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Abstract

Hypertextures are a useful modelling tool in that they
can add three-dimensional detail to the surface of other-
wise smooth objects. Hypertextures can be rendered as im-
plicit surfaces, resulting in objects with a complex but well
defined boundary. However, representing a hypertexture as
an implicit surface often results in many small parts being
detached from the main surface, turning an object into a
disconnected set. Depending on the context, this can de-
tract from the realism in a scene where one usually does not
expect a solid object to have clouds of smaller objects float-
ing around it. We present a topology correction technique,
integrated in a ray casting algorithm for hypertextured im-
plicit surfaces, that detects and removes all the surface com-
ponents that have become disconnected from the main sur-
face. Our method works with implicit surfaces that areC2

continuous and uses Morse theory to find the critical points
of the surface. The method follows the separatrix lines join-
ing the critical points to isolate disconnected components.

1. Introduction

Hypertexturing is a procedural technique proposed by
Perlin & Hoffert to add three-dimensional small-scale de-
tail to the surface of smooth objects [17]. It can be used
to model a large collection of materials such as fur, fire,
glass, fluids and eroded rock. As a procedural modelling
and texturing tool, hypertexturing can be regarded as an im-
provement over solid texturing [15]. Using hypertextures,it
becomes possible to actually deform the surface of an object
instead of merely modifying its material shading properties.

Following Perlin & Hoffert, we give here a definition
of hypertexture. An object is defined in three dimensional
space with anobject density functionD : R

3 → [0, 1],
which associates a density valueD(x) with every pointx

in space. The shape of the object can then be deformed
through the composition ofD with one or moredensity
modulation functionsfi : [0, 1] → [0, 1] such that the fi-
nal object densityH is given by:

H(D(x),x) = fn(. . . f2(f1(f0(D(x))))). (1)

The visualisation of a hypertextured object is a volume
rendering task. For every pixel, a ray must be marched by
taking a sequence of small steps and accumulating dens-
ity and opacity values along the way [10]. This rendering
method shows objects with a fuzzy appearance, which do
not have an exact surface separating an inside from an out-
side volume.

It is possible to increase the sharpness of the surface for a
hypertextured object by using again functiongα as the last
density modulation function in the composition sequence
(1) for H [17]. The sharpened hypertexture is:

Hα(D(x),x) = gα(H(D(x),x)) =

= gα(fn(. . . f2(f1(f0(D(x)))))). (2)

The gain functiongα pushes the density values in the
range[0, 0.5] towards0 and the values in the range[0.5, 1]
towards1. The gain0 ≤ α ≤ 1 controls the amount of
sharpening. Whenα = 1, gα becomes a step function,
switching from0 to 1 at the middle of the[0, 1] interval.
In this case, the hypertextured object becomes animplicit
surface. If we defineF : R

3 → [−0.5, +0.5] such that
F (D(x),x) = Hα=1(D(x),x) − 0.5, the surface of the
object with densityHα=1 will be the locus of points given
by the set{x ∈ R

3 : F (D(x),x) = 0}. The hypertextured
object is now a hypertextured implicit surface with a well
defined boundary, whereF > 0 is verified for points inside
the surface and, correspondingly,F < 0 for points outside.

Visualising a hypertextured implicit surface with ray
marching leads to a rendering method that is both inefficient
and unreliable. It is inefficient because too many samples



Figure 1. A sphere rendered with increasing amounts of hyper texture ( α = 0.1, 0.3 and 0.8).

of F must be taken along a ray, trying to find a transition
from F < 0 to F > 0. It is also unreliable because two
or more rootsF = 0 may easily pass unnoticed inbetween
two negative samples. Robust methods for finding the inter-
section between a ray and the surface use range estimation
techniques based on either interval arithmetic or Lipschitz
bounds, the latter case being used whenF is Lipschitz con-
tinuous [13, 9, 2]. Since, for ray-surface intersection pur-
poses, we are only interested in finding a transition from
negative to positiveF , it is no longer necessary to enforce
the restriction that density functions must return values in
[0, 1] and all ofD, H andHα (and, consequently,F ) can
now be defined fromR3 to R.

