
Department of Computer Science

Grid Computing Techniques
for Synthetic Procedural Planets

Memorandum CS–07–01

Manuel Noronha Gamito

January 2007

Contents

1 Introduction 1

2 Photorealistic Rendering of Synthetic Landscapes 2

3 Grid Computing and the White Rose Grid 3

3.1 Grid Middleware . 4

3.2 The White Rose Grid . 5

4 A Grid Application for Rendering Synthetic Landscapes 6

4.1 Application Deployment .. . 7

4.2 Grid Resource Location .. . 9

4.3 Grid Access and Authentication 10

4.4 Implementing a Polling Strategy 11

4.5 Implementing a Schedule-Ahead Policy 11

4.6 Retrieving Computation Results 12

5 Results 13

6 Conclusions 16

7 Further Developments 18

A Python Source Code 18

References 25

List of Figures

1 A computer rendering of a synthetic landscape 3

2 The two tiered distributed architecture of the grid application 7

3 A sequence of frames showing a camera flyby over a procedurallandscape . . . 14

List of Tables

1 The value of themaxujobs parameter . 9

2 The rendering time at the three grid nodes 15

1 Introduction

As part of his PhD in Computer Science at the University of Sheffield, the author has been
developing an image synthesis application with the purposeof rendering complex, synthetic-
ally generated, planetary landscapes. The idea of modelling and rendering an entire synthetic
planet, with a radius roughly equal to the radius of the Earth, is reasonably new and has be-
nefited from recent advances in procedural fractal models [Peachey, 2003]. Until recently it
was only feasible to model limited landscapes that were sampled onto a two-dimensional grid
of elevation values [Marshall et al., 1980]. With a procedural synthetic model for the terrain, it
is now possible to have a purely functional description of the surface of an entire planet, with
the ability to generate surface detail at any point on the surface of the planet and at any scale
[Musgrave, 2003].

Despite the much greater flexibility offered by procedural models, there is a significant impact
on the time that it takes to render an image of the terrain. Conversion of the terrain into a
polygon mesh, that could be subsequently rendered in hardware with modern graphics boards,
is not a possibility because it implies a loss of surface detail when discretising the terrain into
triangles. If all the visible surface details are to be preserved, the resulting triangle mesh would
have to be so fine as to be computationally intractable. Procedural terrains must be rendered
with a direct ray tracing approach [Whitted, 1980]. For eachpixel on the screen, a ray is
traced into the scene and its intersection point with the terrain is found. The complexity of
a ray tracing solution for rendering procedural landscapescomes from the fact that the terrain
function is fractal and, therefore, has a very irregular shape. Finding the ray-terrain intersection
point accurately requires significant computational resources.

Early landscape renderings performed by the author during his first year of PhD studies in
2005 hinted that a conventional ray tracing solution, running on a single computer, would soon
become impractical as the research progressed and the complexity of the terrain functions kept
increasing. The problem would be further worsened when rendering computer animations of
camera flybys over the terrain, with hundreds of individual images having to be rendered to
achieve a typical rate of 25 images per second of playback. After optimising the ray-terrain
intersection algorithm to achieve maximum efficiency, the only possibility of further reducing
the rendering time is to implement a distributed ray tracingsolution. Fortunately, in this case,
ray tracing is a type of algorithm that is easy to parallelise. The computation of the intersection
point for the ray passing through a pixel is performed independently of the same computation
for every other pixel. One just has to divide the image into smaller rectangular regions, that are
calledtiles in this report, and run a ray tracer independently for each tile. As a final step, one
gathers all the individual tile renderings and assembles the complete image. Because each pixel
is rendered independently, there is no need to use complex message passing mechanisms or to
manage shared memory segments as part of the implementationfor a distributed ray tracer.

A distributed ray tracer for terrain rendering was implemented by the author in 2005 on the
Department of Computer Science Night Train. The Night Trainis a Beowulf cluster of desktop
computers, installed on the Department’s student computerrooms. The Night Train only be-
comes active during the night and on weekends, when the roomsare closed, and is managed
with the Sun Grid Engine. The same distributed ray tracer waslater ported to the University
of Sheffield High Performance Computing node on Iceberg. Both distributed versions of the

1

2 PHOTOREALISTIC RENDERING OF SYNTHETIC LANDSCAPES

ray tracer, however, only handle the rendering of individual images. A new version of the ray
tracer was subsequently developed, handling not only the distribution of tiles of an image but
also the distribution of images that are part of a computer animation. The new ray tracer was
tested on the set of High Performance Computing nodes that are available through the White
Rose Grid by the Universities of Sheffield, Leeds and York.

2 Photorealistic Rendering of Synthetic Landscapes

A description of the algorithms for the photorealistic rendering of synthetic landscapes is bey-
ond the scope of this report. Here, only a mention is given to the three main problems that a
photorealistic landscape renderer must solve. These problems are responsible for the compu-
tational complexity of the renderer and must be solved in thefollowing order:

• Ray-terrain intersection tests.
• Light scattering in the atmosphere.
• Anti-aliasing and motion blur.

Ray-terrain intersection tests are performed with thesphere tracingalgorithm [Hart, 1996].
The terrain is represented by an implicit surface{f(x) = 0 : x ∈ R

3}, wheref : R
3 → R is

aLipchitz continuousfunction with a Lipchitz boundλ that must be supplied beforehand. The
intersection point between a ray and the implicit surface isfound by successive iteration of the
equationti+1 = ti + |f(x(ti))|/λ, whereti is the distance along the ray after thei-th iteration.

After the intersection point between a ray and the terrain has been found, a light model must be
evaluated to obtain the colour intensity for the pixel through which the ray passes. This light
model must account for the Rayleigh scattering of light in the atmosphere. The scattering oc-
curs as photons bounce on air molecules and are redirected along the ray towards the observer.
Rayleigh scattering is responsible for the blue colour of the sky under noon conditions, which
subsequently turns red under sunset conditions. The scattering of light in the atmosphere is a
complex phenomenon and a model is employed here that considers many simplifying assump-
tions [Nishita et al., 1993]. For example, multiple scattering events are ignored and so is the
bending of rays due to the lensing effects that are caused by the varying atmospheric density.
The scattering model requires the numerical integration ofthe optical depth and light extinction
factors along the length of a ray, up to the point of intersection with the terrain.

Rendering an image by passing a single ray through each pixelleads to aliasing artifacts due to
an insufficient sampling density. The image must be convolved with a low pass filter function
in order to be properly anti-aliased. In practical terms, this image convolution is achieved with
an anti-aliasing Monte Carlo integration technique [Gamito and Maddock, 2006]. Several rays
are shot for each pixel, where the probability density of rays around the pixel is given by the
anti-aliasing filter function. The final pixel colour is obtained by accumulating the colour of all
the rays that are involved in the evaluation of the integral.The same concept is extended for
image renderings that change through time, i.e. computer animations, by distributing the rays
not only in space, around the pixel, but also in time, around the time instant when the image is
taken. This produces an effect calledmotion blur, which is visible on terrain features that are
close to the camera as the latter moves.

2

3 GRID COMPUTING AND THE WHITE ROSE GRID

Figure 1: A computer rendering of a synthetic landscape. The surface of both the planet and
the moon are generated with procedural fractal models. Rendering of the atmosphere is achieved
through the solution of a Rayleigh scattering model.

