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Abstract. The paper examines the suitability of employing an off-the-shelf software 
evaluation methodology to evaluate a game-based architecture we have developed to aid 
game portability between game engines. We are interested in finding out if the goals of the 
architecture are met and which architectural decisions have contributed towards them and 
which ones have undermined them. The Architecture Tradeoff Analysis Method (ATAM) 
promotes itself as a tool with the capabilities of revealing these issues. In this paper we put 
ATAM to the test on our architecture and discuss the findings based on the outputs 
generated which include lists of risks, nonrisks, sensitivities, and tradeoffs made. The 
findings show that a game-based architecture can greatly benefit from using ATAM by 
revealing its strengths and weaknesses which can then be guarded and addressed 
respectively before evolving the architecture further. Additionally we present an 
Architecture Reactive View (ARV) to consolidate disparate outputs generated by ATAM 
into one which we consider as an improvement to ATAM.  
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1   Introduction 

Software architectures are comprised of three elements [5]: software components, externally 
visible properties of these components, and the relationships amongst them. In this work the 
software architecture we are going to evaluate has a component called “game space” that 
services a game to two different game engines: one is a commercial off-the-shelf game engine 
(Torque1) and the second is a bespoke simulation engine [8]. Using a game space allows adding 
a new game engine without the need to modify the game to suit the new engine.  
Common approaches for conducting architectural evaluations are grouped into two categories 
[1]: questioning techniques and measuring techniques. The questioning techniques result in 
qualitative results and consist of scenarios, questionnaires, and checklists. In contrast the 
measuring techniques produce quantitative results by using metrics, simulations, prototypes, and 
experiments.  
These approaches can either be carried out in an ad hoc way or a structured way. The ad hoc way 
does not have any obvious pattern other than randomly throwing challenges at the architecture 
and hoping that either the architecture can address them or otherwise they will reveal the 
architecture’s limitations. Examples of architectures that used this way are: Testbed for 
Integrating and Evaluating Learning Techniques (TIELT) [4], MIMESIS [21], Gamebots [3], 
and the first prototype of the architecture being evaluated here [8]. The problems with the ad hoc 
way are: 
• There is no guarantee that all the architecture’s components are going to be exercised during 

the evaluation. 
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• Challenges thrown might be redundant since they probe the same architectural decisions. 
• They tend not to articulate the key decisions made and the tradeoffs between them. 
• They do not explicitly establish links between the quality attributes desired and the 

architectural decisions made. 
 
The structured approach uses methods such as ATAM [13], SAAM [16], ARID [12], ABAS, 
PASA, and CBAM [5]. The method that stands out from these for having an output that 
corresponds to our needs is the ATAM, a method developed by the Software Engineering 
Institute (SEI). ATM comprises of 9 steps grouped into four phases: presentation (3 steps), 
investigation and analysis (3 steps), testing (2 steps), and reporting (1 step). It generates a 
number of outputs such as: a prioritised list of quality attributes, a list of architectural decisions 
made, a map linking architectural decisions to quality attributes, lists of risks and nonrisks, and 
lists of sensitivities and tradeoffs. 
In this paper we chose the structured approach for three reasons. First, the aim was to establish a 
direct correlation between the architectural decisions we have made and their impact on the goals 
and quality attributes required. Second, the architecture we are evaluating is a prototype which is 
in its second evolution and we want to discover any risky decisions before evolving any further. 
Although ATAM is aimed at evaluating architectures after they have been designed but before 
they have been implemented, there are a number of projects on which it has been used on 
deployed systems such as the Battlefield Control System (BCS) and EOSDIS Core System 
(ECS) [13]. Third, we need to see which decisions are crucial to achieving our goals and need to 
be protected from future evolvements that might add, alter, or remove architectural decisions that 
might have adverse effects on our crucial decisions. 
In section 2 we describe how a number of projects have benefited from using ATAM. Section 3 
details a walkthrough of the ATAM phases carried out while evaluating our architecture. In 
section 4 we present the results and discuss the suitability of using this method on game-based 
architectures. Finally, section 5 presents our conclusions. 

