
Accurate Multi-Dimensional Poisson-Disk Sampling

MANUEL N. GAMITO
Lightwork Design Ltd
and
STEVE C. MADDOCK
The University of Sheffield

We present an accurate and efficient method to generate samples based on
a Poisson-disk distribution. This type of distribution, because of its blue
noise spectral properties, is useful for image sampling. It is also useful for
multi-dimensional Monte Carlo integration and as part of a procedural ob-
ject placement function. Our method extends trivially from 2D to 3D or
to any higher dimensional space. We demonstrate results for up to four
dimensions, which are likely to be the most useful for Computer Graph-
ics applications. The method is accurate because it generates distributions
with the same statistical properties of those generated with the brute force
dart-throwing algorithm, the archetype against which all other Poisson-disk
sampling methods are compared. The method is efficient because it employs
a spatial subdivision data structure that signals the regions of space where
the insertion of new samples is allowed. The method has O(N logN) time
and space complexity relative to the total number of samples. The method
generates maximal distributions in which no further samples can be inserted
at the completion of the algorithm. The method is only limited in the num-
ber of samples it can generate and the number of dimensions over which it
can work by the available physical memory.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Antialiasing; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing, and tex-
ture; I.4.1 [Image Processing and Computer Vision]: Digitization and Im-
age Capture—Sampling

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Accurate Poisson-disk sampling, dart
throwing, multi-dimensional sampling, maximal sampling, spatial subdivi-
sion

The first author was supported by grant SFRH/BD/16249/2004 from the
Fundação para a Ciência e a Tecnologia, Portugal.
Author’s addresses: Rutledge House, 78 Clarkehouse Road, Sheffield
S10 2LJ, UK, Department of Computer Science, The University of
Sheffield, Regent Court, 211 Portobello, Sheffield S1 4DP, UK; email:
manuel.gamito@lightworkdesign.com, s.maddock@dcs.shef.ac.uk.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/09-ARTXXX $10.00
DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

ACM Reference Format:

Gamito, M. G., and Maddock, S. C. YYYY. Accurate Multi-Dimensional
Poisson-Disk Sampling. ACM Trans. Graph. VV, N, Article XXX (Month
YYYY), 20 pages.
DOI = 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

1. INTRODUCTION

Poisson-disk sampling is a process that distributes uniform ran-
dom samples on a domain of n-dimensional space based on a min-
imum distance criterium between samples. We propose an efficient
Poisson-disk sampling method that generates samples on the do-
main D = [0, 1]n, consisting of a unit hypercube in n-dimensional
space. The outcome of the method is a set X = {xi ∈ D; i =
1, 2, · · · , N} of N samples for which the sampling conditions can
be expressed as follows:

∀xi ∈ X, ∀S ⊆ D : P (xi ∈ S) =

∫
S

dx, (1a)

∀xi,xj ∈ X : ‖xi − xj‖ � 2r, (1b)

where the parameter r is called the distribution radius.
Condition (1a) states that a uniformly distributed random sample

xi of X has a probability of falling inside a subset S of D that is
equal to the hypervolume of S. For example, if S ⊂ D is one half
the size of D then the probability of a new sample being placed in-
side S is exactly one half. Condition (1a) already takes into account
the fact that

∫
D
dx = 1 for the unit hypercube, irrespective of the

dimension n of the space. Condition (1b) enforces the minimum
distance constraint between any pair of samples.

A Poisson sampling process is one that enforces condition (1a)
alone. The reason for the name is because the number of samples
that falls inside any subset S ⊆ D obeys a discrete Poisson dis-
tribution [Snyder 1991]. Poisson sampling, although simple to im-
plement, is not favoured in Computer Graphics because it leads to
sample distributions where the samples are noticeably grouped into
clusters of different sizes and densities. This “clumpiness” of Pois-
son distributions is a consequence of the samples being generated
independently so that any two samples can be arbitrarily close to
each other. It is better to have a sampling process that distributes
random samples in an even manner across D so that no clustering
is perceived. Condition (1b) helps to combat clustering by prevent-
ing samples from being closer than some chosen value 2r.

The term Poisson-disk stems from the observation that samples
in two dimensions are located at the centre of disks of radius
r so that no overlapping of disks occurs within the distribu-
tion. This is exemplified in Figure 1, which shows three dense
Poisson-disk distributions for decreasing values of the r parameter.
In three dimensions, the same sampling process can be referred

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

2 • M. Gamito and S. Maddock

Fig. 1. Two-dimensional Poisson-disk sampling on the unit square. From left to right, the distribution radii are 0.025, 0.015 and 0.0075. The number of
samples is 294, 798 and 3 148, respectively. The time taken to generate the samples with our algorithm was 0.003s, 0.009s and 0.041s, respectively.

Fig. 2. Three-dimensional Poisson-disk sampling on the unit cube. From left to right, the distribution radii are 0.025, 0.015 and 0.0075. The number of
samples is 6 457, 28 807 and 223 518, respectively. The time taken to generate the samples with our algorithm was 1.870s, 9.966s and 86.391s, respectively.

to as Poisson-sphere because samples now occupy the centre of
non-overlapping spheres of radius r, as Figure 2 exemplifies. For
historical reasons, we keep the name Poisson-disk irrespective of
the dimensionality of the space.

There is some confusion in the Computer Graphics literature
regarding the parameter r of a Poisson-disk distribution. Some
authors use r to label the minimum allowable distance between
samples. Other authors use it to label the distribution radius, i.e.
the radius of the Poisson disks or spheres. We employ the latter
definition with the understanding that it is equal to half the value of
the former.

Poisson-disk sampling processes were first studied by the
Swedish statistician Bertil Matérn to describe the distribution of
trees in a forest [Matérn 1960; Ripley 1977]. He devised two
processes through which a distribution of Poisson-disk samples
could be generated. In particular, the Poisson-disk process that
we are interested in studying, known in Computer Graphics as
dart-throwing, is equivalent to the Matérn second process. In this
process, samples have a uniform random position and a uniform
random birth time. As time progresses, samples are accepted or re-
jected based on their distance to the samples that have already been
born. In the fields of Chemistry, Statistical Physics and the phys-
ics of granular materials, the Poisson-disk process is also known as

the Hard-Core process and is one instance of Random Sequential
Adsorption and of Random Close Packing [Baddeley and Møller
1989; Dickman et al. 1991; Jaeger and Nagel 1992].

Although conditions (1a) and (1b) are enough to specify a valid
Poisson-disk distribution of samples, we are interested in an addi-
tional condition that characterises a distribution as being maximal.
A maximal Poisson-disk distribution is one where it is not pos-
sible to insert any further samples without violating the minimum
distance constraint. Specifically, a Poisson-disk distribution is max-
imal when it verifies the condition:

∀x ∈ D, ∃xi ∈ X : ‖x− xi‖ < 2r. (2)

Condition (2) implies that there are no more available points in
the domain over which to place new samples. This is because every
domain point x is already at a distance smaller than 2r from at least
one sample in the distribution. Placing a new sample at x is not pos-
sible as it would violate condition (1b). For this reason, a maximal
distribution can also be said to be jammed1. Maximal Poisson-disk

1We classify a distribution as jammed based on the ability to insert more
samples. In other fields, a different definition is used – a distribution of N
points is jammed when the disks or spheres around those points become
inter-locked and cannot move.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Accurate Multi-Dimensional Poisson-Disk Sampling • 3

distributions are desirable because they maximise the number of
samples generated while, at the same time, eliminating any space
that remains unoccupied. Valid Poisson-disk distributions that are
not maximal may potentially have large gaps inside of them devoid
of samples. This makes sparse Poisson-disk distributions compar-
able to the simpler Poisson distributions in that there may be a no-
ticeable clustering of samples.

We present an efficient method to generate large numbers of
samples in a n-dimensional space as the outcome of a maximal
Poisson-disk sampling process. Our method uses a subdivision tree
in n dimensions to help in the placement of samples and gener-
ates accurate Poisson-disk distributions. We begin in Section 2 by
discussing the applications of Poisson-disk sampling in Computer
Graphics. Section 3 then presents current methods for Poisson-disk
sample generation. Our method is explained in Section 4. A com-
parison of our method with previous methods is done in Section 5,
where results are also presented and discussed. Section 6 concludes
the paper and proposes future developments. Appendix A gives a
proof of the correctness of our proposed algorithm for the genera-
tion of Poisson-disk samples with the desired statistics. Appendix B
details the routine for testing the intersection between a sample and
a node in the tree, represented by a hypercube.

2. POISSON-DISK SAMPLING FOR COMPUTER
GRAPHICS

Poisson-disk sampling was introduced to Computer Graphics by
Dippé and Wold [1985], who proposed it as a sampling technique
for image anti-aliasing. The reason why Poisson-disk sampling is
ideal for anti-aliasing is because of its blue noise spectral prop-
erties. A blue noise spectrum is characterised by the absence of
significant power content in the low frequencies with the exception
of a strong DC spike at the origin. Based on results by Leneman
[1966], it is possible to derive an analytic expression for the mean
power spectrum of a one-dimensional Poisson-disk process. Fig-
ure 3 shows this power spectrum. The frequency response of a typ-
ical lowpass anti-aliasing filter is also shown in Figure 3. The gap
in the Poisson-disk spectrum for low frequencies (with a width that
varies with the inverse of the radius r) allows the anti-aliasing filter
to recover the original signal whose spectrum is centred around the
DC spike. Copies of the spectrum from the original signal are also
spread along the high frequencies by the Poisson-disk process in
an uncorrelated manner. The high frequency content is attenuated
by the frequency response curve of the filter and shows up as a low
power high frequency noise. This type of noise is much less ob-
jectionable to the human visual system than the coherent aliasing
artifacts that would have resulted if a deterministic sampling pro-
cess had been used instead. Research done by Yellot [1983] on the
distribution of photoreceptor cells in the retina of rhesus monkeys
shows that it closely resembles a Poisson-disk distribution for the
areas outside the fovea. Such a result helps to explain why visual
perception is so forgiving of low power noise artifacts and, there-
fore, why Poisson-disk sampling is useful for image sampling and
anti-aliasing. The simpler Poisson sampling, in contrast, presents
a flat spectrum across all frequencies and is not recommended for
image sampling since it cannot separate the low frequencies of the
signal from the high frequencies of the aliases.

Cook [1986] suggested that Poisson-disk sampling could be used
as part of a distributed ray tracing algorithm, not only to perform
anti-aliasing but also to generate such effects as motion blur, depth
of field, smooth shadows, glossy reflection and transparency. Un-
fortunately, methods for generating Poisson-disk distributions were
inefficient at the time and Cook relied instead on jittered sampling

0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

Spatial Frequency (1/px)

P
ow

er
 (

dB
)

Fig. 3. The average power spectrum of a one-dimensional Poisson-disk
process corresponds to a blue noise spectrum. The dotted line shows the
frequency response of a typical low pass filter.

as a cheaper alternative. Jittered sampling places samples at the
nodes of a uniform grid and perturbs their position by adding a
small random displacement. The spectral properties of a jittered
sampling distribution are not as good as those for Poisson-disk
sampling, with a low frequency gap that is smaller and less well
resolved. Recently, Hachisuka et al. [2008] extended the results of
Cook by sampling directly in the multi-dimensional space of the
rendering equation, instead of sampling in image space. The au-
thors were able to shown that adaptively sampling in the parameter
space of the rendering equation leads to a reduction in noise and
also a reduction in the number of required samples.