Figure 1 shows an image that was synthesised with these threealgorithms. The image was
rendered with a resolution of3740 × 2645 pixels on the Iceberg node, using the early version
of the distributed ray tracer that existed before the work described in this report was undertaken.
The original high resolution image can be downloaded from the address:

http://www.dcs.shef.ac.uk/ ˜ mag/poster.jpg

Anti-aliasing was implemented by shooting 100 rays per pixel. The parameters for atmospheric
scattering were exaggerated, relative to the equivalent parameters in the Earth’s atmosphere,
to create a more dramatic effect. Nevertheless, the atmospheric lighting remains physically
correct, subject to the model’s simplifying assumptions.

3 Grid Computing and the White Rose Grid

Grid computing is a new computational model that exploits the availability of high perform-
ance computer nodes across a heterogeneous and geographically dispersed network. Many
scientific and technological problems are known to have sucha computational complexity that
only the most powerful computers can solve them [Levin, 1989]. In the early years of comput-
ing, such powerful computers were built by individual companies using their own proprietary
hardware and featuring thousands of processors inside a single computer. During subsequent
years, a more flexible and cost-effective approach was takenwhereby a large computing facility

3

http://www.dcs.shef.ac.uk/~mag/poster.jpg

3 GRID COMPUTING AND THE WHITE ROSE GRID

was assembled out of a collection of smaller computers that used commercially available pro-
cessors, from companies like Intel or AMD, and that were connected together through a high
speed network. Techniques for tapping the power of these computer clusters lead to the devel-
opment of High Performance Computing (HPC) as a new field of Computer Science. Libraries
that implement the Message Passing Interface (MPI) protocol allow a programmer to build
applications that can be distributed across several networked computers [Gropp et al., 1999].
For HPC installations that feature multi-processor computers, where groups of processors have
access to a common memory space, the OpenMP standard can alsobe used to implement par-
allelism inside an application [Chandra et al., 2000]. At a higher level, job schedulers like the
Sun Grid Engine or Condor are put in control of HPC clusters tomediate the access of users to
the resources and to manage the load on the cluster [Gentzsch, 2001; Thain et al., 2005].

HPC installations are normally found at universities and government funded research laborator-
ies due to the high cost of acquiring and maintaining this type of hardware. Traditionally, access
to these HPC installations was restricted to students and staff of each university or laboratory.
More recently, a new trend has emerged where a group of institutions agrees on a protocol that
allows accredited researchers to have Internet access to their joint set of HPC computing facil-
ities. This joint set of facilities is called agrid and features potentially dozens of HPC nodes
from different institutions that may be spread across a large geographical area. The emergence
of grids lead to the development ofgrid computingas a new computational model that can be
regarded as being one step above high performance computing. Issues that would not normally
worry the user of a single HPC node become significant when dealing with grid applications.
Such issues are related to the execution of common tasks likesecure access or job management
in a transparent manner across the grid. Ultimately, the issues that grid computing must solve
arise as a consequence of the extreme level of heterogeneitythat can be found in a grid. This is
because each grid participating institution has its own type of HPC platform, has its own set of
software applications and development tools running on that platform and implements its own
management policies for users of that platform.

3.1 Grid Middleware

As part of the grid computing model, an intermediate layer ofsoftware, calledgrid middle-
ware, must exist between a grid application and the grid nodes. Grid middleware addresses the
problems created by the heterogeneity that is inherent to grids. It is responsible for providing
a common access infrastructure to all grid services while, at the same time, hiding from the
user the details of how these services are implemented in each grid node. The following list
describes the most common services that are required from the grid:

Authentication and Secure Access Access of users to grid services must be properly authen-
ticated. The communication between a grid application and the grid nodes must be
encrypted, considering that it takes place over the Internet.

Resource Location A user must be able to query the grid to find diverse information such as
what grid nodes are available, what services they offer, what is their hardware configur-
ation and what is their load at any time.

Job Management With job management services, individual jobs or sequencesof jobs can be
issued to the grid. The state of these jobs can then be queriedand jobs can be deleted,

4

3 GRID COMPUTING AND THE WHITE ROSE GRID

suspended or migrated to other nodes.
Data Retrieval Typically, after a job completes in a grid node, a file containing the output data

is left on the node’s file system. A grid application must be able to gather all the data
files that were left on the grid nodes after a distributed computation has finished.

A standard called Open Grid Services Architecture (OGSA) isunder development and spe-
cifies a set of requirements for grid services that compliantgrid middleware is expected to
obey [Foster et al., 2002]. One implementation of grid middleware that satisfies many of the
requirements set forth in the OGSA is the Globus Toolkit [Foster and Kesselman, 1997]. The
Globus Grid Security Infrastructure (GSI) manages user authentication and data encryption.
User authentication in Globus is done with X509v3 digital certificates that are issued by a
Globus recognised certification authority. When a user wishes to access grid services through
Globus, he requests a grid proxy based on his certificate. Grid proxies have a limited valid-
ity. The user is given transparent and encrypted access to the grid while the proxy is valid.
When a grid proxy expires a new proxy must be requested. Resource location in Globus is
implemented by the Monitoring & Discovery System (MDS) thatuses a Web Services inter-
face. The Globus Grid Resource Allocation and Management module (GRAM) supports job
management. GRAM exists as a collection of command line tools but it also provides language
bindings for programming languages such as C/C++, Java and Python. Data retrieval in Globus
is performed with its Global Access to Secondary Storage (GASS) module, which implements
the GridFTP protocol.

In many applications, a grid user does not have to be aware of the individual HPC nodes that are
part of the grid. The user should be able to launch distributed applications transparently across
the grid as if he was working with a single virtual HPC installation. This degree of abstraction
is achieved by having ameta-schedulerthat uses the existing grid middleware to reroute the
user jobs to individual grid nodes. The meta-scheduler knows which nodes are available at
every moment and what kind of services they are able to provide. When a user submits jobs for
some particular computational task, the meta-scheduler selects the best nodes on the grid for
that type of task and passes the jobs to the relevant job schedulers. Meta-schedulers have to be
built with specific grid applications in mind because each application has its own scheduling
policies. The Globus Alliance, the same software group thatdevelops the Globus Toolkit,
also offers the GridWay Toolkit to help in the implementation of meta-schedulers [Hudo et al.,
2005]. GridWay is an extra layer of grid middleware that exists on top of the Globus Toolkit.
It uses the GRAM module to provide adaptive scheduling of jobs in response to changing grid
conditions.

3.2 The White Rose Grid

The White Rose Grid is a consortium of three universities in the Yorkshire area. These are
the Universities of Sheffield, Leeds and York. The grid currently provides a total of four HPC
nodes, one called Iceberg from the University of Sheffield, two called Everest and Snowdon
from the University of Leeds and one other node called Pascali from the University of York1.
The Iceberg node is a cluster of 40 Sun Fire V20Z servers from Sun Microsystems with two

1There is an extra node at Leeds called Maxima but maintenanceof this node has recently been discontinued.
The node is also not accessible through the Internet. It mustbe accessed indirectly through Everest or Snowdon.