2. The Surface Splitting Effect

We illustrate the splitting effect of hypertextured sur-
faces with an example. Figure 1 shows three implicit
surfaces that have been generated by adding increasing
amounts of hypertexture. The function that generates these
surfaces is:

F (D(x),x) = D(x) + ε n(4x), (3)

whereD(x) = 1−‖x‖ defines an implicit sphere of unit ra-
dius andn is Perlin’s improved gradient noise function [16].
The amplitudeε of the hypertexture takes values of0.1, 0.3
and0.8 for the three surfaces in Figure 1. The caseε = 0.1
shows a surface with a small amount of perturbation relative
to the initially smooth sphere. This type of surface could
more easily have been modelled as a procedural displace-
ment map [6]. The caseε = 0.3 generates an object with
more pronounced surface features but which, from a topolo-
gical point of view, is still homeomorphic to a sphere. The
caseε = 0.8 generates an object with the interesting over-
hanging and arching features that only the implicit surface

approach can give. At the same time, it also causes the sur-
face to split, generating a cloud of small objects that are
seen floating at fixed locations around the main object in
the centre. Depending on the context, this surface splitting
effect may be desirable or not. If one is using hypertextured
implicit surfaces to model splashing fluids, for example,
then the surface splitting effect is actually beneficial. If,
on the other hand, one is trying to model a solid object with
a complex surface structure, e.g. a rock, the caseε = 0.8 of
equation (3) leads to physically non-plausible results.

The splitting effect places an upper bound on the amount
of hypertexture that can be added to an object while keeping
it as a topologically connected set. This bound depends on
the particular functionF that generates the surface and can
only be found by trial and error. It is not an uncommon prac-
tice, when an excessive amount of hypertexture has been ap-
plied over a solid object, to digitally remove disconnected
parts from the final rendering as a post-processing step.

In this paper, we propose a technique that allows us to go
beyond the upper amplitude bound that exists for connected
hypertextured surfaces by detecting and removing discon-
nected surface components other than the main surface. To
achieve this goal we rely on Morse theory to analyse the
topology of the surface. The surface connectivity, in par-
ticular, can be completely determined by studying the crit-
ical points of the functionF and the way they are joined
together. We apply our technique as part of a ray casting
algorithm for hypertextured implicit surfaces.

Section 3 presents two simple methods to solve the sur-
face connectivity problem and explains their limitations.
Section 4 explains the necessary concepts from Morse the-
ory that will be required in Section 5, where we present
our proposed algorithm. Section 6 shows results and Sec-
tion 7 presents our conclusions. Finally, Section 8 suggests
an extension of our algorithm that can be applied to implicit
surface polygonisers.



Figure 2. Two surface components incor-
rectly determined to be part of the main sur-
face. The arrows show the region growing
sequence, starting from the voxel on the bot-
tom left.

3. Alternative Approaches

A simple but inaccurate way to perform topological cor-
rection on hypertextured surfaces is to employ a voxel grid,
where the functionF (D(x),x) is sampled at the voxel
corners. A voxel is known to straddle the surface if the func-
tion changes sign at some of the voxel’s eight corners. One
can perform a discrete three dimensional region growing
process to segment the voxel space into disjoint volumes,
each enclosing a particular disconnected component of the
surface. If the original data is already discrete, e.g. a series
of MRI scans, then this is probably the best approach to
take. When generating an isosurface from the volume data,
this voxel-based method can be used to remove outlying
surface components that may be the result of measurement
error. In our case, we are interested in performing topolo-
gical correction ofprocedurally defined surfaces. Sampling
F (D(x),x) onto a grid implies loss of information unless
the function happens to be bandlimited and the sampling
frequency is above the Nyquist limit. This loss of inform-
ation leads to incorrect connectivity results, as shown in
Figure 2, which can occur for surface components that are
too small or too close to the main surface, relative to the
sampling distance.