The applications of Poisson-disk sampling to ray tracing are in-
stances of multi-dimensional Monte Carlo integration. Monte Carlo
integration is also ubiquitous in global illumination where it is often
used to accumulate the contribution of incoming radiance over the
hemisphere above a surface point [Dutré et al. 2006]. The Monte
Carlo integration technique computes a numerical approximation
of an integral by accumulating the contributions of random samples
taken from the integrand function [Glassner 1995]. For greater ac-
curacy, the samples are distributed according to a probability dens-
ity function that is proportional to the integrand function, in a pro-
cess known as importance sampling, so that areas where the integ-
rand takes on larger values are sampled at a higher density. Import-
ance sampling can be achieved by first generating a Poisson-disk
distribution in a canonical hypercube [0, 1]n, for a n-dimensional
integral, and using the cumulative probability density function to
warp this hypercube into the domain of integration [Shirley 1992].
Ostromoukhov et al. [2004] and Kopf et al. [2006], however, have
shown that direct generation of a non-uniform distribution leads
to visually better results when compared with the domain warp-
ing method. A non-uniform Poisson-disk sampling can be form-
ally defined to obey conditions (1a) and (1b) with a variable ra-
dius so that a sample placed at x ∈ D should have no samples
closer than 2r(x) [Bartlett 1974]. Ostromoukhov et al. demon-
strated the application of non-uniform distributions to perform im-
portance sampling of environment maps while Kopf et al. used
them to perform image dithering in real time.

Graphical objects can be distributed in space based on a
Poisson-disk sampling. This has been used to distribute ink strokes
for non-photorealistic rendering [Deussen et al. 2000; Secord et al.
2002] and it has also been used to create plant ecosystems by in-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

4 • M. Gamito and S. Maddock

Fig. 4. A procedural object distribution function used to generate a two-dimensional texture (left), a solid texture (middle) and both a solid texture and a
hypertexture (right).

stancing multiple copies of a single plant object [Deussen et al.
1998; Cohen et al. 2003]. It is often important that copies of
the original object do not intersect. If the object can be bounded
by a disk or a sphere of radius r then a Poisson-disk distribu-
tion with the same radius will not create interferences between
the copies. Lagae and Dutré have proposed a procedural object
placement function by creating an infinite non-periodic distri-
bution of Poisson-disk samples on the plane [Lagae and Dutré
2005; 2006a]. The same authors later extended their procedural
object placement function to three dimensions [Lagae and Dutré
2006b]. Figure 4 shows examples of procedural placement of a ra-
dially symmetric primitive. More complex examples can include
pseudo-random rotations and scalings that are applied when in-
stancing the primitive. Sample placement with Poisson-disk prop-
erties over two-dimensional manifolds is another possibility [Fu
and Zhou 2008; Lehtinen et al. 2008; Li et al. 2008; Cline et al.
2009]. A generalisation of Poisson-disk sampling that uses ellipt-
ical samples instead of disks has been introduced to Computer
Graphics by Feng et al. [2008]. Poisson-disk sampling can also
be used, instead of Poisson sampling, when generating procedural
noise functions such as sparse convolution noise or cellular texture
noise, leading to a better distribution of the features in these noise
functions [Lewis 1989; Worley 1996].

3. METHODS FOR POISSON-DISK SAMPLING

We present here an introduction to the methods that have been de-
veloped to generate Poisson-disk distributions. The reader is re-
ferred to Lagae and Dutré [2008] for a more in-depth survey of
these methods. We make a distinction between accurate meth-
ods, approximate methods and tile-based methods for Poisson-disk
sampling. Accurate methods obey conditions (1a) and (1b), gener-
ating correct Poisson-disk distributions. Condition (1b), however, is
generally difficult to enforce and this has led to the development of
approximate methods. These methods generate distributions that,
although not having true Poisson-disk properties, attempt to reach
a blue noise power spectrum with variable degrees of success.
Tile-based methods can generate distributions in real time by draw-
ing from a finite set of tiles containing carefully selected samples.
In most cases, tile-based methods use either accurate or approx-
imate sampling methods as part of a pre-computation stage that
populates their initial tile set with samples. Special rules are used
that prevent the tilings from becoming periodic. Nevertheless, these
methods generate a weak form of quasi-periodic tilings because
each tile is copied repeatedly across space. If the sampling space is

displaced, several copies of the tiles overlap. This quasi-periodicity
becomes apparent when periodograms of the distributions are com-
puted. The periodograms show many spikes due to the copies of a
same tile overlapping exactly in frequency space.

Tile-based Poisson-disk sampling methods are the fastest be-
cause all samples have already been generated at run time. The
methods simply select, for any given point in space, which tile
should samples be drawn from. Approximate methods have inter-
mediate complexity. They gain speed, relative to accurate methods,
by relaxing one or both of the Poisson-disk sampling conditions.
Accurate methods are the slowest since they are required to en-
force exactly both conditions for Poisson-disk sampling. Despite
the existence of many fast approximate and tile-based sampling al-
gorithms, the need for algorithms that can generate Poisson-disk
distributions accurately is still justified. The need to enforce the
uniform probability distribution constraint (condition (1a)) is im-
portant for image filtering operations and, more generally, for
Monte Carlo integration. The failure to verify this constraint has
the potential of introducing bias into the Monte Carlo integral. The
need to enforce the minimum distance constraint (condition (1b))
is important for procedural object placement methods. Failure to
verify this constraint could cause some of the object instances to
intersect.

3.1 Accurate Methods

Dart-throwing was the first method developed in Computer Graph-
ics for Poisson-disk sampling [Dippé and Wold 1985]. Random
samples are continually tested and only those that satisfy the min-
imum distance constraint relative to samples already in the distri-
bution are accepted. The main source of inefficiency of the method
is a rejection sampling mechanism – a large number of samples is
attempted but only a small percentage of them is inserted into the
distribution. The algorithm cannot guarantee that a maximal distri-
bution will be generated – as the allowable area for new insertions
gradually shrinks, the probability that attempted samples will fall
inside this area becomes progressively smaller. This also means that
the algorithm does not have a guaranteed termination. If too many
samples are requested, the algorithm can effectively become locked
as it tries to generate samples that fall into arbitrarily small areas of
space.

For many years, dart-throwing was the only available method for
accurate Poisson-disk sampling. Its inefficiency led to the develop-
ment of approximate sampling algorithms. The situation changed
recently with the development of efficient dart-throwing methods.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Accurate Multi-Dimensional Poisson-Disk Sampling • 5

These new methods take advantage of a spatial data structure to
guide in the placement of samples. The data structure encodes the
regions of space where the insertion of samples is allowed. This
avoids to a great extent the expensive procedure of having to blindly
test new samples by trial and error. Every time a sample is inser-
ted in the distribution, the spatial data structure is updated to re-
move the portion of space occupied by the new sample. The spa-
tially guided methods, used in Computer Graphics, were developed
specifically for two-dimensional sample distributions and do not
extend well to higher dimensions.

The first spatially guided method was proposed by Jones [2006].
The method uses a Voronoi tessellation as the spatial data structure
with the samples at the centroids of the Voronoi cells. The Voronoi
cell of a sample is randomly selected and a new sample is inserted
in the available area of the cell that falls outside a circle of radius 2r
with the original sample at the centre. A weighted binary tree helps
in the selection of samples, with the Voronoi cells as the leaves and
with the available areas of the Voronoi cells as the weights. This
ensures that sample placement is done with a uniform probability
distribution – the tree is randomly traversed top to bottom, with
the area weights giving the probability of selecting the left or right
child of each tree node. The placement of a new sample requires the
computation of the intersection between the Voronoi cell (a poly-
gon) and the circle of radius 2r, which can be reduced to four fun-
damental cases. A rejection sampling method cannot be avoided
but the probability of a new sample being accepted is much larger
than the probability of it being rejected. Although Voronoi tessela-
tions can be extended to three dimensions, placing a new sample
in the available area of a three-dimensional Voronoi cell requires
the computation of the intersection between the cell (a polytope)
and a sphere of radius 2r. This is a more complex procedure than
its two-dimensional equivalent and cannot be reduced to a small
number of simple cases.

Another spatially guided method was proposed by Dunbar and
Humphreys [2006]. It uses a spatial data structure that the authors
have termed “scalloped sector”, which is bounded by two arcs of
circles of different radii and centred at distinct points. The avail-
able area around each sample can be represented as the disjoint
union of several scalloped sectors. Similar to the method by Jones
[2006], a weighted binary tree is used to select a scalloped sector
for the placement of a new sample, resulting in a spatial uniform
probability distribution. A rejection sampling strategy is avoided as
sampling inside a scalloped sector is always guaranteed to gener-
ate a valid Poisson-disk sample. It is not known how the scalloped
sector data structure can be extended to three dimensions.

Yet another spatially guided method in two dimensions was pro-
posed by White et al. [2007]. Similar to our proposed method, a
quadtree is used to signal the allowable sample insertion space.
An auxiliary uniform grid stores neighbouring information about
samples and is used to check for minimum distance conflicts for
every new sample. The cells in the grid have lateral size 2r and
all the possibly conflicting samples of a newly inserted sample are
found by looking in the grid cell where the new sample falls plus
the eight surrounding cells. This method can easily be generalised
to higher dimensions but it does not scale well due to the need for a
uniform grid. The memory size of the grid is O(r−n) for n dimen-
sions and this can become intractable for small r. Our proposed
method does not require an auxiliary grid and scales better with
increasing n or decreasing r since a single subdivision tree data
structure is used.

Accurate Poisson-disk distributions can also be generated with
a molecular dynamics simulation method [Lubachevsky and
Stillinger 1990]. A distribution of molecules in a gas is initialised

with random positions and velocities and the algorithm tracks the
elastic collisions that occur between molecules. At the same time,
the radius of the molecules is gradually increased, which also in-
creases the frequency of collisions. The algorithm must stop before
the rate of collisions begins to diverge, which occurs when a small
increase in molecule radius leads to a very large increase in the
number of collisions. This method can generate distributions with
a tight packing of samples and, given enough time, can even gen-
erate crystalline structures in two dimensions. The minimum dis-
tance constraint is always verified relative to the molecule radius
at the termination of the algorithm. Because the algorithm models
a gas in a state of equilibrium, all points in space have an equal
probability density for molecule placement. Molecular dynamics
can generate Poisson-disk distributions provided the algorithm is
stopped before the molecules progress significantly towards a de-
terministic hexagonal packing that corresponds to the tightest pos-
sible distribution (refer to the concept of relative radius, explained
in Section 4.6). The generation of maximal distributions is not guar-
anteed because the number of molecules is kept constant and, as
they move, empty spaces may appear inside the domain. The mo-
lecular dynamics method has been extended to three and higher di-
mensions and also to ellipsoidal shapes [Lubachevsky et al. 1991;
Donev et al. 2005; Skoge et al. 2006]. The formation of crystal-
line structures has only been verified in the two-dimensional case,
however.

3.2 Approximate Methods

In the category of approximate sampling methods, there is the
already mentioned jittered sampling [Cook 1986]. A similar jit-
tering technique that perturbs samples away from the nodes of
a hexagonal grid is also possible [Glassner 1995]. Error diffu-
sion algorithms that were originally developed for image dither-
ing can be applied to generate approximate Poisson-disk distribu-
tions [Mitchell 1987; Ulichney 1988].

Two popular algorithms were devised to overcome the defi-
ciencies of the original dart-throwing algorithm. Glassner [1995]
calls them the “best candidate algorithm”, by Mitchell [1991],
and the “decreasing radius algorithm”, by McCool and Fiume
[1992]. These algorithms have the interesting property of gen-
erating hierarchical streams of samples. If the sample sequence
{x1, . . . ,xi} is approximately Poisson-disk with radius ri, the lar-
ger sequence {x1, . . . ,xi+1} is also approximately Poisson-disk
with radius ri+1 < ri, up to a maximum sequence {x1, . . . ,xN}.
These hierarchical streams are attractive because they allow several
Poisson-disk distributions with different radii to be generated from
a single run of the algorithm.

The best candidate algorithm works by trying mi samples when
placing the i-th new sample, where m is a supplied parameter. From
all mi samples attempted, the one that is farther away from all pre-
vious i− 1 samples is chosen. The algorithm does its best to place
samples well away from each other but it does not enforce any par-
ticular distribution radius r. There is the probability, however small,
that a sequence of unfavourable sampling outcomes will make the
best candidate sample be arbitrarily close to some other previous
sample.