2   Related Work 

The architectures that have used ATAM are command and control project [13], information 
systems (ECS [13], and Alexandria [2]). Although these architectures are general (i.e. not game-
based architectures) they are described here since no examples were found of its use on game-
based architectures. The command and control project applied ATAM to evaluate a Battlefield 
Control System (BCS). The system is used by army battalions to control the movement, strategy, 
and operations of troops in real-time in the battlefield. The quality attributes of the architecture 
are: modifiability, availability, and performance. After conducting ATAM evaluation it revealed 
some potentially serious problems to do with availability and performance. The availability was 
at risk because of the limitations of the backup approach used and the performance was very 
sensitive to the communication load. 
The second project is the ECS whose role is to store data collected from satellites and process 
them into higher-form information to make them searchable. The amount of data collected is 
huge (approximately hundreds of gigabytes per day). A number of quality attributes were 
identified for the system such as: maintainability, operability, reliability, scalability, and 
performance.  Among the findings it was revealed that availability was at risk because there was 
only a single copy of the databases and performance was sensitive to the overhead imposed by 
having to convert between various data types.  
The last project is the Alexandria system which aims to provide a library of papers online. The 
quality attributes pursued for this system were: modifiability, availability, security, usability, 
performance, and portability. The evaluation showed that availability was at risk depending on 



the database server chosen, as some require it to be offline when the data schema is changed. In 
addition the architecture performance was found to be sensitive to the security levels used. 
Contrasting the findings from the two approaches (ad hoc and structured) it shows the superiority 
of the latter for the following reasons:  

• ATAM provides clear articulation of the correlation between the architectural decisions 
and the quality attributes. 
• ATAM identifies risks associated with each architectural decision. 
• ATAM reveals sensitivities for which a slight change has significant impact on the 
architecture. 
• ATAM identifies tradeoffs made which are decisions affecting more than one quality 
attribute [17]. 
• ATAM identifies nonrisks which are assumptions that must be held for these to remain as 
nonrisks. If changed these have to be rechecked. 
• ATAM provides more direct probing of the architecture in the form of utility tree (shown 
later in Figure 4) which transfers ambiguous requirement statements to more concrete 
measurable scenarios.  

3   Using ATAM: A Case Study 

ATAM allows two different variants of emphasis when carried out. The first is architecture-
centric and the second is stakeholder-centric. In the first the emphasis is on eliciting the 
architecture information and analysing the architecture. In the second the emphasis is on eliciting 
stakeholder points of view. These two approaches are called the two faces of ATAM. In this 
evaluation we adopt the architecture-centric face because the architectural decisions made are the 
main focus of the evaluation and because of the small number of stakeholders involved. 

 
Phase 1: Presentation 
There are three steps in this phase. The first step starts by presenting the ATAM process to the 
stakeholders. The second step defines the business goals of the architecture. For this architecture 
two business goals were specified. The first goal aims to break the current tightly coupled 
practices employed when developing games using game engines. The tight coupling occurs when 
developers put the game in the game engine’s specific format making the game only available on 
that engine. The second goal is to make the architecture flexible to accommodate different 
games.  
Finally in the third step the architect describes the architecture to the evaluation team 
highlighting the following: the quality attributes pursued, the architectural decisions made, and 
the overall architecture design. These are illustrated in the following sections. 

 
Quality Attributes 
The requirements document in a traditional system development cycle usually lacks or weakly 
articulates the quality attributes of the system according to [6]. Requirements document tend to 
be good at describing the functional requirements which are different from the quality attributes. 
The difference being that the system can have accurate functionality but does not deliver it on 
time which is a performance quality attribute. A quality attribute is characterized by three 
categories [13]: external stimuli, responses, and architectural decisions. The stimuli are the 
events that cause the architecture to respond. The way the architecture addresses these events 
must be expressed in concrete and measurable terms which form the responses. The last category 
is the architectural decisions that describe the approaches adopted and how they impact the 
quality attribute responses. 
The architecture being evaluated here has three primary quality attributes, and they are in order 
of priority: portability, modifiability, and performance. The portability attribute aims to run the 



same game on multiple game 
engines without modifying the 
game itself.  The game referred 
to here is the plot as described 
by [9] “…game is really a story, 
and the game logic is its plot; all 
other elements we add are just 
media through which we tell the 
story.” Figure 1 illustrates a 
conceptual overview of the 
architecture that can address this 
attribute by extracting the game 
from the engines and servicing it back to them. The portability attribute succeeds if the same 
game can be serviced to multiple game engines without any modification to the game. 
The second attribute is modifiability which is the ability to make changes to the game easily. It is 
measured by the amount of changes required to the different components of the architecture and 
the less changes needed the better the modifiability is. The third attribute is performance which 
is the ability of the system to respond to stimuli within an acceptable timeframe. The stimuli can 
be user interactions or messages arriving over the network or method calls from other 
components or programs. The acceptable time to response for a stimulus is less than one second 
and the acceptable display rate at the game engine is no less than 20 frames per second (FPS).  