5

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

2.4 GHz AMD Opteron processors each plus another 20 Sun Fire V40Z servers, which are
similar but have four Opteron processors instead. All the machines are connected through a low
latency, high bandwidth, Myrinet network. The Everest nodeconsists of 87 V20Z servers with
two dual core 2.2 GHz AMD Opteron processors each plus 7 V40Z servers that use four dual
core 2.2 GHz AMD Opteron processors. The Snowdon node is a cluster of 128 Intel servers,
using dual 2.2 GHz or 2.4 GHz Intel Xeon processors. Both the Everest and the Snowdon
nodes use a Myrinet 2000 network as their backbone. A description of the Pascali node at
York is not presented here as access to this node was not available for this work. In total there
are 820 processors (including processors in dual core chips) in the White Rose Grid, available
to perform image rendering tasks. All these processors haveaccess to significant memory
resources, varying between 2 Gb and 32 Gb in size. The size of main memory, however, is not
a constraint for the type of rendering application that is described here. Procedural models of
terrain have a very small memory footprint since they are essentially procedures in a computer
program. There is no need to store large arrays of geometric data such as vertices or triangles.

All the available nodes in the White Rose Grid have a reasonably homogeneous configuration,
compared to what is normally expected from a grid, and have the following characteristics in
common:

• Scientific Linux as the operating system.
• GNU development tools.
• Bash shell interpreter.
• Single sign on access through SSH with public/private key pairs.
• Single sign on access with the Globus Toolkit.
• Job scheduling with the Sun Grid Engine.

All nodes run Linux and use the Sun Grid Engine to schedule jobs. Once a public RSA encryp-
tion key is copied to each node, it is possible to invoke any Unix command remotely through
the SSH protocol. Because of the relative homogeneity and the ease in accessing grid nodes
from a remote application, it did not seem necessary to use the more complex Globus Toolkit.
When running remote Unix applications in the White Rose Grid, thessh command can suc-
cessfully fill the role of grid middleware. The situation maychange in the future, however, if
this work is later ported to a larger grid such as the NationalGrid Service.

4 A Grid Application for Rendering Synthetic Landscapes

This report focuses on the development of a grid applicationon the White Rose Grid that
implements the distributed rendering of sets of synthetically generated images. These images
are then put together into a video sequence that can be playedback with the appropriate video
software. A meta-scheduler was written to coordinate the scheduling of the rendering jobs
on all the available grid nodes. The meta-scheduler consists of a Python script that runs on a
Linux desktop PC with Internet access to the grid. The Pythonscripting language was chosen
because it allows the rapid development of new applicationsand also because it offers a rich
set of system calls to interact with the operating system andthe network.

6

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

S
G

E
 J

o
b

A
rr

ay

Grid HPC ClusterDesktop PC

M
et

a-
sc

h
ed

u
le

r

S
G

E
 S

ch
ed

u
le

r

Figure 2: The two tiered distribution architecture of the grid application. The larger rectangles
represent images. The smaller rectangles represent image tiles.

As Figure 2 shows, the grid application enforces a two tieredmodel of load distribution. In
the first tier, images are individually distributed across the grid nodes. Each image is entirely
rendered by the node to which it was assigned by the meta-scheduler. A load balancing scheme
at the image level is the result of implementing a dynamic scheduling policy in the meta-
scheduler. Grid nodes that are faster receive more images torender. Whenever a grid node
becomes idle, the meta-scheduler assigns the next available image to it. In the second tier, load
distribution is implemented by splitting an image into smaller rectangular regions, called tiles,
and assigning these tiles to different processors of the HPCcluster that is installed at the grid
node. The set of rendering jobs for all the tiles of an image forms ajob array in the Sun Grid
Engine (SGE) scheduler at the node. So, load distribution atthe image level is handled by the
meta-scheduler while load distribution at the tile level ishandled by the job schedulers at each
individual grid node. The SGE schedulers will attempt to distribute the tile rendering jobs in
a fair way between all the processors of a cluster, keeping inmind the other users of the same
cluster.

4.1 Application Deployment

The first step in setting up the grid is to deploy the ray tracing application to the grid nodes.
Deployment of an application is often a source of problems ingrid computing, especially when
the application depends on third-party software libraries. It may happen that different grid
nodes have slightly different versions of the same library.In this case, the user must tweak
his code in different ways at each node to accommodate the idiosyncracies of the supporting
software that resides there. This type of problem does not occur for the ray tracing application
since it only requires support from the operating system libraries. Given that Scientific Linux
is Posix compliant, the API calls that are required by the raytracer can be found on all nodes.

7

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

The ray tracer is a C++ application that was written on a Windows laptop, inside the Cygwin
emulating environment. It was written with the portabilityto Unix systems other than Cygwin
in mind. The GNU set of portability tools (Autoconf, Automake and Libtool) was used to
manage the software installation and configuration procedure. After unpacking the source code
at each node, the command./configure was issued to generate the makefiles, followed by
make. The source code compiled cleanly on all three nodes. The raytracer is a command line
tool that accepts several command line options. The line below shows an example of what a
typical invocation of the ray tracer at one of the nodes mightbe:

gaea -r 800,600 -w 0,60,80,120 t=0.01

This command starts the rendering of an image with a resolution of 800 × 600 pixels but it
only renders a tile of this image where the pixels have coordinates(i, j) that are constrained
by 0 6 i < 80 and60 6 j < 120. The output is an image file with a dimension of(80 −
0) × (120 − 60) = 80 × 60 pixels. If no image filename is given, as above, the ouptut image
is sent to the standard output. The command line variablet=0.01 indicates to the ray tracer
that it should render a snapshot of an animation corresponding to the time instantt = 0.01s.
The setting up of the terrain functions and the lighting conditions is currently hardwired in the
application. This is clearly a limitation as editing the landscape requires changing the source
code in the Windows laptop and migrating copies of the sourceto all the grid nodes again. In
the future, a grammar parser will be included to read the landscape settings from a text file
without having to recompile any code.

A set of six Bash scripts must also be installed on the grid nodes to ensure proper communica-
tion between the meta-scheduler and the local SGE schedulers. The list of the necessary scripts
is as follows:

gaearun This is the script used by the Sun Grid Engine to start the rendering of a new tile at
a processor. It invokes thegaea application, with the proper command line options.

gaeasub Submits a new job array that resulted from the subdivision ofan image into tiles.
This is basically a wrapper for theqsub SGE command. It passes the name of the
gaearun script to the scheduler.

gaeadel Removes a job array, including all instances of that array that may be running at
the time, from the scheduler. This is basically a wrapper fortheqdel SGE command.

gaeals Returns a list of the image files that have been completed as part of the execution of
a job array. This command can be invoked at any time, returning only the filenames for
tiles that have finished rendering by that time.

gaeaget Returns the content of a given image file. The command basically sends the content
of the file to its standard output, which is then piped back to the meta-scheduler.

gaearm Removes all image files associated with a given job array fromthe node’s file system.

The scripts are quite portable since they rely only on the existence of a Bash shell interpreter
(which all grid nodes have) and a minimal set of Unix command tools like find , tail and
rm. Copies of the scripts are migrated to the grid nodes inside the source code package for the
ray tracer. The original scripts are maintained at the Windows laptop, along with the Python
script for the meta-scheduler, and are part of the ray tracer’s development tree.

8

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

Node maxujobs
Iceberg 10
Everest unlimited

Snowdon 4

Table 1: The value of themaxujobs parameter at the three grid nodes.