The decreasing radius algorithm, as the name implies, slowly de-
creases the radius ri of the distribution at each iteration i until the
final desired radius r is reached or a desired number of samples is
generated. For each intermediate radius, it makes a finite number of
attempts to place new samples, proportional to i, before proceed-
ing to the next smaller radius. What makes the decreasing radius
algorithm an approximate Poisson-disk sampling method is that it

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

6 • M. Gamito and S. Maddock

uses radii that are larger than r for most of the iterations. This vi-
olates condition (1a) because, for iteration i, the probability of pla-
cing a new sample at a distance of between 2r and 2ri relative to a
previous sample is zero. In fact, this probability should be propor-
tional to the area of the annulus around the previous sample with
inner and outer radii of 2r and 2ri, respectively, not considering
the presence of other nearby samples that may reduce this allow-
able area.

Dunbar and Humphreys [2006] give a fast O(N) method that
results from collapsing their scalloped sector data structure into a
single arc of a circle with radius 2r. With this transformation, every
new sample is always placed at a distance of exactly 2r from some
other previous sample. This signifies that condition (1a) cannot be
enforced since samples are not free to be placed anywhere in space
with equal probability.

Bridson [2007] proposed a multi-dimensional sampling method
that subdivides the domain into a uniform grid for easier neigh-
bour sample checking, similar to White et al. [2007]. An active list
of samples is kept. At each iteration, a sample from the active list
is randomly chosen and several dart-throwing attempts try to in-
sert a new sample inside a hypersphere of radius 4r centred on the
chosen sample. The new sample is added to the grid and to the act-
ive list while the previously chosen sample is removed from the list
if dart-throwing did not succeed after some number k of attempts.
The method does not distribute samples uniformly because every
new sample is always placed inside a hyperspherical neighbour-
hood of some previous sample.

Wei [2008] proposed a parallel sampling method that can run
on a GPU. The method uses a multi-resolution strategy where uni-
form subdivisions of the domain with increasing resolution are con-
sidered one at a time. The cells in each resolution level are then
arranged into distinct cell groups in such a way that the inser-
tion of new samples inside each group cell can proceed independ-
ently from the insertion of samples in the other cells of the same
group. This allows sample insertion to be parallelised for each of
the groups of any resolution level. Sample insertion is done by mak-
ing k dart-throwing attempts inside every group cell. Although the
sampling inside each group is random, the sequence of groups vis-
ited for every resolution level follows a pre-determined order. This
violates the uniform sampling condition because samples inside a
group cannot be placed until all previous groups at the same resol-
ution level have been sampled. A more detailed analysis about this
parallel sampling method can be found in Appendix A.

3.3 Tile-based Methods

The first tile-based Poisson-disk sampling methods used Wang tiles
and were proposed by Hiller et al. [2001] and Cohen et al. [2003].
Wang tiles have colours assigned to their edges in specific ways. A
Wang tile can only be placed next to another if they share the same
colour along the common edge. This allows non-periodic tilings of
the plane to be created. The generation of Poisson-disk samples in-
side each tile must respect the minimum distance constraint across
the edges of the tile relative to all other tiles that share the same
edge colour. The authors achieve this by using several steps of
Voronoi relaxation [Lloyd 1982].

In the initial Wang tile methods, the tiling had to be computed
in advance inside some finite region of space. Lagae and Dutré
[2005] introduced procedural tiling rules that allow a Wang tile to
be assigned on the fly in a consistent way to any arbitrary point
in space. This leads to the creation of infinite non-periodic tilings
of Poisson-disk samples. Lagae and Dutré [2006a] later introduced
procedural tiling rules for corner tiles. Corner tiles have colours

associated to their corners instead of their edges. They can en-
force the minimum distance constraint across tiles that share a
common corner. The same authors also extended corner tiles to
three-dimensions, creating corner cubes [Lagae and Dutré 2006b].

Methods for non-uniform Poisson-disk sampling have been pro-
posed based on tile distributions. Kopf et al. [2006] apply subdi-
vision rules to Wang tiles in order to create sample distributions
with varying density across space. Similar subdivision rules can
be applied to Penrose tiles or polyominoes [Ostromoukhov et al.
2004; Ostromoukhov 2007b]. Each Penrose tile or polyomino has
a single sample inside, which is subject to a Voronoi relaxation to-
gether with the samples from other tiles or polyominoes to reduce
sampling artifacts. The parallel sampling method of Wei [2008]
can also accommodate non-uniform distributions with the help of a
subdivision tree that refines regions of the domain more than oth-
ers. The generation of non-uniform low discrepancy sequences of
samples can be done with dodecagonal non-periodic tilings of the
plane [Ostromoukhov 2007a]. Low discrepancy sequences are dif-
ferent from Poisson-disk distributions in that they are deterministic.
They can, however, fill the plane without creating noticeable arti-
facts.

4. POISSON-DISK SAMPLING BY SUBDIVISION
REFINEMENT

Our method for Poisson-disk sampling performs a subdivision re-
finement of the allowable space for the insertion of new samples. It
can be used in all applications of Poisson-disk sampling that were
discussed in Section 2 with the exception of the direct generation of
non-uniform distributions. In the case of the tile-based methods of
Section 3.3, it can be used to pre-generate the distributions for the
tiles. The method only requires the specification of the distribution
radius 0 < r � √

n/2 as a starting parameter. Given that samples
are generated inside the unit hypercube [0, 1]n, values r >

√
n/2

can be supplied to the algorithm but have no practical interest since
they are certain to lead to distributions with only one sample. Un-
like some of the previous methods, we do not enforce a maximum
number of samples to be generated. Samples keep being inserted
until there is no more allowable space for new ones and the dis-
tribution becomes jammed. There is, however, the option of spe-
cifying a desired number N of samples. The algorithm will attempt
to reach a number of samples as close as possible to N while still
generating a maximal distribution. As with all other Poisson-disk
sampling methods, it is possible to perform a Voronoi relaxation at
the completion of the algorithm to further smooth the distribution
of samples.

In what follows, we will often explain the algorithm in its
two-dimensional version for increased clarity of presentation. The
extension to three or higher dimensions is straightforward. The
samples, in particular, will be represented as disks of radius 2r in-
stead of the r half-disks that were shown in Figure 1. The larger
disks, shown in Figure 5(a), are now intersecting but a property
still holds that no disk contains any sample other than the sample at
its centre. The same disks are gray shaded in Figure 5(b). The white
areas in this image represent the empty space where new samples
can be inserted. Once the unit square becomes uniformly coloured
in gray, the distribution is jammed.

A spatial subdivision data structure is used to mark the allowable
insertion space. In two dimensions, this data structure is a quadtree
and in three dimensions it is an octree [Samet 1990]. The same type
of data structure can be easily extended to higher dimensions. The
main algorithm is shown as pseudo-code in Figure 6(a). The routine
Generate and Update, invoked by the main algorithm, will be fur-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Accurate Multi-Dimensional Poisson-Disk Sampling • 7

(a) Disk Perimeters

(b) Disk Areas

Fig. 5. The top image shows an incomplete Poisson-disk distribution visu-
alised with disks of radius 2r. The bottom image shows the same distribu-
tion with gray shaded disks. New samples can be inserted in the white areas.

ther explained in the following sections. The algorithm is initialised
by placing a root node with dimensions [0, 1]× [0, 1] in the tree at
subdivision level 0. For purposes of sample generation, leaf nodes
in the tree can be classified as candidates or as potential candid-
ates. A leaf node is a candidate if it is not intersected by the disks
of any previously inserted samples, otherwise it is a potential can-
didate. Figure 6(b) shows an example of a distribution where the
node on the top right is a candidate node. Nodes that have already
been pruned from the quadtree are shaded in gray – these are nodes
that are completely inside the disk of one of the samples and which
can be discarded. All the remaining leaf nodes in the tree are po-
tential candidates.

At each iteration, a leaf node is selected by randomly travers-
ing the tree in top to bottom fashion. Similar to the methods by
Jones [2006] and Dunbar and Humphreys [2006], the area beneath
each node in the tree is used to derive the probabilities of choosing

initialise tree with hypercube [0, 1]n;

while tree not empty

Generate random sample inside tree;

if sample is valid

Update tree with sample;
output sample;

(a) Pseudo-code

s
2

(b) Example

Fig. 6. The main algorithm on top for Poisson-disk sample generation.
The diagram at the bottom shows an example. The gray shaded nodes have
already been pruned from the tree. The top right node is a candidate node.
All the other nodes that intersect with disks are potential candidates.

one of the child nodes of any given node. This strategy enforces
the constraint that samples must be chosen with a uniform spatial
probability density. Once a leaf node has been selected, a random
sample is generated inside of it. The validity of the sample is then
checked by finding its distance to neighbouring samples. Every leaf
node in the quadtree keeps a list of the samples whose disks inter-
sect with it. If the sample list for a leaf node is empty then it is a
candidate node, otherwise it is a potential candidate node. To find
if a newly generated sample is valid, therefore, it is only necessary
to find its distance to the samples that are kept in the list of the
selected leaf node.

If the newly generated sample is found to be valid then it is
accepted into the distribution and the tree is updated, to account
for the presence of the new sample, by invoking the tree Update
routine. If, on the other hand, the new sample is found to be in-
valid then it must be rejected. The leaf node inside of which the
attempted sample was generated is subdivided, as part of the same
Generate routine that also generates the sample, and the areas of
all nodes in the tree are updated to account for this subdivision. Un-
like the original dart-throwing algorithm, where a rejected sample
represents a wasted computational effort, our algorithm continually
improves the accuracy of the quadtree through node subdivision
even when samples are rejected. After each iteration, the area rep-
resented by the quadtree either remains constant or decreases. The
decrease in area is caused by the pruning of nodes from the tree,
which happens when either new samples are inserted or leaf nodes
are subdivided. The algorithm terminates when the quadtree be-
comes empty and its area becomes zero, signifying that a maximal
distribution has been achieved.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

8 • M. Gamito and S. Maddock

Fig. 7. Three or more disks intersecting at a common point cause a situ-
ation where a node is subdivided indefinitely. A maximum subdivision level
must be applied to force the algorithm to terminate.

A maximum subdivision level condition is important to prevent
the algorithm from becoming locked in an infinite loop in situations
where three or more disks are intersecting at the same point. Fig-
ure 7 illustrates this scenario. Although the node shown in this fig-
ure is covered by the disks, none of the three disks by themselves
provide a complete coverage. The node is deemed to be subdivided
and the same problem is going to occur for all the descendants that
contain the point of intersection of the disks. The consequences of
enforcing a maximum level of subdivision can be formalised by
stating that the algorithm generates distributions obeying the fol-
lowing condition:

∃ε > 0, ∀x ∈ D, ∃xi ∈ X : ‖x− xi‖ < 2r + ε

with ε = O(2−lMAX). (3)

The constant ε is arbitrarily small and is related to the size of the
leaf nodes at the maximum level of subdivision lMAX . By increas-
ing this maximum level, ε converges to zero, in which case condi-
tion (3) converges to the condition (2) of a maximal distribution.
Given that the probability of three disks intersecting at the same
point is very low, the specification of a sufficiently large maximum
subdivision level causes the proposed algorithm to generate max-
imal distributions almost always except in rare cases where empty
areas of small size may remain in the distribution.

4.1 Generating Samples in the Tree

The generation of new samples inside the tree is shown as
pseudo-code in Figure 8(a). The routine Generate is recursive and
accepts as arguments a current node in the tree, a reference variable
selsample, where the generated sample is returned, and the current
subdivision level l. The routine also returns, as part of each recurs-
ive invocation, the total area δ of the nodes that have been pruned
beneath the current node as a result of subdivisions that may have
occurred. The area δ is used to control the pruning of further nodes
higher in the hierarchy as the recursive call stack is unwound. A
node is discarded when the total area of all pruned nodes beneath it
is equal to its own area. The routine is initially invoked on the root
node of the tree. The reference variable selsample is initialised
with a null sample.

