly the changes in facial expression captured from a given
subject.

4.3.1 Removing Sensor Noise

The nature of motion capture technology is such that the resulting motions are frequently noisy and
incomplete due to self occlusion amongst other factors. Given high frequency sampling of the point
trajectories (e.g. the data used in this thesis is captured using high frequency cameras at 120 Hz),
standard filtering techniques can be used both to smooth the motions and to recover missing data.

One common technique is to apply a Discrete Cosine Transform (DCT) to the data, and remove high
frequencies that can be assumed to be the result of sensor noise. Using this method, missing data can be
reconstructed by extending the sampling of the transform from neighbouring segments. Unfortunately,
this method is highly sensitive to spurious spikes in the data. Spikes will induce significant distortion
in the low frequency components of the DCT. The high frequencies compensate for this, and thus a
low-pass filter can cause severe oscillations in the resulting trajectory.

The unsatisfactory results of applying low-pass filters to removing data noise requires the use of
more sophisticated techniques. By conceptualizing the marker tracking as a stochastic process built
around a linear model (approximating the motion equations of the markers), a Kalman filter can be
applied to both smooth out noise and recover missing data.

Kalman filtering requires that a second order approximation of the position and velocity of a marker
is constructed (4]1). In this equatignandx; are thex components of the marker’s position and velocity
at timet;, andAt is the time interval between neighbouring samples.

Xi+1 | 1 At
Xit1 0 1

The tuple[x;,%]" is the state vector used to estimate the actual position of a given marker. The

ar?
2

At

Xi

+ e (4.1)

Xi

second order term i.1D,At2,At}T>'<'i, is interpreted as the process noise (i.e. due to the difference
between the model and the system being approximated.) This is assumed to follow a bidimensional

Gaussian distribution with zero mean, and covariance matrix given ih (4.2). In this covariance matrix,
2

o is an estimate of the variance in the acceleration of markers, defined globally for the data.
ot )
Q=| & 2 |o (4.2)
Ot a
5 At

SRigid-head motion can be added back into the animation at a later stage, but for most purposes complicates the use of facial
motion-capture data.
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A separate noise term which must be taken into account is that involved in the actual measurement
of the motion (e.g. due to tracking error.) As with the process noise, it is assumed to have zero mean and
be Gaussian-distributed. However, the measurement noise is due to the nature of the capture devices,
and thus the variance can be estimated empirically.

The Kalman filter defined in this way makes use of the linear equations (4.1) to derive an
estimate of the position of the markay,so that the variance of an error function is minimized. That is,
the difference between the estimate and the actual measurement is reduced for the defined specification
of the system. The resulting trajectories satisfactorily discard the high frequency noise once the filter
parameters are properly attuned. At the same time the estimate is driven by a dynamics model, thus
preventing spurious spikes from being considered as part of the estimate; neither will they destabilize
the estimate as seen with low-pass filtering of the DCT.

4.3.2 Estimation and Removal of Rigid Transformation

Facial motion gathered by motion capture systems may contain both the soft movement of the tissue
under muscular influence as well as the rigid body motions of the head an@nléokconvenience it
is useful to separate these motions thus allowing the animator more freedom to edit the motion of the
head. In this work the rigid-body motions are estimated and separated from facial movesfaet
any advanced processing of the mocap data (e.g. retargetting.) For the retargetting method described
in Sectior] 4.4 this is necessary because only small displacements from the surface of the skin can be
accounted for. The estimated rigid movements can be re-applied to the model at a later stage.
Estimation of the translation and rotation transformations of the head can be fraught with difficulties
when only the motion of points on the surface of the face are known. For this reason we use several
points placed on a head-mounted jig to determine rigid movements. In order to determine the rigid
transformation of the head from the, possibly noisy, location of these points a least-squares method is
employed.
Consider the functiori;(©, T) as the estimate of the head motion for temarker, given a rotation
© and a translatioff in three-dimensional euclidean space. For this marker we define the error in the
estimated location in terms of the tracked pgin{4.3).

error;(©,T) = %(fi O,T)—p)"(fi(e,T)—p) (4.3)

Solutions for® andT can be found by minimizing (4].3) for the set of rigid markeRsi.e. (4.4).

minimize ;error,- (6,T) (4.9

Jje

It is important to define an adequate parameterisation in order to solve the least squares problem in
(4.4). Rotation matrices could be used, and would allow the expression of the minimization problem in
a linear form. However, the resulting transformation matrices would not necessarily represent the true
transformation of the head. In fact it may not represent an affine transformation at all. This constraint
can be properly enforced by using representations with less degrees of freedom; such as Euler angles
or quaternions. Due to the singularities of Euler angles, quaternions are more appropriate and are used
here.

1This, of course, may not be the case for head-mounted systems.
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Solving the minimisation problem using quaternions requires only the constraint that they must be
unitary. This can be enforced by penalizing factors in the minimization, or by explicitly imposing the
constraint by means of trexponential magpetweenR® and the unit spher&® in R* [Grassia, 1998].

For each vector € R? its mapping onto the unit sphere is define4.5).

[sin(l[r ) gy cos([Ir[)] - where|r|| >0
[0,0,0,1] where||r|| =0

expr) = (4.5)

This reduces the constrained optimization problem to an exploratioriRSvgior both rotation and
translation.) Since the minima of the function is close to 0, a gradient descent method is used. The step
length is computed by (4.6).

ki1, Tk 1] = [, T] + Sk Oerror|g_expr,) 7=,

1 n
Oerror = { =) Jg; | Jexp (4.6)

& — —error
Oerror(Cerror)T

The initial estimate for the rotatiomg, is computed as the average sum of the rotation observed in
every pair of vectors defined by three non-colinear points in R. Gigethe initial translation Ty, is
trivial to compute.

The Jacobian of the exponential madgyp, when||r|| = 0 has no analytical derivative. This can be
remedied by using a Taylor expansionﬂw for r with negligable value. Also, we find singularities
as||r|| — 2z, and at multiples of 2. In practice this is not a problem because there will not be extreme
pose variations for the head.

The numerical method described in this section uses the properties of the minimization problem
to compute the estimates without needing to evaluate second order derivatives. At the same time the

method benefits from the filtering described in sedfion #.3.1.

4.4 The Retargetting Problem

The retargetting problem for non-articulated motions, such as the movement of the face, can be defined
as follows:

Input: A set of source points at tintec [0, 1], X = {Xo,X1,...,%n}, wherex € RS,

Output: A mappingR® — R2 which projects the points i onto a surface S, maintaining the
relative positioning of the data points over time.

Obviously there are a number of conditions§rihe surface to which the motion is being retarget-
ted. Most importantlyS must besimilar to the object from which the original motion was gathered.
Similarity, in this case, means an example from the same population; that is if retargetting facial motion
the target surface should also represent a face, with the same structural idiosyncracies such as disconti-
nuities and the general variation of curvature across the surface. Similarity is a condition which ensures
that the motiorafter retargetting will be recognisable from the initial data.
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Retargetting Animation
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Figure 4.4: The retargetting process.

As the above problem only requires the definition of a mapping, non-similar meshes are not pre-
cluded. However, it is impossible to know how a motion would appear if retargetted onto an entirely
alien object.

The required mapping should handle the composite of scale, rigid and non-rigid disparities between
the source motion and the target surface. The rigid component, which represents the rotation and trans-
lation which would align the motion with the target surface, is to be removed. The scale and non-rigid
components represent the differences in shape and expression over time and should be captured by the
retargeting technique. As a result of mapping the motion each of the data points should be embedded
within the target surface, and the motion of the points over time should maintain the relative motion
in the original mesh. This condition ensures that the resultant motion reflects that of the captured data
points, as though it was being created by the target face.

An overview of the method described here is shown ifffig. 4.4. This consists roughly of two phases:
firstly, radial basis functionsare used to transform the motion data to the space of the target mesh;
secondly, the markers are triangulated and a free-form deformation algorithm is used to interpolate the
motion to each of the target vertices. This is an entirely geometric approach, requiring the placement of
only a few points on the surface of the target mesh.

441 Previous Work

Overall, very little work has been conducted into the retargetting problem for facial motion, certainly
when compared to the research into articulated motion capture (e.g. [Gleicher, 1998].) As with all
models of facial activity, these methods can be distinguished into two areas: physically-based and
non-physical/terminal analog methods. The seminal work in facial motion capture was conducted by
Williams [Williams, 1990] into the use of marked points on an actor’s face to drive expression anima-
tion. The animation was produced using a non-continous point-based deformation technique, where
each marker deformed a local region using a so-called 'warping kernel’. This is similar to modelling
techniques described in the previous chapter which define surface geometry directly in relation to the
displacement of a few control points. Williams'’s technique relies upon the surface of the target mesh
being identical to that of the actor’s face (i.e. the surface was gathered using scanning technology),
and performs no retargettinger se However, the research demonstrated the feasibility of capturing a
sparse sampling of the motion of an actor’s face and directly using that data to drive an animation. In
[Guenter et al., 1998] this approach is extended by taking several views of the scene and thus infering
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three-dimensional geometric deformations, rather than the two-dimensional image plane deformations
used by Williams.

The problems with Williams'’s approach lie in the non-continuous nature of the deformation para-
digm, which is extremely evident in the results, and the lack of any retargetting strategy which would
allow the data to animate models which do not directly conform to the surface of the original actor.

In [Noh and Neumann, 2001] a technique is demonstrated which allows both problems to be solved.
Using this technique, a motion embedded within a mesh is retargetted by determining a dense surface
correspondance with a target mesh. Once a surface correspondence has been defined using a small set
of user-defined surface correspondences, the source motion is embedded within the target mesh. Sub-
sequently a number of rules are used to modify the motion vectors such that they correctly deform the
target mesh:

e Motion Vector Direction AdjustmentThe motion vectors are rotated such that they lie in the
tangent plane defined by the surface normal at each vertex. This ensures that the motion occurs
across the surface of the target mesh.

e Motion Vector Magnitude AdjustmentThe motion vectors are scaled by the relative location
of marked features between the source and target meshes. This prevents disparities between the
scale of the captured motion and the scale of the target mesh from adversely affecting the resultant
animation.

e Lip Contact Alignment The contact line between the lips on the source and target meshes are
aligned to preserve the discontinuous nature of movement in this area of the face. Without this
step the upper and lower lips may not be able to move independently.

Furthermore, Noh describes a heuristic-driven algorithm to make this method fully automated. The
disadvantage of this technique for the general purpose use of face motions lies in the base assumption
that dense motions are embedded in a source mesh. It is a non-trivial step to apply the motion of a
few control points across the surface of a dense mesh, and as Noh assumes this step has already been
performed there is a large step missing from the technique.

In [Na and Jung, 2004] a similar approach is taken to that described within this chapter. A morphing
approach is used to retarget the coarse motion, whilst high frequency details are retargetted by using
normal disparities between the neutral expression and the frames of motion data which are subsequently
imposed upon the target model. One of the major differences between Na's approach and the one
described here is that Na requires that several expressions be modelled to define the correlation, whereas
we use only one correspondence. A similar technique to that described by Na & Jung is found in
[Pyun and Shin, 2003].

In [Joshi et al., 2003, Pighin et al., 1999] facial motion is tracked using combinations of morph-
targets. However, this form of technique relies upon a significant capture effort to define the space of
possible facial deformations before any tracking can take place. Tao and Huang [Tao and Huang, 1998]
use FFDs to define a deformable model which likewise tracks movement in video. However, all of
these techniques rely upon expensive optimization procedures to match live video or tracked markers to
three-dimensional model states.

The methods described above exploit the geometric relationships between the motion and the tar-
get mesh to create animation. A significantly different group of techniques use physical models of the
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skin to animate the mesh from the motion of the control points. Physics models of the physiological
structure of the human face, based upon finite-elements or mass-spring networks, are used with muscle
deformation parameters unrelated to the geometric structure of its surface. In order to correctly de-
rive these deformation parameters for a given motion sequence, optimization procedures are required.
In [Pitermann and Munhall, 2001] the Euclidean distance between nodes in the facial model and the
motion-captured points is optimized over short temporal periods given constraints upon legal changes
of system state. This method demonstrates that a physics-based model can be directly driven from
geometric data, however the physical model is far from real-time and thus inappropriate for the ma-
jority of practical applications. A similar, albeit more simplistic, model based upon finite-elements is
demonstrated in [Choe et al., 2001].

4.4.2 Retargetting Motion Data with Radial Basis Functions

The solution to the retargetting problem is a matter of defining a mapping from one set of points which
vary over time X, to their respective counterparts embedded within a target mesh. This problem can
be seen as morphing the space of source points such that they lie upon the target surface; a volume
transformation. One method for morphing volumes relies upon the Radiél Basis FunctionRBFs,

see Appendik’A.T]1.) RBFs can provide a continuous mapping between two coordinate systems, in this
case¥ : R® — R3. The mapping functiorty, is defined as a linear combination of the basis functipns

@.D.

V60 = pul)+ 3 aid(lx—c) @.7)

Eachx is a member of the source data points, The mapped result should be embedded within
the target mesh, reliant upon the correct choice of bottogheeights and the basis centrgs These
values are calculated by solving a system of linear equations (the details of constructing and solving the
interpolant can be found in Appendix A.1.1.) This system requires the basis centres, and their mapped
transformation onto the target mesh. A single frame of the motion captured data is used to provide the
basis centres, and the transformed coordinates for the centres are identified on the target mesh. The
chosen motion-captured frame must represent the same expression as the target surface, e.g. the neutral
expression.

The RBF formulation allows for both rigid and non-rigid components, \gitfspecifying the affine
transformation from source to target. This allows the mapping to retarget motion data onto a grossly
mis-aligned target surface, without any further user intervention. The polynomial term is the minimal
requirement to at least align and scale the motion data to a surface with no further retargetting. The
weights carry the final non-linear component in matching the motion data to the target surface.

The described mapping functio¥, provides a continuous spatial transformation from the source
data points (the motion data) to the labelled target surface. Thus, for relativelﬂstmiﬂitions from
the basis centres, the mapping will retain the relative location of a transformed point. Apyongl|
points inX;, fort € [0, 1], the motion will be retargetted into the space of the target surface.

4The method is correct for small deviations, orthogonal to the surface constructed by the RBFs through the data points, on
the scale of the source face. This is an adequate assumption for natural facial movement which does not to a great degree bulge
outwards. The method will also be more accurate at regions of more concentrated sampling of the facial motion.



Chapter 4. Capturing and Retargetting Facial Motion 50

The Inverse Multiquadric (IMQ) RBH (4.8) is used here due to its global nature, particularly in com-
parison with the Gaussian. The global nature of the IMQ is reflected in the fact th@Littisntinuous,
i.e. continuous in all derivatives. This is favourable because undulations in the spatial mapping will
cause visually disturbing artefacts in the retargetted motion.

(2 +8) M withu >0,6 >0 (4.8)

The radius,8, of each of the basis functions is defined as the minimum distance to a surrounding
basis centre, i.e.§ = min(|[c; — i||) where i # j. A fixed value ofu = 2 is used for the locality
parameter, which defines the general shape of the IMQ.

The basic method described here for retargetting facial motion requires only the solution of an
(n+4) x (n+4) linear system, whera is the number of data points in the motion data. Any common
linear solver, such as Gaussian elimination, can be used to calculate bathwhaghts as well as
the polynomial term at the same time. The scaling and rotation of motion vectors, as proposed in
[Noh and Neumann, 2001], implicitly occurs as the three dimensional coordinates at each frame are
retargetted. At this base level the implementation and use of the algorithm is straightforward. However,
it is time consuming and error prone to manually label the transformed motion points on the target mesh.
Incorrect relative placement of the markers can cause scaling and shearing of the motion. Automation
in the labelling of the target surface removes a source of variability in the retargetting of motions.

