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Abstract

This thesis addresses the problem of how to improve the computer-based methods for
forensic craniofacial reconstruction. The aim of forensic craniofacial reconstruction tech-
niques is to estimate the face of a person when only the skull remains are available for
identi�cation. From manual to computerised techniques, di¤erent solutions have been
proposed for estimating the face from the skull in a reliable and consistent way. In both
types of systems, an issue is that the results produced are not reproducible consistently
and are di¢ cult to evaluate. This issue arises mainly because the reconstruction methods
are based on a limited type of anthropometric data about the skull and face relationship.
In this thesis, a method to improve the craniofacial reconstruction process is developed by
focusing on two aspects. First, a method is developed which uses MRI data to produce
detailed data to analyse the skull and face relation. 3D skull and face models can be
generated in a systematic way, o¤ering the possibility to extend these sources as needed
(i.e. it is possible to create data sources designed for speci�c populations). Second, a
craniofacial reconstruction system is created that exploits the advantages of the detailed
3D skull and face models. As a result, the system can produce estimations of faces that
can be assessed quantitatively, and produced in a systematic way.
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Chapter 1

Introduction

In forensic facial reconstruction applications the analysis of the skull is the primary means
of recognizing the identity of an individual when all other identi�cation tests are not pos-
sible (e.g. DNA identi�cation, dental records, x-rays, etc.) [36]. In traditional techniques,
a cast of the skull is made and clay layers are added to reconstruct the soft tissue. This
process is guided by a set of standard data tables recording tissue depth at particular
landmark points on the face. The forensic artist places these landmarks on the cast of the
skull using his knowledge of the skull-face relationship. Then, on the basis of his personal
experience and expertise, he estimates the most appropriate facial shape. Computerized
versions of the process are also possible and are used to add �exibility and speed to the
process and in other cases are used to create face models algorithmically.

Craniofacial reconstruction methods work under the assumption that "skulls are as
particular as the individual face they de�ne" [109]. Anthropometric data provides the
methods with information for estimating the facial shape given a skull structure and a
set of attributes of the individual in question. Figure 1.1 shows a schematic example of
anthropometric landmarks in which the relation between the skull and face is known. This
relation has been studied and applied for several years as the base for creating craniofacial
reconstructions. The forehead, the margins of the eyes, the cheekbones, the bridge of the
nose and the area above the lips and the chin are de�ned directly from the shape of the
skull contours. However, other parts of the face such as the shape of the eyes, the nose
and the lips cannot be determined directly from the skull [36].

The human head structure has several properties that can provide the craniofacial
reconstruction process with additional information to support the process. For instance,
in situations when the skull is incomplete, the aspect of symmetry is important to estab-
lish the proportions of missing parts. If the skull is badly damaged or fragmented, and
depending on the extent of bone loss or damage, a reconstruction is achieved by assuming
a certain degree of symmetry in the skull. While very few skulls are truly symmetrical,
as previously expressed, the asymmetry has to be extreme before it begins to a¤ect the
outward appearance of the face signi�cantly, and therefore "any slight error in restoring
the missing portions of a skull can normally be accommodated" [73, 69].

The main issues in current craniofacial methods are, in the case of traditional meth-
ods, that the process is time consuming, requires specialized knowledge and also artistic
and sculptural skills to produce the reconstructed face. The results are not easily repro-
ducible and cannot be assessed quantitatively. In the case of computerized approaches
that mimic the manual approaches there are similar limitations. In other cases, when
computational approaches are used for estimating the face algorithmically, there is a lack
of anthropometric data to generate the facial models.
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Figure 1.1: Relation between skull and face landmarks as used by forensic artists (repro-
duced with permission of C.Wilkinson [109]).

Both traditional and computerized approaches rely on the data provided by anthropo-
metric tables. This data contains a limited number of landmark points, usually around 30
points. Secondly, the main sources of data have been gathered from measuring cadavers of
a speci�c population (e.g. adult Caucasians). The limited data existing on the skull-face
relationship is currently an issue for creating computerized craniofacial reconstruction sys-
tems that can produce objective, reproducible and consistent facial reconstructions that
can be quantitatively assessed. The tissue depth data sets most commonly used have
traditionally been compiled from measurements taken by inserting a needle into various
points on cadavers. The initial measurements were mainly carried out on Caucasians [49]
(as cited in [73]), Japanese [96] (as cited in [99]), Australians of European descent [34],
and Malaysians [60]. These have increased the sources of information from which mea-
surements can be applied. There is still a need to generate cohesive information about
the relation between the skull and the facial soft tissues [29].

Much of the success of a craniofacial reconstruction system relies on the characteristics
of the anthropometric sources available (size of the sample, number of landmark points,
ethnic diversity of the individuals sampled, and method of acquisition). One indirect
way to improve the performance of current methods can be achieved by improving the
quality, size and diversity of the data available. This aspect is of special importance in
computerized systems in which the process of craniofacial reconstruction is automated. In
recent years, there has been a growth in data sets of facial tissue depths obtained using
medical imaging and incorporating various population sets. Practitioners have begun
investigating individual facial features using modern medical imaging techniques.

The aim of this thesis is to investigate a new approach to computerise facial reconstruc-
tions that relies on the skull-face relationship extracted from MRI datasets. This research
work addresses two essential aspects present in craniofacial reconstruction methods. The
�rst aspect is improving the current methods for the skull-face data generation process.
This is achieved by developing a computational method to generate, in a safe manner,
accurate and extensive data to analyze the skull and face geometry. The method was
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developed to build 3D geometric models of the head in which the 3-dimensional structure
of the skull and face can be studied. These models are extracted from a dataset of MRI
volumes and used in a craniofacial reconstruction system to estimate the faces of unknown
skulls. The second aspect addresses the main issues in creating 3D models of the face from
the skull. Issues such objectivity, consistency, repeatability, and evaluation of the results
can be solved by incorporating 3D skull-face models into the craniofacial reconstruction
system.

1.1 Main contributions of this thesis

The main research contributions of this thesis are:

� A technique is presented that uses MRI data sets to produce anthropometric data
of the head in a fast, safe, �exible and extensible way. In this context, the term safe
refers to the acquisition technology used for generating data. With MRI technologies
it is possible to scan live people in a safe way, without any side e¤ect involved. This
property makes it possible to create designed datasets containing samples of subjects
from di¤erent races, sexes, ages and body complexions, which will allow the analysis
of speci�c features that are of interest in a population. MRI technology is a faster
acquisition method compared with manual measured data and less subject to errors.
The term extensible refers to the fact that most of the current data sources about
tissue depths of the head are restricted to a small number of points in the skull and
face. MRI technology provides high contrast images from the di¤erent soft tissues
of the head. By analysing the information contained in a MRI volume, it is possible
to study the relation of the shapes of the skull and face in more regions of the head.
With the detailed models of the skull and face produced, it will be possible to create
statistical models, that are used for modelling the tissue depth distribution in the
head.
To produce the anthropometric data of the head, two segmentation methods for seg-
menting objects in images and volumetric data were created. First, a 2-dimensional
method was developed which incorporates shape knowledge into a gradient vector
�ow active contour. This 2D formulation was published as a conference paper [82]
(and also as a technical report [81]). Second, a 3-dimensional method using a 3D
deformable model was produced in which the gradient vector �ow formulation and
the shape term were extended to 3D space. The results of the 3D formulation were
published as a technical report [83]. These methods incorporate prior knowledge
about the shape of the skull. Even though they could be used as general segmen-
tation methods for image and volume data, they were designed to deal with the
problem of skull segmentation in MRI data.

� A unique database of 3D skull-face models for studying and analysing the skull
and face relation has been constructed. The University of She¢ eld dataset of MRI
volumes1 was processed with the skull-face extraction process created in this work
and, as a result, 60 detailed 3D models of the skull and face were generated for use
in a craniofacial reconstruction system.

1The dataset was obtained thanks to the collaboration with Dr. Martin Evison from the Forensic
Pathology Department and Dr. Iain Wilkinson from the Academic Unit of Radiology from the University
of She¢ eld.
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� A craniofacial reconstruction system for generating 3D facial estimations is pre-
sented. The system has the capability to use di¤erent criteria in the reconstruction
process, according to the features known of the individual to reconstruct. For exam-
ple, the user can use models of the database with similar age and body build index
to the subject of the unknown skull. Based on a deformable template approach, the
system can produce facial models based on the anthropometric data contained in the
database of head models described above. The system created has the capability of
generating reproducible and consistent results that can be evaluated. These results
have been presented at a workshop [84].

1.2 Structure of the dissertation

Chapter 2 presents an overview of the main techniques used for creating craniofacial
reconstructions (CFR). It covers the data used and the main protocols for creating CFRs
in traditional and computerized versions of the 3D method. It gives an overview of the
area of 3D computerized craniofacial reconstructions and states the main problems found
in the current approaches that need to be addressed.

Chapter 3 describes the main issues in creating a database of 3D head models based
on MRI data. A description of the datasets used is presented and the method to extract
face models from MRI data is described. An overview of the previous work in the area of
skull extraction is presented and contrasted with the approach presented in this thesis.

Chapter 4 presents the underlying ideas of the method developed in the thesis to
extract the skull from MRI data. A 2D technique to segment the skull based on contour
extraction is presented. The chapter describes the Bayesian approach adopted to formulate
the equations for incorporating prior knowledge of the skull in the segmentation process.
The segmentation technique used is based on gradient vector �ow active contours. The
representation metrics and invariance of a shape descriptor for the skull are discussed, and
the results of a set of experiments to test the ideas are presented.

Chapter 5 extends the ideas presented in chapter 4 into 3D space. A novel 3D ex-
traction method to segment the skull in MRI data is presented. The main aspects to
be adapted from the 2D Bayesian formulation introduced in chapter 4 are presented. A
description of the models produced by this technique in the context of the creation of a
database of skull-face models is included.

Chapter 6 describes a computer based craniofacial reconstruction system incorporating
the 3D skull-face models generated from the techniques presented in chapter 5.

Chapter 7 presents a series of experiments that were designed to test the CFR system.
The database of head models was used for evaluating di¤erent combinations of features
in the reconstruction process.

Chapter 8 presents conclusions and discusses potential future work.
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Chapter 2

Craniofacial Reconstructions

Forensic facial reconstruction1 is employed as a strategy to identify an unknown individual
when all other means of identi�cations cannot be applied (e.g. �nger-prints, X-rays, odon-
tology, DNA identi�cation) [36]. In forensic settings, the aim of the process is to obtain
a resemblance to the individual rather than to achieve an exact likeness of the deceased.
By publishing images of the reconstruction, someone might recognise the resemblance and
this will then generate the links that help to identify the individual in question.

Historically, di¤erent techniques have been employed in the process of facial recon-
struction, from 2D drawings from the skull, to superimpositions of skull sketches on pho-
tographs of missing people [73]. In 3D methods, there are also di¤erent strategies to
conduct a reconstruction. Some of them are based on employing sculptural techniques in
which a 3D face estimation model is generated manually on a physical or digital model
of the skull. There are other schemes using a set of images produced from a 3D model
and their alignment to possible photographs or sketches in order to compare the corre-
spondence between facial features [109]. The most relevant method to this thesis is the
3-dimensional computer modelling approach. However, in order to have a comprehen-
sive understanding of facial reconstruction, a brief overview of other related approaches is
presented.

This chapter presents an overview of two main branches in the area of craniofacial
reconstructions based on 3D modelling: traditional manual techniques and computer as-
sisted techniques. Section 2.1 presents the manual method to conduct craniofacial re-
constructions and the main limitations of the approach. In section 2.2 the computerised
method for craniofacial reconstruction is presented. Section 2.3 discusses the main issues
to address in craniofacial reconstruction techniques.

2.1 Manual Craniofacial Reconstruction

Currently, facial reconstruction techniques are used in areas such as forensic medicine and
archaeology. The technique is traditionally carried out by modelling the face using clay
on a hand-made cast of the skull. The cast, which is made to avoid damage to the original
skull, is used as the underlying structure from which the facial anatomy is built up to
create a face. Appendix A shows a brief description of the anatomy of the head. In most
cases, a forensic artist adds clay to the model guided by standard tables of data recording
tissue depth at particular landmark points on the face. The artist places these landmarks

1 In the rest of the document, we will be using the term craniofacial reconstruction and facial recon-
struction interchangeably.
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on the skull model using her knowledge of the skull-face landmark relation (see �gure 1.1).
Then, on the basis of personal expertise, she estimates the most appropriate facial shape
(�gure 2.1). An example of a tissue depth table is shown in table 2.1.

Philips and Smuts (1996)
CT scans

Mixed Race South Africans
Male (16) Female (16)

Facial points Mean SD Mean SD
Forehead 5.36 1.44 4.88 1.02
Glabella 5.47 0.68 5.64 1.42
Nasion 4.00 2.42 4.68 2.35
Midnasal Rhinion 2.88 1.08 2.78 0.91
Subnasale Midphiltrum 12.25 2.97 10.13 2.48
Upper lip 13.16 2.51 13.63 3.70
Lower lip 10.43 1.69 12.45 2.31
Labiomental 12.02 2.07 11.70 1.66
Mental 8.94 2.42 9.57 2.36
Menton 6.61 1.71 6.47 1.57
Lateral forehead 4.51 1.40 4.78 1.74
Supraorbital 5.46 1.31 5.79 1.89

Table 2.1: An example of an anthropometric table as used by forensic experts to estimate
the tissue thickness at speci�c landmark positions [109]. The measurements are given in
mm.

The facial reconstruction results are highly dependent on the data used to model
the skull-face relation. The limited information available is an issue in the process that
is usually compensated by human expertise. At the present time, there is an interest in
creating more objective and reproducible techniques to reduce the subjectivism introduced
by the human factor [109, 36].

There are three basic schools of thought within clay reconstruction [105, 73]:

� The Russian method, developed by Gerasimov. This attempts to construct the facial
anatomy on the surface of the skull by incorporating muscular structures to impose
restrictions on the facial shape. This is a morphological approach.

� The American method. This employs the thickness average of soft tissue at some
speci�c points located on prominent parts of the skull. This is a morphometric
method because is purely based on distances (i.e. tissue depths).

� The Manchester method. This is a combination of the Russian and the American
methods. It uses the soft-tissue thickness and considers the subtle details of the
structure of the face anatomy to create the reconstruction

Even though this a commonly accepted classi�cation, some authors argue that facial
approximation methods are found to vary along a �combination� technique continuum,
with all methods relying on soft-tissue depth information and anatomical knowledge to
some degree [91]. For more details about the craniofacial reconstruction methods and
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Figure 2.1: Traditional Facial Reconstruction Technique (reproduced with permission of
C.Wilkinson [65]).
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their evolution the reader can review the works of Wilkinson [109], Verze [105] and Evison
[99].

Traditional clay facial reconstructions have two main limitations: they are time-
consuming and they are not easily reproducible. The process of building an appropriate
cast of the skull and the process of marking tissue depths and building of the muscles and
skin surface can take several days to accomplish, depending on the �nal level of detail
required [29]. Also the methods and results often vary from practitioner to practitioner.
The speed and repeatability of traditional clay techniques could be improved using com-
puterised techniques. The current dependence on sculpting skills and the subjectivity of
the artist to compensate limited data sources can be reduced. Another limitation is the
evaluation of the reconstructions, with no formal method to assess the quality of the re-
constructions. These limitations are the principal motivations in researching methods for
extending these traditional approaches to incorporate computerised techniques.

2.2 Computerised Craniofacial Reconstruction

There are several classi�cations of facial reconstruction methods using computational tech-
niques. A �rst general classi�cation based on how the computer is used in the craniofacial
reconstruction task de�nes two types of systems:

� Computer assisted facial reconstructions. These are techniques that use the com-
puter mainly to provide a more �exible, alternative medium to mimic the manual
reconstruction process.

� Computer based facial reconstructions. These are techniques that use computer
algorithms to produce new methods for creating facial reconstructions.

Both approaches o¤er advantages over manual methods. A computer assisted method
provides �exibility to incorporate modi�cations in the �nal model, and reduces the de-
pendence on artistic talent and 3D sculptural skills [28]. An example of this approach is
presented in Davy et. al. [30, 29] where the use of computer tools to create more reliable,
faster and accurate reconstructions is discussed. An inter-observer study was designed to
investigate the repeatability of the method, in which three reconstructions were performed
on the same skull at set time intervals. The tests suggest that the method is at some de-
gree repeatable. Multiple reconstructions of the face were very similar to one another,
especially in the areas of the face for which de�nitive scienti�c reconstruction guidelines
exist. Despite the advantages of Davy�s method, it does not resolve many of the issues
that are problematic for craniofacial reconstruction area such as the interpretation of the
landmarks and the subjective factor used to model the complexity anatomy of the human
head.

Apart from the current limitations of computer technology, the databases for tissue
depth information and facial features are still under research [93, 94, 102, 109]. Deeper
investigations of the bone and soft tissue relationships are needed [29]. An in-vivo study
using MRI could potentially help to improve the data available for landmark tissue depths
and facial features, or even introduce novel ways of determining soft tissue prediction from
bone.

The goal of computer based facial reconstruction methods is to reduce the subjectivity
introduced by human factors by using statistical information to predict the facial shape.
The main advantage of these techniques is their potential to provide more objective and
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replicable results that can be evaluated quantitatively. However, the principal drawback
of these methods is the lack of adequate and ethnically diverse sources of information to
model the skin-face relationship. This data is essential for creating computer algorithms
to automate the process. Moreover, given the importance of this element to the success of
computer-based systems, the study and creation of large amounts of data to create such
sources of information is currently a research topic [29].

In a similar way to the classi�cation of traditional craniofacial reconstruction systems
presented in section 2.1, Subsol proposes a similar classi�cation for the computerised
craniofacial techniques [95]:

� Morphometric methods. For these methods the face model produced depends only
on the tissue depth information at certain points on the skull and face.

� Morphology methods. Additional knowledge of the underlying anatomical compo-
nents of the face, such as muscles and the fat, is modelled in order to de�ne the
shape of the facial surface.

� Registration-based methods. Digital head models (usually created from CT and
MRIs) provide a way of modelling the skull-face relationship used for the recon-
struction process.

An overview of the most relevant work in the area of computer based craniofacial
reconstruction systems will be presented in the following sections.

2.2.1 The Morphometrics Approach

In this approach the user chooses some sites on the skull surface where he de�nes the
thickness of the facial tissue. A facial surface is then adjusted to interpolate these tissue
landmarks. There are several alternatives to conduct this interpolation such as the use of
speci�c types of surfaces, which satisfy geometric restrictions on the continuity and the
smoothness of the resulting surface. Another alternative is the use of pre-de�ned face
templates where the shape of the surface at the intra-landmark level is prede�ned. The
problem is reduced to �nding a deformation for matching points in the prede�ned facial
template corresponding to the points de�ned with the landmarks located on the skull to
be reconstructed.

Archer �ts a generic hierarchical B-Spline surface model to the face landmarks [6]. The
surface is automatically placed in order to smoothly and evenly interpolate the landmark
points. Figure 2.2 shows the stages of this approach. Multiple facial base shapes can
be generated by the B-spline using traditional tissue depths from anthropometric tables,
with the appropriate tissue depths for di¤erent race, age, sex and body fat content. In
the work of Andersson and Valfridsson [5], the vertices of an arbitrary reference mesh are
projected onto the Computer Tomography (CT) volumetric data of the unknown skull.
Landmark points are interpolated and the rest of the surface is adjusted using information
from neighbouring landmarks.

Such morphometric methods require a lot of manual assistance in setting up the in-
terpolation function, and even though some heuristics have been suggested to deal with
the lack of anthropometric information in some regions of the face (such as the use of
landmark neighbour information and explicit geometric restrictions), it is evident that
the sparseness of anthropometric data is a strong limitation for determining the correct
facial shape. A possible solution to the sparse data problem is to use a facial template
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Figure 2.2: (a) A polygonal model of the skull is created and landmarks are placed at
some speci�c places. (b) A polygonal mesh is �tted to interpolate the points indicated by
the landmarks. (c) The �nal smooth surface (taken from [6]).

surface model created from real data. In this way, by having a complete surface with the
inter-landmark relation solved, the problem is reduced to �nding a deformation for the
template matching the points marked on the unknown skull de�ning the facial thicknesses.
Vanezis et. al. [104, 103] proposes a deformation technique used to adjust a facial tem-
plate chosen from a database of scanned faces and deformed to match the position of a
set of landmarks placed on the unknown skull surface. They use a database of 5000 faces
collected by using a laser scanning system. Figure 2.3 illustrates this process. Nelson and
Michael [68] introduce a volumetric deformation technique. Feature points are �rst placed
at known anatomical points around the given skull through the use of a volume-based
correspondence algorithm. These points are used to select a reference head from a set of
candidate models using the reference model with closest matching skull for deformation.
Nelson and Michael state that the problem of tissue depth collection is a key limitation
for producing reliable results in craniofacial reconstruction systems.

Petrick et. al. presents a hierarchical volume deformation technique to determine the
�nal surface approximation [71]. The data for creating a reference model is taken from
a CT volume. This data provides an initial volumetric reference model with a skull and
its face. Landmark points are placed on the reference model and then used to produce
new reconstructions by matching the points of the reference skull with the landmarks of
the unknown skull. The reconstruction is generated by selecting a reference model with
similar attributes such as sex, age, body-build.

The main problem with these approaches is the di¢ culty in determining a class of
transformations to precisely and consistently deform the reference face models using only
the sparse anthropometric data [95]. These transformations must possess a compromise
between �exibility and complexity to model the high variability present in the human face.

2.2.2 The Morphology Approach

This approach considers anatomical details in the reconstruction process. The user sets
up the morphology of the face, by including muscles and sometimes fat, before ending the
reconstruction by putting on the skin layer.

The work of Davy [30] represents a recent example of this type of system. In her work,
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Figure 2.3: (a) Digitised image of skull with landmarks marked. (b) Male facial template
with landmarks marked. (c) Superimposition view of the skull with the reconstructed face
with landmarks aligned (taken from [104]).

a Non Uniform Rational B-Spline (NURBS) is used to model the soft tissue structure
of the human head, skin and muscles. The muscles are modelled using elliptical cross
sections lofted into surfaces that were correlated with established diagrams of craniofacial
muscles. These are used together with tissue depth landmarks to indicate the depth of
the soft tissue over the surface of the unknown skull. Although this work is an alternative
to speed up the process of reconstruction, it is based on the same sources of information
as in traditional methods.

In the work of Kolja [51] a precise reference anatomical model of the head is �tted on
the unknown skull using correspondences between face and skull landmarks. The model
can be animated in a physics-based manner by using the muscle structure de�ned over
the model. The basis for �nding the deformation between the reference model and the
unknown skull model is the de�nition of a set of facial feature points related to the skull.
A multilayer polygonal model simulating the di¤erent layers of soft-tissue, muscles and
bone is modelled and adapted to �t a model of a human skull.

The morphology approach to model the human face has also found applications in
other areas of medicine. Koch used this approach to plan facial surgery [48]. He employs
a non-linear, globally continuous �nite element model of the facial surface that is based
on triangular polynomial shape functions. In the deformable model literature, a trian-
gular polynomial shape function is a surface approximation method used to model the
deformation of a continuous surface by means of its triangular mesh approximation. The
shape of the surface is controlled by a set of parameters de�ned at each element of the
mesh (associated to the vertices and edges of each triangle) and a polynomial function
[17]. Additionally, with some of these models it is also possible modelling other complex
changes in the constructed model such as age changes.

2.2.3 The Registration Based Approach

For this type of approach it is necessary to create a reference head model made up of a
skull and face pair. The reference skull is then registered with the model of the unknown
skull in order to compute a 3D deformation. This deformation can be applied to the
reference face in order to estimate the unknown face.