Another possible approach is to first convert the implicit
surface into a polygonal mesh before performing any topo-
logy correction. Stander & Hart have presented a mesh-
ing algorithm for implicit surfaces that is guaranteed to pre-
serve surface topology [21]. Once the polygonal mesh has
been generated, one can perform region growing by jump-
ing across the edges shared by neighbouring polygons to
obtain a set of disjoint polygonal objects. One of these ob-

jects approximates the main implicit surface and the others
represent the outliers that should be eliminated. One ob-
jection against this approach is that it cannot be used for
direct rendering of implicit surfaces with ray casting – it is
only meaningful for applications where implicit surfaces are
converted to polygonal meshes and subsequently rendered
on a GPU board. Another objection is that it is wasteful of
CPU cycles since it takes time to correctly polygonise sur-
face components that are later found to be disconnected and
which must then be removed. Topology correction should
occur before the meshing process rather than after.

4. Morse Theory and the CW-Complex

Morse theory studies the behaviour of functions that are
defined over a manifold [12]. The theory was first intro-
duced to computer graphics by Shinagawa et al. and was
later shown by Hart to be relevant for the topological study
of implicit surfaces [19, 3]. When the theory is applied to
implicit surfaces, the manifold becomes the whole of the
R

3 space and the function defined over this space is our
functionF that generates the surface. Central to the Morse
theory is the notion of acritical point of F . A critical point
xC is such that:

∇F (D(xC),xC) = 0. (4)

A critical point can be further classified by studying the
eigenvalues of the Hessian matrix ofF atxC . The Hessian
matrix H{F} collects all the second partial derivatives of
the functionF :

H{F} =
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If F is C2 continuous then we have∂F 2/∂xi∂xj =
∂F 2/∂xj∂xi and the Hessian is symmetric. The spectral
theorem then guarantees that all three eigenvalues ofH{F}
will be real. Depending on the signs of the eigenvaluesλ1,
λ2 andλ3, sorted in increasing order, a critical point can be
classified as follows:

λ1 λ2 λ3 Type
− − − Maximum
− − + 2-saddle
− + + 1-saddle
+ + + Minimum



The type of a critical point gives an indication of the
topology of the surface around that point. For example,
maxima occur near the local centroids of the surface while
2-saddles occur at the points where two surface components
are joined together. In this paper, we only need to be con-
cerned with maxima and 2-saddles in order to characterise
the connectivity of the surface.

The case where one or more of the eigenvalues is zero
leads to adegenerate critical point. Morse theory breaks
down in these circumstances. Degenerate critical points,
however, are unstable and can easily be removed by intro-
ducing a small perturbation in the parameters defining the
function. A functionF that contains no degenerate critical
points is then said to be aMorse function. Morse functions
need to beC2 continuous, considering that both first and
second partial derivatives ofF are required by the Morse
theory. It is possible to relax this restriction and work with
C1 functions, provided that second derivatives are continu-
ous at least over the critical points [5].

By taking the gradient∇F , one obtains a vector flow
field whose structure is intimately related to the topology of
the implicit surface. From equation (4), the critical points
of the surface are also the stagnation points of the flow field.
A streamline of this field is a path that is obtained by fol-
lowing the local gradient vector, according to the ordinary
differential equation:

dx

dt
= ∇F (D(x),x). (6)

A streamline is called aseparatrix if it separates two
regions of the flow with different characteristics [7]. Sep-
aratrices are important as they also give information about
the topology of the surface. All the separatrices originate
and terminate at maxima ofF . For every separatrix there is
always a 2-saddle somewhere along its path. The separatrix
is locally tangent to thev3 eigenvector (associated with the
λ3 eigenvalue) at the 2-saddle.