 
Architectural Decisions 
The success of an architecture is dependent on the achievement of its quality attributes and the 
forces at work behind these attributes are the architectural decisions. Getting these wrong could 
lead to a disastrous result. The remainder of this section describes the key architectural decisions 
made by the architect and organized by the three quality attributes they aim to support: 
portability, modifiability, and performance. 

 
3.1. Architectural decisions to support portability 
For the portability attribute the architect made three decisions with regards to how the game 
should be linked to the game engine. The three decisions are to remedy problems caused by 
practices adopted when developing a game using a game engine. To illustrate these problems we 
give an example of the two steps a game designer usually carries out to create a game: 

• Step 1 creating the game environment (3D scene): a game designer uses the game engine’s 
level editor to create the 3D environment using data created in modelling tools, sound tools, 
etc.  
• Step 2 adding the game behaviour: which controls the game. This is added by direct access 
to the game engine’s API or by using a scripting language or by using an editor such as the one 
provided by 3D GameStudio2 engine.  

 
3.1.1 The three unwanted dependencies 
There are three points that should flag warnings as far as portability is concerned when following 
the above steps for creating a game. These points relate to the dependencies made between the 
game and the game engine as shown in Figure 2. The dependencies marked with X are the 
warnings and the ones that need to be broken. The dotted line around the game space means that 
it does not exist physically on its own, but instead it lives inside the game engine. We put it on 
its own to conceptualise how it is linked to the game engine. 
When a game is being developed using any game engine if that game engine asks for the game 
state to be put in its own game state that should raise the first warning flag. Instead what 
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developers should aim to do is to 
have the game state living outside 
the game engine’s game state and 
find a way to communicate 
between the two states. 
The second warning should be 
flagged when the game engine 
requires the objects to be 
represented in its own Game 
Model representation. The goal 
should be not to have a game 
model that is only accessible 
through the game engine’s 
interface but have a game model that can be accessed outside the game engine. This could then 
be used by the behaviour engine to control the game by modifying the game state. The 
consequence of using the game engine’s game model would mean that the manipulation of the 
game state would always be dependent on the game engine’s game model interface which would 
correspondingly mean that it would have to be carried along with the game when moving to 
another game engine. 
The final flag should be raised when the game engine requires the behaviour to be specified in 
the game engine’s own language or format. These three issues are the unwanted dependencies 
that make it cumbersome to port the game. 
 
3.1.2 Architectural decisions to counter the three unwanted dependencies 
Figure 3 shows the game-based architecture which consists of three subsystems. The game 
space, the adapters, and the game engines. The game space consists of game state, game model, 
and behaviour engine. The game space also has other components not shown in the figure like 
API, scripting interpreter, sockets, and persistent storage. These are used to manage the game 
and communicate it to the game engines. In the View part of the diagram it shows the game 
engine components which follow the decomposition scheme suggested by [18].  
The decisions made to counter the unwanted dependencies are: 

• Dependency 1:  the direct link between the game space’s game state and the game engine’s 
game state should be broken. The architectural decisions made to achieve this were: model-
view-controller (MVC) pattern (AD13)[10], asynchronous messaging (AD2), mid-game 
scripting (AD3) [19]. 
• Dependency 2:  the direct link between the game space’s game model and the game 
engine’s game model must be broken. To achieve this the following architectural decisions 
were made: ontologies (AD4) [11], API (AD5), and mid-game scripting (AD3). 
• Dependency 3:  the game behaviour should not be formatted in the game engine’s 
proprietary format. To achieve this the architectural decisions made were: API (AD5), mid-
game scripting (AD3), ability to integrate specialized behaviour engines such as expert system 
engines (e.g. Jess [14]) (AD6), scripts mapping table (AD7), and objects mapping table (AD8). 

 
 

3.1.2.1 AD1: Model-View-Controller (MVC) 
The first architectural decision made was to adopt the MVC pattern. It was used to separate the 
system core from the view. In MVC the model contains the core functionality and system data. 
In this architecture that is placed in the game space. The view is used to display the information 
to the user, and in this case the game engine is the view. Lastly the controller handles the change 
requests by linking the view to the model. The adapters assume this role.  
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The main benefit of using this approach is that multiple views can exist for the same model and 
any modification carried out by one of the views is visible to other views. This is exactly what 
the portability attribute pursues (the game being the model and the game engines being the 
multiple views). However, the architecture does not follow the MVC pattern strictly as it breaks 
the direct link between the view and the model and only allows communication through the 
controller. This decision was deliberate to remove one of the known liabilities of using MVC 
which results in close coupling between the views and the model [10]. Therefore the approach 
can be considered as a variant of MVC. The corresponding elements to the game state’s objects 
still have to be added to the environment and commonly this is done through the level editor of 
the game engine.  

