Motion Capture File Formats Expla ned 1

Motion Capture File Formats Explained
M. Meredith S.Maddock
{M.Meredith, S.Maddock} @dcs.shef.ac.uk
http://www.dcs.shef.ac.uk/~{ mikem, steve}
Department of Computer Science, University of Sheffield
211 Portobelo Road,
Sheffield, S1 4DP

1 Introduction

Traditional character animation is an involved process that takes large amounts of time using skilled
artists to manually pose characters using tools such as 3D Studio Max [Max], Maya[Maya] or

Poser [Poser]. However with the ever increasing demands placed on computer graphics for better
looking 3D scenes and in shorter spaces of time, alternative character animation techniques are needed.
While the use of forward and backward kinematics can be used to speed up the process of traditional
character positioning, the overall cregtion phaseis till acomparatively dow one. Therefore, to meet
the demands of modern character animation many production houses have turned to motion capture
technologies, in abid to find a better solution. With the aid of motion capture techniques much of the
laborious posture configuration is eliminated as character animation is recorded directly from actors
performing the desired motion, thereby reducing the need of artists to manually position characters.

Motion capture devices alow the recording of live motions by tracking a number of key pointsin space
over time, which aretrandated into a 3 dimensional digital representation. The captured subject can be
anything that existsin the real world, with the key points positioned on the object such that they best
represent the orientations of the moving parts of the object, for example the joints or pivot points. In
order to accurately triangul ate marker positions at least 4 cameras are used, however generally no more
than 32 are used.

The use of motion capture data to animate computer characters has been used in television commercias
to promote such products as Coke Cola and Barbie', movie productions, such as Final Fantasy: The
Spirits Within® and computer games. Examples of the use of mation capture datain computer games
can be seen in Actua Soccer 2°, Fifa 2001* and the Tomb Raider series®. The success of motion capture
has led to a number of production houses that can record and provide motion data’, however many
companies have devel oped their own file format. This means that file formats of motion capture data
arefar from standard, however the ASCII nature of many of the formats make it reasonably easy to
decode and understand by simple inspection of the data.

This document starts by providing a brief overview of the terminology and style of notation that will be
used to describe the file formats, followed by alist of many of the mation capture formats in use today.
Two of the more common formats are then explained in terms of their structure and the procedure
required for correct interpretation of the data for playback. Thisisfollowed by fragments of C++ code,
which makes use of the OpenGL library routines, to illustrate a possible program structure for amotion
capture decoder and player.

As an indication of the increasing foothold that motion capture technology has in computer animation,
there are currently a number of books dedicated to the understanding and processing of motion capture
data. Appendix A contains a bibliography of some of these books and other motion capture research
papers aong with comments on some of the texts.

! House of Moves Motion Capture Studio, http://www.moves.com

% Final Fantasy: The Spirits Within, http://www.finalfantasy.com

% Actua Soccer 2, Gremlin Interactive, http://actuaweb.gamestats.com/as2

4 Fifa 2001, Electronic Arts, http://fifa2001.ea.com

5 Tomb Raider, Core Desi gn Incorporated, http://www.tombraider.com

® Production houses that supply motion capture data include BioVision, http://www.biovision.com,
Motion Analysis, http://www.motionanalysis.com and House of Moves, http://www.moves.com

mailto:@dcs.shef.ac.uk
http://www.dcs.shef.ac.uk/~
http://www.moves.com
http://www.finalfantasy.com
http://actuaweb.gamestats.com/as2
http://fifa2001.ea.com
http://www.tombraider.com
http://www.biovision.com
http://www.motionanalysis.com
http://www.moves.com

Motion Capture File Formats Expla ned 2

2 Background Infor mation

This section provides a short review of the terminology and notational style that will be used to
describe the processes invol ved in reading and processing motion capture data.

2.1 Terminology

The following list outlines some of the more important keywords that will be used to identify and
describe different aspects of a motion:

Skeleton — The whole character for which the motion represents.

Bone — The basic entity in representing a skeleton. Each bone represents the smallest segment
within the motion that is subject to individual trand ation and orientation changes during the
animation. A skeleton is comprised of a number of bones (usualy in ahierarchical structure, as
illugtrated in figure 2.1), where each bone can be associated with a vertex mesh to represent a
specific part of the character, for example the femur or humerus.

Channel or Degree of Freedom (DOF) — Each bone within a skel eton can be subject to position,
orientation and scale changes over the course of the animation, where each parameter isreferred
to asachannel (or DOF). The changes in the channel data over time give rise to the animation.
Frame — Every animation is comprised of a number of frames where for each frame the channel
data for each bone is defined. Motion capture data can be captured as high as 240 frames per
second, however in many applications arate of 30 or 60 frames per second tends to be the norm.
High frame rates are used to capture motions that contain high frequency content such asa
combination of karate actions. Although in many cases the extra detail cannot be displayed
during a real-time playback because of maximum refresh rates of display hardware’, it can
provide useful information for adding motion blurring to the animation or simply for motion
analysis.

E% Raoot - Hips —————————— > Head \ |
E% Chest

E% Meck _ ||__

- g Head - — — —
- LeftCollar i
EI% Leftshoulder B nght Hand [\

B LeftElbow

- |
odl Leftirist
E-J RightCallar »
-4k Rightshoulder » Root
B4k RightElbow

Left Hand

------ e Rightiwirist

=4 LeftHip
Bl Leftknes

= RightHip /

B . \\
=4 Rightknes > Right Foot —! L&t Foot

Figure 2.1: Hierarchical Structure for aHuman Figure

2.2 Notation

During the discussion on transforming bones to correctly position and orientate them for an animation,
matrix arithmetic will be used to demonstrate the motion decoding and displaying algorithms. The
nomenclature used when writing matrix expressionsis right to left, asillustrated in Equation 2.1 where
V' and v are the transformed and original vertices respectfully and M isthe transform matrix. (This
convention is used over the traditional left to right approach, v’ = vM, because it relates more directly
to the OpenGL graphics pipeline, where vertices are pushed in after the transforms)

"Affordable, everyday monitor refresh rates presently max out at about 100hz, and a sustained 60fps
rate in amodern computer game is considered an excellent mark to reach.

Motion Capture File Formats Expla ned 3

Vv'=Mv (2.1)
This convention is particularly important when constructing a rotation matrix fromits 3 separate Euler
angles since matrix multiplication is not commutative. The composite right to left rotation matrix, R,
based on the separate rotation matrices about each axis, Ry, Ry, and R,, isillustrated in Equation 2.2,
where the composition order is“XYZ". Since matrix multiplication is associative, brackets will be
omitted from such equations.

Rv = RRyR,v (2.2
The mation of an individual bone consists of trand ation, rotation and scale components (depending on
the channels defined for the bone), which can be merged together to give an overal transform using
homogeneous coordinates. Unless otherwise stated, the combination order of these different transforms
to give the full transform will awaysfollow the formillustrated in Equation 2.3, where S,Rand T are
the separate scd e, rotation and tranglati on matrices respectfully.

M=TRS (2.3)
In most motion capture file formats, the datais presented in a hierarchical manner and the formula
derived in Equation 2.3 only givesthe local transformation of abone. Thelocal transformation of a
bone describes its orientation within in its local coordinate system, which in turn is subject to its
parent’slocal orientations. To obtain aglobal matrix transform for a given bone, the local transform
needs to be pre-multiplied by its parent’s global transform, which itself is derived my multiplying its
local transform with its parent’s global transform and so on. Equation 2.4 outlines this combination
seguence, where n is the current bone whose parent boneisn - 1 and n = 0 is the bone at the root of the
hierarchy.

4
M gr;lobaj =O M (2.4)
i=0

3 Review of Motion Capture File Formats

Table 3.1 outlines many of the motion capture formatsin use today along with URLs for additional
formatting information.

FileExtension | Associated Company / File Format Reference
Description
ASC Ascension NO LINK
ASF & AMC Acclaim http://www.darwin3d.com/gamedev/acclaim.zip
ASK & SDL BioVision/Alias NO LINK
BVA & BVH BioVision http://www.biovisi on.com/bvh.html
BRD LambSoft Magnetic Format http://www.dcs.shef.ac. uk/
~mikem/fileformats/brd.html
C3D Biomechanics, Animation and http://www.c3d.org/c3d_format.htm
Gait Analysis
CSM 3D Studio Max, Character http://www.dcs.shef.ac.uk/
Studio ~mikem/fileformats/csm.html
DAT Polhemous NO LINK
GTR,HTR & Motion Analysis http://www.cs.wisc.edu/graphics/Courses/cs-
TRC 838-1999/Jeff/ { HTR.html, TRC.html}
MOT & SKL Acclaim-Moation Anaysis (Under Devel opment -
http://www.cs.wisc.edu/graphics/Courses/cs-
838-1999/Jeff/SKL-MOT.html)

Table 3.1: Motion Capture File Formats and References For Additional Format Information

http://www.darwin3d.com/gamedev/acclaim.zip
http://www.biovision.com/bvh.html
http://www.dcs.shef.ac.uk/
http://www.c3d.org/c3d_format.htm
http://www.dcs.shef.ac.uk/
http://www.cs.wisc.edu/graphics/Courses/cs
http://www.cs.wisc.edu/graphics/Courses/cs

Motion Capture File Formats Expla ned

For the remainder of this section both the BVH and HTR file formats are examined in more detail,
which includes an explanation of both the formatting of the file and the processes needed in order to
correctly display agiven animation. BVH and HTR formats have been sel ected for expansion here
because they tend to be the more common formats used, along with ASHAMC format®, and a
successful implementation of both decoders has been achieved.

3.1 BioVision: BVH (BioVision Hierarchical data)

The BVH format succeeded BioVision's BVA dataformat with the noticeable addition of a
hierarchica data structure representing the bones of the skeleton. The BV H file consists of two parts
where the first section detail sthe hierarchy and initial pose of the skeleton and the second section
describes the channe datafor each frame, thus the motion section. Illustrations of the base position
and the first frame of an animation are given in figure 3.1, where the dataisligted in figure 3.2. The
example BVH filein figure 3.2 will be used to further discuss the BVH file format in the remainder of

this section.

RightUpArm———jp =4

RightLowArm——p ‘
!

".\ Chest

Y
RightUpLeg\plt ‘F‘tc\HipS
RightHand/ l';* |

RightCollar Head

/

RightUpArm\> i‘/NeCk
|l ll L |
v

RightL owArm\>)
I 11\
T .
RightUpL eg—’“ﬂIl 1 Chest
! ‘H‘\
/ A Hips

RightHand !
! i

b

! "
RightLowLeg/;" }4/LeftLowLeg RightLowLeg/fo‘ IH\L eftLowl eg
[; '|
| ¢I RightFoot/v _.‘\1 "W
RightFoot————» 1,\ f\LeftFoot : \Lefu:oot
@ (b)

Figure 3.1: Skeletal structure of the sample BVH file; () base position; (b) first frame of the animation

HI ERARCHY
ROOT Hi ps

{

OFFSET 0.00 0.00 0.00

JO NT Chest

CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

{
OFFSET 0. 000000 6. 275751 0. 000000

CHANNELS 3 Zrotation Xrotation Yrotation
JO NT Neck

OFFSET 0. 000000 14. 296947 0. 000000
CHANNELS 3 Zrotation Xrotation Yrotation

8 The format of the ASF/AMC files are expected to be described in afuture revision of this document
as there are plans to implement a decode and encoder for this mocap file format.