4.2 Grid Resource Location

Information about the grid nodes is read on startup by the meta-scheduler from a local text file,
calledgrid.conf . The text file lists the available nodes and further information, relative to
each node, that is required by the meta-scheduler. The current contents of this static resource
file are as follows:

Node name Username Min_tsize Max_jsize
iceberg.shef.ac.uk acp04mog 2500 75000
everest.leeds.ac.uk wrsmog 1600 75000
snowdon.leeds.ac.uk wrsmog 5000 75000

The resource information required by the meta-scheduler, for each grid node, is the fully qual-
ified address, the username of the account, the minimum size (in pixels) of a tile and the max-
imum size of a job array (correspondingly, the maximum number of tiles) that is allowed by
the SGE scheduler at the node. The meta-scheduler uses the last two parameters during its
initialisation to compute an optimal tile subdivision of the image for each node. The parameter
Max jsize is equal to themax aj tasks configuration parameter of the SGE schedulers.
None of the grid nodes enforces a particular value for this parameter in their configuration files
and it defaults to the value 75000. TheMin tsize parameter is chosen by the user and is
loosely dependent on the maximum number of jobs that a user can run simultaneously on a
node. This, in turn, is given by themaxujobs configuration parameter of the SGE schedulers.
The rationale is that, if a user can only run a small number of jobs concurrently, there is no
advantage in having many small tiles since most of them will have to be kept waiting in the
scheduling queue. If the SGEmaxujobs parameter is small, it is slightly more efficient to
have a few larger tiles as it decreases the overhead of launching many small jobs on the cluster.
Themaxujobs at the three grid nodes is shown in Table 1. The content of thistable motivated
the values of theMin tsize parameter that are used in the resource file.

The meta-scheduler performs a subdivision of the image intotiles for each grid node, based on
the following list of criteria:

• The size of the tiles must be as small as possible but not smaller thanMin tsize .
• The total number of tiles must not exceedMax jsize .
• The difference between the width and the height of the tiles must be as small as possible,

i.e. the shape of the tiles must be as close as possible to a square.

The meta-scheduler computes all integer divisors of the image width and all integer divisors of
the image height as part of its initialisation procedure. A list of all possible pairs of these two
sets of divisors is then formed. Every element in this list isa potential candidate for the width

9

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

and height of a tile. The list is sorted by increasing order oftile size and searched from the
smallest to the largest size. The first element that obeys allcriteria is the chosen tile size.

The data contained in the resource file is not likely to changefrequently and, therefore, this
static resource allocation scheme is adequate for our purposes. Situations where the data in
thegrid.conf file might change would be caused by one of the grid node systemadminis-
trators reconfiguring the SGE scheduler by changing either itsmaxujobs or max aj tasks
parameter. It could be possible to initialise theMin tsize andMax jsize parameters dy-
namically by querying the scheduler parameters of each nodethrough a remote invocation of
the SGEqconf command. This increased coding complexity does not seem warranted at this
point, however.

4.3 Grid Access and Authentication

After installing an RSA public key at each grid node, it is possible to remotely invoke com-
mands on that node throughssh , without having to interactively provide a password authen-
tication every time. For example, to schedule an image rendering on the Iceberg node, a new
job array must be submitted to that node’s scheduler in the following way:

ssh acp04mog@iceberg.shef.ac.uk "˜/gaeasub -t 1-192 \
-v RESX=800,RESY=600,WINX=50,WINY=50,TIME=0.01 <filen ame>"

This specifies that a800 × 600 resolution image is to be rendered after being split into192
tiles, where each tile has a dimension of50 × 50 pixels. The-t option specifies the range of
tiles to be rendered, from tile 1 to tile 192. The-v option specifies a comma separated list of
variables that are exported by the SGE scheduler as environment variables into thegaearun
script. Remote invocation of the other shell scripts through the SSH protocol is performed in a
similar manner.

The meta-scheduler launches thesessh commands through anos.popen() system call that
is defined in the Python interpreter. The single argument to theos.popen() call is a string
that contains a Unix command to be executed (assh command in this case). A Unix pipe is
opened between the Python interpreter and the command. In particular, the standard output of
the command is redirected back through the pipe and can be read by the Python script. For
example, the remote invocation of thegaeasub script shown above can be written in Python
in the following way:

pipe = os.popen("<string for ssh gaeasub script>")
output = pipe.read()
pipe.close()
jobID = parse(output)

The Python variableoutput stores the standard output of thegaeasub command, which
among other things indicates the job ID of the newly created SGE job array. If thessh com-
mand executes without error, the job ID can then be parsed from theoutput variable. This
ID may be required later, should the meta-scheduler wish to delete the job array.

10

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

4.4 Implementing a Polling Strategy

The initial idea at the start of this project was to have a client-server architecture between the
meta-scheduler and the grid nodes. The meta-scheduler would keep a socket open, listening
for incoming packets. Each grid node processor, once it finished rendering a tile, would open
a connection to this socket and send over the computed tile data. The meta-scheduler would
receive the rendering results in real time from all the processors in the grid and this would allow
it to schedule new rendering jobs on the fly. There were, however, difficulties in implementing
this architecture because of the firewalls at Sheffield and Leeds that do not allow machines from
inside their HPC clusters to connect to arbitrary addresseson the outside. There was still the
possibility of keeping a daemon proxy running inside each HPC cluster. The cluster processors
would send their packets instead to this proxy and it would relay the packets back to the meta-
scheduler through a SSH tunnel. The proxy would have to be left running outside the control
of the Sun Grid Engine (otherwise it would be killed after a maximum allowable running time
had elapsed) but this would represent a breach of policy of the HPC clusters, where every job
must be supervised by the SGE in order to maintain fairness between users.

Rather than using a client-server architecture, the meta-scheduler implements a polling strategy
instead and checks the state of the tile renderings on all grid nodes at regular intervals. The
polling interval has a default duration of five minutes but this can be changed through a com-
mand line option when the meta-scheduler is launched. The rendering state of each grid node is
remotely queried with thegaeals script, which returns a list of all the filenames for the tiles
that have been completed so far. This allows the meta-scheduler to detect new tiles that have
been completed since the last poll to the same grid node was performed. When all the tiles of
an image that is being rendered on a grid node have been completed, the meta-scheduler sends
instructions throughgaeasub for a new image to be scheduled on that node. This polling
mechanism works well in situations where tiles take, on average, significantly longer to render
than the duration of the polling interval since the rendering state of a grid node will undergo
only small changes between polls.

4.5 Implementing a Schedule-Ahead Policy

The polling mechanism introduces only one source of inefficiency, which is related to the
scheduling of new images. Consider the situation where a grid node finishes rendering an image
shortly after a poll from the meta-scheduler was completed.For the remainder of the following
five minutes the grid node is going to be idle with respect to the grid rendering application. The
meta-scheduler will only detect the completion of the imageand schedule a new image after
the five minutes have elapsed. The problem is made worse by thefact that, during those five
minutes of idle time, jobs from other users will occupy the processors that have since become
available. When the new image is scheduled, it will have to wait for the processors to become
available again. If the new image had already been present inthe scheduling queue by the time
the previous image finished it might have been able to recapture some of the same processors.
This is because the SGE uses a dynamic priority strategy and the job array for the new image
might have a higher priority that some of the other user jobs in the system. The rendering
efficiency of the grid nodes would be improved in this way without violating the principles of
fairness to other users that are always enforced by the SGE.