If the current node is a leaf, the Generate routine attempts to
place a uniform random sample inside of it. The routine finds if the
sample is valid by checking it against all the neighbouring samples
that are stored in the list of samples for the leaf node. If the sample
is valid, the routine places it in the selsample reference variable
and returns an area of zero since no subdivision occurred and hence

Generate(node, selsample, l)

if node is a leaf

place random sample in node;

if sample is not valid

if l < lMAX

return Subdivide(node);
else

return area of node;

else

let selsample = sample;
return 0;

let child of node be randomly chosen;
let δ = Generate(child, selsample, l+ 1);

if δ < area of child
decrement area of child by δ;

else
discard child from the tree;

return δ;

(a) Pseudo-code

(b) Example

Fig. 8. The Generate algorithm. The diagram at the bottom shows an ex-
ample. Initially, there are three partial candidates and one pruned node. The
node on the lower right, shown with medium thickness, is randomly selec-
ted with a 3 : 1 probability. If a uniform random sample is placed on the top
left of the chosen node, inside the disk of the previous sample, the node is
subdivided. In a subsequent iteration, the child shown with maximum thick-
ness is randomly selected with a 4 : 1 probability. Since it is a candidate
node, any random sample generated inside of it is guaranteed to be valid.

no pruning took place. If the sample is invalid then the routine sub-
divides the current leaf node and returns the area that may have
been pruned from the tree as a result of the subdivision. If, how-
ever, the maximum subdivision level lMAX has been reached, the
routine does not perform any further subdivision and simply returns
the total area of the leaf node. This return value will cause the node
to be discarded when control returns to the next higher invocation
of the Generate routine on the call stack. It is at this point that the
possibility exists that small unoccupied areas in the domain may be
incorrectly discarded when they could still receive a new sample.
As expressed by equation (3), the probability of incurring such a
sampling error can be made arbitrarily small by making the max-
imum subdivision level lMAX arbitrarily high.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Accurate Multi-Dimensional Poisson-Disk Sampling • 9

A child of the current node is randomly chosen using the areas
of all the children to derive the probabilities of the discrete random
event. If a node i has m children with areas aj , j = 1, . . . ,m, the
probability of child j being chosen is aj/ai, where ai =

∑m
j=1 aj

is the area of the parent node. A child is chosen when the current
node is not a leaf. The Generate routine is then recursively in-
voked on the chosen child node. The rest of the routine deals with
some book-keeping procedures to manage the areas of the nodes.
If the value δ returned from the invocation of Generate on a child
node is less than the area of the child then this area is simply decre-
mented to reflect the removal of some of the descendant nodes.
Through the recursive invocation of Generate, the same value δ is
also decremented from all the ascendants of the chosen child node.
If, on the other hand, δ is equal to the area of the child node then
the child is pruned from the tree. As δ is returned through the un-
winding call stack, other ascendants of the child node may also be
pruned from the tree.

4.2 Subdividing Nodes in the Tree

The pseudo-code for the Subdivide routine is shown in Fig-
ure 9(a). This routine is invoked from within Generate and re-
ceives a node in the tree as its argument. It returns the area δ of
the children that may have been discarded after subdivision. Every
child of a subdivided node must be compared against the samples
that have already been inserted in the distribution. The children of
a node only need to be compared against the samples contained in
the node’s list. These are the only samples in the whole distribu-
tion that can possibly interact with the children for that node. If a
sample has a disk that intersects with a child node, that sample is
added to the list of samples of the child node. If, on the other hand,
a sample’s disk completely contains the child node, that child node
can be discarded and the value of δ incremented correspondingly.

The tests for intersection or containment between a node and a
disk is based upon the sphere-box intersection test first proposed
by Arvo [1990] and recently improved by Larsson et al. [2007].
More details about our intersection test are given in Appendix B.
This intersection test works for any number of dimensions. Each
child is finally appended to the tree below the current node unless it
was previously found to be contained inside the disk of one of the
node’s samples. At the end of the Subdivide routine, the parent’s
list of samples is no longer necessary and is discarded to free up
memory. The total value for δ is also returned.

4.3 Updating the Tree with New Samples

The state of the tree needs to be updated whenever a new sample
is inserted in the distribution. This is done by traversing the tree
depth-first in recursive fashion. The recursive routine Update is
shown in Figure 10(a). It accepts a current node in the tree as an
argument, together with the sample that has just been inserted. The
routine also returns, as part of each recursive invocation, the total
area δ of the nodes that have been pruned beneath the current node.
The routine is first invoked for the node at the top of the tree. The
routine checks the node against the disk of the sample. If the node is
completely outside the disk, an early return is made and no pruning
occurs. If the node is completely inside the disk then it is pruned
together with all its descendants. The area of the node is returned
since it corresponds to the area that has been removed from the tree.
If neither of these conditions is verified, the node must be intersect-
ing the disk of the new sample. In this case, if the node is a leaf, the
new sample is appended to the node’s list of samples, otherwise all
the node’s children are checked in turn against the new sample.

Subdivide(node)

let δ = 0;
generate children of node;

for each child
for each sample in node’s list of samples

if child is intersected by sample’s disk
add sample to child’s list of samples;

else if child is contained in sample’s disk
discard child;
increment δ by area of child;
break from inner loop;

if child has not been discarded
add child to tree below node;

discard node’s list of samples;
return δ;

(a) Pseudo-code

s
1

s
2

s and s
1 2

s
1

s
1

(b) Example

Fig. 9. The Subdivide algorithm. The diagram at the bottom shows an
example for a parent node that intersects samples s1 and s2. The gray
shaded node is discarded. The small boxes for each leaf node indicate which
samples intersect that node.

Update implements the same book-keeping procedures for the
areas of the nodes that the Generate routine already implemented.
If the pruned area δ returned from a recursive Update call to a child
is the same as the area of the child then the latter is removed from
the tree, otherwise the area of the child is decremented by δ. The
areas pruned from all children of the current node are accumulated
in Δ and returned to higher nodes.

4.4 Time and Space Complexity

The procedures Generate, Subdivide and Update have different
time complexities. The subdivision of a node in the tree is done in
constant time, owing to the list of samples that is kept in the node.
This list obviates the need for an exhaustive comparison between
the child nodes and every sample in the distribution. Sampling the
tree takes logarithmic time since the tree needs to be traversed all
the way down to a leaf node. Updating the tree with an accep-
ted sample also takes logarithmic since a recursive tree traversal
is required. These two logarithmic times are dominant in the al-
gorithm since node subdivision is invoked from within the sample
generation procedure. As a consequence, for a distribution with N

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

10 • M. Gamito and S. Maddock

Update(node, sample)

if node is outside sample’s disk
return 0;

if node is inside sample’s disk
prune node and all its descendants
return area of node;

if node is a leaf
append sample to node’s list of samples
return 0;

let Δ = 0;
forall children of node

let δ = Update(child, sample);

if δ < area of child
decrement area of child by δ;

else
discard child from the tree;

increment Δ by δ;

return Δ;

(a) Pseudo-code

s

s

ss

s

(b) Example

Fig. 10. The Update algorithm. The diagram at the bottom shows an ex-
ample for the insertion of a new sample s. The gray shaded nodes are pruned
from the tree as a result of the insertion. Leaf nodes that intersect with the
new sample are marked with a small box.

samples, the total time complexity is O(N logN). The space com-
plexity is also O(N logN) since a subdivision tree is used.

4.5 Optional Generation of Periodic Distributions

It is sometimes desirable to have a n-dimensional distribution that
is n-periodic. This allows the hypercube to wrap around along all
of its dimensions. This also allows a simple tiling scheme where
copies of the hypercube are placed side by side to create an infinite
periodic tiling that is still a valid Poisson-disk distribution. Periodic
tilings are not very interesting because they introduce noticeable
repeating patterns but n-periodic distributions are still useful in
that they avoid the boundary artifacts that occur with non-periodic
distributions. In the original non-periodic case, the boundaries of
the unit hypercube act as constraints, implying that the probabil-
ity of a sample being placed outside the hypercube is always zero.
This subtle deviation from a uniform probability sampling scheme

causes samples to cluster more densely close to the boundaries, try-
ing to use all the available space that is left there.

The enforcement of periodic boundary conditions can be ob-
tained by introducing a small modification in the main algorithm
shown in Figure 6. If we define the discrete set Σ = {−1, 0,+1},
it is possible to write the following:

for every displacement vector σ ∈ Σn

Update tree with sample s+ σ;

This pseudo-code fragment replaces the single invocation of the
Update procedure in the algorithm of Figure 6. The generation of
periodic distributions is more expensive since 3n invocations of the
Update procedure are required per iteration. Many of these invoc-
ations terminate early, however, in the cases where the disk of the
offset sample s + σ does not intersect with the unit hypercube at
the root of the tree.

4.6 Specifying the Desired Number of Samples

There are three different ways of supplying initial parameters to a
Poisson-disk sampling algorithm. The basic parameters are the dis-
tribution radius r and the total number of samples N that is desired.
One can start a Poisson-disk sampling algorithm by specifying r
or N or both in conjunction. The specification of r is used when
exact control over the distance between samples is required. The
specification of N usually leads to sample distributions that are not
maximal as it is difficult to control the sampling process so that it
becomes jammed exactly after the N -th sample has been inserted.
The radius r is the starting parameter for the proposed sampling al-
gorithm in order to generate maximal distributions where the total
number of samples is not constrained. It is possible, however, to
specify a value of r so that the resulting distribution is maximal
and the total number of samples generated is approximately equal
to some desired number N .

Lagae and Dutré [2005] unified the parameters r and N by
introducing the concept of relative radius. The packing density
γn ∈ (0, 1) of a N sample distribution is the percentage of n-space
that is occupied by the hyperspheres of radius r centred around the
samples. For a unit hypercube, the packing density is:

γn = NVn(r), (4)

where Vn(r) = πn/2rn/Γ(n/2 + 1) is the volume of a
n-dimensional hypersphere of radius r and Γ is the gamma func-
tion. A distribution has a maximum packing density when the
samples are placed deterministically according to a crystalline grid.
In two dimensions, for example, this grid is hexagonal. The max-
imum packing densities γnMAX

have been determined for dimen-
sions up to n = 8 [Weisstein]. If a distribution with a fixed number
N of samples is desired, the maximum possible radius will occur
when the hyperspheres occupy the densest possible configuration.
For samples generated inside the unit hypercube, the maximum dis-
tribution radius is then:

rMAX =
n

√√√√γnMAX

N

Γ
(n
2
+ 1

)

πn/2
. (5)

The relative radius of the distribution is a parameter ρn ∈ [0, 1]
such that the absolute radius becomes r = ρn rMAX . When
ρn = 0 is specified, no distance constraints are enforced and a
Poisson distribution with N samples is generated. When ρn = 1
is specified, a deterministic placement of N samples is achieved,
having the highest possible packing density. It must be remarked,

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Accurate Multi-Dimensional Poisson-Disk Sampling • 11

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

50

100

150

200

250

Desired Number of Samples

R
el

at
iv

e
E

rr
or

 (
%

)

2D
3D
4D

(a) Non-periodic BCs.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

−15

−10

−5

0

5

10

15

Desired Number of Samples

R
el

at
iv

e
E

rr
or

 (
%

)

2D
3D
4D

(b) Periodic BCs.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

−15

−10

−5

0

5

10

15

Desired Number of Samples

R
el

at
iv

e
E

rr
or

 (
%

)

2D
3D
4D

(c) Corrected non-periodic BCs.

Fig. 11. The relative error between the total number of samples generated N′ and the desired number of samples N .

Table I. The average packing density, the maximum packing
density and the relative radius in several dimensions.

n γn γnMAX
ρn

2 0.5470 0.9069 0.7766
3 0.3841 0.7405 0.8035
4 0.2599 0.6169 0.8057

however, that no random sample placement algorithm can attain
this result. Poisson-disk sampling algorithms can only generate N
samples exactly for relative radii that don’t significantly exceed 0.8.
For larger values of ρn, the probability increases of the distribu-
tion becoming jammed before N samples can be inserted. The case
ρn = 1, in particular, is always guaranteed to generate maximal
distributions with a number of samples that is smaller than N .

