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Abstract

Faces can be modelled using a number of techniques. Existing faces

can be transferred to a digital form using equipment such as laser

scanners. New faces can be constructed using commercial modelling

tools or using specialist software such as parameterised based sys-

tems. This thesis presents a technique for modelling and posing 3D

face models using an intuitive sketch-based approach. In contrast

to existing sketch-based systems that manipulate faces, it gives the

user an unhindered and natural sketching experience as there is no

need to sketch helper strokes, incrementally alter parameters, or define

which features are being sketched in order to aid the modelling/posing

process. A Non-Photorealistic Rendering (NPR) technique creates a

sketch-like representation of the 3D faces. Hidden Markov Models

(HMMs) map a sequence of sketched points to the NPR data which

is used in a maximum likelihood framework to generate a face model

based on the observed data. It is shown that this method can produce

a range of novel 3D faces for the purposes of modelling new facial fea-

tures, as well as quickly posing existing features to create key poses

in an animation sequence. Two user evaluations are presented here.

The first evaluation verifies that the use of contour data of a face can

be used to reconstruct the full face mesh while preserving the facial

features. The second evaluation demonstrates how this sketch-based

technique can be used to recreate faces from description by novice

users.
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Chapter 1

Introduction

There is an ever-growing need for efficient 3-dimensional object modelling in areas

such as media, entertainment, gaming, architecture, and engineering. Traditional

commercial software requires skillful labour to produce a range of editable meshes

through low-level modelling and deformation techniques. This thesis focuses on

the modelling of face models, which have a particularly complex structure. Cre-

ating faces is therefore a time consuming process, which relies on extensive mod-

elling experience and anatomical knowledge to produce realistic and usable face

models.

In recent years, both researchers and industry have introduced methods to

make the face modelling process easier and more efficient for the user, with high-

level tools based on prior knowledge and predetermined rules. The prior knowl-

edge can range from a simple collection of model parts in the form of morph

targets to a probabilistic generative model trained on face data [ABHS06]. In

this thesis, a modelling process based on sketching is investigated.

More powerful 3D accelerated graphics hardware in tablet computers has given

rise to a growing interest in 3D sketch-based modelling interfaces where they can

typically be classified as gestural interfaces, or reconstructional interfaces. Ges-

tural interfaces mimic a traditional modelling software where an object is created

in steps using modelling operations in the form of simple gestures [ZHH96]. A

desirable property of reconstructional systems is the ability to completely mask

the underlying mechanism needed to create a 3-dimensional object. This allows

a user to interact with the interface as he would a piece of paper where he draws
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an object at its final stage, and the system tries to infer the meaning behind

the sketched strokes and consequently reconstructs a 3-dimensional mesh that

fits the strokes. Reconstructional interfaces can be further divided into free-form

based methods such as Teddy [IMT99], and template based methods which are

of particular interest for this work. They describe predetermined object classes

using templates where a single template describes the features of an object class,

and how the features can be reconstructed and assembled to build a complete 3D

structure. Faces can be thought of as a class of templates as they all share the

same facial features. A face template would therefore describe how to create a

range of different features to produce different individuals.

Template based sketching interfaces need to interpret the meaning of any

sketched strokes through classification where ambiguity plays a major role. A

single arbitrary stroke is often hard to classify as it can mean any number of

things. For example, a simple curve meant to represent an eyebrow can equally

be interpreted as the upper part of an eye or lip. This ambiguity can be reduced

by sketching more than one stroke where the strokes’ relative context aids the

classification (such as [SvdP06]), or sketching a single stroke in relation to an

existing scene. Another ambiguity issue lies in the fact that the sketching plane

is 2-dimensional. The third dimension representing the depth is missing and

therefore has to be determined where the solution space is infinite. Applying

restrictions and assumptions in order to map a 2-dimensional sketched point to a

3-dimensional coordinate is one of the key elements in any sketch-based interface.

1.1 Aims

The main aim of this thesis is to investigate the use of a template based sketching

interface for face modelling by employing a generative model trained on 3D face

meshes to act as a face template. This requires investigating ways to represent

the training data in a low dimensional format which captures facial features from

a sketch perspective. The nature of this low dimensional representation will

determine the level of sketchability, i.e. what features can be sketched, and how

accurately they can reflect the user’s strokes.
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In driving the modelling process with sketched strokes, a key element is to

develop an efficient and accurate approach to map the strokes to this sketch-like

representation. The goal is to adopt a what-you-sketch-is-what-you-get (WYSI-

WYG) sketching approach, where the user does not set any parameters, change

modes or sketch additional strokes to aid the modelling process. Neither does

the user have to specify which facial feature he is going to sketch. Instead, every

stroke is treated as a new shape for a facial feature, where the system automati-

cally determines which feature the stroke applies to.

The process of preparing face models as training data includes gathering al-

ready standardised faces as well as developing a framework to register unstan-

dardised data such as laser scanned faces. Standardising face models offers the

possibility of producing a novel data set without relying on external databases.

Alternatively it can be used to incorporate novel face models into an existing

data set with the purpose of expanding the variety of features.

Using a training set made up of facial poses instead of models of different

individuals could offer the possibility of producing key poses through sketching.

Some recent work involves posing 3D face models by sketching facial expressions

[CJ06; LCXS07; SMND08]. This thesis investigates how the modelling approach

can be adopted to create a sketch-based animation system by using a training set

consisting of different facial expressions and visemes, where a viseme generally

corresponds to the temporal midpoint of the acoustic segment of a phoneme in a

particular language or dialect. This poses new problems as the sketched features

in the modelling approach are always in the neutral pose (mouth closed, eyes

open), but they can take different shapes in the animation approach.

1.2 Main contributions

The novel contributions of this thesis are:

• A registration method to standardise laser scanned models. A Radial Basis

Function Network uses a small set of manually marked feature points to de-

form a generic model to approximate the scans. The smooth, approximated

models are then registered to fit the scans accurately using depth maps.
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• A statistical method to map sketched strokes to Feature Point (FP) clouds

where each FP labels a facial feature. A Gaussian mixture model is fitted

on the FPs where a single mixture component attaches itself to a FP cloud.

Mapping strokes to the FPs is achieved by calculating the responsibility of

each component for the stroke point coordinates. A sketch-based modelling

method using this technique was published as [GM08], but is used in this

thesis in Chapter 5 for the purposes of posing face models. This work has

also been demonstrated at a Game Republic Student Showcase in Bradford,

2008, where it won first prize in the Games Technology category.

• A heuristic grading method for mapping sketched strokes to a contour cloud

for face models. The method uses a scoring function based on weighted met-

rics which determine a stroke’s context and preserve the continuity of the

feature’s vertex structure. This method could be generalised to provide a

mapping from sketched strokes to any Non-Photorealistic Rendering (NPR)

data set describing different classes of objects.

• A Hidden Markov Model (HMM) method for mapping sketched strokes to

a contour cloud where the probability matrices are based on the metrics

used in the heuristic approach. An additional continuity metric penalises

large jumps between contours by measuring the vertex path length between

two contours using a regionally limited version of Dijkstra’s algorithm. The

strokes are treated as a sequence of observations which is used to find the

hidden (latent) states representing the contours, using the Viterbi algo-

rithm. Similarly to the heuristic approach, this technique could be gener-

alised to handle other objects than face models.

• A statistical mapping technique to deform a mesh using a small set of fea-

ture points. This is a common issue in computer animation where labelled

markers are used to drive the face model’s performance. By definition, a

low dimensional feature vector can only represent a small portion of a high

dimensional face mesh. Geometrical methods try to capture the remaining

areas using blending functions which are not guaranteed to produce natural

results, and fail to capture the mesh details. Using a hierarchical statistical
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model trained on known poses, a more satisfactory mapping is achieved.

This statistical mapping is adapted to produce correlation between face

segments. This work was presented in [GS09].

1.3 Chapter overview

Chapter 2, Background: Modelling and Sketching Techniques, contains an overview

of methods to create faces 3-dimensional face models in particular, and sketch-

based modelling interfaces. 3D face models can be created through numerous

approaches such as traditional modelling techniques and commercial packages,

by recording real subjects, blending morph targets, or using a generative model.

Sketching interfaces typically fall into one of two categories: Gestural interfaces,

and reconstructional interfaces. The chapter focuses on the latter one.

Chapter 3, Preparing Training Data, describes two alternatives to gathering

training data. The first option is to use a generative model to create a stan-

dardised set of faces The second option is to manually standardise a set of laser

scanned models by replicating them using a standardised model. The advantages

and disadvantages of both methods are discussed.

Chapter 4, Modelling Faces by Sketching, introduces techniques to map 2-

dimensional strokes to 3-dimensional face data, whereby the act of sketching

drives the modelling process. This involves using an inverse NPR method to cre-

ate a sketch-like representation of known faces, where it is mapped to sketched

strokes through a heuristic grading approach, or alternatively using Hidden Markov

Models (HMMs). The maths and methods behind the generative models em-

ployed in this thesis are explained as well as how they are applied to the training

set to perform novel face generation and feature correlation. The inverse NPR

approach is justified, and examples of successfully generated models using simple

strokes are presented. The technique presented in this chapter is evaluated using

novice users where they were asked to perform two tasks involving sketching a

model with specific facial features.

Chapter 5, Posing Faces by Sketching, uses a similar approach to the one

provided in Chapter 4 to pose an arbitrary face model, generating different ex-
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pressions and visemes, albeit using a simplified training set and mapping. The

poses serve as keyframes used to create an animation sequence.

Chapter 6, Conclusions, presents the conclusions and directions for future

work.

Appendix A, Polygon File Formats, contains information detailing the struc-

ture of the laser scan data, and how it is stored in a simpler, more efficient format

in this thesis.

Appendix B, Calling Matlab from C++, explains how to use the vast number

of vector based built into Matlab within a C++ program through an external

Matlab engine.
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Chapter 2

Background: Modelling and

Sketching Techniques

It is important for this project to understand what techniques are available today

to create 3D faces, and how they can be combined with sketch-based methods to

derive at an appropriate solution to sketching 3D faces. Section 2.1 goes through

methods for creating faces and determines what we can learn from that to aid with

the sketching process. Section 2.2 gives an overview of sketch-based interfaces,

focusing on the work most relevant to us and how it links to methods for creating

face models. We conclude the chapter with Section 2.3 which details research

methods that offer sketching capabilities to create or manipulate 3D faces.

2.1 Creating faces

Techniques available to create faces on a computer are numerous and choosing

the appropriate one often depends on what the goal is, and what resources are

available. In many cases a combination of methods are needed to deliver the

desired outcome. The range of methods can be thought of as a spectrum, where

at one end are methods that are primarily automatic such as 3D laser scanners

where the subject is physically recorded. At the other end are methods that

require a lot of manual labour, for instance creating a face using tools available

in commercial modelling software. While the latter approach can generate very

7
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efficient and flexible models, albeit not necessarily anatomically accurate, it re-

quires expensive software and extensive modelling skills. The former method

creates very accurate models, but it can only generate faces that physically exist,

requires expensive equipment, and the models have to be cleaned up and adapted

to gain the usability and flexibility of a custom made model.

Substantial amount of research has gone into creating applications that lie be-

tween these two extremes where they try to capture some automatic-based as-

pects to make the application easy to use for a novice user, while maintaining

the flexibility of a manual-based solution. This is accomplished by limiting the

application scope to faces only, and utilising prior knowledge of faces to create

high level tools. We will discuss the range of methods by categorising them into

three topics where the main focus will be on the last one:

• Modelling and editing faces

• Capturing faces automatically

• Building faces from prior knowledge

2.1.1 Modelling and editing faces

A 3D face can be modelled or edited using any 3D commercial software such as

Maya, 3D Studio Max or Lightwave. The faces are generally created using patch

surfaces, quad polygon modelling with subdivision smoothing, or non-uniform

rational B-splines (NURBS) surfaces [Wat99]. It is important when modelling

the face to have the polygons or patches flow naturally based on the human face

structure and muscle shape (see Figure 2.1). It makes sure the face mesh is opti-

mised with regards to the number of total polygons, and facial expressions look

more natural [FLS+07]. Polygon modelling (see Figure 2.2) dates back to Parke

[Par72] as one of the earliest attempts to digitise a face into a 3D model.

Similarly, existing models can be altered by moving the patch control points,

polygon vertices, or by applying deformation techniques such as Free-Form de-

formation (FFD) [SP86]. Generally face models are stored as a set of vertices
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and their polygon connectivity information. Although using this kind of software

can be used to generate any model, it is time consuming, and it requires rigor-

ous training in using intricate tools and operations which in most cases are not

intuitive.

Figure 2.1: Modelled polygons should

follow natural lines on the face (wait-

ing for permission to use image from

Ballistic Publishing [FLS+07])

Figure 2.2: Polygon modelling follow-

ing the natural lines and loops based

on muscle movement (screenshots from

www.computerarts.co.uk)

Z-Brush1 and Autodesk Mudbox2 take a different approach to modelling and

editing 3D objects that is more intuitive from an artistic point of view. The

user generally works with an existing object or a suitable primitive, and uses a

brush tool directly on the object to edit or add to it. The main brush operations

are pulling/adding and pushing/removing. The brush size can vary to apply to

different tasks. A large brush with pull/add is used to construct large sections

like a neck, whereas a small brush is useful to add details such as pulling out

eyebrows, or using push to create wrinkles and other details. Figure 2.3 shows

a popular method of creating a 3D head from scratch using Z-Brush taken from

3DLinks3. In step 1 the user has created a 3D sphere and started pulling out

1http://www.pixologic.com
2http://www.autodesk.com
3http://www.3dlinks.com
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some basic facial features. Step 2 and 3 continue to pull out and form the main

features until the user is satisfied with the overall shape. In step 4 the model

complexity (vertex count) is increased and smoothed to allow finer details to be

modelled.

Figure 2.3: Modelling a head using Z-Brush (screenshots from Z-Brush [1])

Z-Brush and Mudbox are versatile and powerful tools, making it easy to tweak

and add realistic details to face meshes. However, it requires a great deal of skill

to create an arbitrary face or to make substantial changes to facial features. Since

the process is unconstrained and free-hand it offers no guarantee of anatomical

correctness.

Poser4 also offers push/pull editing tools to create new morph targets by

changing existing faces. Again the brush size can be changed to alter the size of

affected area (see Figures 2.4 and 2.5). The area affected by the brush is shown

before it is applied where red specifies the maximum influence (push/pull). Figure

2.4 shows how the cheek bones can be altered by applying a medium sized brush

and then mirroring the effect. Figure 2.5 shows how to paint a crease by using

a small brush. This technique is useful to make small changes to a face but it

is not suitable for making large changes or constructing some features as it does

not offer addition/removal of vertices.

N-Sided Quidam5 has sculpting tools that build on the same brush concept.

The user selects features from a library and then is able to edit them by moving

polygons around where the polygons affected are determined by the brush size,

4http://www.smithmicro.com
5http://www.n-sided.com
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type, and location.

Figure 2.4: Large brush size to alter

cheek (screenshots from [4])

Figure 2.5: Small brush size to paint a

crease (screenshots from [4]

Blacksmith3D Suite6 differs from the other brush-based modelling interfaces.

The affected area is painted first with a brush tool (see painting the nose in

Figure 2.6), and then a number of transformations can be applied to the painted

region. They include moving the selection in the plane of the viewport (Figure

2.7), extrusion, rotating, scaling, bulging and flattening.

Figure 2.6: Painting a selected area

(screenshot from [6])

Figure 2.7: Transforming selected area

(screenshot from [6])

6http://www.blacksmith3d.com
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Nealen et al [NSACO05] offer contour sketching to create creases, ridges and

ravines on any surface using Laplacian transformations. Laplacian coordinates

are a simple form of differential coordinates where a vertex is represented by the

difference to the centroid of its neighbours. By rotating the Laplacians in the

region of the sketched contour by a specific angle with respect to an angle defined

by a segmentation around the contour, a ravine can be created to add a cheekbone

on a face model (see Figure 2.8). Additionally it is possible to alter features using

silhouette sketching. This is done by first specifying the area of interest on the

surface. Then after finding the original silhouette, a new desired silhouette is

sketched to deform the object, where the sketched silhouette is interpreted as

linear constraints when resolving the system to obtain the updated model (see

Figure 2.9).

Figure 2.8: Sketching a strong cheek-

bone using a contour (image courtesy

of Nealen and Alexa [NSACO05])

Figure 2.9: Silhouette sketching to al-

ter shapes (image courtesy of Nealen

and Alexa [NSACO05])

2.1.2 Acquiring facial geometry from subjects

Faces can be created by transferring information directly from physical entities

such as a real person, photograph or sculpture. This is done by measuring the

source either manually, semi-automatically or automatically. Digitisation is the

use of a 3D locator device and involves measuring the face by marking points

by actually touching it. That introduces a problem because flesh is a flexible
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tissue and can deform when touched resulting in an unwanted variance in data

accuracy.

In contrast, photogrammetry involves measuring the face without touching

it. Instead it uses one or more pictures to construct a 3D head. Parke [Par72]

drew a grid on a real face and took two orthogonal photographs from front and

side which was then used to match up vertices to calculate the 3D coordinates.

Akimoto et al. [ASW93] and Ip and Yin [and96] offer automation by identifying

typical facial features on photographs and adapt a generic model to match the

position and shape of the features. Pighin [PHL+98] relies on manually labelling

a series of photographs with feature points and then using scattered data interpo-

lation to warp a generic face to fit the desired face. The shape is further refined

using correspondence curves between facial vertices and image coordinates. Blanz

[BV99] uses a database of laser scanned heads to construct a statistical face model

using a morphing function as a linear combination of the 3D scans. Construct-

ing an arbitrary model using a photograph is then a mathematical optimisation

problem.

The face can be measured automatically using 3D laser scanning where it

is stored as a 3D point cloud. The cloud is very dense and tends to suffers at

concave areas and the polar regions. The final stage generally involves cleaning up

unwanted artefacts and polygonising the point cloud. Laser scanned data is used

in a number of applications to achieve realistic models and animation [NLE+99;

KHYS02; BPV06]. Issues concerning laser scanned faces and a proposed process

of standardising is discussed in Chapter 3.

Williams [Wil90] handles missing data by using recursive blur filtering to

create a smooth surface where the missing data is replaced with smooth neigh-

bourhood estimates. Lee et al. [LTW95] fits the scanned data to a generic mesh

using determined feature points to get a clean mesh of managable detail to be

able to animate it efficiently.

Ypsilos et al [YHR04] and Zhang et al[ZSCS04] measure a face automati-

cally by projecting a lighting pattern on the face and recording it using multiple

cameras to calculate the point cloud, but as with laser scanning they require a

post process to clean up the scanned data and make it usable for a practical

application.
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Dimensional Imaging7 uses Passive Stereo Photogrammetry to automatically

generate a 3D model using 6 digital cameras where 3 (2 monochrome and 1

colour) are located on either side of the face. Two range maps are created using

the stereo information obtained from the corresponding monochrome cameras on

the left and right side. Each range map is first re-projected onto the image co-

ordinates of its associated colour image. They are then re-projected and merged

into a single 3D point cloud which is polygonised [UGB06].

A non-existing face cannot be created using these methods unless a physical

sculpture is created first using e.g. clay or plaster which is then recorded using

the scanning methods above.

2.1.3 Building faces from prior knowledge

The most common approach to creating high level modelling applications is to

limit the application’s scope to a single class of objects, and supply it with knowl-

edge of how these objects look like, and how it can be used to create new objects.

It is important the prior knowledge can be tapped into through an intuitive and

flexible interface to allow a user to quickly and accurately create the variation of

the object he is after.

2.1.3.1 Building from parts

A straightforward way of building a face from prior knowledge is to store a number

of individual facial features in a library and blend them in different ways to create

new faces. This is referred to as a facial composite (see Figure 2.10). Facial com-

posites are commonly used in law enforcement agencies where a suspect is created

from a witness description. EFIT/3D EFIT8, PROFit9 and Identi-Kit10denti-

Kit Solutions. http://www.identikit.net are commercial packages widely used by

police, security organisations, and researchers [BPK00; NBHN02]. These appli-

cations can only generate 2D faces (with the exception of 3D EFIT), but 3D

7http://www.di3d.com/
8Aspley Identifying Solutions. http://www.efit.co.uk
9ABM. http://www.abm-uk.com

10I
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applications such as Quidam and Poser store a range of 3D features in the form

of localised morph targets that can be blended to create a novel face, and then

refined in 3D using brush tools.

Wells et al [WCO05] point out several research documents that show conclu-

sively that composite systems give poor results in terms of creating an accurate

likeness of a suspect. They show that the process of building the composites can

harm the builder’s memory by decreasing the chances of him identifying the orig-

inal face later. They maintain, along with [Bad79; BM96; Fro02], that the reason

for this is that the composite systems are primarily a feature-based approach.

The user selects individual facial features that combined give a representation of

a face. However, people are believed to perceive faces holistically, remembering

shapes and spatial configuration between facial features as opposed to remember-

ing isolated features [SBOR07? ]. Essentially, people are not good at remember-

ing and describing particular facial features of another person, even close friends,

but they would instantly recognise a familiar face if they saw it on the screen.

This idea is used in EvoFIT [Fro02] which is detailed in the next section, and has

been incorporated into EFIT-V. Furthermore, it has been found that caricatured

versions of faces can improve the recognition performance [MK92; FBR+07].

2.1.3.2 Generative models

An increasingly popular method is to fit a statistical model on a data set con-

sisting of existing face data, often referred to as prior knowledge, and then use

the model’s generative properties to produce new faces. This can apply to whole

faces or parts of a segmented face based on the main facial features, after which

the generated parts are blended with the other segments. In facial animation this

is commonly known as performance-driven models [Wil90; CB08], where data is

gathered from an actor playing out different facial movements, and can serve as

the prior knowledge in a probabilistic framework [LCXS07].

Principal Components Analysis (PCA) is the most popular statistical method

as it is robust and easy to use. It forms a low-dimensional (decorrelated) repre-

sentation of the original data made up of orthogonal eigenvectors and eigenvalues,
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Figure 2.10: Building a face from parts (from Ultimate Flash Face, flash-

face.ctapt.de)

often referred to as eigenfaces and weights respectfully where the eigenfaces with

the highest weights make up a face space [MT91]. A linear combination of eigen-

faces with a unique set of weights extracts a new face from the face space.

Frowd [Fro02] attempts to overcome some of the issues that plague composite

systems with his software EvoFIT. He employs a holistic face model based on

PCA with a genetic algorithm. The user is presented with a face with random

characteristics and then through user selection, new faces free of unrealistic fea-

tures are evolved. This way the user iteratively closes in on the desired target. It

uses control points to morph between features in order to generate different facial

shapes, and studies at the time showed it had significant benefits over traditional

composite systems. Automating this process can be used to populate a world

with virtual actors. Albin-Clark et al [ACH09] automatically evolve new faces

from existing ones until their features differ enough to be considered distinctly

unique among the population. This similarity measure is based making sure the

shared number of normals does not exceed a certain threshold value.
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DeCarlo et al [DMS98] randomises statistics based on anthropometric land-

marks and measurements to generate plausible faces by fitting a prototype face

model to match the randomly selected values. Similarly Rudomin et al [RBC02]

can generate plausible face models but instead of using anthropometric measure-

ments, they use a PCA face space based on MPEG-4 feature points marked on a

set of face models. They generate new individuals by randomising the eigenvalue

weights that specify how much each eigenface contributes to the reconstructed

face.

Conformation parameters can be classified and used to control the proportion

of individual facial features and overall shape as suggested by Parke and Waters

[PW96]. Using these parameters, a 3D face can acquire desired properties that

can e.g. further define differences between males and females, thick lips versus

thin lips.

Blanz and Vetter [BV99] create a morphable model of faces using PCA where

the face space is made up of a shape space, and a texture space, and a probability

distribution is estimated for the eigenvalue weights to give realistic values. Con-

formation parameters are manually assigned with labels, and their corresponding

weighted sums are found which can be added or subtracted from an arbitrary face

model to acquire a particular property. Each of their 128 principal components

is one standard deviation in magnitude. Navigating along these axes, new faces

can be generated by adding different deviations to the average face located at the

origin. A model can be generated from a 2D image, or registered from a scanned

3D head by defining a set of parameters for the input and the target model,

and minimising a cost function which is the euclidean distance between the two

sets of parameters. In the case of creating a 3D face from an image, the statis-

tical model is constrained by finding the eigenvalue coefficients, and rendering

parameters with maximum posterior probability given the input image.

FaceGen11 is a commercially available software that is similar to the method

by Blanz and Vetter [BV99]. Chen and Fels [CF04] proposed an alternative way of

navigating through a space of 3D faces from FaceGen. They base their navigation

on Adobe’s approach to selecting colours, a colour wheel and sliders. The users

11FaceGen. Singular Inversion
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navigate by iteratively clicking on a face on the face-wheel to get a rough likeness,

and then tweak it using the sliders to get a more precise approximation (see Figure

2.11).

Figure 2.11: Exploring face gradients inspired by a colour wheel (image courtesy

of Fels [CF04])

Blanz et al [ABHS06] extend the morphable model [BV99], and combine with

their own method of replacing faces in images [BSVS04], to provide a tool to create

faces from incomplete witness description. The user starts with the average face

which is segmented based on the main facial features (see Figure 2.12). The user

can select features from a database whereby a selection mask determines which

segments are updated. Alternatively, features can be adjusted by navigating the

gradients of grouped conformation parameters, or what they call facial attributes

using sliders. A correlation between facial features is learned from the existing

models, and the assignment of facial attributes is improved from their earlier work.

It captures correlations between shape and texture, and constraints ensure specific

attributes are maintained while others are changed where they would normally

correlate otherwise. For instance, traditionally if the eyes are enlarged, the whole

model becomes more feminine, but the constraints make sure the model keeps

its masculinity. The feature correlation is useful when the witness description is
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incomplete, as the unspecified features are automatically filled in to give the most

plausible outcome based on the population of learned faces.

Figure 2.12: Facial regions and conformation parameters (image courtesy of

Blanz [ABHS06])

Mohammed et al [MPK09] uses the generative properties of a factor analy-

sis mixture model in conjunction with non-stationary image quilting to create

consistent and detailed facial images. Random individuals can be sampled us-

ing the generative model, but the images tend to lack detail, particularly when

using reduced number of factors to limit the dimensionality. The quilting algo-

rithm can produce detailed images by segmenting existing face images into 9 by

9 patches, and creating a new face by selecting the top-left patch randomly, and

then assigning the remaining patches one by one where each patch must be visu-

ally consistent with the patches above and to the left. However, this will produce

faces with locally consistent features, but are not globally consistent. They find

that realistic faces are achieved by combining the global aspects of the generative
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model, with the details of the locally assigned image patches. A patch being

processed must take into account visual consistency of its surrounding patches as

before, and its global content in the form of a weighted combination. The gen-

erative model can be used to fill in incomplete parts of the face. This could be

useful when identifying a partially obscured face of a suspect caught on camera.

The system proposes a range of the most plausible complete faces to a witness

by filling in the missing parts through maximum likelihood. When looking for

a suspect in a police investigation, a vast number of photographs in a mugshot

database are compared to a pictorial evidence in order to find a match. Often this

pictorial evidence is a sketch of the suspect according to a witness description.

Creating 2D portrait images from 2D sketches can minimise the difference in the

comparison [TW04; CLR+04; XCZL08; WD09].

Novel faces can be generated by ageing existing models. Studies into facial

ageing dates back to 1917, and has today become particularly useful in the field

of facial recognition [RCB09]. Patterson [PSAR07] compares face models that

have been aged using active-appearance models to an age progression drawn by

a forensic artist and were found to be similar based on a small user study. Shaw

et al [RMW74] identified two invariant mathematical transformations for the

growth of facial contours seen from the profile view. The cardioidal strain trans-

formation, describing how the face contours stretch outwards, was extended by

Mark and Todd [MT83] into 3D by expressing the transformation using spherical

coordinates, and applied to the entire surface of the face.

Scherbaum et al [SSSB07] alters the age of people in photographs based on

their own method of exchanging faces in images [BSVS04], using the 3D mor-

phable model fitted on a database of a range of teenagers and adults. Here, an

ageing prediction is performed on the 3D model before rendering back into the

image. RBF Support vector regression is used to learn a function mapping age

to each sample face represented as a single vector. The ageing prediction is made

by calculating a trajectory in the face space where the trajectory is parallel to

the gradient of the age function. The FG-NET Ageing Database [FN] contains

2D images of faces where the subjects are recorded at different ages.
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Combining the FG-NET database with the 3D morphable model, Park et al

[PTJ08] show that adapting a target facial image to match its current age im-

proves the rate of successful facial recognitions. The morphable model is used

to create simplified 3D models (81 vertices) on the range of 2D images in the

FG-NET database using its 68 marked feature points assigned to each face.

This approach of limiting the scope to a prior knowledge of a particular class

of objects will become an important factor in the next section on sketching in-

terfaces, as it determines what approach is the most suitable with regards to

modelling realistic face models.

2.2 Sketching interfaces

Sketching on a computer screen shares a limitation with an artist sketching on a

piece of paper. Here, sketching is essentially a way to describe a 3-dimensional

object on a 2-dimensional surface, whereby the dimension that represents the

depth information is not preserved. Instead the projection onto the 2-dimensional

clipping plane creates the illusion of depth perceived by an intelligent viewer.

Computer-based sketching interfaces aim to do the reverse process of recon-

structing 3-dimensional objects from a 2-dimensional sketch by finding this per-

ceived depth. Therein lies the problem with all 2-dimensional sketching interfaces.

Without any assumptions or prior knowledge, the depth value has infinite number

of possible solutions when the 2D screen coordinates are projected into the 3D

world coordinates. The way this ambiguity is dealt with is a fundamental part

of the research with any sketch-based interface. The solution depends on what

assumptions are made with regards to how the user perceives the depth of an

arbitrary stroke in the interface.

Sketchpad (1963) was the first interactive, graphical user interface where it

was possible to draw simple shapes using a light pen pointed at the screen, and

a collection of command buttons for operations such as draw, move, and delete

[Sut80]. The pen was used to specify locations, line end-points and angular

lengths. Sketch-based interfaces have been gaining momentum in recent years
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with the advent of tablet computers where a paper-like drawing tablet mimicking

the feel of different kinds of paper has been specifically designed to serve as an

inpu-device for cartoon drawing and editing and is [HADF+05].

Categorisation of sketch-based interfaces varies between papers, and some

interfaces are hybrids of more than one method making it hard to conclusively

favour one category over another. Company et al [PCN05], Igarashi et al [LDI06;

Iga07], and Olsen et al [OSSJ09] discuss and classify a wide range of sketching

interfaces. The grouping of sketch-based interfaces in this thesis is based on

common terminology and classification found in these surveys. The interfaces are

divided into two main categories: Gestural interfaces (2.2.1) and reconstructional

interfaces 2.2.2.