11

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

The inefficiency that stems from scheduling new images undercontrol of the meta-scheduler’s
polling mechanism is alleviated by implementing a schedule-ahead policy. This basically
means that the meta-scheduler speculatively assigns a new image in advance to a grid node
while a previous image is still rendering at the same node. Atany time there will always be
two job arrays in a scheduling queue. One job array will be undergoing rendering (with some
of the tiles in the array being rendered while the remaining tiles wait for available processors)
and the other job array will stay in wait until the previous array finishes. The following partial
output of theqstat command shows a typical scheduling state in the Snowdon node, in what
concerns the grid rendering application:

job-ID prior name user state ja-task-ID

177620 0.51000 gaearun wrsmog r 3
177620 0.51000 gaearun wrsmog r 4
177620 0.51000 gaearun wrsmog r 2
177620 0.51000 gaearun wrsmog r 1
177620 0.00000 gaearun wrsmog qw 5-48:1
177621 0.00000 gaearun wrsmog qw 1-48:1

The job array with ID 177620 has image tiles 1 to 4 being rendered, all with a priority of0.51,
while the remaining tiles 5 to 48 remain waiting. There is another job array with ID 177621
that will start rendering once the last tiles from the previous job array begin to complete. The
maxujobs parameter for Snowdon is 4 (recall Table 1) and, therefore, only four tiles can be
rendered concurrently on this node. There will be a brief transitional period when the four
processor slots available to userwrsmog will be shared between the last tiles of job 177620
and the first tiles of job 177621. Once all the remaining tilesfrom job 17760 finish, a new job
array will be placed on the queue by the meta-scheduler, sometime within a five minute period.

The schedule-ahead mechanism begins to break down for fast enough grid nodes that can render
all the image tiles in an amount of time comparable to the meta-scheduler’s polling interval.
This is more likely to happen in the Everest node, since it does not impose any limit on the
number of jobs running concurrently2. In this type of situation, the meta-scheduler may not
have enough time to place another image on the scheduling queue before the previous image
completes rendering. To solve this problem one must either decrease the polling interval or
increase the number of simultaneous job arrays that must be kept in the queue.

4.6 Retrieving Computation Results

The outcome of a tile that has finished rendering on a grid nodeis an image data file, residing
in the node’s file system. The data file is written in the PPM format, a minimalistic image
file format that basically contains a header, indicating thetile dimensions, followed by the
raw pixel data [Murray and vanRyper, 1994]. Despite its simplicity, the PPM image format is

2Even in grid nodes where themaxujobs parameter imposes no restriction on the number of simultaneous jobs
from the same user, the load imposed by other users always constrains this number in practice. In the very best of
situations, the number of active tile renderings will always be constrained by themax aj instances parameter,
the maximum number of tasks from the same job array that can run simultaneously.

12

5 RESULTS

accepted by virtually all Unix-based image viewers. The filename of the PPM tile data obeys
the following convention, where the parameters between angle brackets signify fields with
variable information:

<filename>_<imgnum>_<tilenum>.ppm

The imgnum field indicates the image number in the sequence of images that constitutes the
computer animation. Thetilenum field indicates the tile number inside the imageimgnum.
The gaeals script retrieves lists of filenames that obey this naming convention. The meta-
scheduler then invokes thegaeaget script for individual files. The content of a file is sent
from the standard output ofgaeaget , through thessh command and through the Unix pipe
that was set up by theos.popen() call until it arrives at the meta-scheduler, where it is
temporarily kept in a string variable. The meta-scheduler then stores the results of the tile
rendering in the local image file:

<filename>_<imgnum>.ppm

The meta-scheduler opens the image file and uses the value of the tilenum field to move the
file pointer to the correct position inside the image with afile.seek() Python call. The
pixel data from the tile is then transferred to its correct place in the image3.

5 Results

Figure 3 shows four frames from a computer generated animation of a camera flyby over the
same synthetic landscape of Figure 1. The camera is travelling forward with a constant speed
of 60 km/h and at a constant altitude of 25 metres4. The animation has 500 frames, which,
at a rate of 25 frames per second, corresponds to 20 seconds ofplayback time. At the speed
the camera is travelling, the animation would need to have a duration of almost a month of
continuous playback time for a complete circumnavigation of the planet to be achieved. In
this impractical scenario, the first and the last frames of the animation would be equal and
the animation could be looped indefinitely. The animation can be downloaded as a Quicktime
movie file from the address5:

http://www.dcs.shef.ac.uk/ ˜ mag/flyby.mov

An estimate of the image rendering times on the White Rose Grid was obtained by averaging
the rendering times for the first hundred frames at every gridnode. The results, referenced as
TI , TE andTS on the Iceberg, Everest and Snowdon nodes, respectively, are shown in Table 2.
It must be kept in mind that, in a general situation, the camera can follow an arbitrarily complex
path over the landscape and the frame rendering times can change significantly with different
camera positions. Some frames may have a higher visual complexity and take longer to render

3The actual procedure of pasting a tile pixel data onto an image is a bit more complex. Because PPM images
store the pixel array in a row major format, afile.seek() call must be made for every row of pixels in the tile.

4Although the mountains look imposing in the renderings of Figure 3, they are actually only a few metres high.
5A free Quicktime player, available fromwww.apple.com , must be installed before playing the animation.

13

http://www.dcs.shef.ac.uk/~mag/flyby.mov
www.apple.com

5 RESULTS

Figure 3: A sequence of frames showing a camera flyby over a procedural planetary landscape at
constant altitude and speed. The motion blur effect is visible in the lower part of the frames.

14

5 RESULTS

Node Time Value
Iceberg TI 56
Everest TE 24

Snowdon TS 244

Table 2: The rendering time, in minutes, for the first hundred frames in the animation.

that others. This is not so much the case for the animation shown in Figure 3 where the camera
merely moves forward at a constant altitude and the image complexity can be considered es-
sentially constant for all frames. Factors that contributeto the variability in rendering times for
the animation of Figure 3 are more external, being dependenton the load imposed on the grid
by other users, rather than internal, considering that all frames have approximately the same
complexity.

It is clear from the results in Table 2 that the rendering times are heavily influenced by the
maxujobs scheduling parameters that are shown in Table 1. The Everestnode has no re-
striction on the maximum number of simultaneous jobs and this leads to substantially smaller
rendering times. While performing the timing measurementsfor Table 2 it was noticed that
between 72 to 77 tiles were being rendered simultaneously onEverest. The equivalent number
was 10 for Iceberg and 4 for Snowdon, which is consistent withthe values in Table 1. Let us
assume for the sake of discussion that the values in Table 2 did not change while rendering
all the 500 frames of animation on the grid. In the time that ittakes for Snowdon to render
a frame, Iceberg will have renderedTS/TI = 4.36 frames and Everest will have rendered
TS/TE = 10.17 frames. The number of framesNS rendered by Snowdon as part of the 500
frame animation obeys:

(

1 +
TS

TI

+
TS

TE

)

NS = 500.