Figure 3 shows a simple case of two implicit blobs con-
nected as a single surface. There are two maxima close to
the centroids of each blob and a 2-saddle at the junction
of the two blobs. The separatrix, in this simple case, is a
straight line segment joining the two maxima and passing
through the 2-saddle. In a more general situation the sep-
aratrix would be curvilinear. Knowing the positionxS of
the 2-saddle, it is possible to locate the two maxima sharing
this critical point by integrating equation (6) backwards and
forwards fromxS , following a direction that is initially co-
incident with thev3 eigenvector of the 2-saddle. It is also
possible to determine the connectivity of the two blobs by
checking the sign ofF (D(xS),xS). If this sign is positive,
the blobs are connected and the separatrix is known to travel
exclusively through the interior of the surface. If the signis
negative, the two blobs are disconnected and the separatrix
must exit the surface at some point.
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Figure 3. An implicit surface formed from two
blobs. The “ +” signs mark the two maxima
and the “ ×” sign marks the 2-saddle.

The separatrices defined byF form a network of lines
that partition theR

3 space into aCW-complex[4]. The
CW-complex is a data structure that encodes all the topo-
logy of the implicit surface. It consists of a disjoint parti-
tioning of the space into curved cells. The maxima are loc-
ated at the corners of these cells and the separatrices form
the edges of the same cells. Connectivity information can
be obtained by following only the network of separatrices
that are interior to the surface. This process will partition
the maxima into a number of separate sets, which reflects
the number of disconnected components of the surface.

5. The Topology Correction Method

The method for correcting the topology of hypertextured
implicit surfaces proceeds by identifying all disconnected
components of the surface. Of all the components detected,
the larger one is considered to be the main surface, which is
rendered as part of the ray casting algorithm. The remaining
surface components are ignored during ray-surface intersec-
tion tests. The detection of disconnected surface compon-
ents proceeds in two steps:

1. Build a set of all maxima and 2-saddles that are located
inside the surface.

2. Segment the previous set into disjoint subsets by fol-
lowing the separatrices from the 2-saddles towards the
maxima.

Steps 1 and 2 are performed before any surface render-
ing occurs. The outcome of step 2 is a sequence of sets
Si, with i = 1, 2, . . . , N , where each set contains all the
maxima that exist inside some particular component. The
numberN of sets is equal to the total number of surface
components. One of these sets is the main set, correspond-
ing to the main surface to be rendered. During a ray-surface



push bounding boxV0 onto stack;

while stack not empty

pop voxelV from stack;

let xV = centre ofV ;
let y = F (D(xV ),xV );
let r = radius of bounding sphere forV ;

if y < 0 and|y|/λ > r
continue;

let XV = interval extent ofV ;

if ∇F (D(XV ),XV ) 6∋ 0

continue;

if r < ǫ
Test V ;
continue;

subdivideV ;
push children onto stack;

Figure 4. The Subdivision algorithm.

intersection test, the setSi that corresponds to the surface
component to which the intersection point belongs is iden-
tified. If this is not the main set, the intersection point is
ignored and another point is searched further along the ray.
The following sections describe the relevant steps of the to-
pology correction method.

5.1 Locating Critical Points

Location of critical points is made by recursive subdivi-
sion of an initial bounding box that surrounds the surface.
For every cubical voxel resulting from this subdivision, a
series of tests is made to determine, first, if the voxel con-
tains part of the surface and, second, if a critical point may
be contained within it. If these tests pass, the voxel is sub-
divided and the children are tested in turn, down to a min-
imum specified voxel size. Similar techniques to locate crit-
ical points by spatial subdivision have previously been used
by Stander & Hart and Hart et al. for implicit surface mesh-
ing algorithms [21, 5].