Motion Capture File Formats Expla ned 5

JO NT Head

{
OFFSET 0. 000000 2.637461 0. 000000

CHANNELS 3 Zrotation Xrotation Yrotation
End Site
{

}

OFFSET 0. 000000 4.499004 0. 000000

}

}
JO NT LeftColl ar

{
OFFSET 1. 120000 11. 362855 1.870000

CHANNELS 3 Zrotation Xrotation Yrotation
JA NT Left UpArm

{
OFFSET 4.565688 2.019026 -1.821179

CHANNELS 3 Zrotation Xrotation Yrotation
JA NT Left LowAr m

{
OFFSET 0.219729 -10.348825 -0.061708

CHANNELS 3 Zrotation Xrotation Yrotation
JO NT Left Hand

{
OFFSET 0. 087892 -10.352228 2.178217

CHANNELS 3 Zrotation Xrotation Yrotation
End Site

OFFSET 0.131837 -6.692379 1.711456

}

}
JO NT RightCol | ar

{
OFFSET -1.120000 11.362855 1.870000

CHANNELS 3 Zrotation Xrotation Yrotation
JO NT Ri ght UpArm

OFFSET -4.708080 2.034554 -1.821179
CHANNELS 3 Zrotation Xrotation Yrotation
JO NT Ri ght LowAr m

{
OFFSET -0.263676 -10.428555 -0.061708

CHANNELS 3 Zrotation Xrotation Yrotation
JO NT Ri ght Hand

{
OFFSET 0. 000000 -10. 255345 2.178217

CHANNELS 3 Zrotation Xrotation Yrotation
End Site

OFFSET -0.140882 -6.671274 1.711456

}

}
JO NT Left UpLeg

{
OFFSET 3.910000 0. 000000 0. 000000

CHANNELS 3 Zrotation Xrotation Yrotation
JO NT LeftLowLeg

{
OFFSET -0.441177 -17.569450 1.695613

CHANNELS 3 Zrotation Xrotation Yrotation
JA NT Left Foot

{
OFFSET -0.043946 -17.197315 -1.478076

CHANNELS 3 Zrotation Xrotation Yrotation
End Site

OFFSET 0. 000000 -3.933155 5.233925

Motion Capture File Formats Expla ned 6

}
}
JO NT Ri ght UpLeg
{
OFFSET -3.910000 0. 000000 0. 000000
CHANNELS 3 Zrotation Xrotation Yrotation
JO NT Ri ght LowLeg
{
OFFSET 0. 437741 -17.622387 1.695613
CHANNELS 3 Zrotation Xrotation Yrotation
JA NT Ri ght Foot
{
OFFSET 0. 000000 -17.140001 -1.478076
CHANNELS 3 Zrotation Xrotation Yrotation
End Site
OFFSET 0. 000000 -4,.038528 5.233925
}
}
}
}
}
MOTI ON
Franes: 2
Frame Tine: 0.04166667
-9.533684 4.447926 -0.566564 -7.757381 -1.735414 89.207932 9.763572
6.289016 -1.825344 -6.106647 3.973667 -3.706973 -6.474916
-14.391472 -3.461282 -16.504230 3.973544 -3.805107 22.204674
2.533497 -28.283911 -6.862538 6.191492 4. 448771 -16. 292816
2.951538 -3.418231 7.634442 11. 325822 5.149696 -23.069189
-18.352753 15.051558 -7.514462 8.397663 2.953842 -7.213992
2.494318 -1.543435 2.970936 -25.086460 -4.195537 -1.752307
7.093068 -1.507532 -2.633332 3.858087 0. 256802 7.892136
12.803010 -28.692566 2.151862 -9.164188 8.006427 -5.641034
-12.596124 4.366460
-8.489557 4.285263 -0.621559 -8.244940 -1.784412 90.041962 8.849357
5.557910 -1. 926571 -5.487280 4.119726 -4.714622 -5.790586
-15.218462 -3.167648 -15.823254 3.871795 -4.378940 22.399654
2.244878 -29.421873 -6.918557 6.131992 4.521327 -18.013180
3. 059388 -3.768287 8.079588 10. 124812 5.808083 -22.417845
-15.736264 18.827469 -8.070700 9.689109 2.417364 -7.600582
2. 505005 -1.625679 2.430162 -27.579708 -3.852241 -1.830524
12.520144 -1.653632 -2.688550 4.545600 0. 296320 8. 031574
13.837914 -28.922058 2.077955 -9.176716 7.166249 -5.170825

-13. 814465 4.309433

Figure 3.2: Example BVH file

The hierarchical section of the file starts with the keyword HI ERARCHY, which isfollowed on the next
line by the keyword ROOT and the name of the bone that isthe root of the skeletal hierarchy. The
ROOT keyword indicates the start of a new skdetal hierarchica structure and athough the BVH fileis
capable of containing many skeletons, it is usua to have only a single skeleton defined per file.

The remaining structure of the skeleton is defined in arecursive nature where each bone's definition,
including any children, is encagpsulated in curly braces, which is delimited on the previous line with the
keyword JO NT (or ROOT in the case of the root bone) followed by the name of the bone. With the
introduction of aleft curly braceit is good practice to indent the bone’ s content (with atab) and aign
the closing curly brace with the corresponding opening one. The bone names identified by the prefix
JA NT or ROOT are not referenced again in the file and hence redundant, however some parses (for
example Character Studio R2.2 [Max]) require abone name in order to correctly parse thefile.
Furthermore, athough the hierarchical indentation is not absol utely necessary, it does assist in making
the file more readable for humans.

Within the definition of each bone, the first line, delimited by the keyword OFFSET, details the

trand aion of the origin of the bone with respect to its parent’ s origin (or globally in the case of the root
bone) along the x, y and z-axis respectively. The offset serves afurther purpose of implicitly defining
the length and direction of the parent’s bone, however the problem with thisisin defining the length
and direction of abone that has multiple children. Normally agood choice for determining the bone

Motion Capture File Formats Expla ned 7

length in this situation is to usethe first child offset definition to infer the parental bone information
and treat the offset datafor other child nodes simply as offset values.

The second line of abone' s definition is prefixed with the keyword CHANNEL S which defines the
DOFsfor the current bone. The importance of the order that the channels are presented is two-fold.
First, the order that each channel is seen in the hierarchy section of the file exactly matches the order of
the data in the motion section of the file. For example, the motion section of the file contains
information for the channel s of the roat bone in the order defined in the hierarchy, followed by the
channel datafor it’sfirst child, followed by the channel datafor that child and so on through the
hierarchy. The second point to note with regards to the channel ordering isthat the concatenation order
of the Euler angles when creating the bon€ s rotation matrix needs to follow the order depicted in the
CHANNEL section. It isimportant to note this because the Euler order is specified for each bone,
therefore it is possible to have different orders for different bones, which needs to be accounted for in
order to get a correct looking animation. Figure 3.3 illustrates a segment of aBVH filein which
rotational channels are specified differently for different joints.

After the OFFSET and CHANNEL lines, the next non-nested lines in the bone definition are used to
define child items, starting with the keyword JO NT, however in the case of end-effectors, a special
tagisused, “End Sit e”, which encapsulates an OFFSET triple that is used to infer the bone's length
and orientation.

CEFSET -0.145148 7. 670311 - 0. 132667
CHANNELS 3 Xrotation Zrotation Yrotati on

JO NT Neck
{
OFFSET 0.206702 11. 265274 -1. 343565
CHANNELS 3 Xrotation Zrotation Yrotation
JO NT Head
{
OFFSET -0.103351 0.386947 0.663649
CHANNELS 3 Xrotation Zrotation Yrotation
JO NT Left Eye
{
OFFSET 1. 446916 5.400717 4.503910
CHANNELS 3 Zrotation Yrotation Xrotation
End Site
OFFSET 0. 000000 0. 000000 0.930160
}
}
JO NT Ri ght Eye
{
OFFSET -1.446916 5. 400717 4.503910
CHANNELS 3 Zrotation Yrotation Xrotation
End Site
OFFSET 0. 000000 0. 000000 0.930160
}
}
}

Figure 3.3: Example BVH fragment containing varying orders of joint rotations

Motion Capture File Formats Expla ned 8

Once the skeletal hierarchy is defined, the second section of a BVH file, which is denoted with the
keyword MOTI ON, contains the number of framesin the animation, frame rate and the channel data.
The line containing the number of frames starts with the keyword “Fr ames: " which is followed by a
positive decimal integer (as opposed to hexadecima or octadecimal) that isthe number of frames. The
framerateison aline starting with “Fr ane Ti ne: ” which isfollowed by apositive fl oat that
represent the duration of asingle frame. To convert thisinto aframes per second format you simply
need to divide 1 by the frametime. Once the number of frames and frame time has been defined, the
rest of the file contains that channel data for each bone in the order they were seen in the hierarchy
definition, where each line of float values represents an animation frame.

Processing the Data

The first thing that needs to be donein order to display the motion is to determine each bone' s local
transform, for which the general equation was given in Equation 2.3 as M=TRS. Since BVH formats
do not contain scaling information we only need consider the rotation and trand ation matrices to
construct the local transform. The construction of the rotation matrix, R, can be easily done by
multiplying together the rotation matrices for each of the different channel axesin the order they
appeared in the hierarchy section of thefile. For example, consider the following channel description
for abone:

CHANNELS 3 Zrotation Xrotation Yrotation
This would mean that the compound rotation matrix, R, iscalculated asillustrated in Equation 3.1.
R=RRRy 3.1

Once the composite rotation matrix is calculated, using a homogeneous coordinate system, the
translation components are simply the first 3 cells of the 4™ column (whereas the rotational components
take up the top left 3x3 cells), asillustrated in Equation 3.2. (Note: If pre-multiplication of the vertices
were being used, the translation components would take up the first 3 cellsin the 4" row.) Normally,
the root is the only bone that has per-frame transation data, however each bone has a base offset that
needs to be added to the local matrix stack. Therefore, Ty, T, and T represent the summation of a
bone' s base position and frame trandlation data.

R R R T,
é u
R R R T, -

M= € Yu (3.2
&R R R T,U
e u
g0 0 0 13

Using Equation 2.4 and the derivations of the local transforms, the globd positions for each bone origin
can be calculated and from the origin the bone is drawn using the offset information in the hierarchy
section of thefile. Equation 3.3 exemplifies this process for the LeftFoot in figure 3.2, where vy’ and
v, arethe endpoints of the bone whose local orientation is given by v and M; are the local transforms
of the bonesinvolved in the hierarchical chain. The vector on theright of the first expression in
Equation 3.3, [0, O, 0, l]T, represents the local origin of the Lef t Foot , which istransformed intoits
global position by the equation.

(- T
Vo = MHipsNI LeftUpLegM LeftLowLegM LeftFoot[Ox O: O: l]
Vll =M Hips'vI LeftUpLegM LeftLowLegM LeftFootV (33)

During playback of animationsthat arein ahierarchical format, if the motion isto be used multiple
times and unchanged then to increase performance the vertices can be ca culating once and then stored
for later cycles. However, if real-time modifications are to be preformed on the motion then keeping
the datain a hierarchical format greatly increase the ease with which the character posture can be
edited. Therefore pre-ca culating absolute vertex positions of bones provide no advantage over a
hierarchica rending algorithm, in fact could even result in loss of performance. Thisis because
calculating the positions on the fly results in the global transformation being cached as opposed to

Ri ghtWristf

RightElbow

RightShoulder

RightKnee

RightAnkle\ /Ld%hkle

(a)

Motion Capture File Formats Expla ned 9

pre-calculating the values, storing them and then recalling them from primary memory, which requires
more instruction commands and additional access of sower memory compared to cache memory.

While this hierarchical data structure may assist in the orientations of bones and the skeleton asa
whole, the computationa |oad required to display the skeleton isfar from being efficient. Thisis
because each branch at each level in the hierarchy requires an extra matrix multiplication as outlined in
Equation 3.3, which in turnis made up of multiple transformation matrices, outlined in equation 2.3. In
order to improve efficiency, the local transforms can be pre-compiled into a single matrix that is ready
for stack multiplication and for optimal performance al of the bone end-points could be pre-cal cul ated
using avariant of Equation 3.3. Thiswould result in simply pushing the absolute vertex positions into
the graphics pipeline, however this opti mal rendering format means that it isvirtually impossible to
modify the existing motion with any meaningful results because al of the hierarchical information has
been lost.

There are anumber of problemsinherent inthe BVH fileformat. Most noticeableisthe fact that there
is no explicit bone orientation. Although the bone lengths can be inferred from child bones, the
problem comes with multiple children, as previously discussed — which child do you use to infer the
parent’s bone length? Furthermore, it isaso desirable to have the bone aong asingle axis and a
rotation matrix to orientate it into its base position for reasons that will be discussed later. Other
problems with the BVH files include the lack of calibration units, such asthe scale that the joint offsets
are measured in, and details about the environment, such as orientation —i.e. which direction points
upwards?

3.2 Maion Analysis. HTR (Hierarchical Trandation-Rotation)

The HTR format was devel oped by Motion Analysis as an aternative to BioVision's BVH format with
aview to plugging some of the problems with itsformat as dready discussed. The way in which the
HTR file sol ves the problems of the BV H file format will become apparent as the format is discussed.
The HTR file consists of 4 sections starting with Header foll owed by Segment Names & Hierarchy,
BasePosition and frame data, where each section is delimited by placing the section name in square
brackets. Additiona human-readable comments can be placed anywherein the HTR file and these are
defined with a hash symbal, where anything after the hash symbol on the same lineisto beignored by
aparser. Illustrations of the base position and the first frame of an animation are given in figure 3.4,
where the dataisliged infigure 3.5. The example HTR filein figure 3.5 will be used to further discuss
the HTR file format in the remainder of this section.