Reconstructional systems can be further divided into Free-form based sys-

tems and Template-based systems. Some reconstructional interfaces use gestures

as well to signify modes instead of using icons and menus. Modes are command

states that affect how the sketched stroke is interpreted and is specified prior to

sketching. Modes can also serve as direct functions, such as to delete an object

by marking it with a gesture. In order to retain the pen and paper feel as much

as possible, it is important to limit the number of modes used when sketching.

Additionally this mode-switching can cause problems. If a user forgets to spec-

ify the desired mode then he ends up sketching spurious strokes or meaningless

gestures [SL03].

The following sections give an overview of different sketching techniques, but

importantly explain how template-based systems are best suited to the require-

ments of the work in this thesis, and hence is covered in more detail.

2.2.1 Gestural interfaces

In gestural systems the user builds the 3D objects in steps, using traditional

modelling operations commonly found in commercial CAD packages such as ex-

trusion, sweeping, lofting, blending surfaces etc. The difference is that using

gestures is far more intuitive than using traditional CAD tools because they are

generally more meaningful than command buttons. Additionally, the gesture can

also indicate the shape and magnitude of the operation it uses.
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The following example demonstrates the difference and added value of the

sketch gestures: When creating a sweep (loft) object in a commercial software,

the base shape and sweeping path are created first. Then the sweeping operation

is applied to the shape followed by specifying the path involved. In a gestural

interface, the sweeping gesture could also directly serve as the path the shape

will sweep along to create the 3-dimensional object.

Eggli et al [EBE95] is an early example of this type of gestural modelling

interface. It is used to create mechanical objects and free-form ruled surfaces.

Through gestural commands, it is possible to create objects through extrusion,

revolution and sweeping (lofting). Once an object has been created, other fea-

tures such as holes can be sketched directly on the object. Sketched strokes are

rarely perfect straight lines as required in mechanical drawings, the system cleans

up the sketched strokes to make sure they are straight and line up with parallel

strokes. Other useful features such as snapping and constrained angles are also

supported. However, the set of gestural commands are limited, and the lack of

cutting and boolean functionality limits the complexity of objects.

SKETCH [ZHH96] came with a more extensive set of gestures and became

a milestone to which subsequent sketching interfaces were compared with. Kim

and Kim [KK06] attempted to improve the user interaction with the system by

simplifying the gestures into single-stroke pen markings. Figure 2.13 shows how

to create a cylinder through gestures using their system. A circle is created on

the working axis plane, followed by a gestural command for extrusion implied by

drawing an arrow (a). The user can then specify the extrusion amount h with a

picking action (b) to create the completed object.

Cherlin et al [CSSJ05] (see Figure 2.14) added rotational and cross sectional

blending surfaces to create more complicated object, using few but well de-

fined gestures. A free-form outline was drawn (black/purple line), followed by

a sketched cross section describing the 3-dimensional nature of the object (red

line). Additionally, it allowed deformation through sketching gestures such as
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Figure 2.13: Cylinder created using a gestural interface (after [KK06]). Gesture

g indicates an extrusion operation (a). The extrusion amount h for the cylinder

is specified using a hover and pick action (b).

bending, and cross sectional oversketching.

Figure 2.14: Blending surfaces (image courtesy of Samavati [CSSJ05])

Gestural interfaces are a useful enhancement to traditional modelling pack-

ages where objects are created through a series of low-level operations. Complex

objects can be created, but the user is involved with choosing the modelling oper-

ations required to construct the objects from simple shapes. This is particularly

challenging with objects of complex internal structures like faces. This aims of

this thesis is to create faces in a sketching interface where the user does not need

to know how the underlying polygonal structure is built, or what deformations

and adjustments are needed to construct a particular feature. Therefore, gestural

interfaces are not suitable for the purposes of the work outlined in this thesis.
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2.2.2 Reconstructional interfaces

In gestural interfaces, objects are built incrementally using simple forms and ges-

tures as we explained in the previous section. In contrast, reconstructional inter-

faces are able to create complicated 3D objects where the user has no knowledge

of what process was used to make produce them.

The difference is clearly demonstrated by looking at how a reconstructional

interface by Masry and Lipson [ML05] is used to create mechanical drawings

(see Figure 2.15) which are commonly created with a series of extrusions applied

to simple shapes, and therefore well suited to gestural interfaces such as Eggli

et al [EBE95]. The user sketches the outline or shape of an object (left), and

then the system reconstructs the object (middle) without the user knowing what

methods are needed to create the polygon structure. When the object has been

constructed, the user can examine the it from different angles (right) and make

further additions or adjustments.

From this it can be concluded that reconstructional systems are closer to a

pen and paper experience than gestural systems.

Figure 2.15: A reconstructional interface (image courtesy of Lipson and Masry

[ML05]).

Reconstructional sketching systems can be further divided into two groups,

free-form based systems (section 2.2.3) and template based systems (section

2.2.4). Free-form systems contain a set of geometric construction and transfor-

mation rules that when applied to a sketched stroke generate a free-form object.
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Modes are used to decide which rule is active, where the mode is often set using

sketched gestures. Given a sketched stroke and an active rule, the same recon-

struction process is executed regardless of a potential intrinsic meaning behind

a particularly shaped stroke, or its location. For example, in an inflation based

system like Teddy [IMT99], a big circle with two smaller circles centred on the

big circle, depicting eyes, will always be result in corresponding spheres of the

implied circumference and location.

In a template-based system however, strokes are interpreted with regards to

prior knowledge of templates that describe one or more classes of objects. Here,

a stroke can serve a specific purpose based on its shape, and relative position to

other strokes according to an interpretation laid out by the templates. A sketch

recognition process determines how the sketched strokes map to known templates.

The template controls the reconstruction process where the predetermined pur-

pose of each stroke defines how it is used to generate a corresponding 3D object.

Template systems can therefore only create objects specifically described by

the templates, while free-form systems can create any object that follows the

reconstruction rules. Complicated objects are generally easier to describe with

templates than rules. In free-form interfaces, complex structures are usually

created using compound objects. Faces have a complex internal structure but are

in essence a single class of objects as they all contain the same set of features.

As we saw in Section 2.1.3, a successful high level approach to modelling faces

is found by limiting the scope of the application to a single class of objects. We

argue that a template scheme is therefore best suited to a sketch-based interface

for faces.

2.2.3 Free-form based systems

Teddy [IMT99; IH03] was the first successful free-form interface and became an

inspiration to other work based on the original technique. The user sketches

a silhouette of an object, and the system creates the corresponding free-form

object through inflation (see Figure 2.16). This is done by creating a polygon

from the silhouette, applying Delauney triangulation and finding the chordal axis.
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The depth problem is solved by assuming that the sketched object is situated at

the origin and the vertices in the chordal axis are elevated in proportion to the

distance to the polygon itself. This system supports gestural features such as

cut and extrusion. Figure 2.17 shows how a extrusion is indicated with a closed

stroke on an existing model (red circle). Then the extrude stroke is drawn (the

one being drawn in the figure) and the depth issue is solved by assuming that the

extruded form is perpendicular to the object’s surface determined by the closed

stroke. This system does not however allow any sharp features or sophisticated

creases.

Figure 2.16: Teddy: Input stroke and

the constructed 3D form (image cour-

tesy of Igarashi [IMT99])

Figure 2.17: Sketching an arm using

extrusion (image courtesy of Igarashi

[IMT99])

Karpenko et al [KHR02] argued that the polygonal representation used in

Teddy caused problems and instead introduced a method which used variational

implicit surfaces. As a result a more complex object topology was possible. On

top of that, objects can be merged described by a guidance stroke which illustrates

the connecting surface and how it merges with the target objects. This is shown

in Figure 2.18 where the black lines are the guidance strokes between the two

objects. Oversketching is more intuitive when compared to Teddy where the user

had to sketch two lines, a reference line and the target line. Here the user only

has to draw a stroke near a silhouette and the object is then altered accordingly.

Implicit functions are based on thin-plate interpolation and solved using scattered
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data interpolation where the function is a weighted sum of radial basis functions

[TO99]. When dealing with certain conditions, for instance when a guidance

stroke is far away from a surface and therefore far outside the radius of the basis

functions where their influence is minimal, unexpected interpolation results can

occur. Implicit surfaces do not naturally support sharp edges and no attempt

was made to support that feature. Tai et al [TZF04] addressed the issue of sharp

edges with their implicit convolution model, and by specifying the cross-section

profile of the sketched object. This added dimension can generate a larger variety

of objects, including objects with semi-sharp corners.

Figure 2.18: Merging with guidance strokes shown as black lines (image courtesy

of Karpenko [KHR02])

Karpenko et al [KHR04] made further enhancements by proposing a way to

overcome ambiguities concerning the depth problem. Because infinite solutions

are possible, every system provides a method of choosing one solution from a

specific viewpoint. This solution however is not necessarily the one the user is

after. They attempted to overcome this by allowing the user to sketch an object

from an initial viewpoint, and then alter the object’s shape from a different

viewpoint using oversketching (see Figure 2.19). The new stroke (green line) is

projected on the epipolar lines (yellow lines) and the coordinates on the original

stroke (red line) are updated to satisfy the new constraints. Similarly, Malik

[Mal05] allows the user to alter sketched hair clusters by sketching strokes from
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other viewpoints that push or deform the control curve for a particular cluster.

Figure 2.19: Curve edited from a different viewpoint using epipolar lines (yellow)

(image courtesy of Karpenko [KHR04])

Zenka and Slavk [ZS03] extended the idea behind Teddy to create more de-

tailed non-photorealistic (NPR) cartoon like characters and faces. The blob in-

flated objects serve as a 3D skeleton to which fuzzy lines can lie on and extend

from. Figure 2.20 shows how this is used to sketch a bunny head. The user

starts by sketching the blob skeleton (far left). Eyes and hairs are sketched on

the skeleton object using lines that either lie on the surface or extend from it.

The sketched lines are warped to reflect the current rotation. The user can refine

the sketch from other angles if the warping is inaccurate which is used to gener-

ate a new estimate for the sketched output. Now the sketches can be rendered

without the skeleton to give a view-independent cartoon objects. The implicit

blob inflated skeleton does not support sharp edges, but the add-on silhouette

and surface lines can be of any shape.

Wyvill et al [WFJ+05] combined inflated implicit models with linear sweeps

and revolution to allow a bigger range of reconstructed objects. Karpenko et al

[KH06] overcame the limitation of allowing only simple closed curves in free-form

sketching. They deal with cusps and T-junctions (see Figure 2.21) by finding the

hidden contours and cusp that have the highest probability shown as H in Figure
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Figure 2.20: Silhouette and contours on blob surface (image courtesy of Slavik

[ZS03])

2.22.

Figure 2.21: Cusps and T-junctions

(image courtesy of Karpenko [KH06])

Figure 2.22: Finding the hidden cusp

(image courtesy of Karpenko [KH06])

Mechanical drawings can be generated using free forms with orthogonal con-

straints as discussed earlier (see Figure 2.15). Masry and Lipson [ML05] offer an

optimisation-based approach, assuming the sketch is an orthographic projection

of a 3D object onto a 2D sketch plane with depth z = 0. To solve the depth prob-

lem, the axis system is determined by finding a vertex that best represents the

angular distribution of the sketch using a histogram of the 2D angles of the strokes

relative to the sketch plane. The assigned vertex has three connecting vertices,

each determining an axis direction. The main vertex is assumed to lie on the

sketching plane with zero depth, while the axis depths are found by minimising

an optimisation function based on two assumptions about the axis system. The

other edge nodes (endpoints) in the sketch are found by propagating depth val-

ues along a Maximum weight Spanning Tree (MST) that connects each vertex to

the main vertex. To create 3D curves from the strokes, an optimisation function
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relates the depth values for the stroke points to the depth of the corresponding

stroke endpoints.

Malik [Mal05] developed an interface to model hairstyles. New clusters of

hair can be added by sketching a control hair strand, shown as a green curve in

Figure 2.23. Hair clusters originating directly from the scalp with no surrounding

clusters are projected into the view plane where the depth is set to the depth

where the strand touches the scalp. If there are surrounding hair clusters, the

system assigns the 3D orientation for the new strand by averaging the orientation

of nearby clusters.

Figure 2.23: Implanting a hair cluster (image courtesy of Malik [Mal05])

Wither et al [WBC07] infer hair strand parameters from sketched strokes de-

scribing length, natural curvature (curliness), ellipticity (the shape of the strand’s

cross-section), and stiffness. The inflection points on the strokes are used to seg-

ment them where the parameters for each segment are calculated. These parame-

ters are then applied to a physically-based hair modelling technique by Bertails et

al [BAQ+05], where the parameters are used to model a circular helix (half turn)

which represents a single strand segment. The user sketches on a head model or

a photograph from a 2D side view. He uses simple strokes to define the scalp

area, example strands, and volume (optional). The system uses this information

to geometrically generate a full head of hair by creating a scalp object which is

subject to triangular tessellation, where the triangles are then populated with
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uniformly distributed hair particles from where the helix strands are grown.

Davis et al [DAC+03] uses 2D sketches of stick figures with a set of constraints

to generate the most likely 3D human character poses. Figure 2.24 shows the

sketched figures and the corresponding 3D poses. Unlikely poses are culled out

where knowledge such as angle constraints, balance preference and coherence

between neighbouring frames is used. After the culling there are typically still

more than one estimated pose that satisfy the 2D sketch so system ranks them

heuristically and assigns the most likely one. The user can select a different one

if he finds it more suitable.

Figure 2.24: Estimating 3D poses from 2D sketches (image courtesy of Davis

[DAC+03]).

Mao et al [MQW09] transfer a 2D sketch into a 3D posed character, but also

create a skinned human 3D body as well that matches the pose (see Figure 2.25).

The user sketches the stick figure with an arbitrary pose (left) where emphasised

strokes are interpreted as being closer to the viewer in order to reduce the depth

ambiguity. The user then sketches the skinned body and the pose and body

proportion are used to morph a generic model to fit. A body fatness morph stage

is performed based on predefined body cross-sections for individual parts and are

estimated from the initial morph. This is followed by an automatic surface fitting

to match the 3D template to the 2D sketch (middle). Simple local deformations

are possible by sketching a suggestive contour on the body, and then a silhouette

from a different viewpoint defining the new profile (right). The region of interest

(ROI) is found based on the suggestive contour stroke, and a scaling influence for

each vertex in the ROI is found which controls how far each vertex in the ROI

is deformed. The influence is found by first examining the difference between
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the projected source silhouette on the model, and the target sketched silhouette,

where the scaling factor for the remaining vertices is found using Hermit spline

interpolation. This method is able to produce a large number of posed 3D bodies,

albeit without hands or feet, that would be difficult to model with a tool such as

Teddy, and more time consuming with 3D Studio Max or Poser. However, there

are limitations with regards to crossed limbs and viewpoints, and sketched local

features because of low mesh density.

Figure 2.25: Sketch-based human body modelling and modification pipeline

(image courtesy of Qin [MQW09]).

2.2.4 Template-based systems

There are a number of ways to represent, retrieve, and reconstruct class templates

from a set of sketched strokes. Mitani et al [MSK00] use edge and node matching

to create electronic gadgets. The templates are limited to objects with 6 faces of

4 sides, and mirror symmetry. This forces the user to sketch the gadgets in the

same fashion as if the user was looking at the object from a fixed camera angle.

Core parametric curves are found from bundles of strokes, and an edge graph is

extracted and matched with the templates analysing the vertex coordinates. If a

matching template is found, the 3D object is created using Coons patches based

on the edges from each face, and sampled into a regular triangular mesh.

Cheon and Han [CH08] improve the edge based approach by using relational

templates which use the relationship of neighbouring edges, or so called feature
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vectors in the matching process. The process extracts the core curves from the

sketch, finds the corresponding edge graph and match it with a template, and

finally generates the 3D curves and uses them to reconstruct a 3D object with

Coons patches. The user still has to sketch from a specific viewpoint, and the

sketch has to be topologically identical to the template.

Yang et al [CYvdP05] similarly use 2D node and edges to describe classes of

templates. Figure 2.26 shows how the strokes are mapped to a cup template.

The expected locations for the template nodes (I,J,G,H) are found in the sketch

using normalised coordinates based on the bounding box, where they search for

correspondence within a certain radius shown as black ellipses surrounding the

expected locations. Furthermore, curve feature vectors in the template and sketch

are compared to determine if the edges are similar. A template consists of manda-

tory and optional parts. For the cup template, the handles and saucer are op-

tional. Figure 2.27 shows an example of a cup sketch and the reconstructed

object. More complex objects can be generated using a top view template in

conjunction with the standard one to overcome the depth ambiguity. In this case

the object is sketched first from the default view and if recognised the top view

is sketched. Adding a new object class is time consuming as the procedural func-

tions used to reconstruct 3D objects from the 2D strokes are defined manually

for each template.

Figure 2.26: Finding expected loca-

tions for template nodes (image cour-

tesy of Panne [CYvdP05])

Figure 2.27: Creating a cup using

edge-based templates (image courtesy

of Panne [CYvdP05])
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Templates can consist of one or more class of objects where the sketch is used

to look up the template/object that most closely satisfies the sketched strokes

according to some criteria. Lee and Funkhouser [LF08] build 3D models by com-

posing them from a number of different parts where each part can be considered a

template. The template itself is made up of boundary contour images generated

from 24 orthogonal viewpoints for the corresponding 3D object. A user sketched

contour looks for the templates whose boundary contour images have the low-

est sum of squared distance between the closest non-zero pixels [FKS+04]. The

closest matches are presented to the user and the selected object is placed in the

scene, where it is rotated, scaled and translated to fit the sketched stroke and

lie on underlying objects (see Figure 2.28). An object can blend with previously

sketched and retrieved object parts with polygon stitching.

Figure 2.28: Sketch-based search for a part and scene placement (image courtesy

of Funkhouser [LF08])

Instead of using the stroke to look up a template, it can be used to deform a

generic template to fit the stroke. Murakawa et al [MYH+06] use this approach

to customise ant models using a generic ant model as a starting point. The

user selects the part of the model he wants to change, and then sketches the

desired silhouette of the part from top, side, or front view. The model part is

morphed by mapping control vertices on the generic part to sketched points. The

difference creates movement vectors that affect the remaining vertices using either

a parabolic or a linear weighting function. To help sketch a specific ant species,

photographs can be fitted in the orthogonal views to enable tracing.
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2.3 Sketching faces and face poses

The aforementioned methods retrieve, and fit the templates using heuristic

methods. That process can be handled in a probability framework where the

templates are used as training data, and the fitting process utilises the generative

properties of the statistical model. This echos what was discussed in section 2.1.3,

where the same method can be used to learn different faces through a statistical

mapping. This thesis argues that this approach is the most suitable for sketching

faces as it combines the successful generative models for faces with template based

sketching.

Sezgin et al [SD05] use Hidden Markov Models (HMM) to learn and classify

classes of 2-dimensional diagrams and mechanical engineering drawings. HMM

can detect sequential patterns in the data so the model can take into account

stroke ordering and speed between users to improve the sketch recognition.

Kokai et al [KFS+07] build car templates from a set of polyline networks

defined manually from 3D models of car meshes where internal features can be

altered through sketching (see Figure 2.29). Deformation gradients map the poly-

line examples to a feature space of deformations where a new object is created

through an inverse mapping of a linear interpolation of features. Principal Com-

ponents Analysis (PCA) is calculated from the set of features and used to linearly

blend a new model to enforce a restriction on the weighting coefficient, with an

added regularisation term to satisfy additional constraints in the optimisation

process. The model is segmented into parts (body, wheels, grill etc.) to allow lo-

cal deformations that do not affect other parts. This segmentation simplifies each

feature space which gives better PCA approximations due to its linear mapping.

The sketched stroke is mapped to the closest corresponding points on the tem-

plate where they form a corresponding curve in the 2D image plane. The curve is

fitted using active contours and projected back into 3D world coordinates where

the curve that minimises the optimisation function.

2.3 Sketching faces and face poses

This section covers any method that creates a new face model using sketching.

Here, a new face model can either be a new individual with its own distinct fa-
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Figure 2.29: Editing a car model using sketched strokes (image courtesy of Kokai

[KFS+07])

cial features, or a variation of an existing individual where the facial features are

posed in a new way. A pose is a configuration of a person’s facial features where

they portray a particular expression, viseme, or a combination of the two. All the

methods described here are template-based which further supports the approach

taken in this thesis.

Xiao [Xia04] construct a simple face model using 9 sketched strokes in any

order corresponding to 9 predetermined components to make up the model.

The method relies on predetermined stroke features that specify object com-

ponents. Two examples of such features are the angle of the bounding box

diagonal (f4) and the cosine of the initial angle of the gesture where cosα =

x2 − x0
√

(x2 − x0)2 + (y2 − y0)2. These metrics are normalised and classified us-

ing K-means clustering [Mac67; Llo82]. The strokes are used to classify the 9

features with k-means and used to construct 3D objects where each shape is ren-

dered as a simple 3D object. The 3D reconstruction is made up of simple shapes

(ellipsoid, cones, cylinders) where the features do not form a continuous surface.

Therefore it is not suitable for creating an accurate likeness of a real person.

Chiu [Chi05] quickly poses a 3D model by sketching simple cartoon-like strokes

on a separate 2D template window. Weights are extracted from the strokes

representing the eyes, eyebrows, and mouth. These weights are made to fit

the D.A.N.C.E. interface by Shapiro et al [SFNTH05]. From these weights,

D.A.N.C.E. constructs a facial pose on a standardised head model using blend-

shapes. This method cannot be used to create a new individual with particular

features as the blendshapes and weights only describe poses for the facial features

of a single face model, not diverse shapes.
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Nataneli and Faloutsos [NF07] similarly sketch simple facial expressions in a

separate 2D window which is used to pose a 3D model (see Figure 2.30. Prede-

fined shape-attributes are found from the sketched strokes, and Support Vector

Machine (SVM) classifiers are used to find the corresponding component (facial

feature) on the face. Each component has a library of templates which map to

a set of parameters that control the feature on the face model. The parameters

can be used to pose a range of standardised face models. This method is robust

and suited for quickly generating a facial expression that resembles the simplified

sketch, but cannot make detailed changes, and is not aimed at modelling novel

features.

Figure 2.30: Posing a 3D face with a simple 2D sketch (image courtesy of Nataneli

[NF07]).

Instead of sketching strokes into the separate 2D screen space, Sucontphunt

et al [SMND08] use a pre-made 2D sketch template where the strokes are made of

connected feature points (see Figure 2.31). The feature points are moved around

to depict new poses, which are then reconstructed in the 3D space. A prior

knowledge in the form of feature points is gathered from motion data and used

in a hierarchical Principal Components Analysis (PCA) model. At the top of

the hierarchy lies a PCA space for the entire face (all feature points), the middle

level is divided into the upper and lower parts of the face, and at the bottom

are PCA spaces for individual segmented features, such as an eyebrow. If the

shape of an eyebrow is changed by moving one of its feature points, the change
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is projected into the eyebrow PCA space which gives more accurate results than

projecting the small change to the whole face at the top of the hierarchy. This

projection onto a segmented space is sometimes described as a way to increase the

expressiveness of the overall generative model [BV99; KFS+07]. The projected

coordinates are then projected to the PCA spaces higher up in the hierarchy

which correlates the remaining features. This method is robust but currently the

interactive sketch template is limited to the front view, and although it can be

applied to different models as the methods discussed above, the template shape

does not convey information about the distinguishing conformation properties of

the facial features.

Sucontphunt et al [SDN09] applies the same hierarchical PCA approach to

modelling 3D faces where a user can pull eight facial contour curves on a template

3D model, made up of anthropometric landmarks (or alternatively any vertex on

the mesh). The deformed contours are subject to anthropometric constraints

made up of 35 landmarks, along with measurements and proportions based on

them. A source image can be transferred as a texture map for the final model

using an image analogy algorithm, focused on segmented regions of the face.

Figure 2.31: Feature points on a 2D face template are manipulated or recorded

features are selected to manipulate a 3D face model (image courtesy of Sucont-

phunt [SMND08])

Sharon and Panne [SvdP06] map constellation models using a single-variate
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probability distribution to classify sketched strokes. A constellation model for a

face is shown in Figure 2.32 and is stored as a feature vector. The constellation

models define relations between predefined features on the face where the dotted

relations are optional. As Figure 2.32 shows, 5 labels are mandatory for the

face, and 10 are optional. A collection of feature vectors are used to fit the

probability distribution. Given an arbitrary sketch of a face that conforms to the

constellation model, the labels are classified using a maximum likelihood search

and the strokes subsequently colour coded according to the labels (see Figure

2.33). A label cannot contain more than one stroke which limits the artistic

freedom, and the labels are not used here to reconstruct a 3D object.

Figure 2.32: Constellation model for

a face (image courtesy of Panne

[SvdP06])

Figure 2.33: Classified strokes (image

courtesy of Panne [SvdP06])

Wu et al [WTBS07] can create a 3D object by defining how normal directions

are spread across its surface using an intuitive technique called shape palettes.

A shape palette is an orthographic projection of an existing 3D object and its

normal directions. The user starts by sketching a silhouette (outer contour) of

the object which by definition have normals perpendicular to the viewing vector.

Since the viewpoint is fixed as the front view, the normals for the silhouette lie

on the sketching plane pointing outwards. Internal features can be sketched but

now the normal directions have to be defined by sketching a reference stroke on

a shape palette. The normal directions embedded in the palette can be read and
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transferred from the reparameterised reference stroke to the corresponding target

stroke. This gives a sparse set of normals which can be interpolated to create

dense normals using a MRF optimisation. Figure 2.3 shows how a face mask

can be created using an existing face as a palette. The boxes transfer normals

from a particular surface region with the help of marked feature points within the

defined region. The generated surface can be textured using the backdrop image

which can consequently be viewed from different viewpoints.

Figure 2.34: Sketching a face mask with ShapePalettes (image courtesy of Wu

[WTBS07]).

Chang and Jenkins [CJ06] look for the optimal pose in a collection of key

poses which they call articulation space (see Figure 2.35). They do this using

a reference and a target curve, and search for the optimal articulation weights

which minimise the distance between the two curves, using a downhill simplex

method. This collection can be either made up of blendshapes, or alternatively a

set generated using their own sketch-based approach to creating new articulation

poses. These new poses are created by specifying particular regions of interest

on the face, followed by a specific region of interest that controls the articulation

weights and are fixed in the 2D image plane. The user then draws a reference

curve, and a target curve which is reparameterised to contain the same number

of points as the reference curve. Curve interpolation acquires intermediate poses

using translation or rotation and scaling. The mesh is deformed according to

the curves where the influence on a vertex in the region of interest is stored

as a proportional distance to the projection onto the reference curve. Same

interpolation are used as when interpolating curves, but it can be constrained to
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move along a surface of a sphere by maintaining a particular distance from the

sphere. This is done to avoid the eyelid polygons inadvertently intersecting with

the eyeball polygons. This articulation process is not guaranteed to give realistic

poses but is able to create new poses without any prior knowledge.

Lau et al [LCXS07] further improve the notion of using a reference and a target

curve to find the optimal pose in an space of pre-posed models by tackling the

problem in a probability framework. Their data set consists of motion capture

recordings of facial movements characterised by 55 reflective markers. PCA is

performed on the captured examples to obtain a low-dimensional representation

of the data set. Using a maximum a posteriori (MAP) framework, they relate the

most likely low-dimensional poses to a set of user constraints. As there might be

a number of poses that satisfy any given constraints, the generated pose is forced

to lie in a space of realistic poses which is learned from the recorded examples

using mixtures of factor analysers (MFA). Their interface is shown in use with a

graphics tablet in Figure 2.36. They validate their work by comparing the optimal

reconstructed mesh with the original data. They show that the reconstruction

error is considerably smaller than one based on interpolated blendshapes, and

that using MFA outperforms PCA optimisation.
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Figure 2.35: Finding an articulated

pose using sketched curves (image cour-

tesy of Chang [CJ06])

Figure 2.36: Sketching a lowered ey-

brow in FacePoser (image courtesy of

Lau [LCXS07])
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Chapter 3

Building a training set and

registration of face data

It has been established that the approach taken in this thesis is to apply a

template-based sketching method where the template class is a generative model

based on prior knowledge of faces. This prior knowledge consists of observed

face models and must specify the facial features in such a way it is possible to

determine how they differ in relation to each other. This could either mean they

share the same topology, or some set of measurable and comparable properties.

A collection of faces satisfying these conditions is denoted as standardised set.

Obtaining a large number of anatomically accurate 3D face models is generally

achieved in one of two ways.

• Use a program that is capable of generating a range of standardised face

data. These face models are noise free and share the same vertex topology.

However, these models are often too smooth and lack detail.

• Record or use a database of recorded faces using a tool such as a digital

laser scanner. This face data is usually raw, noisy and not standardised.

The advantage of these models however lies in their intricate details.

This thesis uses the first approach to populate the training sets used in subse-

quent chapters, where they are generated using FaceGen. The noise free data is
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well suited for creating a controllable testing environment, but the absence of par-

ticular features and subtle details demands the future consideration of adapting

recorded data into the training set.

Section 3.1 quickly describes the standardised models produced by FaceGen,

while the main thrust of this chapter is contained in Section 3.2 involves demon-

strating how an arbitrary laser scanned face model can be standardised by reg-

istering a generic, standardised model to the scan. Once the face has been stan-

dardised, it can be added to the existing training set.

3.1 Collecting face data: FaceGen

In order to get an efficient and controlled testing environment with a noise free

data set, FaceGen 1 is employed to generate a number of low resolution face

models (863 vertices). Some face samples with texture maps are shown in Figure

3.1. The high resolution versions (6174 vertices) were also included and tested

although the main thrust of this thesis focuses on the low resolution models. A

Figure 3.1: Sample faces taken from FaceGen

generative model trained on a set of faces struggles to create unobserved features.

Importantly, FaceGen has the facility of customising facial features which is used

to generate a diverse range of features which are not necessarily present in an ar-

bitrary set of scanned faces. However, some features are difficult to generate with

FaceGen, and the models are very smooth, generally lacking important details

such as dimples, noticeable internal creases, and wrinkles. This is particularly

1Singular Inversion. http://www.facegen.com
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true when using the low resolution models. These artefacts are added using the

texture map and therefore not picked up in the contour generator described in

the next section.