Michael and Chen [64] use a template of a reference head model Hr with an associated
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skull model Sr which is deformed using a function designated as volume distortion V . In
this process, the deformed reference skull is approximated and matched to the unknown
skull Su. Additionally, it is assumed that the deformed reference model Ĥu = V (Hr) will
produce a good similarity model near to the unknown head model. In Jones work [45] the
unknown skull is digitised using a CT scanner. A reference head is chosen that has the
same sex, race and age characteristics as the unknown skull. A correspondence is created
between the two heads consisting on a set of anatomic landmarks matched automatically
between the reference and the unknown skull. The correspondence is determined by means
of a 2-dimensional cross correlation between a pair of images. Figure 2.4 shows all the
stages of this process. The �gure shows a pair of skull images (middle), one showing a
reference skull with a set of pre-de�ned marked points (right) and the other showing the
unknown skull with the predicted matching points (left). Using this correspondence the
soft tissue from the reference head is mapped onto the unknown skull giving an approxi-
mation to the unknown face.

Similarly in the work of Tu [98], a skull and a face surface are extracted from a CT
head scan. By manually establishing point correspondences between the CT reference
skull and the unknown skull, the CT reference face can be morphed to coincide with the
unknown skull. By morphing each head scan in the CT database, a collection of estimates
of the subject�s face is generated. These estimates can be considered as samples of a face
space. Given these estimates, a principal component analysis is applied to determine the
main modes of variation found in the deformation process.

In the work of Arridge et. al. [7] and Quatrehomme et. al. [74] a method is presented
where a facial reference model is warped in order to create the facial reconstruction. The
facial reference is selected from a set containing models of individuals of di¤erent race, age
and sex. This model is adjusted to �t a set of landmarks (previously placed by hand) on
the digitised model of the unknown skull. The previoius techniques produce statistically
valid models if the unknown skull belongs to one of the races, and corresponds in age and
sex to one of these included in the database.

As pointed out by Subsol [95] the registration approach is one of the most promis-
ing because these methods "don�t require any anthropological measurements or complex
anatomical knowledge and can be based on the whole surface data of the skull and face".

2.3 Summary and discussion

Although all the methods described above provide alternatives for improving facial re-
constructions in some aspects, the accuracy of the faces produced by these methods rely
on the amount and quality of the anthropometric data available. A computer algorithm
can only produce results as good as the information that has been input. In most of the
cases, the data used contains limited information about the skull-face relationship in either
(or both) of two aspects: the number of landmark points and the number of individuals
sampled. For instance, in the morphology and morphometric methods, the small number
of anthropometric landmarks available to establish the skull-face relation has to be com-
pensated with human expertise. This a¤ects the capability to create repeatable and less
subjective reconstructions. In other cases, such as in the registration-based techniques,
the access to a limited number of samples of individuals from speci�c populations can
produce a biased result.

Even though the skull is the most important factor de�ning the shape of the face,
there are other factors such as the age, gender and body-build which also impact on facial
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Figure 2.4: Schematic diagram of the reconstruction process taken (reproduced with per-
mission of Mark W. Jones [45]).
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appearance. Any craniofacial reconstruction system aimed to create more objective and
reproducible results requires large amounts of quality data covering this diversity. More
extensive and accurate data should lead to more predictable and consistent results.

Most of the existing sources of information have limitations in several aspects:

� Origin of the data. The aim of CFR techniques is to produce estimations of faces
resembling live individuals. Sometimes the data available was collected from cadav-
ers. This data presents measurement variations due to post-mortem changes and
distortions of the human body.

� Acquisition methods. Most of the data were generated using manual methods, e.g.
needle insertion techniques, CT scan images measured by hand, ultrasound manual
measurements.

� Limited information. Data is collected at sparse data points on the face. Standard
tables contain 30 points on average.

� Problems in de�ning a standard interpretation for the rules for identifying some
landmarks.

� Data diversity. Collected datasets are particular to a speci�c type of population
(e.g. Caucasian adult corpses). Sometimes this data is used to reconstruct faces of
individuals from di¤erent populations.

� Limited number of individuals sampled.

� Sampling period. Authors such as Stephan [91] argue that population alimentation
habits have changed in recent years producing a variation in the tissue depths of
new generations.

For morphometric approaches to craniofacial reconstructions, the results which have
been achieved rely on the quality of these traditional sources of information. For mor-
phology approaches, the information about anatomical elements (such as facial muscles)
is combined with standard anthropometric data to produce face estimations. This new
variable involved in the analysis, the anatomy of the muscles of the head, is known to
a limited extent. Some craniofacial muscles have no attachment to the skull but rather
originate and insert into the soft tissue alone. Stephan et. al. argue that errors in pre-
dicting soft tissue features that have little or no association with the skull are probably
large [92, 90]. The complexity of modelling the muscles of the face can complicate even
more the design of systems with some degree of repeatability.

In the case of registration-based methods, most of the described work makes use of
CT technologies to create the template models. Although it is relatively easy to extract
the skull and face models from these volumes, using CT can be considered a drawback. It
is di¢ cult to generate a satisfying reference database, because most cranial CT scans of
living individuals are only taken in a limited �eld of view to reduce X-ray exposure [62].
Even with a low-dose CT scanning protocol, "it is not wise -and in some countries not
allowed- to acquire CT data from healthy volunteers" [62].

A further problem is accurately identifying and locating meaningful anatomic land-
marks in the skull and face in a consistent way. Even with more and more extensive
sources of information, a method is required which can match comparable features be-
tween di¤erent skulls in an automated way. The success of template-based approaches
relies on an accurate and consistent matching process.
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In this thesis, we will propose a computer based craniofacial reconstruction technique.
This technique is a registration technique based on a template-deformation approach.
The main di¤erence with respect to other computer based techniques is the type of data
used for generating the facial reconstructions. The skull-face models will be generated
from MRI datasets. Previous attempts have been done for generating anthropometric
data of the head from MRI without success, due to the problem of skull extraction. This
dissertation proposes a technique to overcome this problem. The following chapters cover
the techniques needed to generate these anatomical models.
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Chapter 3

Building 3D Head Models from
MRI Data

Although there are several factors in�uencing the performance of a computer based facial
reconstruction system one of the key aspects is related to the quality and quantity of
the skull-face information sources. Currently, these sources are limited in size (number
of individuals measured), number of measures taken for each subject, diversity of the
subjects sampled (i.e. persons of a speci�c ethnic group, age, etc.)

In this dissertation, we create a method to generate this skull-face information through
3-dimensional models extracted from MRI data. In these detailed models of the skull and
face, it is possible to study the dependence between these two elements at a high level of
precision.

This chapter is divided into three main parts. In section 3.1 a description of the MRI
datasets used in this work is presented. Section 3.2 describes the method used to extract
the skin layer. In section 3.3 some of the main issues of the skull extraction process are
presented together with an overview of the previous work on skull segmentation. Chapter
4 and 5 then present the two segmentation techniques developed in this research. In
chapter 4, a technique based on extracting contours of each image of a MRI dataset is
formulated. The contours are restricted by a shape term and then joinined into a 3D
model. Chapter 5 presents a 3-dimensional technique based on a template deformation
approach. This extends the ideas developed in chapter 4.

3.1 MRI dataset

MRI technology can produce detailed pictures of organs, soft tissues, bones and other
internal body structures. Single MRI images taken at equally spaced parallel planes
called slices are stacked to create a volume. Figure 3.1 shows an example of the MRI head
volume of the Visible Human Project [4, 89].

One of the central hypotheses of this research is that MRI data is a potential source
of information to analyse the relation between the skull and face at a high level of detail.
Due to the di¤erences between image features of the skull and face, the information of
these elements is obtained using di¤erent methods. The intensity properties of the skin
pixels in MRI, such as high contrast and homogeneity, make the area of the skin easy to
extract. In contrast, skull pixels cannot be easily classi�ed due to the low response of the
bone tissue to the magnetic �eld induced by a MRI scanner. However, MRI technologies
o¤er a non-invasive secure scanning alternative for acquiring anatomical information of
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Figure 3.1: The magnetic resonance male dataset from the VHP project [4, 89]. Left: a
typical MRI scan image. Right: the structure of the volume.

the skull and face.
Two datasets have been used for conducting experiments: The visible human project

(VHP) dataset and the University of She¢ eld (UOS) dataset. The VHP dataset was used
for testing the 2D skull segmentation techniques presented in chapter 4.The UOS dataset
was used for testing the 3-dimensional approach described in chapter 5. Also, it was
used for creating the database of skull-face models used in the craniofacial reconstruction
experiments of chapter 6.

3.1.1 The Visible Human Project Dataset

This dataset was obtained from the Visual Human Project from the National Library of
Medicine, U.S.A.1. The dataset was designed to serve as a common reference for the
study of the human anatomy as a set of public-domain data for testing medical imaging
algorithms and model for the construction of image libraries [4].

The male dataset used consists of axial MRI images of the head and neck taken at 4
mm intervals and longitudinal sections of the remainder of the body also at 4 mm intervals.
The resolution of the MRI images is 256 pixels by 256 pixels. Each pixel has 12 bits of
grey tone. The CT data consists of axial CT scans of the entire body taken at 1 mm
intervals at a resolution of 512 pixels by 512 pixels where each pixel is made up of 12 bits
of grey tone. The axial anatomical images are 2048 pixels by 1216 pixels where each pixel
is de�ned by 24 bits of colour. Each image consisting of about 7.5 megabytes of data.
The anatomical cross-sections are also at 1 mm intervals and coincide with the CT axial

1Visible Human Project web page: http://www.nlm.nih.gov/research/visible/visible_human.html
(last accessed March 2010)
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images. There are 1871 cross-sections for each mode, CT and anatomy, obtained from the
male cadaver.

A geometric model of the skull of the same individual was obtained from the large
geometric models archive database available from the Georgia Institute of Technology2.
The model is shown in �gure 3.3. The entire dataset consists of 4,715,110 triangles and
their normal vectors stored in a "ply" format �le representing the bone structure of the
VHP male. This data was extracted using marching cubes from CT slices, and was then
simpli�ed using the polygon decimation algorithm. Figure 3.2 show an example of the
di¤erent modalities of the dataset. In the case of the MRI images there are available in
t1 and t2 modalities3.

MRI produces cross-sectional images of the body. It uses a strong magnetic �eld and
radio waves to produce detailed computerized images of the inside of the body. MRI
scans of the head have been widely studied and commonly used to examine the brain.
This technology provides high soft tissue contrast in a non-invasive manner.

3.1.2 The University of She¢ eld dataset

This dataset was obtained thanks to the collaboration with Dr. Martin Evison4 from
the Forensic Pathology Department and Dr. Iain Wilkinson from the Academic Unit of
Radiology from the University of She¢ eld. In February 2004, the University of She¢ eld
organised a project which was funded by the Royal Society of London. The purpose of
the study was to help recreate facial appearance from the skull by computer. MRI scans
of 60 subjects were taken from their head and neck, and recorded the following biograph-
ical information: age, sex, ancestral a¢ liation (ethnicity). Additionally, information of
whether the individuals relatives were also volunteering was also recorded.

The MRI scan and biographic information is maintained in secure databases by the
University of She¢ eld. The University keeps the MRI scans and biographical information
database so it can continue to be used by researchers interested in craniofacial anatomy.
This may include scientists and doctors interested in neuroscience, craniofacial surgery,
development of the face or archaeological facial reconstruction, for example. It will not be
used for any purpose other than scienti�c and technical research. A copy of the information
sheet and consent forms used for the project is included in appendix G.

The dataset consists of MRI scan volumes of 60 individual heads. An example of the
images is shown in �gure 3.4. Each set contains 200 gray-scaled sagittal images with a
resolution of 256 x 256 pixels. The format of each image is 16 bit per pixel raw data with
information of approximately the aorta level and up.

2Large geometric models archive, U.S.A., Georgia Institute of Technology, web page:
http://www.cc.gatech.edu/projects/large_models/
(last accessed: March 2010)
3From a medical perspective, it means that MRI can provide multiple channels to observe the same

anatomy. Di¤erent tissues appear di¤erently in both images. White matter appears in a light grey in
T1 and a dark grey in T2. Grey matter appears grey in both images. The Cerebro-Spinal Fluid (CSF)
appears black in T1 and white in T2. The background of the image (air) appears black in both images.
For further details the reader can consult [2, 3].

4now at the university of Toronto: martin.evison@utoronto.ca
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Figure 3.2: Samples of image modalities in the VHP dataset. (a) CT image (b) MRI slice
type t1 (c)MRI slice type t2 (c) Color picture. ([89, 4])
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Figure 3.3: The 3D geometric skull model of the VHP male.

Figure 3.4: Three images at di¤erent levels of subject 22 of the UOS dataset.
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3.2 Skin layer extraction from MRI data

The main stages of the skin layer extraction are shown in �gure 3.5. To extract the face,
it is necessary to remove the background information of the volume and select the border
area of the head. An isosurfacing technique is used to acomplish this objective. Regions of
the volume with intensities above a given threshold are selected by means of an intensity
value (called iso-value). This selection creates a sub-volume region containing the area of
the head. Depending on the border regions found in the volume, the isosurfacing module
generates a set of 3D surfaces (a multi-layer model of the head). This multilayer model
contains information of the internal and external structure of the head. The extraction
layer module takes this set of surfaces and selects the most external surface of the set, i.e.
the surface of the face.

Figure 3.5: Components of the face extraction process

Considering an analysis based on volume elements and applying it to the MRI data,
each volume element has to be examined to determine if that element belongs to the region
of interest (in this case, any region of the head). The facial surface is obtained by using a
technique of surface reconstruction in volumetric data. This technique is explained in the
following sub-section.

3.2.1 Surface Reconstruction Using Volumetric Data

The Marching Cubes algorithm [58] is considered to be the standard approach to the
problem of extracting iso-surfaces from a volumetric dataset [18]. The iso-value de�nes
a threshold value used for selecting pixels with intensity values within the range of the
intensity values of the surface of interest. For this reason this technique can be classi�ed as
a low level technique. It is a very practical and simple algorithm, although it has some im-
portant shortcomings: topological inconsistency, algorithm computational e¢ ciency and
excessive output data fragmentation [66].

The success in the application of iso-surfacing techniques is guaranteed when the im-
ages are already segmented and it is only needed to retrieve the 3D structure of the object
or, the interest regions in each image can be separated by intensity, texture, colour, or
velocity of the regions (in the case of sequences of images taken at di¤erent times). As the
pixel intensities of the skin meet these requirements (intensities above a threshold value),
the geometry of the face can be retrieved directly by this kind of technique.

The Marching Cubes algorithm [58] forms cubes between two adjacent planar data
scans. The space de�ned by a volume is divided into 3D cubes. By analysing the informa-
tion of single cube units it is possible to establish how an iso-surface intersects the current
cube. The process is repeated for each cube in the volume and after processing the whole

21



data, a surface approximation is obtained for the given iso-value. A threshold iso-value
is used to distinguish between relevant and irrelevant information. Using a look up table
(where all the possible cases of intersections of the surface with a current cube are stored)
optimises the process.

If we classify each corner of the cube as either being below or above the isovalue,
there are 256 possible con�gurations of corner classi�cations. Two of these are trivial (i.e.
where all points are inside or outside the cube does not contribute to the isosurface). For
all other con�gurations we need to determine where, along each cube edge, the isosurface
crosses, and use these edge intersection points to create one or more triangular patches
for the isosurface. Figure 3.6 shows the lookup table used for selecting the possibilities of
surface intersection with a cube. Each number represent the corners of the marching cube
numbered from 0 to 7. Red dots represent points of the cube that are above the iso-value
and blue points represent points below the iso-value. If symmetry is taken into account,
there are really only 14 unique con�gurations in the remaining 254 possibilities. When
there is only one corner less than the isovalue, this forms a single triangle which intersects
the edges which meet at this corner, with the patch normal facing away from the corner.

Figure 3.6: The lookup table used to extract the iso-surfaces.

Figure 3.7 shows two datasets created using implicit functions of the form v = f(x; y; z)
with the resulting volumetric dataset segmented using the marching cubes algorithm.

The skin surface is separable in terms of its intensity pixel values, and acceptable
results are obtained using the marching cubes algorithm. Figure 3.8 shows the result of
applying marching cubes to the subject 22 of the UOS dataset.

To segment the skull, the situation is more complicated because of the variation in
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Figure 3.7: Examples for illustrating the potential of Marching Cubes Algorithm to ap-
proximate continuous smooth functions: (a) 2-dimensional version of the Sinc function an
(b) a sphere. The approximation results obtained when processing real data are deter-
mined by the resolution of the sampling step. In our case the sampling step in the MRI
used is 1.2 mm approx in each direction.

Figure 3.8: The result of the Marching Cubes algorithm applied to the subject 22 of the
UOS dataset.

pixel intensities of bony areas in MRI. The next section describes the main problems
found in skull segmentation together with an overview of the previous work related to the
problem of skull segmentation in MRI data.

3.3 Skull extraction

For several years, the classi�cation of the tissues of the human head in medical imaging has
been a topic of interest in areas such as forensic anthropology in order to have a better
understanding of the relationship between the skull and face morphology [52, 103, 54].
However the use of MRI technology has been limited due to the problems of how to
consistently identify and group bone pixels in these images. Figures 3.9 and 3.10 show
some examples of the skull topology at a given slice of the head (in which skull regions are
characterised, in a high percentage, by dark pixel areas) and some of problems present in
identifying these areas.

There are several issues to solve for segmenting the skull in MRI. The chemical bone
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Figure 3.9: MRI scan, showing 3 di¤erent problematic areas of the skull. (A) Skull Mixed
with other tissue and air. (B) Not bone areas with similar intensities. (C) Area where it
is di¢ cult to identify the border of the skull region.

Figure 3.10: Image showing two areas where the borders of the skull are di¢ cult to
determine. The original MRI slice is shown in (a). The area at the top of the skull (b)
the bone layer is thin with respect to the sampling resolution of MRI scanner. In the area
shown in (c), it is di¢ cult to set a border between the skull and the air and other tissues.
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composition which causes a weak response to magnetic stimulus making skull areas appear
mixed with air and other low intensity tissues. Another problem is the heterogeneous
pixel intensity in bone areas. The high variability in pixel intensities makes it di¢ cult
to consistently group skull elements. The skull topology is another factor that makes the
segmentation process di¢ cult. It is di¢ cult to predict the changes in the skull structure
between consecutive images in the volume. The sampling rate of the scanning device
sometimes is too low and that causes problems to detect thin skull areas (i.e. some skull
areas seem to be disconnected when they are not).

Even though the borders of the skull are di¢ cult to determine only from pixel inten-
sities in MRI, from a visual inspection of the images it is evident that there exist some
well de�ned areas of the skull that can be taken into account to guide a segmentation
algorithm. Identifying these areas, and complementing that information with anatomical
information about what constitutes a skull shape, makes it is possible to create good ap-
proximations of the borders of the bony areas. The idea of using an approximate template
with shape constraints is a key aspect of the technique proposed in this research.

3.3.1 Previous work

In the area of image segmentation, previous work has tried to extract the skull from
MRI by considering intensity homogeneity properties of bone regions. Salas and Succar
[80], Jere [43] and Dogdas [33] propose methods for extracting the skull based on spatial
processing of the volume using mathematical morphology operators.

These algorithms discard non bone areas by removing background voxels and classi-
fying other separable types of tissues such as the scalp and the brain. The result is a set
of voxels representing possible skull regions. These regions are then processed with math-
ematical morphology operators in order to regularise regions of connected components.
Closing holes and removing weak edges and noise of certain image regions, mathematical
morphology algorithms are used to extract the image components describing skull areas
under the assumption that certain shape regularity in these regions is present. However,
the conditions assumed in the techniques related to the regularity of skull regions can only
be guaranteed in the upper part of the skull (cranium). For this reason, these algorithms
produce acceptable results only in that area.

In contrast, the algorithm proposed in this thesis produces models of the entire skull
volume, accounting for the most probable con�guration of the skull regions provided by
volume features. The approach proposed in this work takes into account probable skull
components of the MRI volume in a holistic formulation, even if these components are
not connected with each other. Additionally, each of the skull models produced in this
research shares a common structure (i.e. the same triangular mesh structure) which
facilitates locating important features and conducting statistical analysis of the models.

Whilst probabilistic approaches for classifying tissue types have also been applied
successfully to segment body organs in medical images [23, 106, 24, 13], their application
for the problem of skull segmentation in MRIs has failed to produce acceptable results in
the frontal area of the skull [33]. These approaches assume that voxels possess speci�c
homogeneous attributes allowing their classi�cation in terms of intensity, colour, texture
or movement. With models of parameterised distributions for each type of tissue, they try
to solve the partial volume problem in order to produce adequate classi�cations. Examples
of these approaches are the works of Leemput et. al. [55, 56], Laindlaw [53] and Heinoen
[41].

However, these separability assumptions of tissue types are di¢ cult to meet when
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presented with skull regions in MRI. The air and the skull voxels have practically no
di¤erence in intensity, colour or texture attributes. The only di¤erence between these
two types of tissue is the spatial position of each voxel with respect to the global spatial
structure of the head. Figure 3.11 illustrates this with a 2D example (a 2D example is
used for simplicity). Also, there exist regions of the skull with high variations in their
intensity values, especially in those areas of the skull with high concentrations of fat. In
contrast, to the intensity properties of most bony regions, fat produces voxels with very
high intensity levels becoming indistinguishable5 from other types of tissue such as the
skin or brain. In summary, in the case of the skull the homogeneous intensity property
assumption cannot be guaranteed.

The technique proposed in this thesis is designed to deal with this type of problem.
The algorithm proposed takes into account the spatial position of candidate skull voxels
with respect to the structure of the probable skull they are describing, integrating relevant
voxels in a single structure. During the segmentation process, some of the candidate skull
voxels may or may not belong to the skull. To decide what voxels are considered, the
algorithm proposed has a mechanism for compensating for missing parts of the skull but
also removing outliers and noise according to a statistical model.

Figure 3.11: Binary images showing two examples where traditional techniques of tissue
classi�cation fail to detect skull areas. (Left) The picture elements in area (a) have exactly
the same intensity, colour and texture as picture elements in regions (b) and (c). (Right).
Even removing the background regions, it is not possible to di¤erentiate between skull
and non skull picture elements from regions (a) and (c).

Deformable methods guided purely by voxel intensities are another type of technique
that have been used for MRI skull segmentation. The works of Rifai [77, 76], Mang [62],
and Ghadimi [39] are examples of these techniques. These techniques rely on separability
and regularity assumptions of the materials to segment, assumptions previously discussed
that are di¢ cult to guarantee in the case of skull regions in MRI data. The main problem
with these techniques is that when considering only intensity information to guide the
deformable model, there is the possibility of being attracted to incorrect boundaries.
Also, the results are highly sensitive to the initialisation of the deformable model. These

5considering pixel intensity values
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problems are overcome in our approach by a pre-registration step at the initialisation
stage. At each step of the algorithm, by combining the information provided by the image
features, a gradient vector �ow (GVF) �eld, and the shape term statistically derived it is
possible to guide the segmentation process towards a statistically valid result.

The method proposed by Shan [85] for segmenting the skull combines CT and MRI in
a registration approach. A set of skull models generated from CT segmentations is used
for segmenting skull data in MRI modalities. Similar work is presented by Vandermeulen
[100] to create craniofacial reconstructions involving head models obtained from CT scans.
The main drawback of these techniques is that they require a number of CT scans in order
to produce the initial skull models. CT scans produce a high radiation dose that can be
harmful to healthy people. In this research we are interested in the study the skull-face
relation obtained from live people rather than from cadavers to avoid the e¤ect of tissue
depth changes due to dehydration. Another disadvantage is that the segmentation pro-
duced is simply a collection of isolated voxels that in a second stage have to be integrated
to create a skull model.

In contrast, the technique proposed in this thesis only requires MRI to extract the
skull which makes this technique suitable to collect more data of live people, since MRI
is an acquisition technique that is not harmful, and provides very detailed information of
several tissue types present in the head. Additionally, as mentioned before, the results of
the research presented in this thesis are complete skull models, which can be considered
as a high level representation. These representations provide �exible models with several
advantages for referring to speci�c anatomical parts of the skull in an explicit way.