To check if a voxel, centred at locationxV , is part of any
of the components of the surface, the following condition is
first tested:

F (D(xV ),xV ) > 0. (7)

If this condition is true, the voxel is either inside or strad-
dling the surface. If, on the other hand, the condition eval-
uates to false, the voxel may still intersect with the surface.
To check for this, we use a second test that is similar to the
one performed by Kalra & Barr for their LG surfaces [9]:

|F (D(xV ),xV )|/λ > r, (8)

whereλ is a Lipschitz bound ofF andr is the radius of
the smallest bounding sphere, centred atxV , for the voxel.
Test (8) requires thatF be Lipschitz continuous but this is
a trivial consequence of the fact thatF is alreadyC2 con-
tinuous. The Lipschitz bound is also necessary during the
rendering stage since we use the sphere tracing method of
Hart for that purpose [2]. Test (8) guarantees that the func-
tion does not change sign inside the voxel. If this test holds
and if F < 0 at the pointxV we know that the voxel is
entirely outside the surface and can be discarded.

A voxel is checked for the existence of critical points
once it is known to be either inside or straddling the surface.
This is achieved by evaluating the function gradient with
interval arithmetic [14]. LetXV be an interval vector that
spans the spatial extent of the voxel. The test is:

∇F (D(XV ),XV ) ∋ 0. (9)

If the null vector0 is contained inside the interval vec-
tor for ∇F , there is the possibility that one or more crit-
ical points may be contained in the voxel. The voxel is
then either subdivided or an explicit test is made for the
presence of maxima and 2-saddles, once a minimum voxel
size has been reached. Figure 4 shows in pseudo-code the
Subdivision algorithm that implements the sequence of
tests for each voxel. The voxels are kept in a stack, which
is initialised with the bounding boxV0 for the object.

Because of the conservative properties of interval arith-
metic, it often happens that voxels neighbouring a voxel that
contains critical points are also incorrectly flagged by con-
dition (9) to contain such points. TheTest routine, that is
invoked in the listing of Figure 4, performs the final stage
in the search for critical points, weeding out the false pos-
itives output by (9). We assume at this stage that a voxel is
small enough to contain only one critical point. This should
be true provided that the thresholdǫ for the minimum voxel
size is appropriately chosen. Starting from the voxel centre
xV , the following sequence of multi-dimensional Newton
iterations is performed towards the position of the critical
point:

xi+1 = xi + δxi,

H{F}δxi = −∇F.
(10)

Both the Hessian matrixH{F} and the gradient∇F
are evaluated at the pointxi to solve forδxi. The itera-
tion is stopped if the sequence of pointsxi goes outside
the voxel. Otherwise, the sequence will converge to some
point xC inside the voxel where a critical point is known
to exist. If the critical point is inside the surface such that
F (D(xC),xC) > 0, and if it is a maximum or a 2-saddle
(which is found after the eigenvalues ofH{F} at xC have
been computed), the point is added to a setS of critical
points interior to the surface. Each element inS stores the
following information regarding a critical point:



for everyxC ∈ S by decreasing
order ofF (D(xC),xC)

if xC is a 2-saddle

let xi,xj be maxima reached fromxC ;
let Si ∋ xi andSj ∋ xj ;

if Si 6= Sj

create Sk = Si ∪ Sj ;
discard Si andSj;

else
create Si = {xC};

Figure 5. The Segmentation algorithm.

• The positionxC .

• The valueF (D(xC),xC), which must be positive.

• A flag indicating ifxC is a maximum or a 2-saddle.

• The eigenvectorv3 if xC is a 2-saddle.

When theSubdivision algorithm completes, the set
S will contain all the maxima and 2-saddles that were found
inside every disconnected component of the surface.

5.2 Locating Disconnected Components

The setS is segmented into the sequenceSi, where each
setSi contains the maxima for one surface component. The
algorithmSegmentation is shown in Figure 5. Each
critical pointxC of S is considered at a time, by decreas-
ing order ofF (D(xC),xC). If xC is a maximum then
a new setSi = {xC} is created. If, on the other hand,
xC is a 2-saddle, the two maximaxi andxj connected to
it are determined by integrating the separatrix backwards
and forwards with equation (6), starting fromxC and go-
ing initially along the direction of thev3 eigenvector for the
2-saddle. The setsSi andSj that containxi andxj , re-
spectively, are then joined together to form a new set. The
2-saddle is ignored, however, if bothxi andxj are found to
be part of the same set.