Head

Head

RightColl ar\ Neck RightCollar / Neck

a—— RightShoulder — %

<4——Chest .
RightElbow

y
'PS RightWrist

RightHip

/LdtKnm

RN

RightAnkle

(b)

Figure 3.4: Skeletal structure of the ssample HTR file; (&) base position; (b) first frame of the animation

Chest

Hips

\ Leftk nee

LeftAnkle

Motion Capture File Formats Expla ned 10

#Conment |ine ignore any data follow ng # character
#Hi erarchi cal Translation and Rotation (.htr) file

[Header] #Header keywords are foll owed by a single val ue
FileType htr #Singl e word string

Dat aType HTRS #Transl ation followed by rotation and scale data
FileVersion 1 #i nt eger

NunBSegnent s 18 #i nt eger

Nunfr ames 2 #i nt eger

Dat aFr aneRat e 60 #integer, data frame rate in this file

Eul er Rot ati onOrder ZYX
CalibrationUnits nm

Rot ati onUni t s Degrees

d obal Axi sof Gavity Y
BonelLengt hAxi s Y

Scal eFact or 1. 000000

[Segment Names&Hi er ar chy]
#CH LD PARENT

Head Neck

Neck Chest

Chest Hi ps

Left Shoul der Left Col | ar
Ri ght Shoul der Ri ght Col | ar

Lef t El bow Lef t Shoul der
Ri ght El bow Ri ght Shoul der
Left Wi st Lef t El bow

Ri ght Wi st Ri ght El bow

Hi ps GLOBAL
Left Hi p Hi ps

Ri ght Hi pHi ps
Left KneelLeft Hi p

Ri ght Knee Ri ght Hi p
Left Ankl e Left Knee
Ri ght Ankl e Ri ght Knee
Left Col | ar Chest

Ri ght Col | ar Chest

[BasePosi ti on]

#Segnment Name Tx, Ty, Tz, Rx, Ry, Rz, BonelLength

Head 0. 000003 141. 966248 0. 000002 -37.745777 -8.179454 6.203664 80. 000046

Neck 0. 000000 379.566772 0. 000000 32.855431 -5.194619 1.823337 141. 966263

Chest 0. 000000 94.891693 0. 000000 0. 000002 12.877405 -0.000012 379. 566803

Left Shoul der 0. 000003 154. 023666 0. 000005 171. 957962 -79.977570 -157.094910 215. 219986
Ri ght Shoul der -0.000001 146.408707 -0.000001 20.020029 60.865143 -8.207462 240.139038

Lef t El bow 0. 000007 215.219971 -0.000011 -24.162848 54.442085 -17.491318 336.440125
Ri ght El bow -0.000021 240.139038 0.000007 -21.925606 -43.617706 23.102211 322.101532
Left Wi st -0.000014 336.440094 0.000002 173.178864 -0.531422 156. 628021 100.348160
Ri ght Wi st 0. 000005 322.101501 0.000026 1. 868945 1.747480 14.125610 109. 739998
Hi ps 377.886597 1077.530640 704. 474976 -179.011169 36. 455761 -178. 006714 94.891701

LeftHi p 95.336761 5.238981 -8.336124 -0.485735 -9.415434 -176. 117065 525. 916443

Ri ght Hi p-96. 119095 -4.691877 -4.857316 2.457280 -1.423929 -179. 125565 528. 302429

Left Knee 0. 000004 525. 916443 0. 000001 -10. 646533 -14.541370 -1.855900 514.711975

Ri ght Knee -0.000002 528.302429 0.000004 -12.768950 2.118825 -3.063609 521.764099
Left Ankl e 0. 000003 514. 711975 0. 000009 97.965164 - 0.000001 0.000000 253. 446518
Ri ght Ankl e 0. 000001 521.764099 -0.000002 99.242271 0.000002 0. 000000 256. 283173
Left Col | ar 19.999998 366.483276 -15.126845 169.660507 -4.312743 90.901894 154. 023682
Ri ght Col | ar -19.999996 366.483215 -15.126822 171.369568 4.171492 -91. 645760 146.408707
#Begi nning of Data. Separated by tabs

[Head]

#Fr Tx Ty Tz Rx Ry Rz SF

1 -0.000004 11.246399 -0.000001 -8.720660 -3.164685 6.637906 1.000000
2 -0.000005 11.559982 -0.000003 -8.967685 -3.106098 6.445398 0.999999
[Neck]

#Fr Tx Ty Tz Rx Ry Rz SF

1 0.000000 -12.073059 0.000010 0. 396232 -0.246686 -4.863737 1.079219
2 -0.000002 -12.097473 -0.000004 0.425361 -0.269309 -4.636292 1.081428
[Chest]

#Fr Tx Ty Tz Rx Ry Rz SF

1 -0.000000 -3.018326 0.000001 -0.000001 -1.628358 0.000009 0. 968192

2 -0.000000 -3.024338 -0.000000 -0.000020 -1.705875 0.000017 0. 968128
[Lef t Shoul der]

#Fr Tx Ty Tz Rx Ry Rz SF

1 0.000000 13.815002 -0.000001 83.761948 35.203880 79.582558 1.241342
2 -0.000002 13.839508 -0.000007 83.631897 35.184998 79.323212 1.241620
[Ri ght Shoul der]

#Fr Tx Ty Tz Rx Ry Rz SF

1 0.000001 13.459503 0.000006 52.406124 -42.238705 -73.830421 1.125802

Motion Capture File Formats Expla ned

11

2 0.000001

[Lef t El bow]

#Fr Tx

1 -0.000013
2 -0.000028
[Ri ght El bow]
#Fr Tx

1 0.000028

2 0.000030

[Left Wist]

#Fr Tx

1 0.000003

2 -0.000024
[Ri ght Wi st]
#Fr Tx

1 0.000005

2 -0.000004
[Hips]

#Fr Tx

1 -1112.53588
2 -1112. 92895

[Left Hi p]
#Fr Tx
1 1.874519
2 1.820427
[Ri ght Hi p]
#Fr Tx
1 -0.236748
2 -0.152199
[Lef t Knee]
#Fr Tx
1 -0.000013
2 0.000004
[Ri ght Knee]
#Fr Tx
1 0.000014
2 0.000006
[Lef t Ankl e]
#Fr Tx
1 -0.000011
2 0.000017
[Ri ght Ankl e]
#Fr Tx
1 -0.000007
2 -0.000000
[Left Col | ar]
#Fr Tx
1 -0.000010
2 -0.000010
[Ri ght Col | ar]
#Fr Tx
1 0.000006
2 -0.000015
[EndOf Fi |l e]

13. 286621

Ty Tz
51.941711
52. 001495

Ty Tz
30. 209961
30. 296173

Ty Tz
-18. 638397
-18.719818

Ty Tz
-4.863892
-4.949310

Ty Tz
16. 523438
16. 720703

Ty Tz
-4.514181
-4.414242

Ty Tz
2. 359360
2.261423

Ty Tz
-1.179138
-0.947693

Ty Tz
5.598694
5. 383545

Ty Tz
-9.851410
-9.889526

Ty Tz
2.706116
2.231934

Ty Tz
-11. 597260
-11. 614258

Ty Tz
-11. 597107
-11. 614227

- 0. 000001

Rx Ry
0.000027
0.000031

Rx Ry
0. 000002
- 0. 000008

Rx Ry
- 0. 000015
0.000002

Rx Ry
- 0. 000016
- 0. 000014

Rx Ry
-582. 300842
-581. 117249

Rx Ry
2. 456207
2.499619

Rx Ry
-5.008488
-5. 098666

Rx Ry
0. 000001
- 0. 000002

Rx Ry
0. 000004
0.000011

Rx Ry
0.000011
0.000018

Rx Ry
- 0. 000010
0.000010

Rx Ry
-0.398872
-0. 404864

Rx Ry
- 0. 398855
-0. 404881

52. 394287

Rz SF
-3.925248
-3.939872

Rz SF
-8.925378
-8.816924

Rz SF
107. 779221
107. 994080

Rz SF

-42.320644

-24.090729
-23.993404

29. 599155
29. 673548

- 83. 890533
-84.038475

-104. 610184 82. 968636
-104. 448631 83. 079323

Rz SF
50. 390434
49. 189865

Rz SF
16. 237614
16. 227806

Rz SF
15. 787422
15. 545793

Rz SF
-15. 567005
-15. 523184

Rz SF
-15. 268150
-14.904158

Rz SF
2. 843235
2.784328

Rz SF
4. 153965
4.001956

Rz SF
-1. 000729
-1.027217

Rz SF
-3.114126
-3.163443

- 85. 266396
-85. 150032

0. 050990
0. 054104

1. 024064
1. 053510

-4.739112
-4.706165

9. 185243
9. 361836

- 0. 000000
0. 000000

0. 000000
- 0. 000000

0. 923276
0. 956677

-1. 254626
-1.282111

-73.863625

4.376663
4.348942

-1. 955990
-2.041257

-110. 960365
-111. 112129

-99.990471
-99. 959129

-41.504185
-40.316120

3. 735080
3. 808969

-7.257273
-7.157682

5. 805853
5. 806359

-0. 711757
-0.678691

- 0. 000001
- 0. 000001

0. 000000
0. 000001

10. 489632
10. 465802

-11.935379
-12.004474

1

0
0

0
0

1
1

. 126161

. 944601
. 944359

. 984899
. 984634

. 050000
. 049792

. 985911
. 985429

. 968192
. 968128

. 997758
. 998198

. 010598
. 010190

. 980860
. 980786

. 005186
. 004277

. 033134
. 032441

. 997164
. 997414

. 089694
. 089853

. 091931
. 090750

The first meaningful linein aHTR file (not including comments) denotes the start of the header with
the keyword HEADER in square brackets, which contains the global information related to the motion
described in the file. It should be noted that none of the keywords are case sensitive including the

Figure 3.5: Example HTR File

section delimiters. Each line in the header section contains parameter information, where the first word

of the line indicates the parameter name while the second word indicates the parameter’s value. The

possible parameter names are outlined bel ow:

Fi | eType —this describes the type of thisfile and should be either htr or gtr (Global

Trandlation-Rotation which was a predecessor of HTR which had no hierarchy information);
Dat aType —this describes the order in which the different types of transforms should be
combined, where T is the trand ation matrix, R is the rotation matrix and Sis the scal e factor

matrix. Thisvalueisnormaly HTRS, where the H stands for Hierarchical meaning that the data

should be treated in a hierarchical manner as opposed to an individual bone’'s transform being

treated asa global one;
Fi | eVer si on —thisisthefile version of the HTR format;

Motion Capture File Formats Expla ned 12

NunBSegment s —thisindicates the number of bonesin the skeleton;

NunfFr ames —thisindicates the number of frames in the animation;

Dat aFr aneRat e —thisindicates the frame rate of the animation in frames per second;

Eul er Rot at i onOr der —this describes the order in which the x, y, z rotation values should be
combined;

Cal i brati onUni t s —this defines the metric used to measure the translation units, i.e. inches,
millimetres, centimetres, metres, etc;

Rot at i onUni t s —thisdefines the metric used to measure the rotation angles, which are
normally “Degrees’, however can be “Radians’;

G obal Axi sof Gravi ty —thisspecifies the globa “up axis’ of the data, which isnormally
the positive y-axis;

BoneLengt hAxi s —thisindicates the direction/axis that all the bone lengths are aligned to,
which isnormally the y-axis (and if omitted from the specification isto be assumed to be the y-
axis);

Scal eFact or —thisisagloba scale factor that isto be applied to the compl ete motion.

The next section inthe HTR fileis delimited by the keyword [SEGVENTNAMVES&H ERARCHY] and it
is this section that defines the hierarchical structure of the skeleton, asillustrated in figure 3.6 for the
datain figure 3.5. This section consists of lines of bone pairs that represent child-parent rel ationships,
where the first item on the lineis the child and its parent is the second item on the line. The specia
keyword GLOBAL is used in the parent column to indicate that the corresponding child item is the root
of a hierarchical skeletal structure.

| Head |

A/I Ri ght Shoul der | | Neck | | Lef t Shoul der ’\A
‘ Ri ght Col | ar | W | Left Col | ar |
¢ | Chest | ¢

‘ Ri ght El bow | | Left El bow |

! [e g

‘ Ri ght Wi st | / | Lef t Wi st |

Ri ghtH p		LeftHip
Ri ght Knee		Lef t Knee
Ri ght Ankl e		Lef t Ankl e

Figure 3.6: Hierarchical structure of humanoid character based on Segment Name & Hierarchy section
of HTR filein figure 3.5

After the Segment Names and Hierarchy section of the file, the Base Pose section isindicated by the
tag [BASEPOSI TI ON] . Each linein this section indicates how each boneis initialy orientated within
it'sown local coordinate system. Thefirst item in each line indicates the segment name which is
followed by 3 floats that represent the trandationsin x, y and z respectivey, which again is followed
by another 3 floats for the x, y and z rotationa components respectively. Thelineis finished with an
additiona float that indicates the bone length of the segment. In this section, there should be aline for
each of the bones in the skeleton.