An approach similar to the work presented in this thesis is presented by Luthi et. al.
[59]. In that work, a deformable model of a skull is used to segment the skull in a pre-
processed MRI head volume. The skull and the deformable model are registered using a
landmark based approach. To maintain the shape of the deformable model a shape term is
used. This shape term is de�ned with the principal component analysis (PCA) coe¢ cients
of a statistical model of skull shapes. The deformable model mesh is deformed under the
shape restrictions at each step of an iterative algorithm. To impose more control on the
shape, the deformable model is de�ned at di¤erent level of details and used for processing
several times the head volume. The statistical skull model requires several skull samples
to be constructed. In contrast, our technique proposed, uses a deformable model with the
same level of detail during all the process. The registration method used in our work, is
a 3D curve approach in prominent areas of the skull. The covariance regularisation step
incorporated in our approach, makes the shape term calculation more robust and requires
less skull models to train (only one model is needed as a minimum).

In this thesis, two techniques using a common approach have been developed to deal
with the skull segmentation problem. They will be presented in chapters 4 and 5. In
chapter 4, a 2D skull segmentation technique using an active contour including shape
information is formulated. Based on the 2D approach, chapter 5 presents an extension to
produce a 3D technique in which a defermable model controlled by a shape term is used
to extract the skull from the head volume.
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Chapter 4

Skull Segmentation in MRI
Datasets Based on Contour
Extraction

In this chapter, a method to generate 3D models of the skull from 2D MRI images is
presented. As described in chapter 3, the skull and face models produced in this research
will be used to create a database of head models to study the skull-face relationship. The
possibility of producing these models provides, in contrast to traditional anthropometric
tables, dense correspondence models in which any region of the face can be analysed in
terms of a corresponding surface at the skull. The method presented is based on a contour
extraction approach. A set of contours are extracted from each MRI image and joined to
reconstruct the 3D model.

Section 4.1 gives an overview of the stages that have to be covered for de�ning the
solution for the skull segmentation problem. Section 4.2 presents the active contour for-
mulation. Section 4.3 describes the theory of gradient vector �ow (GVF) snakes. Section
4.4 presents the shape modelling aspects that need to be addressed for implementing our
approach. A set of experiments were conducted to test the segmentation algorithm created
and the results are presented in section 4.5. Section 4.6 discusses the results.

4.1 Overview of the approach

In our approach, the skull surface is extracted by segmenting a set of images of an MRI
volume. At each slice, the borders of the skull region are modelled as single contours
or, when the skull topology is more complex, as a combination of several partial skull
contours. The extracted contours are then assembled to create a 3D skull model. The
segmentation process is made up of two components. The �rst component is an active
contour [46, 63] directed by image features which �blindly�tries to enclose skull areas. The
second component is a shape term [27] which adds statistical knowledge of the likely shape
to �nd. The two components are combined to make an active contour evolve towards a
minimum within the static potential �eld calculated from the gradient information in the
image.

To test our approach, we use the magnetic resonance 3D dataset of the male head from
the Visible Human Project [4, 89]. Figure 3.1 illustrates the multiple slice structure of
this dataset. A Computer Tomography (CT) volume of the same person is also available.
Figure 4.1 shows an example of two modalities for the eye socket region, which is one
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Figure 4.1: Region of the head to segment in two image modalities. (a) CT image scan
used as the reference to evaluate the MRI segmentation. (b) MRI scan to segment.

of the most complicated regions for skull segmentation in MRI datasets due to the high
variability of pixel intensities of the bone components [41]. To assess the performance of
our proposed algorithm, the results of the MR segmentation will be compared with the
results of segmenting the same bone area in a CT image, which is relatively straightforward
to segment.

Segmenting the skull in a CT image is relatively easy because bone areas are well
de�ned in this scan modality. However, its use is limited because of the involved radiation
dose [101]. In contrast, MRI is a safer option for scanning live individuals. Nevertheless,
in this modality the chemical composition of the bone presents low response to magnetic
stimulus. This property causes bone areas to be partially de�ned in some portions of the
image, and mixed with distinct tissues and air in others, which makes the skull segmen-
tation di¢ cult.

For implementing the shape feature restrictions, there are several aspects to take into
account. They are summarised in table 4.1. A deformable model is a geometrical object
that can be de�ned in multiple ways (e.g. as an implicit mathematical function, as a
parametric function, etc.) Hence, it is necessary to select an appropriate representation
to handle the inherent features related to a skull shape. The shape feature representation
models the common shape features de�ning a skull shape.

A second aspect is the shape learning process. Several samples of skulls are required
so that a computational algorithm can �learn�a skull shape. The parameters accounting
for the major di¤erences between models of skull contours are translation, rotation and
scale. To deal with this invariance, the training shapes have to be aligned in order to be
referenced to a common coordinate system.

With a set of skull contour shapes gathered (that will be called the training set), it is
possible to create a probabilistic model describing the common features of the contours.
The probabilistic model will be used to assign probability values to the elements of the
training set, but also, when a new element is given, it will assign a probability value to
the new element. This value will be used for measuring similarity properties between the
new elements with respect to the family of trained shapes.

The set of features, de�ning possible skull borders, are used to de�ne a force for
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Problem Method used
De�ning the
Segmentation Approach
image features + shape
restrictions

Bayesian approach including shape
information

De�ning image feature
restrictions and
evolution conditions

Energy minimisation and
Active Contours

De�ning shape restrictions
representation, metrics and
evolution

Shape representation, metrics
alignment and invariance

De�ning the shape space
Gaussian model to represent
shapes, covariance regularisation

Including invariance in the
representation

Invariance formulation

Table 4.1: Main issues to solve in the skull segmentation process

attracting the vertices of the active contour1 towards the borders of skull regions. At
the same time the shape term acts by maintaining the structure of the active contour
within the limits of a trained skull shape. It is also necessary to de�ne a metric to assess
how di¤erent the snake is with respect to a valid shape con�guration at a given state. A
measure must be de�ned to calculate how far the deformable model is from the family of
shapes de�ned by the training set. A problem is presented when few data are used for
creating the training set. Usually, a minimum number of samples is required to model
the shape variability. To overcome this problem, we use a method to adapt the covariance
matrix of the distribution to allow these situations. These aspects will be covered in the
following sections.

4.2 Active Contours

Active contours (or snakes) are widely used for boundary detection in the �eld of image
segmentation and computer vision [1, 42]. The classical approach is based on deforming an
initial contour Co towards the boundary of the object to be detected, making this contour
converge to an optimal �nal state (i.e. a curve at the contour of the desired object)
from an arbitrary initial state (i.e. shape and position). The deformation is obtained by
minimizing a functional designed so that its minimum is obtained at the boundary of the
object [16]. The functional consists of two main components. One component controls
the smoothness of the curve and the other attracts the curve toward the image features.
These two components are known as the internal and external forces, respectively [97, 46].

Two types of active contour models are common in the literature: parametric active
contours [46] and geometric contours [15, 61]. In our work we use an extension to a
parametric active contour, de�ned as a parametric curve moving toward desired features
(edges) under the in�uence of potential forces. A potential force is a 2-dimensional function
that assigns a magnitude and a direction of in�uence to all the pixels in the image domain.
In our work, this function is derived from the image gradient and accounts for the in�uence

1We will be using the terms active contour and snake interchangeably to denote a 2D deformable model.
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Figure 4.2: Capture range of an elliptic object. The capture range is the area around a
feature where a force �eld is de�ned to attract a deformable contour. In this example the
contour S1 is under the in�uence of the border of the ellipse C1 while S2 is not. In this
case, the contour S2 will not be deformed.

of the image data on the snake.
In general, the problems which must be overcome with the application of active con-

tours are:

� Initialization: The range of capture of traditional potential forces is small. The range
of capture is the area around an image feature where a force potential is de�ned to
attract the active contour (see �gure 4.2).

� Concave regions: Di¢ culties can occur when progressing the curve into concave
boundary regions.

� Occlusion Problems: Sometimes it is necessary to deal with missing information in
the image.

A traditional formulation for a snake is a parametric curve X(t) = [x(t); y(t)]; t 2 [0; 1]
that moves through the spatial domain 
 of an image in order to minimize the Eimage
functional de�ned as [16]:

Eimage =

1Z
0

(
1

2
(�
��X 0(t)

��2 + � ��X 00(t)
��2 + Eext(X(t)))dt (4.1)

whereX 0(t) andX 00(t) stand for the �rst and second derivative of the curveX with respect
to t, and � and � are weighting parameters that control the active contour tension and
rigidity [46]. The external energy Eext is obtained from the image and reaches its lower
values at interest features such as boundaries. The next section introduces the particular
kind of active contour we use.
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4.3 Gradient vector �ow active contours

Gradient vector �ow (GVF) active contours are curves under the in�uence of a potential
force called gradient vector �ow [113]. The gradient vector �ow is an external force
computed as a di¤usion of the gradient vectors of the image. This force is used to attract
the snake towards the edges in the image. The evolution of a GVF snake can be formulated
by solving equation (4.1). This solution can be obtained by minimizing the following Euler
equation:

�X 00(t) + �X 0000(t)� Eext = 0 (4.2)

which is equivalent to the following system of forces:

Fint + Fext = 0 (4.3)

with Fint = �X 00(t) + �X 0000(t) and Fext = �Eext
The term Fint accounts for the geometric restrictions of the snake itself (tension and

rigidity) and the second term Fext accounts for the evolution towards image features. The
external forces Fext can be divided into two classes: static and dynamic [112]. Static forces
are computed from the image data and do not change as the snake progresses. Dynamic
forces are those that change as the snake deforms. We use a static GVF force, which is a
type of static external force independent of the time and the position of the snake.

To �nd a solution to equation (4.2) the snake is made dynamic by treating X as a
function of time � as well as the spline parameter t: i.e. X(t; �): Then a partial derivative
of X with respect to � is set equal to the left side of equation (4.2) as follows:

X�(t; �) = �X
00(t; �) + �X 0000(t; �)� Eext (4.4)

When the solution X(t; �) stabilizes, the term X�(t; �) gradually disappears and we
achieve a solution for equation (4.2).

To complete the de�nition of a GVF active contour it is necessary to de�ne the poten-
tial force in�uencing the curve evolution. This potential force is called the gradient vector
�ow and it is de�ned over an edge map of the image. This concept will be introduced in
the next subsections.

4.3.1 Edge Maps and GVF �eld formulation

To de�ne potential external forces acting on the active contour, two traditional formula-
tions are widely used:

E1ext(x; y) = � jrI(x; y)j2 (4.5)

E2ext(x; y) = � jr(G�(x; y) � I(x; y))j2 (4.6)

Here, G�(x; y) is a two dimensional Gaussian function with standard deviation � and
r is the gradient. I(x; y) represents the image intensity at a point (x; y). In equation
(4.6), the standard deviation is frequently used to control the capture range of the image
features (in this case edges). Setting higher values for � is used to increase the capture
range of the gradient forces, but it tends to blur and distort the edges [113].

An edge map can be de�ned as a 2-dimensional function f as follows:

f(x; y) = �Eiext(x; y) (4.7)
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for i = 1; 2 (equations (4.5) and (4.6)).
In our work, we use E1ext as the external potential for all the calculations. Using this

de�nition of an edge map the term rf represents a �eld with vectors pointing toward
the edges. The gradient vector �ow is de�ned as a potential force with a vector �eld
v(x; y) = (u(x; y); v(x; y)) that minimizes the energy functional:

" =

Z Z
�(u2x + u

2
y + v

2
x + v

2
y) + jrf j

2 jv �rf j2 dxdy (4.8)

where � is a regularization parameter controlling the compromise between the �rst and
second terms of the integral. This de�nition of " guarantees that when rf is near to
zero (uniform regions), the second term will vanish and the �eld will be dominated by
the squares of the partial derivatives of u and v, and it will vary in a very smooth way.
If rf has a high value, then the functional will be dominated by the second term and
minimized when rf � v. In other words, this functional will have the e¤ect of keeping v
nearly equal to the gradient of the edge maps when rf is the most important component
and varying in a smooth way in regular regions.

Using calculus of variations it is known [113] that the GVF �eld can be found by
solving the following Euler equations:

�r2u� (u� fx)(f2x + f2y ) = 0 (4.9a)

�r2v � (v � fy)(f2x + f2y ) = 0 (4.9b)

where r2 is the Laplacian operator. Equations (4.9a) and (4.9b) are known as the
generalized di¤usion equations. Note that in homogeneous regions, the second term of
both equations is zero (because the gradient of f(x; y) is zero). These equations can be
solved by treating u and v as functions of time � solving:

u�(x; y; �) = �r2u(x; y; �)� (u(x; y; �)� fx(x; y))
�(fx(x; y)2 + fy(x; y)2) (4.10)

v�(x; y; �) = �r2v(x; y; �)� (v(x; y; �)� fy(x; y))
�(fx(x; y)2 + fy(x; y)2) (4.11)

A stable �nite di¤erence implementation for solving the steady-state of these equations
is given in detail in [112]. The calculated �eld v; after the minimization process, replaces
the potential force Eext in equation (4.4). Figure 4.3(a) shows a CT image of an area
around the right eye socket and in 4.3(b) its potential forces derived from the edges of the
object (image features).

4.4 Including shape knowledge in the segmentation process

In our work, an additional term is included in the GVF snake formulation in order to
incorporate knowledge about the shape to segment in a statistical way. The shape term is
an adaptation of the one proposed by Cremers et al. [26, 27]. The novel aspect of our 2D
implementation consists of combining image information and previously acquired shape
information in a variational framework.

For a contour C = X(t) we will consider the following extended energy :
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Figure 4.3: A portion of the skull around the right eye socket. (a) Original gray level
CT image. (b) GVF �eld of the image and the rectangular marked area enlarged (c).
The black line in (c) represents a portion of the object boundary and the blue arrows the
direction of the GVF potential forces.
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E = Eimage + 
Eshape(C) (4.12)

where the term Eimage is the energy contribution of a GVF active contour (see equation
4.1), Eshape bene�ts contours with similar shapes to the one acquired in a shape training
process, and 
 is a factor to regulate the amount of in�uence of the shape term. Minimis-
ing the energy in equation 4.12 is equivalent to maximising the Bayesian inference term
P (M=f) de�ned by:

P (M=f) =
P (f=M)P (M)

P (f)
(4.13)

The term P (M=f) optimises the probability of a con�guration for the deformable model
M given the observed volume features f (i.e. obtaining the model M that is the most
probable according to the information in the image). In general, the term P (M) de�ned in
deformable model approaches usually models the fact that large surfaces are less probable
[25]:

P (M) _ exp(�� jM j) (4.14)

where jM j is a measure of the area of the model M . In our work this measure will be a
more elaborate shape dissimilarity measure:

P (M j fMig)

which is constructed from a set of training models fMigi=1::m.
The training process consists of collecting a set of similar shaped objects. We will

adopt the concept of shape de�ned by Dryden [35], who de�nes the shape of an object as
all the geometric features of the object that are unchanged when it is translated, rescaled
and rotated in an arbitrary coordinate system. In this work, the set of geometric features
corresponds to a set of points placed along the object contour. The labelling of the
control points can be done manually or automatically and the main objective is to create
a reference set of control points to model the statistical shape variation.

The e¤ect of combining Eimage and Eshape is twofold. First, it augments the capture
range of potential �eld forces (which leads to less sensitivity to initialization). Second, it
improves the capacity of the snake to deal with occlusion problems.

The following subsections describe the derivation of the Eshape term of equation (4.12)
which accounts for pre-established shape information.

4.4.1 Incorporating statistical shape information

In our work, the active contour C is represented with a quadratic B-spline curve given by
[37]:

C : [0; 1]! 
; C(t) =

nX
i=1

piBi(t) (4.15)

where t is the parameter of the spline, pi is the set of control points, and Bi(t) are the
quadratic periodic B-spline basis functions [37, 11].

A 2D object shape s is represented by a set of n pairs of control points f(xi; yi)gi=1:::n
de�ning the curve. The shape s can be referred to as a unidimensional vector with the
following structure:
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Figure 4.4: The �gure shows control points i=1,20,30,40,60 of four training shapes and
their related centroids. Each of the shapes is de�ned by 80 sampled points. The lines in
blue show each training shape after alignment.

s = (x1; y1; :::; xn; yn)
T (4.16)

The main idea behind the shape formulation is the assumption that each trained shape
will have the same number of related control points n and that the spatial position of each
control point i can be modelled with a Gaussian distribution. Figure 4.4 shows an example
of this con�guration for a four-shape training set. From this con�guration we can obtain
some parameters for the family of shapes as the mean shape � and the covariance � of
the set.

The covariance matrix � de�nes a probability measure for the shape space. If the
covariance matrix is full rank, its inverse ��1 exists and the Gaussian probability distri-
bution of the shape s is:

�(s) / exp(�1
2
(s� �)T��1(s� �)) (4.17)

Here, / denotes direct proportionality between the left and right expressions and �
is the average shape of the training set. The requirement for � to be full rank is only
accomplished by having at least 2n di¤erent training shapes. In practical terms, this can
be a strong limitation. To solve this problem, a technique of covariance regularization
must be applied in order deal with a number of training shapes less than 2n.

4.4.2 The Gaussian Model For Representing Shapes

In this work, it is assumed that the training shapes are aligned as de�ned in the previous
subsection and distributed according to a multivariate Gaussian distribution. A statistcal
shape model based on principal component analysis (PCA) is proposed to model the shape
variability of a given con�guration with respect to a set of trained shapes. Here, the model
proposed by Cremers [26].

Let � = fsi 2 R2ngi=1::m be a set of training shapes, aligned as presented in the
previous section with mean vector �s. The sample covariance matrix is given by:
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� =
1

m� 1

mX
i=1

(si � �s)(si � �s)T (4.18)

PCA can be applied to this covariance matrix in order to obtain the main sources of
variation in the training set. PCA is an orthogonal linear transformation that transform
the data to a new coordinate system such that the greatest variance by any projection of
the data comes to lie in the �rst coordinate (�rst component), the second greatest variance
on the second coordinate and so on. PCA is the optimum transform for the given data in
least square terms [44].

The matrix � can be diagonalised and a set of �1:::�r eigenvalues can be obtained. The
modes of largest variation, given by the vectors ei; correspond to the largest eigenvalues
�i. A compact lower-dimensional shape model can be obtained by linear comination of
these eigenmodes added to the mean shape:

s(�1:::�r) = �s+

rX
i=1

�i
p
�ei

where r < m: The factor
p
� has been introduced for normalisation and corresponds to

the standard deviation in the direction of the vector ei.
In general if the number of sampled elements is smaller than the dimension of the

underlying vector space (2n), the covariance matrix � will not have a full rank and the
probability density will not be supported in the full 2n dimensional space. This situation
represents a problem for evaluating the term Eshape in equation 4.12 for shape con�g-
urations out of the space de�ned by the training set (as the probability distribution is
unde�ned). To solve this problem, a technique of covariance regularisation is applied.
The following section presents a solution to this problem.

4.4.3 Regularizing the covariance

In general, regularizing a covariance matrix is not a trivial process. We follow the approach
from [26] to propose an approximation to the solution. The covariance matrix can be
expressed as a decomposition into eigenvalues and eigenvectors in the following way: � =
V DV T where D is the diagonal matrix of non-zero eigenvalues �1 � ::: � �r > 0, V is
the matrix of corresponding eigenvectors and V T is the transpose of V . The covariance
matrix is regularized by replacing all the zero eigenvalues by a constant �? > 0: Thus,
the new regularized covariance �? is obtained by means of:

�? = V D?V
T (4.19)

with D? = D + �?(I � eveTv ) (4.20)

where ev is an orthonormal basis of the matrix V of eigenvectors, and I is the identity
matrix. For this work, as suggested in [26], �? is given by:

�? =
�r
2

(4.21)

This expression guarantees that every possible variation in the shape space will have a
corresponding value of probability �(s) covered by the new covariance matrix. Better yet,
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equation (4.17) will be di¤erentiable on the full space, associating a �nite non-zero value
with any shape s. Equation (4.17) can be rewritten as:

�(s) / exp(�1
2
(s� �)T��1(s� �)) �

�(s) = k exp(�1
2
(s� �)T��1(s� �)) (4.22)

for an arbitrary proportionality constant k. Applying the logarithm function to both sides
of equation (4.22) and using the product rule for logarithms gives:

log(�(s)) = log(k)� 1
2
(s� �)T��1(s� �) (4.23)

Rearranging, equation (4.23) can be expressed in terms of a function of the shape s :

Eshape(s) = log(�(s)) + const = �
1

2
(s� �)T��1? (s� �) (4.24)

with const = �log(k):With this algebraic development it is shown that the Gaussian
probability in equation (4.17) corresponds to the quadratic energy in equation (4.24) [27].

4.4.4 Metrics of the shape

Given two contours Cs and Cŝ a Taylor expansion will be considerated to approximate
the following distance metric:

k Cs � Cŝ k2� min
�

1Z
0

(Cs � Cŝ(�))2ds (4.25)

which accounts for all continuous and monotonic reparametisations. We use an approxi-
mation using Mahalanobis distance by a simpler Euclidean distance d between the control
points of the polygons:

d(Cs; Cŝ) � (s� ŝ)T (s� ŝ) (4.26)

4.4.5 Properties of the Shape Space Spanned

In general, the number of samples needed to obtain reliable statistics increases rapidly
with the dimension of the input data[10, 9]. Each of the training shapes can be seen as
a vector embedded in a 2n-dimensional space (where n is the number of points of each
skull model trained). The space spanned by that set of shapes has three main properties.
First, it is possible to focus in the low-dimensional subspace de�ned by the training data.
The complexity is reduced to deal with the examples acquired in the training set while
maintaining a mechanism to globally capture the shape parameters. Second it is possible
to assign probabilities to data even in orthogonal directions to the subspace spanned by
the training data. This second property allows us to adapt the probability distribution
de�ned by the training set to make predictions of possible probability measures for objects
not belonging to the training set but with similar shape features. Third, as long as the
number of samples increases, it is expected to have more reliable estimates of the mean
and covariance matrix.
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4.4.6 Incorporating Invariance to the Shape

The minimization of the shape functional Eshape of the aligned and centered shape ŝ is
obtained by deriving the shape term 4.24 with respect to the shape s using the chain rule:

dEshape(ŝ)

ds
=
dEshape(ŝ)

dŝ
� dŝ
ds
=
dEshape(ŝ)

dŝ
� dŝ
dsc

� dsc
ds

(4.27)

Each component is solved separately. From equation (4.24) and applying the product rule
of a derivative:

dEshape(ŝ)

dŝ
= (��1? (s� �))

T (4.28)

This term represents the gradient of the original shape energy Eshape evaluated for the
aligned shape ŝ. The centered shape term sc is de�ned as a function of the shape s and
obtained in the following way :

sc = (I2n �
1

n
T ) � s (4.29)

where n is the number of control points, I2n denotes the identity matrix of size 2n, and T
is a 2n� 2n matrix given by:

T =

0BBB@
1 0 1 0 : : :
0 1 0 1 : : :
1 0 1 0 : : :
...
...
...
...
. . .

1CCCA (4.30)

To obtain an aligned shape ŝ as a function of the centered shape sc the following expression
has to be evaluated:

ŝ =
Msc
jMscj

(4.31)

with:

M = In 

�

�tsc ��t � sc
�t � sc �tsc

�
(4.32)

Again, I2n is the identity matrix with 2n rows and 
 is the Kroenecker product of matrices.
In the 2-dimensional case, for the second term of equation 4.27 derived with respect to s :

dsc
ds

= (I2n �
1

n
T ) (4.33)

This term represents the change of the centered shape sc with respect to the input
shape s.

In 2D, the last term of equation 4.27 is dŝ
dsc

which accounts for the in�uence of changes
in the centered shape sc onto the aligned shape ŝ. This term is obtained with the following
equation:

dŝ

dsc
=
M 0sc +M

kMsck
� (Msc)(Msc)

t(M 0sc)

kMsck3
(4.34)

where M is the matrix de�ned in equation 4.32 and M 0 denotes the tensor of rank 3
given by:

M 0 =
dM

dsc
(4.35)
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An algorithmic construction for evaluating M 0 can be consulted in [27]. The min-
imisation of the energy term 
Eshape(M) presented in equation 4.12 is then solved by
evaluating 4.27 with the expressions 4.28, 4.33 and 4.34 deduced.

