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1 Introduction 
 
Traditional character animation is an involved process that takes large amounts of time using skilled 
artists to manually pose characters using tools such as 3D Studio Max [Max], Maya [Maya] or 
Poser [Poser].  However with the ever increasing demands placed on computer graphics for better 
looking 3D scenes and in shorter spaces of time, alternative character animation techniques are needed.  
While the use of forward and backward kinematics can be used to speed up the process of traditional 
character positioning, the overall creation phase is still a comparatively slow one.  Therefore, to meet 
the demands of modern character animation many production houses have turned to motion capture 
technologies, in a bid to find a better solution.  With the aid of motion capture techniques much of the 
laborious posture configuration is eliminated as character animation is recorded directly from actors 
performing the desired motion, thereby reducing the need of artists to manually position characters. 
 
Motion capture devices allow the recording of live motions by tracking a number of key points in space 
over time, which are translated into a 3 dimensional digital representation.  The captured subject can be 
anything that exists in the real world, with the key points positioned on the object such that they best 
represent the orientations of the moving parts of the object, for example the joints or pivot points.  In 
order to accurately triangulate marker positions at least 4 cameras are used, however generally no more 
than 32 are used. 
 
The use of motion capture data to animate computer characters has been used in television commercials 
to promote such products as Coke Cola and Barbie1, movie productions, such as Final Fantasy: The 
Spirits Within2 and computer games.  Examples of the use of motion capture data in computer games 
can be seen in Actua Soccer 23, Fifa 20014 and the Tomb Raider series5.  The success of motion capture 
has led to a number of production houses that can record and provide motion data6, however many 
companies have developed their own file format.  This means that file formats of motion capture data 
are far from standard, however the ASCII nature of many of the formats make it reasonably easy to 
decode and understand by simple inspection of the data. 
 
This document starts by providing a brief overview of the terminology and style of notation that will be 
used to describe the file formats, followed by a list of many of the motion capture formats in use today.  
Two of the more common formats are then explained in terms of their structure and the procedure 
required for correct interpretation of the data for playback.  This is followed by fragments of C++ code, 
which makes use of the OpenGL library routines, to illustrate a possible program structure for a motion 
capture decoder and player. 
 
As an indication of the increasing foothold that motion capture technology has in computer animation, 
there are currently a number of books dedicated to the understanding and processing of motion capture 
data.  Appendix A contains a bibliography of some of these books and other motion capture research 
papers along with comments on some of the texts. 

                                                
1 House of Moves Motion Capture Studio, http://www.moves.com 
2 Final Fantasy: The Spirits Within, http://www.finalfantasy.com 
3 Actua Soccer 2, Gremlin Interactive, http://actuaweb.gamestats.com/as2 
4 Fifa 2001, Electronic Arts, http://fifa2001.ea.com 
5 Tomb Raider, Core Design Incorporated, http://www.tombraider.com 
6 Production houses that supply motion capture data include BioVision, http://www.biovision.com, 
Motion Analysis, http://www.motionanalysis.com and House of Moves, http://www.moves.com 
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2 Background Information 
 
This section provides a short review of the terminology and notational style that will be used to 
describe the processes involved in reading and processing motion capture data. 
 
2.1 Terminology 
 
The following list outlines some of the more important keywords that will be used to identify and 
describe different aspects of a motion: 
 
• Skeleton – The whole character for which the motion represents. 
• Bone – The basic entity in representing a skeleton.  Each bone represents the smallest segment 

within the motion that is subject to individual translation and orientation changes during the 
animation.  A skeleton is comprised of a number of bones (usually in a hierarchical structure, as 
illustrated in figure 2.1), where each bone can be associated with a vertex mesh to represent a 
specific part of the character, for example the femur or humerus. 

• Channel or Degree of Freedom (DOF) – Each bone within a skeleton can be subject to position, 
orientation and scale changes over the course of the animation, where each parameter is referred 
to as a channel (or DOF).  The changes in the channel data over time give rise to the animation. 

• Frame – Every animation is comprised of a number of frames where for each frame the channel 
data for each bone is defined.  Motion capture data can be captured as high as 240 frames per 
second, however in many applications a rate of 30 or 60 frames per second tends to be the norm.  
High frame rates are used to capture motions that contain high frequency content such as a 
combination of karate actions.  Although in many cases the extra detail cannot be displayed 
during a real-time playback because of maximum refresh rates of display hardware7, it can 
provide useful information for adding motion blurring to the animation or simply for motion 
analysis. 

 
 
2.2 Notation 
 
During the discussion on transforming bones to correctly position and orientate them for an animation, 
matrix arithmetic will be used to demonstrate the motion decoding and displaying algorithms.  The 
nomenclature used when writing matrix expressions is right to left, as illustrated in Equation 2.1 where 
v’ and v are the transformed and original vertices respectfully and M is the transform matrix.  (This 
convention is used over the traditional left to right approach, v’ = vM, because it relates more directly 
to the OpenGL graphics pipeline, where vertices are pushed in after the transforms) 
 

                                                
7Affordable, everyday monitor refresh rates presently max out at about 100hz, and a sustained 60fps 
rate in a modern computer game is considered an excellent mark to reach. 
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Figure 2.1: Hierarchical Structure for a Human Figure 
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   v' = Mv        (2.1) 
 
This convention is particularly important when constructing a rotation matrix from its 3 separate Euler 
angles since matrix multiplication is not commutative.  The composite right to left rotation matrix, R, 
based on the separate rotation matrices about each axis, Rx, Ry, and Rz, is illustrated in Equation 2.2, 
where the composition order is “XYZ”.  Since matrix multiplication is associative, brackets will be 
omitted from such equations.  
 
     Rv = RxRyRzv       (2.2) 
 
The motion of an individual bone consists of translation, rotation and scale components (depending on 
the channels defined for the bone), which can be merged together to give an overall transform using 
homogeneous coordinates.  Unless otherwise stated, the combination order of these different transforms 
to give the full transform will always follow the form illustrated in Equation 2.3, where S, R and T are 
the separate scale, rotation and translation matrices respectfully. 
 

M=TRS        (2.3) 
 
In most motion capture file formats, the data is presented in a hierarchical manner and the formula 
derived in Equation 2.3 only gives the local transformation of a bone.  The local transformation of a 
bone describes its orientation within in its local coordinate system, which in turn is subject to its 
parent’s local orientations.  To obtain a global matrix transform for a given bone, the local transform 
needs to be pre-multiplied by its parent’s global transform, which itself is derived my multiplying its 
local transform with its parent’s global transform and so on.  Equation 2.4 outlines this combination 
sequence, where n is the current bone whose parent bone is n - 1 and n = 0 is the bone at the root of the 
hierarchy. 
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3 Review of Motion Capture File Formats 
 
Table 3.1 outlines many of the motion capture formats in use today along with URLs for additional 
formatting information. 
 

File Extension Associated Company / 
Description 

File Format Reference 

ASC Ascension NO LINK 
ASF & AMC Acclaim http://www.darwin3d.com/gamedev/acclaim.zip 
ASK & SDL BioVision/Alias NO LINK 
BVA & BVH BioVision http://www.biovision.com/bvh.html 
BRD LambSoft Magnetic Format http://www.dcs.shef.ac.uk/ 

~mikem/fileformats/brd.html 
C3D Biomechanics, Animation and 

Gait Analysis 
http://www.c3d.org/c3d_format.htm 

CSM 3D Studio Max, Character 
Studio 

http://www.dcs.shef.ac.uk/ 
~mikem/fileformats/csm.html 

DAT Polhemous NO LINK 
GTR, HTR & 
TRC 

Motion Analysis http://www.cs.wisc.edu/graphics/Courses/cs-
838-1999/Jeff/ {HTR.html, TRC.html} 

MOT & SKL Acclaim-Motion Analysis (Under Development - 
http://www.cs.wisc.edu/graphics/Courses/cs-
838-1999/Jeff/SKL-MOT.html) 

Table 3.1: Motion Capture File Formats and References For Additional Format Information 
 

http://www.darwin3d.com/gamedev/acclaim.zip
http://www.biovision.com/bvh.html
http://www.dcs.shef.ac.uk/
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http://www.cs.wisc.edu/graphics/Courses/cs
http://www.cs.wisc.edu/graphics/Courses/cs
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For the remainder of this section both the BVH and HTR file formats are examined in more detail, 
which includes an explanation of both the formatting of the file and the processes needed in order to 
correctly display a given animation.  BVH and HTR formats have been selected for expansion here 
because they tend to be the more common formats used, along with ASF/AMC format8, and a 
successful implementation of both decoders has been achieved.  
 
 
3.1 BioVision: BVH (BioVision Hierarchical data) 
 
The BVH format succeeded BioVision’s BVA data format with the noticeable addition of a 
hierarchical data structure representing the bones of the skeleton.  The BVH file consists of two parts 
where the first section details the hierarchy and initial pose of the skeleton and the second section 
describes the channel data for each frame, thus the motion section.  Illustrations of the base position 
and the first frame of an animation are given in figure 3.1, where the data is listed in figure 3.2.  The 
example BVH file in figure 3.2 will be used to further discuss the BVH file format in the remainder of 
this section. 
 

 
 
HIERARCHY 
ROOT Hips 
{ 
 OFFSET 0.00 0.00 0.00 
 CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation 
 JOINT Chest 
 { 
  OFFSET 0.000000 6.275751 0.000000 
  CHANNELS 3 Zrotation Xrotation Yrotation 
  JOINT Neck 
  { 
   OFFSET 0.000000 14.296947 0.000000 
   CHANNELS 3 Zrotation Xrotation Yrotation 

                                                
8 The format of the ASF/AMC files are expected to be described in a future revision of this document 
as there are plans to implement a decode and encoder for this mocap file format. 
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Figure 3.1: Skeletal structure of the sample BVH file; (a) base position; (b) first frame of the animation 
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   JOINT Head 
   { 
    OFFSET 0.000000 2.637461 0.000000 
    CHANNELS 3 Zrotation Xrotation Yrotation 
    End Site 
    { 
     OFFSET 0.000000 4.499004 0.000000 
    } 
   } 
  } 
  JOINT LeftCollar 
  { 
   OFFSET 1.120000 11.362855 1.870000 
   CHANNELS 3 Zrotation Xrotation Yrotation 
   JOINT LeftUpArm 
   { 
    OFFSET 4.565688 2.019026 -1.821179 
    CHANNELS 3 Zrotation Xrotation Yrotation 
    JOINT LeftLowArm 
    { 
     OFFSET 0.219729 -10.348825 -0.061708 
     CHANNELS 3 Zrotation Xrotation Yrotation 
     JOINT LeftHand 
     { 
      OFFSET 0.087892 -10.352228 2.178217 
      CHANNELS 3 Zrotation Xrotation Yrotation 
      End Site 
      { 
       OFFSET 0.131837 -6.692379 1.711456 
      } 
     } 
    } 
   } 
  } 
  JOINT RightCollar 
  { 
   OFFSET -1.120000 11.362855 1.870000 
   CHANNELS 3 Zrotation Xrotation Yrotation 
   JOINT RightUpArm 
   { 
    OFFSET -4.708080 2.034554 -1.821179 
    CHANNELS 3 Zrotation Xrotation Yrotation 
    JOINT RightLowArm 
    { 
     OFFSET -0.263676 -10.428555 -0.061708 
     CHANNELS 3 Zrotation Xrotation Yrotation 
     JOINT RightHand 
     { 
      OFFSET 0.000000 -10.255345 2.178217 
      CHANNELS 3 Zrotation Xrotation Yrotation 
      End Site 
      { 
       OFFSET -0.140882 -6.671274 1.711456 
      } 
     } 
    } 
   } 
  } 
 } 
 JOINT LeftUpLeg 
 { 
  OFFSET 3.910000 0.000000 0.000000 
  CHANNELS 3 Zrotation Xrotation Yrotation 
  JOINT LeftLowLeg 
  { 
   OFFSET -0.441177 -17.569450 1.695613 
   CHANNELS 3 Zrotation Xrotation Yrotation 
   JOINT LeftFoot 
   { 
    OFFSET -0.043946 -17.197315 -1.478076 
    CHANNELS 3 Zrotation Xrotation Yrotation 
    End Site 
    { 
     OFFSET 0.000000 -3.933155 5.233925 
    } 
   } 
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  } 
 } 
 JOINT RightUpLeg 
 { 
  OFFSET -3.910000 0.000000 0.000000 
  CHANNELS 3 Zrotation Xrotation Yrotation 
  JOINT RightLowLeg 
  { 
   OFFSET 0.437741 -17.622387 1.695613 
   CHANNELS 3 Zrotation Xrotation Yrotation 
   JOINT RightFoot 
   { 
    OFFSET 0.000000 -17.140001 -1.478076 
    CHANNELS 3 Zrotation Xrotation Yrotation 
    End Site 
    { 
     OFFSET 0.000000 -4.038528 5.233925 
    } 
   } 
  } 
 } 
} 
MOTION 
Frames: 2 
Frame Time: 0.04166667 
-9.533684 4.447926 -0.566564 -7.757381 -1.735414 89.207932 9.763572