The final fragment of this file contains all of the motion data needed to drive the animation. The frame
datafor each of the bones isin its own subsection of this part of thefile, which isdelimited by the bone

Motion Capture File Formats Expla ned 13

name encapsulated in square brackets, for example [HI PS] . Each line within abone's frame data
starts with a positive deci mal integer frame number for which the data applies followed by 3 fl oats for
trandaion aong the x, y and z axis respectively, 3 floats for the Euler rotation angles about the x, y and
z axis respectively and afinal float for a bone scale factor.

At the end of the motion section there is an end of filetag, [ENDOFFI LE] , which indicates that there
is no more data to be processed.

Processing the Data

Aswith al hierarchical structures, in order to display the skeleton the local transforms for each of the
bones need to be determined. The computation of the loca transform is slightly different to the
algorithm outlined for BVH files as HTR files include an explicit base pose that needs to be considered.
Each bone'slocal transform can be viewed as being constructed from 4 separate matrices—asingle
trand aion matrix, 2 rotation matrices and a scaling matrix. The trangation matrix is constructed by
combining the trand ation data for the bone’ s base position and frame data as illustrated in Equation
3.4, where txo, ty, and tz, are the trandations of the base position and tx;, ty; and tz; are the frame

trand ations.

€l 0 0 tx, +txu
0 1 0 ty,+ty "
Ti=¢ Yo" Mg (34)
€ 0 1 tz,+tzu
oo 1 ¢

The first of the rotation matrices, Ry, isa composite rotation matrix that is generated from the base
position data of the bone and since it does not change, could be stored to save recal culation on every
frame. The second rotation matrix, R;, isagain a composite rotation matrix that equals the rotational
information of framei in the animation. The order of Euler angle composition for the rotation matrices
are dictated by the keyword EULERROTATI ONORDER in the header section of the HTR file and
should be calculated as outlined in section 2.2. Unlike the BV H format, since the Euler angle
compoasition order is only defined once, it can never change therefore less tracking of the channd
ordering is needed.

HTR files provide scaling information for each bone on every frame, which isused to account for the
variations in child segment trandations. Equation 3.5 outlines the creation of the scaling matrix, where
Si isthe scdefactor for agiven frame.

&S 0 0 Of
8 G
20 s 0 oY
s=¢ ' U (35)
€0 0 S o
0 0 0 1§

The separate transformations are combined as illugrated in Equation 3.6 to give a bone' s complete
local transform, where following this document’s convention, the vertex datais post-multiplied. It
should be noted that the discussion in the following section about the HTR' slocal transform stack, it
will be assumed that the DataType parameter is defined as HTRS.

M = TiRoRiSi (36)

Once thelocal transforms have been calculated, the globa positions of the bones are calculated in
exactly the same way as BVH skeletons, asillustrated in Equation 3.3.

Motion Capture File Formats Expla ned 14

4 Implementation Consider ations

This section looks at useful aspects when considering data and program structure for a motion capture
decoder and player. The fragment of C++ code illustrated in figure 4.1outlines the data structures that
could be used to support the storing in memory of both BVH and HTR ani mations, however the BVH
format will require slightly more pre-processing in order to obtain the required structure.

The first structure, MOCAPSEGVENT, represents a compl ete mation capture skel eton, which has a
pointer to a MOCAPHEADER whose structure holds global information about the animation such as
frame rate and number of frames. The MOCAPSEGVENT further consists of an array of NODE objects,
named nodel i st , where each NODE contains the data of a specific bonein the animation. The other
pointer to a NODE object in the MOCAPSEGVENT structure points to a single NODE that isther oot of
the animation. All the bones in the skeleton can be reached by recursively following child links
starting from the root, however the linear array is used for quick node access where the additional
hierarchical information obtained from the recursion is not required.

struct MOCAPSEGMVENT

{
char *nane; /1 Name of notion capture file
NODE* r oot ; // Pointer to the root node of the ani mation
MOCAPHEADER* header; // Pointer to a structure that containers gl obal paranmeters
NODE** nodel i st ; /'l Array of pointers to skel etal nodes
s
struct MOCAPHEADER
{
/'l Assunmes that all angles are in degrees if not then they need to be converted
i nt noof segnents; /1 Nunber of body segnents
| ong noof f ranes; /1 Nunber of frames
int datarate; /1 Nunber of frames per second
int euler[3][3]; /'l Specifies how the euler angle is defined
float callib; /1 Scale factor for converting current translation units into neters
bool degrees; /1 Are the rotational neasurements in degrees
fl oat scal efactor; // d obal Scal e factor
I ong currentfraneg; /] Stores the current frame to render
float floor; /1 Specifies position of the floor along the y-axis
s
struct NODE /1 Start of structure representing a single bone in a skeleton
{

char *nane;

float |ength; /1 Length of segnent along the Y-Axis

float offset[3]; /'l Transitional offset with respect to the end of the parent I|ink
float euler[3]; // Rotation of base position

float colour[3]; /1 Col our used when displaying wire frame skel eton
int noof children; /1 Nunber of child nodes

NODE **chi | dr en; /1l Array of pointers to child nodes

NODE * parent ; /1 Back pointer to parent node

float **froset; /Il Array of offsets for each franme

float **freuler; /1l Array of angles for each frane

fl oat *scal e; /Il Array of scal efactors for each frane

BYTE DOFs; /1 Used to determ ne what DOFs the segnent has

OBJECTI NFO* object; // Used to point to a 3D object that is the linb
CONSTRAI NT* constraints; // List of constraints - ordered in tine

Figure 4.1: Data structures for storing motion capture animations in memory

The MOCAPHEADER contains a 3x3 array, eul er [3] [3] , that is used to determine the order of
rotation concatenation, which can be directly applied in OpenGL rotation method calls asillugtrated in
figure 4.2. While parsing the mocap file, the individua rotation angles of the bones are placed into the
f reul er array of the corresponding NODE structure in the order indicated by thefile, i.e. with the
order ZYX, freuler[frane][0]=2Z, freuler[frane][1]=Y and
freuler[frame][2] =X

Motion Capture File Formats Expla ned 15

gl Rot at ef (node->freul er[currentfrane] [0], curnmocapseg->header->eul er[0][0], curnobcapseg->
header->eul er[0][1], curnpcapseg->header->euler[0][2]);

gl Rot at ef (node->freul er[currentfrane][1], curnocapseg->header->eul er[1][0], curnbcapseg->
header->eul er[1][1], curnpcapseg->header->euler[1][2]);

gl Rot at ef (node->freul er[currentfrane][2], curnmocapseg->header->eul er[2][0], curnobcapseg->
header->eul er[2][1], curnpcapseg- >header->euler[2][2]);

Figure 4.2: OpenGL glRotatef function calls using dynamic rotation ordering viatheeul er [3] [3]
matrix of the MOCAPHEADER structure, header .

In the case of HTR files, using aglobal parameter to specify the Euler angle ordering is alegitimate
step to take, however in the case of BV H files, this ordering can change from bone to bone, as defined
by the CHANNEL keyword. Therefore, while parsing a BVH file, the first rotation order found in the
file (which isnormally the rotation for the root bone) is set as the global rotation order and if any other
bones have a different order, they are recalculated to fit in with the desired order during the parsing
phase.

As previously mentioned, BVH files heed additional pre-processing in order to obtain the required
format. Therefore, as well as any on-the-fly rotation order changes that need doing per frame, the
initial base pose also needs to be recalculated into asingle float for bone length and Euler angles.
Recall from the description of the BVH file format that the base poseis structured using implicit offset
information, however this vector needs to be manipul ated in order to achieve 3 rotation angles (of the
desired order) and asingle length value. During the decomposition of the offset into 3 Euler angles and
abone length, it should be noted that you need to take away any parenta rotational effects from the
original offset before the decomposition is undertaken. Thisis because the BVH offsets are defined
with respect to the world coordinate axis, however if the offsets are to be converted into hierarchica
Euler angles, each limb needs to be defined with respect to its parent coordinate system and not the
global system.

Obtai ning the bone length along one axis and using arotation matrix to fix abone’ s base position is a
desirable effect on many levels as it allows easy mapping and aigning to 3D objects and more
importantly, under any rotation, the bone's end point and angle constraints are more intuitive to
envisage.

Figure 4.3 demonstrates part of the data structure for the HTR file in figure 3.5 after it has been fully
parsed into memory using the structuresin figure 4.1.

Astheorigina BVH and HTR formats stand, it is possible to use the same display algorithm for both
formats which can be seen by examining the matrix stack. The complete locd transform for the BVH
file, as givenin Equation 3.2, isMv = T,R,v, whilethe HTR stack, as defined in Equation 3.6, isMv =
TiR)RiSv. Since the BVH format have no rotational values for the base position, R, equates to the
identity matrix and similarly, with the absence of scaling valuesinthe BVH file, S also evaluates to the
identity matrix. This means that although thereis a high degree of redundancy when displaying BVH
files, the same al gorithm can be used. However, the process by which the BVH’s base position is
converted from simple vectors to bone lengths and Euler angles now introduces a subtle, yet major
inconsistency between the HTR and BVH local and global matrix transform stacks.

Toillustrate this stack problem, consider the standard local transform for aBVH file (defined in
Equation 3.2):

Mv =TRyv

The reca culation of the offset vector, v, into arotation matrix and bone length leads to Equation 4.1,
where v’ represents the bone length along a single axis and Ryo is the composite rotation matrix to
convert the bone length, v'*, back to the original vector, v. Rjo is acomposite matrix for bonej, sinceit
must multiply the current bone' s base rotation with its parent’s and so on to the root since these were
factored out during the base position calculation.

v=Rjov"’ (4.2)

Motion Capture File Formats Expla ned 16

Combining Equations 3.2 and 4.1 leads to a new local composite matrix for the BVH file asillustrated
in equation 4.2.

Mv = TIRRjov’ (4.2

At first glance, when comparing this matrix stack with the HTR stack, Mv = TIRoRiSv (defined in
Equation 3.6), the only problem with isthat the rotation matrices for the base and rotation components
arein thewrong order. Thisis aproblem because matrix multiplication is not commutative, however
the issue can be easily overcome by simply combining these 2 matricesin the desired order during the
parsing of both the HTR and BVH files. Thiswould then lead to the genera equation for calculating
the local transform for either file format asillustrated in equation 4.3, where R; is now the new frame
rotation matrix that is composed of the origina frame rotation matrix and base matrix.

Mv = TRiSv (43)
The combination of the two rotation matrices at this stage further serves the purpose of reducing the

matrix computational load during the calculation of the global positions for each bone because thereis
one less 4x4 matrix multiplication.

MOCAPSEGVENT MOCAPHEADER

nanme: Catch. htr header noof segnents: 18
noof frames: 2
datarate: 60

r oot euler: {{0,0,1},
{0,1,0},{1,0,0}}
callib: 1
degrees: true
scal efactor: 1
currentframe: 0

nodel i st
NODE NODE NODE NODE
nanme: Head name: Neck nanme: H ps nanme: Ri ghtAnkl e
length: 80.0 length: 142.0 length: 94.9 length: 256.3
of fset: {0.0, of fset: {0.0, of fset: {377.9, of fset: {0.0,
142.0, 0.0} 380.0, 0.0} 1077.5, 704.5} 521.8, 0.0}
euler: {6.2, euler: {1.8, euler: {-179.0, euler: {0.0, 0.0,
-8.2, -37.7} -5.2, 32.9} 36.5, -178.0} 99. 2}
noof children: 0 noof children: 1 noof children: 3 noof children: 0
T par ent
—p float —p fl oat —» fl oat —p | oat
froset| froset| froset| froset|
fl oat fl oat fl oat fl oat
fl oat fl oat fl oat fl oat
freuler| freuler| ... |freuter| .. |ffreuterf
fl oat > fl oat > fl oat > fl oat
fl oat fl oat fl oat fl oat
scale| scale| scale| scale|
fl oat > fl oat > fl oat fl oat

Figure 4.3: Internal memory structure of asample HTR file after it has been parsed into memory

Motion Capture File Formats Expla ned 17

However, the problem is that this apparently correct mathematical equation for the local transform
(Equation 4.3) causes discrepancies when constructing the global transform matrix. To explain this
problem, a 3-boned hierarchical structure will be used asillustrated in figure 4.4 and the following
notation utilised:

My, My, M| arethe global transformation matrices for the hips, upper leg and lower leg
respectively

Vo and V, are vectors representing the original bone vector and the cal culated bone length
(inasingle axis) respectively

R, arethelocal rotation matrices for the bones

O, arethe bon€' s base rotation matrix

Hips (Root)

@ Lowerleg

Figure 4.4: 3-Boned Hierarchical Structure

Recall from Equation 2.4 that the global transformation matrix is defined as:
n 2 i
M giobar = O M
i=0

Using this equation and expanding the local transforms for each bone, the original (before the bone
length and Euler separation) and required global transformation matrices (where each frame rotation
matrix is multiplied by the corresponding base position) for the hips are defined in Equation 4.4 (a &
b).