4.4.3 Preparing the Target Surface

The retargetting technique described here relies upon the placement of markers on the target surface at
equivalent relative positions to those in the original data. This is undoubtedly an error-prone procedure
when performed manually. Ideally the markers should be placed fully or at least semi-automatically
on the target surface. Not only does this reduce the effort required in retargetting the motion data,
removing likely sources of error, but also aids in the repeatability of the method (i.e. retargetting the
same motion onto the same surface should always produce at least a largely similar result.) To this end
a semi-automatic method for labelling a target surface has been devised, requiring only the labelling of
a few key points. The method described here lowers the user workload in retargetting motion data from
tens of poim@ to around ten points at easily identifiable locations on the facial surface.

In order to correctly locate the position of data points on the surface of a target mesh several steps
are performed:

e Locate Key Feature PointsA number of fiducial points are manually placed by a user, located
at key features on the face. The tip of the nose, eye corners, and the apex of the chin make good
locations for fiducials.

e Simple Mapping and ProjectionUsing the fiducial points and their counterparts in the original
data a simple mapping is performed to align and scale the motion with the target surface. The
mapped motion points are projected such that they are embedded within the target surface.

e Triangulation of Data Points The data points are triangulated to facilitate the energy minimiza-
tion phase and later the deformation of the target mesh.

5Much of the data these techniques have been tested upon hold in the region of 80-90 data points.
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Figure 4.5: Fiducial points used in automatically labelling the target surface.

e Energy Minimizationrt Given the starting point from the previous stages of the registration process,
a final optimization of the marker locations is performed. This relies upon the deformation of the
mapped points in accordance with an energy function which maintains both their relative structure
and the similarity with the original data.

The manually-placed fiducial points represent key features on the face. It is important that these are
easily and accurately identifiable for the following stages of the mesh registration process to produce
good results, and also to enable the process to be repeatable. The following fiducials are used for
these reasons as well as the consistent coverage across the surface of the face that they provide: Centre
Forehead (CF); Chin Apex (CA); Nose Tip (NT); Upper Lip Centre (UL); Lower Lip Centre (LL);
Right/Left Lip Corner (RLC/LLC); Right/Left Ear (RE/LE); Right/Left Outer Eye Corner (REC/LEC).
These fiducial points are shown in fig. 4.5. Should the technique not produce the desired results with
this set of fiducials, there is the option of supplying more fiducials and thus further constraining the
later stages of the registration process. However, for most purposes the above set are adequate, and
furthermore correspond to a subset of important anthropometric fegtures [Farkéas, 1994].

Next a simple mapping between the labelled fiducials and their corresponding data points in the
original motion is created, again using RBFs. Here we are essentially performing the same calculation
as with the final retargetting to move all the motion data points into the space of the target surface. This
is notsufficient to label the target surface because the interpolation formed by only a few (approximately
12 fiducials) will not accurately reflect the structure of the target surface. The mapped points will not
necessarily lie embedded within the surface, apart from those corresponding to the fiducials themselves,
and thus further steps must be taken to ensure that the motion points have been correctly placed in
relation to the target surface.

The projection is a transformation from euclidean coordinates into cylindrical coordipates (4.9) fol-
lowed by a projection onto the target surface in the same coordinate system. The projection takes the
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Figure 4.6: Cylindrical projection of a target mesh and interpolated depth coordinates.

form cylind : R® — R3, and simply swaps the depth coordinateof the mapped point with that of the
target surface at the same elevation/angle coordif@tey;}. Interpolated depth coordinates are used
where no target depth coordinate is coincident, which can be optimized by rendering depth coordinates
into a texture map and performing lookup queries directly on the texture (seefig. 4.6.)

cylind: {x,y,z} — {8,y,r} where r=+vx2+2 4.9)
and 6 =tan'(Z)

Once the mapped points are cylindrically projected onto the target surface, they will remain em-
bedded within that surface throughout subsequent stages. Unfortunately a cylindrical projection can
lead to the mis-placement of data points, i.e. it will lead to a degradation in the similarity between
the structure of the initial motion data and the labelled points on the target surface. To rectify this an
optimization procedure is used to deform the points so that they move to the correct relative positions
whilst remaining embedded within the target. The previous stages are present to ensure that the points
are close enough to their 'correct’ placement that the optimization finds the global minima.

The global energy ternEmesn is @ sum of three termp (4]10q;s: which pulls the data points so
that they are embedded within the meBk;ain which maintains the relative location of each data point
in respect to its surrounding neighbours, &hpgd,qwhich pulls the data points to a solution with similar
curvature to the original motion data.

minimize  Emesh= OEqist + BEstrain + YEbend (4.10)

This can be seen as an analogous approach to the use of three-dimensional snakes (i.e. active surfaces
[Xu and Prince, 1997]) to locate the correct structure of data points embedded within the target surface.
The internal energy ternkiy, consists of the combination of bend and strain, Bgx = BEstrain+

YEvena The external energy terniey, consists only of the distance term ensuring that the data points

lie embedded in the surface, ey = aEgis;. The weights{ e, 3,7}, are tuned to transform the range

of each of the terms such that no one energy term dominates. The three energy terms are defined in
(@.11). The terms require the data points to be triangulated, which is also necessary for the deformation
algorithm and is discussed in Sectjon|4.5.
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Figure 4.7: Fitting a control surface to a target mesh.
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The equations in(4.11) rely upon the definitions of the functidis§ len, andbend which all
return a scalar value. These functions take either an eslgéefined as a pair of mapped data points
and related faces, or an individual data poigt, The edge® represent the state after mapping and
projection, whilst thegl represent the current state in the optimization. The fundlistis defined as
the shortest distance from a data pokjt.to the surface of the meslenis the length of a given edge,
and bend is computed as the angle between the normals of the faces adjacent to an edgg. Figure 4.7
shows the features related to the optimization process.

The optimization procedure used is the Downhill Simplex (DS, see appendiy§ A.3.1) method. DS is
used because it does not require explicit derivatives to find the minima of a function. As the optimization
landscape is a complex one, for which we have no analytic definition, blind methods such as DS are the
only ones available. However, DS is workable in this situation as the user-placed fiducials will have
located the mapped points close enough to the minima that DS is likely to be successfuh ffthe 3
dimensional simplex, whenmeis the number of data points in the motion to be retargetted, is initialized
with vertices corresponding to the mapped data points translated by a constantivadleng each
coordinate axes, i.e. along each of the axes of each ofdla¢a points. The value of the initial offsét,
is calculated as a fraction of the largest dimension of the target surface. This prevents DS steps which
pull the data points far away from the target surface and away from the desired minima.

The result of the three stages: manual location of fiducials; mapping and projection; and finally
energy minimisation is the optimal placement of data points from the original motion onto the surface
of the target mesh. These located points are now used as the target points in providing the mapping used
to retarget the complete motion. The method requires only the labelling of a few points and thus is at
least as time efficient as the basic method described in [Noh and Neumanh, 2001]. The fully automatic
retargetting which Noh mentions relies upon heuristics to identify the fiducials on the target surface. A
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similar approach could be used here. However, heuristics are not very consistent in identifying fiducials
accurately and for this reason the method retains an element of user interaction.

4.5 Animation from a Cloud of Points

The result of the described retargetting method is the motion of points on the surface of the target mesh.
These points are not attached to the target mesh, and thus a technique must be applied to transfer the
motion from the sparsely sampled data points to the densely-sampled vertices of the target mesh. This
implies an interpolation of the motion-captured points across the surface of the target mesh to create the
final animation.

Techniques to interpolate the displacement of a few control points across an object have already
been described in Chapigr 3. These are free-form deformation techniques that either deform the space
in which an object is embedded (e.§. [Sederberg and Parry| 1986]), or provide a mapping between the
object and a number of deformer primitives (e|g. [Lazarus et al.,| 1994, Singh and Kokkevis, 2000].)

In the case of facial motion-capture (i.e. as described in Sectign 4.2), the free-form deformation
primitives represent a sparse sampling of the facial surface. Thus, intuitively, the deformation tech-
nique should use a surface as the deformer primitive. This surface should span the control points, yet
should be capable of maintaining discontinuities (particularly the lip contact line) in the target mesh.
The techniques which best match these criteria are planar-element FFDs [Singh and Kokkevis, 2000,
Sanchez and Maddock, 2003], and patch-based FFBadi®z et al., 2004] (for details of both tech-
niques see Sectign 3.2.2.) The major difference between the two is that the former technique requires
discontinuity masks to be generated for the target mesh, whilst the latter technique implicitly maintains
discontinuities.

To derive an FFD structure to control the target mesh a triangulation procedure must be defined. De-
launay triangulation can be used, however it must be constrained to maintain a close fit and topological
similarity with the target mesh. In the absence of constraints no discontinuities will be present in the con-
trol surface. Also, the Delaunay method leads to convex hull-like triangulation of control points on the
nose and cheek, and thus constraints must be applied to prevent this. Details of the application of con-
strained Delaunay approach for deriving an FFD control surface can be founanoi&: et al., 2004].

Whilst the majority of the motion will be evident in the data itself, there are usually points which
were not, or could not be, captured initially. This is particularly the case for the lip contour line, where
the sorts of markers used in motion capture systems cannot be placed. In these case relationships with
surrounding markers can be used to reconstruct the missing data. The movement of the lips involves a
complex physical deformation, yet the motion of the inner contour can be adequately modelled with off-
set vectors from the outer contour. A more complex model could be constructed, but would require the
modelling of lip contact deformation, which would impact upon the real-time nature of the animation.
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4.6 Results

Frames from an animati@‘are shown in figure@.S a@.& Retargetting produces realistic motions
when the target mesh resembles a human face, i.e. the target has the same general features in the same
general structure. The process from capturing a new motion to animating a mesh is short requiring only
the labelling of a few points on the target mesh. Also, as the deformation is performed using a geometric
FFD algorithm, animation is real-time and non-specific to any target mesh (as would be the case with a
physics-based model.)

Figureg 4.B and 4]9 also demonstrate the use of bump-mapping to add fine detail into the model. By
fading in wrinkles according to the compression of the deformer structure high frequency details can be
added to the animation. This technique is discussed in detaibindi$ez et al., 2004].

4.7 Summary

This Chapter has discussed the process of capturing and processing motion data, and also introduced a
novel method for the retargetting of motions to animate meshes. Numerous methods have been proposed
for capturing human facial motion, but most extract a sparse sampling of the motion of points on the
surface of the skm These motions are often noisy, and contain rigid head motion which complicates

its use. Processing is required to extract the motion of markers in a form that can be used for animation.
In Sectior] 4.8 commonly used techniques are described for the processing of this data.

Given the raw motion of a set of markers, retargetting is required to transform them such that they
can be used to drive a mesh which may vary in both shape and scale. RBFs can be used to warp the
space of the original motion to coincide with that of the target mesh. This relies upon correspondences
between a frame in the original motion and the target mesh. These can either be manually labelled or
semi-automatically positioned according to the placement of a small number of fiducial points. The
retargetting is performed by simply evaluating the spatial warp for each frame of the source motion, no
further processing is required. The retargetted motion will exhibit the same relative motion of markers
as the original captured data.

To animate the target mesh the motion of markers must be interpolated to displace individual ver-
tices. A surface-based FFD technique is used for this (both planancf®z et al., 2003], and patch-
based|[Edge et al., 2004a8chez et al., 2004] deformers have been used.) Deformer primitives span
the markers in the retargetted motion data, and thus as the markers/control points move the attached
vertices are displaced. The surface-to-surface mapping provided by these techniques is an intuitive way
to map the sampled motion of points on an actors face onto the target geometry.

In Sectior] 6.1 the retargetting technique from this chapter is used as part of a limited-domain con-
catenative visual-speech synthesis system. The advantage of using a retargetting technique, such as
the one described here, is that motions captured once can be used to animate many virtual characters.
Given the difficulty and expense involved in capturing high quality facial motion, maximizing its use
post-capture is important.

6Animations demonstrating the retargetting technique can be found in the folder ‘animations@imm the accompany-
ing CD.

“Notable exceptions to this attempt to capture the facial surface [tself [Zhang et al], 2004, Tibbalils, 1998]. Although the results
are excellent, storing facial geometry for each frame is highly inefficient in storage, and the results are specific to the original actor.
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Figure 4.8: Frames from an animation showing control mesh (in green) and rendered mesh.
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Figure 4.9: Frames from an animation showing control mesh (in green) and rendered mesh.



Chapter 5

Animating Speech

Speech production can be considered as a process balancing the physical properties of the articulators
(lips, jaw, tongue etc.) and a set of ideal objectives. These objectives may be phoneme/visemes, context-
dependant allophones, or larger units such as syllables. The size and nature of these targets is a matter
of debate and a number of theories have been put forwabthyist, 1990, Kent and Minifie, 1977,
MacNeilage, 1970, Wickelgren, 1969hman, 1967] (see Sectipn 2]1.5.)

In order to synthesize the visual extent of speech articulatory movements it is necessary to take these
theories and produce generative mcﬁaﬂaich given a target utterance, usually defined by its phonetic
timing, produces trajectories for the vocal articulators. These trajectories are time-varying parameters
defining properties such as: lip width, tongue protrusion, jaw rotation etc. The parameterisation of
speech articulators is dealt with in detail in Chapier 3. The following sections shall deal with the gen-
eration of speech trajectories generically, that is with no reference to particular articulatory parameters.
Thus the methods described here could be used with anatomically inspired parameter sets (e.g. FACS),
physical parameters (e.g. muscle forces), or parameters relating to facial geometry (e.g. surface control
points.) The methods described here are implemented in several systems described in detail in Chapter
6.

The main problem which must be accounted for in speech synthesis is the resolution of coarticu-
lation, the effect of context upon speech movements. Generative models of coarticulation can be split
three ways: target-based models, motion-based models, and finite-state models. The first two represent
the main thrust of work into speech production, i.e. static phonetic units vs. dynamic units (e.g. syl-
lables.) In comparison HMM/neural-net models generate a visual signal directly from an audio signal.
Sectiorj 5.]L discusses prior work in the field, and the classification of visual-speech synthesis systems. In
Sectiong 5.2 arnd §.3 the use of dominance functions and optimization approaches to generating speech
trajectories are discussed in detail. Finally, Sedtioh 5.4 discusses a contrasting approach to synthesis,
that of concatenating pre-captured speech movements. The approaches taken to generating speech tra-
jectories using optimization techniques, and concatenating motions are significant novel contributions
of this thesis.

IThis is the case for Text-To-Visual-Speech-Synthesis (TTVS), however, Audio-To-Visual-Speech-Synthesis (ATVS) systems
typically do not rely upon speech production the¢ry [Ezzat et al.,|2002, Brand, 1999].

58
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5.1 Previous Work

Methods for generating speech trajectories in TTVS systems can be split into several broad categories:

e Target-based where a speech trajectory is generated between several distinct static targets (usu-
ally visemes.) The synthesis technique models @he of coarticulation in transitions between
speech targets. The most simple of these methods directly interpolate targets, and so do not model
coarticulation at all with an accompanying loss in naturalness [King etal.]2000]
[Ezzat and Poggio, 1999, Kulju et al., 1998].

e Motion-based where a selection of motion units are concatenated to generate trajectories. These
are analogous to the concatenative methods in audio synthesis (see Appehdix B.3.)

e Model-based where a model is generated from captured speech motions relating speech audio
to generated trajectories.

Target-based models are the most common in the animation/synthesis community. This is most ev-
ident with the approach in [Cohen and Massaro, 1993] where a number of dominance (basis) functions
are used to generate a trajectory between viseme targets. Essentially the dominance functions act like ba-
sis functions for a spline. This method has been implementéd in [Cosi et al|, 2003, Albrecht et &l., 2002,
Breton et al., 2001, King, 2001, Le Goff and Bénd996], and is discussed in depth in Secfior) 5.2. It
is important to note that there are other models which relate a time-varying dominance to the gener-
ation of a trajectory from static targefs [Bui et al., 2004, Fagel and Clemens,[2003, Ezzat et &l., 2002,
Reweret et al., 2000] and these in effect are all implementations of the idea®iqvjkt, 1990] (and
by extension@hman, 1967].) In[Waters and Levergood, 1993] a similar target-based approximation is
defined using a physical system of nodes and springs which are used to find the motion of points on the
face over time.