 
3.1.2.2 AD2: Asynchronous Messaging  
The second architecture decision made was using messaging as a communication mechanism 
between the game space and the game engines via the adapters. More specifically the 
communication occurs between the adapter (which was decided to be on the game space side) 
and the game engine. The messaging role is to allow synchronization of the two game states 
(game engine’s game state and game space’s game state) and allow for actions triggered by the 
behaviour engine to be carried out to the game engine. The messaging mechanism used is 
asynchronous which aims at limiting the delay that is caused by the synchronous mechanism 
[20]. The messages arriving from the game engine are in a pre-determined format whereas the 
messages delivered to the game engine are formatted in its scripting language. If a specialized 
behaviour engine is used (AD6) messaging can be used to communicate between it and the game 
space. The format of the messages is dependent on the behaviour engine (see [8] for how 
messages were formatted for communication with Jess). 
 
3.1.2.3 AD3: Scripting 
The third architectural decision made was to use scripting to manipulate the game state on both 
sides. Scripting is a technique for specifying and manipulating the game without having to hard-
code it in the system which makes it easier to modify. The scripting can be pre-compiled 
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(UnrealScript) or interpreted at run-time (known also as mid-game or on-the-fly scripting) using 
for example Python. 
 
3.1.2.4 AD4: Ontologies 
Ontologies are one of the architectural decisions made to counter dependency 2 with regards to 
the game model dependency break-up. Ontologies are used to specify the game knowledge 
representation independently from the game engine’s game model. The main reason for using 
this approach is to avoid the inflexibility associated with building hard-coded classes. We 
wanted an approach that allows building classes on-the-fly. Ontologies allow creating concepts 
which have properties, and relations. We use these to create the classes of our domain. The 
concept becomes the class and its properties are the properties of the class and finally the 
relationships describe things like inheritance and association. The other benefits of using 
ontologies are: common language for describing a domain, machine interpreted language, and 
easy to understand and maintain.  
 
3.1.2.5 AD5: API 
The other decision to aid the game model dependency is to use an API to interact with the game 
space through code or through scripting. API and mid-game scripting are also used to set the 
game behaviour to break the last unwanted dependency.  

 
3.2. Architectural decisions to support modifiability 
The decisions taken with regards to modifiability aims to limit how far changes made to the 
game in the game space propagate to other parts of the architecture. The game space as shown 
earlier consists of three subsystems: game state, game model, and behaviour engine. Changes to 
any of these should be made with as little disruption as possible to other components in the game 
space including the adapters. The following sections describe the decisions made to address 
these concerns. 
 
3.2.1 AD1: MVC 
The first decision made to aid this is the use of the MVC pattern which aims to achieve this by 
separating the core of the system where the modification is going to happen from the view. 
Based on MVC any modification that happens to the game state is restricted to the changes in the 
game state model/class diagram and would not have ripple effects on the adapters (controllers) or 
the game engines (views). Nor will it affect the game model. However as far as its effects on the 
behaviour engine, it is dependent on how the behaviour is specified. If the added logic is already 
addressed in the behaviour by its game model type then there is no need to modify the behaviour 
engine. For instance, if the logic to be added is a non-player character (NPC) called “Kork” and 
the behaviour already says something like “If a NPC sees an enemy it should fire at it” then there 
is no need to modify the behaviour engine since the “Kork” is addressed by its game model type 
(“NPC”) and hence the modification effect is confined to the game state. However, if the 
behaviour specifies something specifically for “Kork” and not for its game model type (“NPC”) 
then it would have to be added and the effect propagates as far as the behaviour engine. 
The use of MVC has a similar effect on any changes required to the second component (the 
game behaviour) as it can be carried out independently of the other parts of the architecture.  
 
 
3.2.2 AD3: Scripting 
Another key decision that enables better modifiability of the game state and game behaviour is 
the use of mid-game scripting. This enables manipulating the game state and setting the 
behaviour without recompiling the game space system. This also helps in making any 
modification required to the game engine without affecting the game engine code since you can 
access it at run-time. Mid-game scripting is used instead of pre-compiled scripting since using 
the latter would require some of the game logic to be put in the game engine ’s specific format as 



was the case with Memesis [21] which used pre-compiled UnrealScript classes. The applicability 
of using scripting is dependent on the level of access given to the scripting. The level required 
varies from game to game and the minimum requirement is for a level of access which caters for 
the interaction required by that game.  