It should be noted at this stage that ideally the required matrix stack would combine the rotation and
base position matrices to give asingle rotation matrix, however these have been kept separate to further
illugtrate a process by which BV H files can be converted to HTR. (The process of HTR to BVH is
more i ntuitive using these ideas therefore will not beillustrated). The rotation matrices for the frame
and base pose will later be merged to give a more efficient solution.

MHVOH = RHVOH (Orlgl nal) (448)

MHVOH = RHOHVNH (Rmu”w) (44b)
where:

Von = O4V i

Therefore, the original stack can be rewritten as:

MuVor = R4OKVH

Motion Capture File Formats Expla ned 18

Thisis the same as the required stack so at this point all looks good. Now we shall consider the global
transformations for the upper leg, which is defined as:

MuVour = RuRuLVour (Origi naI)
MuLVour = RyOuRuLOuLVnuL (Required)

where:
Vour = OnOu VoL

Substituting thisinto the equation for the origind stack gives:
MULVOUL = I:QHRULOHOULVNUL

However, egquating this equation with the required global stack for the upper leg soon reveasa
consistency problem asillustrated:

MuLVour = RyRuLOHOuLV nuL = RHOKRuL Oy V nuL
=> RuOn=0OnRuL

Since matrix multiplication is not commutative, it isnot possible that Ry Oy = OyRy, therefore this
illugtrates the need for the recal culation of each bone' s frame rotation matrix. Using N, to represent the
frame rotation matrix for the required matrix stack, the following rel ationship can be established
between this and the origina stack for the upper leg:

MuLVour = RuRuLOHOuLV nuL = NHOrNuL Oy V nue
=> Ry.On=0uNu. (From the definition of global hipstransform, Ry = Ny)
=> O'4RuOn=Nu

Therefore in order to structure the datainto the required format, each rotation matrix for each frame for
the upper leg needs to be cal cul ated according to Equation 4.5.

Ny = O-lHRULOH (4.5

Next we will consider the same problem with the next bone down in the hierarchy, the lower leg, which
has matrix stack equations:

MuVour = RiRulRLLV oL (Origi naI)
MuLVour = NHOHNy Oy N O Vel (Required)

where:
Vour = OnOu OV L

=> I:QHRULRLLOHOULOLLVNLL = NHOHNULOULNLLOLLVNLL (46)
From previous hierarchical definitions:

RH = NH
Ry = OHNULO-lH

Substituting these into equation 4.6 gives:

N|-:|LOHNULo_lHRLLOHOULOLLVNLL = NHOHNULOULNLLOLLVNLL
=> o-]_HRLL]_OHOUL = oULNLL
=> O ULO- HRLLOHOUL = NLL (47)

Again, as you would expected, the original and required matrix stacks do not equal each other therefore
in order to use the required stack format, all the rotation matrices for each frame for the lower leg need
to be recal cul ated as outlined in Equation 4.7.

Motion Capture File Formats Expla ned

19

At this point a pattern emerges from for the recal culation step, which does in fact hold for any bonein
the hierarchical structure, and is generalised in equation 4.8, where n isthe current bone whose parent
isn-1 and n=0 is the bone at the root of the hierarchy.

N, = Eecg) Oi_langi;:oi

i=n-1

(4.8)

Q-0

Up to this point, the frame rotation and base position matrices have been kept separate, however as
previously mentioned, it would be more advantageous to combine these two into a single frame rotation
matrix. This process simply requires the additiona post-multiplication of O, to Equation 4.8, resulting

in Equation 4.9.

[5S

N =§00 R D0 ¢

(4.9)

Table 4.1 summarises the data manipulation process for which BVH files are subject to during the
parsing of the file. In contrast, the only pre-processing that HTR files undergo during the file parsing
phase is to combine each bone's frame rotation matrix and base position rotation matrix into asingle

set of Euler angles per frame.

BVH Manipulation Process

Reasons For Performing T his Process

1) Convert the vector length of aboneinto a
single bone length and 3 Euler angles, which
needs to be with respect to the bone' s parent axis
orientation.

a) Having the bone length along asingle axis
assists in the mapping of 3D objectsto the bone
itself.

b) The use of a single bone length means that the
end point of thelimb is moreintuitive to image
and further allows simplistic angle constraints to
be quickly realised —i.e. there are no additional
rotational factorsintroduced unlike a vector
representation of alimb.

2) Recal cul ate the frame rotation matrix based on
the new representation of bone lengths and Euler
angles.

a) Having converted the original vector
representation of the bone length and orientation
from the global coordinate system to the parent’s
local coordinate system, the global matrix stack
no longer follows the desired structure. Therefore
each frame rotation matrix for each bone needs to
be recalculated, the equation for which is
presented in Equation 4.9

b) The reformatting makes it possible to use the
same hierarchical drawing algorithm to display
both BVH and HTR motion formats (outlined
later).

¢) Using the reformatted representation also
means that further data manipulation is made
simpler by virtue of the fact that the data
structures are standardi sed, regardless of the
original file format.

Table4.1: Summary of BVH conversion process

Appendices B & C contain complete C++ source code that handles the parsing of both the BVH and
HTR motion capture formats respectively. The source code illustrates al of the required steps needed

Motion Capture File Formats Expla ned 20

to convert the file from the standard format outlined in section 3 to the data structures indicated in
figure 4.1.

With the dataloaded into memory in adefined format and structure, displaying the maotion to screen is
atrivial task. Figure 4.5illustrates afragment of code for arecursive algorithm using OpenGL libraries
that draws a gtick skeletal structure for agiven frame, cur r ent f r ame, to the screen.

The bone length in the above i mplementation is always aligned aong the y-axis and since any per-
frame scaling of the HTR file only appliesto asingle value (in the case of a stick character), instead of
pushing a compl ete scaling matrix on to the global stack, asingle multiplication isperformed. This
multiplication simply reduces or enlarges the bone length, which in turn is used to draw the end point
of the particular bone, thereby reducing the computational 1oad in displaying the motion.

voi d Eval uat eChi | dr en(NODE* node)

gl PushMat ri x();
gl Transl at ef (node- >of f set[0] + node->froset[currentfrane][0], node->offset[1] +
node- >froset[currentfrane][1], node->of fset[2] + node->froset[currentfrane][2]);

gl Rot at ef (node->freul er[currentfrane][0], curnmocapseg->header->eul er[0][0],
cur nocapseg- >header - >eul er[0] [1], curnpcapseg- >header->eul er[0][2]);

gl Rot at ef (node->freul er[currentfrane][1], curnocapseg->header->eul er[1][0],
cur nocapseg- >header - >eul er[1] [1], curnpcapseg- >header->eul er[1][2]);

gl Rot at ef (node->freul er[currentfrane][2], curnmocapseg->header->eul er[2][0],
cur nocapseg- >header - >eul er[2] [1], curnpcapseg- >header->euler[2][2]);

gl Begi n(GL_LI NES) ;
gl Col or 3f (node- >col our [0], node->col our[1], node->colour[2]);
gl Vertex3f (0.0f, 0.0f, 0.0f);
gl Vert ex3f (0. 0f, node- >l engt h*node- >scal e[currentfrane], 0.0f);
gl End();

if (node->children)
for (int i=0; i<node->noofchildren; i++)
Eval uat eChi | dr en(node->children[i]);
gl PopMatri x();
}

Figure 4.5: Recursive algorithm for drawing a stick figure using OpenGL libraries

5 Summary

A number of motion capture file formats that are in use today have been highlighted and 2 of the more
popular ones have been discussed in detail. However, since each format contains enough datato
display an animation is any one format better than another? The answer to this question depends on the
intended application of the motion data, which can vary from analysis, editing or smply playback.
When concerned only with displaying an animation, the desirabl e aspects of the data are compactness
and absol ute positions for limbs, which eliminates the need for a hierarchical rendering algorithm. This
means that it isboth quick to load and display frames to the screen. From the formats discussed in
Table 3.1, the BRD format most closely matches these properties, however further optimisation can be
achieved by converting the file into a binary state as opposed to the existing ASCII format.

The desirabl e properties for motion editing are aimost completel y opposite to those of displaying
animations, where in many cases, moreis better. The most useful property to have for character editing
isthat of ahierarchical structure so that the bones can be considered locally and regardless of the
changes made to parent limbs, the child bones always maintain a specified transformational
relationship. All of the modern motion capture formats are based on hierarchica structures, which
include the ASF/AMC, BVH and HTR formats. Of these 3 file formats, the hierarchy of BVH filesis
arguably the more compact and concise, however this means that the datais not broken down into as
much detail asthe ASF/AMC or HTR formats. As previoudly discussed, the problem with the BVH
file hierarchy is that it assumes the bone length along a vector as opposed to a scd ar, however the
ASF/AMC and HTR formats both define rotational values and a scalar to obtain the BVH' s equival ent
bone vector.

Motion Capture File Formats Expla ned 21

After the property of hierarchical data, other properties that could prove useful during motion editing
include detail s about the environment in which the data was captured. Examples of environmenta daa
include the axis of gravity or even more basi ¢ properties such as the metric units used. The BVH
format fails to capture any of these details, however the HTR format provides a better level of success,
while ASC/AMC provides even more datathan HTR files by including detail s about channel limits.

With any motion in ahierarchical format, the rendering algorithm needs to reflect thisthereforea
recursive procedure needs to be implemented to render the animation to the screen. This style of
rendering is more costly than simply pushing vertex coordinates into the graphics pipeline, so in many
cases once any motion editing has been achieved and no further editing will take place the files can be
converted to an optimal version that isused for displaying only.

As an additiona property to consider for motion editing formats, it would gill be advantageous to have
the datain acompact format. However at present the formats tend to be in an ASCII based format
rather than binary which takes on average 3 times the space of binary data, but al least makes them
human readable. A binary format would further assist in the parsing of the file since the large numbers
of floats would be represented as their binary representations as opposed to text based which need to be
converted into float representations before they are of any use. It should however be noted at this point
that byte ordering might be a platform-independence problem with binary formats since Intel-based
machines store data using “ little-Endian”®, which isin the reverse order of Macintosh machines that use
“big-Endian”*°.

With the ASC/AMC file format being such a good al round format for maotion editing, afuture revision
of this document will contain agreater level of detail regarding its format and techniquesto parse the
file, similar to that of the presently described BVH and HTR files. Updated version of this document
will be posted at http://www.dcs.shef.ac.uk/~mikem under Links ® Additional Resources.

9 Little-Endian stores the most significant byte on the right of aword
19 Bjg-Endian stores the most significant byte on the left of aword

http://www.dcs.shef.ac.uk/~mikem

Motion Capture File Formats Expla ned 22

Appendix A: References & Bibliography

A.1 References

Max Discreet’s 3D Studio Max & Character Studio, http://www?2.discreet.com
Maya Alias Wavefront’s Maya 3, http://www.aliaswavefront.com
Poser Curious Labs' s Poser 4, http://www.curious abs.com/products/poser4

A.2 Bibliography

This section only contains references to books and papers that specifically discuss the application of
character animation and motion capture data. A detailed list of texts on motion capture modification
techniques can be found at http://www.dcs.shef.ac.uk/~mikem.

A.2.1 Books

Jung, M., Fischer, R., Gleicher, M., Thingvold, J., Bevan, M., “Motion Capture and Editing”, A K
Peters, November 2000

Maestri, G., “Digital Character Animation”, New Riders Publishing, 1996

Menache, A., “Understanding Motion Capture for Computer Animation and Video Games”, Morgan
Kaufmann, August 1999

The Menache book, “ Understanding Motion Capture for Computer Animation and Video Games’,
provides a good overview of the topic of motion capture with detailed examples of its applicationin
movies. It also introduces some of the basic mathematical techniques that could be used to
manipulate the motion data and a review of some of the popul ar fileformats. While this book does
provide a good basi s for understanding motion capture, it contains very little information for more
experienced people who already have a working knowledge of motion capture, except possiblyin
defining some motion capture formats. In all, the book is a good starting point for newcomers to
the subject, however it lacks finer detailsfor the experienced person.