Each low resolution model contains 863 vertices, where the face mask consists

of 775 vertices, and each eye has 44 vertices. The high resolution models have

6174 vertices, where 5832 belong to the face mask, and 171 to a single eye. 182

models were generated to fit the statistical model, and another 48 to assist with

the contour mapping process.

3.2 Collecting face data: Laser scans

The advantage of using laser scans is that they may include features not present

in an existing generative model such as FaceGen, both in terms of the shape of

the main features and internal facial details. Scanned data is often noisy but that

can be resolved by applying smoothing. A problem with scanned data is that it

contains a very large number of vertices where the polygons are structured in

an inefficient way (see Figures 3.2 and 3.3), making them unsuitable for a real-

time application. If the grid structure was simplified by reducing the number

of vertices, the simplified model would still not have an optimal structure that

follows the natural lines along the facial features as shown in Figures 2.1 and 2.2.

More importantly, unlike data generated using a tool like FaceGen, a set of

laser scanned face models each has its own vertex topology making any direct

comparisons between them difficult. Additionally, the vertices have no intrinsic

meaning with regards to the facial features so any higher order comparable prop-

erties are not present. Either one of these properties or both are needed to build

and sustain a useful knowledge base of morphable faces which can be used to

generate a variety of faces. The scanned models only consist of the face mask,

and are often asymmetrical whereby facial features are sometimes partly missing

on either side (see Figure 3.3).

A statistical data set has to be made up of samples with identical number

of dimensions. Therefore all the models must share the same, efficient vertex

topology. This is achieved by using a single, generic face model and deforming it
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to approximate every single laser scan. As a result, there exists a representation

of each individual made up of the same set of vertices and polygons. The method

used here to accomplish this is well known in the literature and involves labelling

each of the laser scanned models and the generic face model with a set of common

landmarks denoted as feature points (FPs), and deforming the generic model

where the deformation process is modelled with a procedure known as Radial

Basis Functions (RBF).

The overview of the standardisation process is pictured in Figure 3.2 and the

following is a brief description of the four main steps involved:

• Collect a data set consisting of 3D laser scans of real people where each

model has its own unique vertex topology (Section 3.2.2).

• Label predefined features on the face models with a set of FPs (Section

3.2.3).

• Use the FPs to generate a collection of face models approximating the laser

scans by deforming a generic head model (Section 3.2.8). All the approxi-

mated models share the same polygon structure as the generic model.

• Fit the approximated models to the original laser scanned models. This

process is called registration and is explained in Section 3.2.10.

The outcome of this procedure is a collection of anatomically correct, stan-

dardised face models. Anthropometric measurements based on the labelled FPs,

and shared vertex topology can be utilised to perform statistical analysis.

3.2.1 Related work

There are a number of databases available consisting of 3-dimensional face models:

• USF HumanID 3-D Database [BV99]

• The University of York 3D Face Database [oY03]

• GavabDB: a 3D Face Database [MS04]

• 3D RMA Database (part of the M2VTS project) [SS]
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Figure 3.2: Steps taken to standardise a collection of scanned face models
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• Notre Dame Biometrics Database [oND]

• Face Recognition Grand Challenge (FRGC) Database [PFS+05]

Their usage covers facial reconstruction, facial animation, and statistical face

analysis and recognition. In order to use the data for these purposes, the mod-

els have to either share some common descriptors, or have the same structural

build-up. The process of acquiring this state is called standardisation. The term

registration is used when an approximated face is fitted onto the laser scan. The

registered face is therefore a standardised model where it looks nearly identical

to the original non-standardised scan.

A number of methods use FPs and approximate a generic model using RBFs.

Khler et al [KHYS02] standardise the laser scanned models with an initial set of

FPs using RBFs, and then iteratively find and add new FPs to generate a new

approximation until the algorithm converges onto an acceptable reconstruction.

Zhang [Zha06] registers the RBF approximation by moving its vertices to the

closest vertex in the laser scan. The method cleans up the scanned texture by

replacing the hair and the cap used in the scanning process with the appropriate

skin colour. Additionally, the ears, which normally cause problems in the regis-

tration process, are registered separately and then added onto the final model.

This method is also widely used to transfer animation parameters between

meshes of different structure [Eck91; NLE+99; PHL+98; yNN01; KHYS02; LEKM03;

Zha06]. The difference between these methods with regards to the standardis-

ation process lies in how they register the model after approximating it using

the RBFs. Pighin [PHL+98] uses labelled images to interpolate a textured 3-

dimensional head using RBFs. Neumann et al [NLE+99] use RBFs to approxi-

mate a standard model to a laser scan. An energy function is defined from the

difference between the approximation and the original scan which is then subject

to minimisation through cylindrical projection. Neumann and Noh [yNN01] and

Edge et al [LEKM03] get a dense mesh correspondance between a source model

(or in the latter case a control mask) and a target model that enables the target

to be animated using the animation parameters from the source. The source is
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fitted to the target using RBFs and then a cylindrical projection is used to reg-

ister the model correspondence.

As a part of the IDENT project, Fieller et al accumulated a standardised

data set by labelling over 3000 individuals with 30 landmarks 1. The landmarks

were placed on photographs of each individual from different angles, and then

3D coordinates were obtained by the Geometrix software. The Expectation Max-

imisation (EM) algorithm was used to locate missing or obscured landmarks. A

Cyberware scanner was used to verify the Geometrix readings but the scanned

models have not been processed here to obtain a standardised data set because

of difficulties obtaining a parser for the laser scan file format.

Colbry et al [CSJ05] detect feature points automatically using a gradient filter

recording the change in distance along the depth axis, a statistical model trained

on distances between feature points, and a shape characteristics based on surface

curvature. The gradient filter can easily detect the tip of the nose, and after

finding the top of the head, the model can be aligned and the statistical model

generates bounding boxes for the features based on its prior knowledge. The fea-

tures are then found within their bounding boxes using the shape characteristics.

Blanz and Vetter [BV99] use the Max Planck database [TN96] to build a set

of morphable 3-dimensional faces. The database consists of 200 laser scanned

heads and registers each head by using an optic flow algorithm to minimise the

difference between a laser scanned head and a reference model created by recon-

structing the scan using a combination of principal components with Gaussian

distributed coefficients. Curzio Basso et al [BPV06] later improved the morphable

model, making it more accurate and robust, as well as adding the possibility of

reconstructing missing data.

FaceGen 2 is a parametric database of 3D faces that uses Principal Compo-

nents Analysis (PCA) to construct a face space, similar to the morphable model

1http://www.pas-postgrads.group.shef.ac.uk/morecroft
2Singular Inversion. http://www.facegen.com
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by Blanz and Vetter [BV99], where each of the 128 principal components is one

standard deviation in magnitude. By navigating along these axes, new faces can

be generated by adding different deviations (classified parameters) to the average

face located at the origin.

3.2.2 Laser scanned face data

The laser scanned faces will provide a platform for creating the generative prop-

erties used in a modelling or animation system. It is therefore important the

scanned models captures a wide range of consistent features. The USF HumanID

3-D Database fulfills this requirement where it consists of a collection of 138 high

quality laser scanned faces of different ethnic origin (97 male, 41 female) [BV99],

and their corresponding texture images (512x512 pixels). The faces are stored in

a binary Inventor (iv) V2.1 file format and are processed with a program called

ivfix, written by James Ward 1, where the output file is an ascii Inventor file

format. An example of a face from this dataset is shown in Figure 3.3. The

models are exported to the Polygon File Format (ply) which is a simpler, and

more efficient format for the purposes of reading an ASCII file. Appendix A gives

a detailed description of the IV and PLY file formats.

Figure 3.3: An example of a laser scanned face from the USF HumanID 3D

database

1http://www2.dcs.hull.ac.uk/simvis/personnel/jww.htm
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3.2.3 Labelling faces

The laser scans are raw data and therefore do not contain any higher level infor-

mation about the location of individual facial features. Additionally, every scan

is made up of a different vertex and polygon topology, making it hard to perform

direct comparisons and meaningful measurements of features without further in-

formation. An additional data set specifying feature characteristics is therefore

needed to perform these tasks. A popular approach is to label the models with

a set of Feature Points (FPs) where each point represents a facial feature such

as the tip of the nose, or the corner of an eye. Faces have a well defined set of

features so any method of labelling will share a large number of FPs with other

methods.

The most common sets of FPs used are anthropometric or craniofacial land-

marks, and the MPEG-4 landmarks which focus on facial animation. Sections

3.2.4 and 3.2.5 briefly describe the two sets, and Section 3.2.6 explains what set of

FPs are chosen to perform the interpolation and registration. Section 3.2.7 shows

the effect of altering the set of non-crucial FPs on the final registered model.

3.2.4 Anthropometric landmarks

Anthropometry is the measurement of living subjects. Anthropometric land-

marks identify visible or palpaple features on the subject. On the head they are

called craniofacial landmarks. Hussuna [EH03] use craniofacial landmarks used

in plastic and reconstructive surgery, provided by Kolar and Salter [KS96], to cal-

culate statistical variations of 3-dimensional face models and show that the faces

have a reasonable Gaussian distribution around their mean. Figure 3.4 shows the

craniofacial landmarks on a photograph of a young boy.

3.2.5 MPEG-4 landmarks

MPEG (Moving Picture Experts Group) is a working group of ISO/IEC in charge

of the development and standards for codec representation of digital audio and

video. MPEG-4 is an object-based multimedia standard and with it comes the
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3.2 Collecting face data: Laser scans

Figure 3.4: Pictures show craniofacial landmarks super-imposed on a photograph

(after Kolar and Salter [KS96])

possibility of defining a face model in its neutral state, where its features are

labelled using 84 Feature Definition Points (FDPs), and a set of Facial Animation

Parameters (FAPs) defined by deriving spatial relations from the FDPs [Pak02].

Figure 3.5 shows the 84 FDPs used in the MPEG-4 standard. Labelling and

standardising a set of face models using the FDPs would mean the registered

models are ready for animation without the need for further labelling.

3.2.6 Choosing feature points

Choosing the right set of FPs improves the accuracy of the registered model. FPs

are omitted where the location on the 3D model is ambiguous or hard to place as

inaccuracies or notable variations in the labelling process can cause the registered

model to have a slightly skewed polygon structure. The risk is higher in areas

with a more complex surface curvature as they tend to have higher density of

vertices. This is demonstrated in Figure 3.6 where the craniofacial landmark ac
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3.2 Collecting face data: Laser scans

Figure 3.5: MPEG-4 Feature Definition Parameters (Points)
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3.2 Collecting face data: Laser scans

(9.13-14 in the MPEG-4 standard) is added when approximating the shape of the

nose. The picture on the left shows that after the model has been fitted to the

laser scan, the polygons circled in red have been compromised and do not produce

a smooth surface for that particular region. Omitting this landmark results in a

better fit (right).

Figure 3.6: A possible side effect of using a landmark which is hard to place on

the model.

The number of FPs are kept to a minimum to avoid unwanted artefacts. Nei-

ther the teeth nor the tongue are used which discards all MPEG-4 landmarks

relating to these features. Only one point per ear is used to interpolate an esti-

mated position as they are not registered.

The chosen set consists of 37 FPs where the majority can be found both in the

cranofacial and MPEG-4 sets. However, mutually exlusive landmarks consist of

the craniofacial landmarks s, g, c’, sl (see Figure 3.4), and the MPEG-4 landmark

9.12 (cs1 ) (see Figure 3.5). Two customised landmarks are used for the neck area

(cs2 and cs3 ).

The FPs are pictured in Figures 3.7 and 3.8 and listed in Table 3.2.6 where

the corresponding cranofacial and MPEG-4 label is given where it exists. The

extension -l (left side) and -r (right side) are used where appropriate to distinguish

different sides of the face where -r stands for the right side according to the model,

not the right side of the face from a front-facing observer. The FPs are shown on
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3.2 Collecting face data: Laser scans

Figure 3.7: Landmarks used (laser scan)

Figure 3.8: Landmarks used (standard female head)
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3.2 Collecting face data: Laser scans

a laser scanned model in Figure 3.7, and on a generic female head in Figure 3.8,

shown as green dots.

The FPs v and op cannot be placed on the laser scans because the scans

only consist of the face mask. Anthropometric proportions are used to locate

these points on the scanned models. Alternatively, a statistical model could be

used to determine the most probable location for these FPs based on pre-labelled

models achieved with the following approach. The FPs are mapped to the nearest

vertices on the generic model. A FaceGen model is used here to act as the generic

model which shares its vertex structure with every model generated in FaceGen.

Creating a number of models with FaceGen creates a range of FPs which is used

as a training set for a probability model. Once the FPs have been labelled on a

laser scan, the FPs that cannot be placed can be determined by the probability

model based on the location of the known FPs.

3.2.7 Using different sets of FPs

It is of interest to find out how important individual feature points are with

regards to the accuracy of the complete registered model as a reconstruction. The

fitting process requires the models line up so points defining the main structure

and orientation such as the tip of the nose and approximate skull width (defined

by where the ears connect to the skull) are required. Points lining the main facial

features are equally important to maintain the structural integrity between the

approximated model and laser scan.

Other FPs are omitted if they do not contribute to a noticeable improvement

to the registered model. This is done by measuring the difference between the

depth maps of two registrations where one has been generated by including all

37 FPs, and the other by using the subset of FPs being examined.

It was found the FPs g, s, c’-l, c’-r and sl can be omitted with negligible effect

on the fully registered model as shown in Figure 3.9. Figure 3.9 visualises the

difference between the RBF approximated models (left), and the fully registered

models (right), where the colour scale has been restricted to a narrower interval to
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Cranof. MPEG-4 Region Definition

s - Nose Sellion

prn 9.3 Nose Pronasal

ex-l 3.7 Orbits Exocanthion left

ex-r 3.12 Orbits Exocanthion right

en-l 3.11 Orbits Endocanthion left

en-r 3.8 Orbits Endocanthion right

os-l 3.1 Orbits Orbitale superius left

os-r 3.2 Orbits Orbitale superius right

pi-l 3.3 Orbits Palpebrale inferius left

pi-r 3.4 Orbits Palpebrale inferius right

mf-l 9.7 Nose Maxillofrontal left

mf-r 9.6 Nose Maxillofrontal right

al-l 9.1 Nose Alare left (The most lateral point on the

nasal ala)

al-r 9.2 Nose Alera right

sbal-l 9.5 Nose Subulare left

sbal-r 9.4 Nose Subulare right

(cs1) 9.12 Nose Middle lower edge of nose bone (or nose

bump)

c’-l - Nose Columella apex left

c’-r - Nose Columella apex right

ls 8.1 Orolabial Labial superius

li 8.2 Orolabial Labial inferius

ch-l 8.3 Orolabial Cheilion left

ch-r 8.4 Orolabial Cheilion right

cph-l 8.10 Orolabial Crista philtre left

cph-r 8.9 Orolabial Crista philtre right

obs-l 10.9 Ears Otobasion superius (Highest point of attach-

ment)

obs-r 10.10 Ears Otobasion superius (Highest point of attach-

ment)

Table 3.1: Feature points and their corresponding anatomical and MPEG-4 land-

marks
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Cranof. MPEG-4 Region Definition

sn 9.15 Face Subnasal

sto 2.2-3 Face Stomion, point buccal

sl - Face Sublabial

pg 2.10 Face Pogonion

gn 2.1 Face Gnathion or Menton

g - Head Glabella

v 11.4 Head Vertex (Highest point of the head)

op 11.6 Head Opisthorcranion or occipital point

(cs2) - Head Point where the chin and neck meet

(cs3) - Head Lowest point on neck

Table 3.1: Feature points and their corresponding anatomical and MPEG-4 land-

marks

Figure 3.9: The difference between using the full set of FPs and the omitted

version shown in the original context (same scale)
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show the differences more clearly (red for difference values -80 and 80 as opposed

to -600 and 600). As expected the areas in the interpolated model (left) where the

feature points were removed are affected, but are corrected in the fully registered

model (right).

Figure 3.10: The effect of omitting non-crucial FPs showed as the difference

between the full set of FPs versus the omitted version. The RBF model is on the

left and fully registered model on the right. The scale has been changed to see

the difference more clearly

3.2.8 Approximating faces

A database of 138 laser scanned face models is used where the models share a set

of FPs identifying common features. Two topologically efficient, complete, and

clean head models (male/female) are used as a generic head model (top left in

Figure 3.11) which have been marked with an identical set of FPs. The generic

models are deformed to approximate the structure of every laser scanned face

mask in the database. This gives a collection of complete head models sharing

the same vertex topology. The quality or polygon complexity of the standard

head should be good enough to produce a large range of unique facial features,

without sacrificing the possibility of near real-time calculations and rendering.
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3.2 Collecting face data: Laser scans

A function f is needed to map the FPs on the generic models to the FPs on the

laser scans, as well as providing interpolation for every vertex on the meshes that

lie between the FPs. The is solved here using a Radial Basis Function Network

which is explained in the following section.

3.2.9 Radial Basis Functions

Let pi ϵ R3 and qi ϵ R3, i = 1, ..., n where pi are the source FPs that lie on the

standard face and qi are the target FPs that lie on the laser scanned face.

Radial Basis Function (RBF) fitting is an approach to scattered data inter-

polation and is a bridge between instance-based and neural network learning

algorithms [Mit97]. It is widely used for face model fitting [KHYS02; LEKM03;

PHL+98; yNN01; Zha06]. The basic idea is that a model, often referred to as

a standard model or source model, is deformed to approximate another target

model using interpolation. Figure 3.11 shows the approach. A set of feature

points (FPs), indicated with red circles, are placed on both models where the

sequence and location of the FPs are equivalent. The RBF process calculates

interpolation coefficients that represent how the coordinates for the FPs on the

source model become the coordinates for the FPs on the target model. These

coefficients are then used to calculate the new coordinates for all vertices on the

standard, source model.

The RBF Network maps the FPs pi to qi and is of the form

qi = f(pi) =
n∑

j=1

cjθj(pi) +Λpi + t, (3.1)

where θj(pi) = ||pi − pj||, pi is a feature point i, and ||pi − pj|| is the euclidean

distance between feature points i and j where i ̸= j.

It therefore consists of a weighted linear combination of n basis functions θj

where the value of the function depends only on the distance from its centre,

and an additional polynomial (affine transformation) factor where R ϵ �3×3 adds

rotation, skew and scaling, and t ϵ R3 is a translation component. This assures
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3.2 Collecting face data: Laser scans

Figure 3.11: The RBF interpolation process

a certain degree of polynomial precision to avoid a poor approximation of the

unknown function away from the feature points [KHYS02; PHL+98]. cj ϵ R3 are

the linear weights (or coefficients) that will be determined using Equation 3.4,

and then used to interpolate the model vertices using Equation 3.1.

Zhang [Zha06] compares the result using different basis functions and finds

that the multi-quadric gives the best approximation but, as suggested by [LEKM03],

the inverse multi-quadric gives a better result

θj(pi) = (||pi − pj||2 + δ2j )
−λ, λ > 0, (3.2)

where λ = 1 and δj is the stiffness constant measured by the euclidean distance

between pj and the nearest pi as suggested by Eck [Eck91]

δj = min||pi − pj||, i ̸= j. (3.3)

This leads to a smaller deformation on widely scattered feature points and

larger deformation for closely scattered ones.

62



3.2 Collecting face data: Laser scans

Figure 3.12 shows the effect of some FPs where the FP in question in shown as

a white dot and the magnitude of deformation on the surrounding area is colour

coded. The coding ranges from red which indicates the highest influence on the

deformation, to blue having the lowest influence. The head on the far right of

Figure 3.12 shows the combined effect of the 32 FPs used for the deformation

process, and it is apparent that the most influenced area is around the nose and

mouth where the FPs lie closer together.

The coefficients of the basis function and the polynomial can now be found by

solving the linear system AX = B where:

A =



θ1(p1) θ2(p1) ... θn(p1) 1 pT
1

θ1(p2) θ2(p2) ... θn(p2) 1 pT
2

... ... ... ... ... ...

... ...
θ1(pn) θ2(pn) ... θn(pn) 1 pT

n

1 1 ... 1 0 0
p1 p2 ... pn 0 0


ϵ R(n+4)×(n+4),

X =
[
c1 c2 ... cn R t

]T
ϵ R(n+4)×3,

B =
[
q1 q2 ... qn 0 0 0 0

]T
ϵ R(n+4)×3.

(3.4)

This system can be solved using a linear solver such as Singular Value Decom-

position (SVD) or Least Squares [GVL96]. In this work, the main program is

written in C++, but calls a SVD function which comes packaged with Matlab

(see Appendix B). Once the coefficients have been found, the mesh vertices on

the standard, generic faces can be interpolated using Equation 3.1.

3.2.10 Face registration

The approximated models acquired using the RBF interpolation do not accurately

depict the original scans as shown in Figure 3.13. Figure 3.14 visualises the

difference between the depth maps for the laser scan and the approximated RBF

model. This is because the FPs used in the interpolation are sparse, and, as

discussed in Section 3.2.3, adding more points can cause unwanted artefacts,
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3.2 Collecting face data: Laser scans

Figure 3.12: The impact of FPs on deformation in the RBF process. Red repre-

sents the maximum influence and blue the minimum influence.
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particularly when they are hard to place.

Figure 3.13: A laser scan and its corre-

sponding RBF approximation

Figure 3.14: The distance between

the RBF and laser scan

The difference can be even more drastic if the scanned person has a lot of

fat tissue as it will not be replicated on the approximated model. Using FPs to

encapsulate every type of facial feature that can come up such as fat cheeks or

the particular type of chin in Figure 3.13 quickly mounts up to a large number

of FPs. These FPs would need to be present even when the features are absent

making them both redundant and extremely hard to place. Instead a minimum

number of FPs are used to approximate the scan roughly, and then a fitting pro-

cess is applied to capture the variations in shape and finer details. This fitting

process is denoted as registration.

The idea is that after the RBF interpolation, the approximated RBF model

and the original laser scan are aligned together where the features have roughly

the same size and proportion. The RBF model is then fitted onto the laser scan

by adjusting the coordinates for every vertex in the RBF model with the aim that

the vertices lie on the scanned surface, thus minimising the difference between

the two models. Three ways of doing this are:
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• Move each vertex in the RBF model to its nearest vertex on the laser scan

(see Figure 3.15). This method is straightforward as there is no need to

convert the models into cylindrical coordinates. However, it is found here

that this method gives less accurate results and there is no guarantee a

vertex exists on which to map to because the laser scan is incomplete. Ad-

ditionally, in vertex dense areas, this could compromise the vertex structure

if a displaced vertex crosses over a polygon edge, or if two vertices on the

RBF model map to the same vertex on the laser scan.

• Project each vertex in the RBF model onto its underlying polygon on the

laser scan and calculate its coordinates (see Figures 3.16 and 3.18). This is

explained briefly in Section 3.2.11.

• Create depth maps for the laser scan and RBF model of a predetermined

resolution. The depth maps are created by fitting a grid on top of an

unwrapped model and recording the interpolated depth in the centre of

each cell. The laser scan depth map is merged into the RBF depth map,

where pixels containing non-zero depths replace the corresponding pixels in

the RBF map. New vertex coordinates are then retrieved by referencing

the updated depth map. This is explained in more detail in Section 3.2.12.

Figure 3.15: Fitting by finding the

nearest vertex in the laser scan

Figure 3.16: Fitting by projecting the

vertex onto the laser scan

3.2.11 Projecting onto the underlying polygon

The first stage unwraps the models by transforming the vertex coordinates from

euclidean coordinates into cylindrical coordinates which is a R3 → R3 mapping:
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{x, y, z} → {θ, r, z} where

r =
√
x2 + y2,

θ = tan−1 y
x
, θ ∈ {0, 2π}.

(3.5)

Figure 3.17 shows the interpolated head unwrapped. If a vertex in the interpo-

lated model has the same cylindrical coordinates (θ, z) as a vertex in the laser

scan model, the depth value r is replaced and converted back to euclidean coor-

dinates to get the updated location. However, it is very unlikely that a vertex

in the laser scan and a vertex in the RBF interpolation lie at the exact same

location in the cylindrical plane, so either each vertex in the RBF plane is moved

to the nearest vertex in the laser scan plane, or interpolated values are calculated

using barycentric coordinates.

For every vertex on the interpolated RBF head, a corresponding depth value

is found on the scanned head using barycentric coordinates [yNN01]. There is

no need to find the projected intersection point on the triangles because the two

meshes lie in the same unwrapped 2D plane which means that the intersection

point is always going to lie on that plane. This is shown in Figure 3.18 where

every vertex p in the interpolated (source) head lies on a polygon (△p1p2p3) in

the scanned (target) head (unless the underlying region is missing as mentioned

earlier), and the interpolated depth is found by checking its barycentric coordi-

nate coefficients, in relation to the vertex location.

If pϵR2 is the vertex location on the interpolated head, and p1,p2,p3 ϵ R2 are

the points forming the triangle it intersects on the laser scan, giving the affine

combination

p = α1p1 + α2p2 + α3p3, (3.6)

where α1, α2, α3ϵR and α1 + α2 + α3 = 1 if the point lies on the plane of the
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Figure 3.17: The interpolated head unwrapped

triangle △p1p2p3. The scalars α1, α2, α3 are found by solving the linear system

[
p1x p2x p3x
p1y p2y p3y

] α1

α2

α3

 =

[
px
py

]
. (3.7)

If the sum of the coefficients is in fact equal to 1, then the depth value r for

the vertex should be an interpolation of the depth values of the vertices making

up the intersected triangle in the laser scan. The interpolated depth value di is

in fact a linear combination of the depth values where the contribution of each

vertex in the triangle is multiplied with the corresponding calculated α values

di = α1d1 + α2d2 + α3d3. (3.8)

At the same time it is possible to interpolate the texture UV coordinates by using

the same coefficients
u = α1p1u + α2p2u + α3p3u
v = α1p1v + α2p2v + α3p3v.

(3.9)
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Figure 3.18: Projecting a vertex in the RBF onto the laser scan (red is scanned

model, blue is RBF interpolated model).

3.2.12 Using depth maps

As shown in Section 3.2.2, some areas in the laser scan are missing and therefore

it is not always the case that a vertex can project to any region on the laser scan,

or that there is a vertex nearby. For these vertices it is possible to interpolate

the depth based on the surrounding vertices, granted that they were successfully

projected onto a polygon. This only works well for small areas as a gradual

degradation occurs when an interpolation uses a previously interpolated value.

Large regions need to be interpolated because the laser scan consists only of the

face mask. Figure 3.19 shows the distance measured between an RBF approxi-

mated head and a laser scan using the method described in the previous section,

where red indicates the largest distance and blue the smallest. Here the values

for the missing parts have been interpolated and it is clear that areas where a

large amount of information is missing give poor approximations. These areas

become the largest contributors to the overall distance measured, making it hard

to use the overall distance as a metric to compare how well different sets of FPs

approximate the original laser scan.

To overcome these issues, a depth map is generated for the interpolated head

(source) and its corresponding laser scanned head (target). Simple image ma-

nipulation techniques are applied which merge the two maps and interpolate the

missing regions. The new approximated vertex values are then found by looking

up a new depth from the pixel corresponding to cylindrical values for a given ver-
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Figure 3.19: Using interpolated values for areas where no prior knowledge exists

in the original data result in an unrealistic registration

tex. Furthermore, the depth maps are a form of storing the deformations needed

to fit a standardised face model to the set of targets.

3.2.12.1 Generating depth maps

The depth map is created by sorting the unwrapped polygons in the interpolated

model and laser scan model according to their UV coordinates for a given pixel

resolution. It can be thought of as putting a grid of a fixed resolution on top of

the unwrapped model, checking if the polygons are within the boundaries of each

cell on the grid. The UV grid is processed by going through each cell and using

barycentric coordinates to find the interpolated depth value of the underlying

polygon. This gives a more accurate interpolated value and therefore a better

and smoother result than taking the highest average depth value of the vertices

that belong to the polygons in the cell. Sometimes polygons occlude others and

using the barycentric coordinates makes sure an accurate highest depth value is

taken to assure continuity.

Figure 3.20 shows a depth map of an RBF interpolated head, and Figure 3.21

shows a depth map of its corresponding laser scanned head (512x512 pixels).
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Figure 3.20: A depth map for the RBF

approximated model (source)

Figure 3.21: Depth map for the laser

scan (target)

Figure 3.22 shows how the maps are merged together where the target values

replace the source depth values. The new vertex coordinates for the registered

model are found by looking up their new depth values from their UV coordi-

nates, and then projecting the updated barycentric coordinates back into XYZ

coordinate space.

The seams where the new copied values meet the old values have to be pro-

cessed to produce a smooth transition because the sudden jump in depth value

creates unwanted artefacts. The ears pose a problem as well because in addition

to having arbitrary parts missing, they need more than one depth value because

of their complex structure. To resolve this, only the area between the ears on

the target map is stitched onto the source map which in effect updates the main

features and face mask while retaining the remaining structure. The boundaries

where the target and source map meet are smoothed by interpolating interme-

diate depth values over a configured interval. The merged and smoothed depth

map is shown in Figure 3.23.

Two problems regarding depth maps need to be solved in order to achieve an

acceptable registration:

• Depth maps are 2-dimensional and can therefore not deal with a surface that

folds on itself, and occluded polygons. To obtain a smooth, continuous

surface, the maximum depth value is always chosen when generating the
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Figure 3.22: Merging the depth maps

without blending

Figure 3.23: Merged depth map with

blending

depth maps. The generic face model contains occluded polygons which

cause problems when they project to the same depth as the polygons that

occlude them. Section 3.2.12.2 discusses this problem in more detail and

how it can be solved.

• The depth maps are made up of discrete pixels and not continuous floating

values which causes aliasing. Section 3.2.12.3 describes how this is cor-

rected.

3.2.12.2 Depth ambiguity

Since a depth map is a 2-dimensional image, it can only contain the top-most

surface to maintain continuity. However, some meshes contain polygons that are

hidden from view (occluded by other polygons). Occluded vertices will project

to the same UV coordinate, and therefore the depth, as the polygon that occlude

them. The generic models used here have hidden polygons behind the lips which

are useful during animation to avoid unwanted gaps, as well as polygons around

the eyes to fit the eyeball meshes in the sockets without producing any gaps.

Other common facial parts that might be included are teeth and tongue. These

problem areas are pointed out in Figures 3.24 and 3.25. Figures 3.26 and 3.27

show the effect of registering the model without dealing with this problem where
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vertices are fighting to exist in the same space, showing up as black areas.

Figure 3.24: Example of occluded poly-

gons

Figure 3.25: Hidden and occluded poly-

gons

There are two steps involved in fixing this. The first one is when the depth

map for the RBF model is generated. During that process, the maximum depth

value is always assigned to the cell, but every polygon mapping to the same cell

with a lower depth value is labelled as being occluded along with the index of

the occluding polygon. Polygons that do not share an edge and do not lie on the

model’s boundaries are ignored.