Motion-based models take real-life data relating to the articulation of natural speech, decompose the
data into units (e.g. syllables, words etc.), and use combinations of these units to generate natural speech.
An example of this is the Video-Rewrite modgl [Bregler et al., 1997], where segments of video repre-
senting triphones are concatenated togetherl In [Kshirsagar and Magnenat-Thalmann, 2003] segments
of motion-captured data representing visual-syllables (i.e. the visual component of a syllable in the same
way that a viseme is the visual component of a phoneme) are concatenated to perform global-domain
synthesis. Similar techniques can be found in [Cao et al.,|2004, Huang et al.| 2002, Bulut et al., 2002].
The disadvantage of these techniques lies in the size of database required to perform synthesis, as the
data must capture all variations in the target domain. Possible units for synthesis ordered in increas-
ing size include: phones, diphones (phoneme-to-phoneme transitions), triphones, demisyllables (half-
syllables split at the central vowel), syllables, words, and phrases. As the unit size increases so does
the quality of the synthesis, as there are ®g#thetictransitions, but the size of the database increases
exponentially. For comparison consider the number of diphone transitions in British English, number-
ing in the low thousands, versus the number of syllables, numbering in the tens of thousands - thus,
the use of syllables requires significantly greater time in data-capture, labelling and other preparation
before any synthesis can occur. Visually there will be less perceivable units in natural language, yet the
greater difficulty in accurately capturing the movement of the articulators more than makes up for this
(see Chaptgr]4.) In Sectipn 5.4 techniques required to implement motion-based synthesis are discussed
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in detail. Other models in this group include [Arslan and Talkin, 1998lIdflen and Lyberg, 1998,
Henton and Litwinowicz, 1994].

Model-based synthesis builds an invE}@ationship between speech audio and articulatory motion,
and thus given a novel source of speech audio (either natural or synthetic speech) a trajectory can be
generated. In order to capture this relationship Hidden Markov Models (HMMs), finite-state machines
with probabilistic transitions, are trained upon databases of recorded speech audio and movements.
A number of systems based upon this method have been repprted [Williams and Katsagge|os, 2002,
Angelfors et al., 1999, Brand, 1999, Brooke and Scott, 11998, Tamura et al|, 1998], which mainly vary in
the structure and training of the HMM. Neural networks have been used to similar effect in
[Massaro et al., 1999, Eisert et al., 1997, Frank et al., 1997, Lagana et al., 1996]. Other models which
can be attributed to this group include [Kshirsagar and Magnenat-Thalmann, 2000, Lewis and Paike, 1987]

5.2 Target-based Synthesis using Dominance Functions

The most common technique for the synthesis of speech movements is analogous to target/feature-based
models of coarticulatiorf [afqvist, 1990 MacNeilage, 197@hman, 1967]. In these methods static
target feature sets, representing individual visemes, are approximated using various methods. Here
the wordapproximateds used to represent the fact that coarticulation cannot be implemented using
an interpolating scheme. The targets will most likely not be met, and thus a synthesis technique is
alike an approximating spline (albeit a complex and highly parameterized one) where the control points
are the relevant target features. Several schemes have been proposed [Cosi et al., 2003, King, 2001,
Reweret et al., 2000, Le Goff and Beitp1996, Cohen and Massaro, 1993], however, all can be traced
back to Lofqvist's general model [&fqvist, 1990] (and further back t@Ohman, 19677].) The basic
model has already been described in Sedtion 2]1.5.1. Below is a more thorough description of the
method, its properties, advantages and disadvantages.

The basic equation, defined by Cohen and Masdaro [Cohen and Massaro, 1993], implementing
Lofqvist's model of speech production is found[in {2.2) gnd](2.3) (reproduced below for convenience in

E.3) and[5.p).)
aspe 7" 7>0

Dsp(f) = c (51)
ospe O T <0

_ 2it1(Dsp(n)Tsp)
¥i-1Dsp(7i)
In ) a negative exponenﬁ]adiominance functionDsp, is defined which controls the temporal

Fp(t) (5.2)

extent (influence) of a segmestmore specifically viseme target) over a particular parameter trajectory,
p. The coefficients osp, ©_sp, O_sp,C} determine the shape @fsp. A combination of these is used

to weight the contribution of each viseme over the final parameter trajeEtof§.2). Thus, the final
trajectory can be thought of as a type of approximating non-uniform rat@hapline: approximating

2The relationship is inverse because the audio drives the speech movements. This is the opposite of the causal relationship
between the physical movement of the articulators and the resulting speech waveform.

3Most authors use negative exponential functions to model the temporal influence of a segment. However, Cohen and Massaro
[Cohen and Massaro, 1993] propose that different dominance functions could be used to model specific properties of speech
trajectories (although there is no mention of how to do thisdfquist's original proposal [Bfgvist, 1990] does not make any
particular claims as to the shape of these functions.
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because, as implied by coarticulation, the trajectory does not pass through all of the temgatajform
because the targets may occur at arbitrary intervals, as specified by the phonetic timing of the utterance;
andrational because the coefficiewisp defines the degree to which the target is approximated (or, at
extreme values, whether it is interpolated.) This formulation leads to a number of observations:

¢ By the described formulatioonly C° continuity can be asserted. This leads to problems in realis-
ing physical properties of articulatory movements, for example the onset/offset characteristics of
muscular contraction$s [Fung, 1993]. Furthermore, as there is no control over higher derivatives it
is impossible to assert, for example, directional control over lip movements (e.g. forcing the lips
to be moving apart.)

e The degree to which a target is realised in the dominance function approach is entirely a function
of context. For example, in no context a target will be met enﬂ}eiyld by adding more targets
with overlapping influences the original target will be less well met. This can lead to problems
where the context in which a segment finds itself will prevent that target from being met suffi-
ciently for audio-visual fusion (visually the articulatory movements contradict the audio.) This
has been found to be the case in particular for easily recognised visemes (i.e. those which are
strongly dominant), e.g. bilabial plosives [Le Goff and BEnd996]. Infinite dominance, that is
an absolute guarantee that a target will be interpolated, does not exist in this model.

¢ In the dominance function, model parameters which affect the resulting speech trajectory are
bound with the visemes themselves. This implies that the physical properties of speech are not due
to the physical system itself (muscles, skin etc.) but by the placement of the targets in an utterance.
If two contradicting, and equally dominant targets are moved increasingly closer together, until
they virtually coincide, they will cancel each other out. Thus, a higher level planning process
must exist, and must have knowledge of which targets can exist in which context and also the
allowable proximity of those targets.

e This model does not define speech as a displacement from a neutral state. For this reason silence
itself is considered #argetand has its own dominance function. That silence has an influence
over speech movement is a strange concept, given that silence is what occurs when there is no
speech movement. This is due to the weighted combindtioh (5.2) used to find the final parameter
trajectory, Fp, which implies that before the beginning of the utterance and after the end the
trajectory will tend to the first and last targets respectively (i.e. not to O or the neutral expression
- which for many parameterisations will be the same.)

e There are no global parameters to control articulation. This prevents the modelling of speaker-
independent characteristics (e.g. degree of articulation and speech rate.) In order to model the
degree of variation in speech movements would require the parameters of the model to be modi-
fied.

e It has been reported that coarticulation only occurs over periods of up to seven segments
[Benguerel and Cowan, 1974], and usually far less. Howejer, (5.2) is a summation for all seg-
ments in an utterance, and thus contributions may be occuring over longer durations than are

4In fact in no context the trajectory will be static because there are no contradicting targets.
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Figure 5.2: Fitting dominance functions (after [Cohen and Massaro] 1993]) to real articulatory motion

using Simulated Annealing (solid - real trajectory, dashed - fitted trajectory), from top to batte 5,

c=1,c=2.

observed in real-life. This can be remedied in the described model only by correct choice of
dominance function parametgrs

These observations indicate possible directions in which to modify the Cohen & Massaro approach.
Examples of modifications include limiting the number of contributions at each point in an utterance
[King, 2001], and changing the dominance functions themselves [Cosi et al|, 2003]. Despite any possi-
ble limitations of the described technique it is accepted adé¢hfactostandard for modelling coarticu-
lation in visual speech synthesis. A novel alternative based upon constrained-optimization is described
in Sectior 5.B.

5.2.1 Fitting Dominance Functions to Speech Trajectories

The quality of a speech synthesis technique is directly related to its ability to reproduce observed articu-

latory movements. Fitting synthesized trajectories to captured data is an optimization problem in several

unknowns: the viseme targels,, the parameters for each of the related dominance functibyj.e.

{asp, ©_sp,©_sp}); and the shape parameter,which controls the properties of the approximation.

The optimization process minimizds (b.3), the square distance between the parameter trajectory in the
initial data,Gp, and the synthesized trajectoRy, from (5.2).

5In [King, 2001] this is remedied by only taking into account the closest dominance functions.
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minimize 3 [|Gp(t) — Fp(t)||? (5.3)

The space of this minimization problem is non-trivial with many local minima which prevent sim-
plex methods from being used. The derivatives of the objective function are also unknown which further
precludes many optimization techniques, e.g. steepest descent methods. For these reasons Simulated
Annealing (SA, see Appendjx A.3.3) provides an appropriate alternative, which can find a global min-
ima without the requirement for exact derivatives. SA takes random steps (mutations) in the parametric
space of the model, always accepting improvements in the objective (i.e. mininjizihg (5.3)), but also
acceptingsomesteps leading to a worse state. This allows SA to perform a semi-global search of the
optimization landscape, and thus find the minima.

Figure[5.2 demonstrates the results of fitting a dominance function model directly to a speech tra-
jectory (in this case the motion-captured trajectory of the upper lip) whilst varying the global shape
parameterg, of the dominance functions. It can be seen that with high valuesarid therefore more
continuous dominance functions, that the SA algorithm has more difficulty in matching the captured
trajectory. Ascincreases higher frequency characteristics cannot be reproduced. However, with lower
the generated trajectory may overshoot and does not closely match the continuity criteria of the original
trajectory. It is possible that should vary with different targets, although this would make the fitting
procedure far more complex.

An interesting result of the fitting process is that becaus@dpare also being determined directly
from the trajectory they are not ideal targets as would be visualised. In fatijlaee extreme exager-
ations. Whether this is true of real speech production, i.e. that the aim is to meet exagerated viseme
targets, is a matter for debate. However, dominance functions can be reasonably fit to real speech tra-
jectories and so are at least approximately functionally equivalent to the mechanisms behind speech
productioﬁl In the next section an alternative method for generating speech trajectories is proposed.

5.3 Target-based Synthesis using Constrained-Optimization

The limitations of the Cohen and Massaro approach (and its derivatives) do not necessarily preclude
the use of target-based models for speech synthesis. In fact, even given the limitations such models
can produce good results, and have been shown to reasonably approximate observed speech dynamics
[Cohen et al., 2002] (also see Secfion §.2.1.) However, it may be appropriate to reformulate the problem
in order to overcome these problems whilst still conforming to the idea of speech production as a target-
based process.

In [Witkin and Kass, 1988] physics-based articulated body motion is formulated as a global opti-
mization problem. An objective functio@b j(X), specifies the goodness of the system stafier each
step in an iterative optimization procedure, whilst a set of bounded const@jntaaintain the physi-
cality of the motion, i.e. solvin.4). For most spaceﬁ}nenstraints problems the objective function
ensures energy conservation (i.e. perform a task with minimum effort), and the constraints define some
physical system within which the task must be solved.

60f course many forms of spline can be fit to trajectories in much the same manner.
“Spacetime implies problems with objectives in space and time (i.e. animation), which are solved using global optimization
methods.
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minimize  Obj(X)
. . — (5.4)
subjectto  Vj:b; <Cj(X) <b;
Global optimization of this form fits well with the notion of speechproduction; i.e. a task-oriented
system constrained by the physical nature of the articulatory structures used to produce speech. In order
to use constrained-optimization techniques to generate speech trajectories it must be determined what

function is being optimized, and how this is constrained during natural speech production.

5.3.1 Objective Function

The essential objective of speech production, as maintained by target-based models, is to attain a number
of serially ordered vocal tract targets. By observation there is a high degree of variability in each of these
targets with respect to the immediate context (i.e. due to coarticulation.) Thus it is sensible to include the
variation in targets as a constituent of the system itself; that is if a viseme can include a certain degree of
variability and still produce the appropriate speech sound, that variation should be encoded prior to the
generation of speech trajectories. To this end visemes rather than being static targets (or morph targets
in animation terminology), as is the case with Cohen and Massaro’s model, are distributions within a
spatial coordinate system (parameterisation) representing the vocal tract.

Consider each visem¥j, to be represented as a distribution in our parameterisation (be that any
of the methods discussed in Char 3), witkal targetV; and lower,V;, and upper bound&/. In
this notation vocal tract shapes offset in each dimension of our model may still be considered to be
members of the viseme distribution where they lie in the range(Vi,Vi]. In this manner the variation
of speech poses can be captueegriori in the model, and reasonable limits placed upon generated
speech trajectories.

Given a definition which emphasises the distributed nature of speech targets, the objective function
can be defined (5 5).

Obj(X) =y e (S(t) —Vi)? (5.5)

This objective function optimizes the difference between the speech trajeStatgfined by the
system stateX, and the ideal target¥;, at the appropriate timés The square difference between the
speech trajectory and the ideal targets is however insufficient as some targets will be met more closely
than others. For this reason the difference is weighted by a fagtowhich defines the extent of the
dominance that target exerts over the speech trajectory. In this manperforms a similar function
to asp from ). However, in the presence of no constrrwswill have no effect upon the final
trajectory and each of thé will be interpolated.

This objective function contrasts withostspacetime methods in that it does not contain an energy
conservation term. This is due to the fact that in natural speech targets are not met, and thus the solution
will use all the available energy to get as close as possible to the targets. Essentially there is no slack in
speech trajectories to remove.

8A set of constraints which are not violated is equivalent to no constraints at all.
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Figure 5.3: Conceptual view of optimization-based generation of speech trajectories.

5.3.2 Constraints

The previous section discussed the final objective of speech production, i.e. to get as close as possible
to several ideal targets. Now it is important to define the constraints (physical and otherwise) upon a
speech trajectory.
A speech trajectory is a curve passing through a spatial coordinate system which represents vocal
tract gestures. This curve will begin and endg@jx andeenq respectively (possibly the same position,
e.g. the neutral expression.) In-between it will pass close to the relsvamicording to[(55) but
not interpolate them because the parameters may only change with regard to certain restrictions. These
constraints upon the speech trajectory can be classified in two ways: global constraints, which determine
the physical rules of the system; and local constraints which ensure speech-like behaviour is generated.
Constraints can be used to ensure positional and derivative values at specified times (equality con-
straints) and parameter ranges (inequality constraints) across the speech trajectory. Boundary constraints
at the beginning and end of the trajectory are used to ensure that the motion starts and ends with the
correct vocal tract gesture and in a rest configuration (i.e. with no residual forces); several boundary
constraints are listed in talfle .1. Similarly, such constraints can be used to append trajectories together
by matching position and derivatives at the adjoining boundary.

Table 5.1: Boundary constraints.

CONSTRAINT DESCRIPTION

Ststart) = Estart Ensures trajectory starts &art

S(tend) = €end Ensures trajectory ends &g

S(tstart) = Stend)’ =0 Ensures the articulators are stationary at
the beginning and end of the trajectory.

S(tstart)” = Stend)” =0 Ensures the articulators are in a rest state

at the beginning and end of the trajectory.

For each of the visemes in an utterance there will be a range of shapes that the vocal tract can take
according to coarticulation. Outside of these ranges the vocal tract shape cannot create the matching
audio. Thus, the extent to which the target is met at the appropriatettjise;sonstrained to lie between
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maximum,V;, and minimumy, values).