OnceSegmentation completes, all disconnected sur-
face components will have been identified through theSi

sets. As a final step, the indicesi are reassigned so that
they run sequentially fromi = 1 to i = N , whereN is the
number of disconnected components. The main surface is
identified by the setSm that contains the largest number of
maxima, where the indexm is:

m = max
i

#Si. (11)

This criterion for selecting the main surface to be
rendered may fail for objects with an excessively large

xI

xM

Figure 6. The intersection between a ray and
the surface. The streamline originating at the
intersection point is shown as a dotted line.

amount of hypertexture. If there is too much hypertexture,
the object will break into a cloud of many smaller objects
of approximately equal size. It is not clear in these condi-
tions which of these smaller objects should be selected for
rendering. Our purpose is to study hypertextured functions
F (D(x),x) where the geometry of the original objectD(x)
is still discernible after the hypertexture has been applied.
The criterion (11) will then identify the correct surface com-
ponent for rendering since the majority of the maxima will
be contained inside the main surface – only a smaller num-
ber of maxima will exist outside the main surface, being
responsible for the disconnected fragments.

5.3 Computing Ray Intersections

The computation of ray intersections with the implicit
surface is performed with the sphere tracing algorithm [2].
Once an intersection pointxI has been found along a ray,
a test is performed to determine if it belongs to the main
surface or not. To that effect, a streamline is followed with
equation (6), starting fromxI , which will converge towards
some maximumxM interior to the surface. Figure 6 shows
an example. The streamline starts off along a direction that
is initially orthogonal to the implicit surface and converges
towards the pointxM . Having found the maximumxM ,
the setSi to which it belongs is retrieved. If this is the
main setSm, the intersection pointxI is rendered, other-
wise sphere tracing continues along the ray to try to find
another intersection point further along. A small increment
is added to the length of the ray, up to the intersection point
xI , to cause the sphere tracing algorithm to ignore that point
and converge to the next available intersection point. Fol-
lowing every intersection that is found not to be part of the
main surface, the connectivity test need not be performed
again for the next intersection point, given that this will be
the exit point of the ray from a disconnected component.



5.4 Tracking Streamlines

The path of a streamline needs to be tracked as part of the
ray-surface intersection procedure of Section 5.3 and as part
of theSegmentation algorithm of Section 5.2 where, in
the latter case, the streamline is also a separatrix of the sur-
face. Special care needs to be taken when performing this
path tracking procedure because the endpoint of the stream-
line (and also the starting point, in the case of a separatrix)
is a critical point where∇F = 0 occurs.

When tracking a separatrix, the path originates from a
2-saddle located at some pointxS . If one were to integ-
rate equation (6) with the initial conditionx(0) = xS , the
path would never leavexS since this is a stagnation point
of the flow. To start off the integration from a 2-saddle, the
following initial condition must be used instead:

x(0) = xS ± ǫv3, (12)

whereǫ is a small displacement. The displacements of±ǫ
along thev3 eigenvector will enable the integrator to move
away fromxS and to converge towards the two maxima that
connect with the 2-saddle through the separatrix. The max-
ima, however, are also stagnation points and path tracking
would have to proceed fromt = 0 up tot = ±∞ if the two
maxima were to be reached exactly. In practice, one pro-
ceeds with the integration for as long as possible and then
finds the maxima that are nearest to the points where the
integrator left off.