S. Reese, “3D Studio Max Clay Sculpture, Digitizing, & Mation Capture”, Coriolis Group, August
1997

A.2.2 Papers

Bodenheimer, B., Rose, C., Rosenthal, S., Pella, J., “ The process of motion capture: Dealing with the
data’, Computer Animation and Simulation '97, p. 3-18, 1997

The paper by Bodenheimer et al, “ Processing Motion Capture Data to Achieve Positional
Accuracy” , provides an in-depth discussion on how the raw motion data i s captured which in turn
isbuilt into a skeletal structure. The paper al so discusses the problem of removing any noise from
the signalsin order to achieve smooth motion curves for the channels of the skeleton. This paper
introduces more advanced topics in the data gathering process of motion capture than Menache,
however does expect a certain level of understanding. The mathematics presented in this paper is
also more advanced, discussing the use of inverse kinematics to optimise the resulting motion. To
sum up, this paper gives an advanced look at the processes involved in the motion capture
technique, however it is only one avenue of a broad ranging topic.

Choai, K., Park, S., Ko, H., “Processing Motion Capture Data to Achieve Positional Accuracy”,
Graphical Models and Image Processing 61: 260-273, 1999

Magnenat-Tha mann, N., Thalmann, D., “Modelling and Motion Capture Techniques for Virtual
Environments: International Workshop”, Captech'98, Geneva, Switzerland, November 26-27, 1998

Yu, Q., Terzopoulos, D., “Synthetic Motion Capture for Interactive Virtua Worlds’, Computer
Animation, p. 2-10, June 8-10, 1998

http://www2.discreet.com
http://www.aliaswavefront.com
http://www.curiouslabs.com/products/poser4
http://www.dcs.shef.ac.uk/~mikem

Motion Capture File Formats Expla ned 23

Appendix B: C++ Source Code For BVH FileParsing

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <math. h>

#i ncl ude " BVHFor mat . h"

bool BVHFormat:: | nportData(const char *fil enane)

{
int read, i, j, where;
int pos[8]; /1 Used to determine the position of the next char to write
char line[8][40]; /1 Used to store the attribute and the correspondi ng val ue
char buffer[4097];
int section = 0; /1 Indicates which section is currently being processed
NODE *cur node=0; /1 Used to indicate the current node that is being processed

int index, channels = 0;
bool endsite = fal se;

header - >scal efactor = 1.0f;
header - >noof segnment 0;
header - >noof f r anes

S =
= 0;
header - >datarate = 0;

xpos = 1;
ypos = 2;
zpos = 0;

header - >eul er[0] [1]
header - >eul er[0] [2]

header->eul er[1][2]
header - >eul er[1][0]

header->euler[0][0] = O;
1

header->euler[1][1] = O;
1

header->euler[2][0] = O;

header - >eul er[2] [2]
[1 1

header - >eul er[2] [1]

header->callib = 0.03f;
header - >degrees = true;
header - >scal efactor = 1.0f;

FILE *file = fopen(filename, "rb");
if (file)
{

/'l Process the "Hierarchy" section of the file
read = fread(buffer, 1,4096,file);

buffer[read] = '\0";

i = strstrEx(buffer, "H ERARCHY");
i+=strstrEx(buffer + i, char(10));

while (buffer[++i] < 32);

where = pos[0] = pos[1l] = pos[2] = pos[3] = pos[4] = pos[5] = pos[6] = pos[7] = O;
/'l Process each line in the header
while (read)

whi l e (i<read)

if ((buffer[i] == char(10) && pos[0]) || (section==2 && where==3))
{
/'l Process line
line[7][pos[7]] = line[6][pos[6]] = line[5][pos[5]] = line[4][pos[4]] =
line[3][pos[3]] =1line[2][pos[2]] = line[1][pos[1]] = line[0][pos[0]] = "\0";

if (!section)

/1 Process Hierarchy
if (strconpEx(line[0], "ROOT"))

if (root)
{
strcpy(error, "BVH file contains nore than one skeleton which is currently
unsupported");
fclose(file);
return false;
}

el se

{
Enl ar geNodelLi st ();

Motion Capture File Formats Expla ned 24

root = nodeli st[header->noof segnents++] = (NODE*) nual | oc(si zeof (NODE));
root->name = (char*) malloc(strlen(line[1l]) + 1);
strcpy(root->nane, line[l]);

root->DOFs = O;

Set upChi I dren(root, 0);

Set upCol our (root);

Set upEul er (root);

root - >parent = 0;

root->l ength = 0. 0f;

r oot - >obj ect =0;

r oot - >noof const r ai nt s=0;

r oot - >const r ai nt s=0;

curnode = root;

}

}
else if (strconpEx(line[0], "JONT"))
{

I ncreaseChi | dren(cur node) ;

Enl ar geNodelLi st () ;

cur node- >chi | dren[cur node- >noof chi | dren-1] = nodel i st[header->noof segnent s++] =
(NODE*) nmal | oc(si zeof (NCDE)) ;

cur node- >chi | dren[cur node- >noof chi | dren-1] - >parent =

curnode = curnode->chi | dren[cur node- >noof chil dren-1];

curnode->nanme = (char*) malloc(strlen(line[1]) + 1);

strcpy(curnode->nane, line[1]);

cur node- >DOFs = 0;

Set upChi | dren(cur node, 0) ;

Set upCol our (cur node) ;

Set upEul er (curnode);

cur node- >l ength = 0.0f;

cur node- >obj ect =0;

cur node- >noof constrai nt s=0;

cur node- >const r ai nt s=0;

cur node;

else if (strconpEx(line[0], "OFFSET"))

float len, x, vy, z, rx, ry, rz, fact;
float xyz[3];

x = (float) atof(line[1]) * header->callib;
y = (float) atof(line[2]) * header->callib;
z = (float) atof(line[3]) * header->callib;

rx =ry =rz = 0.0f;

len=(float)sqrt(sqr(x)+sqr(y)+sqr(z));
if (len==0)
| en=1;
x/ =l en;
y/ =l en;
z/ =l en;

NODE *t node = curnode- >parent;
if (tnode && !endsite)

t node=t node- >par ent ;
if (tnode)

Rot at eSegnent (x, y, z, tnode);

i f (fabs(x)<0.00001)
{

if (y<0)
rz=Pl;
}
el se
rz=(float) atan(y/x) + (x>=0 ? -PI/2 : PI/2);

if (fabs(rz) > 0.00001)// && fabs(rz) < 1.56)
rx = (float)acos(y/cos(rz)) * (z<0? -1 : 1);

xyz[0] = (float) -sin(rz);
xyz[1] = (float) (cos(rx)*cos(rz));
xyz[2] = (float) (sin(rx)*cos(rz));

fact = xyz[0]/xyz[2];
if (fabs(xyz[2]-xyz[0])>0.18)// && fabs(rz)<1.56)
ry = (float) asin((x-z*fact) / (xyz[2]+xyz[O0]*fact));

Motion Capture File Formats Expla ned 25

if (lendsite)

float tx, ty, tz;
if (curnode!=root && curnode->parent->l engt h==0. 0f)
{

cur node- >par ent - >eul er [xpos] =r x* 180/ PI ;

cur node- >par ent - >eul er [ypos] =ry*180/ PI ;

cur node- >par ent - >eul er [zpos] =rz*180/ PI ;

cur node- >parent->length = len;

float cx=(float) cos(rx), cy=(float) cos(ry), cz=(float) cos(rz);
float sx=(float) sin(rx), sy=(float) sin(ry), sz=(float) sin(rz);

/1 Calc Y-1X-1Z-1 to nake sure any errors in the rotation are taken care of
in the offset fromthe parent

/1 1deal results should be tx=tz=0 and ty=1

float a, b, ¢, d, e, f, g, h, i;

a=cy*cz-sx*sy*sz;

b=cy*sz+sx*sy*cz;

C=-CX*sy;

d=-cx*sz;

e=cx*cz;

f=sx;

g=sy*cz+sx*cy*sz;

h=sy*sz-sx*cy*cz;

i =cx*cy;

t x=a*x+b*y+c*z;

ty=d*x+e*y+f*z;

tz=g*x+h*y+i *z;

Set upOf f set (curnode, tx*len, ty*len, tz*len);

}
el se
Set upOf f set (curnode, x*len, y*len, z*len);
}
el se
{
cur node- >eul er [xpos] =r x*180/ PI ;
cur node- >eul er [ypos] =ry*180/ PI ;
cur node- >eul er [zpos] =rz*180/ PI ;
curnode->l ength = len;
}

}
else if (strconpEx(line[0], "CHANNELS') && !endsite)

channel s+=at oi (1 ine[1]);
int d=2;
while (line[d] & d < 8)

if ((line[d][0]&xdf)=="X")

if ((line[d][1]&0xdf)=="R)
cur node- >DOFs| =XROT;

else if ((line[d][1]&0xdf)=="P")
cur node- >DOFs| =XTRA;

}
else i f ((1ine[d][0]&xdf)=="Y")

if ((line[d][1]&0xdf)=="R)
cur node- >DOFs| =YROT;

else if ((line[d][1]&0xdf)=="P")
cur node- >DOFs| =YTRA;

}
else i f ((1ine[d][0]&xdf)=="2")

if ((line[d][1]&0xdf)=="R)
cur node- >DOFs| =ZROT;
else if ((line[d][1]&0xdf)=="P")
cur node- >DOFs| =ZTRA;
}

++d;

}

}

else if (strconpEx(line[0], "END') && strconpEx(line[l], "SITE"))
endsite = true;

else if (line[0][0]=="}")

Motion Capture File Formats Expla ned 26

{
if (endsite)
endsite = fal se;
el se
curnode = curnode->parent;

}

else if (strcompEx(line[0], "MOTION"))

{
r ot =0;
base = new fl oat **[header - >noof segnent s] ;
basei nv = new fl oat**[header - >noof segnent s] ;
basestd = new fl oat**[header->noof segnent s] ;
for (int i=0; i<header->noofsegnents; i++)

base[i]=0;
basei nv[i]
basestd[i]

0;
0;

}

++secti on;

}
else if (section==1)

/1 Process Motion
if (strconpEx(line[0], "FRAMES:"))

header - >noof frames = atoi (line[1]);
for (int i=0; i<header->noofsegnents; ++i)

Set upFranes(nodelist[i], header->noof franes);
header->currentframe = 0;

}
else if (strconpEx(line[0], "FRAME"') && strconpEx(line[1l], "TIME "))

)));

header->datarate = (int) (1 / (atof(]
) eader - >dat ar at e)

if ((int) (0.49 + (1 / atof(line[2]
++header - >dat ar at e;

line[2
)) > h

if (header->datarate && header->nooffranes)
{
++sect i on;
curnode = root;
index = 0;
endsite = fal se;
}
}

el se

/1 Process DOFs
if (header->currentframe < header->noof f ranes)

{
if (curnode->DOFs == 231)
if (lendsite)
{
cur node- >froset [header->currentfrane] [0] = (float) atof(line[0]) *
header ->cal | i b;
curnode- >froset [header->currentfrane][1] = (float) atof(line[1]) *
header ->cal | i b;
curnode- >froset [header->currentfrane][2] = (float) atof(line[2]) *
header ->cal | i b;
endsite = true;
}
el se
{
cur node- >f reul er[header->currentfrane] [xpos] = (float) atof (line[1]);
cur node- >f reul er[header->currentfranme][ypos] = (float) atof (line[2]);
cur node- >f reul er[header->currentfrane][zpos] = (float) atof (line[0]);
ReCal cRot at i ons(cur node) ;
cur node- >scal e[header->currentfrane] = 1.0f;
curnode = nodeli st[++i ndex] ;
endsite = fal se;
}
}
el se
{

cur node- >f roset [header - >currentfrane] [0] = curnode->froset[header->

Motion Capture File Formats Expla ned 27

currentframe][1] = curnode->froset[header->currentfrane][2] = 0.0f;
cur node- >freul er[header->currentfrane] [xpos] = (float) atof(line[1])
cur node- >freul er[header->currentfrane] [ypos] = (float) atof(line[2])
cur node- >freul er[header->currentfrane][zpos] = (float) atof(line[0]);
ReCal cRot at i ons(cur node) ;
cur node- >scal e[header->currentfranme] = 1.0f;

if (index+1l < header->noof segnents)
curnode = nodeli st[++i ndex] ;
el se

++header - >current frane;
curnode = nodelist[index=0];

}
}
}
el se
++section;

