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Abstract

Terrains for computer graphics have traditionally been modelled with height fields. In the case of procedurally

defined terrains, the height field is generated by a displacement map z = f (x,y). Displacement maps, however,

do not allow the formation of such terrain features as overhangs, arches or caves. The most flexible approach to

model procedural terrain is to consider it as an implicit surface, given by f (x,y,z) = 0. Hypertexturing can be

used to add terrain features to an initially smooth implicit surface. The main drawback of modelling terrains as

hypertextures is that terrain fragments can easily become disconnected.

A topology correction method is presented that is able to remove all topologically disconnected fragments of a

hypertextured terrain, leaving only the main surface of the terrain. The method works in the context of a ray

casting algorithm for implicit surfaces and for any given terrain point indicates whether it is connected or not.

The method is localised because it only needs to examine the terrain inside a neighbourhood of sufficiently small

size around the point that is being tested in order to determine its connectivity state. This localised connectivity

test allows the modelling of procedural terrains over wide areas such as terrains defined over an infinite horizontal

plane. Our method works with terrains that are C2 continuous and uses Morse theory to find the critical points of

the terrain. The method follows the separatrix lines joining the critical points to isolate disconnected fragments.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Picture/Image Generation]: Viewing algorithms

I.3.5 [Computational Geometry and Object Modeling]: Curve, surface, solid, and object representations I.3.7

[Three-Dimensional Graphics and Realism]: Raytracing

1. Introduction

This paper is concerned with the procedural generation of

terrains containing features such as overhangs, caves and

arches. Although triangle meshes or parametric patches can

be used to that effect, they cannot generate terrain over arbit-

rarily large regions. Only a procedural modelling approach

has the ability to generate terrain detail everywhere in space

and at any level of detail. This gives the user complete free-

dom to roam around the terrain at various altitudes.

Hypertexturing is a procedural technique proposed by

Perlin & Hoffert to add three-dimensional small-scale de-

tail to the surface of smooth objects [PH89]. When ap-

plied to implicit surfaces, it can be used to create the type

† Supported by grant SFRH/BD/16249/2004 from the Fundação

para a Ciência e a Tecnologia, Portugal.

of terrain features that are addressed in this paper. In the

original definition of hypertexture, an object is defined in

three-dimensional space with an object density function f0 :

R
3 → [0,1], which associates a density value f0(x) with

every point x in space. A density of 0 means total transpar-

ency while a density of 1 means total opacity. The shape

of the object can then be deformed through the composi-

tion of f0 with one or more density modulation functions

fi : [0,1]×R
3 → [0,1], i = 1, . . .n such that the final object

density f is given by:

f ( f0(x),x) = fn(. . . f2( f1( f0(x),x),x), . . . ,x). (1)

It is possible to apply (1) similarly to terrains defined as

implicit surfaces by considering f0 : R
3 → R such that f0 =

0 represents the initial surface of the terrain and f0 > 0 sig-

nals the interior of this surface. After this change, f ( f0(x),x)
becomes a function that generates a hypertextured terrain.
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The restriction that density modulation functions return opa-

city values in the range [0,1] is no longer necessary and we

can define them as functions fi : R×R
3 →R for i = 1, . . . ,n.

The initial surface of the terrain can be a horizontal plane,

defined with f0(x) = f0(x1,x2,x3) =−x3, or a sphere of unit

radius, defined with f0(x) = 1−‖x‖. The latter case can be

used to model procedurally defined planets [Mus03a]

Displacement mapping is the traditional modelling tech-

nique for procedural terrains [Coo84, Mus03b]. A general-

isation of displacement mapping, that can add overhangs to

procedural terrains, is called flow mapping [Ped94, GM01].

The terrain is immersed in a procedurally defined vector

field and made to follow the streamlines of that field along

some specified distance. This allows parts of the terrain to

be pushed on top of other parts, thus creating overhangs.

The vector field deformation establishes a diffeomorphism

between the modified terrain and the original terrain, mean-

ing that the two terrains are topologically equivalent. If

the original terrain has no holes, for example, the modi-

fied terrain will not have any holes either. The flow mapping

method, therefore, cannot generate arches because they im-

ply a topology change in the terrain.