 
3.2.2 AD4: Ontologies 
Another modification that might be required is modifying the game model. This is the most 
expensive modification in terms of how far changes propagate. Changing the game model 
requires changing the behaviour engine, and the adapter. For example, consider a class called 
NPC which has a property called SeeHuman. If that property is changed to HumanVisible, then 
the behaviour engine that uses this property has to change so does the adapter if it uses it in 
communication with the game engine. 

 
3.2.3 AD7: Scripts mapping table 
Using a scripts mapping table is another architectural decision taken. The table acts as the 
translator that holds the same sentence in two languages: the one understood by the game space 
(Jython) and the one understood by the game engine (TorqueScript or Python). Each sentence 
holds placeholders for the information to be replaced at run-time. 
 
3.2.4 AD8: Objects mapping table 
The final architectural decision made is to use an objects mapping table. This is necessary to link 
the corresponding objects on both sides if similar unique identifiers cannot be set on both sides 
for the same objects.  

 
3.3. Architectural decisions to support performance 
While promoting portability and modifiability the architecture needs to perform at an acceptable 
speed. Since quality attributes do not exist in isolation from one another a compromise has to be 
achieved between the different attributes to reach a common acceptable goal. For instance to 
cater for better modifiability mid-game scripting was used despite the fact that mid-game 
scripting runs at much slower speed than the precompiled code (as much as 10 times slower).  
The introduction of layers by using MVC to promote portability and modifiability also adds 
processing overhead on the architecture as information needs to be passed and sometimes 
translated between the layers. Moreover, the translation done in the controller which employs the 
Adapter pattern [15] to accomplish that by using a scripts mapping table requires processing 
overhead. The other overhead that affects performance is the network overhead because of the 
distributed environment used since the data has to be transferred across the network. The major 
reason for using a distributed environment is because game engines are known for making use of 
every last drop of processing power and thus running the game space on the same machine that is 
running the game is too much to ask. Additionally, doing so limits the possibility of having the 
architecture run different game engines simultaneously to communicate across the same 
architecture —this is an interoperability quality attribute for the future but this shows the benefits 
of at least listing the quality attributes as it forces the architecture to weight the impact of any 
decision on the present and futuristic attributes.  
To compensate for the network overhead the architecture uses an asynchronous communication 
mechanism to reduce the impact on the display rate. The benefits of using asynchronous 
communication is that the calling system can continue processing after making the request and 
does not have to wait for a response [20]. This plays a vital role in keeping our FPS at the 
required level (20 FPS).  
Another decision that affects the performance and relates to the network overhead is the 
placement of the adapters. The architect had to choose from three locations: placing the adapter 
in its own application on its own machine, placing the adapter in its own application on either the 
game space machine or the game engine machine, or placing the adapter in the same application 
as the game space. The first option was dismissed because it would have added another network 



overhead. The second option was disregarded because it would have added extra overhead to 
communicate across applications. The third option had the least overhead expense and was the 
one chosen.  
 
Phase 2: Investigation and Analysis 
This phase comprises of three steps: identifying the architectural decisions made (step 4), 
generating the quality attribute utility tree (step 5), and analysing the architectural decisions (step 
6).  
Although in perfect documentation all the architectural decisions should be listed that is not 
always the case as was found when evaluating the BCS and ECS projects [13]. Therefore, the 
evaluation team has the responsibility to elicit architectural decisions from the architecture 
documentation, and the architect’s presentation. This should elicit any architectural decisions not 
highlighted by the architect. Eight architectural decisions have been described above. 
The utility tree elicits the quality attributes down to the scenario level to provide a mechanism 
for translating business goals into concrete practical scenarios. The utility tree also aids in 
prioritising the quality attributes. According to [13] this step is considered a crucial step which 
guides the rest of the analysis without which the evaluators could spend valuable time analysing 
the architecture without addressing the important quality attributes as far as the stakeholders are 
concerned. 
Figure 4 shows the utility tree for the architecture. There are three levels in the tree: the quality 
attributes level, the refinements level, and the scenarios level. The aim of the refinement is to 
decompose the quality attribute further if possible. The last level holds the scenarios in a 
concrete form. This level also holds the scenarios’ rankings which decide their priorities. In 
ATAM, ranking format can differ based on the participants’ preferences. It could be a scale 
based on 0 to 10 or relative ranking such as High (H), Medium (M), and Low (L). The ranking is 
done using two variables: importance and difficulty. Importance states how important the 
scenario is for the success of the architecture and difficulty describes the degree of difficulty in 
achieving that scenario. We used the relative ranking to prioritise the scenarios. 
ATAM heavily relies on scenarios to turn ambiguous quality statements such as “the system 
should be modifiable” into something more concrete as shown in Figure 4 by the scenarios: 
M1.1, M2.1,2.2,2.3, and M3.1. The benefits of using scenarios are threefold [13]. First, they are 
simple to create and understand. Second, they are inexpensive. Third they are effective. 
The mechanism followed by ATAM to describe these scenarios uses a three-part format: 
stimulus, environment, and response. The stimulus describes what initiated an interaction with 
the architecture. The environment describes the state of the architecture when the interaction 
takes place. The response explains how the architecture reacts to the interaction. ATAM also 
encourages eliciting scenarios by thinking about different scenario types. The three types used 
are: use case scenarios, growth scenarios, and exploratory scenarios. The first describes typical 
uses of the architecture, the second lists anticipated changes, and the third lists extreme changes 
aimed to stress test the architecture. 
Nine scenarios have been elicited for the architecture. The scenario elicited to prove that the 
architecture supports portability is described in P1.1 in Figure 5. This scenario requires the same 
game to be run on different game engines without any modification to the game. As described 
earlier the game here refers to the three main components of the game space. This scenario is 
ranked with high for importance because it is the main quality attribute for the success of the 
architecture.  The difficulty rate is set to medium, as the change requires creating a new adapter 
between the new engine and the game space. The other scenarios elicited are shown in the utility 
tree.  