We use thelsode ordinary differential equation solver
from the ODEPACK Fortran package to perform path in-
tegration [8]. When given an upper limit of+∞ or −∞,
lsode inevitably finishes with an error status as it tries to
get close to one of the maxima. It also returns the farthest
pointx(t) that could be computed along the path. By con-
trolling the numerical precision requested fromlsode, it
is possible forx(t) to be as close to the correct maximum
point as desired. We then search among all the maxima of
all theSi sets for the one that is closest tox(t), thus identi-
fying the particular setSi to which the separatrix has con-
verged. The procedure is similar when tracking streamlines
as part of the ray-surface intersection tests except that we
are now only interested in following the path fromt = 0
to t = +∞ and the starting conditionx(0) = xI is used,
instead of equation (12).

Currently, the search for the maximum point that is
nearest tox(t) is performed exhaustively by computing the
squared distance to every possible maximum. This search
method has linear time complexity and can become slow for
a surface with a large number of maxima inside. Although
we have not implemented it for this paper, it is possible to
perform the search for a maximum in average logarithmic
time with the help of akd-tree [1, 20].

6 Results

We demonstrate the application of the topology correc-
tion algorithm with hypertextures that are generated from
scaled sums of a basis procedural noise function. The hy-
pertexture function is:

F (D(x),x) = D(x) + 0.8
L−1
∑

i=0

2−0.8in(2ix). (13)

The functionD generates a sphere of unit radius, as
in the example of Figure 1, andn is a sparse convolu-
tion noise function [11]. The summation in (13) models a
fractional Brownian motion process with a Hurst parameter
H = 0.8 [18]. The number of layers of noise that are added
to the sphere is given byL. As this number increases, the
surface of the sphere becomes increasingly more irregular
and, in the limit, attains a fractal dimension of3−H = 2.2.

Figure 7 shows the network of separatrices for a hyper-
textured object computed from equation (13), withL = 1,
after theSubdivision andSegmentation algorithms
have been applied. The network is shown superimposed
over an image of the object. This network represents a par-
tial visualisation of the CW-complex for the object’s sur-
face since only the separatrices that are inside the surface
are shown. Maximum points are also shown as dots and are
located at the endpoints of one or more separatrices. Sev-
eral of these points, however, are isolated and correspond
to small disconnected surface components that can be seen
surrounding the main surface.

Table 1 lists the number of maxima, 2-saddles and dis-
connected components of the surface as the number of noise
layers increases. These numbers follow a roughly geomet-
rical progression withL, which causes theSubdivision
algorithm to become increasingly less efficient as it needs to
identify an ever denser cloud of critical points. The applica-
tion of the topology correction method to a fractal hypertex-
ture is, therefore, impractical since a surface needs to have
five or more layers of noise to become recognisably fractal.
Figure 8 shows the casesL = 1 andL = 3 of the hyper-
texture generated from equation (13). The original surface
is first shown, without any topological correction. The dis-
connected components are then identified and visualised in
red. Finally, the same disconnected components are ignored
during the ray-surface intersection procedure.

A more efficient method than spatial subdivision for the
localisation of critical points was proposed by Wu & de
Gomensoro Malheiros for implicit surfaces that are made
from sums of radial basis functions [22]. With this method,
simple heuristics are used to estimate the position of the
critical points. The application of several relaxation steps
then causes the critical points to converge towards their cor-
rect positions. Sparse convolution noise is an example of



Figure 7. The network of separatrices and
maxima interior to a hypertextured surface.

a hypertexturing function that could use the improved loc-
alisation method by Wu & de Gomensoro Malheiros since
it consists of the sum of an infinite number of radial basis
functions that follow a Poisson-disc distribution in space.
The same method, however, cannot be applied to Perlin
noise functions. For that reason, we have adopted spatial
subdivision as our critical point localisation method, which,
although being less efficient, is quite general and can be ap-
plied to anyC2 or evenC1 function. Spatial subdivision
is also an easily parallelisable algorithm where disjoint re-
gions of space can be assigned to different CPUs.