Table I shows the average packing densities γn, obtained with the
proposed algorithm in two, three and four dimensions, and com-
pares them with the maximum packing densities γnMAX

, evalu-
ated with known formulae [Weisstein]. Each average packing dens-
ity was obtained from equation (4) by averaging N over 100 runs
of the algorithm for a given value of r. The radius r was chosen
so as to generate the maximum possible number of samples per
run, given the hardware’s memory constraints, providing, therefore,
a good level of accuracy. Periodic boundary conditions were en-
forced to prevent boundary effects from contaminating the results.
The average packing densities are close to half of their maximum
possible values, signifying that there is still a significant degree
of randomness in the generated distributions. Given these average
packing densities, a distribution with N samples can be generated
with the following distribution radius:

r =
n

√√√√γn
N

Γ
(n
2
+ 1

)

πn/2
. (6)

The radius r from equation (6) amounts to a relative radius
that results from dividing equation (6) by equation (5), leading
to ρn = (γn/γnMAX

)1/n. The relative radii are also shown in
Table I. They are within the region for which the sampling al-
gorithm is able to generate maximal distributions without becoming
jammed before a number N of samples is reached. The radius ob-
tained with equation (6) is then supplied as the starting parameter
to the proposed algorithm, given some desired number N .

Figure 11 shows the relative error e = (N ′−N)/N , in two, three
and four dimensions, between the number of samples generated N′

Table II. The parameters for the error in the number of
samples due to the presence of boundary effects.

n α β

2 1.0997 -0.4999
3 2.2119 -0.3538
4 4.1114 -0.3056

and the desired number of samples N after the radius (6) has been
used. Graphs are shown for the algorithm without (Fig. 11(a)) and
with (Fig. 11(b)) periodic boundary conditions. The boundary ef-
fects that are present when periodicity is not enforced cause an in-
crease in sample density around the boundaries of the hypercube
and this, in turn, causes the packing densities to deviate from the
values shown in Table I. The final consequence is that equation
(6) becomes less accurate at controlling the number of generated
samples, as the graph of Figure 11(a) shows. The error of equation
(6), in this case, decreases with increasing N , and, correspondingly,
with decreasing r, because the boundary effect is manifested over
a progressively smaller boundary region. In the case where period-
icity is enforced, the graph of Figure 11(b) shows good agreement
between the desired number of samples and the number of samples
actually generated.

The error due to the presence of boundary effects, shown in Fig-
ure 11(a), can be represented on average in the form e = αNβ . A
logarithmic regression was used to estimate the parameters α and
β, which are shown in Table II for two, three and four dimensions.
Starting from the definition of the relative error e and rearranging
terms, one obtains:

N ′ = N + αNβ+1. (7)

This equation can be used to correct for the presence of boundary
effects in the non-periodic case. The desired number of samples is
supplied as the value for N ′ and the equation is solved for N < N′.
The value of N is then used in equation (6) to obtain the distribu-
tion radius. Because equation (7) is non-linear for N , it must be
solved with numerical methods. A Newton-Raphson root finder is
used, starting with N = 1.0, which only requires a few iterations to
achieve good accuracy [Press et al. 1992]. Figure 11(c) shows the
relative error after the value N has been internally corrected to ac-
count for the boundary effects. The error is now similar to the error
generated with periodic boundary conditions, quickly decreasing as
the number of samples increases.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

12 • M. Gamito and S. Maddock

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Distribution Radius

S
am

pl
in

g
T

im
e

(s
)

2D
3D
4D

(a) Total computation time.

10
−4

10
−3

10
−2

10
−1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Distribution Radius

N
um

be
r

of
 S

am
pl

es

2D
3D
4D

(b) Number of samples.

10
−4

10
−3

10
−2

10
−1

10
1

10
2

10
3

10
4

10
5

10
6

Distribution Radius

S
am

pl
es

 p
er

 s
ec

on
d

2D
3D
4D

(c) Samples per second.

Fig. 12. Statistics for the Poisson-disk sampling algorithm in two, three and four dimensions. The distribution radius in all graphs decreases from left to right
along the horizontal axis to illustrate that complexity is larger for smaller radii.

5. RESULTS AND DISCUSSION

We compare our method against previous methods for the gener-
ation of accurate Poisson-disk sample distributions in two dimen-
sions. The methods used for comparison are:

—The molecular dynamics algorithm by Skoge et al. [2006]
—The Voronoi decomposition algorithm by Jones [2006].
—The accurate scalloped sector algorithm by Dunbar and

Humphreys [2006].
—The approximate scalloped sector algorithm by Dunbar and

Humphreys [2006]2.

When performing the comparison, we generate maximal distri-
butions with all the methods except for the molecular dynamics al-
gorithm that cannot generally produce such distributions. Although
the dart-throwing algorithm of Dippé and Wold [1985] is the basis
for all spatially guided accurate Poisson-disk sampling algorithms,
it cannot be used for comparison purposes because it does not have
a guaranteed termination time when maximal distributions are gen-
erated. The source code for the algorithms used in the comparison
has been made publicly available by their respective authors. We
would have liked to include the method by White et al. [2007] in
the comparison, as it also generates accurate and maximal distri-
butions, but it was not possible to obtain the source code from the
authors. From the results presented in their paper, the method of
White et al. is likely to be currently the fastest accurate method
in two dimensions. The approximate sampling algorithm by Dun-
bar and Humphreys is included in the comparison to provide an
idea of the speedups that can be achieved when one or both of the
conditions for Poisson-disk sample generation are relaxed. For sim-
plicity, we henceforth refer to the algorithms by the name of their
respective first authors.

Table III compares timing results between the proposed al-
gorithm and the algorithms by Jones and by Skoge for the compu-
tation of two-dimensional distributions with N samples. For the al-
gorithm by Jones, the timings for the desired number N of samples
were achieved by trying several values of the distribution radius r.

2Dunbar and Humphreys actually proposed three algorithms in their paper
– one accurate algorithm with O(N logN) complexity and two approx-
imate algorithms with O(N) complexity. The algorithm that results from
collapsing scalloped sectors into arcs of a circle is the fastest of the two ap-
proximate algorithms and is the one we use for the purpose of comparison.

Table III. Timing results in seconds for several
Poisson-disk sampling algorithms in two dimensions with

wall boundary conditions.
N

Algorithm 1 000 10 000 100 000

Skoge (accurate) 0.760s 10.521s 481.916s
Jones (accurate) 0.245s 2.563s 27.140s
Gamito (accurate) 0.013s 0.157s 1.938s

Table IV. Timing results in seconds for several Poisson-disk
sampling algorithms in two dimensions with n-periodic

boundary conditions.
N

Algorithm 1 000 10 000 100 000

Skoge (accurate) 0.763s 10.854s 427.585s
Dunbar (accurate) 0.491s 4.884s 47.874s
Gamito (accurate) 0.014s 0.162s 1.984s
Dunbar (approximate) 0.005s 0.052s 0.521s

The timing results were then extrapolated from the actual number
of samples in the distribution (when sufficiently close to N) to the
desired value for N . In the case of the algorithm by Skoge, the
number N of molecules was specified as an input parameter while
all the other parameters, such as the growth rate of the molecular
radius, were left at their default values as given in the source code.
The simulations were stopped once the radii given by equation (6)
were reached, preventing the molecules from progressing towards
deterministic distributions. The resulting distributions were visu-
alised and it was verified that they were not maximal. In the case
of our proposed algorithm, the technique described in Section 4.6
was used to generate distributions close to the desired number of
samples, followed by extrapolation. The number of samples gen-
erated was 1 001, 10 025 and 100 047, respectively. The timings
were obtained on a dual AMD Athlon MP2600 2.1GHz machine
with 4Gb of main memory. The molecular dynamics algorithm has
the ability to minimise the space between the disks, creating al-
most hexagonal packings. The other algorithms can only approach
the same result with the use of Voronoi relaxation [Lloyd 1982].
The molecular dynamics simulations, however, do not scale well
with increasing N and this becomes worse for higher dimensions.

Table IV compares timing results similar to those of Table III but
using n-periodic boundary conditions instead. The algorithms by
Dunbar are only included in this comparison because they employ

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Accurate Multi-Dimensional Poisson-Disk Sampling • 13

(a) Two-dimensional spectrum.

0 50 100 150 200 250 300
25

30

35

40

45

Frequency (1/px)

R
ad

ia
l P

ow
er

 (
dB

)

(b) Radial power.

0 50 100 150 200 250 300
−25

−20

−15

−10

−5

0

5

10

Frequency (1/px)

A
ni

so
tr

op
y

(d
B

)

(c) Anisotropy.

Fig. 13. The average power spectrum for two-dimensional Poisson-disk sampling with r = 0.005, the radial power spectrum and the anisotropy spectrum.
The radial power and anisotropy spectra were computed from the 2D spectrum.

a toroidal mapping in two dimensions that corresponds to enforcing
a periodicity condition. For the opposite reason, the algorithm by
Jones is not included because the Voronoi decomposition part of the
algorithm does not enforce periodicity. The approximate sampling
algorithm by Dunbar and Humphreys is orders of magnitude faster
than all the others while our own algorithm, based on subdivision
refinement, is the fastest of all the accurate sampling algorithms
that were compared. Comparing Tables III and IV, for the two al-
gorithms that can generate both periodic and non-periodic distri-
butions, there does not appear to be a significant difference in the
sampling times for the two boundary conditions.

Figure 12 shows statistics of our Poisson-disk sampling al-
gorithm in two, three and four dimensions that were obtained by
gradually decreasing the distribution radius, starting from the value
r = 0.1. The running time of the sampling algorithm is shown in
Figure 12(a), the number of generated samples for each value of r
is shown in Figure 12(b) and the average sampling rate (sample in-
sertions per second) is shown in Figure 12(c). For each dimension,
the statistics are obtained down to a minimum value of r for which
the subdivision tree still fits in the 4Gb of memory of the machine
used in the tests. Samplings for radii smaller than this minimum
value are possible but the timings will increase significantly due
to memory page faults. The minimum radii were found to be ap-
proximately r = 0.00014 for n = 2 dimensions, r = 0.0075
for n = 3 dimensions and r = 0.0685 for n = 4 dimensions.
The statistics for the Poisson-disk sampling algorithm running with
periodic boundary conditions were found to be essentially similar
to the graphs shown in Figure 12. The most notable difference is
that a smaller number of samples is generated for every value of r.
This difference is only visible in the graphs for small radii when
the boundary effect is more pronounced.

Figure 13(a) shows an estimate of the average power spectrum
for two-dimensional Poisson-disk sampling, obtained by averaging
100 independent runs of our algorithm for the case r = 0.005.
Periodic boundary conditions were used so that the discrete Four-
ier transform naturally becomes a discrete Fourier series without
concerns for boundary effects. Figures 13(b) and 13(c) show the
radial power spectrum and the anisotropy, respectively. The curves
for radial power and anisotropy fit well with the reference curves
for two-dimensional Poisson-disk sampling that were obtained
by Lagae and Dutré [2008]. The radial power and anisotropy spec-
tra were numerically computed using standard techniques that in-
tegrate the average power spectrum inside successive concentric

annuli in the frequency domain [Ulichney 1988; McCool and Fi-
ume 1992]. In Appendix A, it is demonstrated that our sampling
algorithm generates correct Poisson-disk distributions. The spec-
tra of Figure 13, therefore, are true representations of a blue noise
process apart from the noise caused by averaging a relatively small
number of sampling runs. Spectra for three and four dimensions
were not estimated since they are a priori guaranteed to be similar
to the ones shown in Figure 13.