4.5 Results

To test the algorithm, two groups of experiments have been designed: experiments with
synthetic images and experiments with real images. The �rst group uses designed binary
images which are synthetic images created with simple geometric objects. This design
facilitates comparisons between the expected results and the outcomes of the segmentation
approach. For the second category, the experiments were carried out with MRI images
from the VHP male dataset [89, 4]. These MRI images were selected from areas of the head
with di¤erent levels of di¢ culty in segmenting the skull. The training shape procedure is
similar for both groups of experiments and is described in the following subsection.

4.5.1 Training set creation

In all the experiments, the training set consists of six object shapes, which are in turn
made up of a �xed number of sampled points taken along the object�s perimeter at equal
distances from each other. This number of control points is 40 for synthetic images and
80 for real images. Figure 4.5 shows an example of the training shapes acquired.

The trained shapes were acquired with a manual labelling process. The user is pre-
sented with an image containing one outline of one object. As the initial step, the user
selects with the mouse a number of points on the object contour. The shape of the object
is reconstructed from these points by means of a quadratic B-spline interpolation. The
resulting curve is resampled and the control points are stored in the same order and num-
ber for each shape. This process is repeated six times for each object. The object outlines
labelled were one ellipse and one rectangle for the experiment with synthetic images, and
two anatomical contours for the experiment with real images. In the case of experiments
with real images, since there is only one image for each anatomical region, the training
process consists of manually labelling the skull area in the CT image (equivalent to the
MR image to be segmented). Even though it seems like a lot of work for the synthetic
images, the manual segmentation is useful to simulate the variation of the shape distribu-
tion. For real images there may be tens or hundreds of images to segment having similar
shaped regions, and labelling just six is worthwhile if it gives better results for the rest of
the images. Better yet, the results for the rest can then be fed back into the statistical
model to improve it.

4.5.2 Synthetic images

Figure 4.6 presents the synthetic image designed for the experiment and �gure 4.7 shows
the results of the proposed algorithm applied to this image. Each row in �gure 4.7 repre-
sents the outcomes of the algorithm for di¤erent values for the parameters introduced in
equations 4.1 and 4.12. The parameter combination is presented in table 4.2. As expected,
setting 
 = 0:0 results in the whole contour of the composed object being detected as il-
lustrated in �rst row of �gure 4.7. The second row of �gure 4.7 shows a contour �trapped�
between the forces of the GVF term and the shape term. In this case, the contour con-
verges to a "bad solution" with just some portion of the rectangular shape detected. In
the third row, the shape term of the snake is high enough to deform the active contour
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Figure 4.5: Examples of one element of each training set.(a) Ellipse with 40 control points.
(b) Rectangle with 40 control points and (c) A portion of the skull represented with 80
control points. The �rst column shows one element of each training set. The second
column shows the six shapes acquired for each object, and the third column shows a
detail of the distribution of the control points in the squared area marked in the image of
the second column.
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Figure 4.6: Synthetic image created with an ellipse and a rectangle overlapped to simulate
occlusion (a) The object is represented with black pixel on a white backround. (b) The
border of the image is represented with a gray-line.

towards the borders of the rectangular contour. Finally, the last two rows show an accept-
able approximation to the objects of interest (i.e. a rectangle and an ellipse, respectively).
It is important to remember that the shape of the object to be detected is given to the
algorithm by the user (i.e. the training set in column 4 of table 4.2 is selected beforehand
for the appropriate shape).

Row Shape Tension Trained
# term Rigidity shape
1 
 = 0 � = � = � = 0:5 Rectangle
2 
 = 10 � = � = � = 0:5 Rectangle
3 
 = 80 � = � = � = 0:5 Rectangle
4 
 = 100 � = � = � = 0:5 Rectangle
5 
 = 100 � = � = � = 0:5 Ellipse

Table 4.2: Parameters for segmenting the image in �gure 4.6(b) using a rectangular trained
shape for rows 1-4, and an ellipse for the row 5

4.5.3 Real Images

The next experiment consists of segmenting the bone area shown in �gure 4.1(b) including
shape information. Figure 4.8 displays some results for di¤erent 
 values. As in the
case of synthetic images, if the 
 value is increased, the shape information in�uences the
outcome, resulting in a scheme directed by the shape. This will compensate for the missing
information of bone components of high intensity in the MR image. A very high value
of 
 will direct the resulting contour to a shape con�guration within the distribution of
trained shapes. As can be seen in this �gure the result of setting a low shape term gives
a "poor segmentation" with respect to the expected object because of the high variability
of pixel intensities in bone regions.

For this region, the average error between the correct segmentation and the �nal active
contour obtained from the MRI segmentation is �e = 1:97 pixels (or 0.8mm in real values)
with a standard deviation � = 0:87 pixels using 
 = 4 � 107 and � = � = � = 0:5.
At this stage the 
 parameter values were not normalised and represent the sum of the
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Figure 4.7: Extracting one object from the image in �gure 4.6(b). Table 4.2 gives the
parameters used for each row. The �rst column displays the active contour evolution at
each iteration (red lines) overlaid on the feature map (gray pixels). The central column
shows a comparison between the �nal state of the snake and the feature map (gray line).
The rightmost column of this �gure displays the resulting detected contour.
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Figure 4.8: Results of the MRI segmentation for di¤erent shape parameters. (a) Initial-
ization. Result for: (b) 
 = 1� 107 (c) 
 = 2� 107 and (d) 
 = 5� 107

44



displacements of the shape energy term Eshape2. This error rate is calculated by averaging
the distances between the control points from the CT segmentation and the control points
from the resulting MRI segmentation and assuming that the CT segmentation represents
the correct skull shape at the correct position in the volume.

Figure 4.9 shows the result of assembling, by means of a 3D interpolation with Radial
Basis Functions [14], the points of several contours extracted with the algorithm proposed.
The image illustrates the results for the upper half of the head for two situations: without
shape included and with the shape term included. Figure 4.10 presents the skull model
obtained with a CT segmentation used for the evaluation.

Figure 4.11 shows colored models which represent the distance between the two models
in �gure 4.9 and the correct model (shown in �gure 4.10) of the same region. In the case of
the pure image driven algorithm the average error is �e = 2:70 mm with � = 7:47 mm and
for the case of the shape driven approach the error rate is �e = 2:1 mm with � = 6:9 mm.
These rates were calculated using a geometric distance between the 3D surface models
[31] [78] using 
 = 4� 107 and � = � = � = 0:5.

Figure 4.9: Results of segmenting the shape without shape term included (left) and with
a shape term included (right). These models were created by a RBF surface interpolation
process.

Figure 4.10: Portion of the skull segmented from the CT scans. This model was generated
by joining all the contours of the skull by means of a RBF surface interpolant.

2 In the 3D extension of the algorithm presented in next chapter the 
 values are normalised using
max(
) as a unit.

45



Figure 4.11: Visual comparison between the results of the segmenation approach without
(left) and with (right) shape term and the skull segmented with CT scans. The area where
the skull topology becomes more complex makes the control of the snake evolution more
di¢ cult causing more error as shown in the lower part of the models.

4.6 Discussion

The presented integration o¤ers a number of advantages over other methods. With respect
to the image feature aspect, the forces used to guide the active contour can be calculated
by means of a vector �eld with a potential. The algorithm presented in this section uses a
static potential that is calculated only one time at the beginning of the process in contrast
to other techniques that use a dynamic approach (e.g. [72]). This is an advantage for
future implementations because the algorithm can be parallelised. A second advantage
of the algorithm is that the gradient information can be exploited in regions where the
contour is clearly de�ned by the gradient pro�le and the shape information is used to
guide the contour evolution in areas where it is not possible to establish a clear border
(e.g. in regions where the pixel intensity values fail to distinguish between skull and air).
Additionally, the gradient vector �ow potential increases the range of capture (which is the
region of in�uence of an object�s edge on the active contour) allowing the evolution of the
active contour through concave regions, especially when two edges of the object contour
are relatively near to each other. In other gradient based approaches, this situation stops
the contour evolution process.

The results obtained from this 2D approach are acceptable for areas of the skull where
no important changes in topology are present, as at the top of the head. The regularity
and smoothness of this area allows easy de�nition of the expected shapes for training
purposes. Also, it facilitates the training and initialisation stages of the algorithm.

Even though acceptable results can be obtained with this approach for the top of
the head, things become complicated for training and initialisation stages in areas of
the head where discontinuities are present and more than one closed contour has to be
segmented (as is the case for the front of the skull in the area of the eye sockets). To
overcome these problems it is necessary to partition the skull surface to correctly initialise
and train speci�c areas of the skull external surface. This increases the complexity of
the training process. Also, in this initial implementation, the results of the algorithm are
highly sensitive to the initialization step. Good initializations in general lead to acceptable
results but a failure in the initialisation stage could lead to unacceptable results.
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A more robust technique needs to be de�ned in order to bene�t from the 3D informa-
tion supplied by the volume. This is the subject of the next chapter.
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Chapter 5

Skull Extraction in MRI data
using a 3D Template-based
Approach

In this chapter, a probabilistic method to approximate a 3D skull model from a MRI
volume of the head is presented. The method uses a deformable model which iteratively
adjusts its shape to �t the skull embedded in a MRI volume. Shape changes in the
deformable model are de�ned combining two elements: information provided by the MRI
volume and knowledge about the 3D structure of a skull shape. The in�uence of these two
components in the deformable model evolution, as introduced in chapter 4, is modelled
as a Bayesian energy formulation E(M) = Evolume(f; V ) + 
Eshape(M), where E is the
energy provided by the deformable modelM , V is the MRI volume, f is the set of features
associated to the volume, Evolume is an energy function of the features and Eshape is the
energy contribution of the shape.

The skull extraction method presented in this chapter is built on the results of the 2D
approach presented in chapter 4. This 3-dimensional formulation ameliorates the principal
limitations found in the 2-dimensional approach:

� It reduces the problems of the initialisation of the deformable model (sensitivity
problems),

� It avoids the requirement of training speci�c deformable models for di¤erent parts
of the skull, and

� It reduces the time for creating the training set by means of a semi-automatic ap-
proach for collecting the skull examples and their shape parameters.

The main issues to be addressed in the 3D skull extraction process are summarised in
table 5.1. Depending on their in�uence in the deformable model evolution, these issues
can be grouped in two categories: issues related to volume features and issues related to
shape control.

Regarding volume features, a process for feature extraction is required to analyse
regions of the volume containing skull information. Additionally, a method for de�ning
the in�uence of the extracted features on the deformable model is required. With respect
to the shape control aspect it is necessary to:

� De�ne a representation for the structure of the 3D deformable model.
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Issue Solution Method
Combining volume features and
skull shape knowledge

Bayesian approach
extended to 3D

De�ning volume features and their
in�uence in the deformable model
evolution

Energy minimisation for
a 3D deformable model

De�ning shape representation,
shape metrics and shape
evolution restrictions

3D Mesh with control points,
metrics, shape representation
and invariance

Knowledge representation
of the skull shape

Gaussian model of skull shapes

Including invariance in the
representation

Invariance formulation

Table 5.1: Issues to be addressed in the 3D skull extraction process

� Establish a scheme to represent the shape of the deformable model.

� De�ne the mechanisms to deal with the variation of shapes for di¤erent skull models.

� Establish a metric to compare the models involved.

� De�ne the way in which the volume features and the shape restrictions will be
combined to drive the evolution of the deformation model.

Each of these issues will be discussed in detail in the remainder of the chapter which is
organised as follows: Section 5.1 presents an overview of the 3D skull extraction technique
considering the main processes involved. Section 5.2 presents in detail the skull extraction
process extended to the 3-dimensional case. Section 5.3 describes a series of tests that were
conducted to validate the behaviour of the algorithm under di¤erent parameter settings.
Section 5.4 presents the results of the skull extraction process.

5.1 Overview of the 3D Skull Extraction process

In the 3D skull extraction process, volume features are combined with shape restrictions to
produce a 3D skull model that best �ts the skull data provided by the MRI. This process
can be considered as a bootstrapping technique in which, starting from an approximation
of the skull (noisy volume), the aim is to build better approximations of that skull itera-
tively by means of deforming a skull template. In this document the terms skull template
and deformable model will be used interchangeably.

The set of features, de�ning possible skull borders in the dataset, are used to de�ne a
force for attracting the vertices of the deformable model towards the borders of the skull.
At the same time the shape term acts by maintaining the structure of the deformable
model within the limits of a skull shape. The knowledge of the skull shape is determined
from the analysis of a set of skull examples called the training set.

Several modules are needed to implement the volume processing tasks and the shape
restrictions in the skull extraction process. Figure 5.1 shows the main stages involved. The
pre-processing and statistical processing modules work together with the 3D segmentation
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module in an iterative algorithm to produce a 3D skull model. These modules are
described in detail in the following subsections.

5.2 Pre-Processing

The pre-processing module receives as input the initial MRI volume and produces as
output an approximation of the skull volume and a vector �eld associated with that
approximation. Figure 5.2 shows an example of the volume produced by the pre-processing
module. The initial skull approximation is used to estimate the position, orientation and
global proportions of the skull to extract. It is also, is used to limit the searching space
for reducing the number of steps required for the extraction algorithm to �nd a solution.
The vector �eld produced is used to de�ne the forces at each point of the space that will
attract the vertices of the deformable model towards the skull borders.

Figure 5.2: Noisy skull approximation. Result of the region-growing algorithm for the
entire MRI volume after isosurface processing.

Figure 5.3: Results of the multi-seed region growing algorithm.(Left) three seeds selected
by the user with red dots. (Right) the area of the image segmented by applying the region
growing algorithm which groups pixel neighbours with similar intensities.

For producing a skull approximation, a set of seeds is chosen by a user based on an
intuitive knowledge about the skull shape. Figure 5.3 shows the process for a 2D slice of a
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single MRI dataset. The user selects areas of an image with low intensity pixels that are
probable skull regions. Then, a multi-seed region growing algorithm is applied for each
seed taking into account similarity of pixel intensities and neighbour connectivity with
previous and subsequent slices. The information of several slices is merged and a volume
is created. The result is a binary volume in which probable skull voxels have a value of 1
and the rest of the voxels have a value of 0.

For an MRI volume the user requires to select on average 100 points (seeds) for creating
the initial skull approximation. The multi-seed region-growing software implemented has
the capability to modify the intensity used for grouping regions (to select seed neighbours),
edit the selection and to show the 3D reconstruction of the regions selected, so that the
user can make corrections when needed. Processing a volume takes in average one and a
half hour of manual work. At this point, the accuracy of the resulting approximation is
not so important. The statistics of the shape term will compensate for the error during
the algorithm execution: missing information will be completed and extra information
eliminated.

The volumetric �eld associated with the skull approximation is de�ned as a function of
the gradient of the initial skull volume produced. The gradient vector �ow is a potential
force v(x) calculated in terms of the gradient and de�ned at each point of the volume
x: This vector �eld is calculated in order to de�ne a series of attracting forces acting
on the deformable model and originated from volume features. For this purpose, an n-
dimensional formulation for a GVF for the �eld v(x) is applied which is de�ned by the
equilibrium solution for the vector di¤usion equation [114]:

ut = g(j 5f j)52 u� h(j 5f j)(u�5f) (5.1a)

u(x; 0) = 5f(x) (5.1b)

In equation 5.1a, the term on the right h(j 5f j) is referred to as the smoothing term
since this will produce a smoothly varying vector �eld. The second term, (u � 5f); is
referred as the data term since it encourages the vector �eld u to be close to 5f computed
from the data. The weighting functions g and h apply to the smoothing and data terms,
respectively. Since these weighting functions are dependent on the gradient of the edge
map, the weights themselves are spatially varying. Applying the same criteria used for
the 2D implementation the weighting factors chosen are [113]:

g(5f) = � (5.2a)

h(5f) =j 5f j2 (5.2b)

The term v(x) de�nes a direction vector for each point in the space x = (xi; yi; zi). These
vectors point towards the border of the skull. In fact, 3-D GVF has an identical structure
to the 2-D GVF formulation described in Eq. 4.8 since it is written in a dimension
independent form.

5.3 Statistical Processing

The statistical processing module covers all the aspects related to the skull shape formu-
lation. In this section, three main aspects required to integrate the shape knolwedge for
controlling the evolution of a deformable model are presented. First, the representation
of the structure of the deformable model is covered. Second, the de�nition of the shape
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representation for the deformable model and the mechanisms to make this representation
invariant are described. Third, the method to gather information for acquiring skull shape
knowledge is described. Additionally, the way that this skull shape knowledge is applied
to the deformable model evolution is also presented.

5.3.1 Deformable Model and Shape Representation in 3D

There are two main aspects to be covered in this section: the representation of the the
deformable model and the representation of its shape. In this context, we will refer to the
shape of an object as the set of geometric properties that are maintained between objects
of the same type (i.e. skulls) independent of position, size and orientation. For this
particular work, an explicit model of a skull in the form of a triangle mesh is used as the
deformable model. A triangle meshM is a pair of sets (V;T), where V is a set of vertices
v 2 R3, T is a set of triplets of edges, T � f(u; v; w) j u; v; w 2 E ^ u 6= v 6= wg, de�ning
triangular polygons, and E is a set of edges between vertices, E � f(s; t) j s; t 2 V^s 6= tg.

The union of all the triangles
kS
i=1
ti 2 T de�nes a continuous closed surface S(M).

The shape of the deformable model M is de�ned as a set of N 3-dimensional control
points de�ning the shape of the triangle mesh M . The control points set is a subset of
the vertices of the model V. Each control point in�uences the spatial positions of the
neighour vertices. For simplicity, the shape will be represented as a vector s with the
following structure:

s = (x1; y1; z1:::; xN ; yN ; zN )
T (5.3)

with xi, yi, zi being the coordinates of each control point. The number N of control
points used in our implementation is N = 3000 due to computational restrictions in the
implementation1.

The method to represent the shape knowledge is based on a characterisation of the
control point sets by means of a multivariate Gaussian distribution. The distribution is
used for modelling the variation in position of each control point of all the shape examples
of the training set. The expression for this probability distribution is given by:

�(s) / exp(�1
2
(s� �)T��1? (s� �));

where � is the average of the training set and �? is the covariance matrix of the training
set. Under this convention, the energy of the deformable model M can be expressed in
terms of its shape descriptor s by means of the following energy term Eshape:

Eshape(s) = log(�(s)) + const = �
1

2
(s� �)T��1? (s� �) (5.4)

As in the 2-dimensional case, in our 3-dimensional implementation the distance be-
tween two deformable models Ms and Mŝ is calculated by means of an approximation to
a Mahalanobis distance using a simple Euclidean distance d between the sets of control
points (as presented in section 4.4.4).

1The current Matlab implementation is limited by the size of the matrices involved for the computations.
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5.3.2 Alignment of training shapes

An optimal alignment of two shapes s and ŝ with respect of rotations, translation and
scaling (known as full Procrustes �t) requires to minimise the distance:

D2(s; ŝ) =k ŝ� �s�� 1k
T k2 (5.5)

where D is the distance between the two shapes, � >= 0 is a scaling factor, � is a matrix
accounting for rotations, and 
 a vector accounting for translations. Setting corresponding
derivatives to zero, the solution for the optimal parameters �̂, 
̂, and �̂ are the following
expressions [47], [86] and [35]:


̂ = 0 (5.6)

�̂ = UV T (5.7)

The rotation term �̂ is given in terms of the matrices derived from a single value
decomposition of the matrix product ŝT s

kskkŝk as follows:

ŝT s

k s kk ŝ k = V �U
T (5.8)

The rotation estimator derived is:

�̂ =
trace(ŝT s�̂)

trace(sT s)
(5.9)

and �nally, the expression for ŝ is:

ŝ = �̂sc�̂ + 1k
̂
T +

p
D2(sc; ŝ) (5.10)

Given a set of m training vectors � = fsigi=1::m which are centered and normalised,
there are several ways to align them [35], [47]. In this research, we align them with respect
to the Procrustes estimate of the mean vector which is de�ned as:

�̂ = arg inf
�:S(�)=1

nX
i=1

sin2 �(si; �) = arg inf
�:S(�)=1

nX
i=1

D̂2(si; �)

the point in shape space corresponding to the arithmetic mean of the Procrustes �ts,

�s =
1

n

nX
i=1

sPi (5.11)

has the same shape as the full Procrustes mean [35].

5.3.3 Training of the 3D Skull Shapes

Figure 5.4 shows an example of a training set of points created from skull sampled points
at the top of the skull for individuals 03, 04, 06, 09, 10 and 14 of the UOS dataset.

The initial training shapes used were the Visible Human Project (VHP) male dataset
[4] and a commercial synthetic skull model2. The synthetic model is shown in �gure

2web site: http://www.turbosquid.com/FullPreview/Index.cfm/ID/248625
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Figure 5.4: example of a training set of points created from skull sampled points at the
top of the skull for individuals 03, 04, 06, 09, 10 and 14 of the UOS dataset

5.6. At this point, the only requirement for the synthetic skull template was to have
the most important anatomic features located in the right place. The skull model of
the VHP was created from the CT data. The VHP skull model is a precise anatomically
correct model of the skull. In contrast, the synthetic model is not anatomically correct.
Even though the second model is not anatomically correct, both models contain the most
important geometric features that we wanted to model (i.e. the frontal area of the skull).
Additionally, and in order to add some shape variability to the training set, 5 skull models
were created from rough approximations of the set of skulls to segment and added to the
training set. The process for generating these 5 models was the following: The 60 noisy
skull volumes generated at the pre-processing stage were registered with the commercial
skull model using a non-rigid registration algorithm. The algorithm will be described
later in section 5.4.2. As a result, 60 rough approximations of the skull volumes were
generated. A principal component analysis (PCA) was applied to the vertices of each
model. With the PCA analysis it is possible to reconstruct any skull model from the set
by means of a linear combination of the average skull and a set of coe¢ cients (the principal
components of each particular model). The �rst 17 coe¢ cients containing more than 95%
of the variability were chosen. Finally a K-means clustering analysis with 5 centres was
applied to the PCA coe¢ cients of the 60 skulls. The average coe¢ cients of each cluster
were used to reconstruct each of the synthetic skulls. With this procedure, 5 skull models
containing most of the shape variation in the set of skulls to segment were created.

5.3.4 Invariance of the Shape Term in 3D

The de�nition of an invariable representation becomes a key aspect in order to compare
and assess shape properties of di¤erent skulls. The shape of the deformable model s is the
input to the energy functional Eshape (equation 5.12). As explained in chapter 4, the aim
of this functional is to determine the similarity between the input shape s and the family
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of shapes de�ned by the training set of skull shapes. In order to make this formulation
invariant, the input shape and the training shapes have to be de�ned in the same system
of reference (i.e. normalised and aligned). Since the training shapes are aligned and
normalised with respect to the mean shape �s, the argument of the energy term (equation
5.4) must be also aligned. The energy for the aligned and centered shape ŝ is:

Eshape(ŝ) = �
1

2
(ŝ� �)T��1? (ŝ� �) (5.12)

with ŝ as de�ned in equation 5.10. The translation of the shape s is eliminated by:

sc = (I3n �
1

n
�)s

with:

� =

0BBBBB@
1 0 0 1 0 0 � � �
0 1 0 0 1 0 � � �
0 0 1 0 0 1 � � �
1 0 0 1 0 0 � � �
...

...
...

...
...

...
. . .

1CCCCCA (5.13)

Essentially Sc represents an origin centered shape. The energy term Eshape can be min-

imised with respect to the aligned shape ŝ by means of evaluating dEshape(s)
ds using the

chain rule with the following expression:

ds

dt
= �dEshape(s)

ds
= �dEshape(ŝ)

dŝ
� dŝ
dsc

� dsc
ds

(5.14)

with:

dEshape(ŝ)

dŝ
= (��1? (s� �))

T (5.15)

dsc
ds

= (I3n �
1

n
�) (5.16)

dŝ

dsc
=
d(�̂sc�̂ + 1k
̂

T +
p
D2(sc; ŝ))

dsc
(5.17)

Note that the terms D; 
̂; �̂; and �̂ in equation 5.17 are all functions of the aligned shape
ŝ as expressed in equations 5.5-5.9. Equation 5.17 represents the expression that is used to
obtain, by means of a minimisation, the nearest most probable shape of a con�guration of
control points in the 3D space. This is the key aspect to the 3D energy shape formulation.
Equation 5.12 is used to evaluate the term 
Eshape(M).