 6.289016 -1.825344 -6.106647 3.973667 -3.706973 -6.474916
 -14.391472 -3.461282 -16.504230 3.973544 -3.805107 22.204674
 2.533497 -28.283911 -6.862538 6.191492 4.448771 -16.292816
 2.951538 -3.418231 7.634442 11.325822 5.149696 -23.069189
 -18.352753 15.051558 -7.514462 8.397663 2.953842 -7.213992
 2.494318 -1.543435 2.970936 -25.086460 -4.195537 -1.752307
 7.093068 -1.507532 -2.633332 3.858087 0.256802 7.892136
 12.803010 -28.692566 2.151862 -9.164188 8.006427 -5.641034
 -12.596124 4.366460  

-8.489557 4.285263 -0.621559 -8.244940 -1.784412 90.041962 8.849357
 5.557910 -1.926571 -5.487280 4.119726 -4.714622 -5.790586
 -15.218462 -3.167648 -15.823254 3.871795 -4.378940 22.399654
 2.244878 -29.421873 -6.918557 6.131992 4.521327 -18.013180
 3.059388 -3.768287 8.079588 10.124812 5.808083 -22.417845
 -15.736264 18.827469 -8.070700 9.689109 2.417364 -7.600582
 2.505005 -1.625679 2.430162 -27.579708 -3.852241 -1.830524
 12.520144 -1.653632 -2.688550 4.545600 0.296320 8.031574
 13.837914 -28.922058 2.077955 -9.176716 7.166249 -5.170825
 -13.814465 4.309433  

 
Figure 3.2: Example BVH file 

 
The hierarchical section of the file starts with the keyword HIERARCHY, which is followed on the next 
line by the keyword ROOT and the name of the bone that is the root of the skeletal hierarchy.  The 
ROOT keyword indicates the start of a new skeletal hierarchical structure and although the BVH file is 
capable of containing many skeletons, it is usual to have only a single skeleton defined per file. 
 
The remaining structure of the skeleton is defined in a recursive nature where each bone’s definition, 
including any children, is encapsulated in curly braces, which is delimited on the previous line with the 
keyword JOINT (or ROOT in the case of the root bone) followed by the name of the bone.  With the 
introduction of a left curly brace it is good practice to indent the bone’s content (with a tab) and align 
the closing curly brace with the corresponding opening one.  The bone names identified by the prefix 
JOINT or ROOT are not referenced again in the file and hence redundant, however some parses (for 
example Character Studio R2.2 [Max]) require a bone name in order to correctly parse the file.  
Furthermore, although the hierarchical indentation is not absolutely necessary, it does assist in making 
the file more readable for humans. 
 
Within the definition of each bone, the first line, delimited by the keyword OFFSET, details the 
translation of the origin of the bone with respect to its parent’s origin (or globally in the case of the root 
bone) along the x, y and z-axis respectively.  The offset serves a further purpose of implicitly defining 
the length and direction of the parent’s bone, however the problem with this is in defining the length 
and direction of a bone that has multiple children.  Normally a good choice for determining the bone 
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length in this situation is to use the first child offset definition to infer the parental bone information 
and treat the offset data for other child nodes simply as offset values.  
 
The second line of a bone’s definition is prefixed with the keyword CHANNELS which defines the 
DOFs for the current bone.  The importance of the order that the channels are presented is two-fold.  
First, the order that each channel is seen in the hierarchy section of the file exactly matches the order of 
the data in the motion section of the file.  For example, the motion section of the file contains 
information for the channels of the root bone in the order defined in the hierarchy, followed by the 
channel data for it’s first child, followed by the channel data for that child and so on through the 
hierarchy.  The second point to note with regards to the channel ordering is that the concatenation order 
of the Euler angles when creating the bone’s rotation matrix needs to follow the order depicted in the 
CHANNEL section.  It is important to note this because the Euler order is specified for each bone, 
therefore it is possible to have different orders for different bones, which needs to be accounted for in 
order to get a correct looking animation.  Figure 3.3 illustrates a segment of a BVH file in which 
rotational channels are specified differently for different joints. 
 
After the OFFSET and CHANNEL lines, the next non-nested lines in the bone definition are used to 
define child items, starting with the keyword JOINT, however in the case of end-effectors, a special 
tag is used, “End Site”, which encapsulates an OFFSET triple that is used to infer the bone’s length 
and orientation. 

 

... 

... 
OFFSET -0.145148 7.670311 -0.132667 
CHANNELS 3 Xrotation Zrotation Yrotation 
JOINT Neck 
{ 

OFFSET 0.206702 11.265274 -1.343565 
  CHANNELS 3 Xrotation Zrotation Yrotation 
  JOINT Head 
  { 
   OFFSET -0.103351 0.386947 0.663649 
   CHANNELS 3 Xrotation Zrotation Yrotation 
   JOINT Left Eye 
   { 
    OFFSET 1.446916 5.400717 4.503910 
    CHANNELS 3 Zrotation Yrotation Xrotation 
    End Site 
    { 
     OFFSET 0.000000 0.000000 0.930160 
    } 
   } 
   JOINT Right Eye 
   { 
    OFFSET -1.446916 5.400717 4.503910 
    CHANNELS 3 Zrotation Yrotation Xrotation 
    End Site 
    { 
     OFFSET 0.000000 0.000000 0.930160 
    } 
   } 
  } 

} 
 ... 
 ... 
  

Figure 3.3: Example BVH fragment containing varying orders of joint rotations 
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Once the skeletal hierarchy is defined, the second section of a BVH file, which is denoted with the 
keyword MOTION, contains the number of frames in the animation, frame rate and the channel data.  
The line containing the number of frames starts with the keyword “Frames:” which is followed by a 
positive decimal integer (as opposed to hexadecimal or octadecimal) that is the number of frames.  The 
frame rate is on a line starting with “Frame Time:” which is followed by a positive float that 
represent the duration of a single frame.  To convert this into a frames per second format you simply 
need to divide 1 by the frame time.  Once the number of frames and frame time has been defined, the 
rest of the file contains that channel data for each bone in the order they were seen in the hierarchy 
definition, where each line of float values represents an animation frame. 
 
 
Processing the Data 
 
The first thing that needs to be done in order to display the motion is to determine each bone’s local 
transform, for which the general equation was given in Equation 2.3 as M=TRS.  Since BVH formats 
do not contain scaling information we only need consider the rotation and translation matrices to 
construct the local transform.  The construction of the rotation matrix, R, can be easily done by 
multiplying together the rotation matrices for each of the different channel axes in the order they 
appeared in the hierarchy section of the file.  For example, consider the following channel description 
for a bone: 
 
   CHANNELS 3 Zrotation Xrotation Yrotation 
 
This would mean that the compound rotation matrix, R, is calculated as illustrated in Equation 3.1. 
 
     R = RzRxRy        (3.1) 
 
Once the composite rotation matrix is calculated, using a homogeneous coordinate system, the 
translation components are simply the first 3 cells of the 4th column (whereas the rotational components 
take up the top left 3x3 cells), as illustrated in Equation 3.2.  (Note:  If pre-multiplication of the vertices 
were being used, the translation components would take up the first 3 cells in the 4th row.)  Normally, 
the root is the only bone that has per-frame translation data, however each bone has a base offset that 
needs to be added to the local matrix stack.  Therefore, Tx, Ty and TZ represent the summation of a 
bone’s base position and frame translation data. 
 

M = 



















1000
z

y

x

TRRR
TRRR
TRRR

       (3.2) 

 
Using Equation 2.4 and the derivations of the local transforms, the global positions for each bone origin 
can be calculated and from the origin the bone is drawn using the offset information in the hierarchy 
section of the file.  Equation 3.3 exemplifies this process for the LeftFoot in figure 3.2, where v0’ and 
v1’ are the endpoints of the bone whose local orientation is given by v and Mi are the local transforms 
of the bones involved in the hierarchical chain.  The vector on the right of the first expression in 
Equation 3.3, [0, 0, 0, 1]T, represents the local origin of the LeftFoot, which is transformed into its 
global position by the equation. 
 
    v0' = MHipsMLeftUpLegMLeftLowLegMLeftFoot[0, 0, 0, 1]T 
    v1' = MHipsMLeftUpLegMLeftLowLegMLeftFootv     (3.3) 
 
During playback of animations that are in a hierarchical format, if the motion is to be used multiple 
times and unchanged then to increase performance the vertices can be calculating once and then stored 
for later cycles.  However, if real-time modifications are to be preformed on the motion then keeping 
the data in a hierarchical format greatly increase the ease with which the character posture can be 
edited.  Therefore pre-calculating absolute vertex positions of bones provide no advantage over a 
hierarchical rending algorithm, in fact could even result in loss of performance.  This is because 
calculating the positions on the fly results in the global transformation being cached as opposed to 
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pre-calculating the values, storing them and then recalling them from primary memory, which requires 
more instruction commands and additional access of slower memory compared to cache memory. 
 
While this hierarchical data structure may assist in the orientations of bones and the skeleton as a 
whole, the computational load required to display the skeleton is far from being efficient.  This is 
because each branch at each level in the hierarchy requires an extra matrix multiplication as outlined in 
Equation 3.3, which in turn is made up of multiple transformation matrices, outlined in equation 2.3.  In 
order to improve efficiency, the local transforms can be pre-compiled into a single matrix that is ready 
for stack multiplication and for optimal performance all of the bone end-points could be pre-calculated 
using a variant of Equation 3.3.  This would result in simply pushing the absolute vertex positions into 
the graphics pipeline, however this optimal rendering format means that it is virtually impossible to 
modify the existing motion with any meaningful results because all of the hierarchical information has 
been lost. 
 
There are a number of problems inherent in the BVH file format.  Most noticeable is the fact that there 
is no explicit bone orientation.  Although the bone lengths can be inferred from child bones, the 
problem comes with multiple children, as previously discussed – which child do you use to infer the 
parent’s bone length?  Furthermore, it is also desirable to have the bone along a single axis and a 
rotation matrix to orientate it into its base position for reasons that will be discussed later.  Other 
problems with the BVH files include the lack of calibration units, such as the scale that the joint offsets 
are measured in, and details about the environment, such as orientation – i.e. which direction points 
upwards? 
 
 
3.2 Motion Analysis: HTR (Hierarchical Translation-Rotation) 
 
The HTR format was developed by Motion Analysis as an alternative to BioVision’s BVH format with 
a view to plugging some of the problems with its format as already discussed.  The way in which the 
HTR file solves the problems of the BVH file format will become apparent as the format is discussed.  
The HTR file consists of 4 sections starting with Header followed by Segment Names & Hierarchy, 
BasePosition and frame data, where each section is delimited by placing the section name in square 
brackets.  Additional human-readable comments can be placed anywhere in the HTR file and these are 
defined with a hash symbol, where anything after the hash symbol on the same line is to be ignored by 
a parser.  Illustrations of the base position and the first frame of an animation are given in figure 3.4, 
where the data is listed in figure 3.5.  The example HTR file in figure 3.5 will be used to further discuss 
the HTR file format in the remainder of this section. 