S(ti) € Vi, Vi] (5.6)

Without the presence of a global constraint the combination of objective fundtioh, (5.5), and local
constraints, tablg 5.1 and (b.6), will simply lead to an interpolation of the viseme targets. The global
constraint is required to prevent the targets from being met, i.e. damping the trajectory. In order to do
this the parametric acceleration is limited across the trajectory, implicitly constraining the parametric
forces and thus a physical constraint on motipn,|(5.7).

IS(t)"| <y wheret € [tstart, tend (5.7)

In (5.7) v is the maximum allowable magnitude of acceleration across the entire trajectory. As this
constraint becomes more strict, ije— 0, the trajectory is not capable of meeting all the targets and thus
in combination with the objective functiop ($.5) targets will be realised according to their dominance,
;. A conceptual view of the optimization and related constraints can be seen[in fig. 5.3.

5.3.3 Representing the Speech Trajectory

In order to apply the objective function and constraints defined in the previous sections a concrete
representation fdg(t) must be defined. The curve representation must have enough degrees-of-freedom
to represent any particular speech trajectory, and idealy should exhibit atfezmttinuity to make the
application of [(5.7) feasible.

The curve representation used here is a cubic non-uniform B-sglifi@€ontinuity, as previously
mentioned, allows the global constraint to be applied at a sampling of the spline. Otherwise, there is no
natural way to apply the constraint. Also, because turning points in the spline will only occurtat the
(i.e. the viseme targets will be extrema in the trajectory), the spline is non-uniform requiring -erdy
control points to define a trajectory betweerisemes, and two end conditionssft andeegng). The
control points of the spline are the membersxgfand there will to ben+ 6 knots to define a spline
betweem control points[(5.8).

X ={X1,X2, %3, .-, Xn—2, Xn-1, %} (5.8)
T ={t1,t1,t1,t2,t2,t3.. ., tr—2, tn—1,tn, t, tn, tn} - where 11 <t <tj1
The beginning and end knots are repeated to ensure that the first and last control points are interpo-
lated, although this is not necessary for the method to work. The curve is defined between the fourth
and fourth-from-last knots (i.e. betweh att; andX, att,.) The knot vectorT, is required to define
the basis functionsB;, which define the curvg (5.9). The Cox-deBoor recursion is used for this - see

[Farin, 1997| Bartels et al., 1987] for a discussion of B-splines.

St) =) XBi(t) (5.9)

This is the general formula for a B-spline. At any point on a cubic spline only four basis functions
will be non-zero. For this reasoh (5.9) can become (5.10) within the curve segmént;.1).
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Figure 5.4: Non-uniform Cubic B-spline and its basis functions

S(t) =3 2X+iBi+j(t)
= Xi—2Bi—2(t) + Xi—1Bi_a(t) + XiBi(t) + Xi11Bit1(t)
Similarly, the first,S(t), and second3’(t), derivatives ofthe spline can be defined using the deriva-
tives of the basis functiong (5]11).

(5.10)

S(t) =y 2%+iB(1)
= xifZBi/_z(t) + Xi—lBi/_l(t) +XiBi/(t) + Xi+lBi/+1(t)

(1)

=3 2%+iB (1)

(5.11)

= Xi2B{ 5(t) + XiaB{" (1) + XiB(t) + Xi11B{ 1 (1)
Figure[5.4 demonstrates a Cubic B-spline curve with non-uniform knot spacing, and its basis func-
tions, B;.

5.3.4 Solving The Constrained Optimization Problem

The constrained-optimization problem described in the Sedtion$ 5.3] 5.3[1 arjd 5.3.2 can be solved by
any of the conventional means (see Appeidix A.3.) In the case where the derivatives of the objective
function and constraints are available, the Sequential Quadratic Programming (SQP) method is used
(see Appendik’A.3]2.) SQP at each step takes a second order step optimizing the objective function and
a first order step in the constraints to project up to the constraint boundary. The derivatives are available
when the trajectory is being represented by a cubic B-spline, and thus a projection method of this form
can be used. In the case where derivatives are not available finite-differences or some other numerical
method can be used to approximate them with some associated loss of accuracy.



Chapter 5. Animating Speech 69

The SQP method requires the Hessian of the objective fundtigy), and the Jacobian of the con-
straint functionsJc, to be calculated (5.12).

9°0bj  920bj 920bj aC;  9C ple
9X19%Xq IX19Xo e 9X10%n X1 IXo e dXn
020bj . 020bj aC, - 9Cy
IX2dX; ' %20 Xy ' %n
Hobj = 2% 2% k= % (5.12)
920bj  J20bj 920bj 9Cnm  ICnm 9Cm
IXndXy  IndXg T TXndXn L

As discussed in the previous section, the trajectory is represented with a non-uniform cubic B-spline,
according to[(5)9). Given this definition, the objective function becofnes|(5.13).

Obj(X) =g;m(St)—W)?

2 (5.13)
=i ((3XiBj(t)) —Vi)
The matrix elements dfl,,; can be generalised to the form .14).
90D
TN X Z(Za)iBJ (ti)Bi(ti)) (5.14)

This is a summation for all. However, where the spline is cubic, basis functidgswhere(l <
i—2) V(I >i+1) will be zero attj. This means thaB;(t)Bx(t) =0if (j <i—2)Vv(j>i+1) Vv (k<
i—2)V(k>i+1) and thus these terms do not contributigy; will be a symmetric matrix with non-zero
elements lying across the diagonal in the rafige 2) < j < (k+1).

The elements of the jacobial;, depend upon the individual constraints. These fall into the follow-
ing categories:

e Global Constraint- at a sampling along the trajectory restrict the magnitudg’¢t) to prevent
targets from being meft (5.7).

¢ Positional Constraints at the beginning and end clamp the trajectory to pass thregghand
€end respectively (see table 5.1.)

¢ Derivative Constraints at the beginning and end of the trajectory const®&iiart) = S (tend) =
0 (see tablg 5]1.)

e Range Constraintsat each; constrain the trajectory to lie in the rang;) € [Vi,Vi] ).

The global constrainCgiopal, by substitution from[(5.31), will becomg (5]15) wheSés a cubic
B-spline and € [tj,tj+1).

(1= S'1)?=(r— (T X4 B 0)7  whereS'(t) >y
Catobai(t) = § (~7— /()2 = (=7~ (315X B};(1)))? whereS'() < -y (5.15)

0 otherwise

The elements ol corresponding td (5.15) will beconie (5]16).
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Figure 5.5: Effect of varying dominance and global constraint upon speech trajectories generated us-

ing the constrained-optimization target-based approach. Top and second-top trajectories have three tar-
gets:{{t1 =25 w, =1.0, u3 = —100}; {t, =50, wp = 1.0, up = 100}; {tz = 75, w3 = 1.0, u3 = —100} }.
Top shows increasing global acceleration constraint, from least constrained (solid) to most constrained

(dotted.) Second top demonstrates decreasing the dominance of the first target from equal dominance

(01 = 1.0, solid) halving the dominance at each step. Bottom and second-bottom trajectories have five
targets:{{t; = 10, w1 = 0.6, u1 = 20}; {to = 30, wp = 0.1, up = 20}; {t3 = 50, w3 = 0.05, u3 = 20}; {ts =
70,04 = 1.0, uq = 90}; {ts = 90, ws = 0.6, us = 20} }. Second-bottom shows increasing global accel-

eration constraint, from least constrained (solid) to most constrained (dotted.) Bottom demonstrates

decreasing the dominance of the forth (most dominant) target éope 1.0 (solid) halving the domi-

nance at each step.
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o —2(7= (52 XiBl (1)) BU(t) whereS'(t) >y
Pl 3 (4 (51X B 0))BLO  whereS <~y (616)

I X
0 otherwise

This constraint is applied at a sampling along the trajectory, due to its global nature. This is adequate
as the spline is cubic the second derivat§&t) varies continuously along the spline.
To constrain the trajectory to exactly pass through a paingt timet: € [t;,ti1) the constraint

equatiorCposis used|[(5.17]7).
Cpos = (e—9S(te))?
pos = (e i)) , (5.17)
= (6= (Yj=—2Xi+iBitj(te)))
The derivatives ofic corresponding td (5.17) will becomie (5]18).

aC L
T)?:S =-2 (8 - <J_=Z_2Xi+j|3i+j(ts)>> By (te) (5.18)
Derivative constraints can be applied in exactly the same way ag (5.17), by refBétingth B'(t)

orB(t).
Finally to constrain the trajectory at tineto lie in the rangeS(t) € Vi, Vi], Crng is used).

(Vi —S(ti))? = (Vi = (3}-_2%+Bi+j(t)))* whereS(t) >V
Crng = 4 (Vi = S(ti))% = (Vi — (¥ }——2%i+iBi+j(ti)))*  whereS(t) <Vi (5.19)
0 otherwise

The derivatives ofic corresponding td (5.19) beconje (5.20).

-2 (\7i— (z}}zxiﬂ-BiH(ti))) B(ti) where §(tj) > Vi
~2(M~ (5} 2%+Bisj (1)) Be(t)  whereS(t) <\ (5.20)

0 otherwise

aCrng o
P

The complexity of the system is directly related to the number of viseme targets. Increasing the
number of targets will lead to a linear growth in size of blta; andJc. Also, the number of parameters
required to represent the vocal tract will increase the time to convergence of the system. This may
possibly be improved by using a windowing approach such as that from [Cohen, 1992].

Several example trajectories demonstrating the application of the global constraint and dominance
are shown in fig.[ 5]5. In fig] 5.6 trajectories for a complex speech trajectory are shown. As can
be seen the global constraint has the desired effect of dampening the entire trajectory and preventing
all targets (thev;) from being met. As the dominancey, of an individual target is increased the
trajectory will gravitate towards it, at the expense of the surrounding targets. Conversglis esduced
the surrounding targets are better met at the expensg dfhe described method is a very powerful
approach, allowing arbitrary extensions to target-based synthesis by changing the objective function, the
global constraints or adding local constraints to get desired changes in generated trajectories.
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Figure 5.6: Speech trajectories generated using the constrained-optimization method for the sentence
‘my name is not baldyTrajectories sampled at 25Hz.

5.3.5 Comparison with Dominance Functions

The observations discussed in Secfion 5.2 can be taken as a set of criteria for comparing the capabilities
of dominance functions (after [Cohen and Massaro, 1993]) and the constrained-optimization technique
introduced in this thesis.

In terms of extensibility the shape of dominance functions can be controlled by changing their pa-
rameters or by allowing different forms of function for differéppesof speech target (e.g. after tables
[2.3 or[2.4.) This requires the manipulation of abstract parameters indirectly related to the appearance
of a speech trajectory. In contrast, the optimization approach allows arbitrary constraints to be applied,
either clamping its position or derivatives, or constraining the range of values the trajectory can take at a
particular time. Thusspeech-likgoroperties can be applied directly, e.g. the time at which the lips part
during a bilabial plosive can be directly asserted. This property allows iterative enhancement of speech
trajectories according to known properties of vocal articulators.

The fact that positional constraints can be directly applied prevents the problem of explicitly mod-
elling silence. In the constrained-optimization approach silence is modelled by enforcing the trajectory
to pass through stamts; o, and endeeng, targets. Further positional constraints can be applied across the
trajectory, e.g. to apply emotional expressions between sentences. Thus, the start and end points of the
motion can be asserted and will affect the surrounding speech transitions. Using dominance functions
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the interpolation cannot be asserted except by extremely dajgdce which will adversely affect the
coarticulation modelling. It could be considered inconsistent that silence, the absence of vocalisation,
has a dominance over a speech trajectory.

By applying a range constraint on the trajectory at each of the viseme targets we can assert that the
centre of each viseme is met well enough for audio-visual coherence. Implicitly this is also a constraint
upon how closely targets can be placed, as the global constraint and the range constraints may compete
(i.e. y could be too strict to allow some of the range constraints to be met.) This is a condition on audio-
visual coherence which cannot be ensured using dominance functions. The only way to ensure this with
dominance functions would be significant tuning of the parameters and applying some constraints upon
the duration and context of each target.

The global constrainf (5.7) also provides some control avennerof articulation. It is obvious that
with no constraint the trajectory will be a simple interpolation of the targets (over-articulation), and that
highly constrained trajectories will exhibit little motion (under-articulation.) This is a continuous range
of articulatory styles, with the extreme values at either end being unrealistic. However, there are a range
of values for the global constraint where articulation is realistic. This variability in generated trajecto-
ries can be considered to provide stylistic control, for which there is no mechanism using dominance
functions.

One disadvantage of the optimization technique is that the coarticulation of adjacent targets will
be a symmetric effect. This is different to dominance functions where each Bagids skewed to
provide for the asymmetric properties of coarticulation (i.e. the differences between forward and back-
wards coarticulation.) In order to model this the global constraint must be non-linear in nature, whereas
currently a linear constraint on the acceleration is used. Onset/offset characteristics surrounding each
viseme target would need to be modelled. To apply such a constraint using the optimization method
may require a higher order spline.

It should be pointed out that the optimization-based method described is a member of a class of
techniques. Different methods could be considered for applying the global constraint, and different
constraint and objective functions could be used to improve the approximation to observed speech char-
acteristics. Also, the structure of speech trajectories are manipulated directly in the parametric space of
the model. This is beneficial over the manipulation of abstract dominance parameters which cannot be
directly measured from real speakers, only estimated using methods such as described iff Se¢tion 5.2.1.

5.4 Motion-based Synthesis

Motion-based synthesis contrasts with target-based methods as, instead of approximating (or interpolat-
ing) a set of discrete positions in parameter space, fragments of captured motions are concatenated to
form the final trajectory. Instead of modelling coarticulation explicitly motion-based synthesis assumes
that themajority of the effects of coarticulation will be captured within the units to be concatenated. It
is at the joins, or concatenation points, between units that the synthetic nature of the motion will be most
apparent. This method is analagous to concatenative audio synthesis; considered to be the most natural
means of synthesizing speech audio (see Appgndix B.3.)

This form of synthesis requires the following problems to be tackled:

e Database Design and CaptureFrom a target domain design a database which will cover all
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possible variations. Capturing motion data is discussed in CHdpter 4.

e Unit Selection- Given a new utterance, which is distinct from samples already present in the
database, select fragments which can be combined to produce an appropriate trajectory.

e Alignment of Speech FragmentStretch and squash the selected motion fragments so that they
are aligned with the phonetic transcription of the target utterance.

e Resampling of Speech Fragmenfrocess the fragments to a consistent sample rate.

e Motion Blending- With the results of the previous stages blend the motion fragments to generate
a trajectory for the target utterance.

Database design for concatenative synthesis has been covered in detail for audio synthesis
[Black and Lenzo, 2001]. The same techniques can be directly applied for visual speech synthesis.
Obviously, for large- or general-domain synthesis smaller units will be required to make data capture
feasible. In the following sections are methods for the synthesis of speech trajectories given a data-
base of speech motion samples consisting of variable-length units (word and phrase.) The methods are
equally applicable for different size units.

As a preparatory stage in motion-based synthesis the fragments will already have been filtered,
and rigid-body motion removed. Without rigid-alignment units cannot be blended coherently. For the
purposes of the following sections the data will have been processed according to the methods in Section

4.3.

5.4.1 Unit Selection

The method used for unit selection is dependent upon the underlying speech units. In the case where
units of varying duration are available, a method must be defined to select the most appropriate units
to synthesize a target utteraﬁ}:eAs input to the process the phonetic labels and timing of the target
utterance are required, which can be directly recovered from the audio synthesis procedure. Ultimately
the aim of unit selection is to find the smallest number of fragments that account for the phonemes in
the target utterance (see fig.|5.7.) Pseudocode for the basic algorithm is shown[in {able 5.2.