The result isNS ≈ 32, approximated to the nearest integer. The number of frames rendered
by the other two nodes isNI = (TS/TI)NS ≈ 140 andNE = (TS/TE)NS ≈ 328. The
percentage of frames rendered by the Snowdon, Iceberg and Everest nodes is6.4%, 28.0% and
65.6%, respectively. The total rendering time ismax(NSTS , NITI , NETE) = 7872 minutes
or, approximately, 5 days and 11 hours. One can verify from these results that the White Rose
Grid is asymmetrical in what concerns the grid rendering application. The Everest node does
the bulk of the work, with the Snowdon and Iceberg nodes giving a smaller contribution.

The actual rendering time for the animation is larger than the previous estimates. The rendering
was started on the 13th of June at 19:50 hours and it was complete by the 20th of June at 11:18
hours, which corresponds to 6 days and 15 hours. The discrepancies between this value and
the estimates derived from Table 2 have several causes:

Variable load conditions The load on the grid nodes varied over the course of the rendering,
with rendering jobs having to be suspended for arbitrary lengths of time. The meta-
scheduler could not proceed to schedule another image on a node while it was still wait-
ing for tiles from a previous image that were in a suspended state on that node.

Grid node lockouts When scheduling an image to a node one must specify a parameter called
h rt that indicates to the scheduler how long each tile renderingis expected to run.

15

6 CONCLUSIONS

The SGE will kill a tile rendering job once its running time exceedsh rt . The meta-
scheduler will then be left waiting indefinitely for the results from the tile that was killed
and it will not be able to schedule a new image on that node. This situation can go on
undetected for several hours. Once it is detected, it becomes necessary to re-initialise the
grid application and, as a consequence, images that were being rendered at the time of
re-initialisation have to be rendered again.

Application development in parallel with grid rendering The animation was used to debug
the grid rendering application. Whenever a bug was found, the rendering would have to
be stopped, the application would be debugged, and the rendering was then re-initialised
from where it had previously left off. This delay was especially significant after the need
for a schedule-ahead mechanism was detected. The renderingwas stopped for several
hours as the application was extended to include the resultsfrom Section 4.5.

The evolution of the grid rendering application was observed during the week that it took to
finalise the animation and the number of frames completed by each node was verified to be
in agreement with the estimated values, despite the elements of variability described above.
Nevertheless, it would be useful to render the 500 frame animation again, this time taking the
care to log such data as the load on the three nodes and the evolution of the rendering times
TI , TE andTS as the animation progressed. This would allow a better analysis of the grid
performance, compared with the simple estimates obtained from Table 2 that are based on
averaging the rendering times for a small number of frames. Considering that re-rendering the
animation will likely take several days, these new results will have to be presented in a future
opportunity.

6 Conclusions

The distributed rendering model presented in this report has the potential to significantly reduce
the rendering time of complex computer animations. The current conditions on the White
Rose Grid did not allow the distributed model to be fully realised. Most of the work was
performed on the Everest node with only a small contributionfrom the Iceberg and Snowdon
nodes. It is not so much the case that Iceberg and Snowdon are inefficient. The author has
previously rendered individual high resolution images on Iceberg (the image in Figure 1 being
one example) that were completed overnight. It is rather thecase that Everest is much more
efficient than the other two nodes, thus creating an imbalance in the distributed model. The
inclusion of the York node, which was not considered in this work, may change the situation.
The extension of this work to the National Grid Service may also bring in new nodes that are
similar to Everest, allowing a more equitable distributionof the work load. The extension
to the National Grid Service, however, will require changing the current SSH based remote
scheduling mechanism by a Globus Toolkit based mechanism.

One possibility of increasing the throughput of the Icebergand Snowdon nodes would be to
implement parallelism based on MPI, rather than relying on job arrays [Gropp et al., 1999].
The constraints imposed on the maximum number of processorsthat a single MPI job can
allocate are not as stringent as the constraint on the maximum number of simultaneous jobs.
This approach, however, can only be regarded as a hack. The purpose of MPI is to supply a

16

6 CONCLUSIONS

series of features that enable multiple processors to synchronise amongst themselves and to
communicate by passing messages. None of this features would be required in the case of a
ray tracing application where each image tile is computed independently. The sole purpose
of an MPI based approach in this situation would be to defeat the constraint imposed by the
maxujobs parameter. This might not even be more efficient because MPI jobs that use a large
number of processors may have to stay in the queue for a significant amount of time, waiting
for the required number of processors to become available. The long scheduling delay may
not compensate for the reduced image rendering time. Yet another argument against a MPI
approach is that it requires two versions of the ray tracer tobe maintained: one standalone
and one that is MPI based. The current approach based on job arrays uses the same ray tracer
source code that is used for standalone computers, making code maintenance easier.

The design of the current grid rendering tool can be considered as a pattern for similar com-
puting problems. In the most general terms, the current design solves computational problems
that can be split into smaller and independent tasks. The pattern favours a two-tiered distribu-
tion model, where tasks can themselves be split into smallerand still independent sub-tasks.
Tasks are distributed across grid nodes while sub-tasks aredistributed among the processors of
a node. This two-tiered model, however, is not a requirement. If tasks cannot be further split
they can still be arbitrarily grouped. The task groups are then distributed to the nodes. One
example from Computer Graphics were this design model can beapplied is in the implement-
ation of a distributed version of the Reyes image rendering architecture [Cook et al., 1987]. A
Reyes image renderer works by splitting the geometry (whichcan be made of polygon meshes,
NURBS patches or subdivision surfaces) into progressivelysmaller fragments. When a frag-
ment becomes much smaller than the size of a pixel it is calleda micropolygon. It is then
passed to the shading pipeline for rendering. Reyes is used by major animation studios such as
Pixar for the rendering of their computer animation featurefilms.

The Reyes algorithm can be distributed by partitioning the image space into tiles, similarly to
the ray tracing algorithm described in this report, and having each processor handle its own
image tile6. Each processor will only split geometry data whose bounding box overlaps with
the processor’s tile. There are two additional steps in the implementation of a distributed Reyes
renderer that were not necessary for the ray tracing of procedural surfaces. During the first step,
all the geometry data must be transmitted to the grid nodes, possibly using ascp command.
The second step is a pre-computation that must be performed before the rendering work at a
grid node is distributed to its processors. This pre-computation step computes, among other
things, hierarchies of bounding boxes for the geometry. These bounding boxes are required in
order for each processor to know which geometry elements it should be concerned with. The
two steps just described can be added with some extra effort to the distributed model that has
been developed for ray tracing procedural landscapes.

6Pixar has a render farm made of 1024 Intel servers with 2.8 GHzXeon processors and is certain to have a
distributed version of the Reyes rendering tool. Details ofhow this distribution is performed are not known.

17

A PYTHON SOURCE CODE

7 Further Developments

There are two aspects of the distributed rendering model that deserve improvement. One is
the schedule-ahead mechanism that should be able to handle grid nodes with vastly different
rendering times. While the current schedule-ahead mechanism works well on the Iceberg and
Snowdon nodes, it cannot keep pace with the fast rendering times of the Everest node. This
would be solved by keeping two or more job arrays waiting on the Everest queue instead of
just one. At the end of a polling interval, the meta-scheduler would issue the necessary number
of images to Everest to ensure the desired number of waiting job arrays would be fulfilled.
The number of waiting job arrays for each queue could be specified on the grid resource file
grid.conf . Iceberg and Snowdon would have a value of 1, since this has worked well so
far, while Everest would have a value of 3 or 4. With this degree of occupancy in the Everest
queue, the probability of Everest becoming idle would be greatly reduced.