Figure 1: From top to bottom, comparison between the dis-

placement map, flow map and hypertexturing techniques

when adding detail to a horizontal plane.

Compared to displacement mapping or flow mapping, hy-

pertexturing is a more flexible technique for adding geomet-

ric detail to an otherwise smooth terrain. Hypertextures can

generate both overhangs and arches. Figure 1 illustrates the

difference between the three techniques. Although it is not

demonstrated here, any displacement map can also be ex-

pressed as a particular form of hypertexture. If f0 gener-

ates a sphere of unit radius, for example, any hypertexture

written as f ( f0(x),x/‖x‖) is equivalent to a displacement

mapped sphere. Similarly, a flow mapped surface can also

be expressed as a hypertexture although the formulation be-

comes more involved.

One drawback of the modelling flexibility provided by

hypertextures is that a terrain can be split into several dis-

connected fragments, which leads to physically implausible

results (this is illustrated in Figure 1). This paper presents a

solution to the surface splitting effect of hypertextures that

are defined with C2 continuous functions. Disconnected ter-

rain fragments are detected and removed during rendering.

To achieve this goal we rely on Morse theory to analyse the

topology of the terrain. The terrain connectivity can be com-

pletely determined by studying the critical points of the func-

tion f and the way they are linked to each other. We apply

our technique as part of a ray casting algorithm for hypertex-

tured terrains. Ray-terrain intersection points are queried for

their connectivity state. If an intersection point along a ray

is found to be part of a disconnected fragment it is ignored

and another intersection is searched further along the same

ray. We use a ray casting algorithm for hypertextured impli-

cit surfaces that can find all intersection points between a ray

and the terrain, sorted by distance along the ray [GM07a].

We previously presented a topology correction method,

based on Morse theory, for hypertextured implicit surfaces

[GM07b, GM08]. This method, however, is global in the

sense that all the critical points of the surface need to be

computed as a first step. The critical points are then linked

during a second step to determine their connectivity state.

Only after these two steps have been performed can the ray

casting of the surface begin. This method is impractical for

procedural terrains because the number of critical points can

be quite large. In the case of a terrain defined over an infinite

plane, in particular, the number of critical points is infinite.

Our new method, by contrast, is local and integrates the

finding and linking of critical points into the ray casting pro-

cedure. Critical points are found on demand and only inside

a small neighbourhood centred at the current ray-terrain in-

tersection point. The size of the neighbourhood is progress-

ively enlarged, and more critical points are located, until a

definite answer can be given about the connectivity state of

the intersection point. Critical points are then cached and re-

used for nearby ray intersection points on the terrain.

Section 2 presents an overview of the concepts from

Morse theory that are used by our method, which is ex-

plained in Section 3. Section 4 discusses the results that have

been obtained and finally Section 5 presents conclusions.

2. Morse Theory for Implicit Surfaces

Morse theory studies the behaviour of functions over a man-

ifold [Mil63]. The theory was first introduced to computer

graphics by Shinagawa et al. and was later shown by Hart

to be relevant for the topological study of implicit sur-

faces [SKK91,Har98]. When the theory is applied to implicit

surfaces, the manifold becomes the entire R
3 space and the

function defined over this space is our function f that gener-

ates the terrain. Central to the Morse theory is the notion of

a critical point of f . A critical point xC is such that:

∇ f ( f0(xC),xC) = 0. (2)
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A critical point can be further classified by studying the

eigenvalues of the Hessian matrix of f at xC. The Hessian

matrix H{ f} collects all the second partial derivatives of

the function f :

H{ f} =

[

∂ f 2

∂xi∂x j

]

i, j∈{1,2,3}

. (3)

If f is C2 continuous then we have that ∂ f 2/∂xi∂x j =

∂ f 2/∂x j∂xi and the Hessian is symmetric. The spectral the-

orem then guarantees that all three eigenvalues of H{ f} will

be real. Depending on the signs of the eigenvalues λ1, λ2 and

λ3, sorted in increasing order, a critical point can be classi-

fied as shown in Table 1. The type of a critical point gives an

indication of the topology of the surface around that point.