5.4 3D Segmentation

Figure 5.5 shows the main stages of the 3D segmentation module.
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Figure 5.5: Elements of the 3D Segmentation process
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5.4.1 The 3D Deformable Model

A skull template consisting of a surface made up of a triangle mesh with 18,546 vertices
and 36,710 triangles is the starting point used for the 3D segmentation algorithm. The
model is uniformly sampled by means of a KD-tree algorithm [108] and 3000 vertices of
the mesh are selected to act as control points. The synthetic skull used as the template is
a commercial 3D model3 (see �gure 5.6).

Figure 5.6: Skull template used for the deformation based surface reconstruction process.

5.4.2 Feature Extraction Module

The noisy initial volume and the deformation models are processed in similar ways. In
the feature extraction module, a set of 3D features is identi�ed in prominent areas of
both. The surface of the noisy model is created by means of a marching cubes algorithm
applied to the input noisy volume. In the noisy surface model, a user manually draws a
number of surface curves in pre-de�ned areas of the skull. These are the borders of the
eye cavities, the border of the nasal aperture, and the edges of the jaw. A similar set of
curves is marked in the skull template model. These sets of curves will be matched in the
template initialization module.

5.4.3 Template Initialization and 3D Registration Module

In the template initialisation module a pair of sets of 3D curves are used, one corresponding
to the features of the noisy skull and the other to the features of the deformable model.
These curves are matched by means of a point registration algorithm. The registration
step reduces the problems of initialisation with the deformable model by making the initial
template coincide with the volume of the noisy skull. In this research, the Robust Point
Matching (RPM) [19, 20] is used for this purpose (see appendix F).

Usually in a registration process there are two problems to solve. First, the correspon-
dence between the control points must be found. In general, the number of points of each
matching set is di¤erent. Second, the transformation between the control points must be
estimated. There are two types of transformation: rigid and non-rigid.

3Models web page: http://www.turbosquid.com/FullPreview/Index.cfm/ID/248625
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Figure 5.7: Feature lines are extracted from both the noisy pre-segmented skull Ns and
the clean skull template To. This gives a set of correspondence features in the form of
surface curves that can be registered to de�ne the initial shape of the template. Based on
this pair of features, a warping process is de�ned using the relation between the surface
curves, resulting in the initial skull template Ti.
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Figure 5.8: Example of a pro�le curve generated from intersecting a noisy skull model
with a cutting plane.

In rigid transformations, the distance between any two coordinate locations remains
unchanged by the transformation. In non-rigid transformation this restriction is not im-
posed, allowing more �exibility to the deformation. We are interested in the non-rigid
type of transformation in order to obtain a template closest to the border of the volume
of the noisy skull.

The Robust Point Matching method solves for both the correspondence and the trans-
formation between two sets of points. The registration problem is much easier the non-rigid
transformation is �rst estimated once the correspondence between points is given. Addi-
tionally, information about an approximate spatial transformation can be of considerable
help in a search for the correspondence. This duality points to a natural way of solving
the line matching problem. Appendix F, "Robust Point Matching Algorithm", describes
the components of this registration technique.

For extracting the 3D curves the vrmesh 3D curve sketching tool is used 4. A user
is presented with an interface allowing drawing curves on the surface of a model. This
tool has a 3D editor with the standard functions to manipulate triangular mesh such as
zooming and rotation, which facilitates the manipulation of the models. The user has
the option to draw a smooth open or closed curve on the surface by selecting a set of
points on the surface and the curve is obtained by drawing a minimum length path curve
interpolating the points and the triangles between them. The time required for generating
a set of curves for a noisy skull model takes between 10 and 15min. Additional feature
curves can be generated by intersecting the skull models with a cutting plane at the centre
of the head. Figure 5.8 shows a pro�le curve obtained with this method.

After �nding the spatial correspondence between the pair of 3D features the space
surrounding the skull template is deformed in order to �t the noisy volume, preserving
some of the spatial distribution of the model. A schematic diagram of the template
initialisation is shown in �gure 5.7.

5.5 Deformable Model Evolution

The skull template deformation algorithm is shown in �gure 5.9. The corresponding data
�ow graph is presented in �gure 5.10. The inputs of the algorithm are two 3D mesh

4 see http://www.vrmesh.com/
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models. The �rst model represents an initial noisy volume of the skull to segment. This
model is generated as described in section 5.2 using an isosurfacing process on the MRI
volume data. The second model is a skull template initialised as described in section
5.4.3. The algorithm deforms the skull template (deformable model) to �nd a skull model
that best �ts the information provided by the noisy skull volume. The deformation is
conducted by changing the positions of a set of control points de�ned in the deformable
model according to the image features found in the volume and the shape restrictions.
The stop condition used in the algorithm is a �xed number of iterations (in our case 100).
At each iteration, the deformable model control points are moved towards the direction of
the most probable skull con�guration. The number of iterations was chosen after running
the algorithm several times and observing that changes in the deformable model control
points after 60 iterations were small (less than 1.5mm in average) for the combination of
parameters used.

The displacement of the control points is stored in three 1-dimensional vectors d1,
d2 and d3. Vectors d1 and d2 accounts for changes when volume features are taken into
account. Vector d1 has values when the deformable model is near to the noisy skull model.
Vector d2 stores the contribution of the Gradient Vector Flow when a control point is far
from the noisy volume. Vector d3 stores displacements originated by the shape term. Each
of the vectors d1, d2 and d3 has three components d1(x), d1(y) and d1(z) (one for each
dimension).

At each step of the main loop and for each control point, the algorithm checks if the
control point is close to a region of the noisy skull model. The search is made in the
normal direction of the surface where the control point lies (i.e. normal to the deformable
model surface). If the noisy volume lies within a radius of 5mm (that can be adjusted by
the user) then d1 is calculated (i.e. moving the control point in the direction of the noisy
volume). The control point displacement is a fraction of the distance calculated. This
makes the deformable model change slowly to maintain the mesh structure. Currently
the value used for the displacement is set to 10% of the distance. If the control point is
not near the noisy volume then the displacement vector d2 is calculated using the values
obtained of the GVF at that point.

With the information collected in vector d1 and d2, the skull template is deformed
using a Radial basis function with thin plate spline base (RBF-TPS) approach. Each of
the control points are moved to their new positions and the RBF-TPS calculated function
is used to deform all the space surrounding the control points (i.e. deforms the skull
template).

In the last step, after deforming the skull template, each control point is "corrected"
by using the shape term. A new displacement vector d3 is calculated and a new RBF-TPS
deformation function is calculated and applied to the control points. The stop condition
is evaluated, and if not �nished then the algorithm returns to the main loop.

The output of the deformation template module, is a complete skull model �tted to the
noisy data. There are several alternatives for de�ning the stop condition. One criterion
is that that the sum of displacements calculated for the deformation vectors d3 at each
step of the algorithm are maintained under a given value for a �xed number of iterations.
The second criteria is to de�ne a �xed number of iterations for the deformation template
algorithm. In this research work we used the second criteria.
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Figure 5.9: Template deformation algorithm.

5.6 Parameter Testing

The skull extraction formulation contains a weighted combination of a volume feature and
shape terms controlling the evolution of the deformable model. For analysing the in�uence
of these terms a set of combinations of their weights were tested. This section presents
two main tests conducted on the parameters of the algorithm:

� With the �rst test we demonstrate the correctness of the shape term in taking
an arbitrary con�guration of the deformable model template for producing a �nal
con�guration with the correct shape proportions.

� In the second test, we show the capacity of the algorithm to use volume features
and shape features in combination.

Two weighting factors are tested: the volume feature factor (V FF ) a¤ecting the
in�uence of these features in the �nal result, and the shape factor (SF ) which accounts
for the restriction in shape form.

5.6.1 Notation used for the models

For the following set of tests, we will make reference to di¤erent states of the deformable
model during the process of segmentation. The initial state of the skull template model
will be denoted by the letter S (source model). This source model is deformed n times
by the algorithm. The state of the model at the iteration j will be denoted by Dj for
j = f1:::ng. The deformed models Dj will be compared to a reference model R. The
model R will be speci�ed for each test.
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Figure 5.10: Flow Chart of the 3D segmentation algorithm.

63



5.6.2 E¤ect of the shape restrictions

To assess the results of the algorithms, a skull model was deformed manually using a free
form deformation algorithm (FFD) [107]. Figure 5.11 shows the base model (left) and
deformed model(right) used for this test. Figure 5.12 shows the di¤erence in mm between
the source and target models. The deformed model will be our source model S. S is
processed using our algorithm with only the shape term acting on it. The objective is
to recover the normal skull proportions of S. In order to have a comparison reference, a
model R was created applying our shape recovering algorithm to S with a shape factor
(SF ) of 1:0 for 100 iterations.

Figure 5.11: Original target model (Left) and an arbitrarily deformed model (Right)
created by applying a free form deformation (FFD) technique to the model on the left.

Figure 5.12: Surface comparison between the models in �gure 5.11. A BGYR colour scale
is used where blue represents nearest points while red represents points with more that
20mm of di¤erence.

Figure 5.13 shows the distances between Dj and R at each iteration and for three
di¤erent SF . The graph illustrates the behaviour of the algorithm for the parameters
SF = 0:1, SF = 1:0; and SF = 10:0. The comparison was conducted for 80 iterations.
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Figure 5.13: Graph showing the behaviour of the shape term result with respect to a
reference R model after 80 iterations.

Figure 5.13 shows that when using SF = 1:0, the resulting model converges towards
a solution (in this case represented by y = 0:0) in a regular and smooth way after 30
iterations. The graph shows that if the shape is reduced to one tenth of the original value
(SF = 0:1) the curve decreases regularly at a slower rate. When a higher shape factor
is used (SF = 10:0), the algorithm converges to a shape con�guration before the �rst 10
iterations. In this case, this solution is around 2.5 mm from the base line de�ned by R.
This behaviour is expected and the reason for that is because the shape term makes the
deformed model D converge to the nearest shape con�guration with respect to its current
dimensions at a given state (i.e. the invariant formulation includes possible changes in the
scale of the objects). This convergence is abrupt because the factor used is high. When
the shape factor is higher the �rst iterations present abrupt changes before stabilising.
These cases exemplify the three main situations available when setting up the shape term
parameter. Figure 5.14 shows the results of the parameter combinations.

5.6.3 E¤ect of the volume features and shape restrictions

In this set of tests, the aim was to illustrate the e¤ects of combining shape and volume
feature terms. The test involves segmenting the MRI volume of subject 1 of the UOS
with di¤erent parameters for volume and shape weighting factors. The source model S is
the initialised skull template according to the initialisation procedure presented in section
5.4.3. The parameter values tested are shown in table 5.2 and a graph illustrating the
results is presented in �gure 5.15. The graph shows the distance between Dj and R at
each step j of the skull segmentation algorithm. For clarity, the graph only shows the
�rst 20 iterations of the algorithm. In this case (similar to the previous test), R is an
average model obtained by applying the algorithm with SF = 1:0 with 100 iterations to
the deformable model S . As shown in table 5.2, four cases were tested.

In case 1, only image features were used to direct the segmentation process (V FF =
1:0, SF = 0:0). After initialisation, the deformable model evolves guided by image features
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Figure 5.14: Results after 80 iterations for the three shape parameters plotted in graph
5.13: SF = 0:1(left); SF = 1:0(middle); and SF = 10:0(right).

Figure 5.15: Evaluation of results for four combinations of image feature and shape factors.
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Case Image Shape Behaviour
i Features Factor of the curve
1 � = 1:0 
 = 0:0 unsmooth and divergent
2 � = 1:0 
 = 0:1 unsmooth convergent
3 � = 1:0 
 = 1:0 smooth and convergent
4 � = 1:0 
 = 10:0 smooth and convergent

Table 5.2: Four image feature and shape factors applied for segmenting a skull model

de�ned by edges of the noisy skull volume and the in�uence of its gradient vector �ow
�eld. Regions of the deformable model far from the skull volume are pulled towards the
borders of the skull. As a result, the surface of the model generated after 20 iterations
is apparently similar to the surface of the skull volume in terms of surface distance value
but it is a "poor result" in terms of shape. The entire skull con�guration contained in
the initial deformable model is distorted at each step of the algorithm when there is no
restriction apart from the image features. The spike at the area of the left zygomatic
bone (see �gure 5.16) is in this case due to some noisy data near the skull in�uencing
the template evolution. The deformable model evolves blindly towards the borders of
the volume of interest. In the graph it can be observed that the algorithm converges
towards a solution near to the �nal volume, but as the number of iterations continue this
model diverges from the solution. Figure 5.16 (second row) shows that the left zygomatic
bone has an outlier due to noise components in the volume, causing the skull shape to be
distorted. Also, the nasal aperture presents an unusual asymmetry due to free deformation
with no shape restrictions.

In case 2, the deformable model is now under the in�uence of a small amount of the
shape term. With respect to case 1, this setting modi�es the behaviour of the algorithm
by imposing a restriction in the evolution of the deformable model. However, the amount
of shape in�uence is small compared to the image feature amount (V FF = 1:0, SF =
0:1). The algorithm gives more priority to the image feature term resulting in a �nal
con�guration that is still poor in terms of shape. Figure 5.16 (third row) shows a small
improvement in the �nal skull shape. This improvement can be observed in the area of
the back of the skull (contours of the parietal bone area) and the zygomatic arch. There
are still problems with the noise in the left zygomatic bone area.

In case 3, a balanced combination of image features and shape factors is used. The
results are improved in terms of global shape parameters. Figure 5.16 (4th row) shows that
the problem in the left zygomatic bone has been corrected, as the shape term stops the
deformable model accepting such outliers. Also the area of the mandible has a more regular
and smooth surface. The nasal aperture maintains some symmetry, and, furthermore, the
area of the maxilla and especially the left superior teeth area are also corrected with
respect to the previous con�gurations presented.

Finally for the 4th case, when there is a high shape factor, the deformable model gives
priority to the shape term, making the model converge to the nearer average skull shape
almost independently of the image features. This is similar to the results produced using
the pure shape term variation in section 5.6.2.

The processing time for registering two sets of curves with 700 points each is 7 minutes
approx. and using 60 iterations. This number of points was the average used for registering
each of the skull models. For calculating the gradient vector �ow in 3D for a sub-volume
of 256x256x50 voxels the processing time is 16 minutes using 120 iterations for calculating
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Figure 5.16: Results of the segmentation process combining Image Feature Factor (IFF)
and the Shape Factor (SF)
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the solution to the gradient descent di¤erential equation. The sub-volume dimension
corresponds to the spatial region of the MRI volume was the area of the head is located.
A total of 180 hours were required to process the 60 skull models of the database using
3000 control points per model and 100 iterations (i.e. 3 hours on average per dataset)5.

5.7 Creating a database of skull-face models

Skull shape varies from individual to individual. One shortcoming of using global shape
descriptors is that new models tend to be deformed to the shape con�gurations spanned
by the trained shape space. Working in combination with the covariance regularisation a
strategy of local matching gives the algorithm �exibility to deal with new skull con�gura-
tions.

5.7.1 Parameters used in the extraction process

The strategy to address the problem of skull global shape variability was implemented in
two stages. First, the template deformation based segmentation algorithm was applied to
the noisy skull volumes with 100 iterations using a deformable model with control points
along the entire skull surface equally distributed. The number of control points used was
3000. The training set was created with a subset of vertices of the synthetic skull template.
As explained in section 5.3.3, a skull model generated from the VHP male skull and �ve
skull model approximations were included in the training set in order to include shape
variability.

In the �rst stage, small values for the shape term were used to give more weight to the
image feature term (V FF = 1:0, SF = 0:015). The results of the segmentation at this
stage are skull templates with features globally matching the noisy skull volume, i.e. the
models are not completely correct in some parts.

In a second stage, a local correction process was applied to skulls produced in stage 1.
This used the same deformable model template con�guration but with a denser number of
control points in speci�c regions: 1024 points in the area of the face, and using V FF = 0:1,
SF = 0:5 and 100 iterations. The regions of the skull enhanced in the second stage are:
the eye aperture borders, the noise aperture contour , the zygomatic bridges and the
border of the jaw. This local correction step allows the algorithm to recover the shape
in speci�c areas. Also, in combination with the variance regularisation, local correction
gives the �exibility to segment a wide range of skull shapes.

In general, the parameters values were found by running several tests based on the
test criteria presented in sections 5.6.2 and 5.6.3 selecting the combinations of parameters
with regular behaviours for the 60 skull models.

5.7.2 Three dimensional Database of head Models

The results of applying the previous algorithms to the UOS MRI dataset is a new database
of 60 skull and skin models. Figures 5.17 and 5.18 shows an entry of the database. Figures
5.19 and 5.20 show the skull and face model structure. Each model consists of two 3D
triangle meshes representing the skull and face layers. The skull model consists of 18,546
vertices and 36,710 triangles whilst the face model consists of 25,566 vertices and 49,128
triangles.

5These results were obtained using a Dell Dimension DXP061 computer with two Intel(R) processors
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Figure 5.17: The resulting surface models for the skull and face of the �rst individual of
the database. The face model is produced using the isosurfacing technique presented in
section 3.2.

Figure 5.18: Superimposed layers of the skull and face for the �rst individual of the
database.
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The set of skull-face models has several useful characteristics that can bene�t the
design and implementation of a craniofacial reconstruction system:

First, the amount of points in the skull and face o¤ers a great level of detail to analyse
the skull-face relation. Additionally, the vertices of the resulting models de�ning the
surfaces can be re�ned at the level of detail required. The analysis of the face can be more
detailed in comparison with current techniques that use a sparse set of anthropometric
landmarks.

Second, the template is created with an explicit model of a skull which makes it easy
for the user to manipulate. This is in contrast to abstract representations used in other
approaches such as, for example the level-set [39, 25] formulation which uses an implicit
function in 4D to represent the skull surface at a given level.

Third, the origin of the skull models is the same deformable model (template repre-
sented with a triangle mesh). In other words, they are represented using the same system
of reference. This facilitates the way they can be used for their analysis in di¤erent
contexts. Several processes of the craniofacial reconstruction systems bene�t from this
property such as the statistical analysis, the training set creation, the feature location,
matching of models, etc. A set of corresponding points is always required for conducting
these tasks. The correspondence between models also eliminates the problem of landmark
interpretation and placement. In the case of the face models, they are also created with
a common face template and, similar to the skull models, this facilitates their analysis
under di¤erent contexts.

Fourth, the database consists of skull-face models for each subject. This property make
it is possible to test di¤erent craniofacial reconstructions strategies and systems by using
a subset of models of the database. The rest of the models can then be used to simulate
unknown skulls to be reconstructed. It is possible to assess the results quantitatively by
comparing the surfaces of the real models with the reconstructed models. This will be
done in chapter 6.

Figure 5.19: Resulting skull mesh generated from the 3D skull segmentation approach.

6600 running at 2.4GHz and 2.0 GB of ram memory.
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Figure 5.20: Face mesh. Result of the extraction process of the face layer.

5.8 Summary and discussion

In this chapter, a 3D technique for segmenting the skull in MRI data problem was pre-
sented. The technique works by incorporating statistical knowledge of the skull shape to
a deformable model evolving toward volume features under a gradient vector �ow �eld.
A bootstrapping algorithm requiring only an initial rough approximation of the skull is
proposed. A �rst approximation of the volume of the skull is iteratively re�ned combining
shape knowledge and image features. The technique presented in this chapter, combined
with the skin extraction process (see section 3.2), are the two main components needed
for creating skull-face models from MRI datasets.

The segmentation technique presented was applied to the UOS MRI dataset, result-
ing in a unique dataset of detailed skull-face models. This database has applications in
craniofacial reconstruction systems. The skull extraction algorithm can also be used for
segmenting other kinds of MRI data.

An approach similar to the work presented in this thesis is presented by Luthi et.
al. [59]. A deformable model of a skull is used to segment the skull in a pre-processed
MRI head volume. The skull and the deformable model are registered using a landmark
based approach. A set of landmarks are manually identi�ed in both skull models and this
relationship is used for de�ning the non-rigid registration. In contrast, our work uses a
two sets of 3D curves in both models. To maintain the shape of the deformable model,
Luthi et. al�s technique implements a shape term de�ned with the (PCA) coe¢ cients of
a statitical model of skull shapes. The deformable model mesh is deformed under the
shape restrictions at each step of an iterative algorithm. Both aspects are similar to our
approach. However, to impose more control on the shape, the deformable model in Luthi
et. al�s approach is de�ned at di¤erent level of details and the head volume must be
processed several times. The resulting model at each cycle (i.e. for each level of detail) is
combined to maintain the deformable model mesh structure. In contrast, our technique
requires only one deformable model at the same level of detail during all the process.
In Luthi et. al�s work, the statistical skull model requires several skull samples to be
constructed given the issues with the covariance matrix. In contrast, our technique does
not have restrictions on the number of models to use (i.e. from one to n models can
be used). In our approach a covariance regularisation step is incorporated, which makes
the shape term calculation more robust and requires less skull models to train (only one
model is needed as a minimum).
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The results of the technique presented in this chapter can be used directly to conduct
statistical studies about measures and proportions of the skull and face. Some examples
of possible applications of this type of data, not only in forensic but also in other medical
applications, are for example calculating a geodesic distance between features, approxi-
mating areas to continuous functions for analysing geometrically some parts of the skull,
analysis of the relation between speci�c skull and face regions, etc. In the next chapter,
the database of skull-face models created using the techniques described in this chapter
will be used as part of a new craniofacial reconstruction approach.
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Chapter 6

A Computer-Based Craniofacial
Reconstruction System

The aim of forensic craniofacial reconstruction is to produce an estimated face model cor-
responding to an unknown skull, for identi�cation purposes. To make the reconstruction
process faster, more �exible and reduce some of the subjectivity and inconsistencies asso-
ciated with traditional approaches, two and 3-dimensional computer-based reconstruction
systems are being developed [12]. Computerised facial reconstructions have the advantage
that they can be implemented in situations where traditional facial reconstructions cannot
or where the implementation of traditional approaches would be simply impractical (e.g.
in the case of mass disasters) [30].

Despite the development of computer based approaches, some authors argue that the
reasons to continue using traditional techniques for creating facial reconstructions is the
realism they provide: "the main advantage of traditional techniques is the realism provided
by the artist on the �nal result of the process" 1. In constructing hand made face models,
accuracy is sacri�ed for visual realism leading to craniofacial methodologies where non
reproducible results are obtained. The main issues in computer based approaches are how
to represent the relationship between the main variables de�ning a human face (e.g. skull
shape, age, ethnicity), and how this relationship can be exploited to create more reliable
and replicable results. In this respect, this work does not pretend to replace the role of
the forensic artist but to supply her with computational tools allowing her to make more
objective and reproducible facial reconstructions.

According to Wilkinson [109] there are several steps which an ideal computer-based
facial reconstruction system has to cover. First, information must be collected about the
skull to be analysed. This process can be done using a 3D scanner device (e.g. a laser
scanner). Second, the reconstruction process must be de�ned where information about
age, sex and ethnic group of the person can be added. Third, the facial reconstruction
is produced. In addition, current information sources for creating facial reconstructions
must be diversi�ed to take advantage of modern technology, bene�tting from its capability
to produce more detailed and complete information about the structure and composition
of the human head.

In this chapter, a method for creating a craniofacial reconstruction system using in-
formation sources generated from MRI data is presented. The information consists of 3D
models of the skull and face. The database of head models presented in chapter 5 provides
the essential mechanism to design a system in which the computer can be used to create a

1Martin Evison, Personal communication, October 2004.
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face estimation algorithmically. Based on the implicit information contained in the head
model database. Combined with a registration-based craniofacial reconstruction approach
using a spatial deformation technique, a novel approach to Craniofacial Reconstruction
(CFR) is presented in this chapter.

The chapter is organised as follows: Section 6.1 describes some preliminary consid-
erations and notation used on the rest of the chapter. Section 6.2 presents an overview
of the CFR system architecture. Section 6.3 the function of the biological and geomet-
ric skull analyisis component of the system is described. In section 6.4 is presented the
template head construction method used for approximating the reconstructed face. The
approximation is achieved by �tting the skull model of the template to the unknown skull
being analysed. In section 6.5 the process of face reconstruction from the head template
is described. In Section 6.6 the summary and conclusions of the chapter are presented.