In this code FIND-UNIT is a subprocedure which searches for a speech fragment which spans sev-
eral phones in the target utterance, e.g. the closed sequence ['c’,/a’,'t']. APPEND-UNIT appends the
found unit to the output list of fragments. Primarily this algorithm chooses fragments of longer duration,
which is beneficial to the naturalness of the output speech. However, disambiguation is required where
more than one speech fragment is available within the database for a given sequence. In this case, the
factors which are taken into account when selecting units are: similarity in the phonetic timing to the
target utterance (using the sum of square differences as an indicator), and similarity of context. Where
two units are highly similar context is taken into account by selecting the unit with the closest imme-
diate context (preceding and following phonemes), if this still does not separate the units the algorithm
compares the next surrounding context until the best unit is found. Each of these conditions biases to-
wards using fragments as similar as possible to the target utterance, and thus the synthesized trajectories

9The case of variable length units is the most complex. If only, for example, diphones are available the selection of units is
simpler.
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Figure 5.7: Unit selection consists of finding the minimal number of fragméntghich account for
the phonemes?), in a target utterance.
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Figure 5.8: Alignment of fragmeng, with phoneme timing$; to utterance segment with phoneme
timingsP,. The fragment is stretched and squashed during the alignment.

Table 5.2: Fragment Selection Algorithm.

Input: List of phones
Output: List of fragments

frags« ||

i—1

j < numPhones

while i < numPhoneslo

while not FIND-UNIT (phonesi, j) do
j—i-1

end while

APPEND-UNIT( frags, phonesi, j)
]

j < numPhones

end while
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should maintain the naturalness in movement of the captured data. A similar unit selection method has
also been reported in [Cao et al., 2004].

5.4.2 Alignment and Resampling of Speech Fragments

Given an appropriate selection of units, the next stage is to adapt these fragments so that in combination
they can be used to synthesize the target utterance. Essentially, this requires that the units are temporally
aligned with the target utterance. Each speech fragment, whether it be a diphone or a sentence, has a
phonetic labelling, and must be variously stretched/squashed so that the labels are correctly aligned with
the phonetic structure of the synthesized audio. This is visually depicted in fig. 5.8.

This can be achieved by evenly distributing motion samples between repositioned phonetic labels.
However, that will lead to an uneven distribution in the sampling of the speech fragments, which will
give an inconsistent frame-rate for animation. For this reason, having adapted the fragments so that they
are aligned with the target utterance, the fragments must be further resampled to achieve a consistent
frame-rate before blending.

This is the scattered-data interpolation problem, i.e. given a scattered sampling of data form a
continuous curve/surface passing through the points. Many methods, such as B-spline interpolation,
could be used to resample the data, here radial-basis functions (RBFs) are used (see Appehdix A.1.1.)
To use RBFs for the purposes of resampling motion fragments, a basis centre is placed at each sampled
point, ensuring that the interpolating curve will exactly fit the known data. The interpolated motions
are in fact a mapping from the time-domain onto the spatial domain, and thus to finally resample the
data requires only querying the interpolated motion at uniform temporal intervals. This is manageable
because any of the motion fragments will only ever be short in duration (up to a couple of hundred
frames, depending upon the sampling rate of the initial data.)

5.4.3 Blending Motions

The final stage of synthesis, given appropriate aligned speech fragments from the previous stages, is to
blend the fragments such that visibly continuous motion is exhibited in the resulting trajectory. This
involves only the overlapping regions of motions at the joints. A small degree of context is required in
the fragments to facilitate this. Within the overlapping sectton|[tp,t1], a weighted blend of the two
motions is used (5.21).

Folend(t) = g(u)Fo(t) + (1—g(u))Fa(t)
where u:(ﬂ) (5.21)

t1—to

In ),g(u) is a weighting function (see fi@.Q) which returns a value in the intééva). The
weighting function facilitates the blend and ensures a smooth transition between the fragments, which
are represented here as functions of tifRgt(.) The speed of decay ipwill determine how fast the
second fragment is faded in.

The size of the overlapping regions depends upon the frame-rate of the fragments themselves. How-
ever, they should always be a fraction of the smallest phone-to-phone interval to prevent large fragments
dominating over the target utterance. In practice, for animation frame-rates36f fps, there will
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Figure 5.9: Example weighting functiogsgu).

never be more than a couple of frames overlap at each join, and for this reason high speed capture is
advantageous as it allows larger blend intervals.

The blending of fragments only has an impact upon the generated trajectory over small periods of the
trajectory. This coupled with the fact that the motions are aligned prior to synthesis means that we do not
need to perform fragment alignment during  synthesis, as described in
[Kshirsagar and Magnenat-Thalmann, 2003]. Examples of speech trajectories generated using this tech-
nique compared with captured trajectories can be seen [nfig. 5.10.

5.5 Summary

This chapter has discussed methods for the generation of speech trajectories. These can be split into
three broad categories: target-based, motion-based, and model-based synthesis. Target- and motion-
based synthesis are more appropriate to synthesis from text (or equivalently phoneme timing infor-
mation), whilst model-based approaches typically attempt to relate articulatory movements directly to
speech audio.

Target-based models are mainly derivatives of the dominance function approach
[Cohen and Massaro, 1993]. These form a speech trajectory using an approximating spline, with the
control points being the viseme-targets of the utterance. In fact, a NURBS curve provides a similar level
of control, (except for the skewing of the basis functions according to the directional nature of coartic-
ulation using the®_sp andO_sp parameters irf(_‘S}l).) The properties of the trajectory are manipulated
by changing the basis (dominance) functions of the spline, which model the temporal influence of the
viseme over the trajectory. The problem with this formulation is that no assertions can be made as
to the properties of the trajectory. The degree to which a target is realised is determined both by the
context and the parameters defining the dominance functions. Determining these parameters for all pos-
sible speech combinations is a challenging task, and determining the parameters directly from captured
speech trajectories leads to unexpectedly exaggerated viseme-targets.

An alternative, proposed here, is to use a constrained-optimization approach. This technique opti-
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Figure 5.10: Speech trajectories generated by concatenating word and phrase length units (red) com-
pared with natural speech (black.) Trajectories are sampled at 120Hz.

mizes the distance between the trajectory, represented by a spline, adeattargets for the visemes
in an utterance. The trajectory is represented by a spline, yet the control points are not the visemes.
Instead visemes are defined as parameter ranges through which the trajectory must pass at appropriate
times. By constraining the trajectory so that the targets cannot be met, and relatively weighting the
importance of the targets, the solution approximatesateeaf coarticulation. This method is flexible
because arbitrary constraints can be placed upon the position and derivatives of the trajectory. Another
key difference between this method and dominance functions is that all manipulation of the trajectory
is in the parametric domain, not an abstract dominance domain, and thus observed properties of speech
articulation can be directly applied as constraints upon a synthesised trajectory. The flexibility of this
method lends itself to iterative refinement by applying further constraints, possibly retrieved directly
from real speech movements.

In contrast, motion-based models take fragments of real speech movements and blend them together
to generate novel speech trajectories. The process of concatenative visual synthesis can be split into sev-
eral stages: data capture, unit preparation, unit selection, unit alignment, and blending. The technique
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relies upon collecting an appropriate corpus containing all the variations in the target domain. Once
captured the data must be processed to remove noise, rigid head motion, and to recover missing data
(see Chaptdr|4.) A phonetic transcription is used to segment the data into arbitrary-length fragments,
according to the target domain (e.g. diphones, syllables, words, phrases, etc.) Synthesis consists of se-
lecting the best units (using the algorithm in tgblg 5.2) to represent the target utterance and then blending
these units to provide a continuous trajectory. The relative difficulty in capturing speech movements, as
opposed to speech audio,acts as a limiting factor in the use of concatenative synthesis forvisual speech.
The physical plausibility of synthesis produced byconcatenating motions is high. This is because the
basis units forsynthesis are real speech movements, yet it is possible thattarget-based models used with
physical modelling of facial expressioncould produce similar results. The techniques from Chapter 4
canbe used to use motions generated in this way on any target mesh, andthus maximize the use of any
captured data.



Chapter 6

Implemented Systems

In order to demonstrate the techniques from Chapiérs 3, 4,|Jand 5, several full text-to-visual-speech sys-
tems have been implemented. Each uses contrasting methods for modelling, parameterisation, and the
generation of speech trajectories. T4ble 6.1 overviews the implemented systems. In particular these sys-
tems demonstrate contrasting representations of visual speech units (e.g. dynamic vs. static, geometric
vs. image-based), and methods for generating trajectories through whichever parameterisation has been
chosen (e.g. interpolation vs. dominance functions.)

In the systems which perform complete TTVS, the Festival speech synthesis system is used to gen-
erate audio. Festival [Black etal., 1999] is a concatenative audio synthesis system (see[Section B.3)
which, for general synthesis, uses diphones as base units. The system can also provide limited domain
synthesis. Festival is used to generate phoneme timing information as well as other subsidiary infor-
mation (e.g. pitch variation) which it passes to the visual synthesis module as input. Whilst Festival
has been used here, each of the systems could equally be used with any other audio synthesis module
(e.g. MBROLA [Dutoit et al., 1996]) given appropriate means of extracting information from the audio
engine. Audio-To-Visual-Speech (ATVS) could also be provided given appropriate transcriptions (e.g.

Table 6.1: Implemented TTVS systems.

SYSTEM MODELLING SYNTHESIS UNITS

[Edge and Maddock, 20(@] muscle functions linear interpolation visemes

[Edge and Maddock, 2003]  image morphing dominance  funeisemes
tions

[Edge and Maddock, 2004]  principal compo-constraint-based viseme

nents model groups

[Edge et al., 2004] FFD patches unit concatenatiorarying

(limited domain) dynamic
units

aThis system does not perform TTVS, but generates a trajectory from a set of phoneme timings - which is essentially the same
problem.

80
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Figure 6.1: General structure of the synthesis systems.

by using a speech recognition module, such as SPHINX [Ravishankal, 2004].) A general structural
overview of the implemented systems is shown infig] 6.1.

It is important to note that the synthesis techniques described regjpitieri information with re-
gards the phonetic structure of an utterance. This can be seen from the techniques in[Chapter 5. The
visual synthesis is not tied into the technique used to generate the audio, i.e. there is no interaction
between the audio and visual synthesis modules. Ideally, a synthesis technique would use the same
parameters fobothaudio and visual synthesis. An example would be to use some form of articulatory
synthesis with parameters analogous to physical states (see $ecfion B.1.) However, in practice articu-
latory synthesis is not necessarily the best quality, and most visual speech synthesis systems take the
approach used here [Cosi et al., 2003, Albrecht et al.,|2002, King et al},[2000, Ezzat and Poggio, 1999,
Le Goff and Bend, 1996/ Cohen and Massaro, 1993, Lewis and Parke,[1987].

6.1 Synthesis using Geometric Muscle Functions

This system represents a baseline standard for visual speech synthesis. The units used are simply
visemes parameterised usinggeometric-muscle functions (see $ectipn 3.2.2.) Each muscle function geo-
metrically warps a region of the mesh according to a muscle actuation value (i.e. the degree to which
the muscle should be contracted.) Thus each vis&meopnsists of a set of these actuation values, i.e.

Vi = {ki,k,...,ks} for then muscles used to model expression. In the implemented model there are
twenty-five muscles modelled, of which twenty-four are linear muscles (twelve left-right pairs) with one
sphincter muscle surrounding the mouth.

The muscle functions used are derivatives of those describgd in [Waters, 1987]. These are extended
to provide the ability to seperately move the upper and lower lips, with a discontinuity plane used to
cull the influence of muscle functions in the region of the mouth. Also, the sphincter muscle functions
are extended to allow puckering of the lips. These functions are intended to approximate the action of
facial muscles without any complex physical simulation. Effectively these are free-form deformations
with only one degree of freedom (the actuation of the muscle.) By rotating vertices in the jaw about a
pivot simple mouth opening is achieved.

To synthesise speech, trajectories through the muscle actuation space are generated. The simplest,
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Figure 6.2: Frames from the animation 'one-five-zero-zero-six’, generated using the muscle-based
method.

and most coarse, method is used: interpolafior (6.1).

Tij(t) = (1= 61 (1))Vi + &3 (1)V;
¢ij (t) = sin (%)
In @)Ti j is the section of the speech trajectory between visevhasdV; at timest; andt; re-
spectively. The transition functiom;; : R — [0, 1], smoothly interpolates between the muscle actuation
values representing andVj. In this case a sine function is used, but any smooth function which takes

(6.1)

on the valuesj (t;) = 0 andd; (tj) = 1 will be sufficient (e.g. linear interpolation.)

Clearly this does not acurately model coarticulation (see Sectior] 2.1.5 and GRapter 5) as each of the
visemes will be perfectly interpolated. Context plays @lkeiin (6.1) and thus the resulting animations
appear over-articulated and thus unrealistic. In fact, the short periods between visemes mean that the
interpolation can appear discontinuous which further impedes realism. Frames from an aEImation
generated using this technique can be seen in[fig]l 6.2. This is a baseline standard because, whilst
coarticulation is not modelled, the phonetic structure of the utterance is used to generate the animation
(i.e. to place the viseme targets.)

1Animations generated using the muscle-based system can be found in the folder ‘animation@ttdlmthe accompa-
nying CD.
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Figure 6.3: Trajectories generated using the image-based model are bounded by the sampled viseme
targets.

6.2 Image-based Synthesis with Dominance Functions

An alternative to representing facial expression with three-dimensional meshes is to use images. An
image has an advantage over other representations in terms of static realism - given that the image repre-
sents areal face (i.e. photographic images.) Such a model bounds the space of visible speech movements
by a captured sampling of real speech articulation (se¢ fig. 6.3.) Trajectories are generated relative to
these samples to create animation. The method described here differs from [Ezzat and Poggio, 1999]
because coarticulation is explicitly modelled, and so non-linear trajectories between sampled images are
generated.

As with the model in Sectidn 8.1, this model uses visemes to represent the extremes of facial expres-
sion during speech. Each trajectory consists of a sequence of visématstimet; and consisting of
both image);, and geometry;. However, this model includes a model of coarticulation. Dominance
functions from [[Cohen and Massaro, 1993] are used to generate speech trajectories. In order to apply
dominance functions a parametric space of facial expressions must be created. This parametric space
must represent the variation of speech articulation in a manner coincident to the effects of coarticula-
tion. Geometric primitives, essentially a labelling of 2D points on each of the viseme-images, are used
to facilitate the morphing of images. In this model e&hconsists of 44 points on the face; points
surrounding the mouth are shown in fig.]6.4. However, 2D points in the image-plane are an inadequate
parameterisation of the articulators for use with dominance functions. This is because the effects of
coarticulation do not happen parallel to the axes of the image plane. An improved parameterisation
can be achieved by processing the labelled points to determine a set of mutually orthogonal parameters.
Such a parameterisation can be created upigripal components analysi{®CA, see Section 3.7.3
and Appendif A.ZJ1.) Applying PCA to the labelled visemes leads to the components shown in fig.
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Figure 6.7: Frames from the animation 'lack of money is the root of all evil’, generated using the
image-based method.

[6.5. The first several components (3 or 4, depending upon the labelled data) typically account for over
99% of the variance in the data. The rest of the components are culled providing an efficient representa-
tion of viseme geometry. Each component-viseme pair has a related dominance function to control the
temporal influence of the viseme over time.