For the Generate algorithm of Figure 8, we employ a maximum
subdivision level lMAX = 24, which corresponds to the 24 bits of
precision (including the implicit lead bit) of a single precision float-
ing point number. This means that we are able to represent sample
positions accurately within even the smallest of tree nodes with
single precision floating point coordinates. The hypervolume of any
node in the subdivision tree is stored as a 32n-bit fixed point num-
ber, for n dimensions, thereby eliminating any round-off that might
occur when the hypervolumes are decremented due to pruning. The
presence of floating point round-off error could lead to an incorrect
decision not to remove a node from the tree due to the less-than
test between δ and the node’s hypervolume in the Generate and
Update algorithms of Figures 8 and 10, respectively. The size of
any empty space left after the maximum subdivision level has been
reached is bounded by 0 < ε < 2−lMAX

√
n (refer to the discus-

sion concerning equation (3)). In two dimensions, for example, we
have ε < 4.2× 10−8. It was verified experimentally that no empty
space was found in the generated distributions for n = 2. In three
and four dimensions, only a very small number of leaf nodes at
the maximum subdivision level were left unresolved at the com-
pletion of the algorithm with the possibility that some empty space
may have been contained inside of them. As Figure 7 illustrates, a
leaf node left unresolved at the maximum subdivision level when
the algorithm completes does not necessarily contain empty space
where new samples could be placed. A maximum subdivision leaf
node is left unresolved when it cannot be categorised as fully inside
one of the distribution samples or fully outside of every distribution
sample.

Figure 14 shows the result of performing 50 steps of Voronoi
relaxation on a two-dimensional distribution, generated with our
algorithm, with parameter r = 0.0025. Only part of the sampling
domain is shown for increased clarity. Voronoi relaxation creates a
more regular distribution of samples but may cause the conditions
for correct Poisson-disk sampling to be violated. To study the regu-
larity of a Poisson-disk distribution, we measured all the distances

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

14 • M. Gamito and S. Maddock

(a) Before.

(b) After.

Fig. 14. A Voronoi decomposition of a distribution generated by our al-
gorithm before and after Voronoi relaxation.

rij between the i-th and the j-th neighbour samples. The condi-
tion rij ∈ [2r, 4r) must hold for a collection of samples that is a
valid Poisson-disk distribution with radius r and that is also max-
imal. The lower bound is a restatement of the minimum distance
constraint for Poisson-disk samples. The upper bound must not be
larger than or equal to 4r, otherwise it would be possible to in-
sert a new sample in-between samples i and j and the distribution
would not be maximal. We define the parameters rMIN = min {rij},
rMAX = max {rij} and the relative spread σ = (rMAX − rMIN)/(2r).
Table V shows these parameters for the distribution of Figure 14
before and after Voronoi relaxation. Before relaxation, the distri-
bution has a nearly maximal spread and is characterised by an ir-
regular Voronoi decomposition with Voronoi cells of several differ-
ent sizes. Voronoi relaxation minimised the spread in the distribu-
tion but also caused at least a pair of samples to have a distance
rij < 2r, as can be seen in Table V. There is a global minimum
σr = 0% that corresponds to a deterministic hexagonal packing
but which is very rarely achieved. The relaxation scheme, in this
case, settled for a local minimum at σr ≈ 80%, leading to a more
even distribution of the samples.

Table V. The minimum distance rMIN, maximum distance rMAX

and relative spread σr for a two-dimensional Poisson-disk
distribution with r = 0.0025.

rMIN rMAX σr

Before relaxation 0.0050000 0.0099887 99.77%
After relaxation 0.0049132 0.0089410 80.56%

Table VI. The minimum distance dMIN, maximum distance dMAX

and relative spread σd for a two-dimensional Poisson-disk
distribution with r = 0.0025.

dMIN dMAX σd

Before relaxation 0.0028869 0.0049999 99.98%
After relaxation 0.0033356 0.0045219 56.14%

If we consider the distances dij between the i-th Poisson-disk
sample and the j-th vertex of its corresponding Voronoi cell, it is
possible to show that the distribution of such distances must be
in the range dij ∈ [2r/

√
3, 2r]. Table VI shows the minimum

and maximum values of dij for the distribution of Figure 14, to-
gether with the relative spread σd = (dMAX − dMIN)/(2r(1 −
1/

√
3)). The results are within the correct range of approximately

[0.0028867, 0.005] both before and after Voronoi relaxation. The
reduction in the spread σd is quite significant when compared with
the reduction of σr and corresponds to the very even distribution of
Voronoi cells in Figure 14(b).

Figure 15 illustrates the use of a four-dimensional Poisson-disk
distribution. It shows a sphere hypertextured with a blobbly model
where each blob is centred on a Poisson-disk sample. The hy-
pertexture is animated by sweeping a unit cube through the unit
four-dimensional hypercube. The use of Poisson-disk sampling en-
sures that all blobs are conveniently spaced apart in both space and
time while still allowing the blobs to blend along the boundaries
of their respective Poisson-hyperspheres. Periodic boundary condi-
tions were enforced so that the resulting animation can be cycled.

6. CONCLUSIONS AND FUTURE
DEVELOPMENTS

We have presented an algorithm for generating Poisson-disk
sample distributions in n-dimensional space. The samples are gen-
erated inside the canonical domain D = [0, 1]n, which can be
subsequently modified by the application of any Euclidean trans-
form without changing the Poisson-disk nature of the distribution.
The algorithm generates correct Poisson-disk distributions with the
samples being uniformly distributed in D and with the distance
between every pair of samples being equal to or greater than a
specified distance 2r, where r is the distribution radius. The al-
gorithm also generates maximal distributions, in the sense that no
new samples can be further inserted in D without violating the min-
imum distance constraint relative to other samples. Exceptions oc-
cur when there is a point x ∈ D that is at an almost equal distance
of 2r to three or more samples. Depending on the maximum sub-
division level of the tree, the algorithm may fail to place an addi-
tional valid sample at x. The maximum subdivision level used in
our implementation is large enough for these exceptions to occur
very rarely. In the worst case, if x is at a distance of exactly 2r to
three or more samples, the algorithm will fail to place a sample at
x irrespective of the maximum subdivision level.

We have shown that the algorithm is computationally efficient
owing to the use of a subdivision tree that tracks the diminishing
subset of D where new samples can be inserted. In principle, the
algorithm can be applied to any number n of dimensions due to

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Accurate Multi-Dimensional Poisson-Disk Sampling • 15

Fig. 15. Three snapshots from an animation showing a sphere hypertextured with a time-varying blobby model. The centres of the blobs are Poisson-disk
samples distributed inside a four-dimensional hypercube.

the ease with which the tree can be expressed in any n-dimensional
space. All the procedures that were given in pseudo-code and which
form part of the algorithm are independent of the number of di-
mensions, leading to a code implementation that does not require
the handling of special cases for particular values of n. The sub-
division tree, however, can be memory intensive and this imposes
restrictions on how large n and how small r can be. We have also
introduced a simple technique to generate Poisson-disk distribu-
tions that are maximal and have a number of samples approxim-
ately equal to a desired number N .

We have successfully demonstrated our algorithm in two, three
and four dimensions since these are the dimensions more com-
monly used when generating Poisson-disk distributions for Com-
puter Graphics applications. Our algorithm can also be applied to
many other fields in cases where high dimensional integrals need
to be computed and where Poisson-disk sampling can be applied as
part of a variance reduction technique for Monte Carlo integration.

There are several possible ways by which the proposed sampling
algorithm can be improved and we mention a few here. Sampling
can be done inside domains with irregular boundaries and not just
inside a hypercube. Subdivision must be performed for tree nodes
that straddle the boundary of the domain, together with the subdi-
vision that already occurs for nodes that intersect sample hyper-
spheres. This strategy is likely to be more efficient than simply
generating samples inside a hypercube that contains the domain
and rejecting those samples that fall outside the boundary of the
domain.

The Poisson-disk sampling algorithm can be extended to spher-
ical surfaces. The subdivision takes place in a 2-dimensional para-
meter space of spherical coordinates. Distances between samples
must be computed along geodesic lines, which, in the case of a
sphere, is done trivially. The intersection routine will have to be
modified to compute the intersection between a spherical disk and
the spherical sector that corresponds to a given square node in para-
meter space. Random traversal of the subdivision tree must also
take into account the areas of the spherical sectors generated by the
tree nodes so that a uniform sampling on the sphere is achieved.
Random sample insertion inside the parameter space of a tree node
must obey a specific probability density function that transforms
into a uniform probability density when the node is mapped onto
the sphere. Periodic boundary conditions are imposed on the longit-
udinal boundary of the parameter space. Extensions to other types

of parametric manifolds may also be possible although the compu-
tation of geodesic distances becomes more involved.

The proposed algorithm can be parallelised on multi-core pro-
cessors or on multi-processor machines. The parallelisation is
achieved by having several independent threads performing tree
traversal and sampling insertion simultaneously. Some careful syn-
chronisation among the threads is necessary to ensure that the tree
data structure remains consistent. For example, if a thread prunes a
section of the tree after inserting a new sample, other threads that
are working inside the same tree section need to be notified so that
they can abort and proceed to a new tree traversal. If a subdivision
tree is sufficiently deep, the interference between different threads
should be minimal. Parallelisation on a GPU, as in [Wei 2008], does
not seem possible, unfortunately, since GPUs lack synchronisation
mechanisms between the hardware shaders.

APPENDIX

A. STATISTICAL PROPERTIES OF
DART-THROWING ALGORITHMS

Dart-throwing algorithms can be formalised as a sequential
sampling process that places a set of N samples {x1,x1, . . . ,xN}
in a unit hypercube domain D = [0, 1]n in n dimensions. After
i < N samples have been placed, a possibly disjoint allowable
set Si ⊆ D can be defined where the next sample xi+1 has to be
placed. The allowable set is given by:

Si = {x ∈ [0, 1]n : ‖x− xj‖ � 2r, j = 1, 2, . . . , i}. (A.1)

The set Si represents the portion of the unit hypercube that is
not covered by the union of hyperspheres of radius 2r centred on
the samples x1 to xi that have already been placed. It is repres-
ented in green in Figure 16. Once Si has been defined with (A.1),
Poisson-disk sampling dictates that the next sample xi+1 must be
placed within Si with a uniform probability density. This means
that for any subset s ⊂ Si, the conditional probability that xi+1 is
placed in s, knowing that xi+1 ∈ Si, is given by:

P (xi+1 ∈ s |xi+1 ∈ Si) = a/Ai, (A.2)

where a and Ai are the hypervolumes of the sets s and Si, respect-
ively. We have that Ai < 1, except for A0 = 1, which is the hyper-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

16 • M. Gamito and S. Maddock

s

S9

x1

x2

x3

x4

x5

x6

x7

x8

x9

Fig. 16. The allowable set S9, shown in green, after samples x1, . . . ,x9

have been inserted is represented in green. The next sample x10 must be
inserted in this set. The set s, shown in orange, is an arbitrary subset of S9.

volume of the unit hypercube – the allowable set S0 = [0, 1]n at
the time when the first sample x1 is placed. This iterative formula-
tion of the Poisson-disk process was first presented by Diggle et al.
[1976], who called it Simple Sequential Inhibition.

An example of a subset s is shown in orange in Figure 16. After
sample xi+1 has been inserted, the next allowable set Si+1 ⊂ Si

(with Ai+1 < Ai) can be defined similarly to (A.1) and the pro-
cedure can be iterated until a maximum number N of samples has
been reached for which SN = ∅ (and AN = 0). With SN being
the empty set, no more samples can be inserted and the distribution
is said to be maximal. The end result is a uniform distribution of
N samples in the unit hypercube where the distance between any
pair of samples is never smaller than 2r, with r being called the
distribution radius.