6.1 Preliminary Considerations

The database of head models is represented by the set H = fSi; Fig, where Si and Fi
are ith skull and face models in the database respectively. The unknown skull and its
corresponding face model will be referred by the terms Su and Fu respectively. These
models are both elements of a head model Hu (i.e. Hu = fSu; Fug). For testing purposes
the unknown skull is simulated by choosing and removing one of the skulls of the database.
The reconstructed face model F̂u, can be compared quantitatively with the real unknown
face Fu. This means that di¤erent strategies for the craniofacial reconstruction system
can be tested and evaluated.

6.2 Overview

The craniofacial reconstruction system consists of three main elements as illustrated in
�gure 6.1: Skull Examination, Template Construction and Face Construction. The input
skull is analysed and a set of main features extracted. Combining these features with
information about the skull-face relationship, and a spatial deformable technique, this
system creates possible face estimations for the input skull. The anthropometric infor-
mation is provided by the database of head models presented in chapter 5. The use of
the face surface to deform the surrounding 3D space (equivalent to volume deformation)
addresses some of the problems encountered in techniques based on estimating landmark
positions in models [64, 104]. The use of spatial deformation allows the facial tissues
(skull, muscle, etc.) to be dealt with as a single component, thus freeing the procedure
from the problem of placing and interpreting anthropometric landmarks associated with
soft tissue depth tables. Facial soft tissues should change in response to the changes in
the skull, and therefore the face is not merely a mask depending on a small number of
soft tissue depth points, as is the case, for example, in [22].

Each of the elements of this craniofacial reconstruction system are made up of modules
designed for speci�c tasks and they will be explained in the following sections.

6.3 Skull Examination

For a real, unknown skull, the results of the forensic, anthropological and dentological
analysis, as well as �ndings obtained at the site where the corpse was found, are com-
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piled and organized. In our system, there are two main modules designed to extract this
information: the biological identi�cation module and the geometric analysis module.

6.3.1 Biological Identi�cation

This is the �rst step in a craniofacial reconstruction system [103], as described by Quatre-
homme [75]: "Whatever the technique adopted, CFR demands a thorough anthropological
analysis. After a precise observation of the skull, the classical measurements (horizontal,
vertical and sagittal) must be made. Index and angles are calculated, giving the race and
the general shape of the skull and face".

We assume this analysis has been conducted and the main characteristics of the in-
dividual such as ancestry, sex, age and body constitution have already been determined
(labelled as �Anthropological Features� in �gure 6.1). All this information is available
from the individuals modelled in our database. Thus we can choose to use or ignore spe-
ci�c criteria in the reconstruction process. For example we could choose to only use the
sex information, or to use the body mass index, etc. Chapter 7 will present a series of
reconstructions where di¤erent criteria are used in the reconstruction process. In a real
situation, this will be an external module where the information is supplied by a forensic
expert analysing the skull remains.

6.3.2 Skull Digitisation and Surface Reconstruction

In order to conduct a proper geometric analysis of the skull using computiational tools,
it is necessary to create a digital representation of this object. This can be done using a
laser scan, CT or MRI. Usually, the skull will be sampled and represented as a 3D sparse
point set in the case of a laser scan, or as a stack of images forming a volume in the case
of CT and MRI devices. In all cases, an isosurfacing process (similar to the processing
used for extracting the face from MRI, as described in section 3.2), can be applied to the
digital volume. In our case, when a model from the database is selected this step is not
necessary because the skull is already in digital form.

6.3.3 Geometric Analysis

Once in a digital format, it is possible to conduct a geometric analysis of the skull in
order to determine the main features describing its shape. To facilitate this analysis, a
registration process is carried out between the digitised skull and a 3D skull template.
The registration method used is the Robust Point Match algorithm [19, 20] (see appendix
F) applied to a set of 3D feature curves matched between the models to register. This
strategy is the same as used in the template initialisation process described in section 5.4.2
and uses the same set of curves. These curves are used because they can be consistently
identi�ed in di¤erent skull models as explained in section 5.4.2.

This registration step is necessary so that the unknown skull is in a common reference
system making it possible to determine spatial correspondences with other skulls. The
advantage of the registration process will become evident when the deformation approach
is presented in the following sections.
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6.4 Template Construction

In this stage, the database model selector chooses a set of head models from the database
matching some criteria in terms of the unknown skull features. Features such as the age,
sex, body constitution, PCA coe¢ cients, and geometric properties of the unknown skull
are used as selection conditions. The aim of the selection module is to create a set of base
models Hb consisting of k reference head models whose facial models F ir (i = 1 : : : k), will
be combined for producing a face estimation:

Hb = fH1
r ;H

2
r : : :H

k
rg = ffS1r ; F 1r g; fS2r ; F 2r g; : : : fSkr ; F kr gg (6.1)

The reference models are a group of selected head models from the database with similar
skull features than the unknown skull being processed.

As previously stated, the skull component Su will simulate the skull of an unknown
deceased person, and will be used as the input to the reconstruction algorithm. The skin
layer Fu will then be used to evaluate the results. Figure 6.2 shows a schematic diagram
of the stages involved in the template selection and face estimation processes.

To create the set Hb, each of the i head reference models Hi
r will be selected according

to a similarity criteria between Su and each of the reference skulls Sir. For example, if the
criterion is the minimum procrustes distance [35] d between the skull shapes, then for a
database of head models with n elements, the base model set Hb, is the set of k models
de�ned by the following expression:

Hb = ffSir; F irg j i 2 fj j d(Sjr ; Su) < "; j 2 f1 : : : nggg (6.2)

where n is the number of elements of the database, Sjr is a reference skull model of the
jth database entry, and kHbk = k for some threshold value " accounting for a limit for the
di¤erence in procrustes distance d between models Sjr and Su.

The elements of the setHb are the base head models used for creating a head template.
Figure 6.2 shows an example for selecting one of the elements Hi

r 2 Hb. The process of
transforming the set Hb to an estimated face is presented in the following section.

6.5 Face Reconstruction

In this stage, the information of Su, and the set Hb are combined in order to produce a
face. A deformation approach is used for adjusting the shape information of the models
contained in the set Hb, �tting the skull Sb to the unknown skull. An average model of
the face layers is calculated and used as an estimation of the face for the skull Su. The
details of the deformation function are presented in the next section. The �nal face model
construction process involves 2 main sub-processes: the face estimation and the warping
of the chosen database models to the unknown skull.

6.5.1 Face Estimation Process

Figure 6.3 shows schematically the face estimation process. In this stage, a deformation
function f will be calculated between Su and each of the reference skulls S

j
r 2 Hb. This

function is de�ned as:

fj(S
j
r) = Su (6.3)
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Figure 6.3: Process of face construction from the template.

This mapping function fj will be used to estimate a deformed face F̂
j
u for each of the

j reference models, by applying this function to the corresponding reference face F jr as
follows:

F̂ ju = fj(F
j
r ) (6.4)

The resulting reconstructed face F̂u is then the average of the F̂
j
u elements:

F̂u =
kX
j=1

F̂ ju
k

(6.5)

The functions fj are based on the Radial Basis Function deformation approach [14].
This approach requires a set of matching control points between a source and target
model. In general, �nding a set of matching features in two 3D models is a complex
task. However, the structure of the models obtained in the extraction process described
in chapter 5 facilitiates this task, as described in the next section.

6.5.2 Warping the Template to The Unknown Skull

Both the unknown skull Su and each of the reference skulls Sr contain a set of control
points. A Radial Basis Function (RBF) is used to deform Su into Sr.

The vector x of control points for each skull model is a subset of the vertices of the
skull models. These vertices are the result of a regular sampling process carried out
using a kd-tree data structure on the topology of the skull mesh. The number of points
used for matching the skull models is 3000. These points are the same points used as
control points in the template registration process presented in chapter 5. It is complex
to determine matching points between two three-dimensional objects specially when the
number of points in the sets to match are not equal. However, in our case, this process is
direct and simple because all the skull meshes are referenced to the same model, i.e. the
meshes share topology and the vertices are in the same relative spatial positions.

In general a RBF is a smooth, continuous function which interpolates the given data
and provides at least C1continuity. A RBF o¤ers several advantages over other methods
of deformation[14]. The geometry of the control-points is not restricted to a particular
con�guration. This implies that the distribution of the control-points can be both sparse
and irregular [111]. Another advantage is that the behavior of the interpolant can be

80



controlled to meet speci�c requirements. A RBF can be purely deformable, or contain
some form of linear component allowing both local and global deformations.

Interpolation aims to approximate a real-valued function f(x) for which we have a
�nite set of values f = ff1; f2; :::; fng at the distinct points x = fx1; x2; :::; xng. In 3D
each function f and point x has 3 components for each dimension, i.e. xj = fxj ; yj ; zjg,
fj = fuj ; vj ; wjg for j = 1:::n. Therefore, de�ning the object which interpolates a number
of known points relies upon determining the coe¢ cients �i from the expression:

fk(x) = pm(x) +

nX
i=1

�i�i(k x� xi k) (6.6)

The coe¢ cients of the function fk(x) are determined by requiring that fk(x) satisfy the
interpolation conditions: f1(x) = uj ; f2(x) = vj ; and f3(x) = wj ; j = 1; :::n giving n
linear equations and the additional compatibility constraints:

nX
i=1

�ki =

nX
i=1

�ki xi =

nX
i=1

�ki yi =

nX
i=1

�ki zi = 0 (6.7)

The value of the function �i depends only on the distance of the point x to each of
the control points xi (The xi points are called centers): The weights of the basis functions
�i are found by placing the centres back into fk(x) and solving the resulting set of linear
equations.

The polynomial term pm is included to allow a certain degree of polynomial precision.
We now describe a way of calculating the interpolant function given a set of points in 3D.
In the 3D form, the Radial Basis Function (RBF) transformation is determined by n+ 4
coe¢ cients in each dimension. These conditions gurantee that the RBF is a¢ ne reducible,
i.e. the RBF is purely a¢ ne whenever possible. In the case where the polynomial is absent
from the RBF, there are no corresponding compatibility constraints. The coe¢ cients of
the basis functions and the polynomial can now be found by solving the linear system
[111]:

W = L�1Y (6.8)

L =

�
G P
P T 0

�
(6.9)

G =

26664
g(r11) g(r12) : : : g(r1n)
g(r21) g(r22) : : : g(r2n)
...

...
. . .

...
g(rn1) g(rn2) : : : g(rnn)

37775 (6.10)

P T =

2664
1 1 : : : 1
x1 x2 : : : xn
y1 y2 : : : yn
z1 z2 : : : zn

3775 (6.11)

W T =

24 �11 �12 : : : �1n p01 p11 p21 p31
�21 �22 : : : �2n p02 p12 p22 p32
�31 �32 : : : �3n p03 p13 p23 p33

35 (6.12)

81



Y T =

24 u1 u2 : : : un 0 0 0
v1 v2 : : : vn 0 0 0
w1 w2 : : : wn 0 0 0

35 (6.13)

where T is the matrix transpose operator, 0 is a 3x3 matrix of zeros and pik are the
coe¢ cients of the polynomial. Notice that the (i; h)th entry of G is g(rij) such that:

rij = [~xi � ~xj ]
1
2 or rij = [(xi � xj)2 + (yi � yj)2 + (zi � zj)2]

1
2 (6.14)

Intuitively, g(rij) measures the e¤ect of the jth control-point on the transformation at the
ith control-point. The system is now solved using Singular Value Decomposition (SVD)
and the complete set of coe¢ cients in W are obtained to evaluate equation 6.6.

After obtaining the coe¢ cients of the interpolant, the function fk(x) is fully speci�ed,
and can be calculated in terms of a vector x of control points. This function fk corresponds
to the deformation used for estimating the reference face model F̂u as previously described.

6.5.3 Evaluation of the Reconstructions

To evaluate the results of the facial reconstruction technique, a tool for comparing two
meshes called metro [21] is used. Metro numerically compares two triangle meshes S1
and S2 independently of their level of detail. Metro evaluates the di¤erence between the
two meshes on the basis of the approximation error measure de�ned in [21]. It adopts an
approximate approach based on surface sampling and the computation of point-to-surface
distances (see �gure 6.4). For a given point i the nearest point is computed evaluating
the di(p; S) distance. A square regular grid is created, covering the bounding box of the
two meshes. Then a neighborhood data structure is constructed as an array of cells. Each
cell containing a list of all vertices included in the cell as well as all the faces intersecting
the cell. Given a point, the nearest point on a surface can be quickly found. The surface
of the reference mesh S1 is sampled, and for each elementary surface parcel the distance
to the S2 mesh is computed. Error is visualized by colouring the S1 mesh with respect
to the evaluated approximation error. For each vertex, the error on each mesh vertex (as
the mean of the errors on the incident faces) is computed, and a colour proportional to
that error is assigned. The faces are then coloured by interpolating vertex colours. For
each point of the �rst surface, the neighbours in the second mesh are found and deviation
between them found. Figure 6.5 shows an example of the output of this tool. Apendix B
gives more details about the metro toolkit.

6.6 Summary and Discussion

In this chapter, we have presented a template-based craniofacial reconstruction system
that makes use of data extracted from MRI data. The strength of this work lies in
the extensibility of the sources of information and the approach adopted to conduct the
reconstruction.

The MRI acquisition process, based on a non-invasive, detailed and safe technology,
allows the data to be extended as required. The speci�c design of datasets for modelling
the facial features of speci�c populations is possible. The data generated, in the form of
surface models, makes it possible to model the skull-face relationship at di¤erent levels of
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Figure 6.4: Distance from a reference point P in the base mesh with respect to the
intersection of its normal intersecting the surface S at P 0.

Figure 6.5: The metro graphic output window.
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detail. Due to the density of the models (i.e. number of points contained in each model),
continuous approximations to the skull and face models are also possible.

Based on the 3D set of head models, the sources of information used provide the
craniofacial reconstruction system with a series of advantages. First, using an implicit
way to incorporate tissue depths of the whole head, the dependence of the skull-face
is modelled statistically, rather than inferred from a limited number of anthropometric
landmarks coming from speci�c populations.

Second, the models used in the systems are referenced to a common model (i.e. they
share the same triangular mesh topology). The registration of the skull and face meshes
was conducted by using anatomical features as references. Points in a given area of one
model are then related to similar indexed points of any other model in the database. Hence,
features can be located and matched automatically between models by referring to the
same index vertices. This advantage ameliorates the problem of landmark interpretation
and location between models found in several CFR systems. Additionally, this property
facilitates the statistical analysis of the skull and face given that the models are represented
using a common system of reference.

Third, the possibility of creating a large scale database of head models, will contribute
to the area of craniofacial reconstructions in the sense that quantitative studies can be
conducted to assess the reconstruction results. Most work in the area proposes di¤er-
ent strategies to accomplish the CFR task. However, most of them cannot be assessed
quantitatively because insu¢ cient data is available to assess the results.

The architecture of the system gives an initial platform to experiment with new tech-
niques. The use of an algorithmic method to reproduce the face guarantees repeatability
in the results. The modular design makes it possible to replace speci�c components with
its functionality so that other combinations can be tested in the system.

A validation study showing the system functionality will be presented in the next
chapter. The mechanism to evaluate the results, at the surface level will use the techniques
presented in section 6.5.3.

84



Chapter 7

Evaluation of the Craniofacial
Reconstruction System

This chapter presents a set of experiments for testing our craniofacial reconstruction sys-
tem using the database of head models presented in chapter 5. The main objectives of the
experiments are: to show that it is possible to create facial approximations close to the real
face for a given skull (reconstruced faces with less than 2 mm average error with respect
to real facial surfaces), and to evaluate the results of several facial reconstructions when
di¤erent criteria are given to the system. The latter, will contribute to the discussion on
whether providing more criteria to the CFR system will result in better reconstructions.
In this context, as we are interested on surface similarity, good reconstructions are those
which minimises the surface to surface distance similarity.

In section 6.6, the strategy to estimate the face for an unknown skull based on a set
of head models was presented. The head models selected from the database are chosen
by a selector module. The selector chose models with similar skull features to the skull
being analysed according to a set of criteria such as geometric similarity, age similarity,
sex, etc. A template head is built from the set of selected heads and used to produce the
�nal face. Figure 6.2 illustrates the elements involved in the model template construction.
Section 7.1 will describe the criteria used for selecting the models used for constructing the
template model. The criteria used will potentially impact upon the �nal reconstruction.
Section 7.2 will describe how the criteria are chosen. In section 7.3 are presented the
results of the experiment. A discussion of the results is presented in section 7.4.

7.1 Criteria for creating the head template

The database used for this experiment consists of 40 head models. A set of representative
features for each skull was obtained and used. The set contains the most common features
used for identi�cation in forensic applications (i.e. sex, age, ethnic group and body build)
[109]. Additionally, another two features involving geometrical properties of the skull were
also included: Principal Component Analysis (PCA) coe¢ cients of the skull models [44]
and Procrustes distances between skull models [47]. These two geometrical features were
calculated using all the vertices of the mesh of the skull models [40]. Including both, PCAs
coe¢ cients and Procrustes distances between skulls, is useful to determine the impact of
the skull similarity factor in the �nal reconstruction results. The database was partitioned
in 5 di¤erent ways using the following conventions to de�ne each partition type:

� Sex: Models are classi�ed in males and females.
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� Age: Five categories were de�ned in terms of a range of ages for each individual in
the database. The ranges are de�ned as shown in table 7.1.

� Tissue Volume: The volume of the tissue was approximated from the 3D head models
by calculating the di¤erence between the volume of the face model and the volume
of the skull. This ratio is assumed to be directly proportional to the body mass
index BMI. For simplicity we will use BMI to refer to this partition.

� PCA: The �rst 17 principal components (representing more than 95% of the vari-
ations in the skull models) were chosen for each of the skulls, then 5 groups were
de�ned using a K-Means clustering algorithm with �ve kernels [32]. Each of the
subjects in the database is assigned a PCA group.

� Procrustes Distances: For each model in the database, a Procrustes alignment is
conducted against the rest of the models in the database and then the �ve models
with the lower distances are chosen for each skull.

The �rst three partition types re�ect the usual features extracted from skull examina-
tion. PCA and Procrustes distance partitions are used to assess the impact of using head
models with similar skull shapes.

Feature
Class
group

Class
label

Number
of elements
in the class

Male Females

Sex 01 sex1 20 20 0
02 sex2 20 0 20

Age 20-25 age1 13 7 6
26-30 age2 6 3 3
31-40 age3 7 2 5
41-50 age4 6 5 1
51-70 age5 8 3 5

PCA 01 pca1 12 8 4
02 pca2 3 2 1
03 pca3 15 5 10
04 pca4 1 0 1
05 pca5 9 5 4

Tissue 01 tvol1 8 0 8
volume 02 tvol2 9 3 6

03 tvol3 13 8 5
04 tvol4 5 5 0
05 tvol5 5 4 1

Table 7.1: Distribution of the database with respect to main biological and geometrical
features. The procrustes feature is not included in this table because the sets of models
to construct the template are particular to each skull model being analysed

With the the set of features de�ned, a total of 27 combinations of testing features
(numbered from t0 to t26) were used. We will refer to each of these combinations as
a criteria of selection (COS). Some of the selected criteria were designed to observe the
amount of variation in the CFR results when they are taken to extreme values (for example,
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Figure 7.1: Auxiliar sets needed for applying the selection operator Sc for the experiments.

to observe what happens in the results when the system is given wrong feature values as
input deliberately). In the next subsection, a standard set notation is described to de�ne
each criteria tested in the experiments.

7.1.1 Notation used

Let M be a n-ary domain M = M1 � M2 : : : � Mn, and let C : M ! fT; Fg be a
condition (predicate) on elements (n-tuples) of M (T and F represent a true or false
value). Then, a selection operator Sc is the operator that maps any (n-ary) relation
R on M to the n-ary relation of all n-tuples from R that satisfy C. i.e. 8R � M;
Sc(R) = fm 2 R j Sc(M) = Tg: In our particular case, M is the set of indexed head
models M = fm1 : : :mng in the database. H will represent the set of all the head models
with their speci�c features contained in the database. In other words, H will be our
universal set consisting of n head models with k speci�c features associated with each
skull with the following structure:

H = f(mi; fij) : i 2 f1:::ng; j 2 f1:::kg; mi 2M; fij 2
�=5[
�=1

A�; Sc(H)g

with Sc de�ning the appropriate feature combination known for each particular indi-
vidual in the database. The sets A� of possible attributes (or features) for each skull are
shown in �gure 7.1.

The following set de�nitions Si � S0 , i 2 f1:::5g are used to de�ne the set partitioning
M into disjoint classes with respect to speci�c feature values contained in sets A� presented
in table 7.2.

Set de�nition: Head models classi�ed by
S1 = f(m; f) : m 2M; f 2 A1g \H Sex
S2 = f(m; f) : m 2M; f 2 A2g \H Age Band
S3 = f(m; f) : m 2M; f 2 A3g \H PCA clustering
S4 = f(m; f) : m 2M; f 2 A4g \H Procrustes distances
S5 = f(m; f) : m 2M; f 2 A5g \H Tissue volume

Table 7.2: Auxiliar sets needed for apply the selection operator Sc for the experiments.
Each of the sets Si represents a di¤erent partition of the set H.

The sets Si are the mechanism for conducting the selection of di¤erent models with
matching criteria for each reconstructed unknown skull, which is key aspect for creating
the head template in the reconstruction process.
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Test Feature criteria Set de�nition for the template

t0 All the database (the universal set) T0 = H

t1 Sex T1 = f(m; f) : (m; f) 2 S1; f = sug

t2 Age band T2 = f(m; f) : (m; f) 2 S2; f = aug

t3 PCA band T3 = f(m; f) : (m; f) 2 S3; f = pug

t4 Proc distance T4 = f(m; f) : (m; f) 2 S4; f = rug

t5 BMI band T5 = f(m; f) : (m; f) 2 S5; f = vug

t6 Sex & Age T6 = f(m; f) : (m; f) 2 T1 \ T2g

t7 Sex & Age & PCA T7 = f(m; f) : (m; f) 2 T6 \ T3g

t8 Sex & Age & Proc T8 = f(m; f) : (m; f) 2 T6 \ T4g

t9 Sex & Age & BMI T9 = f(m; f) : (m; f) 2 T6 \ T5g

t10 Sex & Age & PCA & BMI T10 = f(m; f) : (m; f1) 2 T7 \ T5g

t11 Sex & Age & Proc & BMI T11 = f(m; f) : (m; f1) 2 T8 \ T5g

t12 Sex T12 = T1

t13 Age T13 = f(m; f) : (m; f) 2 S2; f = Oa(f)g

t14 PCA T14 = T3

t15 Proc T15 = T4

t16 BMI T16 = f(m; f) : (m; f) 2 S5; f = Ov(f)g

t17 Sex & Age T17 = T12 \ T13
t18 Sex & Age & PCA T18 = T17 \ T3
t19 Sex & Age & Proc T19 = T17 \ T4
t20 Sex & Age & PCA T20 = T17 \ T14
t21 Sex & Age & Proc T21 = T17 \ T15
t22 Sex & Age & BMI T22 = T17 \ T16
t23 Sex & Age & PCA & BMI T23 = T17 \ T3 \ T16
t24 Sex & Age & Proc & BMI T24 = T17 \ T4 \ T16
t25 Sex & Age & PCA & BMI T25 = T20 \ T16
t26 Sex & Age & Proc & BMI T25 = T21 \ T16

Table 7.3: Di¤erent criteria used for the experiments. In this table it is presented the
logical rules for de�ning each of the 27 criteria used in the experiment (right column)
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Age and volume tissue group de�nition

Table 7.3 presents the de�nition of the 27 criteria used. In this table, m represents the
index of head models in the database, f represents a particular feature value, and the
speci�c features of the unknown skull namely sex, age band, pca group, procrustes group,
and tissue volume group are represented with the letters su, au, pu, ru and vu respectively.

For the age feature, the models in the database were grouped in band ages as presented
in table 7.1.

