©Coo~NOUDWNE

OntRAT: Ontology-Based Rules Acquisition Tool (D0 1

OntRAT: Ontology-based rules acquisition tool

A. BinSubaih™, SMaddock®, andD.Romano*
! Department of Computer Science, University offfiéle, UK

Virtual training environments require a flexibleesario creation system that can accommodate differe
training scenarios to address a wide range oft&ugfor different levels of trainee expertise nde, the
scenario logic or behaviour should not be hard-dadehe simulation engine and should be accesgible
the trainer or domain expert. We present a rulegiaition tool called OntRAT that combines an ontol
ogy that represents and stores knowledge in atatedformat and remains at a high-level of absivac
which is accessible by domain experts, and a satle§ that enables reasoning about the knowlealge t
solve problems. We demonstrate the use of OntRATafparticular virtual environment we have built,
showing how it facilitates knowledge representatiuet is accessible by domain-experts, end-useds, a
developers.

Keywor ds knowledge acquisition; knowledge representatialg-based systems; ontologies

1. Introduction

Previous work in virtual environments, and espécithining environments, has created systems that
rely on hard-coded logic in the software or simolatengine (see [1] for a review). Our aim is tpa&e
rate the logic from the environment it is being dige (which follows the recent development trend to
use ‘business rules’ in developing software [2]heTusual cycle for creating the logic involves the
knowledge engineer extracting knowledge from theaio-expert and passing it to the developer. This
lengthy process is prone to ambiguities. Our apggrasa to give the domain-expert direct access th an
control of a structured representation of the kmalgk, which is also interpretable by a system aad-r
able by a developer.

We have developed a tool called OntRAT that presidules acquisition based on an ontology [3],
and we have used this as part of an architecturbave developed for virtual environments [1] tha w
are using to train police officers how to deal withaffic accidents. Figure 1 gives an overview loé t
architecture. Our tool gives the trainer direct agement over two parts of a virtual environmeng th
content and the logic. The content (entities, laites and constraints) is represented as an optalaja
set of rules (in the format of ‘if condition theat@n’) represents the logic.

For our traffic accident domain, example enties: drivers, passengers, witnesses, officerschashi
skid-marks, broken glass, road, etc. Some of tkasides (i.e. drivers, passengers, witnesses,offird
cers) share similar constraints (e.g. name, addeggs position, alcohol-level, etc) and in ontaey
engineering they are grouped together by a ‘cohckpthis case, a suitable concept is ‘person’nCo
cepts can be further structured in a hierarchioah#t similar to classes in object-oriented desigm.
example rule in our domain is: “if the driver’s alfol-level is beyond x then inform the officer jopae-
hend him”. Using our ontology this can be represgnas: “if driver.alcohol-level > x then offi-
cer.hint="Apprehend’ + driver”.

There are other tools that can be used to crestdogies, e.g. Protégé-2000 [4], OifEdnd PC Pack
42, Also, languages such as OWL have started to appeformally represent ontologies. However,
ontologies do not include rules that represenbasti Tools such as VisiRdleand EZ-Xpert 3.bcan be
used to create and manage rules. However, thesetdsse ontologies. There appears to be no tobl tha

" Corresponding author: e-madl:binsubaih@dcs.shef.ac.uk, Phone: +44 1142221877

! http://oiled.man.ac.uk/

2 http://www.epistemics.co.uk/

3 http://www.lpa.co.uk/vsr_det.htm
* http://www.ez-xpert.com/

© FORMATEX 2005

©Coo~NOUDWNE

2 A.BinSubaih et al.: OntRAT: Ontology-Based RulegjAisition Tool

Al Architecture

Ontology
Translator

V

Rules
Loader | Adapter A| | Adapter B|

Developer. H ﬁ

Simulation | Simulation
Engine A Engine B
Fig.1 System overview showing how OntRAT is linked to &léArchitecture

combines the two representations. The closestsisTab [5], which is a bridge, not an acquisitiool,to
between rules formatted in Jess rule patterns atulogies represented in Protégé-2000.

Using OntRAT, a domain-expert can store knowledgimg the ‘ontology and rules’ representation
which our architecture then makes use of, e.grovige trainees with hints on how to complete tasks
The current architecture automatically translates éontology representation to the reasoning-engine
representation. However, the rules are currentlguably translated to the reasoning engine formaa by
knowledge engineer or programmer, as illustrateBigure 1. The domain-ontology and rules databases
are serviced to different simulation engines viapers, and the simulation engines are the visiief-i
faces through which end-users interact with virkralironments.