This secondary data set knows what parts of the model should not get their

new depth values directly from the depth map. Figure 3.28 shows the overlapped

areas that will receive this special treatment. The top picture shows the occluded

areas as light gray on the unwrapped model. The two pictures below show the

areas on the model marked in red.

The second step is when the model is registered. The information regarding

the overlapped polygons is read in with the depth maps. The vertices that have

been labelled obstructed are not projected according to the depth map. Instead

they are translated depending on how much the polygon that obstructed it was

projected. In effect the hidden polygons follow the other ones around, keeping

the same relative distance. Figure 3.29 shows the effect of using this method
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Figure 3.26: The occluded vertices

project to the same depth and there-

fore fight to co-exist with the occluding

vertices

Figure 3.27: The hidden vertices

project to the same depth and there-

fore fight to co-exist with the occluding

vertices

Figure 3.28: The hidden and obscured polygons are labelled and treated sepa-

rately
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in the registration. The problem areas have now been fixed and no black areas

appear.

Figure 3.29: A registered model without smoothing using a 512x512 depth map

3.2.12.3 The aliasing problem

Because the depth maps are made up of pixels and not continuous floating values,

a discrete sampling artefact is inevitable as some vertices map to the same UV

coordinate and therefore the same depth. The problem is most apparent where

there is a large amount of detail in a small area because the limited resolution

cannot capture all the detailed features as they fight for a limited number of
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pixels. Two regions on the face might end up sharing a single pixel in the depth

map where neither region is correctly represented.

This problem is best shown using low resolution depth maps (100x100) to

register the model (see Figure 3.30). The problem can be reduced by using

Figure 3.30: Registered model using a low resolution depth map (100x100)

maps of higher resolution, but it is still always visible and higher resolutions

result in drastically slower calculations. Figure 3.29 shows the registration using

a depth map of size 512x512 pixels. While clearly improved, the model looks

crinkled in places. For example, the problem is particularly visible on the nose

(see right picture in Figure 3.31), where it is affected both by the limited depth
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map resolution in relation to the vertex density, causing the aliasing effect, and

the depth information around the nose is less accurate due to scanning artefacts

shown in the left picture in Figure 3.31.

Figure 3.31: Laser scan artifacts on the nose and limited depth map resolution

(512x512) result in a crude, aliased registration

Using more detailed depth maps (1024x1024) produces a marginally better

registration, but the problem is still not resolved and takes considerably longer

to generate and merge the depth maps, and register. The laser scanned face itself

is not perfect which means the registration process can never be perfect either.

Instead it is better to use a depth map of size 512x512, and apply a smoothing

effect during the registration process.

The smoothing process starts by iterating through the vertices of the RBF

interpolated model. The UV coordinates are calculated for each vertex and used

to look up its new depth value from the appropriate UV cell. The cell is a pixel

in the depth map found by rounding the UV coordinate to its nearest integer

values.

Instead of using the fetched depth value for the cell directly as before, the

depths in the surrounding cells are considered and used to calculate a linear

combination. To increase the accuracy, the relative vertex location in the current

UV cell is incorporated to assign the weights to the surrounding cells. This is

shown in Figure 3.32 where the grey cell is the current cell in which the vertex

UV coordinate lies, and the vertex is shown as a black dot. Its relative position

in the cell is (0.2, 0.75).
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3.2 Collecting face data: Laser scans

Figure 3.32: The smoothing process takes into account neighbouring cells, pro-

portionally to the vertex location within the cell

The cells are assigned weights according to their inverse relative position. Here

the left cell gets the weight 0.8, and the right 0.2. The top and bottom cells are

given weights in the same fashion where the top cell gets the weight 0.75 and the

bottom cell 0.25.

This produces three values: The depth value for the current cell, and weighted

depth values for the left/right and top/bottom pairs. The next step is to calcu-

late a linear interpolation using these three values where a weight coefficient is

assigned controlling how much the surrounding cells influence the final depth.

This is in essence a smoothing coefficient. A higher weight given to the surround-

ing cells equates to increased smoothing. Figures 3.33 and 3.34 show the effect of

this using the smoothing coefficients 0.5 and 0.9 respectively. Figure 3.35 shows

clearly how this solves the issue around the nose, and the overall model appears

smoother and more natural.
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3.2 Collecting face data: Laser scans

Figure 3.33: Registered model with

smoothing coefficient 0.5

Figure 3.34: Registered model with

smoothing coefficient 0.9

Figure 3.35: Using smoothing solves the problems inflicted by the laser scan and

limited resolution. The picture in the middle is the original unsmoothed version,

and the picture on the right is the registered model with smoothing coefficient

0.8
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3.2.12.4 Measuring the effect of registration

Depth maps for the registered faces and the laser scan are generated and com-

pared to see how well the the registration process reconstructs the original laser

scan. Figure 3.36 shows the difference for the RBF model, and two registered

models with smoothing coefficient 0.0 (no smoothing) and 0.8 (high smoothing),

respectively. Applying smoothing gives a better reconstruction of the laser scan

when compared to the non-smoothed registration.

Figure 3.36: Visualisation of how well the approximated model and registered

models reconstruct the original laser scan. The pictures show the difference be-

tween a standardised model and the laser scan. The picture on the left shows

the RBF approximation is not a faithful reconstruction. The middle and right

show that applying the fitting process creates a fairly good reconstruction, and

by using the smoothing filter, an even better representation is created (Note: The

ears are not processed).

3.3 Choosing appropriate data for testing and

development

Both the FaceGen data, and the processed laser scan data can be used to model

different faces. The generated faces from FaceGen are already standardised, shar-

ing the same proportions, alignment and vertex topology. It could be argued they
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3.3 Choosing appropriate data for testing and development

are too artificial because they are noise free and generally lack unique details as

the range of available facial features have been labelled and parameterised. How-

ever, noise can be added incrementally to see where a break down might occur.

Additionally, although details are lacking and particular features are difficult to

reproduce, the available features can be customised to make sure the data set

incorporates a decent range of every feature. The focus here is making sure the

training set contains a decent mixture of different facial features shapes without

regards to ethnic groups. However, a diverse set of individuals from different eth-

nic groups helps to ensure a diverse range of features. The training set is made

up of roughly an equal number of male and female face models, and a small group

of aged faces.

These aspects can be seen as an advantage when developing a sketch-based

modelling tool. In the case of inaccurately reconstructed features given a set

of strokes, either the sketch detection and feature reconstruction process, or the

data set could be the cause. Having a good range of noise free data reduces the

risk of inaccurate reconstructions originating from a bad data set, thus putting

the focus primarily on correcting the sketching and reconstruction process.

Laser scanned data might contain features that are missing in FaceGen, but

there is no guarantee that the set of scanned faces includes the entire range of

desired features. The data contains noise but it can be reduced by applying

smoothing in the registration process, or as a post-process.

FaceGen data will be used. It is better suited for building a sketch-based

interface that produces predictable and accurate results, adding registered faces

from laser scans as a future extension to introduce new features and a range of

details. These faces would be an add-on where they comply with the structure

of the FaceGen data. This is done by registering them using a generic face from

FaceGen as shown in the previous section.

The laser scanned database used here does not contain different facial ex-

pressions for a single individual. This makes FaceGen the default choice for the

animation work detailed in Chapter 5.
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Chapter 4

Modelling Faces by Sketching

This chapter focuses on creating new face models through sketching. An integral

part of this work is relating strokes sketched by a user to relevant face data which

can be used to construct a range of facial features. The approach taken here is

to look at sketching process as an inverse Non-Photorealistic Rendering (NPR)

where the strokes are mapped to contour data which make up a low-dimensional

sketch-like representation of any 3D object (Section 4.1). Sketched strokes are

often ambiguous and made up of an arbitrary number of stroke points, while the

contour data is defined by contour points which represent an accurate, and non-

redundant description of facial features for a particular face model. This poses

the challenge of determining the best approach for mapping stroke points to the

set of contour points which best describes the facial features that were intended

with the sketched strokes.

Figure 4.1 gives an overview of the technique proposed in this chapter. The

first thing to note is that the system consists of an online part (left), and an

offline part (right). The offline part contains a face generator in the form of

three statistical models (Section 4.2), trained on a collection of 3-dimensional

face models described in Chapter 3. This Chapter continues to explore both the

low and high resolution models although it focuses on the low resolution models

in the implementation and testing of the system due to considerable difference

in speed and memory usage. Additionally, curvature data is stored offline and is
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used to generate contours for a range of face models at runtime, including those

in the training set (Section 4.3.4).

The online part contains a simple interactive sketching interface where a tem-

plate face model is used as a starting point to guide the user. A tracking model

with identical vertex structure to the template model is used to keep track of

the sketched features. Initially, the vertex coordinates in the tracking model are

unknown but are replaced with observed values based on two modes of input

supported by the interface:

• Automatically generated contour data from existing faces which simulate

sketched points. This is used to verify that contours can be used to recon-

struct complete 3D faces (Section 4.5.1).

• Strokes sketched by a user which is used to interactively alter one or more

facial features until the desired face has been constructed (Section 4.6).

The contour generator uses the offline curvature data to create a set of contour

candidates taking into account the current viewpoint and bounding box (Section

4.3). The sketched strokes are then mapped to the best set of contour can-

didates based on a predefined criteria where each candidate is associated to a

vertex index. The indexed vertices in the tracking model are updated using the

coordinates from the corresponding candidate (Section 4.5). Here, two meth-

ods for mapping sketched points to contours are explored. The first method

is a heuristic approach which grades each potential point-to-contour, where the

grades are calculated using linear functions based on a set of defined sketching co-

efficients. Each assignment takes into account the previously assigned point and

contour. The second method involves Hidden Markov Models (HMM) which is a

probabilistic approach where the sketching coefficients form a probability density

function. This method takes every assignment in the sequence into account when

determining the appropriate mapping for each point.

The partially known tracking model is passed on to the face generator which

uses the already observed data to find the remaining unknown vertices to create

a complete, reconstructed face model where it is adapted to comply with the

face space. This creates the most probable features based on the training set,
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4.1 Mapping sketched strokes to 3D models

and can optionally correlate any unsketched features (Section 4.2). The complete

vertex structure is used to update the visible model in the sketching interface,

and the observed vertices in the (hidden) tracking model are updated with the

corresponding vertices in the reconstructed model.

This Chapter concludes by presenting an evaluation where users were given

two tasks which involved sketching a specific person based on a verbal description

(task 1), and from a picture (task 2).

Figure 4.1: An overview of the modelling approach

4.1 Mapping sketched strokes to 3D models

This section discusses how to represent 3-dimensional faces in such a way that

they can be mapped in a meaningful way to sketched strokes in order to create new
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4.1 Mapping sketched strokes to 3D models

facial features based on the sketch. The first thing to consider is how the sketched

strokes are stored and represented in sketching interface. Two approaches are

discussed and contrasted, labelled feature points and automatically generated

contour points, where the latter approach is justified.

4.1.1 Sketching interface

The strokes are first detected and stored as a sequence of 2D points in screen

space. The surface normals for the points are not assigned as they are not re-

stricted from representing any feature on the face model’s surface. The depth

problem is solved by projecting the points onto an intersecting object in the 3D

world space where the point attains the depth from the object’s surface. The

possible choices of objects are displayed in Figure 4.2. The first possibility (a)

allows the user to sketch directly on the underlying face mesh where the stroke

points are projected onto the mesh surface if they intersect it from the viewer’s

perspective (in XY screen space). At least one point on the stroke has to intersect

the model as the points who do not will get an interpolated depth value based on

the successfully projected points. The second (b) and third (c) option overcome

this limitation by including an axis plane that extends further than the mesh

boundaries where the user can sketch freely. The fourth and last option (d) is a

concept that is only briefly touched on in this thesis. It allows the user to sketch

on a flat plane simulating traditional sketching-on-paper, where contour points

for the mean face have been projected onto the plane for guidance. It could be

argued that the strokes should be used entirely in screen space and avoid this

projection step because it is shown in later sections that the mapping process

operates primarily in the screen space. However, the depth proves useful to cull

unlikely candidates in the world space to reduce ambiguity.

Sketching hastily can result in a stroke with very sparse points. As the stroke

is rendered as a connected line it may seem as there is some information between

sparsely connected points when in fact the line segment contains no intermediate

points which can be mapped to contours. Instead of reparameterising the stroke,

additional points are added between two connecting points using cardinal spline

interpolation, if the distance between them exceeds a certain threshold.
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4.1 Mapping sketched strokes to 3D models

Figure 4.2: a) Sketching on mean face b) Sketching on front axis plane c) Sketch-

ing on profile axis plane d) Sketching on 2D paper plane

4.1.2 Feature point representation

Feature Points (FPs) define the boundaries of facial features using meaningful,

and carefully placed points based on anthropometric landmarks (see Section 3.1).

Sketched strokes outlining the main facial features will often include these FPs,

particularly when considering the front view. Since the FPs can be used to

generate a range of face models using RBFs, it is reasonable to assume that

sketched strokes can drive this creative process by mapping the points in the

stroke points to FPs.

However, the FPs are very sparse compared to the mesh density so any infor-

mation carried in a stroke that lies between assigned FPs will be ignored. Also,

since the FPs are view-independent, their location will never change regardless of

the viewpoint angle which causes some FPs to be redundant or misleading in the

context of sketching facial features from an arbitrary viewpoint. This is depicted

in Figure 4.3 where the red dots represent the FPs. Examining the front view

(left), the FPs circled in yellow are redundant as they only apply when seen from

the profile view. These FPs will therefore put added strain on the FP mapping

process as they fight other FPs for individual stroke points. The only FP specify-

ing the outline of the overall face shape is the bottom of the chin. Without data

defining the face outline it cannot be sketched, but adding more points will not

solve the problem because the outline is never the same from any two viewpoints.
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4.1 Mapping sketched strokes to 3D models

This is clear when looking at the same model and FPs from a different angle in

Figure 4.3 (left). If a sketched line was connected through the points defining the

nose area, it would give a skewed picture of its shape as the FPs do not lie along

the edges of its current outlines or internal features.

Figure 4.3: FPs become redundant or inaccurate (yellow circle) when viewed

from different angles

4.1.3 Contour representation

Non-Photorealistic Rendering (NPR) methods are used to create sketch-like rep-

resentations of 3D models [Can86; HZ00; PHWF01; KMM+02; DFRS03; DFR04;

OBS04; JDA07; LMLH07; HMR+09]. Nealen et al [NSACO05] suggested that

the process of sketching should be considered as an inverse NPR method where

the sketched strokes are interpreted as a silhouette of a 3D object. Cole et al

[CGL+08] lend support to this idea by comparing how real artists sketch a range
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of 3-dimensional objects to recent NPR work. They find that the combined

output generated by four NPR methods account for 86 percent of the sketched

strokes made by artist where each method has its strengths and weaknesses. The

three object space methods combined covered 81 percent, sharing 95 percent of

the generated lines with the image space method, which on its own scored 76 per-

cent. Furthermore, they examined how well a line drawing depicts the 3D shape

of an object to a human viewer [CSD+09]. They found that for most objects, the

NPR versions performed nearly as well as a shaded image the object. Faces were

not included in their study, but it indicates that line drawings are an intuitive

way to indicate the desired shape of 3D facial features.

Image space methods render the object into an image, and the use image

processing methods such as edge detection to create the sketch representation

[Can86; LMLH07]. They create visually pleasing results but lose the 3D scene

information when rendering the object into the 2D image space. The goal of this

paper is to use the generated NPR data as a vessel, carrying the sketched points

to the 3D vertices so an object based approach is a more direct choice.

The silhouette of a 3D object is easily described using contours in object space.

A mesh vertex p is a contour if its normal n(p) is perpendicular to the view vector

v(p) (see more details in Section 4.3). The internal features can be described using

a range of object space methods where they examine the differential geometry of

the object’s surface which generally involves looking at its curvature properties.

Ohtake et al [OBS04] look at ridges and valleys which occur at points of min-

imum and maximum curvature in the principal directions (see more on principal

curvatures in Section 4.3), Judd et al [JDA07] include the viewing projection

with the curvature to define view-dependent curvature creating apparent ridges,

DeCarlo et al [DFRS03] create suggestive contours at points where the radial

curvature is zero, and DeCarlo and Rusinkiewicz [DR07] extend that work by

introducing suggestive highlights and principal highlights based on related defi-

nitions and geometric creases. These methods work well for smooth surfaces but

they are sensitive to noisy data. Huang et al [HMR+09] adapt suggestive con-

tours to work on noisy range images through filtering, and by using the analytic
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connectivity information provided with the images.

Cole et al [CGL+08] suggest that a combination of methods is ideal to cap-

ture the widest range of features. Suggestive contours connect directly to the

silhouette contours, and often become true contours in nearby views. They de-

scribe important areas but miss ridge-like features on convex shapes like the nose

[JDA07]. Ridges [OBS04; JDA07] ridges define convex shapes but tend to be

noisy, and exaggerate curvature in some cases.

The approach taken here is to use suggestive contours based on DeCarlo et al

[DFRS03] while developing and testing the sketch-based interface, and leave the

combination with other techniques for a more precise coverage of facial features

as future work.

Examples of recent sketch-based work using contour data include object de-

formations by Zimmermann et al [ZNA08]. The contours are generated in image

space by examining discontinuities in the depth and normal map using convo-

lution filters which approximate the surface derivatives. The sketched contour

is used to find a reference contour on the target mesh, and then a particular

region of interest around the contours is deformed to fit the sketched contour

using Laplacian Surface Editing, which is based on their own work on Laplacian

deformation [SCOL+04]. Kraevoy et al [KSvdP09] align and deform template

models to fit sketched silhouette contours by mapping stroke point to vertices on

the mesh using a Hidden Markov Model (HMM) optimisation whose criteria is

based on normal differences and the proximity of vertices to the stroke points.

HMMs are sensitive to sequential data so the vertices are not mapped in isola-

tion, hence making sure they are mapped with regards to the vertex structure.

Their approach allows processing of multiple strokes at a time, and progressively

deforms the mesh to fit the sketched contours using mean-value encoding.

This thesis focuses on using sketched contours to manipulate face models

through the use of templates providing prior knowledge of their 3D structure. The

templates described here differ from [KSvdP09] as they use a single template for

a particular object, while here a number of templates are used for a single class of
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objects, namely faces. Additionally, their method uses a progressive deformation

technique to fit the model which works well, but the work here fits a face model

and features using a statistical, generative model through maximum likelihood

from incomplete input data. The collection of templates serve as a training set

to fit the generative model.

Figure 4.4 shows the generated contours (black) for the average high resolution

face model, where the data is more dense than the FPs and adapts to the current

viewpoint. This enables sketching a bigger range of features with greater accuracy,

and allows for a range of person-specific details that cannot be captured with a

standardised set of points. Section 4.3 details how the contours are calculated.

Figure 4.4: Contours create a dense view-dependent of the relevant facial features

4.2 Learning faces

This section goes through the maths and methods behind fitting probabilistic

models on a collection of face data, referred to as a training set. It is demonstrated
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how a complete sample can be reconstructed given incomplete data. This is an

important element as a 2D stroke can only provide limited information about the

location and distribution of a small number of vertices. It is therefore pivotal

to have a statistical model which is capable of creating an elaborate 3D vertex

structure from the limited data which is extracted from the sketched strokes.

PCA is a popular statistical approach but suffers from a number of limitations

such as not allowing a principled way of handling missing data. PCA projections

based on changes from a small proportion of data points produces compromised

approximations of the intended features. This is apparent by looking at the pro-

jections in the following sections where performing a projection on a complete

vertex structure often compromises the reconstructed features. The strokes could

be used to translate a set of vertices that will act as deformation parameters for

the remaining vertices. This however will not guarantee that the reconstructed

will be a realistic human face. It is shown here that using clustering and prob-

ability techniques, a realistic face model based on a known set of faces can be

produced where the reconstructed features are faithful to the sketched strokes.

The section concludes by exploring how different parts of a segmented face can

be correlated which can be useful when sketching a face where only certain facial

features are known or required.

4.2.1 Clustering and probabilistic techniques

4.2.1.1 K-medoids and K-means clustering

K-medoids and K-means are hard clustering methods. K-medoids is a heuristic

method and is used here to find the initial clustering parameters for the K-means

algorithm which uses the EM algorithm to converge to an optimised clustering

solution [Bis07].

To find K clusters in a set of N observed D-dimensional data points, the

K-medoids is executed in the following manner:

1. Create the first cluster c1, by picking any data point as the cluster centre

µ1 (randomly or using specific criteria).
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2. Add a new cluster ck, k = 2..K, by assigning the cluster centre µk as the

data point furthest away from all other centres, ck = max

(
K∑
i=1

∥µk − µi∥

)
.

3. Once all the cluster centres are found, assign every data point xn, n = 1..N

to a cluster based on the closest centre.

The K-means algorithm minimises the objective function

J =
N∑

n=1

K∑
k=1

rnk∥xn − µk∥2, (4.1)

where rnk ϵ {0, 1} defines if data point n belongs to centre k. Based on the

inital values given by the K-medoids method, the EM algorithm optimises the

model parameters by iteratively calculating the function J with respect to rnk

and µk until values are found that minimise the function [Bis07]. This hard

clustering method is not probabilistic, but is useful to initialise the parameters

in a probabilistic mixture model described in Section 4.2.1.3. The mixture model

introduces soft clustering which means that a data point can belong to more than

one cluster where the probability factor for each potential cluster is calculated.

4.2.1.2 PPCA

Principal Components Analysis (PCA) is a popular approach in computer vision

where high dimensional data is decorrelated and approximated using a lower di-

mensional space where each dimension is orthogonal to each other so that the

retained variance under projection is maximal. However, conventional PCA suf-

fers from many limitations. Importantly it is not a density model so it cannot

be used with Bayesian inference, it cannot handle missing data, and it cannot be

extended to a mixture model which is used to estimate non-linear projections.

PCA can be defined in a maximum-likelihood framework based on a Gaus-

sian latent variable model to derive a Probabilistic PCA (PPCA) [TB99]. A

latent variable model linearly maps an observed d-dimensional vector t to a q-

dimensional, Gaussian latent variable x with mean vector µ (where d ≫ q) such
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that

t = Wx+ µ+ ϵ (4.2)

where ϵ is a Gaussian, independent noise model ϵ ∼ N(0, ψ). This means that

the observed vectors t are also Gaussian distributed, t ∼ N(µ,C). By using an

isotropic noise model and setting ψ = σ2I, and therefore the model covariance

to C = σ2I+WWT, the columns of W span the principal subspace of t after

fitting the model. Fitting the latent variable model can be done either in closed

form or using the EM algorithm as described by Tipping and Bishop [TB99]. The

distributions for a single latent variable model are summarised here from their

paper as a reference for the following sections where the marginal distribution

is used to calculate the posterior responsibilities and probability when handling

incomplete data. The probability distribution over t-space for a given x is of the

form

p(t|x) = (2πσ2)−d/2 exp{− 1

2σ2
∥t−Wx− µ∥2}. (4.3)

Using a Gaussian prior p(x) they obtain the marginal distribution

p(t) =

∫
p(t|x)p(x)dx = (2π)−d/2|C|−1/2 exp{−1

2
(t− µ)TC−1(t− µ)}. (4.4)

The Bayes rule gives the posterior distribution p(x|t), and the log-likelihood

of observing the data is

L = −N
2
{d ln(2π) + ln|C|+ tr(C−1S)}, (4.5)

where the sample covariance matrix S is found with

S =
1

N

N∑
n=1

(tn − µ)(tn − µ)T . (4.6)
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4.2.1.3 Mixtures of PPCA

The high-dimensional training data is generally found to be non-linear and that

is indeed the case here. Using a single PPCA model to fit a univariate Gaussian

function on the data set creates an unrealistic likelihood function. If an imag-

inary data were to form two clusters, a non-existing data point lying between

the clusters would be seen as equally likely as an actual observed point in either

cluster.

A multi-variate approach is needed to fit a non-linear data set. A Gaussian

mixture model approximates a non-linear model by expressing the probability

density function as a linear combination of basis functions

p(t) =
K∑
k=1

πkp(t|k), (4.7)

where p(t|k) is a single PPCA model and πk is the mixing coefficient or prior

probability for component i, πk ≥ 0, and
∑
πk = 1. t is the observed input

vector, m is the number of clusters or centres, and p(t|k) is the cluster density

function.

The parameters for this mixture model can be determined by maximising the

data likelihood. For convenience, the problem is converted into an equivalent form

where the goal is to minimise the negative log-likelihood which is treated like an

error function. This cannot be calculated in closed form so the EM algorithm is

employed to optimise the model parameters. Tipping and Bishop [TB99] detail

the steps needed to fit the model parameters, but the following is a summary of

the steps that were taken.

The E-step calculates the following:

Rnk = p(k|tn) is the posterior responsibility of mixture k for generating data

point tn given by

Rnk =
p(tn|k)πk
p(tn)

. (4.8)
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The ’old’ values are used to evaluate the expectations ⟨xnk⟩ and ⟨xnkx
T
nk⟩

⟨xnk⟩ = M−1
k WT

k (tn − µk), (4.9)

⟨xnkx
T
nk⟩ = σk2M

−1
k + ⟨xnk⟩⟨xnk⟩T , (4.10)

where

Mk = σ2I+WT
kWk. (4.11)

The complete likelihood is

⟨LC⟩ =
N∑

n=1

K∑
k=1

Rnk{ln πk −
d

2
lnσ2

k −
1

2
tr(⟨xnkx

T
nk⟩)

− 1

2σ2
k

∥tnk − µk∥2 +
1

σ2
k

WT
kW

T
k (tn − µk)

− 1

2σ2
k

tr(WT
kWk⟨xnkx

T
nk⟩)},

where tr(· ) is the trace of a matrix which is the sum of its diagonal elements.

The M-step calculates the ’new’ estimated values denoted with the symbol ˜:

π̃k =
1

N

∑
n

Rnk,

µ̃i =

∑
nRnk(tnk − W̃k⟨xnk⟩)∑

nRnk

,

W̃k =

[∑
n

Rnk(tn − µ̃k)⟨xnk⟩T
][∑

n

Rnk⟨xnkx
T
nk⟩

]−1

,

σ̃2
k =

1

d
∑

nRnk

{∑
n

Rnk∥tn − µ̃k∥2

−2
∑
n

Rnk⟨xnk⟩TW̃T
k (tn − µ̃k)

+
∑
n

Rnktr(⟨xnkx
T
nk⟩W̃T

kW̃k)
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(4.13)

If a covariance matrix values drop below a threshold ϵ which is set to machine

precision, the matrix is reset to its initial status. This is because if a covari-

ance matrix collapses, the next iteration of the EM algorithm fails and the model

parameters are no longer floating point numbers [Nab01]. Poorly initialised pa-

rameters can result in a local maxima problem as there are generally multiple local

maxima of the log likelihood function. To reduce the chances of that happening

the K-medoids and K-means methods are used to perform initial clustering to

provide the mixture model with initial settings (see Section 4.2.1.1). This also

reduces the number of iteration needed when fitting the mixture model.

4.2.1.4 Computing probabilities

The marginal likelihood for each cluster i is calculated using Cholesky decompo-

sition to speed the computation [Nab01]. The decomposition is applied on the

covariance matrix Ck to find the upper triangular matrix U which satisfies

UTU = Ck. (4.14)

The marginal likelihood for an arbitrary cluster derived from equation 4.4 is then

given by

p(t) = exp

{
1

2

∗∑[(
xn − µk

U

)
⊗
(
xn − µk

U

)]
⊘

[
(2π)

−D
2

D∏
j=1

Ujj

]}
, (4.15)

where
∑∗ calculates the row sums, ⊗ denotes element-by-element multiplication,

and ⊘ denotes element-by-element division.

Finding the posterior responsibility Rnk for a data point tn is straightforward

using the marginal likelihood for every cluster k = 1..K, and applying equation

4.8. Once complete, an K-dimensional vector consists of the responsibility values

which indicate the probabilities of a point tn belonging to each of the clusters,

where
∑K

k=1Rnk = 1. Mapping a data point to the most likely cluster is then
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simply finding the cluster with the highest posterior value in the vector.

For a data point tn, the probability ρ for cluster k is the marginal likelihood

for the cluster, scaled with its mixture component prior

ρk = p(tn|k)πk. (4.16)

This is useful when choosing between two or more competing data points, such

as points in a sketched stroke, where the one with highest probability value is

chosen.

4.2.1.5 Dual PPCA

The training set t consists of a n×d data vector containing n sample faces. When

using PPCA and d is very large, the sample covariance matrix of size d × d be-

comes a performance hindrance. Finding the sample covariance requires O(nd2)

operations, and finding its eigenvectors requires O(d3) operations. This can be

calculated iteratively by applying the EM algorithm [TB97] which is an approach

that was taken initially in this thesis. Alternatively, this can be achieved in closed

form using the dual approach to PPCA, where instead of marginalising the la-

tent variables X and optimising the parameters W via maximum likelihood, the

parameters are marginalised and optimising with respect to the latent variables

[Law05].

The mean adjusted vector Y is found, and then instead of calculating the

sample covariance S = YTY, the following steps are taken:

Y = t− µ
K = YYT/d.

(4.17)

The eigen-decomposition U of K is found, and the eigenvectors for the sample

covariance S is recovered with

US = YTUV, (4.18)
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where V is the diagonal of the eigenvalues λ.

Choosing q principal eigenvectors, the latent variables x for an arbitrary sam-

ple ts are found in the same way as in traditional PPCA

x = M−1WT (ts − µ),
M−1 = σ2I+WTW,

W = US(Λ− σ2I)
1
2R,

σ2 = 1
d−q

∑d
j=q+1 λj,

(4.19)

where Λ is a q×q diagonal matrix containing the q eigenvalues λ1, .., λq, and R is

an arbitrary q × q orthogonal rotation matrix [TB97]. The reconstructed sample

η is found using

η = W(WTW)−1Mx+ µ. (4.20)

4.2.1.6 Handling incomplete data

It was demonstrated in Figure 4.1 that sketched strokes map to contours which

update the tracking model which consists of vertices with unknown coordinates.

It is unrealistic to assume that the user sketches every aspect of every feature on

the face model, and here the eyeballs themselves cannot be sketched (only the

eye sockets). Furthermore, the strokes can only map to contours which at any

time represent a small portion of the face model from a given viewpoint which

means the observed vertex structure is always incomplete. The missing vertices

can be found using known vertices obtained from the observed strokes using the

method described here.