 Head 

Neck 

Chest 

Hips 

LeftAnkle 

LeftKnee 

RightCollar

RightWrist

RightElbow

RightShoulder

RightHip

RightAnkle

Head 

Neck 

Chest 

Hips 

LeftAnkle 
 

LeftKnee 

RightCollar

RightShoulder 
 

RightElbow 
 

RightWrist 
 

RightKnee

RightAnkle 
 

(a) (b) 

RightKnee

RightHip

Figure 3.4: Skeletal structure of the sample HTR file; (a) base position; (b) first frame of the animation 
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#Comment line ignore any data following # character 
#Hierarchical Translation and Rotation (.htr) file 
[Header]  #Header keywords are followed by a single value 
FileType htr  #Single word string 
DataType HTRS  #Translation followed by rotation and scale data 
FileVersion 1  #integer 
NumSegments 18  #integer 
NumFrames 2   #integer 
DataFrameRate 60  #integer, data frame rate in this file 
EulerRotationOrder ZYX 
CalibrationUnits mm 
RotationUnits Degrees 
GlobalAxisofGravity Y 
BoneLengthAxis Y 
ScaleFactor 1.000000 
[SegmentNames&Hierarchy] 
#CHILD PARENT 
Head Neck 
Neck Chest 
Chest Hips 
LeftShoulder LeftCollar 
RightShoulder RightCollar 
LeftElbow LeftShoulder 
RightElbow RightShoulder 
LeftWrist LeftElbow 
RightWrist RightElbow 
Hips GLOBAL 
LeftHip Hips 
RightHip Hips 
LeftKnee LeftHip 
RightKnee RightHip 
LeftAnkle LeftKnee 
RightAnkle RightKnee 
LeftCollar Chest 
RightCollar Chest 
[BasePosition] 
#SegmentName Tx, Ty, Tz, Rx, Ry, Rz, BoneLength 
Head 0.000003 141.966248 0.000002 -37.745777 -8.179454 6.203664 80.000046 
Neck 0.000000 379.566772 0.000000 32.855431 -5.194619 1.823337 141.966263 
Chest 0.000000 94.891693 0.000000 0.000002 12.877405 -0.000012 379.566803 
LeftShoulder 0.000003 154.023666 0.000005 171.957962 -79.977570 -157.094910 215.219986 
RightShoulder -0.000001 146.408707 -0.000001 20.020029 60.865143 -8.207462 240.139038 
LeftElbow 0.000007 215.219971 -0.000011 -24.162848 54.442085 -17.491318 336.440125 
RightElbow -0.000021 240.139038 0.000007 -21.925606 -43.617706 23.102211 322.101532 
LeftWrist -0.000014 336.440094 0.000002 173.178864 -0.531422 156.628021 100.348160 
RightWrist 0.000005 322.101501 0.000026 1.868945 1.747480 14.125610 109.739998 
Hips 377.886597 1077.530640 704.474976 -179.011169 36.455761 -178.006714 94.891701 
LeftHip 95.336761 5.238981 -8.336124 -0.485735 -9.415434 -176.117065 525.916443 
RightHip -96.119095 -4.691877 -4.857316 2.457280 -1.423929 -179.125565 528.302429 
LeftKnee 0.000004 525.916443 0.000001 -10.646533 -14.541370 -1.855900 514.711975 
RightKnee -0.000002 528.302429 0.000004 -12.768950 2.118825 -3.063609 521.764099 
LeftAnkle 0.000003 514.711975 0.000009 97.965164 -0.000001 0.000000 253.446518 
RightAnkle 0.000001 521.764099 -0.000002 99.242271 0.000002 0.000000 256.283173 
LeftCollar 19.999998 366.483276 -15.126845 169.660507 -4.312743 90.901894 154.023682 
RightCollar -19.999996 366.483215 -15.126822 171.369568 4.171492 -91.645760 146.408707 
#Beginning of Data. Separated by tabs 
[Head] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 -0.000004 11.246399 -0.000001 -8.720660 -3.164685 6.637906 1.000000 
2 -0.000005 11.559982 -0.000003 -8.967685 -3.106098 6.445398 0.999999 
[Neck] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 0.000000 -12.073059 0.000010 0.396232 -0.246686 -4.863737 1.079219 
2 -0.000002 -12.097473 -0.000004 0.425361 -0.269309 -4.636292 1.081428 
[Chest] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 -0.000000 -3.018326 0.000001 -0.000001 -1.628358 0.000009 0.968192 
2 -0.000000 -3.024338 -0.000000 -0.000020 -1.705875 0.000017 0.968128 
[LeftShoulder] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 0.000000 13.815002 -0.000001 83.761948 35.203880 79.582558 1.241342 
2 -0.000002 13.839508 -0.000007 83.631897 35.184998 79.323212 1.241620 
[RightShoulder] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 0.000001 13.459503 0.000006 52.406124 -42.238705 -73.830421 1.125802 
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2 0.000001 13.286621 -0.000001 52.394287 -42.320644 -73.863625 1.126161 
[LeftElbow] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 -0.000013 51.941711 0.000027 -3.925248 -24.090729 4.376663 0.944601 
2 -0.000028 52.001495 0.000031 -3.939872 -23.993404 4.348942 0.944359 
[RightElbow] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 0.000028 30.209961 0.000002 -8.925378 29.599155 -1.955990 0.984899 
2 0.000030 30.296173 -0.000008 -8.816924 29.673548 -2.041257 0.984634 
[LeftWrist] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 0.000003 -18.638397 -0.000015 107.779221 -83.890533 -110.960365 1.050000 
2 -0.000024 -18.719818 0.000002 107.994080 -84.038475 -111.112129 1.049792 
[RightWrist] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 0.000005 -4.863892 -0.000016 -104.610184 82.968636 -99.990471 0.985911 
2 -0.000004 -4.949310 -0.000014 -104.448631 83.079323 -99.959129 0.985429 
[Hips] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 -1112.53588 16.523438 -582.300842 50.390434 -85.266396 -41.504185 0.968192 
2 -1112.92895 16.720703 -581.117249 49.189865 -85.150032 -40.316120 0.968128 
[LeftHip] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 1.874519 -4.514181 2.456207 16.237614 0.050990 3.735080 0.997758 
2 1.820427 -4.414242 2.499619 16.227806 0.054104 3.808969 0.998198 
[RightHip] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 -0.236748 2.359360 -5.008488 15.787422 1.024064 -7.257273 1.010598 
2 -0.152199 2.261423 -5.098666 15.545793 1.053510 -7.157682 1.010190 
[LeftKnee] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 -0.000013 -1.179138 0.000001 -15.567005 -4.739112 5.805853 0.980860 
2 0.000004 -0.947693 -0.000002 -15.523184 -4.706165 5.806359 0.980786 
[RightKnee] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 0.000014 5.598694 0.000004 -15.268150 9.185243 -0.711757 1.005186 
2 0.000006 5.383545 0.000011 -14.904158 9.361836 -0.678691 1.004277 
[LeftAnkle] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 -0.000011 -9.851410 0.000011 2.843235 -0.000000 -0.000001 1.033134 
2 0.000017 -9.889526 0.000018 2.784328 0.000000 -0.000001 1.032441 
[RightAnkle] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 -0.000007 2.706116 -0.000010 4.153965 0.000000 0.000000 0.997164 
2 -0.000000 2.231934 0.000010 4.001956 -0.000000 0.000001 0.997414 
[LeftCollar] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 -0.000010 -11.597260 -0.398872 -1.000729 0.923276 10.489632 1.089694 
2 -0.000010 -11.614258 -0.404864 -1.027217 0.956677 10.465802 1.089853 
[RightCollar] 
#Fr Tx Ty Tz Rx Ry Rz SF 
1 0.000006 -11.597107 -0.398855 -3.114126 -1.254626 -11.935379 1.091931 
2 -0.000015 -11.614227 -0.404881 -3.163443 -1.282111 -12.004474 1.090750 
[EndOfFile] 

Figure 3.5: Example HTR File 
 
The first meaningful line in a HTR file (not including comments) denotes the start of the header with 
the keyword HEADER in square brackets, which contains the global information related to the motion 
described in the file.  It should be noted that none of the keywords are case sensitive including the 
section delimiters.  Each line in the header section contains parameter information, where the first word 
of the line indicates the parameter name while the second word indicates the parameter’s value.  The 
possible parameter names are outlined below: 
 

• FileType – this describes the type of this file and should be either htr or gtr (Global 
Translation-Rotation which was a predecessor of HTR which had no hierarchy information); 

• DataType – this describes the order in which the different types of transforms should be 
combined, where T is the translation matrix, R is the rotation matrix and S is the scale factor 
matrix.  This value is normally HTRS, where the H stands for Hierarchical meaning that the data 
should be treated in a hierarchical manner as opposed to an individual bone’s transform being 
treated as a global one; 

• FileVersion – this is the file version of the HTR format; 
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• NumSegments – this indicates the number of bones in the skeleton; 
• NumFrames – this indicates the number of frames in the animation; 
• DataFrameRate – this indicates the frame rate of the animation in frames per second; 
• EulerRotationOrder – this describes the order in which the x, y, z rotation values should be 

combined; 
• CalibrationUnits – this defines the metric used to measure the translation units, i.e. inches, 

millimetres, centimetres, metres, etc; 
• RotationUnits – this defines the metric used to measure the rotation angles, which are 

normally “Degrees”, however can be “Radians”; 
• GlobalAxisofGravity – this specifies the global “up axis” of the data, which is normally 

the positive y-axis; 
• BoneLengthAxis – this indicates the direction/axis that all the bone lengths are aligned to, 

which is normally the y-axis (and if omitted from the specification is to be assumed to be the y-
axis); 

• ScaleFactor – this is a global scale factor that is to be applied to the complete motion. 
 

 
The next section in the HTR file is delimited by the keyword [SEGMENTNAMES&HIERARCHY] and it 
is this section that defines the hierarchical structure of the skeleton, as illustrated in figure 3.6 for the 
data in figure 3.5.  This section consists of lines of bone pairs that represent child-parent relationships, 
where the first item on the line is the child and its parent is the second item on the line.  The special 
keyword GLOBAL is used in the parent column to indicate that the corresponding child item is the root 
of a hierarchical skeletal structure. 

 
After the Segment Names and Hierarchy section of the file, the Base Pose section is indicated by the 
tag [BASEPOSITION].  Each line in this section indicates how each bone is initially orientated within 
it’s own local coordinate system.  The first item in each line indicates the segment name which is 
followed by 3 floats that represent the translations in x, y and z respectively, which again is followed 
by another 3 floats for the x, y and z rotational components respectively.  The line is finished with an 
additional float that indicates the bone length of the segment.  In this section, there should be a line for 
each of the bones in the skeleton. 
 
The final fragment of this file contains all of the motion data needed to drive the animation.  The frame 
data for each of the bones is in its own subsection of this part of the file, which is delimited by the bone 

 

Hips 

RightShoulder 

GLOBAL 

RightHip LeftHip 

RightKnee LeftKnee 

RightAnkle LeftAnkle 

Chest 

Neck 

Head 

LeftShoulder 

RightCollar LeftCollar 

RightElbow LeftElbow 

RightWrist LeftWrist 

 
Figure 3.6: Hierarchical structure of humanoid character based on Segment Name & Hierarchy section 

of HTR file in figure 3.5 
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name encapsulated in square brackets, for example [HIPS].  Each line within a bone’s frame data 
starts with a positive decimal integer frame number for which the data applies followed by 3 floats for 
translation along the x, y and z axis respectively, 3 floats for the Euler rotation angles about the x, y and 
z axis respectively and a final float for a bone scale factor. 
 
At the end of the motion section there is an end of file tag, [ENDOFFILE], which indicates that there 
is no more data to be processed. 
 
 
Processing the Data 
 
As with all hierarchical structures, in order to display the skeleton the local transforms for each of the 
bones need to be determined.  The computation of the local transform is slightly different to the 
algorithm outlined for BVH files as HTR files include an explicit base pose that needs to be considered.  
Each bone’s local transform can be viewed as being constructed from 4 separate matrices – a single 
translation matrix, 2 rotation matrices and a scaling matrix.  The translation matrix is constructed by 
combining the translation data for the bone’s base position and frame data as illustrated in Equation 
3.4, where tx0, ty0 and tz0 are the translations of the base position and txi, tyi and tzi are the frame 
translations. 
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      (3.4) 

 
The first of the rotation matrices, R0, is a composite rotation matrix that is generated from the base 
position data of the bone and since it does not change, could be stored to save recalculation on every 
frame.  The second rotation matrix, Ri, is again a composite rotation matrix that equals the rotational 
information of frame i in the animation.  The order of Euler angle composition for the rotation matrices 
are dictated by the keyword EULERROTATIONORDER in the header section of the HTR file and 
should be calculated as outlined in section 2.2.  Unlike the BVH format, since the Euler angle 
composition order is only defined once, it can never change therefore less tracking of the channel 
ordering is needed. 
 
HTR files provide scaling information for each bone on every frame, which is used to account for the 
variations in child segment translations.  Equation 3.5 outlines the creation of the scaling matrix, where 
Si is the scale factor for a given frame. 
 

Si = 
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The separate transformations are combined as illustrated in Equation 3.6 to give a bone’s complete 
local transform, where following this document’s convention, the vertex data is post-multiplied.  It 
should be noted that the discussion in the following section about the HTR’s local transform stack, it 
will be assumed that the DataType parameter is defined as HTRS. 
 

    M = TiR0RiSi        (3.6) 
 
Once the local transforms have been calculated, the global positions of the bones are calculated in 
exactly the same way as BVH skeletons, as illustrated in Equation 3.3. 
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4 Implementation Considerations 
 
This section looks at useful aspects when considering data and program structure for a motion capture 
decoder and player.  The fragment of C++ code illustrated in figure 4.1outlines the data structures that 
could be used to support the storing in memory of both BVH and HTR animations, however the BVH 
format will require slightly more pre-processing in order to obtain the required structure. 
 