For example, the maxima occur near the local centroids of

the surface while the 2-saddles occur at points where two

surface fragments are joined together. In this paper, we only

need to be concerned with the maxima and the 2-saddles in

order to characterise the connectivity of the surface.

λ1 λ2 λ3 Type

− − − Maximum

− − + 2-saddle

− + + 1-saddle

+ + + Minimum

Table 1: Distinct types of critical points are determined by

combinations of the signs of the eigenvalues of the Hessian

matrix H{ f}.

The case where one or more of the eigenvalues is zero

leads to a degenerate critical point. Morse theory breaks

down in these circumstances. However, degenerate critical

points are unstable and can easily be removed by introducing

a small perturbation in the parameters defining the function.

A function f that contains no degenerate critical points is

then said to be a Morse function. Morse functions need to

be C2 continuous, considering that both first and second par-

tial derivatives of f are required by the Morse theory. It is

possible to relax this restriction and work with C1 functions,

provided that second derivatives are continuous at least over

the critical points [HDA98]. Working with C0 continuous

functions, however, is not possible and this precludes the use

of Morse theory to perform topology correction on terrains

with ridges. A ridge is a part of the terrain where the gradient

vector is not defined. This makes it impossible to apply the

concept of critical point.

By taking the gradient ∇ f , one obtains a vector flow field

whose structure is intimately related to the topology of the

implicit surface. From equation (2), the critical points of the

surface are also the stagnation points of the flow field. A

streamline of this field is a path that is obtained by following

the local gradient vector, according to the ordinary differen-

tial equation:

dx

dt
= ∇ f ( f0(x),x). (4)

All streamlines terminate at maxima of f . A streamline,

starting at any point x, can be followed by integrating (4)

for t → +∞. A streamline is called a separatrix if it sep-

arates two regions of the flow with different characterist-

ics [HH91]. Separatrices are important as they also give in-

formation about the topology of the surface. All the sep-

aratrices originate and terminate at maxima of f . For every

separatrix there is always a 2-saddle somewhere along its

path. The separatrix is locally tangent to the v3 eigenvector

(associated with the λ3 eigenvalue) at the 2-saddle.
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Figure 2: An implicit surface formed from two blobs. The

“+” signs mark the two maxima and the “×” sign marks

the 2-saddle.

Figure 2 shows a simple case of two implicit blobs con-

nected as a single surface. There are two maxima close to

the centroids of each blob and a 2-saddle at the junction

of the two blobs. The separatrix, in this simple case, is a

straight line segment linking the two maxima and passing

through the 2-saddle. In a more general situation the sep-

aratrix would be curvilinear. Knowing the position xS of the

2-saddle, it is possible to locate the two maxima linked with

this critical point by integrating equation (4) backwards and

forwards from xS, following a direction that is initially co-

incident with the v3 eigenvector of the 2-saddle. It is also

possible to determine the connectivity of the two blobs by

checking the sign of f ( f0(xS),xS). If this sign is positive,

the blobs are connected and the separatrix is known to travel

exclusively through the interior of the surface. If the sign is

negative, the two blobs are disconnected and the separatrix

must exit and enter the surface again at some points.

The concepts from Morse theory can be applied to the

case of terrains expressed as hypertextured implicit surfaces.

To know if a terrain fragment is connected to the ground, one

needs to find a path formed by interior separatrices that links

a maximum of the fragment to another maximum that is part

of the ground terrain. If, on the other hand, there is no link
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x1

x2

xM

Figure 3: A quick connectivity test. The point x1 is connec-

ted. The point x2 has unknown connectivity.

between any of the maxima that are located inside the frag-

ment and the ground then the fragment is deemed to be dis-

connected. The following section explains how this testing

is accomplished on a point-wise basis for every ray-terrain

intersection point of a ray casting algorithm.