Let t be the sample vector for the whole vertex structure (or more generally

any structure), made of up the observed and missing data which trivially form

the observed (o) and missing (m) partitions. An example of this is visualised in

Figure 4.5 where the sample vector is partitioned into observed (green) and miss-

ing (red) data. The same partitioning is applied to the mean vector µk, k = 1..K,

and the covariance contains four partitions to account for the row and column
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dimensions.

Figure 4.5: Partitioning the data into observed (conditional) and missing com-

ponents: o=observed; m=missing;

The expected values for the missing data tm are found using the conditional dis-

tribution p(to|tm) where

t =

(
tm
to

)
, µ =

(
µm

µo

)
, Λ =

(
Λmm Λmo

Λom Λoo

)
,

Λmm = (Cmm −CmoCoo
−1Com)−1,

Λmo = −(Cmm −CmoCoo
−1Com)−1CmoCoo

−1,

tm = µm|o = µm − Λ−1
mmΛmo(to − µo),

(4.21)

and Λ ≡ C−1 is known as the precision matrix. oo, om, mo, and mm correspond

to the combinations of partitioning the observed and missing [row][column] en-

tries in the matrices Λ and C.

This is done for every mixture component k using the corresponding mean and

covariance. The complete sample for k is found by concatenating the observed

data with the expected data, and is referred to as a reconstructed sample (or

reconstruction). The probability ρk is then calculated using equation 4.16. The

reconstruction tied with max({ρ1, .., ρK}) is selected and used to update the face

model. It is worth noting that the expected values get skewed towards the mean

if the amount of observed data is very limited.
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4.2.2 Segmenting the face

It was shown in Section 4.1 that contours are used to map sketched strokes to

vertices. Faces in the training set might possess different facial details that are

not shared in others, and every facial feature looks different depending on which

viewpoint it is seen from (view dependent). This means that the range of poten-

tial contours can map to any vertex given different contexts. Therefore to reserve

the possibility of sketching any feature and possible detail the contours represent,

no vertex can be discarded. This leads to the use of the entire high-dimensional

vertex structure.

Fitting a mixture model on n, d-dimensional training samples can cause sin-

gularity errors when calculating the covariance matrix if d ≫ n. If d is very

large then adding more samples to overcome the singularity problem can lead to

memory issues when attempting to store and manipulate a full covariance matrix

of size d× d for each mixture component.

182 low resolution training faces were used to fit a mixture model for the tests

performed in this section. Each face consists of 863 3-dimensional vertices (face

mask and eyes), making each sample vector 2589 dimensional. Since 2589 ≫ 182,

singularity errors occur in the fitting process. Furthermore, m mixture compo-

nents are needed to fit the data to a degree where it can be accurately generated

from incomplete data, requiring storage for at least m × 2589 × 2589 single or

double values which is more than the hardware used here can handle. Equivalent

high resolution models contain 6174 vertices which means each sample vector has

18522 dimensions.

The dimensionality of the training samples could be reduced using methods

such as PCA, but it remains unsolved how to relate, in a principled way, sketched

3-dimensional coordinates to a set of q-dimensional principal components gener-

ated from a set of n, d-dimensional samples of face models.

Another possibility would be to use a subset of vertices that relate to the

main features. But that means facial details that might be a part of some train-
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ing samples are not picked up. The ability to detect person-specific features and

sketch them is one of the objectives for using the contour data insted of the FPs

which only targets predefined features.

It is argued that the most practical solution for this problem is to segment the

face model into k vertex groups where each group contains di, i = 1..k vertices

which is below a threshold value which offers a low risk of singularity occurring.

Instead of fitting a mixture model on the whole data set, a separate mixture model

is fitted on each group where the data set is restructured to form the subset of

vertices from every face in the training set as specified by the group’s indexing.

Figure 4.6 shows how the low resolution face has been segmented into seven

groups and colour coded. This is done by applying k-means as explained in Sec-

tion 4.2.1.1 where the tip of the nose is assigned as the centre for the first cluster.

The clusters are then segmented again using k-means restricting the clustering

along the vertical axis creating horizontal slices. Here, all clusters that lie on the

same vertical level are merged except the ones at eye level. Clusters sharing a

border and contain vertices below the threshold value when combined are also

merged. This was done so the left and right side of the face correlate as they

belong to the same segment avoiding having to sketch both sides every time. This

makes the sketching process quicker and more natural since faces are generally

nearly symmetrical.

Some issues arise from this horizontal slice arrangement. A particular nose

shape can affect the silhouette or width of the face which can make sketching a

particular combination of features cumbersome. It could be argued that a bet-

ter arrangement isolates the main features even further. In both cases, only the

segments corresponding to the sketched strokes are updated, leaving the others

unchanged. This can create visible border issues between segments where the

shared vertices and their surrounding polygons are considerably different. This is

particularly apparent when using a large number of segments for isolated features

which is the case when fitting and reconstructing the high resolution models. For
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example, if a specific portion of the lips is sketched and reconstructed, the sur-

rounding segments have to take into account how the connecting vertices resonate

the new configuration.

A simple way to adapt the segments and correct the borders is to project

the reconstructed segments onto the statistical segment space which uses the

training set to create the closest approximation to the reconstructed segment

(Section 4.2.4).

The entire face structure can then be projected onto the face space which

smooths out the borders. However, this risks compromising the structure of

individual features if the training set is limited in size. Another approach is to

correlate any unaffected segments based on the reconstructed segments to make

sure they adapt to the new structure (Section 4.2.5). This will also correlate any

unsketched features, e.g. if the nose is sketched then the eyes will too if they have

not yet been sketched.

The correlation can fail on two occasions. Correlated features are not nec-

essarily what the user wants although this could be used to lookup faces in a

database. If two neighbouring segments contain sketched information then they

would have to iteratively correlate to each other to ensure smooth borders. In-

stead, the borders can be smoothed by applying a multi-resolution decomposition

and blending technique [BA83] as suggested by Albrecht et al [ABHS06]. This

approach is not implemented here, and instead is left as potential future work.

4.2.3 Fitting segments

The previous section showed how a d-dimensional vertex structure for the whole

face is segmented into k groups and reformed to form the vertex structures n ×
di, di ϵ R3.

A mixture model is fitted on each vertex structure creating k mixture mod-

els corresponding to each group. The number of mixture components used for

individual groups is decided by fitting the model using different number of com-

ponents, and then picking the one with the highest complete likelihood.
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Figure 4.6: Segmented groups for the low resolution models.

The low resolution models use k = 7 with 182 training samples. The training

parameters are displayed in Table 4.2.3 with the number of mixture components,

and dimensionality (d) of each training sample vector. Once the training is com-

plete, the data for the generative model is stored in a file which is loaded into

memory at startup. The file size for the low resolution model is 338MB.

The high resolution models use k = 41 with 160 training samples. The num-

ber of mixture components range from 3 to 6, and d ranging from 195 to 774.

The file size for the high resolution generative model is 667MB.

The low resolution models are used throughout this chapter to test the sketch-

ing interface as they require less memory, and the performance is significantly

better at this stage.
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Group No. mixtures d

1 17 735

2 15 273

3 19 249

4 11 639

5 17 501

6 6 96

7 6 96

Table 4.1: Segmented groups for the low resolution models and their training

parameters

4.2.4 Segment clean-up

Irregularities in the vertex structure can occur during the mapping process due

to the following reasons:

• The sketched points map to sequence of contours whose vertices violate the

mesh structure, or a sequence containing unexpected sharp changes (See

Figure 4.7). Improving the accuracy in the mapping approach reduces these

unwanted artefacts. Furthermore, this can cause the expected data found

using equation 4.21 to contain unwanted noise and unrealistic features.

• Features can be sketched repeatedly from different angles which can cause

different stroke points to compete for the same vertices which can cause

conflicting coordinates.

This is corrected by fitting a Dual PPCA model on the restructured training

set from each of the k groups found in Section 4.2.2. Each group i contains n×di
vertices where n is the number of training samples. This creates k Dual PPCA

models where each contains pi latent variables.

If a user sketches a stroke that maps to vertices in one or more groups, the

mapped vertices are used to find the remaining unknown vertices in the affected

groups. Once found, the complete set of vertices in each group are projected onto

the corresponding Dual PPCA model, and then reconstructed using equation
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Figure 4.7: Mapped vertices containing unwanted sharp changes.

4.20. This projection onto the latent space generates a smooth surface which is

the closest approximation to the original surface based on the observed faces in

the training set.

4.2.5 Correlating segmented groups

Based on the training set, changes made in one group can indicate how the

other groups should correlate. This is done by employing a hierarchical approach

where a mixture model is fitted on latent variables generated by the k Dual

PPCA models described in the previous section. Figure 4.8 shows how the latent

variables are joined together to create the training set for the mixture model. The

latent variables for each training sample are calculated and form a n×pi, i = 1..k

matrix. They are then concatenated to form a n ×
∑k

i=1 pi matrix which will

be referred to as the correlation matrix. Each row in this matrix is therefore

the complete set of latent variables, forming a feature vector for each training

sample. The correlation matrix, containing the feature vectors for every sample

in the original training set, makes up a training set for a mixture model which is

responsible for correlating the missing parts of an incomplete feature vector.
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Figure 4.8: A statistical mapping technique performs segment correlation

Given that a group g is affected by a set of sketched strokes where the vertex

structure is updated accordingly, the online process is as follows:

1. Calculate the latent variables for the new structure using Dual PPCA g.

2. Form a vector which corresponds to a single row in the correlation matrix

where the known latent variables for group g are filled in and the remaining

left blank.

3. Use the correlation mixture model to find the missing latent variables ac-

counting for groups i = 1..k, i ̸= g, using equation 4.21.

4. Calculate the vertex coordinates based on the expected latent variables

using the corresponding Dual PPCA models using equation 4.20.

4.3 Calculating contour points

Contours are curves that represent the boundaries of objects and some of their

internal features. The aim here is to calculate the contours of an arbitrary face

model in the training set. However, the models consist of discrete vertices so

the contours here will be made up of discrete contour points. The contours are

independent, i.e. they do not form polylines using a secondary data set such as a

connectivity chain. However, the contours map to the face vertex structure which

can be used to examine paths between contours (see Section 4.8.4). A contour
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and a set of contour points will be used interchangeable for the purposes of this

thesis.

A set of contour points represent a low-dimensional vertex version of the full

face mesh. Which contours are used is based on the current viewpoint, creating a

view-dependent sketch-like representation of the face. Because the contours know

which vertex they belong to, they serve the purpose of acting as a bridge between

a mesh vertex and a sketched point. This way they interpret the sketched strokes

and supply the mapped vertices with their coordinates to create new features.

Three types of contours are used (see Figure 4.9):

• Silhouette contours (b)

• Suggestive contours (c)

• Manually labelled contours (d)

Figure 4.9: a) Low resolution model b) Silhouette contours c) Suggestive contours

d) Manually labelled contours e) Combined contours

4.3.1 Silhouette contours

Finding the vertices that represent the silhouette contours for a surface S is

straightforward. A vertex p ϵ S is a contour point if its normal n(p) is perpen-

dicular to the view vector v(p), or more formally if

n(p) · v(p) = 0 (4.22)
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and the view vector is defined as v(p) = c−p, where c is the vector coordinates

for the camera centre. In practice, a small threshold value close to zero is used

because the vertex structure is not continuous. The selected threshold value is

based on the number of vertices in the face models. A low-dimensional model

requires a higher threshold than a high-dimensional model. The value 0.14 is

used here for the low-dimensional models.

4.3.2 Suggestive contours

The suggestive contours are defined as curves along which the radial curvature

κr is zero, and the surface bends away from the viewer [DFRS03]. They can also

be described as vertices which are almost silhouette contours, and will become

true silhouette contours in near viewpoints.

The radial curvature κr is the normal curvature κn on the surface in the

direction of the vector w. Figure 4.10 visualises the vector w where it is the

projection of the view vector v onto the tangent plane t at the point p.

Figure 4.10: (a) The view vector v is projected onto the tangent plane to obtain

w. (b) The radial plane is formed by p, n and w and slices the surface along the

radial curve, the curvature of which is κr(p) (after [DFRS03])

The maximum normal curvature κ1 and the minimum normal curvature κ2 are

called the principal curvature at p. The unit directions e1 and e2 for which these
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maximum and minimum values are reached are called the principal directions,

where they form an orthonormal basis in the tangent plane for p (Figure 4.10)

[DC76].

The normal curvature κn along w where φ is the angle from the principal

curvature direction e1 and w in the orientation of the tangent plane t to S at p

gives the radial curvature κr, and is calculated using the Euler formula

κr(p) = κ1 cos
2 φ+ κ2 sin

2 φ. (4.23)

This requires the principal curvatures and directions which are calculated using

a method proposed by Taubin [Tau95] where he shows they can be obtained by

computing the eigenvalues and eigenvectors of a matrix Mp defined by integral

formulas. Furthermore, he provides an algorithm of linear complexity to perform

this estimation. The symmetric 3× 3 matrix is defined as

Mp =
1

2π

∫ −π

π

κr(tφ)tφt
T
φdφ (4.24)

where tφ = cosφe1+sinφe2. Taubin shows that Mp can be factorised as follows:

Mp = tT12

(
m11

p m12
p

m21
p m22

p

)
t12, (4.25)

where t12 = e1, e2. He finds that m12
p = m21

p = 0 so the eigenvalues for Mp are

0, m11, and m22 corresponding to the eigenvectors n, e1, and e2. The principal

curvatures can be obtained by calculating

κ1 = 3m11
p −m22

p

κ2 = 3m22
p −m11

p .

The directional derivative of κr in the direction of w can be approximated as

follows:

κr(w) ≈ 2nT (q− p)

∥q− p∥2
. (4.26)
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Now, a vertex is a suggestive contour if its radial curvature κr is 0, and the

directional derivative of κr in the direction of w is positive [DFRS03]

Dwκr > 0. (4.27)

Filtering is applied to remove unwanted noise such as zero crossings which can be

seen when w looks down its corresponding principal direction and the minimum

principal curvature is close to zero [DFRS03].

4.3.3 Manually labelled contours

Some features are not picked up by the automatically calculated contours and

need to be added manually to ensure they can be sketched. The models in the

training set share a common vertex structure so any labelled vertex indices on

the standard face model are directly transferable to every training model. The

models used in the training have no eyebrows as a part of the mesh surface,

and instead include them as a part of the texture map. Manually labelling the

eyebrows is therefore the only way to allow the user to sketch them, and can be

easily defined by sketching the expected shape for the manual contours.

Figure 4.11 shows the sketched eyebrows (left) which will be used to locate

the vertices associated with the manually defined features, and the individual

sketched points on top of the vertex structure. The point density of the strokes

is considerably higher than the vertices, particularly in the eyebrow region.

The next step is to map the sketched stroke points (black dots) to the nearest

vertex (red cross), where the green lines indicate which vertex each point maps

to (see Figure 4.12). Each vertex is mapped from more than one stroke point

because of the stroke’s high density compared to the vertices.

Duplicate labels are removed where vertices map to more than one stroke

point (see Figure 4.13, left), as well as any excessive labelled vertices which are

misleading, unnecessary, or disruptive. This is not a big issue here where the ver-

tices in the eyebrow region are sparse, although one redundant vertex is removed
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Figure 4.11: Creating manual contours for eyebrows using sketched strokes

Figure 4.12: Mapping sketched contour strokes to nearby vertices

(green circle). The result is five labelled vertices for each eyebrow (right). The

process of manually labelling new features is quick and straightforward, where

the main issue is detecting and removing the unwanted labellings. Performing

the same process in an area with a more dense vertex structure, such as the high

dimensional models, can produce a bigger number of unwanted labelled vertices.

Another example of features that only exist as a part of the texture are the

nostrils. The vertex density is also very low in that region making it tricky to

label descriptive vertices. Only three vertices per nostril can be used to visualise

their shape.
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Figure 4.13: Cleaning up manual contours

The lips are not easily detectable from the front view, and they are rarely

detected from any viewpoint in the low resolution models. For this reason the

lip contours are sketched manually and the sketched points are mapped to the

nearest vertices. The mapped vertex sequence is kept clean by removing any

redundant vertices that could contribute to ambiguous or irrelevant contours. A

total of 19 points are used for the upper and lower lips.

The eye sockets are detected by recognising that they form a connected edge

where an edge made by two connecting vertices has only one adjacent triangle.

Other edges such as the bottom of the neck are detected, but to avoid repeatedly

culling unwanted edges when sketching, the eye socket edges are collected offline

and included with the set of manually labelled contours.

Some contour points can cause problems when mapping to sketched strokes.

This is most noticeable in the eye and lip regions where some vertices are occluded

but are still detected as contours. This could be solved by excluding any occluded

contours but it would add to the complexity of the online detection process.
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Instead a quick yet acceptable solution for a low resolution model is to record the

indices for these vertices and ignore them when generating the list of contours.

4.3.4 Caching curvature files

Figures 4.14 and 4.15 show the results of combining all the different sources

together to form a complete set of contours for a single low resolution face.

Figure 4.14: The average face model seen from the front viewpoint (left). The

underlying wireframe visualises the vertex density and relevant contours (middle).

The complete set of contours (right).

Let M = {m1, ..,mk} be a collection of face models, where the curvature

information and normals needed to calculate the contours for every m ϵM are

calculated and stored offline. This enables calculating the complete set of contours

in near real time in the sketching interface. This is discussed further in the next

section.

4.4 Preparing contour candidates

Contours act as a bridge between stroke points and vertices on the face model as

each contour represents a sketchable feature, and is associated with a particular

vertex index.
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Figure 4.15: The average face model seen from an angle (left). The underly-

ing wireframe visualises the vertex density and relevant contours (middle). The

complete set of contours (right).

In order to map the stroke points to the appropriate contours, the contours

are generated for every m ϵM from the current viewpoint using the curvature

information and normals stored offline, and culled if they lie outside the stroke’s

bounding box. This forms a contour cloud which covers the range of possible ways

for a stroke to be mapped, and in turn determines the sketchability boundaries

(strokes outside the cloud are not registered). This cloud is denoted as contour

candidates.

Figures 4.16 and 4.17 show the complete set of contour candidates for M from

two different viewpoints, where the candidates are shown in green (middle). A

number of candidates can occupy the same pixel space depending on the screen

resolution and camera angle. The illustration on the right in the figures visualises

this density where it ranges from blue (lowest) to red (highest). The mapping

process is executed from the perspective of the stroke points where each point

collects candidates lying nearby, which are then subject to further processing de-

tailed in later sections.

Each m ϵM contains a set of t vertices V = {v1, ..,vt} ϵ R3. A single stroke

114



4.5 Reconstructing faces from extracted contours

Figure 4.16: The contours are generated for every known model and combined

to create a contour cloud which defines the range of sketchable features from the

front viewpoint. The density is visualised on the right where it ranges from high

density (red) to low (blue).

is made up of n points, S = {p1, ..,pn} ϵ R3. The sketch detection often pro-

cesses more than one stroke, but references to stroke numbers are omitted in the

following equations for simplicity.

Each stroke point s ϵ S is assigned mi contour candidates which are chosen

based on whether they lie within a variable threshold euclidean screen distance

and a fixed world distance from s.

The assigned candidates form a collection Cj = (xj, yj, zj, ηj), j = 0..mi,

where ηj specifies the vertex index the candidate maps to.

4.5 Reconstructing faces from extracted contours

It was argued in Section 4.1 that contours, as a product of NPR, depict a sketch-

like representation of a 3D mesh. The inverse process of mapping strokes to

contours is used to produce accurate 3D facial features through sketching. The

contours are based on the mesh vertices and so can be seen as a low-dimensional

version of the original mesh. It is important to verify that given an arbitrary
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Figure 4.17: The contours are generated for every known model and combined

to create a contour cloud which defines the range of sketchable features from the

an arbitrary viewpoint. The density is visualised on the right where it ranges

from high density (red) to low (blue).

sample mesh, that its corresponding contours can be used to faithfully reconstruct

the original mesh with all features intact. By treating the contours as a sketched

strokes will at the same time simulate precise sketching.

4.5.1 Creating existing faces

4.5.1.1 Reconstruction assuming a known vertex structure

The first step is to test the statistical model by generating contours using an

arbitrary mesh from the statistical training set, or a mesh that shares the same

polygon structure. A simulated stroke is created by assigning the generated con-

tours as a set of discrete stroke points. Because the vertex structure is known, it is

already known which vertices on the mesh the contours map to so the coordinates

are easily extracted and assigned to the corresponding vertices.

The mesh now has some known vertices and the remaining vertices can be

found using the method described in Section 4.2.1.6. Figure 4.18 displays three

examples of this method where the row on the left shows the original source
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meshes, the middle row shows the reconstructed target meshes using the contours,

and the row on the right shows the difference between the source and target where

the vertex distances are colour coded. The distance ranges from blue (minimum

distance) to red (maximum distance).

Figure 4.18: Reconstruction using a known vertex structure. The sample meshes

contain 863 vertices. a) Sample F01, 180 contour points used b) sample F22, 159

contour points used c) sample F55, 160 contour points used

The results indicate that it is reasonable to assume that the partial input

based on contour data can be used to accurately reconstruct a complete mesh

with the intended features intact. The system is less confident in areas where the

contours are sparse, as more than one shape is plausible given the surrounding

contours based on the faces in the training set. This test does not indicate how

well the system will fair when dealing with sketched strokes as unlike the contours,
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the points making up the strokes have no prior knowledge of which vertex they

should map to.

4.5.1.2 Assuming an unknown vertex structure

As before, the aim is to reconstruct an arbitrary face model using its contours.

However, when creating the simulated stroke, the contours will now ignore the

vertex index they belong to, and instead map the generated stroke points to the

most appropriate index based on specific criteria. This is done to give a better

simulation of using sketched strokes, as they do not know beforehand which ver-

tex indices in the polygon structure their points should map to. Additionally,

this allows using a model whose vertex topology does not necessarily match that

of the training set.

The first step creates all the contour candidates as explained in Section 4.4.

The second step iterates through stroke points created from the contours, and

maps them to the closest candidate in screen space by calculating the euclidean

distance. The mapping involves assigning the candidate 3D coordinate to the

mesh vertex corresponding to the candidate vertex index ηj. The last stage is as

before to reconstruct a full mesh given the partial input provided by the mapped

candidates. Figure 4.19 shows the reconstruction results for the same sample

meshes as in Figure 4.18 for comparison. As expected, the results are not as

accurate as the earlier test where the index values were known, and the ears

can cause unexpected problems. Importantly though, it shows that the system

is capable of producing a visually accurate likeness of an sample mesh without

knowing in advance what each contour point represents in relation to the sample.

4.5.1.3 Using 2D contour points

Since the mapping process is working primarily in screen space, the depth can

be discarded entirely with very little effect on the reconstruction error. Figure

4.20 shows where the contours for the sample mesh F01 have been projected onto

a 2D plane and used to reconstruct a complete mesh without compromising the
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Figure 4.19: Reconstruction using an unknown vertex structure. The sample

meshes contain 863 vertices. a) Sample F01, 180 contour points mapped to

candidates b) sample F22, 159 contour points mapped c) sample F55, 160 contour

points mapped

reconstruction accuracy. This feature can be used to simulate a natural sketch-on-

paper experience where the user sketches the initial 3D shape on a blank canvas,

and later tweaks it in 3D by sketching from different angles as needed. This is

touched on briefly in the next section but further improvements and testing are

left as possible future work.
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Figure 4.20: Reconstruction using an unknown 2-dimensional vertex structure.

a) Contour points for sample have been projected onto a 2D plane b) Original

sample mesh c) Reconstructed mesh using 176 mapped contour points d) Colour

coded distance to the original mesh

4.5.2 Creating novel faces

It has been shown here that a face in the training set can be reproduced using

the methods described above, but using an existing face is not a realistic scenario

as an arbitrary sample mesh will not have a direct correspondence to a face in

the training set.

4.5.2.1 Measuring the generative properties

The smaller the training set of observed faces, the more it is up to chance whether

a novel face fits well enough within the range of prior knowledge in order to create

a decent approximation. It is of interest to see how many faces a generative model

needs to observe in order to recreate a number of novel faces accurately.

This is touched on here by recreating three target face models from their

contours using several generative models where each has been trained using a

different number of observed faces. To clarify, if the training sets are denoted

as Gi, i = 1..n, where G1 is the smallest set and the Gn is the largest, then

Gi−1 ⊆ Gi. None of the target models are part of any of the training sets. Figure

4.21 shows the reconstructions (right) of each target (left) where each column

is generated by a single generative model. The number at the bottom of each

column represents the number of training samples used. Figure 4.22 displays
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Figure 4.21: Reconstructing models from contours using different number of

training samples. Each column visualises 3 face models at different stages where

the target models are located on the left. The numbers below the columns specify

the number of training samples used to train the generative models responsible

for reconstructing the face models in the corresponding columns.

the euclidean distance (error) from the target for each reconstruction. Although

a low euclidean error does not guarantee a subjective likeness, it provides an

indication of whether there has been an overall improvement. As expected, the

reconstruction based on only 4 faces is coincidental which results in a greater

error variance. They quickly start to converge from only 10 training samples,

and already produce a moderately accurate likeness based on 50 samples which

is reflected in Figure 4.21. From then on a stable linear improvement is seen

when observing more faces which enhances the details to give a more convincing

reconstruction.
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Figure 4.22: The reconstruction errors based on generative models trained on

different number of samples. The error is the total size of the translations needed

to move every vertex to the correct target location in the XYZ world space.

4.5.3 Depth ambiguity

The contours are made to simulate sketched data by discarding their depth values

and performing measurements in screen space. This causes the depth ambiguity

issue that plagues sketching interfaces to become apparent. Sketched strokes are

2-dimensional so when sketching from a particular viewpoint, the depth has to

be inferred through maximum likelihood. However, what the generative model

classifies as the most likely outcome is not necessarily what the user is after. The

same applies when contours extracted from complete samples are used unless the

sample is in the training set for the generative model where its values will arguably

be considered the most likely outcome. Figure 4.23 demonstrates this by choosing

a model that has been left out of the training set, and reconstructing it from

different viewpoints. First the mesh is reconstructed using the front view where

156 points are mapped to vertices. The reconstruction looks convincing when

comparing it from the front view, but some differences are noticeable when the
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comparing the profile to the original. This is again applicable in the second test

where a model is reconstructed using the profile view. The reconstructed profile

is more accurate than the one generated using the front view, but the system is

unaware of the width of the facial features. This causes it to underestimate the

width of the cheeks and nose as expected because the majority of the faces in the

training set do not possess wide cheekbones.

Figure 4.23: The missing depth is inferred using the most likely values based on

the training set, but may not reflect the user’s expectations

4.5.4 Subjective test

So far the reconstruction error has been measured objectively, and shown visually

by colour coding the model vertices. However, a low overall reconstruction error

is not a guarantee for an accurate likeness from a human perspective [SJ99]. This

can be measured subjectively with human subjects by asking them to identify a
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range of target faces from a list of possible faces, where one of the choices is the

reconstructed model, and the other choices are faces that resemble the target face.

If the users consistently pick the reconstructed face out of the pool of choices, it

will indicate that the reconstructions are recognisable and therefore produce an

adequate likeness of the original target faces.

4.5.4.1 Test setup

An online test was devised where users completed a series of recognition tasks.

They were asked to identify a series of 10 target face models. The eyes were

omitted, and all the models had the same texture to focus primarily on the

differences in shape. Figure 4.24 presents 9 faces, where the target face is in the

centre surrounded by 8 randomly ordered candidate faces. One of the candidates

Figure 4.24: The user looks at the target face (centre), and picks the surrounding

face he thinks most resembles the target.

was a reconstructed face using the contours generated from the target model,

while the other seven were faces from the training set that most resemble the

target face. The closest matches to the target face are determined using the

following process:

1. Fit a Dual PPCA model on the contour data acquired from the set of n

meshes in the training set.
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2. Calculate the latent variables xi, i = 1..n, for each sample ti in the set using

xi = M−1WT (ti − µ) (Equation 4.20).

3. Calculate the latent variables xt for the target face.

4. Calculate the errors εi = ∥xt − xi∥.

5. The 7 lowest errors are chosen as the candidate faces from the training set.

The contour coordinates are used instead of the vertex coordinates because the

focus is on the main facial features from a particular angle. If all the vertices

were used, the large number vertices irrelevant to those features, could sway the

error value to be smaller than a face that has very similar features, but differs in

redundant areas.

4.5.4.2 Test results

122 subjects took part in the test (n = 122) where the set of scores are referred

to as X and xi ϵ X, i = 1..n. Some noise is expected when analysing the results

due to the relatively uncontrolled nature of an online test. Users are often not

as engaged and prepared when compared to a controlled environment, where the

tester can interact with the subject. Some users scored 1/10 (10%) where it is

likely they either misunderstood the test, or did not give their full attention since

the chance of selecting a single reconstructed face randomly is 1/8 (12.5%).

The mean score was µX = 0.6721 with a standard deviation σ = 0.2117 found

using

σ =

(
1

n− 1

n∑
i=1

(xi − µX)
2

) 1
2

. (4.28)

Figure 4.25 shows how many times each reconstructed model was identified as the

target model (a), and how many times another candidate was chosen instead of

the reconstructed model (b). The reconstruction error for each model is measured

as the sum of differences between the vertices of the reconstructed model and the

target model (c). It is apparent that this objective euclidean distance error is not
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a good indicator of how well the model scored in the subjective recognition test,

although two factors affect the credibility of direct comparison.

Figure 4.25: Model statistics for an online user test measuring the subjective

likeness of the reconstruction process

The first factor influences the reconstruction error. As discussed in Section

4.5.3, the face is reconstructed using contours from a specific angle. This means

that even though the reconstructed model looks similar from that particular view-

point, the depth is ambiguous and is not necessarily accurate as it depends on

what the statistical model finds likely given its prior knowledge (see Figure 4.23).

This can contribute to the an overall higher reconstruction error yet retaining a

similar overall appearance from the fixed viewpoint.

The second factor concerns the recognition score. The ability to correctly

classify the reconstructed face from the other seven candidates is affected by how

similar the faces in the training set are to the target face, which is coincidental.
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Evidence of this can be found by observing that target model 9 has the lowest

reconstruction error, yet has the highest number of failed recognitions. Figures

4.26 and 4.27 decompose the results for target models 4 and 8, respectively. The

reconstructed models are shown in the top row along with the number times they

were classified as the target model (number of hits). The remaining rows show

the candidate models from the training set that were also classified as the target

model, ordered based on the number of hits they received.

The following list compares the training model candidates displayed in Figure

4.26 with the target model in order to speculate why the users picked them:

• a) The nose and lips are quite similar to the target, giving the central part

of the face an overall likeness despite the target being considerably wider

with smaller eyes. The reconstructed model is arguably a better likeness

apart from the ears which is potentially confusing the users, and swaying

them to pick this model.