The first structure, MOCAPSEGMENT, represents a complete motion capture skeleton, which has a 
pointer to a MOCAPHEADER whose structure holds global information about the animation such as 
frame rate and number of frames.  The MOCAPSEGMENT further consists of an array of NODE objects, 
named nodelist, where each NODE contains the data of a specific bone in the animation.  The other 
pointer to a NODE object in the MOCAPSEGMENT structure points to a single NODE that is the root of 
the animation.  All the bones in the skeleton can be reached by recursively following child links 
starting from the root, however the linear array is used for quick node access where the additional 
hierarchical information obtained from the recursion is not required. 

 
 
The MOCAPHEADER contains a 3x3 array, euler[3][3], that is used to determine the order of 
rotation concatenation, which can be directly applied in OpenGL rotation method calls as illustrated in 
figure 4.2.  While parsing the mocap file, the individual rotation angles of the bones are placed into the 
freuler array of the corresponding NODE structure in the order indicated by the file, i.e. with the 
order ZYX, freuler[frame][0]=Z, freuler[frame][1]=Y and 
freuler[frame][2]=X. 

 struct MOCAPSEGMENT 
{ 
  char *name;  // Name of motion capture file 
  NODE* root;  // Pointer to the root node of the animation 
  MOCAPHEADER* header; // Pointer to a structure that containers global parameters 
  NODE** nodelist; // Array of pointers to skeletal nodes 
}; 
 
struct MOCAPHEADER 
{ 
  // Assumes that all angles are in degrees if not then they need to be converted 
  int noofsegments;     // Number of body segments 
  long noofframes;      // Number of frames 
  int datarate;         // Number of frames per second 
  int euler[3][3];      // Specifies how the euler angle is defined 
  float callib;         // Scale factor for converting current translation units into meters 
  bool degrees;         // Are the rotational measurements in degrees 
  float scalefactor;    // Global Scale factor 
  long currentframe;    // Stores the current frame to render 
  float floor;          // Specifies position of the floor along the y-axis 
}; 
 
struct NODE      // Start of structure representing a single bone in a skeleton 
{ 
  char *name; 
  float length;       // Length of segment along the Y-Axis 
  float offset[3];    // Transitional offset with respect to the end of the parent link 
  float euler[3];     // Rotation of base position 
  float colour[3];    // Colour used when displaying wire frame skeleton 
  int noofchildren;   // Number of child nodes 
  NODE **children;    // Array of pointers to child nodes 
  NODE *parent;       // Back pointer to parent node 
  float **froset;     // Array of offsets for each frame 
  float **freuler;    // Array of angles for each frame 
  float *scale;       // Array of scalefactors for each frame 
  BYTE DOFs;          // Used to determine what DOFs the segment has 
  OBJECTINFO* object; // Used to point to a 3D object that is the limb 
  CONSTRAINT* constraints;  // List of constraints - ordered in time 
}; 
  

Figure 4.1: Data structures for storing motion capture animations in memory 
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In the case of HTR files, using a global parameter to specify the Euler angle ordering is a legitimate 
step to take, however in the case of BVH files, this ordering can change from bone to bone, as defined 
by the CHANNEL keyword.  Therefore, while parsing a BVH file, the first rotation order found in the 
file (which is normally the rotation for the root bone) is set as the global rotation order and if any other 
bones have a different order, they are recalculated to fit in with the desired order during the parsing 
phase. 
 
As previously mentioned, BVH files need additional pre-processing in order to obtain the required 
format.  Therefore, as well as any on-the-fly rotation order changes that need doing per frame, the 
initial base pose also needs to be recalculated into a single float for bone length and Euler angles.  
Recall from the description of the BVH file format that the base pose is structured using implicit offset 
information, however this vector needs to be manipulated in order to achieve 3 rotation angles (of the 
desired order) and a single length value.  During the decomposition of the offset into 3 Euler angles and 
a bone length, it should be noted that you need to take away any parental rotational effects from the 
original offset before the decomposition is undertaken.  This is because the BVH offsets are defined 
with respect to the world coordinate axis, however if the offsets are to be converted into hierarchical 
Euler angles, each limb needs to be defined with respect to its parent coordinate system and not the 
global system. 
 
Obtaining the bone length along one axis and using a rotation matrix to fix a bone’s base position is a 
desirable effect on many levels as it allows easy mapping and aligning to 3D objects and more 
importantly, under any rotation, the bone’s end point and angle constraints are more intuitive to 
envisage. 
 
Figure 4.3 demonstrates part of the data structure for the HTR file in figure 3.5 after it has been fully 
parsed into memory using the structures in figure 4.1. 
 
As the original BVH and HTR formats stand, it is possible to use the same display algorithm for both 
formats which can be seen by examining the matrix stack.  The complete local transform for the BVH 
file, as given in Equation 3.2, is Mv = TiRiv, while the HTR stack, as defined in Equation 3.6, is Mv = 
TiR0RiSiv.  Since the BVH format have no rotational values for the base position, R0 equates to the 
identity matrix and similarly, with the absence of scaling values in the BVH file, Si also evaluates to the 
identity matrix.  This means that although there is a high degree of redundancy when displaying BVH 
files, the same algorithm can be used.  However, the process by which the BVH’s base position is 
converted from simple vectors to bone lengths and Euler angles now introduces a subtle, yet major 
inconsistency between the HTR and BVH local and global matrix transform stacks.   
 
To illustrate this stack problem, consider the standard local transform for a BVH file (defined in 
Equation 3.2): 
 
     Mv = TiRiv 
 
The recalculation of the offset vector, v, into a rotation matrix and bone length leads to Equation 4.1, 
where v’’ represents the bone length along a single axis and Rj0 is the composite rotation matrix to 
convert the bone length, v’’, back to the original vector, v.  Rj0 is a composite matrix for bone j, since it 
must multiply the current bone’s base rotation with its parent’s and so on to the root since these were 
factored out during the base position calculation. 
 
     v=Rj0v’’        (4.1) 

 glRotatef(node->freuler[currentframe][0], curmocapseg->header->euler[0][0], curmocapseg-> 
header->euler[0][1], curmocapseg->header->euler[0][2]); 

glRotatef(node->freuler[currentframe][1], curmocapseg->header->euler[1][0], curmocapseg-> 
header->euler[1][1], curmocapseg->header->euler[1][2]); 

glRotatef(node->freuler[currentframe][2], curmocapseg->header->euler[2][0], curmocapseg-> 
header->euler[2][1], curmocapseg->header->euler[2][2]); 

  
Figure 4.2: OpenGL glRotatef function calls using dynamic rotation ordering via the euler[3][3] 

matrix of the MOCAPHEADER structure, header. 
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Combining Equations 3.2 and 4.1 leads to a new local composite matrix for the BVH file as illustrated 
in equation 4.2. 
 

Mv = TiRiRj0v’’       (4.2) 
 
At first glance, when comparing this matrix stack with the HTR stack, Mv = TiR0RiSiv (defined in 
Equation 3.6), the only problem with is that the rotation matrices for the base and rotation components 
are in the wrong order.  This is a problem because matrix multiplication is not commutative, however 
the issue can be easily overcome by simply combining these 2 matrices in the desired order during the 
parsing of both the HTR and BVH files.  This would then lead to the general equation for calculating 
the local transform for either file format as illustrated in equation 4.3, where Ri is now the new frame 
rotation matrix that is composed of the original frame rotation matrix and base matrix. 
 

Mv = TiRiSiv        (4.3) 
 
The combination of the two rotation matrices at this stage further serves the purpose of reducing the 
matrix computational load during the calculation of the global positions for each bone because there is 
one less 4x4 matrix multiplication. 

 MOCAPSEGMENT 
name: Catch.htr 

MOCAPHEADER 
noofsegments: 18 
noofframes: 2 
datarate: 60 
euler: {{0,0,1}, 
{0,1,0},{1,0,0}} 
callib: 1 
degrees: true 
scalefactor: 1 
currentframe: 0 
... 

NODE 
name: Head 
length: 80.0 
offset: {0.0, 
142.0, 0.0} 
euler: {6.2, 
-8.2, -37.7} 
noofchildren: 0 
 
... 

NODE 
name: Neck 
length: 142.0 
offset: {0.0, 
380.0, 0.0} 
euler: {1.8, 
-5.2, 32.9} 
noofchildren: 1 
 
... 

NODE 
name: Hips 
length: 94.9 
offset: {377.9, 
1077.5, 704.5} 
euler: {-179.0, 
36.5, -178.0} 
noofchildren: 3 
 
... 

NODE 
name: RightAnkle 
length: 256.3 
offset: {0.0, 
521.8, 0.0} 
euler: {0.0, 0.0, 
99.2} 
noofchildren: 0 
 
... 

… … 

nodelist 

root 

header 

parent 

float 
... 
float 

froset 

float 
... 
float 

freuler 

float 
... 
float 

scale 

float 
... 
float 

froset 

float 
... 
float 

freuler 

float 
... 
float 

scale 

float 
... 
float 

froset 

float 
... 
float 

freuler 

float 
... 
float 

scale 

float 
... 
float 

froset 

float 
... 
float 

freuler 

float 
... 
float 

scale 

… … 

 
Figure 4.3: Internal memory structure of a sample HTR file after it has been parsed into memory 
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However, the problem is that this apparently correct mathematical equation for the local transform 
(Equation 4.3) causes discrepancies when constructing the global transform matrix.  To explain this 
problem, a 3-boned hierarchical structure will be used as illustrated in figure 4.4 and the following 
notation utilised: 
 

• MH, MUL, MLL are the global transformation matrices for the hips, upper leg and lower leg 
respectively 

• VO? and VN? are vectors representing the original bone vector and the calculated bone length 
(in a single axis) respectively 

• R? are the local rotation matrices for the bones 
• O? are the bone’s base rotation matrix 

   
 
Recall from Equation 2.4 that the global transformation matrix is defined as: 
 

∏
=

=
n

i

i
local

n
global MM

0

 

 
Using this equation and expanding the local transforms for each bone, the original (before the bone 
length and Euler separation) and required global transformation matrices (where each frame rotation 
matrix is multiplied by the corresponding base position) for the hips are defined in Equation 4.4 (a & 
b). 
 
It should be noted at this stage that ideally the required matrix stack would combine the rotation and 
base position matrices to give a single rotation matrix, however these have been kept separate to further 
illustrate a process by which BVH files can be converted to HTR. (The process of HTR to BVH is 
more intuitive using these ideas therefore will not be illustrated).  The rotation matrices for the frame 
and base pose will later be merged to give a more efficient solution. 
 
     MHVOH = RHVOH    (Original)  (4.4a) 
     MHVOH = RHOHVNH    (Required)  (4.4b) 
 
where: 
     VOH = OHVNH 
 
 
 
Therefore, the original stack can be rewritten as: 
 
     MHVOH = RHOHVNH 

 

Hips (Root) 

Upper Leg 

Lower Leg 

 
Figure 4.4: 3-Boned Hierarchical Structure 
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This is the same as the required stack so at this point all looks good.  Now we shall consider the global 
transformations for the upper leg, which is defined as: 
 
     MULVOUL = RHRULVOUL   (Original) 
     MULVOUL = RHOHRULOULVNUL  (Required) 
 
where: 
     VOUL = OHOULVNUL 
 
Substituting this into the equation for the original stack gives: 
 
     MULVOUL = RHRULOHOULVNUL 
 
However, equating this equation with the required global stack for the upper leg soon reveals a 
consistency problem as illustrated: 
 

  MULVOUL = RHRULOHOULVNUL = RHOHRULOULVNUL 
=>  RULOH = OHRUL 

 
Since matrix multiplication is not commutative, it is not possible that RULOH = OHRUL, therefore this 
illustrates the need for the recalculation of each bone’s frame rotation matrix.  Using N? to represent the 
frame rotation matrix for the required matrix stack, the following relationship can be established 
between this and the original stack for the upper leg: 
 

  MULVOUL = RHRULOHOULVNUL = NHOHNULOULVNUL 
=>  RULOH = OHNUL  (From the definition of global hips transform, RH = NH) 
=> O-1

HRULOH = NUL 
 
Therefore in order to structure the data into the required format, each rotation matrix for each frame for 
the upper leg needs to be calculated according to Equation 4.5. 
 