The feature vol refers to the soft-tissue volume present in each head model, and we
assume that it is directly proportional to the BMI index value of the individual. This
variable is calculated using the di¤erence between the volume of the face model and the
skull model. The opposite bands for age and volume are calculated using the Oa and Ov
operators:

Oa(au) =

�
age4 if (au 2 fage0; age1; age2g);
age0 otherwise

Ov(vu) =

�
vol4 if (vu 2 fvol0; vol1; vol2g);
vol0 otherwise

For example considering the COS presented in table 7.3, the COS 9 (t9) uses the sex,
age and BMI features of the unknown skull to select a set of head models with the same
(or similar features) to create a template. The criterion of selection 16 (t16) uses a set
of head models with di¤erent BMI features to the unknown skull (e.g. if the unknown
skull is from a slim person then, a selection of overweight subjects are used to create the
template). COS 17 (t17) uses opposite sex and di¤erent range of age subjects for creating
the skull template (e.g. if the unknown skull belongs to a person young and male, the
models used for creating the skull template are chosen older and females).

7.2 Experiments using the criteria

The database used for this experiment contains 40 head models. These models belong
to 20 male and 20 female subjects. For exploring the capabilities of the craniofacial
reconstruction system, the faces of their 40 skull models were estimated. The head models
were grouped according to �ve biological and geometric characteristics. In the �rst group,
biological features such as sex, age band, and body build were considered. For the second
category, geometric measures such as PCA coe¢ cients [44] and geometric distance were
used.

A leave-one-out test was conducted for each head model of the database. The skull
of a selected head model is used to simulate an unknown skull. This skull is used as
the input for the craniofacial reconstruction system. Then, a set of possible faces for that
skull model is produced using di¤erent criteria.

From the analysis of the unknown skull a set of features is obtained and used in the
selection of the head models from the database. That selection is used to create the head
template. The strategy for conducting the tests is based on de�ning di¤erent COS for
each test. The general approach for the experiments was to start with few criteria used in
choosing the models. Then add more criteria and compare the results. The question we
wanted to address was if this incremental approach will produce better reconstructions in
terms of surface similarity distances.
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A total of 27 criteria were tested for each skull, and the results were assessed comparing
the average di¤erence between the reconstructed face and the real face known from the
head model (quantitative surface to surface comparison). The de�nition of these criteria
was presented in section 7.1. A total of 850 reconstructions were possible combining the
di¤erent features and the number of individuals for each category. The distribution of the
models involved in this experiments are shown in �gure 7.1.

7.3 Results

The results of the comparison between the reconstructed facial surface and the real face
surface are evaluated by comparing the average di¤erence between the surfaces. As an
example, �gure 7.2 shows the best reconstruction for the skull of subject 18 of the UOS
dataset. This reconstruction has the lower average distance between surfaces and it was
obtained using criterion t6 (i.e. selecting models of individuals of the same sex and similar
age than the unknown skull). Figure 7.3 shows an example of the results for the same
skull based on COS t0-t5.

Table 7.4 presents the average di¤erence between real and reconstructed faces. Ta-
ble 7.5 gives the Root Mean Squared (RMS) a statistical measure of the magnitude of
the average di¤erences. A graph, showing the histogram of the di¤erences, to show the
distribution of the average di¤erences, is presented in �gure 7.4. This graph, shows the
"normality" of the di¤erence distribution of the results which is useful to describe the
type of variable we are analysing. Appendix D presents a description of the main terms
involved in the analysis of variance.

Analysis of variance (ANOVA) is used to test hypotheses about di¤erences between
means. This analysis is a family of multivariate statistical techniques for inferring whether
there are real di¤erences between the means of three or more groups or variables in a
population, based on sample data. The results of the ANOVA analysis for the average
di¤erences of each COS tested are presented in table 7.8.

A one-way between groups analysis of variance was conducted to explore the impact of
including sex, age, body build and geometric information on the results of a craniofacial
reconstruction, in a correct (t0-t11 criteria) and incorrect way (t12-t26 criteria)1. Subject
facial reconstructions were divided into 27 groups using combinations of these features as
presented in the previous section. There was a statistically signi�cant di¤erence at the
p < 0.05 level in reconstructions scores for the 27 criteria tested: F(26, 823) = 6.528,
p <0.001. Despite reaching statistical signi�cance, the actual di¤erence in mean scores
between the groups was quite small.

Post-hoc comparisons using the Tukey HSD method [79] indicate that the mean scores
for a �rst group of CFR (t0, t1, t2, t3, t4, t5, t6) were signi�cantly di¤erent from a second
group of CFR (t16, t18, t20, t21, t22, t24, t25, t26). A third group of CFR criteria tested
(t7, t8, t9, t10, t11, t12, t13, t14, t15) did not di¤er signi�cantly from any CFR test in
either the �rst or second groups. Table 7.6 shows the values describing the mean variation
for each test. Table 7.7 presents the values of the mean distributions sorted in terms of
similarity between groups. This sorting is used to determine which groups are related
between each other.

Descriptive statistics shows that there were higher di¤erences between the real and
reconstructed face made with criteria in the second group with higher indices than in the

1 in this context "correct" means using the same or similar features between the unknown skull subject
and the head model subjects selected from the database. Incorrect means using di¤erent features.
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Figure 7.2: An example of the best reconstruction for skull model 18 of the UOS dataset
(corresponding to model index 13 of the experiments). The best reconstruction score was
obtained applying criterion t6 based on sex and age.
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Figure 7.3: An example of the several outputs of the CFR system for the skull of the
subject 18 of the UOS dataset. Each row represents a criteria for the reconstruction (t0-
t5). The complete set of reconstruction for this skull can be found in table 7.4 row number
13.
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Figure 7.4: Histogram showing the distribution of the average distance between the re-
constructed and the real face surfaces.

tests de�ned with lower indices.
The one-way analysis of variance showed that di¤erences between several of these types

of conditions were unlikely to have arisen by chance or sampling error, assuming the null
hypothesis to be true with a signi�cance level of 95%. Figure 7.5 shows the average means
of the tests involved in the experiments.

For producing the data shown in table 7.4 the processing time was 3.5 hours on average
per criteria. A total of 120 hours (approx.) were dedicated to produce the 850 facial
reconstructions. The time varies depending on the amount of head templates used for the
test 2.

7.4 Discussion

One of the aims of the experiments was to show the impact of using the new type of tissue
depth data in our CFR system. The results suggest that, when using the database of head
models produced in this thesis, it was possible to obtain face estimations with good levels
of accuracy. The metric used was the average distance between the reconstructed and real
faces. In our system, approximately 80% of the best reconstruction scores have less than
2.5 mm error and the remainder 20% have less than 3.5mm of error. These �gures are,
in terms of magnitude comparable with other computerised CFR systems using similar
evaluation measurements (note: these systems do not use the same technique nor data
but they are computer-based) reporting reconstruction errors around 2.5 mm [100, 110].

This study also sought to determine whether the results of the face reconstructions for
di¤erent combination of features di¤ered according to the amount and similarity of the
features used. An incremental strategy was used for adding more features to the system
and evaluating the average distance for each reconstruction. Some COS included subjects

2These results were obtained using a Dell Dimension DXP061 computer with two Intel(R) processors
6600 running at 2.4GHz and 2.0 GB of ram memory.
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Figure 7.5: Plot of the mean di¤erences for each test meeting the criteria.

with completely di¤erent features to the unknown skull being analysed. In some of the
tests, by increasing the number of known features seems to improve the results of the
reconstructions. For example from t6 (Sex & Age; �d = 1:828) to t9 (Sex & Age & BMI;
�d = 1:752) and from t9 (Sex & Age & BMI; �d = 1:752) to t11 (Sex & Age & Proc &
BMI; �d = 1:734) (see �gure 7.5). However, from the ANOVA analysis, it was not possible
to determine a signi�cant di¤erence in the results for the entire set of COS. For example,
providing the system with the sex, age, PCA and BMI for a given skull has no signi�cative
di¤erence to using only one feature such as sex or age.

One possible reason for this behaviour in the results can be explained by the size of the
database. Some of the reconstructions could not be done because there were not enough
models having the required COS. Another sets of reconstruction tests had a very limited
number of subjects to produce the skull template. The di¤erence between the means in
the tests could be re�ned (better modelled) with more data. More data could lead to more
precise and less variable mean behaviour of the average distances between tests impacting
the ANOVA tests. The solution is to conduct more tests gathering more subject data
containing feature variations representative to the desired population to model.

Another possible reason that can impact in the results is the method to combine
di¤erent head models used. Currently this method is implemented as a simple linear
combination of head models. The assumption that a human face can be derived from a
linear combination of another face models is strong. However, when combined the head
template estimated with the skull �tting process, the impact of the linear assumption
is reduced. This is re�ected in the magnitude of the average di¤erences reported in the
experiment results (less than 3.5mm for the best reconstruction scores). This assumption
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was used as an initial way to test the feasibility of using the MRI generated database.
Figure 7.5 shows that even using the incorrect features t11-t26 the amount of error

added in comparison to using the correct features is of a maximum of 0.5mm (approx). t9
and t11 have the best scores as expected (t9: criterion using the right sex, age and BMI
for the COS, and t11 using the same sex, age, BMI and Procrustes distance as the COS
for the template).

From the ANOVA analysis it was only possible to separate between two classes of COS:
Those using the correct features with only one feature from those results produced by using
any combination of incorrect features (i.e. COS t1-t6 from COS t16-t26 respectively).

One key aspect is that, even though the amount of data is small the results produced
by this system are replicable, and consistent. And can be quantitatively evaluated. Even
when the results of this experiment are not conclusive, this setting taken to a large scale can
help to understand the main factors a¤ecting the results of a craniofacial reconstruction
system and improve the strategies for the algorithmic creation of face estimations at the
surface level.
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Test
Label

N Mean
Std
Dev

Std
Error

Lower
Bound

Upper
Bound

Min Max

t0 40 1.798 0.560 0.089 1.618 1.977 0.940 3.550
t1 40 1.764 0.578 0.091 1.579 1.949 0.890 3.430
t2 40 1.856 0.558 0.088 1.678 2.034 0.960 3.290
t3 40 1.824 0.527 0.083 1.655 1.993 1.010 3.440
t4 40 1.782 0.572 0.090 1.599 1.964 0.940 3.290
t5 40 1.796 0.538 0.085 1.624 1.968 1.020 3.340
t6 39 1.828 0.543 0.087 1.652 2.005 0.990 3.010
t7 27 1.899 0.446 0.086 1.722 2.075 1.210 2.780
t8 33 1.975 0.649 0.113 1.745 2.206 1.090 3.320
t9 27 1.752 0.475 0.091 1.564 1.940 1.060 2.850
t10 9 1.981 0.672 0.224 1.465 2.498 1.230 2.780
t11 17 1.734 0.518 0.126 1.467 2.000 1.040 2.850
t12 40 1.924 0.531 0.084 1.754 2.094 1.070 3.680
t13 40 2.006 0.545 0.086 1.831 2.180 1.040 3.490
t14 40 1.854 0.613 0.097 1.658 2.050 0.950 3.860
t15 40 1.887 0.616 0.097 1.690 2.084 0.970 3.820
t16 40 2.333 0.649 0.103 2.126 2.541 1.040 4.200
t17 40 2.200 0.550 0.087 2.024 2.376 1.110 3.440
t18 32 2.352 0.467 0.083 2.183 2.520 1.490 3.230
t19 30 2.181 0.471 0.086 2.005 2.357 1.480 3.370
t20 40 2.354 0.639 0.101 2.150 2.558 1.410 4.130
t21 40 2.437 0.622 0.098 2.238 2.636 1.410 4.130
t22 23 2.472 0.621 0.130 2.203 2.741 1.730 4.440
t23 7 2.363 0.556 0.210 1.849 2.877 1.730 3.270
t24 12 2.526 0.779 0.225 2.031 3.021 1.730 4.440
t25 19 2.496 0.710 0.163 2.154 2.839 1.240 4.440
t26 15 2.463 0.487 0.126 2.194 2.733 1.780 3.550

Total 850 2.028 0.619 0.021 1.986 2.070 0.890 4.440

Table 7.6: Descriptive statistics for the 27 criteria. The upper and lower bounds represents
the range where most of the average distances are contained. The Min and Max values
are the minimum and maximum values of the mean values.
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Test
Label

N 1 2 3 4 5 6 7

t11 17 1.734
t9 27 1.752 1.752
t1 40 1.764 1.764 1.764
t4 40 1.782 1.782 1.782
t5 40 1.796 1.796 1.796
t0 40 1.796 1.796 1.796
t3 40 1.824 1.824 1.824
t6 39 1.828 1.828 1.828
t14 40 1.854 1.854 1.854 1.854
t2 40 1.856 1.856 1.856 1.856
t15 40 1.887 1.887 1.887 1.887 1.887
t7 27 1.899 1.899 1.899 1.899 1.899 1.899
t12 40 1.924 1.924 1.924 1.924 1.924 1.924 1.924
t8 33 1.975 1.975 1.975 1.975 1.975 1.975 1.975
t10 9 1.981 1.981 1.981 1.981 1.981 1.981 1.981
t13 40 2.006 2.006 2.006 2.006 2.006 2.006 2.006
t19 30 2.181 2.181 2.181 2.181 2.181 2.181 2.181
t17 40 2.200 2.200 2.200 2.200 2.200 2.200 2.200
t16 40 2.333 2.333 2.333 2.333 2.333 2.333 2.333
t18 32 2.352 2.352 2.352 2.352 2.352 2.352
t20 40 2.354 2.354 2.354 2.354 2.354 2.354
t23 7 2.363 2.363 2.363 2.363 2.363
t21 40 2.437 2.437 2.437 2.437
t26 15 2.463 2.463 2.463
t22 23 2.472 2.472 2.472
t25 19 2.496 2.496
t24 12 2.526
sig. 0.058 0.055 0.059 0.080 0.077 0.060 0.056

Table 7.7: Means for groups in homogeneous subsets. The group sizes are unequal. The
harmonic mean of the group sizes is used. Type I errors are not guaranteed.

Sum of Squares df Mean Square F Sig
Between Groups 55.657 26 2.141 6.528 0.000
Within Groups 269.873 823 0.328

Total 325.530 849

Table 7.8: Summary of the ANOVA analysis. In this table df stands for degrees of freedom
and F is the value of the F test for the di¤erence between means.
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Chapter 8

Conclusions

This thesis has presented a method to produce detailed 3D skull-face models from MRI
datasets and a CFR system based on a database of the skull-face models. To produce
the 3D skull models, two skull extraction algorithms, one in 2D and one in 3D, were
implemented, as described in chapters 4 and 5, respectively. In the 2D approach, the
skull surface is extracted by segmenting a set of images of an MRI volume. At each slice,
the skull region is segmented as a single contour or, when the skull topology is more
complex, as a combination of several partial skull contours. The extracted contours are
then assembled to create a 3D skull model. The segmentation process is made up of
two components. The �rst component is an active contour directed by image features
which �blindly�tries to enclose skull areas. The second component is a shape term which
adds statistical knowledge of the likely shape to �nd. The two components are combined
to make an active contour evolve towards a minimum within the static potential �eld
calculated from the gradient information in an image.

The 3D approach is an extension of the 2D approach. The 3D method uses a de-
formable model which iteratively adjusts its shape to �t the skull embedded in an MRI
volume. Shape changes in the deformable model are de�ned by combining, as in the 2D
approach, two elements: information provided by MRI volume features and knowledge
about the 3D structure of a skull shape. The in�uence of these two components in the
deformable model evolution is modelled as a Bayesian energy formulation. The best �tting
skull model is obtained by imposing shape restrictions derived from a training set of skull
shapes.

The result of the 3D approach is a database of head models created from MRI data with
a high level of detail. This shows that it is possible to generate alternative anthropometric
information sources with much greater level of detail than traditional anthropometric
sources. This will allow further study into the skull-face relationship and the potential to
conduct more analysis on the surface-to-surface dependency between the skull and face.
Also, as it is based on MRI data, the information created can be extended and updated
according to speci�c populations.

Certain aspects of the computerised reconstruction process have been designed using
simple approaches (e.g. the linear strategy of template creation). The process could
potentially be made even more e¢ cient by developing semi-automated elements as in the
pre-processing stage to create the �rst noisy skull approximation or in the case of the skull
template registration stage. In the 3D skull extraction method several issues need to be
addressed to improve the implementation and reduce possible error sources. During the
pre-processing stage, the user is asked to manually identify a set of areas in an MRI scan
corresponding to skull regions (the region-growing stage). Even though the task is simple,
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this will require training in a real application. The statistical formulation implemented
showed that it was possible to obtain acceptable results, but the impact of di¤erent errors
was not evaluated. In a subsequent stage, this can be done by conducting sensitivity error
tests on each stage of the process.

Another aspect to be improved is the registration step used in the initialisation stage.
Currently, a set of 3D curves is manually drawn on both the noisy skull and the clean skull
template. This process could be automated by analysing the curvature in both models.
Even though the initial registration is manual, the errors introduced are not considered
to impact on the �nal result because the main objective is to limit the search space for
the deformable model �tting.

The database of skull-face models is used in a CFR system, as described in chapter 6.
This CFR system consists of three main stages: skull examination, template construction
and face construction. In the �rst stage, the input skull is analysed and a set of main
features extracted. In the second stage, combining these features with information about
the skull-face relationship provided by the database, the system creates a head template
from combining the information of the selected models. In the last stage, possible face
estimations for the input skull are created by �tting the skull of the head template created
to the input skull. The anthropometric information is provided by the database of head
models presented in chapter 5.

The use of the skull surface to deform the surrounding 3D space (equivalent to volume
deformation) addresses some of the problems encountered in techniques based on estimat-
ing landmark positions in models. The use of spatial deformation allows the facial tissues
(skull, muscle, etc.) to be dealt with as a single component, thus freeing the procedure
from the problem of placing and interpreting anthropometric landmarks associated with
soft tissue depth tables. Facial soft tissues should change in response to the changes in
the skull, and therefore the face is not merely a mask depending on a small number of
soft tissue depth points.

The experiments conducted include 5 features with 27 combinations of these features.
As a result 850 reconstructions were evaluated. From the statistical analysis, it was not
possible to determine a di¤erence between reconstructions created with correct features
and using di¤ering numbers of features. A distinction was obtained between features
using single correct features with respect to reconstruction carried out with any incorrect
feature. Possible explanations for these results are, as discussed in chapter 7, the size of
the database and the linear method used to generate the head template.

In our system, approximately 80% of the best reconstruction scores have less than 2.5
mm error. The remaining 20% have less than 3.5mm of error. These �gures are, as stated
in chapter 7, comparable in terms of magnitude with other computerised CFR systems
using similar evaluation measurements. Even though the number of models in the database
is limited, the results obtained from this system suggest that accurate reconstructions can
be achieved by using the data generated from the skull-face models produced from MRI
data.

The experimental results produced in this thesis show the feasibility of including in-
formation generated from MRI data. They also show that it is possible to obtain accurate
rates of intra-landmark surface estimation by considering statistics of the skull face rela-
tionship with the new type of data generated from MRI.

With MRI data, the landmarks commonly used in other studies could be replicated,
validated and even replaced using in vivo data from modern individuals at a higher level of
detail. Skull and facial features could be examined in ways which have not been possible
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until now. Although the interrelationships of certain bony features and their soft tissue
counterparts have been described in several works [38], the statistical evidence for the
�ndings have not been published.

The main application of the segmentation method, the data and the CFR system
presented in this thesis was focused on forensic applications. The skull segmentation tech-
nique can be adapted to segment any other type of volumetric structure with applications
in a wide range of medical imaging problems. In addition to the skull and face, MRI data
can provide 3-dimensional information about other elements with di¤erent tissue types
(e.g. muscle, cartilage, etc.). Also, the data produced can be used to create atlases and
determine guidelines for modelling missing parts in reconstructive surgery. This informa-
tion could be of bene�t to the maxillofacial and orthodontic �elds as a reference collection
of healthy subjects. The database of head models can be used to conduct analysis of the
skull and face, (e.g. shape variability) and to test di¤erent facial reconstruction methods.
The craniofacial reconstruction system can be used to produce di¤erent face models in
terms of the parameters given to the system. Incorporating age changes for a given skull
can be used to simulate results of possible corrective surgeries or implant design for facial
parts.

There is still debate on whether or not artistic skill can produce reconstructions with
better recognition scores than precise accurate reconstructions [90, 70]. Producing an
accurate facial surface does not automatically lead to better recognition scores [70]. Our
perception of a face is highly in�uenced by other facial features such as the eyebrow shape,
or hair style [109, 29]. Even though, our research was focused generate accurate facial
estimations, additional components can be added to the results to produce more realistic
faces. Accuracy in the facial estimations will at least produce consistent results based on
statistical data.

Also, the method to incorporate the shape restrictions can also be used to guide de-
formations between di¤erent structures (e.g. applications in animation, morphing and
shape analysis) and also for evaluating the quality and shape similarity between geomet-
rical objects. This is possible by evaluating the shape function for di¤erent objects and
determining how di¤erent this value is for di¤erent models.
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Appendix A

Anatomy of the human head

The appearance of the face is mainly determined by the major structures of the head:
the skull, the muscles and the skin. This section presents the most important aspects
in the relation of between these elements. The interested reader can consult [67, 88].
The skull is the underlying supporting structure of the head formed by the neurocranium
and the facial skeleton �gure A.1. The neurocranium is the structure that protects the
brain and its related tissues. The facial skeleton consists of 14 irregular bones: lacrimal,
nasal, maxilla, zygomatic, palatine and the inferior nasal conchae bones (two of each),
the mandible and a vomer. The neurocranium is formed by: A frontal bone, two parietal
bones and two temporal bones, an occipital and sphenoid bone and the ethmoid bone.
The facial skeleton is the anterior part of the skull containing the orbits, nasal cavities,
maxilla and mandible, which is the upper and lower jaw. The mandible is the dynamic
structure of the head; its size, shape and the number of teeth it normally bears undergo
considerable changes with age [67].

The face is the anterior area of the head extends form the forehead to the chin and
from one ear to the other. Some bones of the skull determine the shape of the face. The
pads in the cheeks and the facial muscles contribute to the �nal shape of the face. The
facial expressions are determined by the motion of the muscles lying between the skin and
skull. Facial muscles can be classi�ed into two groups: muscles of mastication and muscles
of expression. The number of facial muscles varies in the literature due to the fact that
more than 50 muscles can be identi�ed and some of them can be considered as groups of
smaller muscles themselves.

The muscles are attached to the bone and belong to the subcutaneous tissue. The eyes
and nose act as sphincters and dilators (see �gure). The skin of the face is connected to
the bones by bands of connective tissue [67]. The muscles of expression are categorised by
their regions of in�uence: the scalp, the eyelid, the nose, the mouth and the neck. Figure
A.2 show the most important muscles of the face. Most muscles of the face originate at
the bone structure, while their surface inserts into the skin. When contracting, the muscle
pulls the skin towards its �xed origin. However, there are other muscles that attach to
bone on both ends.

The skin is a system with di¤erent components working together to provide protection
against external environmental in�uences (e.g. bacteria and toxic substances), to regulate
the body temperature, and to storage of water, fat and blood. Each square centimetre of
skin contains on average 1 meter vessels, 15 sebaceous glands, 100 sweet glands, 3000 nerve
ends, and 3,000,000 cells [50]. The skin plays an important role in human communication
by means of facial expression, texture, colour and scent.

This introduction to the head anatomy is by no means exhaustive, but is useful to
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Figure A.1: Frontal and side views of a skull showing the bone structure (image obtained
of wikimedia commons available as a public domain resource).