}

if (section!=2)

{

/! Move onto the next line and clear current line information
j=strstrEx(buffer + i, char(10));
if (j==-1)
if (buffer[4095]!=10)
read = fread(buffer, 1, 4096, file);
i = strstrEx(buffer, char(10));
}
el se
read = fread(buffer, 1, 4096, file);
i =0;
}
buffer[4096] = '\0';
}
el se
i+=j

}

where = pos[0] = pos[1l] = pos[2] = pos[3] = pos[4] = pos[5] = pos[6] = pos[7] = O;
}
if (buffer[i] > 44 && buffer[i] < 126)

I'i ne[wher e] [pos[where] ++] = buffer[i++];
else if ((buffer[i]==32 || buffer[i]==9) && pos[where] >0)
{

++wher e;

++i ;

}
el se
++i ;

}
read = fread(buffer, 1, 4096, file);
buf fer[4096] = '\0';
i =0;
}

float num den;
for (i=0; i<header->noofsegnments; i++)
{
/1 Deconpose base pose into ZYX
curnode=nodel i st[i];
curnode->eul er[0] =(fl oat) atan(basestd[i][1][0]/basestd[i][0][0]);
if (basestd[i][O0][0]<0)
if (basestd[i][1][0]<0)
curnode->eul er [0] -=3. 141592f;
el se
curnode->eul er[0] +=3. 141592f;

num=(float) (basestd[i][0][2]*sin(curnode->eul er[0])-basestd[i][1][2]*cos(curnode->
euler[0]));

den=(float) (-basestd[i][O0][1]*sin(curnode->euler[0])+basestd[i][1][1]*cos(curnode->
euler[0]));

curnode->eul er[2] =(fl oat) atan(nunm den)*57.2957795f;

Motion Capture File Formats Expla ned

28

if (den<0)
if (nunx0)
curnode->eul er[2] -=180;
el se
curnode->eul er[2] +=180;

nume=- basestd[i][2][0];
den=(float)
euler[0]));
curnode->eul er[1] =(fl oat)
if (den<0)
if (nunx0)
curnode->eul er[1] -=180;
el se
curnode->eul er[1] +=180;

cur node- >eul er [0] *=57. 2957795f ;
}

header->cal lib
header - >eul er [
header - >eul er [
header - >eul er [
header - >eul er [
header - >eul er [
header - >eul er [
fclose(file);
return true;

o

PSR IFRLR ™

ader - >eul er [0] [1] =0;

ader - >eul er[1] [2] =0;

ader - >eul er[2] [2] =0;

se

strcpy(error,
return false;

"Cannot QOpen File");

}

voi d BVHFor mat : : | ncr easeChi | dr en(NODE* node)
{
int i;
NODE **t enp;
if (node->children)
{
/1 Parent already has children
tenp = node->chil dren;
tenp = (NODE**) mal |l oc(si zeof (NODE*)
for (i=0; i<node->noofchildren; ++i)
tenp[i] = node->children[i];
free(node->children);
node- >chi | dren = (NODE**)

for (i=0; i<node->noofchildren; ++i)
node->children[i] = tenp[i];
free(tenp);
}
el se
Set upChi | dren(node, ++node->noof chil dren);
}
bool BVHFor mat: : Export Dat a(const char* fil enane)
{

strcpy(error,
return false;

}
voi d BVHFor nat : : Rot at eSegnent (fl oat &x, float &y,
{
float nx, ny, nz;
if (tnode->parent)
Rot at eSegnent (x, y, z, tnode->parent);
nx = (float) (cos(-tnode->eul er[zpos]*Pl/180)*x
ny = (float) (sin(-tnode->eul er[zpos]*Pl/180)*x
nz = z;
X = nx;
y = (float) (cos(-tnode->eul er[xpos]*Pl/180)*ny
z = (float) (sin(-tnode->eul er[xpos]*PI/180)*ny

mal | oc(si zeof (NODE*)

"Data Export for BVH format has not

(basestd[i][0][0] *cos(curnode->eul er[0])+basestd[i][1][0]*sin(curnode->

at an(nunm den) *57. 2957795f ;

* node->noof chil dren);

* ++node- >noof chi |l dren);

been inpl enented");

float &z, NODE* tnode)

- sin(-tnode->eul er[zpos] *PI/180)*y);
+ cos(-tnode->eul er[zpos] *PI/180)*y);

- sin(-tnode->eul er[xpos] *Pl/180)*nz);
+ cos(-tnode->eul er[xpos] *Pl/180)*nz);

Motion Capture File Formats Expla ned 29
nx = (fI oat) (cos(-tnode->eul er[ypos]*PI/180)*x + sin(-tnode->eul er[ypos]*Pl/180)*z);
ny =
nz = (fI oat) (-sin(-tnode->eul er[ypos]*PI/180)*x + cos(-tnode->eul er[ypos]*Pl/180)*z);
X = nx;

y = ny,
z = nz;

}

voi d BVHFor mat : : ReCal cRot ati ons(NODE* cur node)

{

static int activesegnent=0;
float ang[3];

fl oat num den;

int i;

if (lrot)

{
rot=new fl oat *[3];
arot=new float*[3];
trot=new float*[3];
for (i=0; i<3; i++)

{

=new float[3];

=new float[3];

=new float[3];

rot[i]
arot[i]
trot[i]
}
}

if (!base[activesegnent])

{
base[activesegnment]=new fl oat*[3];
basei nv[acti vesegnent] =new float*[3];
basestd[acti vesegnent] =new float*[3];
for (i=0; i<3; i++)

base[acti vesegnment][i]=new float[3];
basei nv[activesegment][i]=new float[3];
basestd[activesegment][i]=new float[3];

}

base[act i vesegnment
base[act i vesegment
base[act i vesegnment
base[act i vesegnment

=base[acti vesegnent
=base[acti vesegnent
=base[acti vesegnent

0
0
1
2 =base[acti vesegnent

11
11
11
11

Lere

basei nv[act i vesegnent
basei nv[act i vesegnent
basei nv[act i vesegnent
basei nv[act i vesegnent

ang[0] =cur node- >eul er [xpos]
ang[1] =cur node- >eul er [ypos]
ang[2] =cur node- >eul er [zpos]

Cal cRot ati onMat ri x(ang,

*0.0174532f ;
*0.0174532f ;
*0.0174532f ;

NODE *t node=cur node- >parent ;
whi l e (tnode)
{
ang[0] =t node- >eul er [xpos]
ang[1] =t node- >eul er [ypos]
ang[2] =t node- >eul er [zpos] *0. 0174532f ;
Cal cRotati onMatrix(ang, rot, trot, arot,
mat mul t (rot, base[activesegnment], trot,
swap=trot;
trot =base[acti vesegnment];
base[acti vesegnent] =swap;

*0.0174532f ;
*0.0174532f ;

3,

ang[0] =-ang[0] ;

ang[1] =-ang[1] ;

ang[2] =-ang[2] ;

Cal cRotati onMatrix(ang, rot, trot, arot,
mat nul t (basei nv[acti vesegnment], rot,
swap=trot;

trot =basei nv[activesegnent];

trot,

11
11
11
11

=basei nv[acti vesegnent
=basei nv[acti vesegnent
=basei nv[acti vesegnent
=basei nv[acti vesegnent

basestd[acti vesegnent],

Xpos,

Xpos,

ase[activesegnment][2][2]

coouoT
[eNeoNaNT)
- ==

©cocog

trot, arot, xpos, ypos, false);

ypos, false);

3);

ypos, true);

3, 3);

=1. Of ;

inv[activesegnent][2][2] =

Motion Capture File Formats Expla ned

30

}

basei nv[activesegment] =swap;
t node=t node- >par ent ;
}
}

ang[0] =cur node- >freul er [header - >current f rane] [xpos] *0. 0174532f ;
ang[1] =cur node- >fr eul er [header - >current f rane] [ypos] *0. 0174532f ;
ang[2] =cur node- >freul er [header - >current frane] [zpos] *0. 0174532f ;
Cal cRot ati onMatri x(ang, rot, trot, arot, Xpos, ypos)

mat nul t (basei nv[acti vesegnment], rot, trot, 3, 3);
matnul t (trot, base[activesegnent], rot, 3, 3);
mat mul t (rot, basestd[activesegnent], trot, 3, 3);

/1 Deconpose frame data into ZYX
cur node- >freul er[header->currentfrane] [0] =(float) atan(trot[1][0]/trot[0][0]);
if (trot[0][0]<0)
if (trot[1][0]<0)
cur node- >f reul er [header - >currentfrane] [0] -=3. 141592f;
el se
cur node- >f reul er [header - >currentfrane] [0] +=3. 141592f;

num=(float) (trot[0][2]*sin(curnode->freul er[header->currentfranme][0])-trot[1][2]*
cos(curnode->freul er[header->currentfrane][0]));
den=(float) (-trot[O0][1]*sin(curnode->freul er[header->currentframe][0])+
trot[1][1] *cos(curnode->freul er[header->currentframe][0]));
curnode- >freul er[header->currentfrane] [2] =(fl oat) atan(num den)*57.2957795f;
if (den<0)
if (nunx0)
cur node- >f reul er [header - >currentfrane] [2] - =180;
el se
cur node- >f reul er [header - >currentfrane] [2] +=180;

num=-trot[2][0];
den=(float) (trot[O0][0]*cos(curnode->freul er[header->currentfranme][0])+
trot[1] [0] *si n(curnode->freul er[header->currentframe][0]));
curnode- >freul er[header->currentfrane] [1] =(fl oat) atan(num den)*57.2957795f;
if (den<0)
if (nunx0)
cur node- >f reul er [header - >currentfrane] [1] - =180;
el se
cur node- >f reul er [header - >current frane] [1] +=180;

cur node- >f reul er[header - >currentfrane] [0] *=57. 2957795f ;

if (++activesegnment >=header - >noof segnment s)
act i vesegnent =0;

BVHFor mat : : ~BVHFor mat ()

{

for (int i=0; i<header->noofsegnments; i++)
for (int j=0; j<3; j++)

del ete[] base[i][j];
del ete[] baseinv[i][j];
del ete[] basestd[i][j];
}
del ete[] base[i];
del ete[] baseinv[i];
del ete[] basestd[i];
}
for (int j=0; j<3; j++)
{

delete[] rot[j];
delete[] arot[j];
delete[] trot[j];

del ete[] base;
del ete[] baseiny;
del ete[] basestd;
del ete[] rot;

del ete[] arot;
del ete[] trot;

Motion Capture File Formats Expla ned 31

Appendix C: C++ Source Code For HTR File Parsing

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude "HTRFor mat . h"

bool HTRFormat:: | nportData(const char *fil enane)

{

int read, i, j, where;

int pos[8]; /1 Used to determine the position of the next char to wite
char line[8][40]; /1l Used to store the attribute and the correspondi ng val ue
char buffer[4097];

int section = 0; /1 Indicates which section is currently being processed
NODE *t node; /1 Used when setting up the base positions and franes

fl oat **base, **rot, **arot, **trot;
float ang[3], num den;
bool eof =fal se;

base=new float*[3];
rot=new float*[3];
arot=new float*[3];
trot=new float*[3];
+)

for (i=0; i<3; i+

{
base[i]=new float[3];
rot[i]=new float[3];
arot[i]=new float[3];
trot[i]=new float[3];

}

header->callib = 1.0f;
header - >scal efactor = 1.0f;

FILE *file = fopen(filename, "rb");

if (file)

{
/1 Process the "Header" section of the file
read = fread(buffer, 1,4096,file);
buffer[read] = '\0";
i = strstrEx(buffer, "[HEADER");
i+=strstrEx(buffer + i, char(10));
while (buffer[++i] < 32);

where = pos[0] = pos[1l] = pos[2] = pos[3] = pos[4] = pos[5] = pos[6] = pos[7] = O;
/'l Process each line in the header
while (read && !eof)

while (i<read && !eof)

if (buffer[i] =="#" || buffer[i] == char(10))

{
/'l Process lin
l'i ne[1] [pos| 1]
0]

e
]
if (line[0][0]=

= line[0][pos[0]] = '"\0';
=1

if (++section==2)
{
/1 Body structure has been read and ready to process the base positions
/1 So assign the GLOBAL node to the root pointer
root = 0;
for (int j=0; j<currentnode && !root; ++j)

if (strconpEx(nodelist[j]->nane, "GLOBAL"))
{
root = nodelist[j]->children[0];
r oot - >par ent =0;
NODE **tenp = (NODE**) mal | oc(si zeof (NODE*) * header - >noof segnents) ;
int m
for (meO; m< j; ++m
tenp[nm = nodelist[n;
for (mej +1; nx=header - >noof segnents; ++m
tenp[m 1] = nodelist[ni;

for (meO; nxheader->noof frames; ++m

free(nodelist[j]->froset[n]);
free(nodelist[j]->freuler[m);