   NUL = O-1

HRULOH         (4.5) 
 
Next we will consider the same problem with the next bone down in the hierarchy, the lower leg, which 
has matrix stack equations: 
 
   MULVOUL = RHRULRLLVOLL    (Original) 
   MULVOUL = NHOHNULOULNLLOLLVNLL  (Required) 
 
where: 
   VOUL = OHOULOLLVNLL 
 
  => RHRULRLLOHOULOLLVNLL = NHOHNULOULNLLOLLVNLL    (4.6) 
 
From previous hierarchical definitions: 
 
  RH = NH 
  RUL = OHNULO-1

H 
 
Substituting these into equation 4.6 gives: 
 
   NHOHNULO-1

HRLLOHOULOLLVNLL = NHOHNULOULNLLOLLVNLL 
  => O-1

HRLLOHOUL = OULNLL 
  => O-1

ULO-1
HRLLOHOUL = NLL        (4.7) 

 
Again, as you would expected, the original and required matrix stacks do not equal each other therefore 
in order to use the required stack format, all the rotation matrices for each frame for the lower leg need 
to be recalculated as outlined in Equation 4.7. 
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At this point a pattern emerges from for the recalculation step, which does in fact hold for any bone in 
the hierarchical structure, and is generalised in equation 4.8, where n is the current bone whose parent 
is n-1 and n=0 is the bone at the root of the hierarchy. 
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Up to this point, the frame rotation and base position matrices have been kept separate, however as 
previously mentioned, it would be more advantageous to combine these two into a single frame rotation 
matrix.  This process simply requires the additional post-multiplication of On to Equation 4.8, resulting 
in Equation 4.9. 
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Table 4.1 summarises the data manipulation process for which BVH files are subject to during the 
parsing of the file.  In contrast, the only pre-processing that HTR files undergo during the file parsing 
phase is to combine each bone’s frame rotation matrix and base position rotation matrix into a single 
set of Euler angles per frame. 
 

Table 4.1: Summary of BVH conversion process 
 
Appendices B & C contain complete C++ source code that handles the parsing of both the BVH and 
HTR motion capture formats respectively.  The source code illustrates all of the required steps needed 

BVH Manipulation Process Reasons For Performing This Process 
 

1) Convert the vector length of a bone into a 
single bone length and 3 Euler angles, which 
needs to be with respect to the bone’s parent axis 
orientation. 

a) Having the bone length along a single axis 
assists in the mapping of 3D objects to the bone 
itself. 
 
b) The use of a single bone length means that the 
end point of the limb is more intuitive to image 
and further allows simplistic angle constraints to 
be quickly realised – i.e. there are no additional 
rotational factors introduced unlike a vector 
representation of a limb. 
 

2) Recalculate the frame rotation matrix based on 
the new representation of bone lengths and Euler 
angles. 

a) Having converted the original vector 
representation of the bone length and orientation 
from the global coordinate system to the parent’s 
local coordinate system, the global matrix stack 
no longer follows the desired structure.  Therefore 
each frame rotation matrix for each bone needs to 
be recalculated, the equation for which is 
presented in Equation 4.9 
 
b) The reformatting makes it possible to use the 
same hierarchical drawing algorithm to display 
both BVH and HTR motion formats (outlined 
later).   
 
c) Using the reformatted representation also 
means that further data manipulation is made 
simpler by virtue of the fact that the data 
structures are standardised, regardless of the 
original file format. 
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to convert the file from the standard format outlined in section 3 to the data structures indicated in 
figure 4.1. 
 
With the data loaded into memory in a defined format and structure, displaying the motion to screen is 
a trivial task.  Figure 4.5 illustrates a fragment of code for a recursive algorithm using OpenGL libraries 
that draws a stick skeletal structure for a given frame, currentframe, to the screen. 
 
The bone length in the above implementation is always aligned along the y-axis and since any per-
frame scaling of the HTR file only applies to a single value (in the case of a stick character), instead of 
pushing a complete scaling matrix on to the global stack, a single multiplication is performed.  This 
multiplication simply reduces or enlarges the bone length, which in turn is used to draw the end point 
of the particular bone, thereby reducing the computational load in displaying the motion. 

 
 
5 Summary 
 
A number of motion capture file formats that are in use today have been highlighted and 2 of the more 
popular ones have been discussed in detail.  However, since each format contains enough data to 
display an animation is any one format better than another?  The answer to this question depends on the 
intended application of the motion data, which can vary from analysis, editing or simply playback.  
When concerned only with displaying an animation, the desirable aspects of the data are compactness 
and absolute positions for limbs, which eliminates the need for a hierarchical rendering algorithm.  This 
means that it is both quick to load and display frames to the screen.  From the formats discussed in 
Table 3.1, the BRD format most closely matches these properties, however further optimisation can be 
achieved by converting the file into a binary state as opposed to the existing ASCII format. 
 
The desirable properties for motion editing are almost completely opposite to those of displaying 
animations, where in many cases, more is better.  The most useful property to have for character editing 
is that of a hierarchical structure so that the bones can be considered locally and regardless of the 
changes made to parent limbs, the child bones always maintain a specified transformational 
relationship.  All of the modern motion capture formats are based on hierarchical structures, which 
include the ASF/AMC, BVH and HTR formats.  Of these 3 file formats, the hierarchy of BVH files is 
arguably the more compact and concise, however this means that the data is not broken down into as 
much detail as the ASF/AMC or HTR formats.  As previously discussed, the problem with the BVH 
file hierarchy is that it assumes the bone length along a vector as opposed to a scalar, however the 
ASF/AMC and HTR formats both define rotational values and a scalar to obtain the BVH’s equivalent 
bone vector. 
 

 void EvaluateChildren(NODE* node) 
{ 
  glPushMatrix(); 
    glTranslatef(node->offset[0] + node->froset[currentframe][0], node->offset[1] + 

node->froset[currentframe][1], node->offset[2] + node->froset[currentframe][2]); 
 
    glRotatef(node->freuler[currentframe][0], curmocapseg->header->euler[0][0], 

curmocapseg->header->euler[0][1], curmocapseg->header->euler[0][2]); 
    glRotatef(node->freuler[currentframe][1], curmocapseg->header->euler[1][0], 

curmocapseg->header->euler[1][1], curmocapseg->header->euler[1][2]); 
    glRotatef(node->freuler[currentframe][2], curmocapseg->header->euler[2][0], 

curmocapseg->header->euler[2][1], curmocapseg->header->euler[2][2]); 
   
    glBegin(GL_LINES); 
      glColor3f(node->colour[0], node->colour[1], node->colour[2]); 
      glVertex3f(0.0f, 0.0f, 0.0f); 
      glVertex3f(0.0f, node->length*node->scale[currentframe], 0.0f); 
    glEnd(); 
 
    if (node->children) 
      for (int i=0; i<node->noofchildren; i++) 
        EvaluateChildren(node->children[i]); 
  glPopMatrix(); 
}  

Figure 4.5: Recursive algorithm for drawing a stick figure using OpenGL libraries 
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After the property of hierarchical data, other properties that could prove useful during motion editing 
include details about the environment in which the data was captured.  Examples of environmental data 
include the axis of gravity or even more basic properties such as the metric units used.  The BVH 
format fails to capture any of these details, however the HTR format provides a better level of success, 
while ASC/AMC provides even more data than HTR files by including details about channel limits. 
 
With any motion in a hierarchical format, the rendering algorithm needs to reflect this therefore a 
recursive procedure needs to be implemented to render the animation to the screen.  This style of 
rendering is more costly than simply pushing vertex coordinates into the graphics pipeline, so in many 
cases once any motion editing has been achieved and no further editing will take place the files can be 
converted to an optimal version that is used for displaying only. 
 
As an additional property to consider for motion editing formats, it would still be advantageous to have 
the data in a compact format.  However at present the formats tend to be in an ASCII based format 
rather than binary which takes on average 3 times the space of binary data, but al least makes them 
human readable.  A binary format would further assist in the parsing of the file since the large numbers 
of floats would be represented as their binary representations as opposed to text based which need to be 
converted into float representations before they are of any use.  It should however be noted at this point 
that byte ordering might be a platform-independence problem with binary formats since Intel-based 
machines store data using “little-Endian”9, which is in the reverse order of Macintosh machines that use 
“big-Endian”10. 
 
With the ASC/AMC file format being such a good all round format for motion editing, a future revision 
of this document will contain a greater level of detail regarding its format and techniques to parse the 
file, similar to that of the presently described BVH and HTR files.  Updated version of this document 
will be posted at http://www.dcs.shef.ac.uk/~mikem under Links → Additional Resources. 

                                                
9 Little-Endian stores the most significant byte on the right of a word 
10 Big-Endian stores the most significant byte on the left of a word 

http://www.dcs.shef.ac.uk/~mikem
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Appendix A: References & Bibliography 
 
A.1 References 
 
Max Discreet’s 3D Studio Max & Character Studio, http://www2.discreet.com 
Maya Alias Wavefront’s Maya 3, http://www.aliaswavefront.com 
Poser Curious Labs’s Poser 4, http://www.curiouslabs.com/products/poser4 
 
A.2 Bibliography 
 
This section only contains references to books and papers that specifically discuss the application of 
character animation and motion capture data.  A detailed list of texts on motion capture modification 
techniques can be found at http://www.dcs.shef.ac.uk/~mikem. 
 
A.2.1 Books 
 
Jung, M., Fischer, R., Gleicher, M., Thingvold, J., Bevan, M., “Motion Capture and Editing”, A K 
Peters, November 2000 
 
Maestri, G., “Digital Character Animation”, New Riders Publishing, 1996 
 
Menache, A., “Understanding Motion Capture for Computer Animation and Video Games”, Morgan 
Kaufmann, August 1999 
 

The Menache book, “Understanding Motion Capture for Computer Animation and Video Games”, 
provides a good overview of the topic of motion capture with detailed examples of its application in 
movies.  It also introduces some of the basic mathematical techniques that could be used to 
manipulate the motion data and a review of some of the popular file formats.  While this book does 
provide a good basis for understanding motion capture, it contains very little information for more 
experienced people who already have a working knowledge of motion capture, except possibly in 
defining some motion capture formats.  In all, the book is a good starting point for newcomers to 
the subject, however it lacks finer details for the experienced person. 

  
S. Reese, “3D Studio Max Clay Sculpture, Digitizing, & Motion Capture”, Coriolis Group, August 
1997 
 
 
A.2.2 Papers 
 
Bodenheimer, B., Rose, C., Rosenthal, S., Pella, J., “The process of motion capture: Dealing with the 
data”, Computer Animation and Simulation '97, p. 3-18, 1997 
 

The paper by Bodenheimer et al, “Processing Motion Capture Data to Achieve Positional 
Accuracy”, provides an in-depth discussion on how the raw motion data is captured which in turn 
is built into a skeletal structure.  The paper also discusses the problem of removing any noise from 
the signals in order to achieve smooth motion curves for the channels of the skeleton.  This paper 
introduces more advanced topics in the data gathering process of motion capture than Menache, 
however does expect a certain level of understanding.  The mathematics presented in this paper is 
also more advanced, discussing the use of inverse kinematics to optimise the resulting motion.  To 
sum up, this paper gives an advanced look at the processes involved in the motion capture 
technique, however it is only one avenue of a broad ranging topic. 