Trajectories through the parametric space of the model are generated using the dominance functions
(i.e. according to equationg (5.1) afid (5.2).) However, this only recovers the geometry of the face at
intermediate frames in the animati@goart(t). Surrounding viseme images in the animation are used to
generate the frame itself. Only the two surrounding imagesith geometryG; andl;;1 with geometry
Gi;+1, Wheret € [tj,ti;1]) are used, with a morph algorithm used to create the blend. This requires two
warping functions:§_. : R? — R?, which warpsl; such thaiG; = Ggoart(t); ands._ : R? — R?, which
warpsli;1 such thatGi 1 = Geoart(t). These warping functions are created using RBFs (see Section
[3:2:2 and Appendix’/A.T]1.) Once the images are aligned, using the warping functions, an alpha blend is
used to combine the warped imagksandl;, ; ).

lcoart = (1— 0‘)'{4‘ olizy
_ =t
ot

A transition between two visemes is shown in fig] 6.6 and synthetic frames from a generated anima-
tiorﬂin fig. . RBFs are used here, but any image morphing algorithm could be used to provide these
transitions (e.g., [Wolberg, 1998, Beier and Neely, 1992].) The model that is created is similar in nature
to Active Appearance Mode(®\AM, [Cootes et al., 1998].) However, PCA is only used to represent

(6.2)

2Animations generated using the image-based system can be found in the folder ‘animation@bthmhe accompanying
CD.



Chapter 6. Implemented Systems 86

the geometry, and not the image. A full AAM could equivalently be used, yet other than perhaps data
compression there is no particular reason to do so.

Image-based models, such as the described system, have a key advantage in static realism over
models which use 3D geometry to model the face. However, the problem with image-based models
lie in the modelling of rigid-body transformations. In the image plane these are complex non-linear
transforms, which require some method to recover texture not present in the original images. View
morphing [Seitz and Dyer, 1996] can be used to improve this, with extra views of the face taken from
different angles providing extra necessary degrees-of-freedom. Also, projecting the animation onto a
simple 3D object can help [Brooke and Scott, 1998], for small variations in pose. The restriction of pose
and expression manipulation to the image plane are important when expressive realism is the goal. For
these reasons the remaining systems use 3D meshes to represent the face.

6.3 Constraint-based Synthesis

Instead of using dominance functions to generate trajectories between targets representing visemes, the
constrained-optimization technique described in Se¢fion 5.3 can be used. This requires that a solution
to @) is found given a set of constrain@, on the trajectory.

minimize  Obj(X) = 3; &i(S(t)) —Vi)? 6.3)
subjectto  Vj:bj <Cj(X) <b;

The constraints prevent targets from being met whilst asserting that certain conditions are met (e.qg.
the start and end expressions.) Details of constraints applied to the speech trajectory can be found
in Section 5.32. The optimal trajectory matching the requirements of this constrained-optimization
problem is found using th8equential Quadratic Programmir{§QP) approach described in Appendix
[A.3.2. SQP can be used as the derivatives of the constraints and objective function are available. Of
course, there are combinations of constraints which are unsatisfiable, i.e. they contradict one another.
These situations can be prevented by detecting cyclical steps in the optimization. However, relaxation
of the global constraint will typically remedy these situations.

The size of system required to generate a speech trajectory will be directly related to two factors:
the number of parameters used to model facial expression, and the number of phonemes in the target
utterance. The coarticulation of parameters can be assumed to be indeffemdtsb [(6.8) can be
solved for each parameter separately. It is more efficient to break the solution up into sub-problems
in this way than to solve one large system. It may be advantageous in the future to add constraints
between parameters. This is the case in the original spacetime system [Witkin and Kass, 1988] where
joint angles for an articulated figure are interdependent.

The parameterisation used to control facial expression is based upon morph targets. However, to
create a more efficient representation, PCA is applied to the data to retrieve the componerijts ir fig. 6.10.
These components are produced by applying PCA to the geometry (vertices) of the morph targets. Only
the region surrounding the mouth is processed, with the tongue separated for the purposes of parame-
terisation. As with the image-based system, this leads to a reduction in the data, and a parameterisation
more closely related to the action of muscle groups on the face. After cullir), morph targets can

3Dominance functions, after [Cohen and Massaro, 1993], implicitly assume that coarticulation of parameters is independent.
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Figure 6.8: Frames from the animation 'l am at two with nature’,generated using the constrained-
optimization method (i).
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Figure 6.9: Frames from the animation 'l am at two with nature’,generated using the constrained-
optimization method (ii).
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Figure 6.10: First four principal components of the constrained-optimization model: top-row shows
U+ 3o, bottom-row showst — 3,/c.

be represented accurately with10 principal components. This is more than the previously described
image-based system, but can be accounted for by the three-dimensional nature of the model and the fact
that emotional expressions are also included. Thus, to generate an animation 10 separate optimization
problems must be solved.

The phonetic structure of a target utterance is also an important factor for this technique. The size
of the HessianHgp; from Sectio@) will grow with the number of viseme targets in the trajec-
tory. Smaller systems are obviously beneficial to solving the problem at an interactive rate. However,
splitting up the animation into pieces which are too small will lead to a culling of the effect of coartic-
ulation. Natural phrase boundaries are used to chunk the animation (commas, full stops, etc.), with the
assumption that the effect of coarticulation will be least evident at these points. This is a coarse, but
necessary, assumption where the synthesis of long utterances is required. A better solution would be
to use a windowing approach, by using combinations of sub-problems to generate the entire trajectory.

Such a windowing approach has been describgd in [Cohen] 1992].
Frames from an animati@generated using the constrained-optimization technique can be seen in

fig.[6.§ and 6.9.

4Animations generated using the constraint-based system can be found in the folder ‘animation@(:timnthe accom-
panying CD.
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6.4 Limited-domain Synthesis by Unit Concatenation

The most natural audio synthesis techniques concatenate fragments of speech waveforms to generate
novel utterances. In an analagous manner small fragments of visual speech movements can be con-
catenated for visual synthesis (see Sedtioh 5.4.) In this system limited-domain synthesis is achieved by
concatenating small fragments of motion-captured data. This type of system requires a significant data
capture and processing phase before any synthesis can be done.

The data used in this system consists of motion data from a commercial Vicon capture system. High
speed cameras, operating at 120Hz, capture the movement of 66 markers on the surface of an actors
face plus 7 more on a head mounted jig to capture rigid motion. Audio data is captured simultaneously
and synchronized with the motion data. Fifty-five sentences were captured from a limited domain time
corpus. The sentences take the form in tblg 6.2.

Table 6.2: Time-domain corpus.

prompt := {prolog} / {time-infa} / {day-infc}.
time-info = {exactnesk {minuteg {hours}
prolog = ‘the time is now’
exactness = ‘exactly’ or ’just after’ or
a little after’ or "almost’
minutes = 'five past’ or 'ten past'or
‘quarter pastor 'twenty past’or
‘twenty-five past'or 'half past’ or
‘twenty-five to’ or ‘twenty to’ or
‘quarter to’or 'ten to’ or ‘five to’
hours = ‘one’ or 'two’ or ... or 'twelve’
day-info := 'inthe morning’or 'afternoon’or

‘am’ or 'pm’

This corpus can be used to generate simple time sentences such as:

‘the time is now / exactly one / in the afterndaor.
‘the time is now / quarter to ten / in the mornihg.

The data is specific to the time domain, and thus the implemented system is limited in generality.
However, as already mentioned in Secfior) 5.4, the same techniques are equally applicable to the general-
domain, using smaller units (e.g. diphones/triphones) as the building blocks for synthesis. The simple
corpus described is adequate to demonstrate the technique. Itis also important to note that increasing the
scope of synthesis, and therefore the size of the dataset, hugely increases the time required to capture,
label and process the data for use. Consistency in the captured data is of key importance, and the greater
the time spentin data capture, the greater the likelihood that there will be inconsistencies in the labelling
of the face which would adversely affect the quality of synthesis.

The captured motions require some processing in order to both remove noise and reconstruct missing
data. Kalman filtering is used to remove noise from the data. The rigid head motion is also extracted at
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Figure 6.11: Frames from the animation 'the time is now, just after twenty-five to six, in the morning’,
generated using motion concatenation (i).
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Figure 6.12: Frames from the animation 'the time is now, just after twenty-five to six, in the morning’,
generated using motion-concatenation (ii).
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this stage using a combination of the estimate from the head mounted jig and a least-squares approach.
This last step has the added benefit that the motion samples are initially spatially aligned enabling
simpler concatenation during synthesis. Detail on the processing applied to motion data can be found in
Sectior4.B.

Each of the audio sentences is labelled phonetically. The same labels can be used to provide a
transcription of the aligned motion data. This motion data can then be segmented into variable length
units consisting of phrase (e.gthé time is now ‘in the afternooh etc.) and word length units (e.qg.

‘oné — ‘twelvé.) Smaller units can also be used. However, smaller units lead to more concatenation
points, and thus lower quality synthesis. For a limited domain system, such as this, phrases and words
can be used without unmanagable data-capture and labelling phases. Each unit consists of the frames
from the centre of the first phoneme to the centre of the last, with an additional blend period either side
of the unit to facilitate the concatenation process.

The synthesis process consists of several steps:

e Unit Selection- Appropriate units must be selected from the database to generate the utterance

(see Section 5.4.1.)

e Phonetic Alignment and Resamplindgeach of the selected units must be phonetically aligned
such that the movements appear insynchrony with the speech. As a consequence of alignment
speech fragments must be resampled to a consistent frame-rate for animation (se¢ Segtion 5.4.2.)

¢ Blending- Having aligned and resampled the motions, overlapping sections are blended to achieve
a consistent trajectory over the synthesized utterance (see Jectign 5.4.3.)

o Retargetting and AnimationA target face model is animated from the synthesized speech move-
ments (see Chaptef 4.)

The synthesis is performed in the space of the original actor’s face, i.e. before retargetting, and at
the original framerate (120Hz) whichtakes advantage of all the data available before it is scaled and
manipulated for final animation. Blending the motions at the original framerate is also advantageous
because at the final framerate (25-30Hz) there will only ever be a couple of frames in the blend intervals
to facilitate the transition between motion fragments. Frames from an anigﬁxmerated using this
method are shown in figurgs 6|11 4nd 6.12.

One of the main disadvantages of using motion-capture data for concatenative synthesis is that only
the surface of the skin is present in the data. Thus, the movement of the tongue and teeth must either
be modelled separately or their motion inferred from the markers on the skin. For the teeth this can be
accomplished by recovering the rotation of the chin apex about the jaw axis. The surface of the skin does
not directly move with the jaw, but the approximation is accurate enough for the purposes of animation.
The same can be done for the rigid motion of the tongue. However, when producing sounds such as
thick the tongue must be visibly constraining the flow of air. Thus, a model of tongue deformation is
required to make up for this lack in the initial data. In the implemented system a simple morph-based
model is used to deform the tongue appropriately. This is linear, and could be better modelled using
some form of coarticulation model (see Chagter 5.) However, in most cases the tongue is not very

5Animations generated using the motion-based system can be found in the folder ‘animation@étimnthe accompa-
nying CD.
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visible, and it is only required that the tongue be in the right position for a small subset of phonemes
(e.g. dental fricatives.)

One of the major advantages of motion concatenation is that the generated animations achieve a high
degree of dynamic realism. This is due to the non-linear relationship between the motion of markers
on the surface of the skin. A similar effect can be achieved using physical models of the skin, but
such systems are computationally intensive. The described system can animate speech in real-time.
Furthermore, the techniques introduced in Chgpgter 4 allow the use of motions on any given model, and
thus motion concatenation can be used for generating animations with meshes largely different from the
actor from whom the original motions were captured.



Chapter 7

Conclusions

In this thesis methods for the synthesis of visual speech, from initial data capture through to final an-
imation, have been introduced. The process of creating a talking head can be split into several areas
(discussed in Chaptdr$[3, 4, drjd 5): modelling, capture, and animation. Most systems for visual-speech
synthesis include aspects of all three, but concentrate upon one particular area above all else. Here,
several systems have been used to demonstrate a variety of methods for text-to-visual-speech synthesis
(see Chaptér]6.)

The first system [Edge and Maddock, 2001] acts as a baseline definition for synthesis. Geometric
muscle functions are used to deform a 3D polygon mesh to create facial expressions. The animation
of speech involves the modelling of visemes representing the extrema of visible articulation. These are
interpolated to generate speech movements. Such a system entirely ignores the effect of coarticulation
on speech movement. For this reason the animations are over-articulated and unnatural. The short
temporal periods between targets do not give the physical system of muscles enough time to reach each
of the distinct targets in real speech. This is especially apparent when using interpolation for animation.
As some transitions between visemes may only be one or two frames long this leads to non-continuous
motion. For this reason, interpolation for generating speech animation is of the lowest quality to be
expected from a synthesis system. In fact, worse quality could only be achieved by entirely ignoring
the phonetic structure of an utterance. Even though this system represents the lowest level in terms of
quality, this is as far as many commercial systems, particularly computer games, ever achieve. However,
it should be born in mind that even low quality synthesis can be relatively convincing when there are
other visual aspects to draw the attention of a viewer.

Secondly, an image-based talking head has been developed [Edge and Maddack, 2003]. Instead
of modelling facial expression in three dimensions, photographic images of a speaker are captured.
Animation is produced by generating trajectories through a space bounded by these images. Direct in-
terpolation between targets would produce animations of the same dynamic quality as the muscle-based
system. Instead, dominance functions, after [Cohen and Massard, 1993], are used to generate smooth
transitions through the space bounded by the viseme images. In order to use dominance functions with
an image-based model of facial expressiamncipal components analysis used to provide an inter-
mediate parameterisation. The parameterisation of facial expression is an important aspect of creating a
talking head. The effect of coarticulation is not easily related to a generic spatial parameterisation (such
as vertices or feature-points in an image), and PCA provides a means by which to transform a sam-
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pling of speech motion into components related to muscular action (both individual muscles and muscle
groups.) Advantageously, this can be recovered directly from the data, and does not require further man-
ual classification of facial expression (in contrast to a scheme such as FACS [Ekman and Friesen, 1978].)
Unfortunately, for manual control only the first few principal components, dependent upon the dataset,
provide intuitive control of facial expression. Thus, statistical techniques, like PCA, can be useful in
providing an intermediary layer of control for animation, but are not necessarily useful for direct control
of facial expression.

The main disadvantage of using image-based models of facial expression is that rigid-head motion,
and occluded facial features are difficult to model. This is because the only available geometry lies
in the image plane. Using three-dimensional techniques, rotation and transformation of the head is
simple to model. The only way to do this using images is to capture a sampling of expressions across
pose variations and use view interpolation [Seitz and Dyer,|1996]. Another possibility is to project the
resulting animation onto simple geometry, as|in [Brooke and Scott,|1998]. However, in profile such
a model is obviously image-based, and lighting such a model is problematic. An improvement over
current facial models would vary both the texture and the geometry of a mesh over time to generate
high quality animation. This has already been attempted, but only for playing pre-captured animations
[Guenter et al., 1998] and not for synthesis.

As an alternative to the use of dominance functions, a constrained-optimization method for target-
based modelling of coarticulation has been introduced [Edge and Maddock, 2004]. The main problems
with using dominance functions lie in the use of an abstract dominance domain to control the influence
of visemes over neighbouring segments. This is like directly manipulating the basis functions of a spline
to control the spline itself. Instead, an optimization technique can be used to attract a trajectory towards
a number of targets (the visemes), whilst constraining the trajectory to prevent the targets from being
exactly interpolated. This is analogous to the idea of speech production being a target-based system
constrained by the physical properties of the vocal tract. Constraints are applied to the system to assert
properties upon a generated trajectory. This provides a stronger form of control over the final trajectory
than is possible with dominance functions. Also, the global constraint upon the trajectory (i.e. the con-
straint which prevents the targets from being met) can be used to provide stylistic control over the final
utterance. The constraint used here limits the parametric acceleration, and provides a continuous range
of possible trajectories between exact interpolation of the targets (over-articulation), and no motion at
all (under-articulation.) The extensibility of this method is implicit in the constrained-optimization for-
mulation. Arbitrary constraints can be added, allowing iterative refinement of the method. Also, the
objective function and global constraint can be modified to change the properties of convergence. This
is in contrast to dominance function methods which can only be modified by substituting different basis
functions[Cosi et al., 2003].