• b) Most features on this model differ from the target. The face has larger

eyes, is rounder and shorter, and the nose is narrower. The shape of the

lips is similar but relatively smaller. It is difficult to pick a feature which

convinced the users to pick this face.

• c) This model has similar eyes, chin, and lower cheeks as the target model,

but the lips are quite different.

• d) Here the eyes are of similar size and shape, and the lips are of similar

thickness albeit not as wide as on the target model. The nose is completely

different in almost every aspect.

• e) This model has almost identical lips to the target model which is a

distinguishing feature, but it is not as elongated and is clearly a female.

Speculatively, the lips must have been the deciding factor for the single

case.

The most distinguishing features shared between these models and the target

are the lips and nose which seems to be enough to prompt the users to pick
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them over the reconstructed face. It is possible the poorly generated ears on the

reconstructed model convinces some users that it is not the best likeness.

Figure 4.26: Identifying similarities between target model 4 and the candidate

models classified as the target during the online test

Likewise, the following list compares and discusses the training model candi-

dates displayed in Figure 4.27:

• a) Similar overall elongated shape, width and height. Lips of similar length

but slightly thinner. The shape of the eyebrows resemble the target, the

nose width is similar but the nose tip is too high.

• b) The chin curves are very similar although the overall face is slightly less

elongated. Nose and lips pair up quite well, both in terms of shape and the

distance between them.

• c) Elongated face and similar eyes.

• d)-g) All these faces have a similar slim elongated facial structure, but none

of them have any particular features that compare well with the target apart

from similar eyebrows in the case of e and f to some extent although its

jaw structure is considerably wider.
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None of the faces in the set of training candidates stands out as being an accu-

rate likeness of the target, but they do share a common characteristic, the slim

elongated overall shape. Face b has the most convincing central region with a

similar nose, lips, and chin, while faces a and e possess a better eye region with

lowered eyebrows.

Figure 4.27: Identifying similarities between target model 8 and the candidate

models classified as the target during the online test

Both target examples introduced in these figures have one distinguishing fac-

tor which seems to continuously influence the users’ choices. This trait is ex-

ploited when creating caricatures of individuals which has been shown to be as

recognisable or better than the original counterpart [MK92; SBOR07].
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The second factor affecting the recognition score is observed by comparing the

results from the two target models in Figures 4.26 and 4.27. For model 4, model

a) that is repeatedly chosen (27 hits) over the reconstructed one. That model

arguably bears resemblance to the original face. In contrast, no candidate model

is picked noticeably more often than the others for model 8 which is arguably

because none of them are overwhelmingly similar to the target model, giving the

corresponding reconstructed model the second highest hit count of the test.

4.5.5 Limitations

Mapping sketched points to the contour candidates is only based on the minimum

euclidean distance, not taking into account the context, continuity, and structural

integrity of the vertex structure affected by the mapped contours. This is tackled

in the next section when mapping manually sketched strokes, but is left here as

possible future work.

Another limiting factor is the lack of training data. If the generative model

has never encountered certain features it will struggle to reconstruct them. This

also affects the mapping process since it generates the contour candidates from

the training data which the sketched strokes map to. It is worth considering

whether the generative model or the mapping process is more affected by the

lack of observed data. The probabilistic properties of the generative model sug-

gests it can cope better than the heuristic mapping process and this is found to

be the case. This is demonstrated in Figure 4.28 where a target model (left) is re-

constructed from its contours. Here, the curvature data for this model is added to

the offline data used in the contour mapping process, while leaving the generative

model unchanged. A comparison of the reconstructed models (right) yields an

improvement when using more curvature data where it is particularly noticeable

in the nose region. This indicates the generative model is able to reconstruct this

target mesh faithfully without having observed it, but the mapping process fails

to supply it with accurate data based on the nearest candidate criteria.

It raises a question whether it is possible to fit a generative model to the

curvature/contour data to create a probabilistic mapping process. The contours
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Figure 4.28: Adding curvature data without changing the generative model can

produce better reconstructions

are view-dependent and therefore the set of candidates changes based on the

viewpoint, both in terms of quantity, and which vertices they correspond to. The

solution to that problem lies outside the scope of this thesis.

4.6 Reconstructing faces from strokes: A heuris-

tic approach

The previous section showed how automatically generated 3D contour points,

simulating sketched strokes, can be used to reconstruct a novel 3D face model from

any viewpoint. The contour points represent an accurate, and non-redundant

description of the facial features for a particular face model which corresponds to

the existing training data. Sketched strokes however are made up of an arbitrary

number of points where it has to be determined which combination of points,

sampled from the strokes, is the best to describe the intended facial features.

The sketched points are typically more dense than the vertex structure which

means that several points compete to represent a single vertex, whereas before

the contours had a direct correspondence to the vertex structure. Picking the
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right set of points ensures a good fit while mapping an inconsistent set of points

can give unsatisfactory and unexpected results.

Sketching takes place in the 2D screen space where the stroke points can be

projected onto the surface of the current face model or axis planes to get a depth

estimate. The intended feature may not have the same depth as the surface the

stroke is projected on so this does not give an accurate estimate. However, the

estimate is still useful by culling unlikely candidates as a sketched feature tends

to lie close to the original feature on the underlying mesh.

These issues make it more difficult to interpret sketched strokes. They can be

summarised into the following questions:

1. What is the most suitable 3D vertex for a given 2D stroke point?

2. Given that the points have been assigned to vertices through contours,

which set of points best conveys the intentions for a particular facial feature

embedded in the sketched stroke.

These questions are coupled where the second one relies on the first one to

find an appropriate candidate for any sketched point, but in order to do so it has

to take into account the context provided by the other points.

A stroke is a sequence of linked points portraying a facial feature. Therefore

a contextual meaning is gained from taking into account its sequential properties

as opposed to interpreting each point independently.

This section tackled this heuristically by iterating through each point on a

stroke, and assigning a grade to every potential contour candidate based on how

well it fits the point being examined, as well as considering how the previous

point was assigned. An overview of the whole process for a single stroke is given

in Figure 4.29. Section 4.4 describes stages 2 and 3, Sections 4.6.1 and 4.6.2 go

through stage 4 which finds the best candidates based on the grading scheme and

assigning them to vertices, and stage 5 is covered in Section 4.6.4. The optional

step of correlating unsketched feature is discussed in Section 4.6.4.

The notion of utilising a sequential pattern when assigning a stroke to a vertex

structure is naturally described using a Hidden Markov Model (HMM) where the
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grades are replaced with probability distribution functions. This is covered in

Section 4.8.

Figure 4.29: Overview of the mapping process

4.6.1 Calculating grades

The grading process goes through every stroke point that has assigned candidates

and calculates the grade for each candidate j using

εj = ψ(λ(rxφx + ryφy)) + αs1 + βs2, (4.29)

whose terms are explained in Sections 4.6.1.1 and 4.6.1.2. It consists of two main

factors. The first factor, ψ(λ(rxφx + ryφy)) is sensitive to the stroke’s endpoints

which generally define the boundaries of the sketched feature, while the second

one αs1 + βs2, ensures the chosen candidates form a structure that is faithful to
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the stroke’s directional changes.

Two functions are used throughout this process:

• The function f : R3 → Z2
+ maps a 3-dimensional world coordinate to

its projected 2-dimensional screen coordinate. For example, f(v), v ϵ V

projects a 3D vertex v to its corresponding 2D coordinate.

• The function g : Z+ → R3 looks up a vertex coordinate with a given index

from a predetermined mesh Mk.

4.6.1.1 Feature boundaries

It is very important to map the first and last point on the stroke to the most

plausible vertex indices, as they carry important descriptive information about

the stroke and its intentions. The first point will also set the context to define

how the remaining points will be determined. Choosing the wrong one may give

results that look nothing like what the user had intended. Figure 4.30 visualises

this problem where it shows a stroke drawn top-down (a) intended to specify

the right wing of the nose. The first step (b) finds candidates that lie within a

threshold distance from the stroke points. Nose shapes vary among the training

samples and differ from that of the current face model on the screen, e.g. lie higher

or lower in screen space. This is demonstrated in c) where candidates that lie close

to the first point have different contexts in the sample models. The candidate

in the top row describes the top of the nasal wing, while the candidate in the

last row refers to the bottom of the wing. The range of potential candidates can

be examined by mapping them to the template model (d) and comparing their

absolute values. Strokes are generally intended to define the start and end of

a feature, so in this case it is assumed that the top point is contextually most

relevant.

The first part of equation 4.29 focuses on this problem and is activated using

the switch ψ, where

ψ =

{
1 if i = min(i) or i = max(i)
0 otherwise.
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Figure 4.30: Setting the context for the first point in a stroke from a set of

contour candidates

Every candidate for the first and last stroke point is mapped to the template

model followed by calculating their mapped screen coordinates. This collection

of screen coordinates forms a bounding box which is used to determine the most

suitable candidate. φx and φy define the distance from the edge of the x and y

axes. The best candidate is in principle the one with the lowest error for φx+φy,

where φx and φy define the proportional distance from the width and height edge

respectively, of the bounding box, or

φx =
f(g(c))x −min(f(g(Ci))x)

max(f(g(Ci))x)
, (4.30)

φy =
f(g(c))y −min(f(g(Ci))y)

max(f(g(Ci))y)
, (4.31)

where c ϵCi.

According to equation 4.30, the proportional distance is always measured from

the left edge of the bounding box, and similarly equation 4.31 measures from the
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top edge. This is only applicable for the first point if the stroke is sketched top-

down and left-to-right. To take stroke orientation into account, φx and φy are

subject to the following criteria:

φx =


φx = 1− φx if i = max(i) and ωx = 0
φx = 1− φx if i = min(i) and ωx = 1
φx otherwise

(4.32)

φy =


φy = 1− φy if i = max(i) and ωy = 0
φy = 1− φy if i = min(i) and ωy = 1
φy otherwise

(4.33)

ωx ϵ {0, 1} and ωy ϵ {0, 1} determine the orientation of the stroke in a very simple

and straightforward way. A vector between the first point (i = 1) and the middle

point (i = ⌈n
2
⌉) on the stroke is calculated, and the vector direction is used to

assign the parameters ωx and ωy according to the axis chart shown in Figure 4.31.

Figure 4.31: Stroke orientation parameters

Both axes (XY) govern how the first point is assigned, but they should carry

different weights depending on the context as they can conflict otherwise resulting

in inaccurate reconstructions. The ratio between the height and width of the

stroke’s bounding box is generally a good indicator of the relevant context. The

stroke in Figure 4.30 is elongated along the Y-axis putting an emphasis on picking

the best candidate along that axis. Therefore, to control how much effect each
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screen axis has on the error, the ratios between the width (rx) and height (ry) of

the stroke’s bounding box are used to linearly blend φx and φy (see Figure 4.32).

Figure 4.32: The stroke width to height ratio determines which axis has more

influence when setting the stroke’s context

The overall effect this has on the grade is scaled with the linear scaling factor

λ. These assumptions have been found to improve how accurately reconstructed

features fit the sketched stroke.

rx =
1

dy/dx
(4.34)

ry =
1

dx/dy
(4.35)

4.6.1.2 Mapping the structure to the stroke

The context of the stroke has been set by applying the methods described above

to find the most suitable candidate for the first point in the stroke. The second

part of equation 4.29 controls how the remaining stroke points are assigned to

vertices based on the previously assigned vertex.

There are two aspects that affect this decision, the metrics s1 and s2 and are

subject to the weighting coefficients α and β respectively, and α, β ϵ R, α+β = 1.

The premise for the metric s1 is visualised in Figure 4.33 where its aim is to

find the candidates that best match the angle and distance of the stroke points.

An arbitrary stroke is displayed (a) with the set of culled candidates (green) found

for each point on the stroke. The vector between the last assigned stroke point
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pl and the current one pi is found (b). s1 then measures the vector difference

between the vector in b) and the vectors in c) which is go from the previously

assigned candidate (red), to the set of candidates cj (green), where j = 1..mi. A

secondary objective is achieved with this process where it helps to choose between

stroke points as some of them tend to map to the same indices due to their high

density compared to the vertex structure (see Section 4.6.2).

s1 = ∥(f(pi)− f(pl))− (f(cj)− f(cl))∥ (4.36)

Figure 4.33: a) The contour candidates for the stroke The metric s1 calculates

the difference between the transition vectors in b) and c) (in screen space), where

lower values give a higher grade

The second metric, s2, helps to ensure the selection of a candidate that is

faithful to the vertex topology based on the previously assigned candidate (see

Figure 4.34). As with s1, the first step is to find the vector between the last

assigned stroke point pl and the current one pi (a). The second stage (b) maps

the set of candidates cj (green), j = 1..mi, to the template mesh and finds the
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vector between the mapped cj and the previously assigned candidate (red). s2

measures the difference between the vector in (a) and mi vectors in (b).

s2 = ∥(f(pi)− f(pl))− (f(g(cj))− f(g(cl)))∥. (4.37)

Figure 4.34: The metric s2 calculates the difference between the transition vectors

in a) and b) (in screen space), where lower values give a higher grade

4.6.2 Finding the best candidates based on grades

The previous section showed how every point in a sketched stroke is assigned with

potential contour candidates, and the candidates were given grades based on the

stroke’s boundaries and relative position to previously assigned candidates. The

candidate with the highest grade is chosen and mapped to vertex index ηj given

that two conditions are met.

1. The candidate does not overwrite a previously assigned extreme point on

the stroke (start, end, top, bottom, left, right).
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2. If the vertex has been assigned before, the grade has to be higher than the

existing grade, and satisfy the first condition.

The grading scheme along with these conditions solves two issues discussed

at the beginning of Section 4.6. The candidates with the highest grade have

the best chance of mapping to the most suitable sequence of vertices. The first

condition ensures the reconstructed features preserve the stroke’s boundaries,

and the second condition chooses between points competing for the same vertex.

Figure 4.35 shows two sets of sketched strokes from different viewpoints (left),

and the reconstructed models (right), where the mapped vertices are highlighted

in red.

Figure 4.35: Visualising the mapped vertices on the face model (highlighted in

red) can be used to verify that the strokes deformed the right set of vertices.
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The selected candidate may not be the closest one to the sketched point in

screen space. This is because there is limited amount of offline contour data, and

therefore a candidate referring to a vertex index might be a better choice than

a candidate positioned closer, based on preserving a particular vertex sequence.

Therefore, although increasing the size of the threshold that determines the cut-

off radius when assigning candidates to stroke points puts more workload on the

mapping process, it can help to make better choices when using a limited training

set. An additional step is then taken to adapt a selected candidate to the stroke.

The translated coordinate is found by taking the screen coordinate for the can-

didate, and update the XY-coordinates with the one for the stroke point, while

leaving the depth unchanged. This new screen coordinate is projected back into

world space (using function f) to give the updated coordinate which is assigned

to the vertex. This ensures mapping a stroke point to the most appropriate ver-

tex index, while staying faithful to the stroke itself.

The importance of applying the improved grading scheme instead of simply

relying on the nearest candidates is emphasised in Figures 4.36, 4.37, 4.39, and

4.40. In particular, mapping stroke points to the nose region is tricky. The region

contains a high number of candidates due to its high density of vertices, and as

shown in Figure 4.30 the vast range of possible shapes and their positions means

the candidates map to a number of different indices.

Figures 4.36 and 4.37 show that by considering the context of the stroke’s

endpoints, and preserving the vertex structure when traversing through the stroke

points, the feature fits the stroke more accurately than when using an euclidean

distance metric only.

Figure 4.38 shows how a stroke (black) can often be interpreted either as a

complete description of a feature (left) where the endpoints define its boundaries,

or as a part of a feature (right) where the endpoints carry no significant mean-

ing. This thesis considers the first choice as a more natural way of resolving the

ambiguity by expecting the user to draw the entire feature as opposed to tweak-

ing it which could lead to any number of different interpretations regarding the

endpoints, and therefore adding uncertainty to what the user could expect from

a stroke. This is reflected in Section 4.6.1.1 where the grading scheme treats the
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4.6 Reconstructing faces from strokes: A heuristic approach

Figure 4.36: The grading scheme correctly identifies the context for the stroke

which assures the reconstructed feature fits the sketched stroke accurately.

endpoints as feature boundaries, and is demonstrated in Figure 4.39.

However, the user interface could easily offer the user to choose between the

two interpretation modes. Using the second mode could prove useful when a user

sketches a stroke where he has already sketched the boundaries for a feature (such

as the lip corners) and wants to preserve them while sketching a second stroke

relating to the same feature.

Figure 4.40 visualises the importance of the second factor of equation 4.29 (see

Section 4.6.1.2). Here it is ensured the shape is preserved by favouring candidates

whose vertex is connected to the previously assigned vertex, iteratively adapting

the vertex structure to the stroke.

4.6.3 Simple mapping for quick deformations

An alternative approach to using a collection of contour candidates and a grading

scheme is to map the sketched strokes to the contours already present in the
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Figure 4.37: The grading scheme correctly identifies the context for the stroke

which assures the reconstructed feature fits the sketched stroke accurately.

Figure 4.38: Different interpretations of the same stroke.

current face model. This avoids looking through a large number of possible

candidates for each stroke, and instead focuses on mapping them to the most

appropriate contours describing the existing model.

To perform a simple test using this method, the sketched points are mapped to

the nearest contours in euclidean space. Before, the mapped candidates supplied

the strokes with the depth values, but now the depth is has to be estimated

through other means. A temporary solution is to create a new screen coordinate

using the XY values from the stroke, and the depth from the mapped contour.

This screen coordinate is projected into XYZ world space. This is equivalent to

translating the mapped contour along the viewing plane until it intersects the

stroke. More elaborate schemes could give improved results, but that will not be

explored in this thesis.
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Figure 4.39: The grading scheme identifies the feature boundaries correctly

The mapped vertices go through the same pipeline as before, using the prob-

ability model to find the coordinates for the remaining vertices, along with the

established options to clean up the vertex structure and correlate unsketched

segments. This method cannot create new features, i.e. features not already de-

scribed by the current set of contours, but it allows the user to quickly deform

the model.

4.6.4 Reconstructing sketched features

The system keeps track of the sketching process using a vertex structure identical

to the face mesh itself. Initially this structure is filled with -1, which represents

missing values. Instead of updating the actual face mesh, this structure is updated

every time a vertex is assigned or updated with a candidate chosen by the grading

scheme.

The complete face mesh with the sketched features is then reconstructed by

using the applying the method described in Section 4.2.1.6, where the assigned

data in the vertex structure is used as conditional data to find the expected values

for the missing vertices. The face mesh is updated with the complete structure,

consisting of the mapped vertices, and the expected vertices.
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4.6 Reconstructing faces from strokes: A heuristic approach

Figure 4.40: The transitional metrics make sure the reconstructed features follow

the stroke’s shape accurately

It was shown in Section 4.2.5 that one segment of the face can be used to

correlate the features for the remaining segments. Figure 4.41 gives an example

of this where a part of the lips are sketched and reconstructed (left), where the

remaining segments are then correlated. A noticeable difference can be seen

where the eyebrows are now raised and the eyes are wider. The chin is rounder

and the nose is smaller and more delicate. The original reconstructed face is

arguably male, but has been transformed into a female in the correlation process.

In general, larger lips tend to be associated with females more often than males.
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Figure 4.41: Correlating features

4.7 Reconstruction samples: Heuristic approach

4.7.1 Single viewpoint

Figure 4.42 shows how a set of simple lines are used to create a range of different

novel face models from the front view. The sketched strokes are shown on a white

background for clarity.

Figures 4.43 and 4.44 show examples of sketching an existing source model

from different viewpoints, where the base mesh for the source models are displayed

in the left column. The main feature outlines are sketched (middle column) and

processed to produce a reconstructed model based on the strokes (right column).

It is noticeable that the reconstruction may not be an accurate likeness of the

original model regardless of whether the outlines for the features seem to fit the

sketched strokes. This is due to subtle deviations in the surface curvature from

the source model between the outlines because the same stroke can map to more

than one possible shape in the higher dimensional feature space.

Figure 4.45 further demonstrates the effectiveness of sketching from the pro-

file view. The user starts with the standard template (left), sketched the de-

sired outline (middle), and the system adapts the model to fit the sketched lines.

Achieving this shape is not straightforward using a parameter based system, but
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4.7 Reconstruction samples: Heuristic approach

is very intuitive and simple using sketched strokes.

An example of a simple high resolution reconstruction is shown in Figure 4.46.

Due to high resolution’s superior contour data shown earlier, it allows sketching

features that the low resolution models cannot capture. This can also offer better

precision, particularly in the nose region where vertices are sparse in the low res-

olution model. Currently though, the efficiency of the low resolution models has

favoured them during the system’s development and testing. Additionally, blend-

ing the 7 segments of the low resolution model generally does not produce any

unwanted artefacts, but the large number of segments needed for the high reso-

lution models causes problems. A possible solution is to apply a multi-resolution

decomposition and blending as suggested in Section 4.2.2.

4.7.2 Multiple viewpoints

It was shown in Section 4.5.3 that when reconstructing models from one view-

point, the probability model has to estimate the depth for unknown vertices. The

result depends on what input data was mapped from the sketched strokes, and

observed faces in the training set. The generated features may therefore not be

what the user is after when they are viewed from another angle.

In the sketching interface, the model can be rotated and sketched from any

angle to ensure the features are correct from every viewpoint. Figure 4.47 shows

an example of this where features (red strokes) have been sketched and fitted

from seven different viewpoints. Strokes are only relevant from the viewpoint

they were sketched in (red strokes), and will not make sense when seen from

other viewpoints (black strokes). The last two columns in the bottom row show

the final model.

4.7.3 Sketching issues and future work

Currently the system only grades candidates based on the structural integrity of

vertices for individual strokes which can cause gradual degradation in the recon-

structed model due to conflicting observed data in the tracking model. Consider

the following scenario: The lips are sketched from the front viewpoint, and then

again from the profile view. In both cases, a set of vertices in the tracking model
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are given new coordinates based on the mapped contours and then used to find

the remaining vertices using the mixture model (face generator) to form a com-

plete structure. However, the vertices affected by the second stroke are likely to

overlap or lie close to vertices modified by the first stroke. Updating the tracking

coordinates blindly without considering previous strokes can move the vertices

in such a way that they violate the vertex structural integrity. If this happens,

the corrupted conditional data based on the tracking model will generate skewed

expected values when reconstructing the complete model (Section 4.2.1.6), giving

unexpected results.

This is reduced by updating the observed coordinates in the tracking model

after projecting the reconstructed model onto the face space which can only gen-

erate a valid vertex structure (Section 4.2.4). This makes sure that the structure

is corrected before sketching the next stroke which helps to prevent the gradual

corruption.

Alternatively, this could be rectified by taking into account every nearby stroke

when mapping contour candidates to the tracking model where the newest stroke

carries the highest weight. This would provide a controlled compromise for the

mapping scheme as opposed to the currently unsupervised process where each

stroke updates the vertex coordinates independently.
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Figure 4.42: Novel models created using few simple strokes from the front view-

point (the strokes are shown on a white background for clarity)
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Figure 4.43: Sketching existing faces from different viewpoints
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Figure 4.44: Sketching existing faces from different viewpoints (continued)
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Figure 4.45: Profile sketching is a powerful way to create distinctive models using

very few and simple strokes

Figure 4.46: Sketching simple features on a high resolution model
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Figure 4.47: Creating a novel face model by sketching from multiple viewpoints
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4.8 Reconstructing faces from strokes: Hidden Markov Models

4.8 Reconstructing faces from strokes: Hidden

Markov Models

Here, a statistical approach is used to interpret the sketched strokes as an alterna-

tive to the heuristic method proposed in Section 4.6. A sketched stroke consists

of a sequence of points where the assumption is they map to a corresponding

sequence of contour candidates which again map to vertices on the face mesh.

The problem is finding this unknown sequence of optimal vertices describing the

sketched feature based on an observed stroke. This is naturally expressed as

a Hidden Markov Model (HMM) where the goal is to find the most probable

sequence of hidden states (contours/vertices) for a given observation sequence

(stroke points). This is explained in detail in [Bis07] but is summarised here

for clarity with regards to the construction of the probability matrices in Sec-

tion 4.8.5. The results using this approach is compared in Section 4.9 with the

heuristic approach described in Section 4.6.

4.8.1 Hidden Markov Models

A Markov model expresses the joint distribution for a sequence of observations

in the form

p(x1, ...,xN) =
N∏

n=1

p(xn|x1, ...,xn−1), (4.38)

where each of the conditional distributions is independent of all previous obser-

vations except N most recent [Bis07].

A first order Markov chain only takes into account the most recent observation

xn−1, a second order chain takes the two previous observations into account and

so on. Lower order chains put restrictions on the model, while larger ones require

a large number of parameters rendering the system impractical.

Using latent variables overcomes this problem as it does not put a limit on

the order, and requires only a limited number of free parameters. For each obser-

vation xn there exists a latent variable zn, where the latent variables now form
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the Markov chain. This forms a state space model whose joint distribution is

p(x1, ...,xN , z1, ..., zN) = p(z1)

[
N∏

n=2

p(zn|zn−1)

]
N∏

n=1

p(xn|zn). (4.39)

A Hidden Markov Model (HMM) is a state based model where the latent

variables are hidden (or discrete). Three probability distributions are required

forming three probability matrices: transition probabilities, initial probabilities,

and emission probabilities.

The probability distribution of state zn is based on the previous latent variable

zn−1 through the conditional distribution p(zn|zn−1). Based on K-dimensional

latent variables, this forms a matrix A, denoted as transition matrix, where it

describes the probability of moving from each state to every other state

p(zn|zn−1,A) =
K∏
k=1

K∏
j=1

A
zn−1,jznk

jk . (4.40)

Unfolding the transition states over time gives a trellis diagram. The initial state

is described using a marginal distribution p(z1) which is a vector of the initial

probabilities π

p(z1|π) =
K∏
k=1

πz
k1k. (4.41)

The conditional distribution of the observed variables xn mapping to a latent

variable zn is p(xn|zn, ϕ), where ϕ is the distribution parameters. This forms the

emission probabilities of the form

p(xn|zn, ϕ)
K∏
k=1

p(xn|ϕk)
znk. (4.42)
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Putting this all together gives the joint probability distribution over both the

latent and observed variables

p(X,Z|θ) = p(z1|π)

[
N∏

n=2

p(zn|zn−1,A)

]
N∏

m=1

p(xm|zm, ϕ), (4.43)

where X = {x1, ...,xN}, Z = {z1, ..., zN}, and θ = {π,A, ϕ}.

4.8.2 Mapping strokes to contours

In order to find the most probable sequence of latent states (contours) for a given

set of observed data (strokes), the Viterbi algorithm [Vit67] is employed which

is a max-sum algorithm whose complexity grows linearly with the length of the

trellis chain. The algorithm traverses through the chain to find the optimal path

through the trellis.

Once a stroke points has been mapped to a contour, the vertex indexed by

the contour adopts the contour coordinate. The stroke point density is generally

higher than the contour density which causes more than one point to be assigned

to the same latent state. The contour (latent state) closest to the stroke point is

chosen. The following section shows that it is equal to picking the latent state

that has the highest emission probability.

4.8.3 Mapping criteria

Finding the optimal sequence of contours (latent states) based on sketched stroke

points (observed data) requires three probability matrices as explained above.

The initial probability matrix is responsible for mapping the first stroke point

to an initial contour candidate (or state) setting the context for the rest of the

stroke as described in Section 4.6.1.1. Therefore the same equations are used here

where they form a metric used to create the marginal likelihood distribution.

The emission probability matrix specifies the independent conditional likeli-

hood of the stroke points mapping to a particular contour (state). Here it is

simply based on the euclidean distance between the two.
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Once the initial contour has been assigned it is very important to select the

subsequent contours carefully in order to reconstruct a plausible and noise free

facial feature. The transition probability matrix considers three factors when

determining how to move from one contour (state) to another. The first two are

based on s1 and s2 (Equations 4.36 and 4.37 respectively), discussed in Section

4.6.1.2, where s1 favours contours whose distance and direction matches that

of the sketched stroke points, while s2 makes sure two consecutive contours do

not breach the integrity of the mesh vertex structure. Once a contour has been

assigned, the sequence of contours to follow should ideally map to connected ver-

tices to form an unbroken chain of updated coordinates, thus avoiding sudden

unexpected noise. The third factor favours transitions between contours whose

vertices are connected with the shortest possible path, found by applying Dijk-

stra’s algorithm [Dij59] on the polygon structure.

4.8.4 Computing a vertex connectivity map

The transition matrix requires the shortest path between any two vertices on the

mesh. For a mesh consisting of n vertices, the first step is to explore the polygon

structure and create a n× n map S where

S(i, j) =

{
1 if vertices i and j share a triangle
0 otherwise.

(4.44)

A n× n vertex connectivity map C specifying the path distance between any

two vertices is found by applying Dijkstra’s algorithm [Dij59] on every pair (i, j)

and then mirroring the results to (j, i). This connectivity matrix is then used as

a lookup map at runtime. However, calculating the shortest path using Dijkstra

is intractable for a large number of vertices as it goes through every possible path

combination through the polygon structure, even if the vertices are directly linked

to each other with zero distance. This is resolved by specifying a search scope

for each vertex with k number of vertex connectivity rings around it. Figure 4.48

shows k = 1 (left) and k = 2 (right), where the vertices in the first ring are
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labelled with blue circles, and the second ring with red circles.

Figure 4.48: Defining a limited search scope for each vertex (black) based on the

number of connectivity rings

Now instead of exploring the entire polygon structure to find the shortest

path between vertices i and j, the search is limited to the scope of the k-ring for

vertex i, iff vertex j exists within that scope. Figure 4.49 shows the connectivity

maps for k = 1..4 where the axes represent the 775 vertices and each cell (i, j)

has a colour coded path length between vertices i and j. The colours range from

blue indicating there is no known connection (infinite path length) between the

vertices within the given scope, and red which means the vertices are connected

with zero path length.

Figure 4.50 gives a clearer picture of individual vertex connections and their

corresponding path length by zooming in on the first 100x100 cells in the top left

corners of the four connectivity maps in Figure 4.49.

It is clear that using k = 4 does not find the path distance between every

vertex, but is still capable of finding paths up to the length of 25. Path lengths

exceeding the scope of k = 4 are not considered feasible when mapping sketched

points to contours. Consequently there is no need to process the connectivity map

any deeper since the likelihood drops below 0.1 where the path length exceeds 6

(see Equation 4.48).
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Figure 4.49: Connectivity maps (path length) for different search scopes. Blue

indicates infinite path length while red represents zero path length

4.8.5 Constructing probability matrices

The probability density functions are defined based on the criteria given in Section

4.8.3 to form the probability matrices needed to find the optimal contours from

the observed stroke points using the Viterbi algorithm.