 
Choi, K., Park, S., Ko, H., “Processing Motion Capture Data to Achieve Positional Accuracy”, 
Graphical Models and Image Processing 61: 260-273, 1999 
 
Magnenat-Thalmann, N., Thalmann, D., “Modelling and Motion Capture Techniques for Virtual 
Environments: International Workshop”, Captech'98, Geneva, Switzerland, November 26-27, 1998 
 
Yu, Q., Terzopoulos, D., “Synthetic Motion Capture for Interactive Virtual Worlds”, Computer 
Animation, p. 2-10, June 8-10, 1998 
 

http://www2.discreet.com
http://www.aliaswavefront.com
http://www.curiouslabs.com/products/poser4
http://www.dcs.shef.ac.uk/~mikem
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Appendix B: C++ Source Code For BVH File Parsing 
 
#include <stdio.h> 
#include <string.h> 
#include <math.h> 
#include "BVHFormat.h" 
 
bool BVHFormat::ImportData(const char *filename) 
{ 
  int read, i, j, where; 
  int pos[8];           // Used to determine the position of the next char to write 
  char line[8][40];     // Used to store the attribute and the corresponding value 
  char buffer[4097]; 
  int section = 0;      // Indicates which section is currently being processed 
  NODE *curnode=0;      // Used to indicate the current node that is being processed 
  int index, channels = 0; 
  bool endsite = false; 
 
  header->scalefactor = 1.0f; 
  header->noofsegments = 0; 
  header->noofframes = 0; 
  header->datarate = 0; 
   
  xpos = 1; 
  ypos = 2; 
  zpos = 0; 
   
  header->euler[0][1] = header->euler[0][0] = 0; 
  header->euler[0][2] = 1; 
   
  header->euler[1][2] = header->euler[1][1] = 0; 
  header->euler[1][0] = 1; 
   
  header->euler[2][2] = header->euler[2][0] = 0; 
  header->euler[2][1] = 1; 
 
  header->callib = 0.03f; 
  header->degrees = true; 
  header->scalefactor = 1.0f; 
 
  FILE *file = fopen(filename, "rb"); 
  if (file) 
  { 
    // Process the "Hierarchy" section of the file 
    read = fread(buffer,1,4096,file); 
    buffer[read] = '\0'; 
    i = strstrEx(buffer, "HIERARCHY"); 
    i+=strstrEx(buffer + i, char(10)); 
    while (buffer[++i] < 32); 
 
    where = pos[0] = pos[1] = pos[2] = pos[3] = pos[4] = pos[5] = pos[6] = pos[7] = 0; 
    // Process each line in the header 
    while (read) 
    { 
      while (i<read) 
      { 
        if ((buffer[i] == char(10) && pos[0]) || (section==2 && where==3)) 
        { 
          // Process line 
          line[7][pos[7]] = line[6][pos[6]] = line[5][pos[5]] = line[4][pos[4]] =  

 line[3][pos[3]] = line[2][pos[2]] = line[1][pos[1]] = line[0][pos[0]] = '\0'; 
          if (!section) 
          { 
            // Process Hierarchy 
            if (strcompEx(line[0], "ROOT")) 
            { 
              if (root) 
              { 
                strcpy(error, "BVH file contains more than one skeleton which is currently 

 unsupported"); 
                fclose(file); 
                return false; 
              } 
              else 
              { 
                EnlargeNodeList(); 
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                root = nodelist[header->noofsegments++] = (NODE*) malloc(sizeof(NODE)); 
                root->name = (char*) malloc(strlen(line[1]) + 1); 
                strcpy(root->name, line[1]); 
                root->DOFs = 0; 
                SetupChildren(root, 0); 
                SetupColour(root); 
                SetupEuler(root); 
                root->parent = 0; 
                root->length = 0.0f; 
                root->object=0; 
                root->noofconstraints=0; 
                root->constraints=0; 
                curnode = root; 
              } 
            } 
            else if (strcompEx(line[0], "JOINT")) 
            { 
              IncreaseChildren(curnode); 
              EnlargeNodeList(); 
 
              curnode->children[curnode->noofchildren-1] = nodelist[header->noofsegments++] = 

    (NODE*) malloc(sizeof(NODE)); 
              curnode->children[curnode->noofchildren-1]->parent = curnode; 
              curnode = curnode->children[curnode->noofchildren-1]; 
              curnode->name = (char*) malloc(strlen(line[1]) + 1); 
              strcpy(curnode->name, line[1]); 
              curnode->DOFs = 0; 
              SetupChildren(curnode,0); 
              SetupColour(curnode); 
              SetupEuler(curnode); 
              curnode->length = 0.0f; 
              curnode->object=0; 
              curnode->noofconstraints=0; 
              curnode->constraints=0; 
            } 
            else if (strcompEx(line[0], "OFFSET")) 
            { 
              float len, x, y, z, rx, ry, rz, fact; 
              float xyz[3]; 
              x = (float) atof(line[1]) * header->callib; 
              y = (float) atof(line[2]) * header->callib; 
              z = (float) atof(line[3]) * header->callib; 
              rx = ry = rz = 0.0f; 
 
              len=(float)sqrt(sqr(x)+sqr(y)+sqr(z)); 
              if (len==0) 
                len=1; 
              x/=len; 
              y/=len; 
              z/=len; 
 
              NODE *tnode = curnode->parent; 
              if (tnode && !endsite) 
                tnode=tnode->parent; 
              if (tnode) 
                RotateSegment(x, y, z, tnode); 
 
              if (fabs(x)<0.00001) 
              { 
                if (y<0) 
                  rz=PI; 
              } 
              else 
                rz=(float) atan(y/x) + (x>=0 ? -PI/2 : PI/2); 
 
              if (fabs(rz) > 0.00001)// && fabs(rz) < 1.56) 
                rx = (float)acos(y/cos(rz)) * (z<0? -1 : 1); 
 
              xyz[0] = (float) -sin(rz); 
              xyz[1] = (float) (cos(rx)*cos(rz)); 
              xyz[2] = (float) (sin(rx)*cos(rz)); 
 
              fact = xyz[0]/xyz[2]; 
              if (fabs(xyz[2]-xyz[0])>0.18)// && fabs(rz)<1.56) 
                ry = (float) asin( (x-z*fact) / (xyz[2]+xyz[0]*fact)); 
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              if (!endsite) 
              { 
                float tx, ty, tz; 
                if (curnode!=root && curnode->parent->length==0.0f) 
                { 
                  curnode->parent->euler[xpos]=rx*180/PI; 
                  curnode->parent->euler[ypos]=ry*180/PI; 
                  curnode->parent->euler[zpos]=rz*180/PI; 
                  curnode->parent->length = len; 
 
                  float cx=(float) cos(rx), cy=(float) cos(ry), cz=(float) cos(rz); 
                  float sx=(float) sin(rx), sy=(float) sin(ry), sz=(float) sin(rz); 
 
                  // Calc Y-1X-1Z-1 to make sure any errors in the rotation are taken care of  

in the offset from the parent 
                  // Ideal results should be tx=tz=0 and ty=1 
                  float a, b, c, d, e, f, g, h, i; 
                  a=cy*cz-sx*sy*sz; 
                  b=cy*sz+sx*sy*cz; 
                  c=-cx*sy; 
                  d=-cx*sz; 
                  e=cx*cz; 
                  f=sx; 
                  g=sy*cz+sx*cy*sz; 
                  h=sy*sz-sx*cy*cz; 
                  i=cx*cy; 
                  tx=a*x+b*y+c*z; 
                  ty=d*x+e*y+f*z; 
                  tz=g*x+h*y+i*z; 
                  SetupOffset(curnode, tx*len, ty*len, tz*len); 
                } 
                else 
                  SetupOffset(curnode, x*len, y*len, z*len); 
              } 
              else 
              { 
                curnode->euler[xpos]=rx*180/PI; 
                curnode->euler[ypos]=ry*180/PI; 
                curnode->euler[zpos]=rz*180/PI; 
                curnode->length = len; 
              } 
            } 
            else if (strcompEx(line[0], "CHANNELS") && !endsite) 
            { 
              channels+=atoi(line[1]); 
              int d=2; 
              while (line[d] && d < 8) 
              { 
                if ((line[d][0]&0xdf)=='X') 
                { 
                  if ((line[d][1]&0xdf)=='R') 
                    curnode->DOFs|=XROT; 
                  else if ((line[d][1]&0xdf)=='P') 
                    curnode->DOFs|=XTRA; 
                } 
                else if ((line[d][0]&0xdf)=='Y') 
                { 
                  if ((line[d][1]&0xdf)=='R') 
                    curnode->DOFs|=YROT; 
                  else if ((line[d][1]&0xdf)=='P') 
                    curnode->DOFs|=YTRA; 
                } 
                else if ((line[d][0]&0xdf)=='Z') 
                { 
                  if ((line[d][1]&0xdf)=='R') 
                    curnode->DOFs|=ZROT; 
                  else if ((line[d][1]&0xdf)=='P') 
                    curnode->DOFs|=ZTRA; 
                } 
                ++d; 
              } 
            } 
            else if (strcompEx(line[0], "END") && strcompEx(line[1], "SITE")) 
              endsite = true; 
            else if (line[0][0]=='}') 
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            { 
              if (endsite) 
                endsite = false; 
              else 
                curnode = curnode->parent; 
            } 
            else if (strcompEx(line[0], "MOTION")) 
            { 
              rot=0; 
              base = new float**[header->noofsegments]; 
              baseinv = new float**[header->noofsegments]; 
              basestd = new float**[header->noofsegments]; 
              for (int i=0; i<header->noofsegments; i++) 
              { 
                base[i]=0; 
                baseinv[i]=0; 
                basestd[i]=0; 
              } 
              ++section; 
            } 
          } 
          else if (section==1) 
          { 
            // Process Motion 
            if (strcompEx(line[0], "FRAMES:")) 
            { 
              header->noofframes = atoi(line[1]); 
              for (int i=0; i<header->noofsegments; ++i) 
                SetupFrames(nodelist[i], header->noofframes); 
              header->currentframe = 0; 
            } 
            else if (strcompEx(line[0], "FRAME") && strcompEx(line[1], "TIME:")) 
            { 
              header->datarate = (int) (1 / (atof(line[2]))); 
              if ((int) (0.49 + (1 / atof(line[2]))) > header->datarate) 
                ++header->datarate; 
            } 
            if (header->datarate && header->noofframes) 
            { 
              ++section; 
              curnode = root; 
              index = 0; 
              endsite = false; 
            } 
          } 
          else 
          { 
            //Process DOFs 
            if (header->currentframe < header->noofframes) 
            { 
              if (curnode->DOFs == 231) 
              { 
                if (!endsite) 
                { 
                  curnode->froset[header->currentframe][0] = (float) atof(line[0]) *  

header->callib; 
                  curnode->froset[header->currentframe][1] = (float) atof(line[1]) *  

header->callib; 
                  curnode->froset[header->currentframe][2] = (float) atof(line[2]) *  

header->callib; 
                  endsite = true; 
                } 
                else 
                { 
                  curnode->freuler[header->currentframe][xpos] = (float) atof(line[1]); 
                  curnode->freuler[header->currentframe][ypos] = (float) atof(line[2]); 
                  curnode->freuler[header->currentframe][zpos] = (float) atof(line[0]); 
                  ReCalcRotations(curnode); 
                  curnode->scale[header->currentframe] = 1.0f; 
                  curnode = nodelist[++index]; 
                  endsite = false; 
                } 
              } 
              else 
              { 
                curnode->froset[header->currentframe][0] = curnode->froset[header-> 
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  currentframe][1] = curnode->froset[header->currentframe][2] = 0.0f; 
                curnode->freuler[header->currentframe][xpos] = (float) atof(line[1]); 
                curnode->freuler[header->currentframe][ypos] = (float) atof(line[2]); 
                curnode->freuler[header->currentframe][zpos] = (float) atof(line[0]); 
                ReCalcRotations(curnode); 
                curnode->scale[header->currentframe] = 1.0f; 
 
                if (index+1 < header->noofsegments) 
                  curnode = nodelist[++index]; 
                else 
                { 
                  ++header->currentframe; 
                  curnode = nodelist[index=0]; 
                } 
              } 
            } 
            else 
              ++section; 
          } 
           
          if (section!=2) 
          { 
            // Move onto the next line and clear current line information 
            j=strstrEx(buffer + i, char(10)); 
            if (j==-1) 
            { 
              if (buffer[4095]!=10) 
              { 
                read = fread(buffer, 1, 4096, file); 
                i = strstrEx(buffer, char(10)); 
              } 
              else 
              { 
                read = fread(buffer, 1, 4096, file); 
                i=0; 
              } 
              buffer[4096] = '\0'; 
            } 
            else 
              i+=j; 
          } 
          where = pos[0] = pos[1] = pos[2] = pos[3] = pos[4] = pos[5] = pos[6] = pos[7] = 0; 
        } 
 
        if (buffer[i] > 44 && buffer[i] < 126) 
          line[where][pos[where]++] = buffer[i++]; 
        else if ((buffer[i]==32 || buffer[i]==9) && pos[where]>0) 
        { 
          ++where; 
          ++i; 
        } 
        else 
          ++i; 
      } 
      read = fread(buffer, 1, 4096, file); 
      buffer[4096] = '\0'; 
      i=0; 
    } 
 
    float num, den; 
    for (i=0; i<header->noofsegments; i++) 
    { 
      // Decompose base pose into ZYX 
      curnode=nodelist[i]; 
      curnode->euler[0]=(float) atan(basestd[i][1][0]/basestd[i][0][0]); 
      if (basestd[i][0][0]<0) 
        if (basestd[i][1][0]<0) 
          curnode->euler[0]-=3.141592f; 
        else 
          curnode->euler[0]+=3.141592f; 
 
      num=(float) (basestd[i][0][2]*sin(curnode->euler[0])-basestd[i][1][2]*cos(curnode-> 

euler[0])); 
      den=(float) (-basestd[i][0][1]*sin(curnode->euler[0])+basestd[i][1][1]*cos(curnode-> 