3. Localised Connectivity Testing

The connectivity testing algorithm is a boolean function that

receives an arbitrary point x, assumed to be on the surface

of the terrain, and returns a result of true if x is part of the

ground or false if it is part of a disconnected fragment. The

algorithm begins by performing a quick connectivity test, as

illustrated in Figure 3, which consists of tracing a ray from x

towards the interior of the terrain and checking if it results in

any intersection. For a terrain defined over a plane, the ray

follows a vertical direction and, for a terrain defined over

a sphere, it follows the direction towards the centre of the

sphere. If no intersection is found, the point x is known to be

part of the ground and the algorithm returns, otherwise more

expensive connectivity tests need to be performed. In prepar-

ation for those tests, the maximum xM that is closest to x is

found by integrating (4). A maximum is tagged as connected

or disconnected by tracing another interior ray, as shown on

the right side of Figure 3. If there is an intersection, the max-

imum is tentatively classified as disconnected although this

status may change in the course of the algorithm, otherwise

the maximum is connected and the algorithm again returns

early with a connectivity status of true.

The three-dimensional space is decomposed into a parti-

tion of cubic voxels and the search for critical points is per-

formed within each voxel, as explained in Section 3.1. The

lateral size of the voxels is given by the characteristic length

of the hypertexture. This characteristic length is the average

distance between the smallest features of the hypertexture.

The algorithm keeps a list of active voxels and a list of act-

ive maxima. At this point, the list of maxima is initialised to

the single maximum xM and the list of voxels is initialised

to the voxel that contains this maximum. Figure 4 shows the

main loop of the algorithm in pseudo-code.

The algorithm proceeds by removing one voxel at a time

from the list of active voxels. The active voxels are kept sor-

ted by their vertical coordinates, for planar terrains, or by

if x is connected return true;

find maximum xM reached from x;

if xM is connected return true;

initialise list of active maxima LM with xM ;

initialise list of active voxels LV with voxel V (xM);

while LV not empty

remove current voxel V with the lowest altitude;

find all maxima and 2-saddles of V ;

while any 2-saddles of V link with active maxima

remove a 2-saddle linking with an active maximum

find maximum xM at opposite end of link;

if xM 6∈ LM

if xM is connected return true;

add xM to LM ;

add voxel V (xM) to LV if V (xM) 6= V0;

for every voxel Vi 6∈ LV that is a neighbour of V

if terrain fragment continues into Vi

add Vi to LV ;

return false;

Figure 4: The connectivity testing algorithm. The input is an

arbitrary point x on the surface of the terrain.

xM0

xM1

xM2

xM3

Figure 5: Examples of linking. The current voxel is on the

left. Black circles are maxima. White circles are 2-saddles.

their distance to the centre of a spherical terrain, for plan-

ets. The voxel with the lowest altitude is removed at the

start of each iteration and all the critical points contained in

the voxel are located. The algorithm then iterates repeatedly

over the 2-saddles found inside the voxel. When a 2-saddle

links to an active maximum, the maximum at the opposite

end of the link, if new, is added to the list of active maxima

and the 2-saddle is discarded (this is illustrated in Figure 5

for maximum xM1). The voxel that contains the new max-

imum is added to the list of active voxels if it is different

from the current voxel. The algorithm keeps iterating over

the 2-saddles for the current voxel until no more 2-saddles

can be linked. Any remaining 2-saddles of the voxel are then

ignored since they do not provide any further links to active

maxima. If, at any time, a 2-saddle links to a new maximum

that is tagged as connected, the algorithm terminates imme-

diately by classifying all the active maxima as connected and

returning a connectivity status of true.
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One difficulty of the localised topology correction al-

gorithm is that a 2-saddle, linking an active maximum to

a new maximum, may reside in a voxel different from the

one that is currently being examined. This is illustrated in

Figure 5 for the maxima xM2 and xM3. Iterating over the

2-saddles of the current voxel, as previously explained, will

not be able to find these new maxima. If no other 2-saddles

inside any of the active voxels link with xM2 and xM3 those

critical points will not be considered, leading to possible in-

correct results. The problem is solved by checking all the

neighbours of the current voxel that are not already in the

active list. If the terrain fragment that is being examined con-

tinues into any of the non-active neighbouring voxels (see

Figure 6) those voxels are added to the list of active voxels.