Section 2 will discuss knowledge representati@ctien 3 will present the knowledge creation proc-
ess, showing screenshots of OntRAT, Section 4 prédkent brief results of using the knowledge in a
virtual training scenario, and section 5 will preiseonclusions.

2. Knowledge Repr esentation

Knowledge representation is paramount to makingttioé accessible to all parties (domain-experts,
developers, and end-users) involved in the systehad to choose a representation that adheresto t
primary requirements: structure with high-leveltadstion, and ability to reason with the knowledge
solve problems. The high-level abstraction objecis/to represent the knowledge to domain-expeids a
end-users in a meaningful way. The structure, heweaims to ease the developers’ task by providing
them with knowledge that is structured thus enghiirto be interpreted and manipulated by the syste
The second requirement goal is for the knowledgeotd information that is capable of reasoning with
knowledge to solve problems in a way that closegembles how experts would solve problems.

We found no single representation that could falisth requirements. This forced us to look at eom
bining multiple representations to satisfy the ieguents. We examined logic-based representation,
associated network representation, frame-baseegeptation, object-oriented representation, onyolog
representation, and rule-based representationil@t@escription of these representations can bado
at [3,6].

Logic-based representation is very expressiveitbiaicks structure and the ability to representdog
that does not evaluate to true or false. The aasmtnetwork, on the other hand, allows for bedtarc-
ture than logic-based representation in the fornaros between nodes. Its deficiencies lie in the- no
existence of interpretation standards and thecdiffy in maintaining the network for complex knowl-
edge. The frame-based and object-oriented repsags s are better structured than the previous two
representations however they are considered asel®l-representations, not to be exposed to domain-
experts or end-users. Also, the fact that theywallwocedural representation in the form of methods
makes it difficult to consider them as a high-lealstraction. The ontology representation is yasil-
derstood and maintainable; combining these featithsthe success domain-experts have had in build-
ing libraries of ontologies across different didicips (such as biology, health, eLearning, e-bissine
etc) and the existence of many tools which use ranlagy as the base representation (e.g. Protégé,

© FORMATEX 2005

©Coo~NOUDWNE

m-ICTE2005 http://www.formatex.org/micte2005 3

OilEd, OntoBuilder, OntoEdit, Ontoloingua, etc) reakan ontology the ideal representation to satisfy
our first requirement.

Although some of the previous representationscagable of satisfying the second requirement of
conducting problem solving through the use of pdocal programming we wanted something that re-
sembles the way experts solve problems without §imgoan additional algorithmic complexity. Experts
tend to solve problems by searching their knowledge for an appropriate solution. The simplicity of
rule-based representation has made it the most oolyrased form for knowledgebase systems accord-
ing to [7]. The other advantage this form of repreation has is its modularity as rules can be édule
removed independently of other rules. Some of igadVantages are related to performance as the num-
ber of rules increases and the difficulty in congrall the possible situations that exist in soromains.
Many rule-based engines such as JE&® SOAR have dealt with the performance issue by using an
optimised algorithm (i.e. RETE algorithm). The cent regarding the number of situations covered is
minimized by the modularity of the approach and dhdity to add situations when they arise if they
have not been addressed earlier.

The ontology and rule-based representations seesatisfy our two requirements and thus are the
representations chosen for our approach. The eekibs describes how the two are combined to enable
domain and reasoning knowledge to be stored.

3. Knowledge Creation

The process of creating the knowledge is done m steps. First, the domain-ontology knowledge is
entered followed by the rules which make use ofdhimlogy knowledge. For instance, if the domain-
expert wanted to enter a rule which relates tditrafvestigation that states “If there is an igdrperson
then the investigator has to attend to the injyretson and request an ambulance from the operator”,
then the ontology knowledge has to have at least datities: person, investigator, ambulance, gnd o
erator. Some of the entities need attributes tardss their status such as the person entity whedds
an attribute describing his injury and possibly #mbulance entity needs an attribute to stateithat
not out on another call. Some rules need to amply group of entities rather than individual on&s.
example of such a rule is “if there is a person thanot at a safe distance from a danger souree th
move him away”.