A.1 Naı̈ve Dart-Throwing

The naı̈ve dart-throwing algorithm of Dippé and Wold [1985] was
the first algorithm to accurately generate Poisson-disk distributions
and is the benchmark against which all other Poisson-disk sampling
algorithms are compared in terms of sampling quality. Dart throw-
ing applies a principle of rejection sampling in order to gener-
ate a sample xi+1 within an arbitrarily complex set Si with uni-
form probability density. Samples are repeatedly generated within
the unit hypercube and rejected if they are found to be outside of
Si. The first sample that is found to be inside of Si becomes the
next sample xi+1 in the distribution. The conditional probability of
xi+1 being inside any subset s, knowing that it has been accepted
in the distribution, is:

P (xi+1 ∈ s |xi+1 ∈ Si) =
P (xi+1 ∈ s ∩ xi+1 ∈ Si)

P (xi+1 ∈ Si)
. (A.3)

Because s ⊂ Si, we have that P (xi+1 ∈ s ∩ xi+1 ∈ Si) =
P (xi+1 ∈ s) and we obtain, as desired:

P (xi+1 ∈ s |xi+1 ∈ Si) =
P (xi+1 ∈ s)

P (xi+1 ∈ Si)
=

a

Ai
. (A.4)

s

S9,1 S9,2

S9,3 S9,4

Fig. 17. The allowable set S9 is split into four smaller subsets S9,1 to
S9,4, shown in green, as a result of domain subdivision. The set s, shown
in orange, is an arbitrary subset of S9,2.

The main problem with naı̈ve dart-throwing is the number of at-
tempts that need to be taken before a sample can be accepted in the
distribution. The probability of a sample being accepted is Ai and,
correspondingly, the probability of it being rejected is 1−Ai. The
probability of sample xi+1 being accepted after k > 0 attempts
obeys a discrete geometric distribution, with the expression:

Pk = Ai(1−Ai)
k−1. (A.5)

As required,
∑

Pk = 1 when 0 < Ai � 1, meaning that sample
xi+1 will inevitably be accepted at some point as long as there is a
non-zero hypervolume Ai where it can land. The expected number
of attempts before the sample can be accepted is given by:

E[k] =
∞∑

k=1

kPk = Ai

∞∑
k=1

k(1−Ai)
k−1 = 1/Ai. (A.6)

So, as the sampling progresses and the allowable sets Si shrink in
size, the hypervolumes Ai converge to zero and, correspondingly,
the expected number of attempts before accepting a sample goes to
infinity. Naı̈ve dart-throwing becomes progressively less efficient
the more the hypercube becomes filled with samples. It may take
an inordinately large amount of time for dart-throwing to terminate
if a maximal Poisson-disk distribution is desired.

A.2 Parallel Dart-Throwing

We discuss here the parallel dart-throwing algorithm of Wei [2008]
as it is currently the most advanced Poisson-disk sampling al-
gorithm, capable of running in parallel on a GPU. The unit hy-
percube domain is progressively subdivided into increasing resol-
ution levels. For each resolution level, the cells are separated in a
clever way into distinct groups so that cells in the same group can
be sampled in parallel without the risk of conflict between samples.
Sampling inside a cell is done by performing k dart-throwing at-
tempts. A sample will not be inserted in the cell if all k attempts
fail. Once all cells in a group have been sampled, the algorithm
moves on to the next group at the same resolution level.

Figure 17 shows an example where the domain has been decom-
posed into a 2 × 2 resolution level. At this shallow level there are

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Accurate Multi-Dimensional Poisson-Disk Sampling • 17

s

S9,j0

Fig. 18. The allowable set S9, shown in green, after five steps of recursive
subdivision. Nodes that fall outside of S9 are discarded. The set s, shown
in orange, is an arbitrary subset of S9. S9,j0 is the candidate node where
the set s is contained.

four groups of cells where each group has only one cell in it. For
each resolution level, a fixed scanning order is used to visit all the
groups. In this example, we consider the case that Si,1 is sampled
first, followed by Si,2. The conditional probability that the sample
xi+1 is placed in s, knowing that it is a valid sample, is given by
the probability that all k dart-throwing attempts in Si,1 have failed
multiplied by the probability that a sample uniformly generated in-
side Si,2 will lie in the set s:

P (xi+1 ∈ s |xi+1 ∈ Si) = (1− 4Ai,1)
k a

Ai,2
. (A.7)

The factors Ai,j are the hypervolumes of their respective sets
Si,j . The probability (A.7) is not the same as (A.2). The asym-
metry expressed in (A.7) exists for any resolution level. The fixed
scanning order that is used to loop over all cell groups within a
level means that the sampling within a group will depend on the
sampling done in the previous groups. Nevertheless, Wei has shown
that sample distributions obtained with the parallel sampling al-
gorithm have good blue noise properties. This is likely because
the sampling asymmetry is smeared out over successive resolution
levels. Different scanning orders are used for different levels. At
the resolution level that follows the one shown in Figure 17, for ex-
ample, the scanning might proceed from right to left instead of the
left to right order that was used before.

The smearing of the asymmetry expressed in (A.7) works better
if a large number of resolution levels is used. Such a number is
determined by the distribution radius so that the lateral size of cells
at the highest resolution level must be smaller than 2r/

√
n. The

number of resolution levels is then equal to �log2
√
n/r�. If r is

large, the number of resolution levels is small and artifacts due to
sampling asymmetry may arise more easily. As r decreases, more
resolution levels are introduced and the quality of the distribution
improves.

A.3 Dart-Throwing by Subdivision Refinement

Our algorithm relies on a recursive subdivision of the unit hyper-
cube. Nodes that fall outside of Si are discarded and the subdivision

tree keeps those nodes that are either inside of Si or that straddle the
boundary of that set. One of the leaf nodes Si,j , with j = 1, . . . , L,
is randomly chosen for sample placement. In order to ensure that
sample placement has a uniform density probability in Si, the prob-
ability of choosing a particular leaf node Si,j is proportional to its
hypervolume Ai,j . Figure 18 shows a situation where the arbitrary
set s is inside a candidate node Si,j0 in the subdivision tree. The
conditional probability of the sample xi+1 being inside s, knowing
that it is a valid sample, is equal to the probability of choosing Si,j0

multiplied by the probability that a sample uniformly generated in-
side Si,j0 will lie in the set s:

P (xi+1 ∈ s |xi+1 ∈ Si) =
Ai,j0∑L
j=1 Ai,j

a

Ai,j0

=

=
a∑L

j=1 Ai,j

. (A.8)

Our algorithm employs a lazy subdivision strategy. Rather than
subdividing all of the tree before performing sample placement, the
nodes are subdivided as part of the top-down random traversal of
the tree if they are found to straddle the boundary. The end result is
the same as if the tree had been subdivided in advance. In the limit
of an infinite number of subdivisions, we have:

P (xi+1 ∈ s |xi+1 ∈ Si) =
a∑∞

j=1 Ai,j
=

a

Ai
, (A.9)

which is the same as (A.2). If, however, Si,j0 is a potential candid-
ate node instead of a candidate node (meaning that some part of it
is outside Si), the probability of placing a valid sample in s then
becomes:

P (xi+1 ∈ s |xi+1 ∈ Si) =
Ai,j0∑L
j=1 Ai,j

a

Ai,j0 − ai,j0

=

=
a∑L

j=1 Ai,j

1

1− ai,j0/Ai,j0

, (A.10)

where ai,j0 < Ai,j0 is the hypervolume of the part of Si,j0 that
is outside of the valid set Si. As subdivision progresses, the shape
of the node Si,j0 tracks the boundary of Si with increasing accur-
acy. In particular, the descendant nodes of Si,j0 that are completely
outside of Si are discarded so that the outside hypervolume ai,j0
gradually converges to zero. In the limit we then have, therefore,
the same result of equation A.9.

From a theoretical standpoint, our algorithm performs correct
Poisson-disk sampling for an infinitely subdivided tree. In real-
ity, we impose a maximum subdivision level of 24, which is deep
enough to guarantee correct Poisson-disk distributions for all prac-
tical purposes. The probability (A.9) was obtained in the simple
case where the arbitrary set s falls completely inside one of the leaf
nodes in the tree. If that is not the case, the same result as (A.9) can
be obtained except that the derivation is a bit more complex. One
will have to consider the disjoint union of all fragments of s that
fall in different leaf nodes.

B. INTERSECTION TESTING BETWEEN A
HYPERSPHERE AND A HYPERCUBE

Arvo [1990] presented three boolean methods for testing the inter-
section between a hypersphere and a hypercube in n dimensions,
depending on whether the hypersphere and the hypercube should
be treated as surfaces or as volumes. Recently, Larsson et al. [2007]

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

18 • M. Gamito and S. Maddock

improved on the solid-solid intersection method of Arvo by provid-
ing early exits from the routine as soon as a decision about the in-
tersection state can be made. Rather than a boolean test, we need
an intersection test for our Poisson-disk sampling method that re-
turns one of three possible outcomes for the state of the hypercube
relative to the hypersphere:

In: The hypercube is entirely contained inside the hypersphere.
Out: The hypercube is located entirely on the outside of the hy-

persphere.
Over: The hypercube either intersects with or contains the hyper-

sphere.

A hypersphere in R
n is defined by a centre c = (c1, c2, . . . , cn)

and a radius 2r. A hypercube is defined by the Cartesian product of
the intervals T = [t1MIN , t1MAX]×[t2MIN , t2MAX]×· · ·×[tnMIN , tnMAX].
The intersection status between the two objects can be determined
by computing the minimum and maximum distances from c to all
points x ∈ T :

dMIN(c) � min
x∈T

(d(x,c)) (B.1)

dMAX(c) � max
x∈T

(d(x,c)), (B.2)

where d(x1,x2) is the standard Euclidean distance in R
n between

points x1 and x2. The minimum and maximum distances are com-
puted with:

dMIN(c) =

√√√√ n∑
i=1

d2iMIN
(ci) (B.3)

dMAX(c) =

√√√√ n∑
i=1

d2iMAX
(ci), (B.4)

where diMIN(ci) = minx∈[tiMIN
,tiMAX

] (x− ci) and similarly for
diMAX(ci). The outcome of the intersection test is determined from
the distances dMIN(c) and dMAX(c) according to the following in-
equalities:

In: dMAX(c) < 2r.
Out: dMIN(c) > 2r.
Over: dMIN(c) � 2r � dMAX(c).

Following common practice, we compare the squares of the
distances with the square 4r2 of the radius to avoid having to
compute the square roots in equation (B.3). Figure 19 shows the
pseudo-code for our intersection test. We iterate over all the dimen-
sions i = 1, 2, . . . n while accumulating the values of the minimum
and maximum distances. Similar to Larsson et al. [2007], we also
provide early exits whenever possible. Specifically, if it is found
that

∑i
j=1 d

2
jMIN

(cj) > 4r2 for some i < n, then it is known that
d2MIN(c) > 4r2 and a return code of Out can be issued without
having to wait for the remaining iterations to complete. The same
reasoning applies if djMIN (cj) > 2r for any j. The variables 2r and
4r2 are static and can be initialised at the start of the algorithm.

The intersection test is where our Poisson-disk sampling al-
gorithm spends most of its time and the efficiency of this test is
critical to determine the efficiency of the whole algorithm. The
pseudo-code of Figure 19 has plenty of branching conditions to pre-
vent floating point operations from being carried out unless they are
strictly necessary. For processors that have SIMD instruction sets,

let d2MIN = 0;

let d2MAX = 0;

for i = 1, 2, . . . , n

let diMIN = tiMIN − ci;

if diMIN > 0

if diMIN > 2r return Out;

let d2MIN += d2iMIN
;

if d2MIN > 4r2 return Out;

let d2MAX += (tiMAX − ci)
2;

continue

let diMIN = ci − tiMAX ;

if diMIN > 0

if diMIN > 2r return Out;

let d2MIN += d2iMIN
;

if d2MIN > 4r2 return Out;

let d2MAX += (ci − tiMIN)
2;

continue

let d2MAX += max2 (ci − tiMIN , tiMAX − ci);

if d2MAX > 4r2 return Over else return In;

Fig. 19. Pseudo-code for the intersection test between a hypercube and a
hypersphere in n dimensions.

it may be preferable instead to compute the diMIN(ci) and diMAX (ci)
factors for several dimensions in parallel with the help of vector-
ised registers and avoiding the branching conditions. The reader is
referred to Larsson et al. [2007] for a SIMD computation of dMIN(c)
as part of their intersection test. With a little extra work, it is pos-
sible to do the same for the distance dMAX(c) and have a SIMD
implementation of our intersection test. Current SIMD hardware
allows for the computation of intersections in single precision up
to dimension n = 4, which corresponds to the maximum dimen-
sion used in this paper.