This is further explained in Section 3.2.

The search is exhausted when no more active voxels re-

main in the list. All the active maxima are then known to

belong to a disconnected fragment and the algorithm finally

returns with a connectivity status of false.

3.1. Locating Critical Points

Critical points inside the current voxel are located with re-

cursive spatial subdivision of the voxel into progressively

smaller voxels [SH97]. The existence of a critical point in-

side each subdivided voxel is tested with an interval arith-

metic version of the condition (2) for a critical point [Sny92].

If X is the three-dimensional interval vector that spans the

extent of a voxel, the interval condition is:

∇ f ( f0(X),X) ∋ 0. (5)

We are only interested in the critical points that are loc-

ated inside the terrain. The following interval condition sig-

nals subdivided voxels that lie completely outside the terrain,

which can then be removed from the subdivision process:

f ( f0(X),X) < 0. (6)

Subdivision stops once voxels reach a small enough size.

A final three-dimensional Newton root finder then locates

the exact position of the critical points inside the smallest

voxels. More details can be found in the description of the

global topology correction method [GM07b,GM08]. The ei-

genvalues of the Hessian matrix (3) are computed at the crit-

ical points and only the maxima and the 2-saddles are kept

for further processing.

3.2. Checking Neighbouring Voxels

Before completing the processing of the current voxel in the

algorithm of Figure 4, it is necessary to add those neighbour-

ing voxels that share part of the terrain into the list of active

voxels. It is only necessary to consider voxels that share the

same terrain fragment of point x, for which the connectiv-

ity test was invoked. Figure 6 shows an example – the voxel

on the left needs to be added to the list but the voxel on the

right needn’t. One can detect if the terrain fragment contin-

ues into any of the 26 neighbouring voxels by checking for

the existence of maxima of f restricted to the subdomains

consisting of the 2D faces, 1D edges and 0D corner points

of the current voxel.

x
xB

xM

Figure 6: Example of edge neighbour checking. The current

voxel is in the centre. The algorithm is determining the con-

nectivity of point x on the larger fragment.

x

xC

xM

Figure 7: Example of corner neighbour checking. The cur-

rent voxel is in the lower right. The other voxels sharing the

corner point xC are treated as in Figure 6.

In the case of face neighbours, a recursive subdivi-

sion of the boundary face is performed, followed by a

two-dimensional Newton root finder to locate the maxima.

This is analogous to what is described in Section 3.1 for the

three-dimensional case. The Hessian matrix of f restricted

to the face of a voxel has a dimension of 2× 2 and a max-

imum is a critical point where the two eigenvalues λ1 and λ2

of the Hessian are both negative. The situation is similar for

edge neighbours with subdivision and root finding working

over one dimension. Along the edge of a voxel, the Hessian

matrix degenerates into a single partial derivative ∂
2 f /∂x2

i

for i equal to 1, 2 or 3, depending on which coordinate axis

the edge is parallel to. A maximum along the edge is then

characterised by ∂ f /∂xi = 0, which is detected by the New-

ton root finder, and ∂
2 f /∂x2

i < 0. For corner neighbours one

only needs to verify that the corner point xC is inside the

terrain by checking the condition f ( f0(xC),xC) > 0. This

is illustrated in Figure 7. Corner neighbours whose corner

point, relative to the current voxel, is outside the terrain are

not considered.

c© The Eurographics Association 2008.
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For each maximum that is found along one of the borders

between the current voxel and a neighbour, it is necessary to

check if this boundary maximum belongs to the terrain frag-

ment being examined. For that purpose, one tracks a stream-

line starting from the boundary maximum and checks if it

converges towards one of the active maxima. Figure 6 shows

an example where xB is a boundary maximum relative to

the left neighbour voxel and xM is one of the active max-

ima for the terrain fragment. The path of the streamline is

followed by integrating (4). If the streamline terminates at

one of the active maxima of the fragment then the neighbour

voxel also contains the fragment. At this point, no further

maxima along the common border between the two voxels

needs to be considered and the neighbour can be added to

the list of active voxels. If no boundary maximum links with

active maxima then the terrain that is shared between the two

voxels is not part of the terrain fragment being examined for

connectivity. The situation is similar for corner neighbours

(Figure 7) where a streamline is followed from the corner

point xC to see if it terminates at an active maximum.