Furthermore, the data type of each attribute rhasspecified during the creation of the entity and
attribute might have further constraints such asimuim and maximum values or that it can only hold
one of a number of predefined values such as injy which can be one of the following values: éon
slight, medium, severe, or deadly.

An ontology representation addresses the abovesgeptational concerns very well. The ontology
creation lifecycle starts by creating the entityl gilacing it in its appropriate hierarchical locatias

e iviia: EEE) (T FEX

Ontologies

I Ontologies
Age
Enum Rank_Types Mationality
Injuries. _Type Address
Wark_Sddress CElAl]

-~ wiark_Tel
muiinls | Defautt Horme:_Tel
Mokile

Classes | Properties | Types

Mame

Wi Max Ernail
o

ol
Documentation Constrairts Gender

Fig.2 Left: entities creation tab; Right: attributesatien tab.

5 http://herzberg.ca.sandia.gov/jess/

5 http://sitemaker.umich.edu/soar

© FORMATEX 2005

©Coo~NOUDWNE

4 A.BinSubaih et al.: OntRAT: Ontology-Based RulegjAisition Tool

shown in the left image in Fig. 2. This hierarchicapability addresses the group of entities camcer
raised by the second example rule which requiressyistem to provide the investigator with a higt-li
ing all the persons that are not at a safe disttwnoe the danger source. The system identifiepatbons

by searching for all the entities that descend fthen‘person’ entity as they are considered indhme
group. The next step is to create the differemibattes along with their constraint illustratedthg right
image in Fig. 2. We followed Protégé 2.1's listamistraints, which comprises of name, type, cakdina
ity, default value, minimum value, maximum valuagdalocumentation. The injury type issue mentioned
earlier is dealt with by allowing an attribute d&ype to be an enumeration which holds the val@gs p
mitted.

Once the entities and their attributes have beseried the last step is to start adding the r@es-
sidering the two parts of a rule, condition andaagtit seems logical to allow the domain-expertte-
ate conditions and actions separately and then io&rthe two to make up a rule. This also maximises
the reusability of the two parts as the same cimmdir action can be reused as part of other ridiggire
3 shows the interface for inserting rules; it cetsof three tabs: conditions, actions, and rules.

Continuing with the example rule of the injuredgm we show how the rule is inserted and format-
ted. The person, investigator, ambulance and apegdttities are created by the domain-expert along
with their attributes and constraints. The nexpsteto build the condition for the rule. The cdra
syntax consists of a variable followed by an opmeraand then another variable (<vari-
able><operand><variable>). The variable on the lethefoperator could be an entity attribute whereas
the variable on the right could be a value or dityeattribute. This simple condition can furthex bom-
bined with other conditions to form a more compbee (<condition><operand><condition>).

Therefore, the condition that states a persomjiged can be formatted as “Person.Injury != none”
where the dot is used to separate the entity flwmattribute or another entity in a hierarchicétien-
ship similar to an object-oriented declaration.sTisi then followed by the relationship operand leemv
the two variables. The operand can be on one of, =, <=, >=, I=, &, and ||. The operands list has its
own table in the database and can be extendecefuithinclude other operands. The value ‘none’ is
taken from the injury enumeration.

The action syntax follows similar patterns to tmoadition. To avoid the need for operand precedence
parenthesis can be used, e.g. two actions are fi@uinas “((Investigator.hint= ‘Attend injured’) &rl
vestigator.hint= ‘call ambulance’))”.

4. Knowledge Usage

In this section we describe how the three primégakeholders who need access to the knowledge — do-
main-experts, developers, and end-users — intandictthe system to manipulate and use the knowledge
to make a virtual environment (Fig.4) appear iigelt to end-users using one of the simulationrergyi

in Fig. 1. The aim is to allow the end-user orrtesi to navigate and interact with objects in thdren-
ment to aid him in solving a virtual traffic accide[8]. In this particular experiment we had a firaf
accident scene involving two vehicles with one riefupassenger and both drivers at the accidenescen

ONtRAT: Ontology-Based Rules Aquisition Tool

Condtions | Actions | Rules

[Name. Format I a|

2 onestate (& 1 |

& s (THNG Living Thing | |1« | (
(THNG Living Thing:

lige (THNG Living Thing

linjury {CTHING Living_Tring.

ar IniuryMeciur {(THING Living_Thing.

s

I

>

«
bl

|l CANES] 5
o

|
‘

i

o e Pt [—
| all&mbulance (THIM ide.... | A > ‘

=

ete.
onfiscatelD

1 ortactOwner

ettt

Neme [HasDananeDL | 17

Fig.3 Rules interface.
© FORMATEX 2005

Fig. 4 Virtual traffic accident.