A second and more important aspect that needs improvement isthe proper handling of grid
lockouts by the meta-scheduler. Currently, theh rt parameter must be estimated by the user
before the meta-scheduler is launched. It is hardwired in the header of thegaearun shell
script and is therefore the same for all image tiles. It is very difficult to predict what the value
of h rt should be because it depends on the complexity of the surfacethat is visible through a
tile. Tiles that only see background sky will render much faster than tiles that focus on terrain
features. Assigning an over-conservative estimate of the tile rendering time toh rt would
solve the problem since it would guarantee that even the slowest of the tile renderings would
not be killed by the scheduler. This, however, is not a practical solution because it will make
it more difficult for the tile jobs to become active. If the SGEscheduler is given a job with a
long predicted run time, it will attempt to schedule faster jobs first. A better way to handle this
situation is for the meta-scheduler to monitor the running jobs on the grid nodes and to detect
jobs that were killed without producing a full tile rendering. The meta-scheduler would then
examine the incomplete tile pixel data and re-issue the sametile jobs at the point where they
stopped rendering.

A Python Source Code

The source code for the meta-scheduler, written in the Python scripting language, is as follows:

import re
import os
import sys
import signal
import getopt
import curses
import curses.wrapper

from math import log10
from time import sleep
from time import ctime
from os.path import isfile

18

A PYTHON SOURCE CODE

class Node:
def __init__(self,hostname,address, \

username,factors,res,minsize):
def size(i,j):
if i[2] <= j[2]:
return i

else:
return j

def aspect(i,j):
if abs(i[1] - i[0]) <= abs(j[1] - j[0]):
return i

else:
return j

f = filter(lambda i: i[2] >= minsize,factors)
m = reduce(size,f)
f = filter(lambda i: i[2] == m[2],f)
m = reduce(aspect,f)
self.job = []
self.tile = m
self.donetiles = []
self.address = address
self.hostname = hostname
self.username = username
self.offset = 9 + int(log10(res[0])+1) + \

int(log10(res[1])+1)
self.tilesize = 9 + int(log10(m[0])+1) + \

int(log10(m[1])+1) + \
3* m[2]

self.numtiles = res[0] * res[1]/m[2]
def connect(self,command):

pipe = os.popen("ssh " + \
self.username + ’@’ + \
self.address + " ’˜/" + \
self.hostname + ’/’ + \
command + "’ 2>/dev/null")

output = pipe.read()
if pipe.close() != None:
raise IOError

return output

class Grid:
def __init__(self,filename):

self.res = (0,0)
self.fps = 25.0
self.omega = 0.0

19

A PYTHON SOURCE CODE

self.imgnum = 0
self.numimgs = 0
self.imgsize = 0
self.doneimgs = 0
self.filename = filename
self.node = []

def __open(self,node):
node.file = open(self.filename + ’_’ + \

str(node.job[0][0]).zfill(3) + \
".ppm",’w’)

node.file.write("P6\n" + \
str(self.res[0]) + ’ ’ + \
str(self.res[1]) + ’\n’ + \
"255\n")

for i in xrange(0,3 * self.imgsize):
node.file.write(’\0’)

node.file.flush()
node.donetiles = []

def __close(self,node):
node.connect("gaearm " + self.filename + ’ ’ + \

str(node.job[0][0]));
log.write("Finished image " + str(node.job[0][0]) + \

" on node " + node.hostname + \
" at " + ctime() + ’\n’)

log.flush()
del node.job[0]
node.file.close()
self.doneimgs += 1

def __launch(self,node):
while self.imgnum < self.numimgs:

filename = self.filename + ’_’ + \
str(self.imgnum+1).zfill(3) + ".ppm"

if not isfile(filename):
time = self.imgnum/self.fps + 0.01
try:

output = node.connect("gaeasub -t 1-" + \
str(self.imgsize/node.tile[2]) + " -v " + \
"FPS=" + str(self.fps) + ’,’ + \
"IMG=" + str(self.imgnum+1) + ’,’ + \
"RESX=" + str(self.res[0]) + ’,’ + \
"RESY=" + str(self.res[1]) + ’,’ + \
"WINX=" + str(node.tile[0]) + ’,’ \
"WINY=" + str(node.tile[1]) + ’,’ + \
"TIME=" + str(time) + ’,’ + \
"OMEGA=" + str(self.omega) + ’,’ + \
"FILENAME=" + self.filename + " ˜/" + \

20

A PYTHON SOURCE CODE

node.hostname + "/gaea")
except IOError:

log.write("Could not connect to " + \
node.hostname + "\n")

else:
self.imgnum += 1
node.job.append((self.imgnum, \

re.search("\d+",output).group()))
log.write("Starting image " + str(self.imgnum) + \

" on node " + node.hostname + \
" at " + ctime() + "\n");

log.flush()
return

self.imgnum += 1
def __poll(self,node):

output = node.connect("gaeals " + \
self.filename + ’ ’ + \
str(node.job[0][0]) + ’ ’ + \
str(node.tilesize))

for line in re.finditer("(. *)\\n",output):
file = line.group(1)
match = re.search("_(\d+)_(\d+)_(\d+)",file)
tile = (match.group(2),match.group(3))
if not tile in node.donetiles:

output = node.__command("gaeaget " + file)
i = int(tile[1]) - 1
j = self.res[1]/node.tile[1] - int(tile[0])
for k in xrange(0,node.tile[1]):

node.file.seek(node.offset + \
3* (node.tile[0] * i + \

self.res[0] * (node.tile[1] * j + k)))
node.file.write(output[3 * node.tile[0] * k:\

3* node.tile[0] * (k+1)])
node.donetiles.append(tile)

node.file.flush()
def __kill(self,node):

joblist = ""
for job in node.job:

joblist += job[1] + ’ ’
node.connect("gaeadel " + self.filename + ’ ’ + joblist)
node.file.close();
os.remove(self.filename + ’_’ + \

str(node.job[0][0]).zfill(3) + ".ppm")
def schedule(self,stdscr,col):
for n in self.node:
if len(n.job):

21

A PYTHON SOURCE CODE

self.__poll(n)
if len(n.donetiles) == n.numtiles:

self.__close(n)
if len(n.job):

self.__open(n)
self.__launch(n)

else:
self.__launch(n)
if len(n.job):

self.__open(n)
self.__launch(n)

if len(n.job):
stdscr.addstr(col,40,str(n.job[0][0]).rjust(5),\

curses.color_pair(3))
percent = 100.0 * len(n.donetiles)/n.numtiles
stdscr.addstr(col,50,"%6.2f%%" % percent,\

curses.color_pair(3))
else:

stdscr.move(col,40)
stdscr.clrtoeol()

col += 1
stdscr.refresh()

def shutdown(self):
for n in self.node:
if len(n.job):

self.__kill(n)

def sighandler(signum, frame):
raise KeyboardInterrupt

def usage(message = ""):
print "Usage: " + sys.argv[0] + " \n\

[-d delay (min)] (default: 5 min)\n\
[-f framerate (fps)] (default: 25 fps)\n\
name resx resy omega #images"

if message:
print "Error: " + message

sys.exit(2)