The main disadvantage to using an optimization approach is the non-linear nature of the solution.
Dominance functions are analytic and thus do not require expensive humerical solutions. However,
the described algorithm could be improved by using a moving window approach and only taking into
account local context when solving the system (e.g. using a method such as [Cohén, 1992].) This is a
natural approach to take given that coarticulation has only been observed over relatively short periods of
an utterance [Benguerel and Cowan, 1974]. A windowing approach could also enable larger utterances
to be generated without the associated problems of solving large numbers of simultaneous equations.
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This would also enable spontaneous speech, whereas currently all articulatory motion must be calculated
prior to animation.

The constrained-optimization method also allows a number of possibilities for future research, par-
ticularly into the individualisation of speech animation. Global parameters can be used to extend the
variation in output speech trajectories (e.g. speech rate, adding emotional expressions, etc.) Another
application would be to use this method to fill gaps in a motion-based synthesis system. Boundary
constraints could be used to append generated trajectories to captured motions thereby extending the
practical use of a set of motion data. It would be difficult to solve similar problems using the standard
dominance function approach, and it is this extensibility/flexibility which is the strength of the described
technique.

In contrast to target-based models for synthesis, motion-based models attempt to avoid directly mod-
elling coarticulation by appending short fragments of real speech movements. A motion-based model for
limited-domain synthesis has been developed [Edge et al.] 2004]. This system constructs time-domain
utterances from word and phrase length units. Motion-based systems require solutions to unit selec-
tion, alignment, and blending to produce continuous speech trajectories for novel utterances. A shifting
window approach to unit selection (see algorithm in tabl¢ 5.2) has been introduced to quickly find ap-
propriate units for synthesis. Alignment is performed by fitting a continuous curve through the sampled
motion data, warping the curve to fit the phonetic timings of the target utterance and resampling. Finally,
overlapping motion sections are used to blend between fragments and determine the final trajectory. In
order to use these trajectories to animate face meshes, which vary significantly in shape and scale from
the original actor, a novel facial motion retargetting technique has been [uaedh&x et al., 2003].

Radial basis functionare used to warp the space of the original motion to coincide with that of the
target mesh. This is a semi-automatic process, requiring only the labelling of a few points on the target
mesh. By the application of this retargetting technique the use of motion data can be maximised. This
is important because the capture of facial motion data is time-consuming and expensive, especially in
comparison with capturing speech audio.

From the described systems we can draw some general conclusions about motion- and target-based
synthesis of visual speech. Motion-based synthesis exhibits high dynamic quality in comparison with
target-based models. This is to be expected as the initial fragments have been captured from real speak-
ers. However, target-based models are significantly easier to construct, requiring only~aféw 20)
visemes to be defined. The size of motion database required to generate general speech is large in
comparison. This, along with the expense and difficulties involved in capturing consistent motion data
mean that, for the time-being at least, target-based models will remain. Also, target-based models better
conform to traditional animation techniques used during the majority of the last century. These are well
understood, and by manipulating the targets an animator can directly control the expressive nature of
a generated motion. When using motion data there is no direct way to impose stylistic or expressive
control over the output motion. It may be the case that future research will lead to a merging of these
techniques, e.g. using target-based systems to efficiently encode motion units. Unfortunately, current
target-based models cannot represent features of speech not directly related to visemes. Captured mo-
tions often include high frequency components which cannot be directly related to the phonetic structure
of an utterance, the representation of which is impossible if all parameterisation of speech is directly
related to visemes.
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One important aspect which has not been discussed in this thesis is the formal evaluation of talk-
ing heads. The evaluation of audio speech synthesis has been thoroughly tackled in recent times, and
similar work can be conducted into audio-visual speech synthesis. Speech evaluation is usually con-
ducted with regards to naturalness and intelligibility. Naturalness is necessarily an subjective measure
of the quality of synthesis, whereas intelligibility can provide an objective measure of how the synthesis
technique impacts upon recognition rates. We know, following from [Sumby and Pollack, 1954], that
visual speech movements can provide as much+4ak5a B improvement in signal-to-noise ratio, which
indicates that the intelligibility improvement provided by the visual component of a talking head is mea-
surable. Word recognition rates in increasing audio noise can indicate the intelligibility of a talking head
when compared with synthetic audio, natural audio, and natural video. Such an experiment, conducted
with a reasonable number of subjectsZ0— 30), would allow the perceptual benefits of the described
systems to be directly measured. Naturalness, being subjective, is more difficult to measure. Usually a
five-point scale (e.g. Mean Opinion Score: 5 - Excellent, 1 - Bad) is used to measure naturalness, and
a comparison with and without the synthetic visual component could be used to evaluate the relative
improvement which can be accounted for by the talking head. A thorough evaluation of the systems
desribed in Chaptér| 6 is an important direction of future research. An overview of speech synthesis
evaluation techniques can be found/in [Lemmetty, 1999].

We can speculate that the main application of talking heads will be in entertainment (films and com-
puter games) and human-computer interaction (HCI.) The needs of these two areas vary significantly.
Within HCI a talking head is performing a communicative task where clarity and intelligibility are the
most important factors. Within entertainment expressiveness is far more highly regarded, and is required
to communicate feelings/emotions and to engage a viewer. It is clear that whilst the ultimate goal of
visual speech synthesis is the same, i.e. to accurately render the appropriate articulatory movements for
an utterance, yet the techniques used to do this will vary for different applications. Off-line animated
film can afford to use computationally intensive physical models of the face and manual animation. In
contrast, an interface for a cashpoint, where the number of responses is limited, could use geometric
modelling techniques to drive a motion-based synthesis system. The static realism of a modelling tech-
nique, the dynamic and expressive qualities of an animation technique, and the expense in capturing the
initial data will be the factors which determine how visual speech synthesis is performed for a particular
task. There is no single technique which is ideal for all applications. However, none of the current
methods deals adequately with the dynamic action of muscles on the skin, or the emotional expressivity
of speech. Itis the action of physical constraints upon the production of speech and the nature of visual
prosody that must be tackled to improve visual speech synthesis in the future.
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Appendix A

Mathematical Technigues

The following appendices detail several of the methods used in the main body of this thesis for data
interpolation, multivariate statistics and the optimization of functions.

A.1 Scattered Data Interpolation

Scattered data interpolation refers to the class of problems where smooth plots, such as splines or sur-
faces are fitted such that they pass through a set of sampled data points. The data points for these
problems are often sparse and unevenly spaced, and the desired properties of the resulting interpola-
tion favour smoothness and affine invariance. From now on we shall refer to the two-dimensional case
of curves for simplicities sake, all methods are equally applicable in the three-dimensional (or indeed
n-dimensional) case.

The general formulation of the scattered data interpolation problem, giyeirs of data points
pi,q € RY, is the definition of a continuous functidn RY — RY with f(p;) = ¢;. The most fundamental
concept to this problem is polynomial interpolation. These methods fit a curve to the input data points
given that the interpolation constraint must be satisfied, examples Béken’'s algorithmand Cubic
Hermite interpolation In the following sections we describe methods for data point interpolation based
upon the use ofadial basis functions

A.1.1 Radial Basis Functions

All forms of data interpolation use a set of basis functions to represent the influence of each segment
over the length of the curve, in the linear case this is a simple linear dropoff. Basis functioadiafe

if the value of the function depend only upon the distance from its centre. Raaal Basis Function

(RBF) interpolation constructs a curve from a linear combination of radial basgs (A.1).

F00 = P+ 3 cah(d ) (A1)

In this equation a linear combination of tlpe basis functions weighted by thg’s are used to
determine the resulting interpolation. The value of eéchasis function is determined solely by the
euclidean distance from its centre to the poini.e. di(x) = ||[x—¢]|. Finally, pm(x) : RY — R% is
a term which ensures a degreeof polynomial precision; i.e. a§ ¢ — 0, f(x) will tend solely to

100



Appendix A. Mathematical Techniques 101

12

value

-0.2 1 1 i 1 1 1 I 1 1
-1

distance (x)

Figure A.1: Radial basis functions: Linear (solid); Cubic Spline (dash); Gaussian (dot-dast).5;
Thin-plate Spline (dotted)y = 0.75.

the result of the polynomial term. The polynomial term is simply an affine transformation of the data
points. Where there is no polynomial term the RBF is referred toms@radial sumhowever, such
models may yield a poor approximation to a curve away from the influence of the basis centres (the
result of the interpolation will tend to zero.) Several common basis functions are shown jn tgble A.1 and

demonstrated in figurg¢s A.1 ahd A.2.

Table A.1: Radial basis functions.

FUNCTION () CONSTRAINTS
LINEAR X -
THIN-PLATE SPLINE  (x/c)2log(x/o) >0
CUBIC SPLINE %213 -
MULTIQUADRIC (X2 §)+H 1L>0,8>0
INVERSE MULTIQUADRIC (32 8)# 1L>0,8>0
GAUSSIAN e (¢/0) >0

Several of the RBFs in tabJe A.1 include locality parameters which allow fine control of the shape
of each basis function. Hardy Multiquadrics are one such example, where expoaedtlocality §
parameters control the spatial influence of each basis centre. Figyre A.2 (c) and (d) demonstrate the
effect of changing the exponent and locality parameters for the inverse multiquadric; it can be seen that
increasing leads to a more global function, whilst increaspdpcalizes the function but maintains its
extent.

The RBFs introduced here are, of course, global in nature. This means that for each interpolated
point all basis functions must be taken into account, as in equatioh (A.1). For examplegafh tend
to 0 at some finite distanaefrom the centre evaluation can be culled. This is obviously more efficient,
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Figure A.2: Hardy Multiquadrics. Top left: Inverse Multiquadric with= 2 andé = 0.5 (solid), 1
(dash), 15 (dot-dash), 2 (dotted.) Top right: Inverse Multiquadric with= 1 u = 1 (solid), 2 (dash),
3 (dot-dash), 4 (dotted.) Bottom left: Multiquadric with= 1 andé = 0.5 (solid), 1 (dash), b (dot-
dash), 2 (dotted.) Bottom right: Multiquadric with= 2.5 andu = 1 (solid), 2 (dash), 3 (dot-dash), 4
(dotted.)

and where this strategy is used the basis functions are referredctmasactly supportedr locally
bounded Applying this to the Hardy Multiquadric would yield the function jn (;A.2).

(A.2)

(P48 ifx<r
0 otherwise

Examples of interpolated surfaces using Hardy Multiquadrics are demonstrated’in fig. A.3.

Constructing the Interpolant

In order to acquire the weights to interpolate a set of input data points a linear system is constructed. This
system is formed by placing the points back into equafion|(A.1), the resulting weights are guaranteed to
interpolate the centres of the basis functigns [(A.3).

A= 1X (A.3)
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In this equationy; ; is the evaluation of the basis function centered upon’thedata point given
the j'th data point, i.e. ¢ j = ¢i(||[x —Xj|[). In the d dimensional case there will beén+ (d+ 1)
coefficients, including both the weights and the coefficients of the polynomial term. The simplest
option for the polynomial coefficients would be the identity transform, however this assumes that there is
no underlying rigid transformation of the data points. The polynomial coefficgrtan be determined
at the same time as the basis weights given compatibility constraints which ensure that the result of the
interpolation reduces to the affine component wherever possible, i.e. itis affine reducible (A.5).

i ok = i =0 (A.5)

In X refers to thek!™ component of thé" RBF centre, e.g. in two-dimensiohkse {1,2}
representing the andy components of each centre. Given these compatibility constrainis theights
and components of the polynomial tepncan be calculated at the same time by solving the system of

equations in[(A.).

-1
A ® P X
Pm PT 0 0
(041 P11 ... ¢1-,n X1 1
A o P : . : : :
= On T = o1 - Onn Xn 1 (A7)
Pm P 0
Po xi ... xT 0 o0
p1 1 ... 1 0O O

The linear systems ifi (A.3) and (A.6) can be solved using any standard technique, such as Gaussian
elimination. Thea weights and polynomial coefficients can then be placed back{int¢ (A.1) and used to
interpolate the initial set of data points

A.2 Multivariate Statistics

Multivariate statistical techniques are intended to provide the ability to analyze high-dimensional datasets
where many variables are correlated with one another. The intent is usually to describe the data using
a few highly descriptive variables which are easier to interpret and demonstrate important relationships.
Several techniques are commonly used, these incliad¢or analysis principal components analysis
independent components analysisdsingular value decompositiohese all provide a basis for an in-

put dataset, and are useful in data compression and parameterisation. In the following peictiped
components analysandsingular value decompositicare described in more detail.
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A.2.1 Principal Components Analysis

Principal Component Analysis (PCA) (also known as the Karhunen-Loeve or Hotelling Transform)

is a statistical technique often used in the analysis and compression of datasets consisting of large
numbers of interdependent variables. PCA assumes that the data being represented can be expressed as a
hyperellipse; the axes of which point in the principal directions of variance and are mutually orthogonal.
Describing the initial dataset in terms of its principal components implies rotating the data such that there

is no correlation between variables. Using PCA, a randomly sampled vector population, ..., vs} T

can be defined in terms of its mean, and its principle directions of variatia (A.8).

s
v=1y+ Y gb; (A.8)
v i; ]

Where each vector in a population is of lengththere are potentiallyi,c = min(n,s) principal
components, in the case where all variables are mutually independent (and are themselves the principal
components.) However, in most cases the number of components required to accurately represent the
data will be much less than the number of samples in the initial populationnje< s. This has
important consequences for data compression, as truncating the number of principal components can
lead to a significant reduction in storage requirements. An example of PCA applied to 2D point data
is demonstrated in fig. Al4, notice that the principal components better describe the input data than the
initial x andy axes.

PCA makes several assumptions about the data to which it is being applied:

e Gaussian distributed - PCA assumes that the underlying datset is Gaussian distributed, and only
under this condition will it yield statistically independent variables.

e Linearity - PCA describes a dataset as a linear combination of components, and thus is not good
at representing non-linear relationships.

e Completeness of sample data - As with all multivariate techniques PCA can only represent the
relationships in the provided data, and thus a rich input dataset is required to produce a good
model.

Usually the first few principal components of a dataset will be highly descriptive, with lower com-
ponents unintuitive and describing relationships apparent in the input sample data but not in the entire
population. Despite this PCA is a commonly used method for data compression and reparameterisation
of large sets of variables. It is important to note that principal components astatistically indepen-
dent this is a stronger qualification and can be accommodated usiiependent Components Analysis
(ICA, see [Hywarinen et al., 2001].) A more complete overview of PCA and methods for determining
which components to select can be found in [Jolliffe, 1986].

Calculating the Principal Components
The principal components for a dataset can be calculated directly from the covariance@ati®fined
in (&9).

v = E{v}

A.9
CVZE{(V—.UV)(V—NV)T} (A9)
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Figure A.4: Principal components (red arrows) of a gaussian distributed point dataset.

The components;; of C, contain the covariance between the variable compongraadyv;. If
the components are uncorrelated tlegn= 0. As C, for a given sample population is symmetric it
can be used to calculate an orthogonal basis, i.e. the principal components of the dataset. In order to
calculate a basis the eigenvaluds,and eigenvectors, can be calculated, these are the solutions to
the characteristic equation (A]10).

Cia = 4§
C—Al|=0
In (A.10) | is the identity matrix, andl| denotes the determinant of a matrix. Each ofzheontains
the variance of thé" principal component, which is the eigenveatorThere are many ways of calculat-

(A.10)

ing the eigenvalues and associated eigenvectors for a matrix, for a thorough discussion of eigen decom-
position routines and the advantages/disadvantages of each technique see [Golub and Van Loan, 1996,
Jolliffe, 1986)].

A.2.2 Singular Value Decomposition

Another way to calculate a basis for a number of observations is to calculé@apgdar Value Decom-
position(SVD.) The SVD takes a matrix of samplesX, and decomposes it into three sub-matrices

A.1D).