ACKNOWLEDGMENTS

We would like to thank our anonymous reviewers whose sugges-
tions helped to improve this paper.

REFERENCES

ARVO, J. 1990. A simple method for box-sphere intersection testing. In
Graphics Gems, A. S. Glassner, Ed. Academic Press Professional, Inc.,
San Diego, CA, 335–339.

BADDELEY, A. AND MØLLER, J. 1989. Nearest-neighbour Markov point
processes and random sets. International Statistical Review 57, 2 (Aug.),
89–121.

BARTLETT, M. S. 1974. The statistical analysis of spatial pattern. Ad-
vances in Applied Probability 6, 2 (June), 336–358.

BRIDSON, R. 2007. Fast Poisson disk sampling in arbitrary dimensions. In
ACM SIGGRAPH ’07 Sketches & Applications. ACM Press, 22.

CLINE, D., JESCHKE, S., WHITE, K., RAZDAN, A., AND WONKA, P.
2009. Dart throwing on surfaces. Computer Graphics Forum 28, 4 (July),
1217–1226.

COHEN, M. F., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003. Wang
tiles for image and texture generation. ACM Transactions on Graphics
(SIGGRAPH ’03 Proceedings) 22, 3 (July), 287–294.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Accurate Multi-Dimensional Poisson-Disk Sampling • 19

COOK, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans-
actions on Graphics 5, 1 (Jan.), 51–72.

DEUSSEN, O., HANRAHAN, P., LINTERMANN, B., MECH, R., PHARR,
M., AND PRUSINKIEWICZ, P. 1998. Realistic modelling and rendering of
plant ecosystems. In Computer Graphics (SIGGRAPH ’98 Proceedings),
M. Cohen, Ed. Vol. 22. ACM Press, 275–286.

DEUSSEN, O., HILLER, S., VAN OVERVELD, C., AND STROTHOTTE, T.
2000. Floating points: A method for computing stipple drawings. Com-
puter Graphics Forum (Eurographics 2000 Proceedings) 19, 3 (Aug.),
40–51.

DICKMAN, R., WANG, J.-S., AND JENSEN, I. 1991. Random sequen-
tial adsorption: Series and virial expansions. Journal of Chemical Phys-
ics 94, 12 (June), 8252–8257.

DIGGLE, P. J., BESAG, J., AND GLEAVES, J. T. 1976. Statistical analysis
of spatial point patterns by means of distance methods. Biometrics 32, 3
(Sept.), 659–667.

DIPPÉ, M. A. Z. AND WOLD, E. H. 1985. Antialiasing through stochastic
sampling. In Computer Graphics (SIGGRAPH ’85 Proceedings), B. A.
Barsky, Ed. Vol. 19. 69–78.

DONEV, A., TORQUATO, S., AND STILLINGER, F. H. 2005. Neighbor
list collision-driven molecular dynamics simulation for nonspherical hard
particles. I. Algorithmic details. Journal of Computational Physics 202, 2
(Jan.), 737–764.

DUNBAR, D. AND HUMPHREYS, G. 2006. A spatial data structure for fast
Poisson-disk sample generation. ACM Transactions on Graphics (SIG-
GRAPH ’06 Proceedings) 25, 3 (July), 503–508.

DUTRÉ, P., BALA, K., AND BEKAERT, P. 2006. Advanced Global Illumin-
ation, 2nd ed. AK Peters Ltd, Wellesley, MA.

FENG, L., HOTZ, I., HAMMAN, B., AND JOY, K. I. 2008. Aniso-
tropic noise samples. IEEE Transactions on Visualization and Computer
Graphics 14, 2 (Mar-Apr.), 342–354.

FU, Y. AND ZHOU, B. 2008. Direct sampling on surfaces for high quality
remeshing. In Proceedings of the 2008 ACM Symposium on Solid and
Physical Modeling, E. Haines and M. McGuire, Eds. ACM Press, 115–
124.

GLASSNER, A. S. 1995. Principles of Digital Image Synthesis. The Mor-
gan Kaufmann Series in Computer Graphics. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA.

HACHISUKA, T., JAROSZ, W., WEISTROFFER, R. P., DALE, K.,
HUMPHREYS, G., ZWICKER, M., AND JENSEN, H. W. 2008. Multi-
dimensional adaptive sampling and reconstruction for ray tracing. ACM
Transactions on Graphics 27, 3 (Aug.), 33:1–33:10.

HILLER, S., DEUSSEN, O., AND KELLER, A. 2001. Tiled blue noise
samples. In Vision, Modeling and Visualization 2001, B. Girod,
G. Greiner, H. Niemann, and H.-P. Seidel, Eds. Akademische Verlags-
gesellschaft Aka GmbH, Berlin, 256–272.

JAEGER, H. M. AND NAGEL, S. R. 1992. Physics of the granular state.
Science 255, 5051 (Mar.), 1523–1531.

JONES, T. R. 2006. Efficient generation of Poisson-disk sampling patterns.
Journal of Graphics Tools 11, 2, 27–36.

KOPF, J., COHEN-OR, D., DEUSSEN, O., AND LICHINSKY, D. 2006. Re-
cursive Wang tiles for real-time blue noise. ACM Transactions on Graph-
ics (SIGGRAPH ’06 Proceedings) 25, 3 (Aug.), 509–518.

LAGAE, A. AND DUTRÉ, P. 2005. A procedural object distribution func-
tion. ACM Transactions on Graphics 24, 4 (Oct.), 1442–1461.

LAGAE, A. AND DUTRÉ, P. 2006a. An alternative for Wang tiles: Colored
edges versus colored corners. ACM Transactions on Graphics 25, 4
(Oct.), 1442–1459.

LAGAE, A. AND DUTRÉ, P. 2006b. Poisson sphere distributions. In Vis-
ion, Modeling and Visualization 2006, L. Kobbelt, T. Kuhlen, T. Aach,

and R. Westermann, Eds. Akademische Verlagsgesellschaft Aka GmbH,
Berlin, 373–379.

LAGAE, A. AND DUTRÉ, P. 2008. A comparison of methods for generating
Poisson disk distributions. Computer Graphics Forum 27, 1 (Mar.), 114–
129.

LARSSON, T., AKENINE-MÖLLER, T., AND LENGYEL, E. 2007. On faster
sphere-box overlap testing. Journal of Graphics Tools 12, 1, 3–8.

LEHTINEN, J., ZWICKER, M., TURQUIN, E., KONTKANEN, J., DURAND,
F., SILLION, F. X., AND AILA, T. 2008. A meshless hierarchical repres-
entation for light transport. ACM Transactions on Graphics (SIGGRAPH
’08 Proceedings) 27, 3 (Aug.), 37.

LENEMAN, O. A. Z. 1966. Random sampling of random processes: Im-
pulse processes. Information and Control 9, 4 (Aug.), 347–363.

LEWIS, J.-P. 1989. Algorithms for solid noise synthesis. In Computer
Graphics (SIGGRAPH ’89 Proceedings), J. Lane, Ed. Vol. 23. ACM
Press, 263–270.

LI, H., LO, K.-Y., LEUNG, M.-K., AND FU, C.-W. 2008. Dual Poisson-
disk tiling: An efficient method for distributing features on arbitrary sur-
faces. IEEE Transactions on Visualization and Computer Graphics 14, 5
(Sep-Oct.), 982–998.

LLOYD, S. P. 1982. Least squares quantization in PCM. IEEE Transactions
on Information Theory 28, 2 (Mar.), 129–137.

LUBACHEVSKY, B. D. AND STILLINGER, F. H. 1990. Geometric prop-
erties of random disk packings. Journal of Statistical Physics 60, 5-6
(Sept.), 561–583.

LUBACHEVSKY, B. D., STILLINGER, F. H., AND PINSON, E. N. 1991.
Disks vs. spheres: Contrasting properties of random packings. Journal of
Statistical Physics 64, 3-4 (Aug.), 501–524.

MATÉRN, B. 1960. Spatial variation. Meddelanden från Statens Skogsfor-
skningsinstitut 49, 1–144.

MCCOOL, M. AND FIUME, E. 1992. Hierarchical Poisson disk sampling
distributions. In Proceedings of Graphics Interface ’92. Canadian In-
formation Processing Society, 94–105.

MITCHELL, D. P. 1987. Generating antialiased images at low sampling
densities. In Computer Graphics (SIGGRAPH ’87 Proceedings), M. C.
Stone, Ed. Annual Conference Series, vol. 21. ACM Press, 65–72.

MITCHELL, D. P. 1991. Spectrally optimal sampling for distribution ray
tracing. In Computer Graphics (SIGGRAPH ’91 Proceedings), T. W.
Sederberg, Ed. Vol. 25. ACM Press, 157–164.

OSTROMOUKHOV, V. 2007a. Building 2D low-discrepancy sequences for
hierarchical importance sampling using dodecagonal aperiodic tiling. In
Proceedings of GraphiCon 2007. 139–142.

OSTROMOUKHOV, V. 2007b. Sampling with polyominoes. ACM Transac-
tions on Graphics (SIGGRAPH ’07 Proceedings) 26, 3 (July), 78.

OSTROMOUKHOV, V., DONOHUE, C., AND JODOIN, P.-M. 2004. Fast
hierarchical importance sampling with blue noise properties. ACM Trans-
actions on Graphics (SIGGRAPH ’04 Proceedings) 23, 3 (Aug.), 488–
495.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLAN-
NERY, B. P. 1992. Numerical Recipes in C: The Art of Scientific Com-
puting, 2nd ed. Cambridge University Press.

RIPLEY, B. D. 1977. Modelling spatial patterns. Journal of the Royal
Statistical Society. Series B 39, 172–212.

SAMET, H. 1990. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, MA.

SECORD, A., HEIDRICH, W., AND STREIT, L. 2002. Fast primitive distri-
bution for illustration. In Proceedings of the 13th Eurographics Workshop
on Rendering Techniques, S. Gibson and P. Debevec, Eds. Eurographics
Association, Aire-la-Ville, Switzerland, 215–226.

SHIRLEY, P. 1992. Nonuniform random point sets via warping. In Graphics
Gems III, D. Kirk, Ed. Academic Press, San Diego, 80–83.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

20 • M. Gamito and S. Maddock

SKOGE, M., DONEV, A., STILLINGER, F. H., AND TORQUATO, S. 2006.
Packing hyperspheres in high-dimensional Euclidean spaces. Physical
Review E 74, 4 (Oct.), 041127.

SNYDER, D. L. 1991. Random Point Processes in Time and Space, 2nd ed.
Springer-Verlag, New York.

ULICHNEY, R. A. 1988. Dithering with blue noise. Proceedings of the
IEEE 76, 1 (Jan.), 56–79.

WEI, L.-Y. 2008. Parallel poisson disk sampling. ACM Transactions on
Graphics (SIGGRAPH ’08 Proceedings) 27, 3 (Aug.), 20.

WEISSTEIN, E. W. Hypersphere packing. From MathWorld – A Wolfram
Web Resource.

WHITE, K. B., CLINE, D., AND EGBERT, P. K. 2007. Poisson disk point
sets by hierarchical dart throwing. In IEEE/Eurographics Symposium on
Interactive Ray Tracing, A. Keller and P. Christensen, Eds. IEEE Press,
129–132.

WORLEY, S. P. 1996. A cellular texture basis function. In Computer
Graphics (SIGGRAPH ’96 Proceedings), H. Rushmeier, Ed. Vol. 30.
ACM Press, 291–294.

YELLOT, JR, J. I. 1983. Spectral consequences of photoreceptor sampling
in the rhesus retina. Science 221, 382–395.

Received August 2007; accepted September 2009

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