The last step in this phase is analysing the architectural decisions made to examine how well 
they correlate to the quality attributes. This step is where the architect ’s decisions come under 
close scrutiny. The output of this step is a detailed description of the decisions that are aiding the 
pursued quality attributes and the ones that undermine them. Table 1 shows the outcome of 
analysing the portability scenario for which a number of key architectural decisions have been 
identified. As illustrated in the table, for each architectural decision this step reveals sensitivities, 
tradeoffs, risks, and nonrisks which are described in Figure 5.  
As shown in the table the first decision affecting this scenario is the MVC decision (AD1). MVC 
has one tradeoff, two risks, and one nonrisk associated with it. The tradeoff made (T1) favours 
portability over performance as described earlier. The first risk (R1) is caused by the tight 
coupling between the controller and the model which is a known liability of using this pattern 
[10]. The second risk (R2) is caused by the difficulty to maintain the data integrity between the 
two states. The nonrisk (N1) exists because of the decision taken to remove the other liability of 
using MVC – the removal of the direct link between the view and the controller described 
earlier. 

Portability 

Utility 

Performance 

Modifiability 

M1Change the game data 

P1 Plug another game engine 

M2 Change the game behaviour 

M3 Change the game game model 

PE2 Responsiveness 

PE1 Display rate (FPS) 

P1.1 (H,M) Run the same game on another engine 
without modifying the game 

M1.1 (H,L) Change the game data by changing the 
game state and level data independently from the 
other subsystems 

M2.3 (L,H) plug another behaviour engine to the 
system. 

M2.1 (M,M) Change to the game behaviour by 
changing the behaviour in the behaviour engine 
(which uses the game space’s game state and game 
model) independently from the other subsystems 

M3.1 (M,H) change the game game model would 
require changes to behaviour, and adapters. 

PE1.1 (M,L) the system should aim to achieve 20 
FPS 

PE1.2 (M,M) when the user triggers an action in the 
game the response should be achieved in less than 1 
second 

Figure 4: Utility tree 

Quality 
Attributes 

Refinements Scenarios - (Importance, Difficulty) 

M2.2 (M,M) change to the game behaviour by 
changing the behaviour in the behaviour engine 
(which does not use the game space’s game state and 
game model) by adding adapter between the 
behaviour engine and the game space. And by adding 
the game state and behaviour using the behaviour 
engine’s game model. 

PE3 Throughput PE1.3 (M,M) measure the highest allowed before 
performance starts to be affected (i.e. responsiveness 
falls lower than PE2) 



Analysing Scenario P1.1 
Scenario  plug another game engine to the architecture 
Attributes Portability 
Stimulus running the same game on another game engine 
Environment  
Response should be achieved by adding an adapter to connect the 

game space and the newly added game engine 
Architecture Decision Sensitivity Tradeoff Risk Nonrisk 
AD1 MVC   T1 R1,R2 N1 
AD2 Messaging S1,S2 T2 R3 N2 
AD3 Mid-game 

scripting 
 T3 R4 N3 

AD4 Ontologies  T4   
AD6 COTS behaviour 

engine 
S1,S2  R2 N4 

Table 1: Portability scenario analysis (see Figure 5 for description of S1, S2, etc) 
 

The analysis of the messaging approach (AD2) has revealed two sensitivities, one tradeoff, one 
risk, and one nonrisk. The two sensitivities (S1, S2) are introduced because of concerns over 
network latency and messages load. Increasing either of these would have negative impact on the 
architecture’s performance. The risk (R3) is introduced by the tight coupling as a consequence of 
using pre-determined messages for the messages arriving from the game engine which means 

Sensitivities: 
• S1: Concern over network latency 
• S2: Concern over messages load 
• S3: In the event that a single unique identifier cannot be set this architecture decision becomes very sensitive to any 
modification as they have to be added manually to the table 

• S4: Using ontologies allows for better game model scalability but it makes the architecture very sensitive to change 
as the change propagates to behaviour and adapters. 