A minimum voxel sizeǫ = 10−8 was used in the
Subdivision algorithm to obtain the results shown in
this section. The iterations (10) for the multi-dimensional
Newton root finder were stopped when‖xi+1 − xi‖ <
10−12. After determining the connectivity information, the
component setsSi, with i = 1, . . . N , were stored to a
file so that they could be reused for different renderings
of the same surface. This is especially helpful when per-
forming computer animation as theSubdivision and the
Segmentation algorithms need to be run only once for
each surface.

7 Conclusions

Morse theory provides all the connectivity information
about an implicit surface that is necessary to determine how
many components it is split into. This property of Morse

L Maxima 2-saddles Components
1 214 304 58
2 1006 1585 182
3 8408 4567 418

Table 1. Statistics for a hypertextured sphere
with an increasing number of layers of noise.

theory finds application in the hypertexturing of implicit
surfaces as it enables disconnected components other than
the desired main surface to be detected and removed during
rendering. In this way, one can add much greater amounts
of hypertexture than previously possible to a solid object
without the inconvenience of fracturing it into many smal-
ler objects. Our technique can be applied toC2 continu-
ous hypertextured surfaces generated from equation (2) for
the caseα = 1. In the most general situation, our tech-
nique can be applied to anyC2 continuous implicit surface
whenever it may be desirable to identify and isolate discon-
nected components of the surface.

The topological correction method is robust and will de-
tect any disconnected component, no matter how small or
how close it may be to the main surface. This robustness
is again a consequence of the application of Morse theory.
The accuracy of the method is only limited by the numerical
tolerance factors and threshold values that are chosen for the
algorithms described in the paper. We have used values that
are equal to or smaller than10−8, giving the topology cor-
rection method an overall accuracy similar to that of single
precision floating point arithmetic.

Although the proposed method can guarantee that a hy-
pertextured implicit surface is topologically connected,it
cannot guarantee that it is physically stable. Consider the
case of a surface component that is attached to the main
surface by a very thin bridge of material. If the rigidity
of the material is not sufficient, the application of even the
smallest force to the component will cause it to break at
the junction point. This has consequences if one tries to
use hypertextures to model terrain landscapes, for example,
as some of the terrain features, although connected, may
be unstable under the action of gravity. The modelling of
hypertextured surfaces that are both connected and stable
would require stress analysis tools and is beyond the scope
of this paper.

8 Further Developments

The topology correction method that was here presented
in the context of a ray casting rendering algorithm for impli-
cit surfaces can, with little extra coding effort, be adapted to
work in the context of the topologically correct polygonal
meshing algorithm of Stander & Hart [21]. As a prelimin-



Figure 8. A hypertextured sphere with one layer (left) and th ree layers (right) of a sparse convolution
noise function. Top row shows original surfaces. Middle row shows disconnected components in
red. Bottom row shows surfaces after topological correctio n.



ary step of that algorithm, all the critical points of a surface
are first located. The polygonal mesh that approximates the
surface is then progressively inflated until it reaches its cor-
rect position. Whenever the mesh passes through one of the
critical points, an appropriate mesh correction operationis
performed to account for the topology change that has just
occurred.

To perform topology correction for hypertextures as part
of the method by Stander & Hart, it is necessary to in-
clude all critical points in the component setsSi during
the Segmentation algorithm, besides the maxima and
2-saddles that are already included. Just as before, all
critical points are considered in decreasing order of their
F (D(x),x) values. To include a 1-saddle, a streamline is
followed towards one of the maxima. The streamline must
be initially tangent to some arbitrary vector that is con-
tained in the plane formed by thev2 andv3 eigenvectors
of the 1-saddle. The maximum that is found at the end
of the streamline then identifies the setSi to which the
1-saddle belongs. To include a minimum, a streamline is
followed which can be initially tangent to any desired dir-
ection around the minimum.

Once all the components sets have been identified, the
main setSm is chosen according to any preferred criterium
and passed to the meshing algorithm. In this way, a poly-
gonal mesh will only be computed for the main surface
component. No effort will be wasted polygonising surface
components that have already been found to be disconnec-
ted.
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