The set of observed stroke points are defined as P , and pi ϵ P, i = 1..n. Sim-

ilarly the set of contour candidates for the current viewpoint and bounding box

is called C, and cj ϵ C, j = 1..m.
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Figure 4.50: A closer look at the first 100x100 cells in Figure 4.49

4.8.5.1 Initial probability matrix

Using Equations 4.30, 4.31, 4.34, and 4.35, the initial metrics ψsx = rxφx and

ψsy = ryφy are formed. The m× 1 initial probability matrix is found using

ρ(p1|cm) ∝ exp

{
−1

2

(
ψsx

σs

)2
}
exp

{
−1

2

(
ψsy

σs

)2
}
, (4.45)

where σs = 0.4.

4.8.5.2 Emission probability matrix

The n×m emission probability matrix is calculated based on an euclidean distance

metric ψd between pi and cj in screen space

ψd = ∥f(pi)− f(cj)∥. (4.46)
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The emission probability is then estimated as follows:

ρ(pi|cj) ∝ exp

{
−1

2

(
ψd

σd

)2
}
, (4.47)

where σd = 2τ , and τ is a screen space coefficient found by measuring the screen

distance between two fixed vertices in the original face mesh. This coefficient

grows when the user zooms in to compensate for increased distances between the

contour candidates in screen space.

4.8.5.3 Transition probability matrix

The transitional probability is a m × m matrix which defines the probability

whose jq-th cell defines the probability of moving from contour cj to contour

cq. Computing the probabilities is based on three factors as discussed in Section

4.8.3, consisting of three corresponding metrics ψc, ψstroke, and ψskel.

ψc defines the vertex distance between the vertices to which cj and cq map

to and is found by looking up Cjq. The probability distribution function for the

connectivity metric is defined as

γ1 ∝ exp

{
−1

2

(
ψc

σc

)2
}
, (4.48)

where σc = 3.0.

ψstroke is based on s1 (Equation 4.36) and takes the stroke direction and dis-

tance into account by comparing the transition between two contour points and

corresponding stroke points. The nearest stroke point is assigned to each contour

since it is not known beforehand which point maps to them. This gives an esti-

mate which is good enough since only the 2-dimensional screen coordinates are

used for the points. ψstroke is found by calculating the ratio between the distance

between the contours cj and cq, and the distance between their corresponding
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stroke points pj and pq

ψstroke =
∥c′q − c′j∥

∥f(pq)− f(pj)∥
− 1, (4.49)

where c′ is made up of the XY-screen coordinates found using f , and the Z-world

coordinate. A ratio of 1 is found if the two vectors have the same length with

no change in depth. Since equal displacement with minimum change in depth

makes for an ideal candidate, one is subtracted from the ratio as 0 will return a

likelihood of 1.0 using the probability distribution function

γ2 ∝ exp

{
−1

2

(
ψstroke

σstroke

)2
}
, (4.50)

where σstroke = 0.5.

ψskel is based on s2 (Equation 4.37) and is responsible for maintaining the

vertex structure integrity by comparing the screen displacement between the con-

tours cj and cq to the screen displacement of the vertices they map to on the face

mesh. A large distance between the two vectors indicates moving from cj to cq

does not follow the same path on the vertex skeletal structure. It is found by

measuring the euclidean distance

ψskel = ∥(f(cq)− f(cj))− (f(g(cq))− f(g(cj)))∥. (4.51)

The probability distribution function for this metric is calculated using

γ3 ∝ exp

{
−1

2

(
ψskel

σskel

)2
}
, (4.52)

where σskel = τ/6.5. The associated transitional probability matrix is then found

by combining the three metrics in the conditional distribution

ρ(cq|cj) =
3∏

m=1

γm. (4.53)
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4.9 Comparing stroke interpretations

This section contrasts the two methods covered in this thesis that interpret

sketched strokes by mapping them to contours, the heuristic approach (see Sec-

tion 4.6), and the HMM approach (see Section 4.8.1). Additionally, it will show

the validity of employing each transition metric in Section 4.8.5.

Figure 4.51 starts by showing a weakness in the heuristic approach. Sketching

internal features such as lips from this viewpoint often proves very tricky to

interpret and reconstruct as the picture on the left shows. Adding the vertex

connectivity functionality to the heuristic approach by multiplying the grade

with the path distance between assigned vertices (Section 4.8.4) greatly improves

the identified contours and the reconstructed mesh (middle). However, the HMM

model gives a better overall fit to the sketched strokes.

Figure 4.51: Demonstrating the effectiveness of incorporating the connectivity

metric to fit a feature accurately to the sketched strokes from difficult viewpoints

Another common problem when sketching from this angle is demonstrated

in Figure 4.52. Here the system assigns stroke points to contour points whose

vertices are associated with two different features, the cheek and the nose, giving

unexpected results. The HMM model using the connectivity metric explained in

Section 4.8.5.3 (right) correctly stays faithful to the stroke’s intention and cor-

relates the nose based on the new cheek profile, while omitting the connectivity

metric (middle) and using the heuristic approach incorporating the connectivity
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matrix (left) fails to do so. Each of the three reconstruction samples in Figure

4.52 shows the model reconstruction before (left) and after (right) projecting it

onto the face space to correct structural errors (see Section 4.2.4). Inaccurate,

unrealistic reconstructions will result in a bigger distance between the reconstruc-

tion and the projected version where the projected features will differ from those

of the reconstruction. Improved reconstructions are therefore important to main-

tain stable interpretations to the sketched strokes.

Figure 4.52: Demonstrating the effectiveness of incorporating the connectivity

metric to avoid mapping the same stroke to two unrelated features

Figure 4.53 shows an example of comparing the interpretation and recon-

struction based on a simple sketched stroke. All the models are shown without

projecting them onto the face space for clean-up. The top row shows the textured

reconstruction of each method (from left to right); the heuristic approach, the

HMM approach using only the ψstroke metric (s1) to calculate the transition prob-

ability, the HMM approach using both ψstroke and ψc, and the HMM approach

using all the metrics. The results from each method seems to match the stroke

well, but examining the vertex structure in the middle row shows a clear difference
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in quality. The affected vertices are highlighted in red, and the selected contour

candidates are shown as green points. Here distortions in the mesh structure are

visible where the mapped points (green) are inaccurately placed causing unreal-

istic vertex distribution. This is further emphasised by looking at the mapped

contours from above. Adding more transition factors puts the contours in place

by restricting the selection to more suitable candidates.

Figure 4.53: The effect of applying different metrics to the mapping process and

hence reconstruction accuracy

The advantage of using the vertex connectivity metric is clearly illustrated in

Figure 4.54. Again, the reconstructions have not been projected onto the face

space in order to visualise every unwanted artefact. The results from both HMM

models seem nearly identical when seen from the front, but other viewpoints

immediately demonstrate the disadvantage of omitting the connectivity factor.

4.10 HMM sketch examples

Figure 4.55 shows a reconstructed face model with a number of sketched strokes

defining the model’s features. As noted earlier, the strokes are view-dependent

and will only make sense when seen from the viewpoint it was created in. Strokes
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Figure 4.54: The HMM approach gives consistently better results in trouble

areas making it less dependent on segment clean-up (Section 4.2.4) to produce

smooth and natural looking faces.

matching the viewpoint are highlighted in red while the remaining strokes are

black. Figure 4.56 provides an example of using feature correlation to either speed

up the modelling process, or to look up individuals in a database by sketching few

descriptive features where the system quickly converges onto a specific subject.

Sketching issues were discussed in Section 4.7.3 wher they were caused by

the fact that each stroke is processed independently and therefore no attempt is

made to treat conflicting strokes using a controlled procedure. The same problems

apply here since no such procedure is in place as a part of the HMM approach.

The main issue is caused by strokes lying near each other, often intersecting due

to oversketching or multiple representations from different viewpoints. When this

happens, the strokes map to the same vertices or different vertices where the path

length between them is small.
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Figure 4.55: Sketching a novel face from multiple viewpoints using the HMMs

approach
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Figure 4.56: Correlating features for more robust modelling or face look up
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4.11 User based system evaluation

Section 4.6 showed how a 3D face model can be reconstructed from one or more

sketched strokes, where a number of sketch-oriented metrics facilitated a heuristic

function which determined the mapping of sketched points to a series of contours

describing particular facial features. Section 4.9 demonstrated a few examples

which show how the accuracy of the reconstructed features is improved by defining

the metrics as simple probability distribution functions and employing them in a

HMM framework. This approach was laid out in Section 4.8 which concluded by

giving an example of using sketched strokes to create a new face model.

However, all the examples given in this thesis are created by the author and

while the system may respond well when used by a person that knows the system’s

capabilities and limitations, it does not give a clear indication of how an arbitrary

user may fare when interacting with the system. A user evaluation was performed

which serves as a valuable resource in determining how the system could be

improved further to make it a more useful and practical tool for the everyday

user. Section 4.11.1 describes the evaluation set up and parameters, and section

4.11.2 discusses the evaluation results and draws conclusions from it.

4.11.1 Set up

The evaluation was conducted with 9 volunteers where all of them were computer

literate but none of them has used a sketch-based interface before, and none of

them were experienced sketch artists. The volunteers took on the role of a user

trying to reconstruct a particular face model using the sketch-based interface.

Each user was shown a tutorial video demonstrating the system’s main functions.

The users were then asked to complete the following 2 tasks:

1. Sketch a face model based on the following description: The face has a

slim jawline and thin lips. The eyes are quite larger and closer together

than most peoples. The nose has wide nasal wings and it has a slightly

protruding bit running from the eyes to approximately half way to the nose

tip. But the nose tip still protrudes a little after this.
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2. Sketch a face model based on two pictures of an existing model. The model

was generated using the system and showed the front and profile view of

the model (see Figure 4.57).

The verbal description in task 1 described the target model in task 2, unbeknownst

to the users. This allows a comparison of the two modalities where the first one is

an abstract description which is likely to manifest differently in the mind of each

user, while the latter one is unquestionable physical evidence. During the evalu-

ation however, it was apparent that the users interpreted the physical evidence

differently which sometimes led them to make unnecessary or incorrect changes

to the facial features. The test was performed on a Toshiba M700 TabletPC using

a digital pen (digitizer). After completing each task the users were asked to fill

Figure 4.57: The target face users were asked to reconstruct

out a questionnaire about their experience using the sketching interface for the

particular task. The questionnaire consisted of 6 questions where the volunteers

scored each question using a five point scale (1-5). This is summarised in table

4.11.1. Furthermore, the users had the opportunity to write their own comments
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No. Question Score = 1 Score = 5

Q1 Howmuch experience do you have

of sketching?

No experience Very experienced

Q2 How easy is it to use the sketching

interface?

Not easy at all Very easy

Q3 How easy is it to sketch strokes? Not easy at all Very easy

Q4 How easy is it to create new facial

features?

Not easy at all Very easy

Q5 Did the strokes generate the facial

features you expected?

Never Always

Q6 Are you pleased with how well

your sketched face resembles the

original description?

Not pleased at all Very pleased

Table 4.2: Evalution questionnaire

at the bottom of each questionnaire to provide additional feedback.

4.11.2 Results and discussion

The average time taken to complete each task was 10 minutes. The models

from each task were stored and compared to the original target by calculating

the model error ξ which is defined as the combined vertex difference between a

sketched model and the target model. Figure 4.58 visualises the three models

with the smallest ξ from task 1 (top) and task 2 (bottom). Appendix C provides

a complete list of the models generated for each task along with a difference

map. Tables 4.2 and 4.3 show the scores as rated by the users for task 1 and 2

respectively, as well as the model errors ξ. The bottom two rows show the mean

values and standard deviations (Std) for the users’ answers and model errors.

Figures 4.59 and 4.60 visualise the score distribution for each question in task 1

and 2 respectively, by summarising the choices from every user where the scores

represented by a distinct colour. None of the questions were rated with the

lowest score (blue). The mean value for question 2 (Q2) is higher in task 2 which

is to be expected since the users have become more familiar with the system
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Figure 4.58: Sketched models which have the lowest model error ξ.
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User Q1 Q2 Q3 Q4 Q5 Q6 ξ

1 1 5 5 4 4 4 8995.4

2 4 3 4 3 3 4 9701.2

3 4 4 4 2 3 4 2543.2

4 2 3 4 3 3 3 9515.4

5 3 4 4 4 4 2 6121.5

6 2 4 5 5 4 4 8658.8

7 1 4 5 4 4 4 8445.6

8 3 3 5 5 4 5 4259.5

9 3 5 3 4 4 4 8898.0

Mean 2.56 3.89 4.33 3.78 3.67 3.78 7459.8

Std 1.13 0.78 0.71 0.97 0.5 0.83 2556.6

Table 4.3: User scores collected from the questionnaires for task 1

User Q1 Q2 Q3 Q4 Q5 Q6 ξ

1 1 5 3 4 4 4 6545.4

2 4 4 4 3 4 4 2987.7

3 4 4 4 4 3 4 8283.0

4 2 3 3 3 4 4 8625.4

5 3 2 2 3 3 2 7013.0

6 2 4 4 5 4 4 5612.8

7 1 5 4 4 4 4 6403.4

8 3 5 5 4 3 4 6789.8

9 3 4 4 4 4 4 6230.7

Mean 2.56 4.00 3.67 3.78 3.67 3.78 6499.0

Std 1.13 1.00 0.87 0.67 0.5 0.67 1629.8

Table 4.4: User scores collected from the questionnaires for task 2
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and its controls after completing task 1. The model error mean and standard

deviation are lower for task 2 which suggests the natural assumption that the

pictorial description provided with that task delivers a superior mental image of

the target features than a verbal description. Furthermore, it was observed that

the verbal description had further implications on users having little experience

in sketching human faces. When asked to sketch larger than normal eyes (as

stipulated in task 1), most users resorted to sketching eyes of unnaturally large

proportions which the system could not recognise. These extreme strokes often

extended to the forehead, cheeks, and the middle of the nose bridge. In contrast,

when the same users were asked to use the pictures as a guide in the second

task, their strokes were more moderate and realistic which gave more accurate

and predictable results. The same problem was encountered while creating a

Figure 4.59: Score distribution for each question in task 1

variety of features. The nose was particularly troublesome for many users as they

sketched caricature like features. The slim jawline was often portrayed through

unnaturally extreme strokes and sometimes using straight lines. This observed

behaviour indicates that the typical inexperienced user expects a line to represent

a gesture like control which adapts the mesh as opposed to a direct correspondence

to the shape and curvature of the reconstructed feature. Only two users sketched

the strokes according to how they wanted the reconstructed feature to look.
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Figure 4.60: Score distribution for each question in task 2

Another common behaviour among the users was observed. If a user sketched

an extreme stroke which was not recognised by the system, the users often

sketched a more extreme stroke to convince the system of their intentions. This

sometimes led to a stroke representing an upper eyelid to reach the forehead.

Therefore, this is the opposite of how the system behaves whereby a more mod-

erate stroke would be more effective.

There are two ways of tackling this issue. Firstly, the system could be altered

to cater for very extreme strokes by attempting to find the closest match in the

realm of known features. This could be fashioned in such a way that the system

proposes an alternative stroke based on the extreme stroke where the user can

either accept the system’s interpretation or sketch a new stroke. This way the user

gets an idea of how his stroke is interpreted before reconstructing the 3D feature

which could potentially improve the likeability factor. Secondly, the system can

guide the user better towards making a more realistic set of strokes by visualising

the range of sketch-able features.

The lips were the only facial feature that was consistently accurate across

all users. This is probably because they were asked to sketch thin lips which

already assigns the current lips as boundaries, thus making sure the users sketch

something plausible with regards to the system’s prior knowledge.
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The user satisfaction according to Q5 is not always a good indicator of the

user’s corresponding model error ξ because in some cases users either misunder-

stood the verbal description or sketched strokes that did not represent any target

feature. However, the users often seemed satisfied with the change and moved on

to the next feature if the system would fit an accurate feature to the stroke. A

good example of the former scenario where a user misunderstands the verbal de-

scription is user 6 during task 1. The user sketched small eyes and big lips where

the system accurately reconstructed the corresponding features. An example of

the latter case is user 3 during task 2 where he sketched a line from the profile

view which cut the nose in half, creating a flat nose bridge with a non-protruding

tip.

The average satisfaction of the final model as measured by Q6 was the same

for task 1 and 2, while the deviation is slightly lower for task 2 which indicates

the users were marginally more pleased with their model reconstruction in task

2. This may seem counter-intuitive since the target is in the mind’s eye in task 1.

Therefore, it would presumably be easier for the users to reconcile their expec-

tations irrespective of the accuracy contained in the sketched features. However,

the image base description given in task 2 does outperform the verbal description

both in terms of smaller average model error and variance, as well as providing

a better guide to sketching more moderate and accurate strokes as pointed out

earlier.

Future considerations and improvements touch on two different aspects. The

first one involves the evaluation process and how things could be done differently

in order to get better data for analysis, while the second one probes into technical

improvements based on the observed behaviours and pitfalls from this evaluation.

The following suggestions are aimed at technical changes based on observing the

users in this evaluation process:

• Make the interface more commercially ready, e.g. better undo and history

features, reset viewpoint.

• Interpret extreme and crude strokes to offer the user a more viable stroke

based on the prior knowledge. The user can then accept or adapt the stroke
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without having to reconstruct the 3D feature before experiencing how the

stroke will be perceived by the system.

• Visualise sketching boundaries to guide the user while sketching features to

avoid unnatural or unsupported strokes based on the viewpoint.

• Oversketching is a natural way of sketching repeatedly until the desired

feature has been reconstructed. However, earlier strokes may have been as-

signed to neighbouring vertices and can therefore compromise a new stroke

by providing conflicting information (this was mentioned in Section 4.7.3

and elaborated further in Section 4.10). Methods should be implemented to

examine and deal with potential complications arising from this problem.

• Fix a problem which sometimes causes a stroke to be projected incorrectly

onto the surface. When this happens, it looks normal from the current

viewpoint but the projected depth is off target causing the stroke to lie far

away from the model surface. The algorithm mapping strokes to vertices

culls stroke points lying too far away to limit the search scope. Therefore,

the system ignores any strokes that get incorrectly projected.

The following suggestions are pertinent to improving the evaluation process:

• Ask the users to start by sketching the target face on paper which serves as

a way of measuring their sketching skills and sense of shapes. The quality

of the paper sketch could be measured subjectively using a survey to find if

there is a correlation between the quality of the drawing and the 3D model

error. It is of interest to see if the sketching interface could augment the

users’ sketching abilities.

• Give the users small step by step tasks before the main tasks to familiarise

them better with using the system efficiently.

• Recruit users with prior sketching experience, particularly faces, as the

system is primarily aimed at that target group. It will help answer questions

such as: Will users with a better perception of facial shapes run into the

same problems as the inexperienced users in this evaluation? Will the

experienced users produce 3D reconstructions with a lower model error.
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• Collect all the strokes sketched by the users to analyse the sketching be-

haviours better. If the system were to be improved by adapting extreme

and crude strokes instead of ignoring them, the stroke data could be used

to simulate a second evaluation which could be used to see if the proposed

improvements would produce lower model errors.

• Use a survey to measure the subjective quality of the sketched 3D recon-

structions. The measured quality could be compared with the model errors

to measure the correlation between these two measurement, and also to the

results from the paper sketch subjective measurement discussed in the first

point.
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Chapter 5

Posing faces by sketching

Animating a 3D face model with realistic expressions and facial poses generally re-

quires extensive and skillful manual labour. The aim of facial animation research

is to make it quick and easy to accurately pose an arbitrary 3D face model by

offering high-level tools. Facial animation has been an active research topic since

the work of Parke [Par72; Par74], where he parameterises facial expressions on a

specific mesh and is able to create a range of expressions by varying the parame-

ters. Since then, parameterised methods have proved successful. In 1978, Ekman

and Friesen [EF78] developed the Facial Action Coding System (FACS) which

has been incorporated by numerous researchers [Wat87; KMMtT91; CBK+06].

Blendshapes is the most popular facial animation technique used today. An

artist creates key poses which are used to linearly interpolate new poses, where the

blend can consist of whole faces or regional blends [PHL+98; LCF00]. Creating

the key poses, sometimes called morph targets, needs skillful manual work unless

they can be generated using motion data from real people [CB08]. Performance-

driven methods where an actor performs the facial actions provide a more auto-

matic and accurate way of generating realistic animations, where the actor’s face

is generally labelled with a set of markers. Deng and Neumann [ZD07] provide

further information by describing a range of different facial animation techniques

developed in recent years.
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The combination of fusing together the performance-driven approach into an

example-based technique is a recent trend in facial animation. Fundamentally,

it gathers prior knowledge of facial movements by appling statistical inference

on the motion data to achieve accurate reconstructions through maximum like-

lihood. Example-based sketch interface methods build on the same idea, but

introduce an intuitive, high-level approach of controlling the facial poses through

sketched strokes. This was discussed in Chapter 2, where they were referred to

as template-based systems because they target a particular class of objects, in

this case the human face. Section 2.3 details a range of methods which pose a

3D face model using sketched strokes.

This Chapter proposes an animation system (see Figure 5.1), which applies a

sketch-based approach to posing 3D face models, and is based on the modelling

approach in Chapter 4, but uses a less complex mapping approach. Generated

poses form a set of keyframes which are used to create an animation sequence.

In the modelling approach, each training sample was a different face, where

here each sample is the same face, but posed to signify different expressions and

phonemes. The following sections focus on the implementation details of this

approach.

Figure 5.1: Proposed sketch-based animation system.
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5.1 Posing models using simple strokes

5.1 Posing models using simple strokes

As with the modelling approach in Chapter 4, the sketch-based approach is made

up of an offline part and an online part. The offline part is where face data

is collected and processed to form a knowledge-base in the form of a statistical

model that can be accessed in real-time by the online part. The online part is

an interactive sketching interface that can interact with the statistical model to

provide intelligent feedback to any sketched strokes. The stages of the approach

are as follows:

1. Prepare facial poses - The training data contains 36 poses of a 3D face

mesh, each representing a different expression or viseme. Each pose is

labelled with 46 FPs giving two sets of corresponding poses, ’mesh poses’

and ’FP poses’ (Section 5.2).

2. Interpret sketched strokes from a user - The user sketches directly

on the 3D face as illustrated in Figure 5.2. A probability model is used to

identify potential FPs from the sketched strokes (middle) (Section 5.3).

3. Find best pose - A generative model uses the the FPs identified in 2 to

find the remaining, unidentified FPs in order to make up a complete FP

pose (Section 5.4).

4. Reconstruct mesh pose from FP pose - The complete FP pose acts as

a set of control points used to deform the face mesh into the desired facial

pose through a statistical mapping (Figure 5.2, right).

5.2 Preparing training data of facial poses

36 face poses (neutral pose and 35 different expression and visemes poses) are

created using FaceGen 1 where each mesh shares the same vertex topology. 46

FPs are placed manually on the neutral pose using a subset of the MPEG-4 fa-

cial animation standard [Pak02]. They are then mapped to the nearest vertex on

1FaceGen; Singular Inversion
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5.2 Preparing training data of facial poses

Figure 5.2: The sketching process. Red x’s represent the sketched strokes. Green

circles are the identified FPs from the stroke (A). Blue circles are the input and

expected data making up the complete FP pose (B).

the neutral mesh which is used to automatically calculate the FP coordinates for

the remaining poses based on the mapped vertex indices. The anger and open

smile pose were used to examine if the FPs map to vertices that best capture

the characteristics of the lip contours. Ideally, the FPs should be located at local

extremas where the tangent of the contour curve is zero. If the indexed vertex

location for an FP did not lie at a local extrema when adapted to a new pose,

but had a vertex nearby that did, the FP was assigned to the more descriptive

vertex. This was particularly important for the inner lips since they are hard to

label using the neutral pose.

40 FPs are used for the main skin mesh shown in Figure 5.3 on the neutral

and anger pose where the FPs are displayed as red dots. Figure 5.4 shows the

range of possible locations for every FP on the main skin by plotting the FPs

from every pose, where each FP forms a cluster which is distinguished with a

unique colour tone.

The tongue is labelled using 4 FPs (shown in Figure 5.5 without an opacity

map), and the lower teeth contain 2 FPs. The upper teeth are not labelled

because they do not move in the training set samples. Figure 5.6 plots the range

of motions for these 6 FPs using coloured clusters as before.
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Figure 5.3: Labelled FPs (red) on the neutral pose

(left), the anger pose (right).

Figure 5.4: FP clusters for

all 36 poses of the skin.

5.3 Finding FPs from sketched strokes

Every FP pose can be thought of as a low dimensional representation of its equiv-

alent mesh pose. Figures 5.4 and 5.6 show the FPs for every pose in the training

set where points labelling the same feature form a cluster. The clusters are plot-

ted with different colours to visualise the range of motion for each facial feature.

In the sketching interface, the user sketches strokes representing the shape of

facial features, e.g. whistling lips, sad eyebrows etc. A sketched stroke is made

up of 2D discrete points which are projected onto the 3D mesh to get a depth es-

timate. The process of interpreting the sketched strokes involves mapping these

points to the most suitable FPs. This can be done heuristically by measuring

the shortest average euclidean distance from the sketched point to every FP in a

particular cluster. FP clusters sometimes intersect because the facial features are

moving. This is particularly true for the eyes and eyebrows, and some parts of

the lips. A better solution is to define the FP clusters in a likelihood framework

where the clusters naturally extend to the soft clustering approach embedded in
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Figure 5.5: Labelled FPs for

the tongue (top) and lower teeth

(bottom).

Figure 5.6: FP clusters for all 36 poses of

the teeth and tongue (with lip outlines).

the mixture model, and calculate the probability that a sketched point belongs

to a particular FP cluster.

This is done by fitting a mixture model on 32 FPs (a subset of the labelled

FPs), where each sample is the XYZ-coordinate of a single FP. A subset is used to

simplify the classification by omitting unnecessary FPs with regards to sketching.

This includes the tongue, teeth and the FPs for the inner lip as they are not

needed in most cases to distinguish between different lip poses. Each group of

FPs is defined as a cluster which means there are a total of 32 clusters (or mixture

components), where the centre for each cluster is initialised as the mean of the

corresponding FP coordinates.

When the user sketches a stroke, the marginal likelihood p(tn) and the pos-

terior responsibility is calculated for each point in the stroke using Equation 4.8.

The responsibilities form a vector with 32 values, where each index represents a

single cluster (see Figure 5.7). The values determine the probability of a single

stroke point belonging to a particular cluster, where the values range from 0 to 1,
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and the sum of responsibilities is 1. The point is assigned to the cluster with the

highest posterior probability if its likelihood is above a certain threshold. If more

than one stroke point belongs to the same cluster, the point with the highest

likelihood is used.

This makes sure only probable points are extracted from the strokes and mapped

Figure 5.7: Posterior responsibility for each cluster (total of 32 clusters) calcu-

lated for each sketched point.

to the most suitable FP. The observed FPs can now be used to find the unob-

served FPs in order to make up the complete pose (see Section 5.4).

Some complications arise in a sketching interface that should be considered.

As mentioned above, the strokes are sketched in 2D which means the values along

the depth axis based on the current viewpoint are unknown. The stroke points

were projected onto the 3D model to get an estimate for the depth values in order

to classify the points as FPs, but these values might not represent a realistic

depiction of any known pose. Figure 5.8 demonstrates this problem where a

particular lip shape is sketched from the front view and then examined from a

higher viewpoint. The sketched strokes lie on the xy-plane, and are projected

onto the model to retrieve the z-depth (left). However, as seen by observing the

optimal pose in relation to the strokes (right), the ambiguous depth values are

not accurately depicting a realistic pose.

To overcome this, the values for the ambiguous depth axis (based on the cur-

rent viewpoint) are removed, and replaced with the maximum likelihood values

using the more reliable axes values representing the sketch plane as conditional

data (Equation 4.21). Applying that to the scenario in Figure 5.8, the ambigu-

ous axis is the z-axis, and the reliable axes are formed by the xy-plane since the

strokes are sketched from the front viewpoint.
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Figure 5.8: Projected depth values for sketched strokes may not represent accu-

rate values of the optimal pose.

Entire strokes are sometimes ambiguous where they can be interpreted as

more than one facial feature. An example of this is a sketched line that can

either be an inner lower lip, or an outer lower lip. A sketched eyebrow can be

classified as the upper eyelid.

The modelling approach in Chapter 4 uses contours which only display fea-

tures relevant to the current viewpoint at any time, and the contours generate

a considerably more dense representation of the facial features compared to the

FPs. Mapping stroke points to a the dense contours therefore provides more

redundant-free data to base the mapping on, and one incorrect assignment does

not compromise the mapped feature. In contrast, incorrectly assigning a single

FP fails to produce an accurate feature.

Instead, this is managed here by assigning the FPs to different groups such

as left eye and upper lip. Strokes are assigned to a unique group by examining

which group it is assigned to most often. Any point in the stroke can then only

map to FPs within the assigned group.

Strokes containing points which do not conform to the training set can also

cause problems. For instance when sketching an upper lip, the endpoints may not

lie near a cluster likelihood range and will therefore be discarded. The endpoints

carry important information as they define the boundaries of the desired feature.

An example of this is if the stroke defining the upper lip is too short. If as a result
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the endpoints are ignored, the width of the lips will remain unchanged, while it is

fairly likely that the user intended for them to become shorter. It is also possible

that an endpoint has a lower likelihood than a neighbouring point on the stroke

which maps to the same FP (lip corner).

Two methods are used to increase the chances of correctly identifying the

boundaries of a stroke:

• The stroke endpoints are given higher weights to make sure they have an

advantage over other points in the stroke.

• If a stroke’s endpoint does not map to any FP, a test is performed to see

if they would be classified correctly if the user would have sketched them

slightly differently. The endpoint is moved towards nearby FP clusters

defining a feature boundary (e.g. a lip corner), and will be mapped to an

FP if the endpoint’s translated coordinates fall within the FP’s likelihood

range.

5.4 Reconstructing a complete pose

At this stage the system has identified sketched points mapping to a number of

FPs from the set of 46 FPs describing a single facial pose. There are typically a

large number of unidentified FPs as the user is not expected to draw every aspect

of the pose. In addition to that there are 14 FPs that cannot be sketched here

(teeth, tongue and inner lips) which means the FP pose is always incomplete. A

generative probability model is needed to find the most likely pose given a partial

pose defined by the FPs that were identified from the sketched strokes.