Figure A.2: The main muscles of the face (image obtained of wikimedia commons available
as a public domain resource).
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give an idea from an anatomic perspective about the complexity of the factors that can
in�uence the shape of the facial surface.
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Appendix B

Surface comparison used by
metro

Metro software implements an approach based on an error approximation by means of
surface sampling and the computation of point-to-surface distances [21]. The surface of
the �rst mesh (pivot mesh) is sampled, and for each elementary surface region the distance
to the not-pivot mesh is computed. Thus, the error between two meshes is de�ned as the
distance between corresponding sections of the meshes. Given a point p and a surface S,
the distance e(p; S) is de�ned as:

e(p; s) = min
p02S

d(p; p0)

Where d is the Euclidean distance between two points. In 3D the one-sided distance
between two surfaces S1, S2 is de�ned as e(S1; S2) = max

p02S1
e(p; S2) which is not symmet-

ric. (i.e. e(S1; S2) 6= E(S2; S1)). A two sided distance can be obtained by using max
(e(S1; S2); e(S2; S1)). Given a set of uniformly sampled distances, the mean distance Em
between two surfaces is the surface integral of the distance divided by the area of S1:

Em(S1; S2) =
1

jS1j

Z
S1

(e(p; S2))ds

Metro evaluates the di¤erence between meshes on the basis of the approximate distance
evaluated with Em. On each mesh vertex metro computes a distance (as the mean of the
distance on the incident faces), and assign a colour proportional to that di¤erence. The
faces are then coloured by interpolating vertex colours.
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Appendix C

Implementation details and
processing times

The software tools for edition, pre-processing and skull segmentation were implemented
using the programming language VC++ 6.0 with openGL. The Gradient vector �ow cal-
culation, the registration techniques (Robust Point Matching algorithm) and the shape
energy calculation were implemented using Matlab 7.0. 1 To draw the 3D curves to gen-
erate the matching features to register the skull models, the software vrmesh was used.
3Dsmax software2 was used for render the skull and face models. The Meshlab3 software
toolkit was used to process the 3D models and for format conversion between �les.

In order to give a general idea about the performace of the implemented tools the
following is a list summarising the processing times required on the main stages of this
project:

� Registration of skull features. The processing time for registering two sets of curves
with 700 points each is 7 minutes approx. and using 60 iterations. This number of
points was the average used for registering each of the skull models.

� GVF calculation. For calculating the gradient vector �ow in 3D for a sub-volume
of 256x256x50 voxels the processing time is 16 minutes using 120 iterations for
calculating the solution to the gradient descent di¤erential equation. The sub-volume
dimension corresponds to the spatial region of the MRI volume was the area of the
head is located.

� Template Deformation algorithm. A total of 180 hours were required to process
the 60 skull models of the database using 3000 control points per model and 100
iterations (i.e. 3 hours on average per dataset).

� Facial Reconstruction algorithm. For producing the data shown in table 7.5 the
processing time was 3.5 hours on average per criteria. A total of 120 hours (approx.)
were dedicated to produce the 850 facial reconstructions. The time varies depending
on the amount of head templates used for the test. In the worst case 27 facial
reconstructions were done per criteria.

� These results were obtained using a Dell Dimension DXP061 computer with two
Intel(R) processors 6600 running at 2.4GHz and 2.0 GB of RAM.

1more information in : http://www.mathworks.com/
2 for more information visit: http://usa.autodesk.com/adsk/servlet/pc/index?id=13567410&siteID=123112
3available at: http://meshlab.sourceforge.net/
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Appendix D

Analysis of variance

In this appendix, a summary of the most important aspects behind the Analysis of variance
are presented. The model assumed for the observations from a one-way design is:

yij = �i + "ij

where yij represents the jth observation in the ith group, and the "ij represent random
error terms, assumed to be from a normal distribution with mean zero and variance �2:

The null hypothesis of the equality of population means can now be written as:

H0 : �1 = �2 = : : : = �k = �

leading to a new model for the observations:

yij = �+ "ij

Reformulating the model by modeling the mean value for a particular population as
the sum of the overall mean value of the response plus a speci�c population or group
e¤ect, leads to a linear model of the form:

yij = �+ �i + "ij

where � represents the overall mean of the response variable, �i is the e¤ect on an
observation of being in the ith group (i = 1; 2; : : : k) and again "ij is a random error term,
assumed to be from a normal distribution with mean zero and variance �2.

When written in this way, the model uses k+1 parameters (�; �1; �2; : : : �k) to describe
only k group means. In other words, the system is overparameterized, which causes prob-
lems because it is impossible to �nd unique estimates for each parameter. The following
constraint is generally applied to overcome the problem:

kX
i=1

�i = 0

If this model is assumed, the hypothesis of the equality of population means can be
rewritten in terms of the parameters �i as

H0 : �1 = �2 = : : : �k = 0

so that under H0 the model assumed for the observations is
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yij = �+ "ij

as before.
The necessary terms for the F -tests are usually arranged in an analysis of variance

table as shown in table D.1 (N is the total number of observations).

Source of variation DF SS MS MSR(F)
Between groups k � 1 BGSS BGSS/(k-1) MSBG/MSWG
Within groups (errors) N � k WGSS WGSS/(N-k)
Total N � 1

Table D.1: Results of ANOVA presented in a table. DF stands for degrees of freedom,
SS is sum of squares, MS is mean square, BGSS is between groups sum of squares, and
WGSS is within group sum of squares.

If H0 is true and the assumptions listed below are valid, the mean square ratio (MSR)
has an F -distribution with k � 1 and N � k degrees of freedom.

The data collected from a one-way design have to satisfy the following assumptions to
make the F -test involved strictly valid:

1. The observations in each group come from a normal distribution.

2. The population variances of each group are the same.

3. The observations are independent of one another.

When signi�cant results have been obtained from an overall F-test, investigators often
wish to undertake further tests to determine which particular group means di¤er. A num-
ber of procedures generically known as multiple comparison techniques can be employed
for this purpose. Such procedures retain the nominal signi�cance level at the required
value when undertaking multiple tests. These methods are known as "post hoc multiple
comparison" methods since they should only be carried out once an overall e¤ect of the
grouping factor has been established. Tukey�s honestly signi�cant di¤erences (HSD) is
used in this thesis. (For details of these and the remaining multiple comparision tech-
niques, see Everitt, 2001, and Howell, 2002).
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Appendix E

Statistical Shape Analysis
Theory

Recent advances in electronic and computer technology allow the collection of two and
3-dimensional information about the anatomical structures of the human body in large
scales. This information can be applied in a wide variety of disciplines from biology, medi-
cine, anthropology etc. One of the most important tasks is the development of compu-
tational techniques to analyse the information contained in the shape of these structures,
where shape is a term used to denote the appearance of an object [35]. This appendix
presents Procrustes Analysis.

E.1 Shape Distances and Procrustes Analysis

The distance between two shapes should be a measure of how "far apart" the shape sets
are. It is simple to standardize the location and size, but not the rotation [35]. The
solution is to �nd the transformation that brings the pre-shape of an object as close as
possible to the pre-shape of the other object: With scaling and rotation.

df (X1; X2) = inf
��
k Z2 � �Z1� k (E.1)

this is the full Procrustes distance, where � is the scale factor and Zr = HXr
kHXrk ; for r = 1; 2

E.1.1 Procrustes Distances

The Procrustes distance �(X1; X2) is the closest great circle between Z1 and Z2 on the
pre-shape sphere (see �gure E.1) where:

Zj = HXj= k HXj k; j = 1 : : : 2 (E.2)

the Procrustes distances can be calculated with the following expressions minimizing over
rotations and scale to �nd the closest Euclidian distance between Z1 and Z2 :

df (X1; X2) =

vuut1� ( mX
i=1

�i)2 =

q
1� �̂2 (E.3)

where �1 > �2 > : : : > �m�1 >j �m j are the square roots of the eigenvalues of ZT1 Z2ZT2 Z1
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Figure E.1: A diagrammatic view of two shapes X1 and X2 on the pre-shape sphere,
which correspond to the shapes of the original con�guration matrices X1 and X2 which
have pre-shapes Z1 and Z2. � is the smallest great circle representing the Procrustes
distance and dp is the partial Procrustes distance. Figure adapted from [35]

The partial Procrustes distance dp is obtained by matching the pre-shapes Z1 and Z2
of X1 and X2 as closely as possible over rotations but not scale. The following expression
de�ne the partial Procrustes distance:

dp(X1; X2) =
p
2

vuut1� mX
i=1

�i =
p
2

q
1� �̂ (E.4)

�(X1; X2) = arccos

mX
i=1

�i = arccos �̂ (E.5)

A location transformation is not needed in the Procrustes analysis; it will become zero.

E.1.2 General Procrustes Analysis

Suppose we have several objects of the same type, but varying shape X1 : : : Xn .
The full procrustes mean is the shape X0 that minimizes the sum of Procrustes dis-

tances to all the objects:

X0 = argmin
X0

nX
k=1

df (X0; Xk) (E.6)

this shape is called the full Procrustes mean. The full Procrustes mean can be calculated
by eigen vector analysis. For the case of two dimensions, [35] use complex numbers to
derive compact expressions for the distances. In higher dimensions (such as the common
3D case) an explicit methods is needed.

Computing the Procrustes Transformation

Let USV T be the singular value decomposition of ZT1 Z2, with singular values �1 > : : : >
�m

If we allow re�ections as well as rotations, the minimizing rotation is given by

�̂ = UV T (E.7)
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and the minimizing scale is given by:

�̂ =

mX
i=1

�i (E.8)

(for pure rotations, appropriate sign changes may be required)
The Procrustes aligned pre-shapes are denoted by ZPk = �̂Zk�̂

E.1.3 Full Procrustes Mean Algorithm

Algorithm for �nding the full Procrustes mean shape:

1. Start by letting Z0 equal to the pre-shape of one of the given shapes, Z1, say.

2. Compute the Procrustes-aligned pre-shapes Zpk of Zk onto Z0, for all k = 1 : : : n

3. Set Z0 equal to the average of the Procrustes -aligned shapes, and normalise: Z�0 =

1
n

nX
k=1

Zpk ; and Z0 = Z
�
0= k Z�0 k

4. Repeat steps 2 and 3 until Z0 has stabilised.

An icon of the mean shape estimate is given by X̂0 = HTZ0, if Helmertised pre-shapes
were used

E.1.4 Summary: Shape Comparison using Procrustes Analysis

The full Procrustes alignment of a pre-shape Z1, to another pre-shape Z2 , is the shape
Zp1 = Z1 �� that minimizes k Z2 � �Z1� k;

overall rotation (or all orthogonal) matrices � and non-negative scaling factors �:
The full Procrustes distance is df (Z1; Z2) =

p
1� �2

The partial Procrustes distance is dp(Z1; Z2) =
p
2
p
1� �

The Procrustes distance is �(Z1; Z2) = arccos �̂
Note that df < dp < � with equality only when Z1 = Z2
The full Procrustes mean is the shape that minimises the sum of squared shape dis-

tances for a set of objects:

Z0 = argmin
Z0

nX
k=1

df (Z0; Zk) (E.9)

an example of the analysis presented in this section for the 2-dimensional case can be
shown in �gure E.2:

E.1.5 Shape Variability

Since the tangent space is linear, ordinary multivariate modelling techniques can be used
to capture the variability in a set of shapes. It is necessary to construct probability models
for the eigenstructure of sample covariance matrix Sv (vks). The resulting shapes can be
illustrated by transforming back to ordinary pre-shapes, and then computing icons.

De�nition 1 An icon is a particular member of the shape space [X] which is taken as
being representative of the shape.
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Figure E.2: Procrustes analysis performed in a set of land-marked �gures of a duck. The
�gure on the left shows the di¤erent shapes in their original positions. Then a mean shape
and the aligned shapes using the Procrustes analysis is presented in the right diagrams.

One potential problem: High-dimensional space.
Reduce the dimensionality by principal component analysis (PCA). At this time, the

principal component axes themselves are of interest, in addition to the PC-coordinates.

E.1.6 Euclidean Distance Matrix Analysis

The basis of the Euclidean Matrix Distance Analysis (EDMA) applications is the form
matrix (FM). Suppose we have the mean coordinates of a surface A, measured by K
landmarks. The form matrix FM(A) is de�ned as:

FM(A) =

266664
0 d(1; 2) � � � d(1;K)

d(2; 1)
. . .

...
...

. . . d(K � 1;K)
d(K; 1) � � � d(K; 1�K) 0

377775 (E.10)

where d(i; j) is the Euclidean distances between landmarks i and j. This representation
is coordinate-system invariant because the elements of FM(A) are always the same, no
matter how A is positioned. Suppose that we have a new surface patch B, with its own
form matrix FM(B) and we want to compare the forms. We can de�ne a from-di¤erence
matrix, called FDM(A;B) as follows:

FDM(A;B)ij =
FM(A)ij
FM(B)ij

(E.11)

where i; j = 1::K and with the convention 0
0 = 0. Each element of the FDM is

the ratio of like distances in A and B. If A and B are identical in form, all of the o¤-
diagonal elements in FDM will be one. If a given distance is greater in A than in B, the
corresponding element in FDM will be greater than one:
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if FM(A)i;j > FM(B)i;j ! FDM(A;B)i;j > 1 (E.12)

Similarly, an instance where an element of B is greater will be indicated by an element
that is less than one. If all the elements of the o¤-diagonal in matrix FDM are equal
an greater than one, then surface patches A and B will have the same shape, but it will
di¤er in scale. And �nally if the o¤-diagonal elements in FDM are heterogeneous, A and
B will di¤er in shape. It is important to notice that the elements of FM(A) and FM(B)
are always the same, no matter how either A and B are translated, rotated or re�ected.

The form-di¤erence matrix can be used as the basis of a dissimilarity measure, called
F
, between two sampled surface patches [57]. Given FDM(A;B), we can calculate:

F
(A;B) =
qX

[ln(FDM(A;B))]2 (E.13)

where the summation is over all of the below-diagonal elements of FDM(A;B). F
(A;B)
is a metric and it is equivalent to the Q�mode Euclidean distance between A and B [87].
If A and B are identical then F
 will equal zero; otherwise F will become increasingly
positive as A and B become more di¤erent in form.
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Appendix F

Robust Point Matching
Algorithm

An example in 2D will be used for explaining the Robust Point Algorithm. Consider two
point-sets V and X (in <2) consisting of points fva; a = 1; 2; :::Kg and fxi; i = 1; 2; :::Ng
respectively. Where f is a non-rigid tranformation. A point va is mapped to a new location
ua = f(va). The whole transformed point set V is then U or fuag. A smoothness measure
is used to place constraints on the mapping. The operator L is de�ned to control the
smoothness measure. The expression controlling the global smothness measure is de�ned
by k Lf k2. The function f is de�ned by a Thin-Plate Spline [8].

The objective is to minimise a binary linear alignment least square energy function
[19]:

min
z;f

E(Z; f) = min
z;f

NX
i=1

KX
a=1

zai k xi � f(va) k2 +� k Lf k2 ��
NX
i=1

KX
a=1

zai

subject to
N+1P
i=1

zai = 1 for i 2 f1; 2; :::Ng,
K+1P
i=1

zai = 1 for i 2 f1; 2; :::Kg and zai 2

f0; 1g: Z is called the correspondence matrix [19] and consists of two parts: the inner
N � K part of Z de�nes the correspondence between points. The extra N + 1th rows
and K + 1th columns of Z are introduced to handle the outliers. If a point va corresonds
to a point xi, zai = 1, otherwise zai = 0. The row and column summation constraints
guarantee that the correspondence is one-to-one. Once a point is rejected as an outlier
the extra entries will start taking non-zero values to satisfy the constraints. An example
of a correspondence matrix is given in table F.1.

zai x1 x2 x3 x4 outlier

v1 1 0 0 0 0

v2 0 1 0 0 0

v3 0 0 0 0 1

outlier 0 0 1 1 0

Table F.1: Matrix of correspondences

The parameters � and � are the weight parameters used to balance the terms. The
point matching algorithm function consists of a linear assignment of discrete points prob-
lem on the correspondence and a least-squares continuous problem on the transformation
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[20]. The robust point matching algorithm involves a dual update process combined with
an annealing scheme.

Step 1: Updating the correspondence
For the points a = 1; 2; :::;K and i = 1; 2; :::; N

mai =
1

T
e�

(xi�f(va))
T (xi�f(va)
2T

and for the outlier entries a = K + 1 and i = 1; 2; :::; N

mK+1;i =
1

T0
e
� (xi�vK+1)

T (xi�vK+1)
2T0

and for the outlier entries a = 1; 2; ::K and i = N + 1,

ma;N+1 =
1

T0
e
� (xN�f(va))T (xN+1�f(va))

2T0

where vK+1 and xN+1 are the outlier cluster centers as explained above.
Then, the row and column normalization algorithm is run to satisfy the constraints

until convergence is reached,

mai =
mai

K+1P
b=1

mbi

; i = 1; 2; :::; N

mai =
mai

N+1P
j=1

maj

; a = 1; 2; :::;K

As the correspondence matrix does not change much, the number of iterations in rows
and column normalization are �xed and independent of the number of points. Previous
value can be used as an initial condition.

Step 2: Update the Transformation:

min
f
E(f) = min

NX
i=1

KX
a=1

mai k xi � f(va) k2 +�T k Lf k2

The implementation used in this thesis use the simpli�ed version of the expresion:

min
f
E(f) = min

KX
a=1

k ya � f(va) k2 +�T k Lf k2

where

ya =
NX
i=1

maixi

The variable ya is the estimated positions of the pointset (with the set fxig ) that

corresponds to fvag. If the outliers are too small (i.e.
NP
i=1
mai << �) then they are removed.

The solution for this least-squares problem depends on the non-rigid transformation.
Annealing: The updating mechanism is controlled by an annealing strategy. Starting

at Tinit = T0 the temperature T is gradually reduced according to a linear annealing
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schedule, Tnew = Told � r where r is called the annealing rate. The dual updates are
repeated until convergence at each temperature. Then t is lowered and the process is
repeated until some �nal temperature Tfinal is reached. T0 is set to the largest square
distance of all point pairs (in our implementation r is set to be 0.93).

For the outlier cluster, the temperature is always kept at T0.
Matching one-to-one correspondences exactly only works with clean data. As the data

usually contains noise, T �nal is chosen to be the average of the squared distance between
the nearest neighbors within the set of points being deformed.

117



Appendix G

UOS database forms
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Family Name:                            
 

First Name:                            
 
 d d m m y y 

Date of Birth:        
 

Please read the statement and tick  in the boxes that apply to you:- 
 

I have read and understood the above information. I consent to the collection, long term 
storage and retention and use of my image and biographic information for scientific and 
technical research in the UK and elsewhere. I certify that the information disclosed by 
me is true and accurate to the best of my knowledge. 

 

I would like to be kept informed about this study. I agree for my email address to be 
kept on computer by the University of Sheffield in order to facilitate their disclosure of 
periodic updates, time and resources permitting. I understand that this e-mail 
information will be stored separately and will be controlled and accessed only by the 
organizers of this project, and will not be distributed to any other party. 

 

 
Email:                               

Signature:             

Signature of Parent or Guardian if under 18:        

Date:       
 

Thank you for participating in this study! 
 
 
For project use only 

Protocol:  1-3  Location:  1 RHH (A)    
 

Key: 0     
 
Date:       
 d d m m y y 
 

Operator:    
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You are being asked to participate in a research study. Before you decide, it is important you 

understand why the research is being done and what it will involve. Take time to read the following 

information carefully and discuss it with others if you wish. Ask us if there is anything that is not 

clear or if you would like more information. Take time to decide whether or not you wish to take 

part.  

What is the purpose of this study? 
The purpose of this study is to help recreate facial appearance from the skull by computer. Facial 

reconstruction is used as a last resort in cases of missing persons, suspicious death or serious 

crime where an individual cannot be identified. 

You may have seen facial reconstructions on television on the evening news or BBC Crimewatch 

UK. Little scientific work has been done that takes advantage of modern medical imaging 

techniques to collect measurements of the facial soft tissues that can be used in computerized 

facial reconstruction.  

This research project will develop a means doing so by collecting a database of magnetic 

resonance imaging (MRI) scans of the head and neck of volunteers. Tissue depth measurements 

will be collected from the database and used to undertake facial reconstructions in “virtual reality” 

in the computer. The database will also be used to test the methods used by comparing “virtual” 

reconstructions with real faces.  

Who is organizing and funding the research? 
The University of Sheffield is organizing the project, which is funded by the Royal Society of 

London. 

Why have I been chosen? 
We are gathering information from volunteers who are willing to participate in our project.  

Do I have to take part? 
Participation in the project is purely voluntary. It is up to you whether or not you take part. Not 

everyone is suited to the MRI procedure, especially people who have metallic implants or have 

worked in occupations such as welding. MRI can be uncomfortable, claustrophobic and noisy for 

some.  

An experienced radiographer, who will explain the procedure to you, will undertake the MRI scan. 

The radiographer will discuss the procedure with you before you decide whether or not to take part.  

If you do decide to take part you will be given this information sheet to keep and be asked to sign a 

consent form.  

You are free to withdraw at any stage without giving a reason. 
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What will happen to me if I take part? 
We will take an MRI scan of your head and neck, and record the following biographical information: 

your age, sex, ancestral affiliation (ethnicity), and whether any of your relatives are also 

volunteering. We need to record this information as these factors can affect face shape.  

The MRI scan and biographic information will be kept in secure databases. The University of 

Sheffield will keep this MRI scan and biographical information database after the project is over so 

that it can continue to be used by researchers interested in craniofacial anatomy. This may include 

scientists and doctors interested in neuroscience, craniofacial surgery, development of the face or 

archaeological facial reconstruction, for example. It will not be used for any purpose other than 

scientific and technical research. 

If you initially decide to take part you are still free to withdraw at any time without giving a reason 

and your database record will be destroyed. 

In addition to the biographical information identified above, we will also record your name and date 

of birth. We need to record your name in case you ask us to remove your data later on. If you want 

further information about the project we will also record your email address.  

Your name and email address (if you provide it) will be stored in a secure database that will be 

separated from the databases containing your MRI scan and biographical information. The 

University of Sheffield organizers will maintain control and access to this separate database. A 

unique key, allocated by the University of Sheffield researchers, will reside in both databases, 

providing us with the ability to destroy your database record, should you request it.   

Except as described above, your MRI scan will not be made public or distributed outside of the 

scientific, technical or research community and we will not publish any other personal information 

that will allow you to be specifically identified with your MRI scan.  

Your name and email address will not be made public or distributed beyond the Sheffield 

University researchers engaged in this project.  

What will happen to the results of the research study?  
The results will be part of a research project due to be completed in Autumn 2005. The scientific 

results will be published and it is intended that new tools for reconstructing faces which result from 

this research will be made available to police and forensic scientists. 
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Contact for further information: 
Dr Martin Evison, Research Centre for Human Identification, The University of Sheffield, School of 

Medicine, Beech Hill Road, Sheffield, S10 2RX, United Kingdom. Tel. +44 114 2713204, Fax. +44 

114 2711711, Email. m.p.evison@sheffield.ac.uk.  

What if I have complaints or other concerns? 
If you are harmed by your participation in this study, there are no special compensation 

arrangements. If you are harmed due to someone’s negligence, then you may have grounds for 

legal action. 

The South Sheffield Research Ethics Committee has reviewed this study. 

Complaints Contact for Research Projects 
Chris Welsh 

Medical Director STH 

STH 

8 Beech Hill Road 

Sheffield 

S10 2SB 

Tel. +44 114 271 2178  

Fax. +44 114 271 3765 

Email. Elaine.Buxton@sth.nhs.uk 

 

mailto:m.p.evison@sheffield.ac.uk�
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Please provide the following information:- 
         m / f 

Age:         Sex:    
 

How would you describe your ancestry / ethnicity?  
Please tick  in the box that applies to you. 
 

White                  

British  01  Please describe 

Any other White background (Please describe)  02                

Mixed                  

White and Black Caribbean  03                

White and Black African  04                

White and Asian  05  Please describe 

Any other Mixed background (Please describe)  06                

Asian or Asian British                  

Indian  07                

Pakistani  08                

Bangladeshi  09  Please describe 

Any other Asian background (Please describe)  10                

Black or Black British                  

Caribbean  11                

African  12  Please describe 

Any other Black background (Please describe)   13                

Chinese or other ethnic group                  

Chinese  14  Please describe 

Any other (Please describe)  15                
 

Are any of your relatives participating in this study? Please give details: 
 
Name  Date of Birth  They are your? 

                                 

                                 

                                 

                                 

                  d d m m y y  e.g. mother, brother 
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