Motion Capture File Formats Expla ned

32

}
free(nodelist[j]->froset);
free(nodelist[j]->freuler);
free(nodelist[j]->scale);
free(nodelist[j]->nane);
free(nodelist[j]->children);
free(nodelist[j]);
free(nodelist);
nodel i st = tenp;
--current node;
}
}
if (section>2)
{
char tenp[40];
=1
while((tenp[j-1]=line[0][j])
temp[j-1] = "\0";
tnode = O;
for (j=0; j<currentnode && !tnode; ++j)
if (!'strcnp(nodelist[j]->name, tenp))
tnode = nodelist[j];
}
if (!tnode)
if (strcnp(tenp, "EndOFile"))
{
strcpy(error,
frames");
fclose(file);
return false;
}
el se
{
eof =true;
}
}
}
}
else if (line[0][0] && line[1][0])

{
if (!section)
if (!ProcessHeader (line,

fclose(file);
return false;

}
else if (section==1)
if (!ProcessSegnments(line,

fclose(file);
return false;

}

else if (section==2)

{

pos))

pos))

&& line[0][++]!="]"

)

/1 Setup the base positions for the segment

l'ine[7][pos[7]]
l'ine[3][pos[3]]
tnode = O;

for (j=0; j<currentnode &%

if (!'strcnp(nodelist[j]->nane,

t node nodelist[j];
Set upCol our (t node) ;
Set upOf f set (t node, (float)

header->cal lib, (float)
t node- >eul er [xpos] =(fl oat)
t node- >eul er [ypos] =(fl oat)
t node- >eul er [zpos] =(fl oat)
if (!header->degrees)

{

= line[6][pos[6]]
= line[2][pos[2]]

It node; ++j)

atof (1ine[1])
atof (I'ine[3])
atof (1ine[4]);
atof (1ine[5])
atof (1ine[6]);

= line[5][pos[5]]

= line[

= line[1][pos[1]] = '\O

line[0]))

* header->cal lib,
* header->cal lib);

4] [

(float)

pos[4]]

"Unknown node has been encountered while processing the

atof (Iine[2])*

Motion Capture File Formats Expla ned 33

t node- >eul er [xpos] *=57. 2957795f ;
t node- >eul er [ypos] *=57. 2957795f ;
t node- >eul er [zpos] *=57. 2957795f ;

}
tnode->length = (float) atof (line[7]) * header->callib;
tnode->DOFs = XROT | YROT | ZROT | XTRA | YTRA | ZTRA;
}
else if (section>2)
{
/'l Process the franme information for tnode
line[7][pos[7]] = line[6][pos[6]] = line[5][pos[5]] = line[4][pos[4]] =
line[3][pos[3]] = line[2][pos[2]] = line[1][pos[1l]] = '\0";
long franme = atol (line[0]) - 1;
if (!frame)
{
ang[0] =t node- >eul er [xpos] *0. 017453f;
ang[1] =t node- >eul er [ypos] *0. 017453f;
ang[2] =t node- >eul er [zpos] *0. 017453f;
Cal cRot ati onMatrix(ang, base, trot, arot, Xxpos, ypos);
}
if (header->degrees)
ang[0] =(float) atof(line[4])*0.017453f;
ang[1] =(float) atof(line[5])*0.017453f;
ang[2] =(float) atof(line[6])*0.017453f;
el se
{
ang[0] =(float) atof(line[4]);
ang[1] =(float) atof(line[5]);
ang[2] =(float) atof(line[6]);
Cal cRot ati onMatri x(ang, rot, trot, arot, xpos, ypos);
mat mul t (base, rot, trot, 3, 3);
/| Deconpose into ZYX
tnode->freuler[frane][0] =(float) atan(trot[1][0]/trot[0][0]);
if (base[0][0]<0)
if (base[1][0] <0)
tnode->freul er[frane] [0] -=3. 141592f;
el se
t node- >freul er[frane] [0] +=3. 141592f;
num=(float) (trot[0][2]*sin(tnode->freuler[frame][0])-trot[1][2]*cos(tnode->
freuler[frane][0]));
den=(float) (-trot[O0][1]*sin(tnode->freuler[frame][0])+trot[1][1]*cos(tnode->
freuler[frane][0]));
tnode->freul er[frane][2]=(fl oat) atan(nun den)*57.2957795f;
if (den<0)
if (nunx0)
tnode->freul er[frane] [2] -=180;
el se
t node- >freul er[frane] [2] +=180;
nume-trot[2][0];
den=(float) (trot[0][O]*cos(tnode->freuler[frane][0])+trot[1][0]*sin(tnode->
freuler[frane][0]));
tnode->freul er[frane] [1] =(fl oat) atan(nunf den)*57.2957795f;
if (den<0)
if (nunx0)
tnode->freul er[frane] [1] - =180;
el se
t node- >freul er[frane] [1] +=180;
t node- >freul er[frane] [zpos] *=57. 2957795f ;
tnode->froset[frame] [0] =(fl oat) atof(line[1])*header->callib;
tnode->froset[frame] [1] =(fl oat) atof (line[2])*header->callib;
tnode->froset[frame] [2] =(fl oat) atof (line[3])*header->callib;
t node- >scal e[frame]=(float) atof(line[7]);
}

}

/1 Move onto the next line and clear current line information

Motion Capture File Formats Expla ned 34

j=strstrEx(buffer + i, char(10));
if (j==-1)

if (buffer[4095]!=10)

read = fread(buffer, 1, 4096, file);
i = strstrEx(buffer, char(10));
}

el se

read = fread(buffer, 1, 4096, file);

i =0;
}
buf fer[4096] = '\0';
}
el se
i+:j;
where = pos[0] = pos[1l] = pos[2] = pos[3] = pos[4] = pos[5] = pos[6] = pos[7] = O;
}
if (buffer[i] > 44 && buffer[i] < 123)
I'i ne[wher e] [pos[where] ++] = buffer[i++];
else if ((buffer[i]==32 || buffer[i]==9) && pos[where] >0)// && (where==0 || section>1))
{
++wher e;
++i ;
}
el se
++i ;

}
read = fread(buffer, 1, 4096, file);
buf fer[4096] = '\0";
i =0;
}

header - >degr ees=t r ue;

header - >eul er[0] [0] =header - >eul er[0] [1] =0;
header - >eul er [0] [2] =1;

header - >eul er[1] [0] =header - >eul er [1] [2] =0;
header - >eul er[1] [1] =1;

header - >eul er[2] [1] =header - >eul er [2] [2] =0;
header - >eul er[2] [0] =1;

Hnoa i
[g= =

fclose(file);
for (i=0; i<3; i++)

{
del ete[] base[i];
del ete[] rot[i];
del ete[] arot[i];
del ete[] trot[i];
del ete[] base;
delete[] rot;
del ete[] arot;

delete[] trot;
return true;

el se

strcpy(error, "Cannot Open File");
return false;

}

bool HTRFormat:: ProcessHeader (char |ine[2][40], int pos[2])

{
if (strconpEx(line[0], "FILETYPE"))

if (!'strconpEx(line[l], "HTR'))

{
strcpy(error, "Filetype is not HIR');
return false;

}

}
else if (strconpEx(line[0], "DATATYPE"))
{

Motion Capture File Formats Expla ned 35

/1 Datatype describes the order of transformation conposition of translation, rotation

/1 and scal e values. Alnpst always "HTRS' - Translation, Rotation, Scale
if (!'strconmpEx(line[1l], "HTRS"))
{
strcpy(error, strcat("Error: |nconpatible transformation conposition: ",line[1]));

}
else if (strconpEx(line[0], "FILEVERSION'))
if (atoi(line[1])!=1)

strcpy(error, "File version not not recogni sed");
return false;

}
}
else if (strconpEx(line[0], "NUVSEGMVENTS"))

header - >noof segnments = atoi (line[1]);
nodel i st = (NODE**) mal | oc(sizeof (NODE*) * (header->noof segnents + 1));
current node = 0;

}
else if (strconpEx(line[0], "NUVFRAMES"))
header - >noof frames = atol (line[1]);
else if (strconpEx(line[0], "DATAFRAMERATE'))
header->datarate = atoi (line[1]);
else if (strconpEx(line[0], "EULERROTATI ONORDER"))
/1 Setup the euler rotation angle
for (int i=0; i<3; ++i)
switch (line[1][i] &0xdf)
{
case 'Z':
Zpos = i;
break;
case 'Y':
ypos = i;
br eak;
case 'X':
Xpos = i;
br eak;

}
else if (strconpEx(line[0], "CALIBRATI ONUNITS"))

if (strconpEx(line[l], "M\'))
header->callib = 1. 0f / 1000. Of ;

else if (strconpEx(line[l], "DM))
header->callib = 1.0f / 10.0f;

else if (strconpEx(line[l], "CM))
header->callib = 1.0f / 100. 0f;

else if (strconpEx(line[l], "INCHES"))
header->callib = 1.0f / 40.0f;
el se

header->callib = 1. 0f;
se if (strconpEx(line[0], "ROTATI ONUNITS"))
if (strconpEx(line[l], "DEGREES"))
header - >degrees = true;
el se
header - >degrees = fal se;
else if (strconpEx(line[0], "SCALEFACTOR'))
header - >scal efactor = (float) atof (line[1]);

e

return true;

}
bool HTRFormat:: ProcessSegment s(char line[2][40], int pos[2])
{
/1 This method sinply reads in each segnment and nmekes sure that a node exists for it, linking
the nodes as it goes
/Il Create an array of nodes that will hold the names of each segnent which will be |inked

NODE *parent = 0, *child = 0, **tenp; // tenp used to add new children to parent nodes

int i;

// line[0] = Child line[1l] = Parent

/Il Get the position within the segnent structure of each node - if there is no current entry

then create a new on at the end
for (i=0; i<currentnode; ++i)

if (!'strcnp(nodelist[i]->nane, line[0]))

Motion Capture File Formats Expla ned 36

child = nodelist[i]
if (!'strcnp(nodelist][
i

1->nane, line[1]))
parent = nodelist[i];

i
]
}
if (child & chil d==parent)

strcpy(error, "Error: A cyclic child-parent relationship has been detected in the Segnent

section of the file");
return false;

}
if ('child)
{
nodel i st[currentnode] = (NODE*) mal | oc(sizeof (NODE));
nodel i st [current node] - >name = (char*) malloc(sizeof (char) * (strlen(line[0]) + 1));
nodel i st [current node] - >obj ect =0;
nodel i st [current node] - >noof const r ai nt s=0;
nodel i st [current node] - >const r ai nt s=0;
strcpy(nodel i st[currentnode]->nanme, |ine[0]);
Set upChi | dren(nodel i st[current node], 0);
Set upFr anes(nodel i st [current node], header->noof franes);
child = nodelist[O0];
child = nodelist[currentnode++];
}
if (!parent)

nodel i st [current node
nodel i st [current node
nodel i st [current node] - >obj ect =0;

nodel i st [current node] - >noof const r ai nt s=0;

nodel i st [currentnode] - >const r ai nt s=0;

strcpy(nodel i st[currentnode]->nanme, line[1l]);

Set upChi | dren(nodel i st[current node], 0);

Set upFr anes(nodel i st [current node], header->noof franes);
parent = nodelist[currentnode++];

= (NODE*) nml | oc(sizeof (NODE));
->name = (char*) malloc(sizeof (char) * (strlen(line[1]) + 1));

chi | d->par ent =parent ;
if (parent->children)

/1 Parent already has children
tenp = (NODE**) mall oc(sizeof (NODE*) * parent->noofchildren);
for (i=0; i<parent->noofchildren; ++i)
tenp[i] = parent->children[i];
free(parent->children);
parent->children = (NODE**) nual |l oc(sizeof (NODE*) * ++parent->noof children);
for (i=0; i<parent->noofchildren; ++i)
parent->children[i] = tenp[i];
free(tenp);
parent ->chi | dren[parent - >noofchi |l dren-1] = child;

}

el se

/1 Parent does not have any children
Set upChi | dren(parent, ++parent->noofchildren);
parent->children[0] = child;

}

if (currentnode>header - >noof segnent s+1)

{

strcpy(error, "There are nore segnents in the datafile than specified in the header section
of the file.\nCannot open data file");
return false;

}

el se
return true;
}

bool HTRFor mat: : Export Dat a(const char* fil enane)

{
strcpy(error, "Data Export for HTR format has not been inplenented");

return false;
}