©Coo~NOUDWNE

m-ICTE2005 http://www.formatex.org/micte2005 5

We wanted the trainee to be able to interact withdrivers to query their attributes and ask thewse
tions. We also wanted the trainee to receive Hiais the environment if he enters a dangerous area.
The attributes query and questions requirement adasessed solely by knowledge represented by an
ontology, whereas for the hints requirement we addabth the ontology and rules.

A meaningful vocabulary, familiar to the end-userused by the by the domain-expert for the attrib
utes. The developer therefore only had to buildagiam to read and display the attributes withawt a
extra manipulation. For the end-user this meantlizking on any object in the virtual environmehet
list of its attributes are displayed and he cathfurclick on any attribute to view its values tlumabling
him to view the attributes as entered by the doreajrert. For the questions requirement, by design
choice, the developer displayed the questions diffarent panel on the end-user screen and heree th
developer had to read the questions attribute atgdgiand display it on a specific panel.

To enable the environment to provide the trainéth Wwints we needed a rule to monitor the user
movements in the environment and once it deteeiishté has entered a specific zone to send the -appro
priate message. This meant that a zone entity dhexikt in the ontology knowledge and the chosen
representation for that was a cubical represemtatith eight points. The rule then checked thentai
position in the environment against the eight poentd sent messages accordingly. As shown in Fig. 1
currently the developer is involved in translatthg rule to the logic-engine. However in the futthies
could be automated similar to the way the ontolkagywledge is automatically translated.

5. Conclusions

The objective was to build a system that was addest all parties involved in building a domain
knowledge that has a structure, a high-level abistra and the ability to reason about the knowéedg
We have chosen ontology and rule-based represamdatd fulfil these attributes and shown how the
three stakeholders can have access to the samdekiygvand how it has been deployed in a virtual
environment for training purposes. Because of implgcity of the training example used the resuis
only be indicative of the viability of this apprdaend more complex problems need to be solved éefor
getting a better picture of its extensibility andtability. Additionally usability tests need to hmn-
ducted to evaluate the user interfaces. Futureneeinaents planned include multi-language suppod, an
modules to export the ontology to a different forrtteat already has some tools which can carry out
verification tests on the knowledge.

References

[1] A. BinSubaih, S.C.Maddock, D.Romano, A Domaimtépendent Multiplayer Architecture for
Training, International Workshop in Computer Gamesign and Technology, November 15-16th,
Liverpool, UK, 2004, pp. 144-151.

[2] T. Morgan. Business Rules and Information SysteAligning IT with Business Goals. Addison
Wesley, 2002, ISBN: 0-201-74391-4.

[3] B. Chandrasekaran , J. R. Josephson and V eRjaBins. What are ontologies and why do we need
them?, IEEE Intelligent Systems, Jan/Feb 19401), pp. 20-26.

[4] N. F. Noy, R. W. Fergerson, & M. A. Musen. Tkeowledge model of Protege-2000: Combining
interoperability and flexibility. 2th Internation&@onference on Knowledge Engineering and Knowl-
edge Management (EKAW'2000), Juan-les-Pins, Fre2Q).

[5] H. Eriksson. Using JessTab to Integrate Protue Jess. IEEE Intelligent Syste&2), 2003, pp.
43-50.

[6] P. Jackson. Introduction to Expert Systems. iéaldl Wesley Longman Limited, 1999, ISBN 0-201-
87686-8.

[71 A.J. Gonzalez, D. D. Douglas, The EngineerifigKnowledge-Based Systems, Theory And Prac-
tice. Prentice Hall International Editions, 1998BN: 0-13-334293-X.

[8] A. BinSubaih, S. Maddock, D.Romano. Game Ldgartability. ACM SIGCHI International Con-
ference on Advances in Computer Entertainment Talobgy ACE 2005, Games Technology and
Design session, June 15-17th, Valencia, Spairappear)

© FORMATEX 2005