When going from the current voxel V to a neighbouring

voxel Vi through the boundary maximum xB, it is necessary

to record the triple (V,Vi,xB). If V is revisited during a later

iteration of the algorithm (by following new links that may

have since been discovered), the transition to Vi via xB will

not be performed again if it has been done before. This is to

prevent the possibility of the algorithm becoming locked in

an infinite loop. A transition from V to Vi is still possible if

done through some other boundary maximum different from

xB. In the case of corner neighbours, it is only necessary to

record the pair (V,Vi) since the corner point xC is unique.

The transition from a voxel to one of its corner neighbours,

therefore, can only be done once for each invocation of the

connectivity test algorithm.

3.3. Caching

Caching is essential for the efficiency of the algorithm.

Without caching many of the operations previously de-

scribed would be needlessly repeated for points x on the sur-

face of the terrain that happened to be in close proximity.

There are several levels of cache that can be implemented:

caching of maxima, caching of critical points per voxel and

caching of boundary maxima per face or edge.

Active maxima are sent to the cache whenever their con-

nectivity status becomes known. This happens when the al-

gorithm of Figure 4 returns with a connectivity result of

either true or false. When the algorithm links to a new max-

imum, it always checks first to see if the new maximum is

in the cache and returns early if true. The return value is the

connectivity status of the new maximum in the cache.

All the voxels that have been processed in previous in-

vocations of the algorithm are also kept in another cache

together with their maxima and 2-saddles. This avoids hav-

ing to locate again the critical points for those voxels with

recursive subdivision. The algorithm merely retrieves from

the cache the list of maxima and 2-saddles of a voxel that

was previously computed as part of the connectivity test for

a different point on the terrain. A similar caching mechan-

ism is implemented for the boundary maxima of the faces

and edges of the voxel space decomposition.

Caching is also useful for computer animations where the

camera moves over the terrain. The caches can be kept when

rendering the consecutive frames of an animation. To pre-

vent the caches from growing without bounds, however, it is

necessary to remove those cache elements that have not been

used for some specified number of frames.

4. Results

Figure 8 is a rendering of the surface of a procedural planet

with overhangs and arches, modelled as a hypertextured im-

plicit surface. Although the terrain appears to be defined over

a flat surface, it is actually a sphere seen from a very close

range. The function defining the sphere is f0(x) = 1−‖x‖.

The hypertexture combines two procedural noise functions:

f ( f0(x),x) = f0(x)+2 ·10
−4

g(4 ·10
4
x)s2(10

4
x/‖x‖). (7)

A gradient noise function g(x) provides the basic terrain

pattern and is then modulated by a squared sparse convolu-

tion noise function s(x) to create the appearance of rocky

outcrops over an otherwise flat terrain [Per02, Lew89]. The

modulating noise is expressed in the form s(x/‖x‖) so that

it is made to depend only on the position over the surface of

the planet but not on the height above the same surface. In

order to apply Morse theory to any hypertexturing function,

expressions need to be available to evaluate the function’s

gradient vector and Hessian matrix. Such expressions for the

two noise functions used can be found in [GM08].

The detection of surface connectivity is shown in the

middle image of Figure 8 with the disconnected surface frag-

ments coloured in green. The topology correction is then

shown in the bottom image. It is possible to see that the shad-

ows cast on the ground by disconnected fragments, which

are visible in the lower left corner of the top and middle im-

ages, have disappeared in the bottom image due to those sur-

face fragments having been removed. This effect is achieved

by performing connectivity testing for shadow rays, similar

to what is done for view rays. Disconnected fragments are

ignored for shadow rays and a point is only in shadow if its

shadow ray intersects with the ground terrain. The images

in Figure 8 have a resolution of 1368× 828 and took, from

top to bottom, 354 minutes, 516 minutes and 685 minutes

to render on a Pentium4 2.8GHz. These numbers give an

overhead of 46% for connectivity testing relative to pure ray

casting and a 94% overhead for full topology correction.