Tradeoffs: 
• T1: Portability (+) and Modifiability (+) vs. Performance (-) – separating the architecture into layers adds an overhead 
for exchanging information between layers which affects the performance. 
• T2: Portability (+) vs. Performance (-) 
• T3: Portability (+) and Modifiability (+) vs. Performance (-) – mid-game scripting allows better portability and 
modifiability but runs at 10x slower than pre-compiled code. 
• T4: Portability (+) and Modifiability (+) vs. Performance (-) – using ontologies allows for having a game model that is 
independent from the game engine’s game model however it has adverse effect on performance.  
• T5: Modifiability (-) vs. Performance (+) 

Risks: 
• R1: The risk is caused by the tight coupling between the controller and the model which is a known liability of using 
this pattern. 
• R2: Data integrity 
• R3: The risk is introduced by the tight coupling as a consequence of using pre-determined messages for the messages 
arriving form the game engine which means changes to them would require deployment of new system every time. 
• R4: The risk raised is a consequence the game engine or the game space which might not have fully exposed their 
functionality through the scripting. 
• R5: If no unique id can be set this means the mapping table should be done manually. 

Nonrisks: 
• N1: The nonrisk exists because of the decision taken to remove the other liability of using MVC – the removal of the 
direct link between the view and the controller described earlier. 
• N2: The nonrisk risk exists because of using asynchronous mechanism as it avoids negative impact on the frame rate 
that could be caused by the synchronous mechanism 
• N3: The nonrisk is the use of API approach which should stay compatible. 
• N4: assume that the behaviour engine requires the game state to be replicated to its own working memory 
• N5: A one-to-one mapping for objects across both game states is established by having a unique identifier and if that is 
not possible the objects mapping table handles that. 
• N6: Should stay compatible 

Figure 5: Sample from the analysis of sensitivities, tradeoffs, risks and nonrisks for Utility Tree in 
Figure 4. 



Type Scenario 
Use case  - Run two games from the same 

domain  
- Run two games from two different 

domains 
Growth - Interoperate between two game 

engines 
- Run two behaviour engines (internal 

and external) 
Exploratory - Increase the load by increasing the 

number of NPCs the user can interact with 
- Increase the load by simulating 

multiple number of simultaneous players 
- Run the game space on the same 

machine as the game engine 
- Run the behaviour engine and the 

game space on the same machine as the 
game engine 

Table 2: Scenarios generated in step 7 

changes to them would require 
deployment of new system 
every time. Using messaging 
middleware (such as publish-
subscribe [10]) could improve 
the portability and loosen the 
coupling however it would 
have an adverse affect on 
performance and the tradeoff 
made here favours the 
performance. The nonrisk (N2) 
exists because of using 
asynchronous messaging  as it 
avoids negative impact on the 
frame rate that could be caused 
by the synchronous 
mechanism.  
Mid-game scripting (AD3) has 
one tradeoff (T3), one risk 
(R4), and one nonrisk (N3). 
The tradeoff favours 
portability over performance since using scripting is slower than using pre-compiled code. The 
risk raised is a consequence of the game engine not allowing full exposure to its functionality 
through the scripting. The nonrisk is the use of API which should stay compatible as the API 
evolves.  
The use of ontologies (AD4) has one tradeoff (T4) associated with it. The tradeoff is between 
portability and performance as ontologies improve portability but affect performance because the 
ontologies are not hard-coded as classes are.  
The final decision that could affect portability is the use of COTS behaviour engine (AD6) which 
has two sensitivities (S1, S2), one risk (R2), and one nonrisk (N4). The sensitivities are similar to 
those caused by the messaging decision. The risk is similar to the second risk caused by MVC 
which relates to maintaining data integrity. The nonrisk assumes that the behaviour requires the 
game state to be replicated to its working memory. 
Similar tables are created for each scenario listed in the utility tree. Figure 5 shows the 
sensitivities, tradeoffs, risks, and nonrisks from all the analysis.  
 