euler[0])); 
      curnode->euler[2]=(float) atan(num/den)*57.2957795f; 
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      if (den<0) 
        if (num<0) 
          curnode->euler[2]-=180; 
        else 
          curnode->euler[2]+=180; 
               
      num=-basestd[i][2][0]; 
      den=(float) (basestd[i][0][0]*cos(curnode->euler[0])+basestd[i][1][0]*sin(curnode-> 

euler[0])); 
      curnode->euler[1]=(float) atan(num/den)*57.2957795f; 
      if (den<0) 
        if (num<0) 
          curnode->euler[1]-=180; 
        else 
          curnode->euler[1]+=180; 
 
      curnode->euler[0]*=57.2957795f; 
    } 
     
    header->callib = 1.0f; 
    header->euler[0][0]=header->euler[0][1]=0; 
    header->euler[0][2]=1; 
    header->euler[1][0]=header->euler[1][2]=0; 
    header->euler[1][1]=1; 
    header->euler[2][1]=header->euler[2][2]=0; 
    header->euler[2][0]=1; 
    fclose(file); 
    return true; 
  } 
  else 
  { 
    strcpy(error, "Cannot Open File"); 
    return false; 
  } 
} 
 
void BVHFormat::IncreaseChildren(NODE* node) 
{ 
  int i; 
  NODE **temp; 
  if (node->children) 
  { 
    // Parent already has children 
    temp = node->children; 
    temp = (NODE**) malloc(sizeof(NODE*) * node->noofchildren); 
    for (i=0; i<node->noofchildren; ++i) 
      temp[i] = node->children[i]; 
    free(node->children); 
    node->children = (NODE**) malloc(sizeof(NODE*) * ++node->noofchildren); 
    for (i=0; i<node->noofchildren; ++i) 
      node->children[i] = temp[i]; 
    free(temp); 
  } 
  else 
    SetupChildren(node, ++node->noofchildren); 
} 
 
bool BVHFormat::ExportData(const char* filename) 
{ 
  strcpy(error, "Data Export for BVH format has not been implemented"); 
  return false; 
} 
 
void BVHFormat::RotateSegment(float &x, float &y, float &z, NODE* tnode) 
{ 
  float nx, ny, nz; 
  if (tnode->parent) 
    RotateSegment(x, y, z, tnode->parent); 
 
  nx = (float) (cos(-tnode->euler[zpos]*PI/180)*x - sin(-tnode->euler[zpos]*PI/180)*y); 
  ny = (float) (sin(-tnode->euler[zpos]*PI/180)*x + cos(-tnode->euler[zpos]*PI/180)*y); 
  nz = z; 
 
  x = nx; 
  y = (float) (cos(-tnode->euler[xpos]*PI/180)*ny - sin(-tnode->euler[xpos]*PI/180)*nz); 
  z = (float) (sin(-tnode->euler[xpos]*PI/180)*ny + cos(-tnode->euler[xpos]*PI/180)*nz); 
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  nx = (float) (cos(-tnode->euler[ypos]*PI/180)*x + sin(-tnode->euler[ypos]*PI/180)*z); 
  ny = y; 
  nz = (float) (-sin(-tnode->euler[ypos]*PI/180)*x + cos(-tnode->euler[ypos]*PI/180)*z); 
 
  x = nx; 
  y = ny; 
  z = nz; 
} 
 
void BVHFormat::ReCalcRotations(NODE* curnode) 
{ 
  static int activesegment=0; 
  float ang[3]; 
  float num, den; 
  int i; 
 
  if (!rot) 
  { 
    rot=new float*[3]; 
    arot=new float*[3]; 
    trot=new float*[3]; 
    for (i=0; i<3; i++) 
    { 
      rot[i]=new float[3]; 
      arot[i]=new float[3]; 
      trot[i]=new float[3]; 
    } 
  } 
 
  if (!base[activesegment]) 
  { 
    base[activesegment]=new float*[3]; 
    baseinv[activesegment]=new float*[3]; 
    basestd[activesegment]=new float*[3]; 
    for (i=0; i<3; i++) 
    { 
      base[activesegment][i]=new float[3]; 
      baseinv[activesegment][i]=new float[3]; 
      basestd[activesegment][i]=new float[3]; 
    } 
 
    base[activesegment][0][0]=base[activesegment][1][1]=base[activesegment][2][2]=1.0f; 
    base[activesegment][0][1]=base[activesegment][0][2]=0.0f; 
    base[activesegment][1][0]=base[activesegment][1][2]=0.0f; 
    base[activesegment][2][0]=base[activesegment][2][1]=0.0f; 
 
    baseinv[activesegment][0][0]=baseinv[activesegment][1][1]=baseinv[activesegment][2][2]=1.0f; 
    baseinv[activesegment][0][1]=baseinv[activesegment][0][2]=0.0f; 
    baseinv[activesegment][1][0]=baseinv[activesegment][1][2]=0.0f; 
    baseinv[activesegment][2][0]=baseinv[activesegment][2][1]=0.0f; 
 
    ang[0]=curnode->euler[xpos]*0.0174532f; 
    ang[1]=curnode->euler[ypos]*0.0174532f; 
    ang[2]=curnode->euler[zpos]*0.0174532f; 
    CalcRotationMatrix(ang, basestd[activesegment], trot, arot, xpos, ypos, false); 
 
    NODE *tnode=curnode->parent; 
    while (tnode) 
    { 
      ang[0]=tnode->euler[xpos]*0.0174532f; 
      ang[1]=tnode->euler[ypos]*0.0174532f; 
      ang[2]=tnode->euler[zpos]*0.0174532f; 
      CalcRotationMatrix(ang, rot, trot, arot, xpos, ypos, false); 
      matmult(rot, base[activesegment], trot, 3, 3); 
      swap=trot; 
      trot=base[activesegment]; 
      base[activesegment]=swap; 
 
      ang[0]=-ang[0]; 
      ang[1]=-ang[1]; 
      ang[2]=-ang[2]; 
      CalcRotationMatrix(ang, rot, trot, arot, xpos, ypos, true); 
      matmult(baseinv[activesegment], rot, trot, 3, 3); 
      swap=trot; 
      trot=baseinv[activesegment]; 
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      baseinv[activesegment]=swap; 
      tnode=tnode->parent; 
    } 
  } 
 
  ang[0]=curnode->freuler[header->currentframe][xpos]*0.0174532f; 
  ang[1]=curnode->freuler[header->currentframe][ypos]*0.0174532f; 
  ang[2]=curnode->freuler[header->currentframe][zpos]*0.0174532f; 
  CalcRotationMatrix(ang, rot, trot, arot, xpos, ypos); 
 
  matmult(baseinv[activesegment], rot, trot, 3, 3); 
  matmult(trot, base[activesegment], rot, 3, 3); 
  matmult(rot, basestd[activesegment], trot, 3, 3); 
 
  // Decompose frame data into ZYX 
  curnode->freuler[header->currentframe][0]=(float) atan(trot[1][0]/trot[0][0]); 
  if (trot[0][0]<0) 
    if (trot[1][0]<0) 
      curnode->freuler[header->currentframe][0]-=3.141592f; 
    else 
      curnode->freuler[header->currentframe][0]+=3.141592f; 
 
  num=(float) (trot[0][2]*sin(curnode->freuler[header->currentframe][0])-trot[1][2]* 

cos(curnode->freuler[header->currentframe][0])); 
  den=(float) (-trot[0][1]*sin(curnode->freuler[header->currentframe][0])+ 

trot[1][1]*cos(curnode->freuler[header->currentframe][0])); 
  curnode->freuler[header->currentframe][2]=(float) atan(num/den)*57.2957795f; 
  if (den<0) 
    if (num<0) 
      curnode->freuler[header->currentframe][2]-=180; 
    else 
      curnode->freuler[header->currentframe][2]+=180; 
               
  num=-trot[2][0]; 
  den=(float) (trot[0][0]*cos(curnode->freuler[header->currentframe][0])+ 

trot[1][0]*sin(curnode->freuler[header->currentframe][0])); 
  curnode->freuler[header->currentframe][1]=(float) atan(num/den)*57.2957795f; 
  if (den<0) 
    if (num<0) 
      curnode->freuler[header->currentframe][1]-=180; 
    else 
      curnode->freuler[header->currentframe][1]+=180; 
 
  curnode->freuler[header->currentframe][0]*=57.2957795f; 
 
  if (++activesegment>=header->noofsegments) 
    activesegment=0; 
} 
 
BVHFormat::~BVHFormat() 
{ 
  for (int i=0; i<header->noofsegments; i++) 
  { 
    for (int j=0; j<3; j++) 
    { 
      delete[] base[i][j]; 
      delete[] baseinv[i][j]; 
      delete[] basestd[i][j]; 
    } 
    delete[] base[i]; 
    delete[] baseinv[i]; 
    delete[] basestd[i]; 
  } 
  for (int j=0; j<3; j++) 
  { 
    delete[] rot[j]; 
    delete[] arot[j]; 
    delete[] trot[j]; 
  } 
  delete[] base; 
  delete[] baseinv; 
  delete[] basestd; 
  delete[] rot; 
  delete[] arot; 
  delete[] trot; 
} 
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Appendix C: C++ Source Code For HTR File Parsing 
 
#include <stdio.h> 
#include <string.h> 
#include "HTRFormat.h" 
 
bool HTRFormat::ImportData(const char *filename) 
{ 
  int read, i, j, where; 
  int pos[8];           // Used to determine the position of the next char to write 
  char line[8][40];     // Used to store the attribute and the corresponding value 
  char buffer[4097]; 
  int section = 0;      // Indicates which section is currently being processed 
  NODE *tnode;          // Used when setting up the base positions and frames 
  float **base, **rot, **arot, **trot; 
  float ang[3], num, den; 
  bool eof=false; 
 
  base=new float*[3]; 
  rot=new float*[3]; 
  arot=new float*[3]; 
  trot=new float*[3]; 
  for (i=0; i<3; i++) 
  { 
    base[i]=new float[3]; 
    rot[i]=new float[3]; 
    arot[i]=new float[3]; 
    trot[i]=new float[3]; 
  } 
  header->callib = 1.0f; 
  header->scalefactor = 1.0f; 
 
  FILE *file = fopen(filename, "rb"); 
  if (file) 
  { 
    // Process the "Header" section of the file 
    read = fread(buffer,1,4096,file); 
    buffer[read] = '\0'; 
    i = strstrEx(buffer, "[HEADER]"); 
    i+=strstrEx(buffer + i, char(10)); 
    while (buffer[++i] < 32); 
 
    where = pos[0] = pos[1] = pos[2] = pos[3] = pos[4] = pos[5] = pos[6] = pos[7] = 0; 
    // Process each line in the header 
    while (read && !eof) 
    { 
      while (i<read && !eof) 
      { 
        if (buffer[i] =='#' || buffer[i] == char(10)) 
        { 
          // Process line 
          line[1][pos[1]] = line[0][pos[0]] = '\0'; 
          if (line[0][0]=='[') 
          { 
            if (++section==2) 
            { 
              // Body structure has been read and ready to process the base positions 
              // So assign the GLOBAL node to the root pointer 
              root = 0; 
              for (int j=0; j<currentnode && !root; ++j) 
              { 
                if (strcompEx(nodelist[j]->name, "GLOBAL")) 
                { 
                  root = nodelist[j]->children[0]; 
                  root->parent=0; 
                  NODE **temp = (NODE**) malloc(sizeof(NODE*) * header->noofsegments); 
                  int m; 
                  for (m=0; m < j; ++m) 
                    temp[m] = nodelist[m]; 
                  for (m=j+1; m<=header->noofsegments; ++m) 
                    temp[m-1] = nodelist[m]; 
                   
                  for (m=0; m<header->noofframes; ++m) 
                  { 
                    free(nodelist[j]->froset[m]); 
                    free(nodelist[j]->freuler[m]); 
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                  } 
                  free(nodelist[j]->froset); 
                  free(nodelist[j]->freuler); 
                  free(nodelist[j]->scale); 
                  free(nodelist[j]->name); 
                  free(nodelist[j]->children); 
                  free(nodelist[j]); 
                  free(nodelist); 
                  nodelist = temp; 
                  --currentnode; 
                } 
              } 
            } 
            if (section>2) 
            { 
              char temp[40]; 
              j = 1; 
              while((temp[j-1]=line[0][j]) && line[0][++j]!=']'); 
              temp[j-1] = '\0'; 
              tnode = 0; 
              for (j=0; j<currentnode && !tnode; ++j) 
              { 
                if (!strcmp(nodelist[j]->name, temp)) 
                  tnode = nodelist[j]; 
              } 
              if (!tnode) 
              { 
                if (strcmp(temp, "EndOfFile")) 
                { 
                  strcpy(error, "Unknown node has been encountered while processing the 