A Gaussian mixture model (Section 4.2.1.3) is fitted on a training set con-

sisting of n = 36 different poses, where each pose contains 46 3-dimensional FPs.

A single training sample is therefore a vector with 46 ∗ 3 dimensions, making

up a training set of size 36 × 138. The FPs identified from a set of sketched

strokes are used as observed data where the max-conditional distribution is cal-

culated over the missing points to construct a complete FP pose (Section 4.2.1.6).
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The problem is finding the number of mixture components that best fit the

model for the purposes of sketching. Two mixture models with a similar likeli-

hood, but different number of mixture components interpret the data differently

when estimating missing data.

The criteria for finding the most suitable number of components is defined

based on both the overall likelihood of the model, and what a user might ex-

pect the system to produce given some minimum number of strokes describing a

particular facial feature.

The minimum number of FPs needed to characterise each target pose are

specified and stored as incomplete pose vectors pi ϵ P, i = 1..n, where the known

coordinates are extracted directly from the target pose. For instance, three FPs

depicting a lowered eyebrow are expected to produce an angry pose.

Finding the best mixture model involves fitting m mixture models on the

training data and examine how well it reconstructs full poses using the incomplete

pose vectors P . The procedure is as follows:

1. Fit a mixture model Mj on the training data using j = 1..m components.

2. ForMj, create a reconstruction ri of every incomplete pose pi ϵ P by finding

the missing FPs, and calculate the error eij = ∥ri − pi∥.

3. Calculate the total error ξj =
∑n

i=1 eij for Mj.

The error values ξj, j = 1..m indicate how well each model managed to gen-

erate the range of target poses from P , so picking the model with the lowest

error should be straightforward. However, the models have slightly different in-

terpretations when estimating which feature is created based on the incomplete

poses. Lets consider a scenario where a user sketches a wide upper lip as shown

in Figure 5.9. Arguably, the most likely intention here is to create a smile, but

with this limited information it could be interpreted either as an open smile or

a closed smile. The best mixture model is therefore one with a high likelihood

and a low error value, while at the same time interprets individual poses based

on incomplete and ambiguous input data according to human expectations.
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Figure 5.9: Indicating a smile with a sketched stroke.

The most likely pose generated by a model that is chosen is not necessarily

the interpretation every user is expecting. Figure 5.10 shows two possible inter-

pretations for the same stroke. A straightforward way to remove the ambiguity

is to add more strokes, but as an alternative, the system offers the possibility

to choose between interpretations from two different mixture models. Here the

first mixture model assumes the user is trying to sketch an open smile, while

the second one finds the most likely option to be a more closed smile. The user

is forced to add more strokes to clarify his intentions if neither model produces

what he is after.

Figure 5.10: Different interpretations made by two mixture models. The interface

offers the user the option to switch between them.

Another example of this is shown in Figure 5.11. There is a correlation be-

tween how far down an eyebrow is sketched, and how angry the face will get

which is again reflected when generating intermediate frames. However, a face
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can have slightly lowered eyebrows without necessarily being very angry. Again

the interface offers the user to choose from two interpretations where the latter

one decides the face should look more annoyed than angry.

Figure 5.11: Different interpretations made by two mixture models. The interface

offers the user the option to switch between them.

The following examples show how well the selected generative model estimates

a complete pose based on incomplete input data for a particular mixture model.

Figure 5.12 shows the reconstructed pose when using three observed FPs (green)

describing the left eyebrow taken from the anger pose (red x’s). The blue circles

represent the reconstructed pose which lies very close to the target pose despite

the small amount of observed data. It is found that most mixture models in-

terpret this the same way and with accuracy which indicates that the eyebrows

are rarely shaped this way in the other poses, and therefore this shape is enough

to characterise the entire pose. Figure 5.13 shows a similar scenario for an open

smile, but now only one observed FP is used describing the right lip corner. The

model is able to predict accurately that the intention is to create an open smile.
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Figure 5.12: Reconstructing anger

pose from incomplete data. FPs circled

in green are the observed data. Red x’s

represent the target pose. Blue circles

show the expected data.

Figure 5.13: Reconstructing open

smile pose from incomplete data. FPs

circled in green are the observed data.

Red x’s represent the target pose. Blue

circles show the expected data.

5.4.1 Reconstructing mesh pose from FP pose

The FPs act as control points which are used to deform the mesh vertices in

order to create a range of different facial poses. The set of FP poses are referred

to as P , where pi ϵ P, i = 1..n is a single FP pose, and similarly the set of mesh

poses as V , where vi ϵ V is a single mesh pose. A statistical mapping Ψ : P → V

is defined which maps a dP -dimensional FP vector to a dV -dimensional vertex

vector.

The problem is how to map a low-dimensional set of FPs to a high-dimensional

mesh. A statistical mapping method is proposed here and contrasted with a

popular approach of using Radial Basis Functions. Furthermore, this statistical

method outperforms different variations of the Radial Basis Function technique,

artificial neural networks, point deformers, and planar bones, for the purposes of

facial animation 1.

1Personal communication with Martinez, 2009
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Figure 5.14: Mapping FP pose to a mesh pose.

Figure 5.14 visualises the overall mapping process where the left side describes

the FPs, and the right side describes the mesh vertices. Because dV ≫ n, Dual

PPCA is performed on both P (left) and V (right), where the latent variables for

each sample are calculated to form n×qP and n×qV latent matrices using Equa-

tion 4.20. The two latent matrices are joined together to form a n×(2×(qP +qV ))

matrix which is the mapping matrix. A series of mixture models are trained on

the mapping matrix k mixture components.
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A mesh pose vi is mapped from a FP pose pi using the following procedure.

Consider the reconstructed pose pi (blue) in Figure 5.15 based on sketched points

(red). The latent variables for pi are calculated and used to fill qP dimensions

in a single mapping sample. The remaining qV latent variables describing vi are

labelled as missing.

The expected latent variables for vi are calculated and used with the corre-

sponding Dual PPCA model to reconstruct a full vertex pose using Equation 4.20

(see Figure 5.16). The current mesh vertices are overwritten with the new recon-

structed coordinates which updates the face model with the new pose. The user

can now continue sketching to make further adjustments, or to use the current

pose as a keyframe in an animation sequence (see Section 5.5).

Figure 5.15: Mapping FP pose to a

mesh pose.

Figure 5.16: Mapping FP pose to a

mesh pose.

To verify this method is capable of producing the correct mesh pose structure

from only 46 feature points, the 36 target mesh poses (V ) are mapped from the

corresponding set of feature points (P ). Figures 5.17 and 5.18 show the recon-

struction of two facial poses used throughout this Chapter, the anger pose and the
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5.4 Reconstructing a complete pose

open smile respectively. The upper left corner shows the FPs extracted from the

target pose, and the bottom left and right show the mesh reconstruction. The red

dots represent the original target vertices for the given pose, and the blue circles

display the reconstructed vertices. A reconstruction for a particular vertex has

zero error if the red dot lies perfectly within the centre of its corresponding circle.

Figure 5.17: Anger pose. Reconstruction using the marked feature points for

the pose. Blue circles show the reconstructed mesh, and the red dots specify the

target mesh for this pose.

Radial Basis Functions is a popular mesh deformation technique and can

define a mapping between P and V using mapping coefficients where each FP is

defined as a single Radial Basis Function. The coefficients are used to deform a

source model into a new pose (see Chapter 3).

An issue with this method is that the source model has to be chosen carefully

to reconstruct the pose correctly. For instance, if the target pose has an open
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5.4 Reconstructing a complete pose

Figure 5.18: Open smile pose. Reconstruction using the marked feature points

for the pose. Blue circles show the reconstructed mesh, and the red dots specify

the target mesh for this pose.

mouth, a deformed source model where the mouth is closed will not produce an

open mouth. Another problems with the RBF approach is that its effect is too

global, lacking local details. Figure 5.19 compares the statistical mapping and

the RBFs mapping where the target is the anger pose. The open smile is used as

the source in the RBFs process to facilitate an open mouth.

The next section shows how using the statistical mapping, a whole range of

facial expressions can be generated using only 36 target poses as a training set.

The system is capable of reconstructing every target mesh pose, as well as a

gradient of poses not present in the training set.

195



5.5 Creating an animation using keyframe poses

Figure 5.19: Comparison between our deformation method (left) and RBF de-

formation (right).

5.5 Creating an animation using keyframe poses

As a starting point, the user is presented with the neutral pose where he can sketch

directly on the model from any viewpoint. When the user is satisfied the system

identifies observed FPs from the sketched points using the method described in

Section 5.3. The expected values for the remaining FPs are calculated (Section

5.4), and used to recover an updated vertex structure (Section 5.4.1). The user

can continue sketching to make further adjustments until he is satisfied with the

pose and adds it into a sequence of keyframes. Figure 5.20 shows some keyframes

produced with some simple strokes starting with the neutral pose in the top left

corner.

Intermediate frames are rendered to make up a complete animated sequence.

This could be done by linearly interpolating between two keyframe models, but

instead the keyframe FPs are interpolated using a cardinal spline and the gen-

erative model is used to reconstruct the model for each frame. This is done

to prove the system can generate a gradient of facial poses which are accurate

enough to generate a smooth motion for every facial feature. Figure 5.21 shows
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5.6 Summary

Figure 5.20: Sketching keyframes.

two keyframes and 10 intermediate frames producing an animated sequence using

the interpolated FPs as input for each frame.

5.6 Summary

This chapter presented a new approach to creating 3D facial animation through

sketching. Sketching acts as a high-level control to modelling where a new pose

can be created by indicating the desired outcome as opposed to applying anima-

tion targets, moving individual control points, or tweaking semantic parameters.

Very few sketch strokes are needed to construct a new pose through incomplete

data handling. This is accomplished using a knowledge-base in the form of a

statistical model that through a maximum likelihood approach knows how poses

are constructed from partial input. The input is made up of feature points de-

scribing each pose in a low-dimensional space. Modifying one aspect of the face
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5.6 Summary

Figure 5.21: Two keyframes and 10 generated intermediate frames. The

keyframes are taken from a video on the attached DVD.

automatically correlates other areas on the face to match accordingly. Facial ex-

pressions generated using this system are therefore always complete and plausible.

The system is able to create a large range of facial poses using only 36 poses

as training data, and accurately calculating intermediate frames. With a more

extensive data set the results could be further improved along with the addition of

new poses that fall outside the likelihood range of the current system. The system

is limited to making changes in areas having pre-defined FPs, but the current set

of FPs classifies the main facial features where the statistical mapping makes

sure the unlabelled areas are adapted to match the desired pose (e.g. cheekbones

when the lips move).
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Chapter 6

Conclusions

This thesis has presented a sketch-based method for modelling 3D faces. A gen-

erative model, trained on the vertex structures from a set of standardised faces,

is capable of creating a range of novel faces by inferring missing vertices from

observed vertices through maximum likelihood to create a complete vertex struc-

ture. This method was evaluated by asking novice users to perform two tasks

which involved sketching a model with specific facial features. The users were

given a verbal description of the target features in task 1, and a picture of the

target from two viewpoints in task 2. The users were then asked to fill out a

questionnaire where they had the chance to score the sketching interface and

their experience. The results indicate that even for novice users, the sketching

interface is easy to use and lets them create features they are generally happy

with. However, the interface is still primarily a research tool which was reflected

by some issues the users had.

Chang and Jenkins [CJ06], and Lau et al [LCXS07] sketch a reference stroke

first to specify what feature is affected, and then a target stroke specifying the

new location, when posing a face mesh. In contrast, the sketching interface imple-

mented as part of this thesis follows a what-you-sketch-is-what-you-get (WYSI-

WYG) approach, where every stroke is treated as a new shape of a facial feature,

and the system has to determine which feature is being sketched. To assign a

feature specific meaning to the strokes, the stroke points are mapped to target

vertices in the training set. However, it is important to limit the number of possi-

ble mappings since a vertex cloud consisting of every vertex in the training set is
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very dense. A Non-Photorealistic Rendering (NPR) technique is employed which

specifies which vertices are the most important from a sketching perspective.

These vertices are called contours, and applying this to every mesh generates a

contour cloud referred to as contour candidates. The advantage of mapping the

strokes to the NPR data is that it minimises redundant and ambiguous mapping

targets which improves accuracy and efficiency. An important issue here is that

these contours cannot serve as a low dimensional parameter space because no two

viewpoints produce the same contours for a single mesh, and no two meshes have

the same contours from the same viewpoint. Therefore every vertex in the stan-

dardised mesh could potentially describe a feature for a particular mesh, from a

certain viewpoint. As a result, every vertex has to be included in the training set

used to fit the generative model. The vertex structure is segmented into several

regions due to the large number of vertices in the face model where the vertices in

each region become a separate training set. Having facial features split between

different regions makes it easier to perform local changes to a feature without

affecting the remaining structure.

Initially, any combination of features is equally likely since no information has

been provided which leads to the assumption that the mean of the training set

is the most suitable starting point in the sketching interface. Limiting the solu-

tion space of features is achieved by providing observed vertices which forms the

conditional data used to determine the remaining vertices. In the sketching in-

terface, the observed vertices are found by mapping sketched strokes to contours.

Sketching can therefore be seen as applying restrictions whereby adding enough

strokes can restrict the generative model to produce a particular individual.

It is justified that contours, acting as a low dimensional representation of

a complete mesh, can be used to reconstruct the original mesh where the 3-

dimensional shape of every facial feature is preserved. This was done both ob-

jectively and subjectively. The objective approach measured the reconstruction

error, found by measuring the total vertex distance between the original model

and the reconstruction. The subjective approach involved an online user exper-

iment where 122 entries were valid. The users were asked to identify 10 faces

where each face was surrounded by 8 faces to choose from. One of the choices

was a reconstructed face model using the contours extracted from the original
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faces (assuming an unknown vertex structure). The mean score was µX = 0.6721

with a standard deviation σ = 0.2117. This translates to the users picking a

reconstructed face over other choices 67.21% of time since there were 10 recogni-

tions in total. In contrast, there is a 12.5% chance of picking the reconstructed

face by clicking a choice randomly.

The objective and subjective measures support the idea of using contour data

to reconstruct a complete face model. The key question concerns how the sketched

strokes can be mapped to the view-dependent contour cloud in order to recon-

struct features that accurately fit the strokes and does not compromise the vertex

structure. Two methods were developed to tackle this problem, a heuristic ap-

proach, and a statistical approach which uses Hidden Markov Models (HMMs)

based on the heuristic metrics.

The heuristic approach traverses the strokes and calculates a grade for each

stroke point, where the grade rates the mapping potential from the point to

nearby contours. The grading function uses metrics which take into account the

transition from the previously assigned contour, where transitions that compro-

mise the vertex structure or do not follow the stroke’s shape are penalised. A

key element in fitting accurate features to the strokes is finding the best starting

point which establishes the context for the stroke. It is important here to make

some assumptions to reduce ambiguity as a stroke can possess different meanings

(see Section 4.6.2). Setting an incorrect context resonates through the grading

process by mapping the stroke points to misleading contours. The grading scheme

is simple and yet produces impressive results. The grading function however is

sensitive to changes made to its blending weights and parameters. It requires a

fair amount of parameter adjustment in order to find a good balance which is

stable enough to generate most features accurately. Minor enhancements can be

achieved by using different parameters for specific contour types but adjusting

a large number of parameters is not an elegant solution and some features are

made up of different types of contours.

Instead, the grading function is replaced with a joint probability distribution

using Hidden Markov Models (HMMs) which offers a more principled approach

to the mapping process. HMMs find the most probable sequence of hidden states

for a given observation sequence which makes them suitable to classify a sequence
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of sketched points [SD05; KSvdP09]. The metrics used in the heuristic grading

scheme are reformulated as probability functions, as they provide the information

needed to set the initial context, and measure the transition between two con-

secutive stroke and contour points. Additionally, it includes an improved vertex

connectivity metric which uses Dijkstra’s algorithm to calculate the path length

between two vertices where it affects the probability of moving from one contour

to another. The stroke points represent the observed data, and the contour points

are the hidden latent states in a HMMs framework. The Viterbi algorithm [Vit67]

is then used to find the hidden states by traversing the trellis diagram.

The HMMs approach gives far more reliable and accurate results. The heuris-

tic algorithm only considers the last assigned contour when traversing the stroke

which makes it somewhat similar to a simple first order Markov chain. In con-

trast, the HMMs approach however does not put a limit on the order and performs

back-tracking. It provides an elegant solution to mapping sketched strokes to a

vertex-trained generative model using inverse Non-Photorealistic Rendering data

as a bridge. Both the heuristic approach and the HMMs approach offer the pos-

sibility of correlating unsketched features. This can be used to look faces up in a

database based on limited data. One potential use for this is to find a suspect in

a criminal database based on an incomplete witness description.

Although the contours can be used to create a range of novel features, they are

still a low dimensional representation of the complete data. The areas between

the observed contours are filled using the most plausible shapes based on the

training data. However, there is no guarantee that this gives the intended surface

curvature between the strokes. It was noticable when sketching the test models,

that features fitting the strokes well did not necessarily relate to a good likeness

if the curvature between the sketched features differed from the source model.

This could be alleviated to some degree by using more detailed training samples

where the contour data would be more dense. One option is to use the contour

data to create the main features and some details, and then apply a geometric

brush tool approach such as the one offered in Z-brush1 and Autodesk Mudbox
2 as a post process to modify the surface and create further details.

1http://www.pixologic.com
2http://www.autodesk.com
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Furthermore, the overall likeness can be affected if a single sketched feature is

not reconstructed accurately, despite all the other features being fairly accurate.

This is because one inaccurate feature will affect the relative shape and spatial

configuration between the facial features which is believed to be the way humans

encode and store faces [SBOR07; dHHR07].

Using discrete control points to create faces gives limited control over the

modelling process in terms of possible shapes and characteristic details. Adding

control points would allow a larger range of features with more details but it is

infeasible to manipulate a large number of control points. A sketching interface

based on few control points will only map a few stroke points to the control points

and ignores the information provided by the remaining segments on the stroke.

Sucontphunt et al [SDN09] offers a modelling interface where the user can

create different faces by pulling eight facial contour curves on a template 3D

model, made up of 35 anthropometric landmarks. While easy to use, the level of

control is limited to the discrete landmarks and it only operates from the front

viewpoint. Individual vertices can be manipulated where the surrounding vertices

are adapted by projecting the edited mesh onto PCA nodes defining the face space

for different model segments. Each vertex is therefore acting as a control point

which offers greater control but is not a desirable solution.

In contrast, the technique introduced in this thesis allows sketching from any

angle using contour points based on the surface curvature which adapts to the

viewpoint. The contours act as a non-redundant set of control points, where they

provide a dense correspondence to only relevant parts of available facial features.

Creating face models using a parameter based approach such as FaceGen1

or [ABHS06] is very easy as they offer great flexibility and control. However,

transferring a specific shape of a facial feature from one’s mind by adjusting pa-

rameters such as concave/convex cheekbones or round/gaunt cheeks might take

several attempts of adjusting before finding the right combination of parameters

needed to achieve that shape. By communicating with the modelling system us-

ing sketched strokes, this shape can be directly transferred to the system which

fits the necessary features to fit the stroke. This offers a more direct approach

1FaceGen. Singular Inversion
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where the user does not have to specify the steps taken to achieve the recon-

structed shape, such as the features involved or their parameter values.

The training set used for most experiments was made up of low resolution

FaceGen models. The models are noise free and already standardised which is

useful when developing the core architecture for a sketch-based modelling ap-

proach, as they give reliable reconstruction results. However, the models fail to

capture a number of important details such as wrinkles, dimples, and sudden

changes in the curvature due to saggy skin or prominent bone structure. Using

detailed high dimensional data requires a large amount of data to be stored in

the memory at runtime, and a large number of segments are needed under the

current method which causes blending issues.

Animation sequences are traditionally generated from keyframes where the

intermediate frames are created by interpolating the key poses. A sketch-based

approach for posing faces was introduced based on the modelling approach, but

applied a simpler statistical mapping scheme. The training set consists of 36

high resolution poses for a single face model, where the features in each pose are

labelled with MPEG-4 landmarks called Feature Points (FPs). Unsketched fea-

tures are correlated which speeds up the sketching process and produces natural

poses. For example, sketching a lowered eyebrow will make the eyes smaller, and

produce an angry mouth shape showing some teeth.

The landmarks deform the mesh using a novel statistical mapping. It was

shown how each pose can serve as a keyframe where a complete animation se-

quence is generated by fitting a cardinal spline through the keyframes. Intermedi-

ate frames were created by interpolating the landmarks and then reconstructing

the full mesh using the statistical mapping technique, as opposed to generat-

ing the full mesh for each keyframe and then interpolating between the meshes.

This was done to evaluate the mapping technique. It consistently produces a

smooth and continuous sequence of intermediate frames which verifies its ability

to reconstruct an accurate mesh pose from landmarks.

The animation sequence created using the sketched strokes can easily be trans-

ferred to another model given the FPs are known for the target model’s poses.
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The mapping technique used in Section 5.4.1 can be adapted to establish a sta-

tistical relation between the two models, and maps the key FP poses from the

source model to an equivalent FP pose on the target model. Then the full model

is retrieved as before using Section 5.4.1.

There are a number of possible improvements that could be investigated as

future work. Several improvements were proposed in Section 4.11.2 as a result

of observing the users complete the two tasks given in the evaluation process.

The improvements fall into two categories, where the first one is concerned with

making sure the users’ intentions are interpreted correctly when the sketched

strokes are inaccurate or exaggerated. Processing extreme strokes might have

undesirable implications in which case the interface could allow to user to set how

strict the interpretations are. This is something that could be examined further.

The second category discussed how the evaluation process itself could be improved

as well as exploring ways of extending the evaluation by recruiting sketch artists

and designers to perform the same task, and furthermore to subjectively evaluate

the accuracy of the results from this evaluation. The contour generation can be

improved by including methods used in more recent NPR work [DR07; JDA07]

which would allow more features to be sketched, and with more accuracy. The

effect would be even more dramatic if detailed high resolution meshes were used

as the primary data, replacing the smooth low resolution faces. A combination

of FaceGen meshes, and standardised laser scans from the USF HumanID 3-D

Database [BV99] would provide a good variance of clean and customisable facial

features (using FaceGen conformation parameters), and detailed features and

characteristics that cannot be produced with FaceGen. The surface curvature

and view direction is used to generate a sketchable subset of the mesh vertices

referred to as suggestive contours. A way of exploring how more details can be

sketched is to use the curvature data to produce a cross-hatch representation of

the mesh instead of the contour representation. This simulates shading based

sketching, which combined with the contour based sketching could be used to

quickly sketch the main features using simple strokes, and then add details by

sketching cross-hatches. Instead of defining and adjusting the parameters for the

HMMs probability functions manually, they could be learned automatically by
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observing a number of users sketch strokes to fit predefined features. This could be

taken even further by facilitating a user specific sketch detection behaviour where

the system automatically adapts to each user or alternatively invites him to run

a calibration process. In addition, other statistical models could be considered

such as Generative Topographic Mapping (GTM) [Bis07] and Gaussian Process

Latent Variable Models (GP-LVM) which non-linearises the linear mappings from

the embedded space of a Dual PPCA model [Law04].

The animation work presented here was based on an earlier mapping approach

which has been improved considerably in the modelling approach by employing

view-dependent contours and a HMMs. A natural progression is to incorporate

this new approach into the animation which would offer better accuracy and

enhanced sketchability from every viewpoint. The cross-hatching method could

also be incorporated in the animation approach to adjust minor areas around the

main features to create character specific details.

A long term goal is to generalise the sketch-based approach in order to make

it possible to sketch different classes of 3D object such as caricatured faces, car-

toon faces, and the human body. Using a training set of cartoon characters could

be used to quickly generate key poses for an animated cartoon [SBr05]. It is

also worth exploring whether similar classes of objects can be standardised using

the same generic mesh, and combined in one training set with the goal of creat-

ing hybrid objects. An example of this could be to combine human faces with

caricature faces. Another possibility is to offer a mode-free sketching interface

which supports a large number of different object classes but each containing a

stand-alone training set and corresponding generative model, where an object

recognition process would classify the first strokes in a new sketch and initialise

the appropriate generative model. Implementing a sketch-based texture enhance-

ments would provide an intuitive way of adding a number of facial details such

as beard and moles [LCODL08].
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Appendix A

Polygon File Formats

The laser scanned face models in the USF HumanID 3-D Database [BV99] are

stored in a binary Inventor file format and are processed with a program called

ivfix, written by James Ward 1 which converts them into an ASCII Inventor

format.

The models are exported to the Polygon File Format (ply) which is a simpler,

and more efficient format.

A.1 Inventor (iv) V2.1 ASCII file format

The Open Inventor file format 2 is an object based format which allows extensive

description of a whole 3D scene with grouping, cameras, lights, materials etc. It

requires the header

#Inventor V2.1 ascii

The main elements are then as follows (see code below). The objects are speci-

fied with a Separator. The object in our case is constructed using a triangle strip

set. It specifies the following properties for each vertex, XYZ vertex coordinates

(vertex ), XYZ normal coordinates (normal) and UV texture coordinates (texCo-

ord). Then it lists the triangles (faces) making up the triangle strip (coordIndex ),

1http://www2.dcs.hull.ac.uk/simvis/personnel/jww.htm
2http://oss.sgi.com/projects/inventor/
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A.2 Polygon (ply) file format

referencing the corresponding vertex numbers in the vertex list where the end of

each triangle is indicated with -1. The same pattern is used for the triangle (face)

normals (normalIndex ), only now referencing the numbers in the normal list.

Separator {
IndexedTriangleStripSet {

VertexProperty {
vertex [ 533.22 -4323.24 6486.28,

...

]

normal [ -0.00739541 -0.999645 0.025593,

...

]

texCoord [ 0.77 0.326,

...

]

}
coordIndex [ 84989, 84991, 84862, -1,

...

]

normalIndex [ 263286, 263290, 262947, -1,

...

]

}
}

A.2 Polygon (ply) file format

The Polygon file format, also known as Stanford Triangle format, was developed

at Stanford University to store 3-dimensional data from 3D scanners 1, and can

1http://www.graphics.stanford.edu/data/3Dscanrep/

209



A.2 Polygon (ply) file format

only store a single object. A typical structure of a ply file is:

Header

Vertex List

Face List

It supports few other elements but custom made elements are required to specify

more complex properties such as texture coordinates. The header specifies which

elements are expected and what properties they possess. A typical polygon ob-

ject with 5590 vertices and 10999 faces has the following header:

ply

format ascii 1.0

element vertex 5590

property float x

property float y

property float z

element face 10999

property list uchar int vertex index

end header

It states that each vertex has XYZ coordinates and the faces are represented

as a list of integers of an arbitrary length that index the vertices.

The following elements are added to handle the UV coordinates and texture name:

element texture coordinate 5590

property float u

property float v

element texture name 1

An example of a ply file with the complete header is then as follows:

ply
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A.2 Polygon (ply) file format

format ascii 1.0

element vertex 5590

property float x

property float y

property float z

element face 10999

property list uchar int vertex index

element texture coordinate 5590

property float u

property float v

element texture name 1

end header

-6000.533984 1285.712925 6294.708409

...

3 593 594 591

...

0.520369 0.545208

...

models/images/Face1.bmp

Note that the second sequence containing the face list states with the first number

how many vertices make up the face and then lists the vertex indices.
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Appendix B

Calling Matlab from C++

Matlab offers powerful matrix calculations and methods which can only be ac-

cessed in C++ by utilising a number of external modules. In C++ however, it

is possible to use a Matlab engine to perform complex calculations by using the

following two steps:

1. The first thing that needs to be done is to include the header and library

files to instantiate and communicate with the Matlab engine.

#include <engine.h> (located in $Matlab$\extern\include)

These library files should be included: libeng.lib, libmat.lib and libmx.lib

(located in $Matlab$\extern\lib\win32\microsoft\msvc60\).

2. To open and close the Matlab engine, use the following code:

Engine *matlabEngine;

matlabEngine = engOpen(NULL);

if(matlabEngine == NULL)

{
// Error! Failed to connect to MATLAB engine

}
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// Some code..

// Close Matlab engine

engClose(matlabEngine);

Executing a Matlab command

For example, to transpose a matrix, use the following command:

engEvalString(matlabEngine, "A = A’");

Retrieving feedback from Matlab

It can be useful when running a Matlab command to see the result of running

the command. This is done by instantiating a buffer which reads the result from

Matlab every time any command is executed:

char matlabBuffer[1024];

...

engOutputBuffer(matlabEngine, matlabBuffer, 1024);

Sending data to Matlab

It can prove quite troublesome to send dynamic multidimensional arrays to Mat-

lab. However, it can be achieved using the following function:

void addMultiDimensionalArray(int w, int h, string array, double

**values)

{
mxArray *mxValues;

mxValues = mxCreateDoubleMatrix(h, w, mxREAL);
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double *mP;

mP = mxGetPr(mxValues);

for( int i = 0; i < w; i++ )

{
for( int j = 0; j < h; j++ )

{
mP[i * h + j] = values[j][i];

}
}

engPutVariable(matlabEngine, array.c str(), mxValues);

}

Retrieving data from Matlab

The following method is used to get an array from Matlab. The array is always

retrieved and stored as a one-dimensional array in C++ (cData).

double *cData;

mxArray *mData;

mData = engGetVariable(matlabEngine, "name-of-matrix");

cData = mxGetPr(mData);

The array can be restructured into a multidimensional array by employing the

following principle. A n×m array containing elements vij, i = 1..n, j = 1..m, is

stored of the form [v11,..,v1m,vn1,..,vnm]. For example, a 2× 2 matrix is stored as

[v11, v12, v21, v22].
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Appendix C

User Evaluation - Models

The following figures are the sketched models from tasks 1 and 2 in the user

evaluation discussed in Section 4.11. These tasks involved volunteers using the

sketching interface, developed as a part of this thesis, to create 3D faces which

would resemble a provided target face. Both tasks featured the same target face.

However, task 1 only provided a verbal description of the target, while task 2

provided a picture of it from the front and profile view.

The figures are ordered based on the user number. Every figure is laid out in

the same fashion where the target face is at the top, the sketched model from task

1 is on the left, and the sketched model from task 2 is on the right. Accompanying

each sketched model is a colour coded model which visualises the vertex distance

to the target model (model error). The colour scale is fixed to an absolute value

for all users to allow a direct comparison of the users’ models.
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Figure C.1: User 1
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Figure C.2: User 2
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Figure C.3: User 3
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Figure C.4: User 4
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Figure C.5: User 5
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Figure C.6: User 6
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Figure C.7: User 7
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Figure C.8: User 8
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Figure C.9: User 9
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