X=UsvT (A.11)
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U andV aren x r andp x r matrices respectively, whereis the size of each sample vector and
the rank ofX (i.e. the number of non-zero principal components.) Both these matrices are column ortho-
normal (i.,eUUT =1 andvV' =1.) X is a diagonal matrix of length In fact this is an efficient way to
calculate the principal components of the sample matrix. The principal components (i.e. the eigenvec-
torse from )) are the columns &f, whilst the diagonal components Bfare they/A;. An efficient
algorithm for applying this decomposition can be found in [William H. Press and Flannery, 1992].

A.3 Optimization

Optimization problems are those where three factors can be identified: firstly, a set of independent vari-
ables X, the values of which must be refined; secondly, a measure gfdhénessor a particular state

of the independent variable§bj : RY — R, the objective function; and finally, a set of restrictions
upon valid system stateS; : RY — R, the constraints. Given these factors, optimization involves either
minimizing or maximizing the result of the objective function by varying the state of the independant
variables. Of course there can be problems when maximizing a non-finite function, for example max-
imizing Obj(x) = x> would never converge, thus we usually formulate optimization problems as the
minimization of an objective functiofi (A.12).

minimize ~ Obj(X) X € R
subjectto C(X)=0, i=12...,m; (A.12)
C(X)>0, i=m+1,....m
The objective functionObj(X), and the constraint€;;(X), are all scalar valued functions. Two
different forms of constraints are applicable: equality and inequality constraints. Inequality constraints
set bounds upon the set of possible solutions, and can be transformed into equality constraints by intro-
ducing a slack variabl¢ (A.13).

Gi(X)>0

A.13
becomes Ci(X)—y?=0 (A.13)

This implicitly constrainsCi(X) to be greater than 0, given thgt can only be positive. Thus all
constraints may be considered uniformly as equalities and the same methods can be applied to both.
Alternative methods for enacting inequality constraints can be found in [Gill et al.] 1995]. A further
distinction to make is between active and inactive constraints. Constraints are only active when for a
given state of the systeiX the constrainC;(X) is violated. Inactive constraints can be disregarded
in the solution of the optimization problem until they become active, i.e. are violated by a step in the
optimization procedure.

The final solution to an optimization problem will occur once any further improvement would
lead to violation of active constraints. Thus, to halt iterative optimization routines requires that the
objective stepAXqpj, be compared to the constraint stéXs; i.e. the routine should halt when
DXopj — —DXestr. It is also useful to maintain a count of the number of iterations to detect noncon-
vergent behaviour. The methods in the following sections can be used to solve general optimization or
constrained optimization problems of the form defined’in (A.13).
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Figure A.5: Steps in the downhill simplex method (after [William H. Press and Flannery, 1992].)

A.3.1 Downhill Simplex

The downhill simplex method is a special form of optimization method as it does not require derivatives
of the objective or constraint functions. One important feature is that the optimization requires only
function evaluations, and not derivatives of the objective function. The method relies upon the definition
of a simplex, a geometric figure consistingrof- 1 vertices inn dimensions, i.e. a triangle in two-
dimensions or a tetrahedron in three-dimensions. In constructing a simplex from an initighpeiRd

the remaining vertices;, are defined as offsets by a scalaalong unit vectorsg, usually aligned with

the axes of the parameter spgce (A.14).

Pi=po+Ae (A.14)

At each of the vertices the objective function will take on a particular value, thus the simplex is
a discrete representation of the objective over a small area of the optimization landscape. In order to
perform the optimization the simplex must traverse the optimization landscape from its highest vertices
towards its lowest, and therefore more optimal vertices. In this manner the simplex can be visualised
as sliding down the slopes of an optimization landscape towards the minima. The simplex proceeds by
taking a number of steps depending upon the objective value at each of the vertices, these steps are (see
also fig[A.% for a graphical depiction of the steps) :

o reflection- a reflection pushes the worst point through the opposite face towards the minima of
the function.

o reflection and expansiorif a reflection yields a worse vertex, the vertex is projected back through
the face and expanded.

e contraction- contraction along one edge from the worst point towards the best.

e multiple contraction contraction of all vertices toward the best vertex.
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The downhill simplex method will continue with the above steps until it converges upon a minima.
The action of the simplex implicitly calculates the derivatives in a manner similar to the method of finite
differences, and is thus sensitive to the same problems with the choicgaiticularly problematic.
Simplex methods are inappropriate for non-smooth optimization landscapes, however this can be ame-
liorated in the case where the procedure is initialized close to the minima and locally the landscape is
relatively smooth.

A.3.2 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is a generalization upon Newton’s method for unconstrained
optimization. The variant described here computes a second order Newton step in the objective function,
Obj, and a first order step in tl&g constraints. These two steps are combined by projecting the result of
the first onto the null space of the second. Contrasting with the downhill simplex method, SQP requires
derivatives of both the objective and constraint functions;Hlessianof the objective functionHopj,
andJacobianof the constraintslst, are defined i (A.15).

9%0bj  9°0bj d%0bj aC  IC, ICy
IX19X1 IX19Xy Tt 9X9Xn X1 IXo e IXn
920b)j - 920bj ac, . aC,
Hobj = 0% . %g0%n Jestr = R . X (A-15)
920bj 920bj 920bj 9Cn  9Cnm 9Cnm
0XndXy  OXndXa T 9XndXn Xy I T I

The first stepAXopj, optimizes a second order approximation of the objective funA.16).

J0bj

%,
DXobj = —Hgpi | (A.16)
J0bj
X
The second ste@Xcstr, drives the constraints to 0 whilst simultaneously projecfigy; onto the

null space oflcstr (A.17).

AXestr = Jéstr(JcstrAxobj - C) (A-17)

The matrixJZy, is the pseudoinverse dfs,. For a non-square matrix the inversigi, cannot be
calculated using the standard techniques, this is because the equation no longer has a unigue solution.
Thus the pseudoinverse is chosen to find the optimal solution. The pseudoinverse can be calculated

directly from the SVD (see Appendix A.2.7) (A]18).

if A=UxVT

A.18
then At =vz-lUuT ( )

As ¥ is a diagonal matrix of the singular values, the inveBsé,, is the matrix with the reciprocal
diagonal element$ (A.19).
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o1 0 0 O a% 0 0 O
0 0 0 0o L 0 o
if - 2 then >-1— o2 (A.19)
0 0 o3 O 0 a% 0
0 0 0 oy 0 0 O G%

Where the inversed 1, does exist the inverse and pseudoinverse are the sam; t.es At. This
follows as the inverse will drive the error Afx= b to zero.
The next stepXj1, in the SQP method is a linear combination of the optimization and constraint

steps[(A.2D).

Xj11=Xj + (AXopj+ AXestr) (A.20)
The iteration continues until the optimization criteria are met. This is the variant of SQP described
in [Witkin and Kass, 1988]. For a more thorough overview of quadratic programming methods and
optimization procedures in general see [Gill et al., 1995].

A.3.3 Simulated Annealing

Simulated Annealing (SA) methods are techniques which apply ideas from the Bolzman probability
distribution to global optimizatiorj (A.21).

prob(E) ~ e E/KT (A.21)

This equation describes the probability of a system being in thermal equilibrium with eBeatyy
a temperaturd (k is the Boltzman constant and not significant with regards the SA algorithm.) This
allows for a system to be in a high energy state whilst still being at a low temperature, albeit with a
relatively low probability. In order to minimize a function it can be advantageoustmnly travel
down the steepest slope, but to sometimes take uphill steps to avoid local minima, and to therefore find
a global solution to the problem; this is the same notion as expresged in} (A.21).

At each step of the SA algorithm the current state of the syskeris, mutated to explore the space
of the objective function, i.€Xmutated<— X + 0x. If XmutateqlS betterthanX (i.e. Ex > Exmutated then

Table A.2: Simulated annealing algorithm.

Input: List ofinit if mutantEval< bestEvaldo
Output: List ofvars bestEvak— mutantEval
best— mutant
vars«— init vars« mutant
i—0 else ifBOLZMANmutan) = true do
best— vars vars« mutant
bestEvak— EVAL(bes} end if
while i < maxDepttdo i—i+1
mutant— MU TAT E(vars) end while

mutantEvak— EVAL(mutant vars« best




Appendix A. Mathematical Techniques 111

X «— Xmutateg@nd the algorithm continues. This means that in general the algorithm will proceed in a
downwards direction towards the minima of the objective function, in a similar manner to the previous
methods. IfEx < Exmutatedthen a random decision is taken according to the probability distribution
in (A.21)) to determine whether the mutated state should be kept or not. This ensures that uphill steps
may be taken and thus globally optimal solutions can be found. The convergence properties of the SA
algorithm are determined by the temperatdreand the algorithm used to mutate the system state.

A pseudo-algorithm for the SA optimization procedure is shown in A.2. In this dOdéL
returns the result of the objective functiddU TAT E mutates the current state according to some pro-
cedure, e.g. random variable perturbation; &@LZMAN returnstrue if the mutant, which is less
optimal than the best encountered solution, should be kept.
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Audio Speech Synthesis

Audio speech synthesis is the generation of audio waveforms that mimic the patterns and vocal prop-
erties of natural human speech. Usually synthesis systems provide text-to-speech conversion with the
input being unparsed text, possibly with some form of markup language, and the output being a digi-
tally encoded waveform. Two main stages are involved: firstly, text is transformed into some linguistic
representation (usually phonemes) which unambiguously represents the sounds in the utterance and
processed to determine its prosodic features (duration, intonation, stress etc.); secondly, the linguistic
representation and prosodic features are used by the low level synthesis procedure to generate the final
waveform.

Linguistic transcription of text requires procedures which are highly language specific. In some lan-
guages, such as Spanish, there is a high degree of correlation between the written word and its phonetic
representation. However, other languages, in particular British English, require complex transcription
procedures. This can be split into several stages (see al§o fjg. B.1):

e Preprocessing - Usually text is preprocessed to expand numbers (e.g. 1750 bewethesisand
seven hundred and fiftyabbreviations (e.g. Dr. becomdsctor), and special characters (&
becomesand) into the appropriate words. In some cases this is context dependent (e.g. time
Vs. currency) or particular to the symbol/abbreviation (e.g. N.A.T.O. is pronounced as written,
whereas S.A.S. is pronounced letter-by-letter.)

e Pronunciation - For many words the pronunciation will be fixed for a particular regionalisation
of a language. However, some words are so-cdileahographsthat is they have different pro-
nunciation according to context (e.g. ‘thideeswere lost’ vs. ‘ondivesto eat’.) Thus context-
dependent rules must be produced to deal with these situations. This is particularly the case for
proper names, such as the French tdvice

e Prosody - Prosodic features, such as duration and stress, are products of the individual speaking
(e.g. because of gender and sex), the emotional content of the utterance (e.g. anger, happiness
etc.), and the meaning of the utterance itself (e.g. statement, question etc.) Some of these can
be directly determined from or are implied by the input text. Unfortunately, phrase breaks are
sometimes not textually indicated and accentuation is rarely indicated. This is important because
incorrect prosodic features can entirely change the meaning of a sentence (e.g. ‘John says: Peter
is a liar’ vs. ‘John, says Peter, is a liar’.)

112
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Figure B.1: Sequence of audio speech synthesis processes.

A number of different methods have been described to take the output of the described stages and
transform this phonetic/prosodic encoding of speech into a waveform. The methods for low level speech
synthesis can be summarised into the following categories: articulatory synthesis, source-filter synthe-
sis, and concatenative synthesis. A thorough discussion of audio speech synthesis technologies can be
found in [Lemmetty, 1999].

B.1 Articulatory Synthesis

Articulatory synthesis attempts to produce speech by modelling the vocal tract and the process of speech
production itself. Conceptually this is the best means by which to produce natural-sounding audio. How-
ever, the complexity of the underlying processes make this a highly difficult challenge and synthesisers
of this form this form tend to be computationally intensive.

In order to fulfill the challenge of articulatory synthesis each of the organs in the vocal tract are
functionally modelled. One of the first articulatory models used a table of vocal tract area functions
between the larynx and lips for each phoneme as the basis for synthesis. Other example parameters for
rule-based synthesis include: lip aperture, lip protrusion, tongue tip height, tongue tip position, tongue
height, tongue position, and velic aperture. These are clearly related to the phonetic structure of an
utterance (as shown by the consonant and vowel classifications in[tafles 2.3,[2.4 and 2.5.)

By its nature articulatory synthesis is attempting to model the complex three-dimensional system
of the vocal tract and its dynamic changes. Necessarily, all current systems simplify the nature of
real articulation considerably, and yet are still more complicated than other systems described in this
appendix. Few articulatory systems are in development in comparison with those which use formant
and concatenative methods. However, it is the case that the nature of the parameters for articulatory
models fit best with visual synthesis and this may be a source of research in the future.
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B.2 Source-filter Synthesis (Formant Synthesis)

Speech production can be considered as a combination of acoustic source and vocal tract filter (i.e. the
source-filter model), and it is this notion on which formant synthesis is based. Parameters and rules
which determine the frequency and amplitude of the first several forﬂlamisthe characteristics of the
excitation source are used to control the output speech waveform. Because the formants are related to
the filtering caused by the vocal tract by imposing formants at appropriate frequencies synthetic speech
can be produced (synthetic music can be produced in a similar manner.)

Formant synthesisers can be either structured as a cascade of resonators, with formants added one
after the other to an excitation signal, or in a parallel structure. The cascade structure is considered
better for non-nasal voiced sounds, whilst parallel structures are better for nasals, fricatives, and stop-
consonants - due to this many formant synthesisers now consist of both parallel and cascade resonator
arrays. Newer formant synthesisers may also have parameters to control the source, glottal waveform,
and radiation characteristics of the mouth.

B.3 Concatenative Synthesis

Concatenative synthesis works by taking parts of real speech waveforms and combining them to create
novel utterances. The parts used depend upon the domain of the synthesis (e.g. unrestricted domain vs.
limited domain), and the quantity of available data. For general text-to-speech synthesis the units used
are typically much smaller than in limited domain systems, this is because with increased unit size the
number of units required will exponentially increase, and thus using syllables for synthesis will require
many thousands more units than, for example, diphones.

The size of unit used will impact directly upon the quality of synthesis. This is because less concate-
nation is being performed, and if these joints coincide with natural word, phrase, or sentence boundaries
then the synthetic transitions will be less obvious. The quality of limited domain concatenative synthe-
sis is very high, and is the only method to be commonly used in a commercial situation (e.g. railway
anouncements.) General synthesis is of a lower quality, yet still produces the most natural audio of all
the methods for synthesis. The reason for this is that the non-stationary aspects of speech are captured
well in waveform fragments and prosodic qualities can be included in the data capture.

To generate an utterance from a sequence of waveform fragments a synthetic transition must be
produced at a blend region where the fragments overlap. The most common method for this is Pitch-
Synchronous-Overlap-and-Add (PSOLA.) In this method short-term signals created by multiplying the
original signal with a pitch-synchronous Hanning window are overlap-added to produce the resulting
waveform. By separating or compressing the short-term signals in recombination the pitch of the output
signal can also be modified. This is Time-Domain PSOLA (TD-PSOLA); other PSOLA methods exist
including Linear-Predictive PSOLA (LP-PSOLA) and Frequency-Domain PSOLA (FD-PSOLA.)

The main problem with concatenative synthesis lies in the amount of data that must be captured and
labelledbeforeany utterances can be generated. Also, by the nature of the waveform fragments, the
synthesised utterance will always sound like the individual from whom the data is captured.

LFormants are pole frequencies, and antiformants are zero frequencies.
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Table B.1: English phoneme classification used in Festival.

B.3.1 Festival

Festival is a general multi-lingual concatenative text-to-speech synthesiser developed at Edinburgh Uni-
versity [Black et al., 1999]. The low-level units for general synthesis are diphones. New voices can
be created using the FestVox building tools, requiring a databa®608rf mono-syllabic utterances to
create an English voice. The system also provides the ability to define limited domain voices (e.g. time
or rail announcements) using a cluster unit selection algorithm (CLUnits.) The phonetic categorisation
used by Festival is shown in tafjle B.1.
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