 frames"); 
                  fclose(file); 
                  return false; 
                } 
                else 
                { 
                  eof=true; 
                } 
              } 
            } 
          } 
          else if (line[0][0] && line[1][0]) 
          { 
            if (!section) 
            { 
              if (!ProcessHeader(line, pos)) 
              { 
                fclose(file); 
                return false; 
              } 
            } 
            else if (section==1) 
            { 
              if (!ProcessSegments(line, pos)) 
              { 
                fclose(file); 
                return false; 
              } 
            } 
            else if (section==2) 
            { 
              // Setup the base positions for the segment 
              line[7][pos[7]] = line[6][pos[6]] = line[5][pos[5]] = line[4][pos[4]] = 

line[3][pos[3]] = line[2][pos[2]] = line[1][pos[1]] = '\0'; 
              tnode = 0; 
              for (j=0; j<currentnode && !tnode; ++j) 
                if (!strcmp(nodelist[j]->name, line[0])) 
                  tnode = nodelist[j]; 
              SetupColour(tnode); 
              SetupOffset(tnode, (float) atof(line[1]) * header->callib, (float) atof(line[2])* 

header->callib, (float) atof(line[3]) * header->callib); 
              tnode->euler[xpos]=(float) atof(line[4]); 
              tnode->euler[ypos]=(float) atof(line[5]); 
              tnode->euler[zpos]=(float) atof(line[6]); 
              if (!header->degrees) 
              { 
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                tnode->euler[xpos]*=57.2957795f; 
                tnode->euler[ypos]*=57.2957795f; 
                tnode->euler[zpos]*=57.2957795f; 
              } 
              tnode->length = (float) atof(line[7]) * header->callib; 
              tnode->DOFs = XROT | YROT | ZROT | XTRA | YTRA | ZTRA; 
            } 
            else if (section>2) 
            { 
              // Process the frame information for tnode 
              line[7][pos[7]] = line[6][pos[6]] = line[5][pos[5]] = line[4][pos[4]] = 

line[3][pos[3]] = line[2][pos[2]] = line[1][pos[1]] = '\0'; 
              long frame = atol(line[0]) - 1; 
              if (!frame) 
              { 
                ang[0]=tnode->euler[xpos]*0.017453f; 
                ang[1]=tnode->euler[ypos]*0.017453f; 
                ang[2]=tnode->euler[zpos]*0.017453f; 
                CalcRotationMatrix(ang, base, trot, arot, xpos, ypos); 
              } 
 
              if (header->degrees) 
              { 
                ang[0]=(float) atof(line[4])*0.017453f; 
                ang[1]=(float) atof(line[5])*0.017453f; 
                ang[2]=(float) atof(line[6])*0.017453f; 
              } 
              else 
              { 
                ang[0]=(float) atof(line[4]); 
                ang[1]=(float) atof(line[5]); 
                ang[2]=(float) atof(line[6]); 
              } 
 
              CalcRotationMatrix(ang, rot, trot, arot, xpos, ypos); 
              matmult(base, rot, trot, 3, 3); 
 
              // Decompose into ZYX 
              tnode->freuler[frame][0]=(float) atan(trot[1][0]/trot[0][0]); 
              if (base[0][0]<0) 
                if (base[1][0]<0) 
                  tnode->freuler[frame][0]-=3.141592f; 
                else 
                  tnode->freuler[frame][0]+=3.141592f; 
 
              num=(float) (trot[0][2]*sin(tnode->freuler[frame][0])-trot[1][2]*cos(tnode-> 

freuler[frame][0])); 
              den=(float) (-trot[0][1]*sin(tnode->freuler[frame][0])+trot[1][1]*cos(tnode-> 

freuler[frame][0])); 
              tnode->freuler[frame][2]=(float) atan(num/den)*57.2957795f; 
              if (den<0) 
                if (num<0) 
                  tnode->freuler[frame][2]-=180; 
                else 
                  tnode->freuler[frame][2]+=180; 
               
              num=-trot[2][0]; 
              den=(float) (trot[0][0]*cos(tnode->freuler[frame][0])+trot[1][0]*sin(tnode-> 

freuler[frame][0])); 
              tnode->freuler[frame][1]=(float) atan(num/den)*57.2957795f; 
              if (den<0) 
                if (num<0) 
                  tnode->freuler[frame][1]-=180; 
                else 
                  tnode->freuler[frame][1]+=180; 
 
              tnode->freuler[frame][zpos]*=57.2957795f; 
 
              tnode->froset[frame][0]=(float) atof(line[1])*header->callib; 
              tnode->froset[frame][1]=(float) atof(line[2])*header->callib; 
              tnode->froset[frame][2]=(float) atof(line[3])*header->callib; 
              tnode->scale[frame]=(float) atof(line[7]); 
            } 
          } 
           
          // Move onto the next line and clear current line information 
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          j=strstrEx(buffer + i, char(10)); 
          if (j==-1) 
          { 
            if (buffer[4095]!=10) 
            { 
              read = fread(buffer, 1, 4096, file); 
              i = strstrEx(buffer, char(10)); 
            } 
            else 
            { 
              read = fread(buffer, 1, 4096, file); 
              i=0; 
            } 
            buffer[4096] = '\0'; 
          } 
          else 
            i+=j; 
          where = pos[0] = pos[1] = pos[2] = pos[3] = pos[4] = pos[5] = pos[6] = pos[7] = 0; 
        } 
 
        if (buffer[i] > 44 && buffer[i] < 123) 
          line[where][pos[where]++] = buffer[i++]; 
        else if ((buffer[i]==32 || buffer[i]==9) && pos[where]>0)// && (where==0 || section>1)) 
        { 
          ++where; 
          ++i; 
        } 
        else 
          ++i; 
      } 
      read = fread(buffer, 1, 4096, file); 
      buffer[4096] = '\0'; 
      i=0; 
    } 
 
    header->degrees=true; 
    header->euler[0][0]=header->euler[0][1]=0; 
    header->euler[0][2]=1; 
    header->euler[1][0]=header->euler[1][2]=0; 
    header->euler[1][1]=1; 
    header->euler[2][1]=header->euler[2][2]=0; 
    header->euler[2][0]=1; 
 
    fclose(file); 
    for (i=0; i<3; i++) 
    { 
      delete[] base[i]; 
      delete[] rot[i]; 
      delete[] arot[i]; 
      delete[] trot[i]; 
    } 
    delete[] base; 
    delete[] rot; 
    delete[] arot; 
    delete[] trot; 
    return true; 
  } 
  else 
  { 
    strcpy(error, "Cannot Open File"); 
    return false; 
  } 
} 
 
bool HTRFormat::ProcessHeader(char line[2][40], int pos[2]) 
{ 
  if (strcompEx(line[0], "FILETYPE")) 
  { 
    if (!strcompEx(line[1], "HTR")) 
    { 
      strcpy(error, "Filetype is not HTR"); 
      return false; 
    } 
  } 
  else if (strcompEx(line[0], "DATATYPE")) 
  { 
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    // Datatype describes the order of transformation composition of translation, rotation 
    // and scale values.  Almost always "HTRS" - Translation, Rotation, Scale 
    if (!strcompEx(line[1], "HTRS")) 
    { 
      strcpy(error, strcat("Error: Incompatible transformation composition: ",line[1])); 
    } 
  } 
  else if (strcompEx(line[0], "FILEVERSION")) 
  { 
    if (atoi(line[1])!=1) 
    { 
      strcpy(error, "File version not not recognised"); 
      return false; 
    } 
  } 
  else if (strcompEx(line[0], "NUMSEGMENTS")) 
  { 
    header->noofsegments = atoi(line[1]); 
    nodelist = (NODE**) malloc(sizeof(NODE*) * (header->noofsegments + 1)); 
    currentnode = 0; 
  } 
  else if (strcompEx(line[0], "NUMFRAMES")) 
    header->noofframes = atol(line[1]); 
  else if (strcompEx(line[0], "DATAFRAMERATE")) 
    header->datarate = atoi(line[1]); 
  else if (strcompEx(line[0], "EULERROTATIONORDER")) 
    // Setup the euler rotation angle 
    for (int i=0; i<3; ++i) 
      switch (line[1][i]&0xdf) 
      { 
        case 'Z': 
          zpos = i; 
          break; 
        case 'Y': 
          ypos = i; 
          break; 
        case 'X': 
          xpos = i; 
          break; 
      } 
  else if (strcompEx(line[0], "CALIBRATIONUNITS")) 
    if (strcompEx(line[1], "MM")) 
      header->callib = 1.0f / 1000.0f; 
    else if (strcompEx(line[1], "DM")) 
      header->callib = 1.0f / 10.0f; 
    else if (strcompEx(line[1], "CM")) 
      header->callib = 1.0f / 100.0f; 
    else if (strcompEx(line[1], "INCHES")) 
      header->callib = 1.0f / 40.0f; 
    else 
      header->callib = 1.0f; 
  else if (strcompEx(line[0], "ROTATIONUNITS")) 
    if (strcompEx(line[1], "DEGREES")) 
      header->degrees = true; 
    else 
      header->degrees = false; 
  else if (strcompEx(line[0], "SCALEFACTOR")) 
    header->scalefactor = (float) atof(line[1]); 
 
  return true; 
} 
 
bool HTRFormat::ProcessSegments(char line[2][40], int pos[2]) 
{ 
  // This method simply reads in each segment and makes sure that a node exists for it, linking 

the nodes as it goes 
  // Create an array of nodes that will hold the names of each segment which will be linked 
  NODE *parent = 0, *child = 0, **temp;   // temp used to add new children to parent nodes 
  int i; 
 
  // line[0] = Child     line[1] = Parent 
  // Get the position within the segment structure of each node - if there is no current entry 

then create a new on at the end 
  for (i=0; i<currentnode; ++i) 
  { 
    if (!strcmp(nodelist[i]->name, line[0])) 
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      child = nodelist[i]; 
    if (!strcmp(nodelist[i]->name, line[1])) 
      parent = nodelist[i]; 
  } 
  
  if (child && child==parent) 
  { 
    strcpy(error, "Error: A cyclic child-parent relationship has been detected in the Segment 

section of the file"); 
    return false; 
  } 
 
  if (!child) 
  { 
    nodelist[currentnode] = (NODE*) malloc(sizeof(NODE)); 
    nodelist[currentnode]->name = (char*) malloc(sizeof(char) * (strlen(line[0]) + 1)); 
    nodelist[currentnode]->object=0; 
    nodelist[currentnode]->noofconstraints=0; 
    nodelist[currentnode]->constraints=0; 
    strcpy(nodelist[currentnode]->name, line[0]); 
    SetupChildren(nodelist[currentnode], 0); 
    SetupFrames(nodelist[currentnode], header->noofframes); 
    child = nodelist[0]; 
    child = nodelist[currentnode++]; 
  } 
 
  if (!parent) 
  { 
    nodelist[currentnode] = (NODE*) malloc(sizeof(NODE)); 
    nodelist[currentnode]->name = (char*) malloc(sizeof(char) * (strlen(line[1]) + 1)); 
    nodelist[currentnode]->object=0; 
    nodelist[currentnode]->noofconstraints=0; 
    nodelist[currentnode]->constraints=0; 
    strcpy(nodelist[currentnode]->name, line[1]); 
    SetupChildren(nodelist[currentnode], 0); 
    SetupFrames(nodelist[currentnode], header->noofframes); 
    parent = nodelist[currentnode++]; 
  } 
  child->parent=parent; 
 
  if (parent->children) 
  { 
    // Parent already has children 
    temp = (NODE**) malloc(sizeof(NODE*) * parent->noofchildren); 
    for (i=0; i<parent->noofchildren; ++i) 
      temp[i] = parent->children[i]; 
    free(parent->children); 
    parent->children = (NODE**) malloc(sizeof(NODE*) * ++parent->noofchildren); 
    for (i=0; i<parent->noofchildren; ++i) 
      parent->children[i] = temp[i]; 
    free(temp); 
    parent->children[parent->noofchildren-1] = child; 
  } 
  else 
  { 
    // Parent does not have any children 
    SetupChildren(parent, ++parent->noofchildren); 
    parent->children[0] = child; 
  } 
 
  if (currentnode>header->noofsegments+1) 
  { 
    strcpy(error, "There are more segments in the datafile than specified in the header section 

of the file.\nCannot open data file"); 
    return false; 
  } 
  else 
    return true; 
} 
 
bool HTRFormat::ExportData(const char* filename) 
{ 
  strcpy(error, "Data Export for HTR format has not been implemented"); 
  return false; 
} 
 