def factorise(n):
divisors = []
for i in xrange(2,int(n/2)+1):
if n%i == 0:

divisors.append(i)
divisors.append(n)
return divisors

22

A PYTHON SOURCE CODE

def main(stdscr):
curses.curs_set(0)
curses.init_pair(1,curses.COLOR_GREEN,\

curses.COLOR_BLACK)
curses.init_pair(2,curses.COLOR_YELLOW,\

curses.COLOR_BLACK)
curses.init_pair(3,curses.COLOR_WHITE,\

curses.COLOR_BLACK)
stdscr.addstr(4,10,"Gaea Grid: $Revision: 495 $",\

curses.A_BOLD|\
curses.color_pair(1))

col = 6
for n in grid.node:

stdscr.addstr(col,10,n.hostname + ":\t" + \
str(grid.res[0]/n.tile[0]) + ’x’ + \
str(grid.res[1]/n.tile[1]) + \
" tiles of dimension (" + \
str(n.tile[0]) + ’,’ + \
str(n.tile[1]) + ’)’, \
curses.color_pair(3))

col += 1
col += 1
stdscr.addstr(col,10,"Node",curses.A_BOLD|\

curses.color_pair(2))
stdscr.addstr(col,40,"Image",curses.A_BOLD|\

curses.color_pair(2))
stdscr.addstr(col,50,"Percent",curses.A_BOLD|\

curses.color_pair(2))
col += 1
datacol = col
for n in grid.node:

stdscr.addstr(datacol,10,n.address,curses.color_pai r(3))
datacol += 1

stdscr.refresh()
while grid.doneimgs < grid.numimgs:

signal.signal(signal.SIGINT,signal.SIG_IGN)
grid.schedule(stdscr,col)
signal.signal(signal.SIGINT,sighandler)
sleep(60.0 * delay)

try:
opts,args = getopt.getopt(sys.argv[1:],"d:f:m:")

except getopt.GetoptError:
usage()

23

A PYTHON SOURCE CODE

delay = 5.0
cfgfilename = "grid.conf"

for o,a in opts:
if o == "-d":
try:

delay = float(a)
except ValueError:

usage("Invalid delay was specified!")

if len(args) == 5:
grid = Grid(args[0])
for o,a in opts:
if o == "-f":
try:

grid.fps = float(a)
except ValueError:

usage("Invalid frame rate was specified!")
try:

grid.res = int(args[1]),int(args[2])
except ValueError:

usage("Invalid image resolution was specified!")
grid.imgsize = grid.res[0] * grid.res[1]
try:

grid.omega = float(args[3])
except ValueError:

usage("Invalid angular speed was specified!")
try:

grid.numimgs = long(args[4])
except ValueError:

usage("Invalid number of images was specified!")
divisors = factorise(grid.res[0]), \

factorise(grid.res[1])
divisors = [(x,y,x * y) for x in divisors[0] \

for y in divisors[1]]
try:

file = open(cfgfilename)
for line in file:
if line == "\n":
continue

if line[0] == ’#’:
continue

token = line.split()
if len(token) != 3:
print "Incorrect node specification:\n" + line
continue

24

REFERENCES

name = token[0].split(’.’,1)
if len(name) != 2:
print "Hostname must be fully qualified:\n" + line
continue

try:
numjobs = long(token[2])

except ValueError:
print "Incorrect specification for numjobs:\n" + line
continue

minsize = float(grid.imgsize)/numjobs
grid.node.append(Node(name[0], \

token[0], \
token[1], \
divisors, \
grid.res, \
minsize))

except IOError:
print "Error reading grid configuration file!"
sys.exit(1)

else:
file.close

else:
usage()

log = open("grid.log",’w’)

try:
curses.wrapper(main)

except KeyboardInterrupt:
grid.shutdown()

log.close()

References

R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald. Parallel Program-
ming in OpenMP. Morgan Kaufmann Publishers Inc., 2000. ISBN 1-55860-671-8.

R. L. Cook, L. Carpenter, and E. Catmull. The Reyes image rendering architecture. In M. C.
Stone, editor,Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21, pages 95–102.
ACM Press, July 1987.

I. T. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.International
Journal of Supercomputing Applications, 11(2):115–128, 1997.

25

REFERENCES

I. T. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for distributed system
integration.IEEE Computer, 35(6):37–46, 2002.

M. N. Gamito and S. C. Maddock. Anti-aliasing with stratifiedB-spline filters of arbitrary
degree.Computer Graphics Forum, 25(2):163–172, June 2006.

W. Gentzsch. Sun Grid Engine: Towards creating a compute power grid. InCluster Computing
and the Grid (CCGRID ’01 Proceedings), pages 35–36. IEEE Computer Society, May 2001.

W. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable Parallel Programming with the
Message–Passing Interface. The MIT Press, 2nd edition, 1999. ISBN 0-262-57104-8.

J. C. Hart. Sphere tracing: A geometric method for the antialiased ray tracing of implicit
surfaces.The Visual Computer, 12(9):527–545, 1996. ISSN 0178-2789.

E. Hudo, R. S. Montero, and I. M. Llorente. The GridWay framework for adaptive scheduling
and execution on grids.Scalable Computing: Practice and Experience, 6(3):1–8, 2005.

E. Levin. Grand challenges to computational science.Communications of the ACM, 32(12):
1456–1457, Dec. 1989.

R. Marshall, R. Wilson, and W. Carlson. Procedure models forgenerating three-dimensional
terrain. InComputer Graphics (SIGGRAPH ’80 Proceedings), volume 14, pages 154–162.
ACM Press, July 1980.

J. D. Murray and W. vanRyper.Encyclopedia of Graphics File Formats. O’Reilly & Associates,
Inc., July 1994. ISBN 1-56592-058-9.

F. K. Musgrave. Mojoworld: Building procedural planets. InD. S. Ebert and F. K. Musgrave,
editors,Texturing & Modeling: A Procedural Approach, chapter 20, pages 565–615. Morgan
Kauffman Publishers Inc., 3rd edition, 2003. ISBN 1-55860-848-6.

T. Nishita, T. Sirai, K. Tadamura, and E. Nakamae. Display ofthe earth taking into account
atmospheric scattering. In J. T. Kajiya, editor,Computer Graphics (SIGGRAPH ’93 Pro-
ceedings), volume 27, pages 175–182. ACM Press, Aug. 1993.

D. R. Peachey. Building procedural textures. In D. S. Ebert and F. K. Musgrave, editors,
Texturing & Modeling: A Procedural Approach, chapter 2, pages 7–94. Morgan Kauffman
Publishers Inc., 3rd edition, 2003. ISBN 1-55860-848-6.

D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the condor exper-
ience.Concurrency: Practice and Experience, 17(2-4):323–356, 2005.

T. Whitted. An improved illumination model for shaded display. Communications of the ACM,
23(6):343–349, June 1980.

26

	Introduction
	Photorealistic Rendering of Synthetic Landscapes
	Grid Computing and the White Rose Grid
	Grid Middleware
	The White Rose Grid

	A Grid Application for Rendering Synthetic Landscapes
	Application Deployment
	Grid Resource Location
	Grid Access and Authentication
	Implementing a Polling Strategy
	Implementing a Schedule-Ahead Policy
	Retrieving Computation Results

	Results
	Conclusions
	Further Developments
	Python Source Code
	References