Figure 9 shows the same terrain of Figure 8 with the view-

point placed at two successively higher altitudes. The atmo-

sphere has been removed so as to see more of the terrain

c© The Eurographics Association 2008.
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Figure 8: A hypertextured planet featuring terrain over-

hangs and arches. The top image shows the original surface.

The middle image shows disconnected components in green.

The bottom image shows the topological correction.

over long distances. Table 2 gives some statistics relative to

the images of Figures 8 and 9. The statistics shown are the

number of maxima (# Maxima) and 2-saddles (# Saddles)

located, the number of maxima placed in the cache (Cache

Size), the cache hit rate for the maxima (Cache Hits), the

percentage of success of the initial quick connectivity test

(Quick Test), the percentage of time spent in ray tracing

(Tracing), which includes the time spent in tracing shadow

rays and connectivity test rays, the percentage of time spent

in integrating streamlines (Streaming) and the percentage of

time spent in locating critical points with recursive subdivi-

sion (Locating).

Figure 9: The same terrain of Figure 8 without atmosphere

and seen from two higher altitudes.

Table 2 shows that the statistics of the topology correction

algorithm generally degrade as the altitude of the viewpoint

increases and a larger area of the terrain becomes visible.

The number of critical points located by the algorithm in-

creases accordingly. The number of cached maxima is gen-

erally smaller than the number of located maxima because,

when locating critical points inside a voxel, some maxima

belong to terrain fragments that are never tested. These ter-

rain fragments are missed by the ray caster due to the fi-

nite sampling density. The performance of the cache also de-

creases as more disconnected fragments need to be removed.

The performance of the quick connectivity test, used at the

beginning of the algorithm, is the only statistic that improves

as there is more flat terrain visible on the lower part of the

images with increasing altitude.

Even with the high hit rates for the cache, shown in

Table 2, the location of critical points can easily become the

bottleneck of the topology correction algorithm. As the num-

ber of critical points increases, the time spent in this opera-

tion becomes larger than the time spent in either tracing rays

or following streamlines. Similarly to the other statistics, this

imbalance becomes more pronounced as a larger area of the

terrain becomes visible.

5. Conclusions

The topology correction method that has been presented de-

tects and removes disconnected terrain fragments, turning

any C2 continuous hypertextured implicit surface into a to-

pologically correct terrain. The method uses a localised con-

nectivity test that is meant to be used in conjunction with a

c© The Eurographics Association 2008.
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# Maxima # Saddles Cache Size Cache Hits Quick Test Tracing Streaming Locating

Fig. 8 5901 5742 5423 98.67% 58.24% 38.12% 25.03% 36.85%

Fig. 9a) 20534 21242 18650 95.38% 59.30% 20.57% 14.02% 65.42%

Fig. 9b) 31607 33440 28611 90.57% 68.34% 14.57% 9.12% 76.31%

Table 2: Several statistics for the images of Figures 8 and 9. Refer to the text for the meaning of these statistics.

ray casting algorithm for rendering the terrain. The localised

nature of the connectivity test only requires analysing the

terrain inside a neighbourhood around each surface point.

Due to the use of Morse theory, the method is robust

and can remove all disconnected fragments that are inter-

sected by the ray casting algorithm, even when these frag-

ments are very small or very close to the ground. The loc-

alised topology correction method has a higher implementa-

tion complexity than the global method that was previously

developed. This higher complexity allows the handling of

virtually infinite terrains, something that the global topology

correction method could not do.

Finally we should note that although the method performs

a topological analysis of the terrain features, it does not per-

form a stability analysis of those same features. A method

that can analyse both issues of topology and stability under

the action of gravity is a possible area of future research.
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