Phase 3: Testing 
This phase consists of two steps: brainstorming and prioritising scenarios (step 7), and analysing 
the architectural decisions (step 8). The first looks similar to generating scenarios for the utility 
tree in phase 2, however the aim here is different. There the stakeholders were asked to generate 
scenarios based on given quality attributes, here they are asked to ignore that and give general 
scenarios. The goal of this step is to widen the spectrum from which scenarios can be elicited. 
This step has been described as a bottom-up approach and the utility tree step as a top-down 
approach. Once the scenarios are generated the ones that address the same concern are merged 
together. Then the scenarios are prioritised. The prioritisation process here differs from the 
prioritisation approach adopted earlier. Here each stakeholder is given a number of votes 
(usually ATAM suggests 30 percent of the number of scenarios rounded up) and they use these 
votes to prioritise the scenarios. 
After prioritisation, the scenarios generated are compared to the ones generated in the utility tree 
creation step. The goal is to plug these scenarios into the utility tree. While doing so one of three 
things could happen. First, the scenario might match an already-existing scenario and no further 
action is required. Second, the scenario will fall under a new leaf node of an existing branch; if 
so it is then placed under the branch. Third, the scenario might not fit in any branch and in that 



case it means it is expressing a new quality attribute which has not been accounted for and thus 
the quality attribute is added to the tree. Table 2 specifies the scenarios generated in this step. 
The next step in this phase is to analyse the architectural decisions. Similar tasks to the ones 
carried out in phase 2 are conducted on the new scenarios.  
 
Phase 4: Reporting 
The only step in this phase is presenting the findings to the stakeholders (step 9). The findings 
are usually summarized in a document containing the following outputs: architectural decisions 
used, scenarios and their prioritisation, utility tree, risks and nonrisks, and finally sensitivity and 
tradeoff points. One of the strengths of ATAM is that at the end of the evaluation process the 
results already exist since in each step the documentation is quite comprehensive. Thus, 
generating the final document becomes a simple task of merging the outputs of previous steps. 
Also suggested in this step is to generate risk themes by grouping risks discovered by some 
common factors. The risk themes generated for this architecture are: 

• Performance is affected by the separation decisions made (MVC, scripting, and messaging) 
to achieve portability. 
• The architecture relies on the ability to set a unique identifier for corresponding objects 
otherwise it severely affects modifiability.  
• The data integrity across the different game states is at risk. 
• There is a danger if the message load increases that the game space becomes the bottleneck 
in the architecture. 

4   Discussion 

The ATAM evaluation has delivered on its two main promised outputs: sensitivities and 
tradeoffs, and architectural risks as shown in Figure 5. The most important risks found were 
described in the risk themes (Phase 4).  ATAM has also produced a list of the key architectural 
decisions used and classified them according to how they affect the architecture (support or 
undermine) by discussing their sensitivities, tradeoffs, risks, and nonrisks as shown in Figure 5.  
Additionally ATAM completed a full circle by linking the architectural decisions to the quality 
attributes and back to the business goals. This is very beneficial to the stakeholders who are not 
technical to identify which architectural decisions have contributed or compromised their goals. 
We found the evaluation process not only helpful to understand the architecture better but now it 
should also act as a guide when we need to modify or evolve the architecture. The guidance it 
gives is based on the revealed architectural decisions and their strengths and weaknesses. We 
also found the ability to choose one of the two faces (architecture-centric and stakeholder-
centric) of using ATAM helpful because of the small number of stakeholders involved in this 
architecture. Another invaluable tool is the utility tree as it focuses and directs how the 
architecture should be examined by producing concrete measurable scenarios for otherwise 
ambiguous attributes.  
The one issue we faced with ATAM is that it produces an analysis table (e.g. table 1) per 
scenario and as the number of scenarios grows it becomes difficult to conceptualise the whole 
architecture as a single artefact based on all the tables generated. For instance if we wanted to 
look up the quality attributes affected by an architectural decision we would have to examine all 
the tables to find that out. One possible workaround was to consolidate all the disparate tables 
into one single entity that can reveal this faster. We created a view for the architecture called the 
Architecture Reactive View (ARV) shown in Figure 6.  From this view the architect gets the 
whole picture about the architecture as it describes the interaction between three elements: 
quality attributes, architectural decisions, and ATAM output. First, the architect can find out 
which architectural decisions affect which quality attributes. Second, he can also find which 



ATAM output affect which architectural decisions. Finally, he can see how ATAM output 
affects the quality attributes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5   Conclusions 

We have used ATAM to evaluate an architecture that is used to develop games which are 
portable to multiple game engines and modifiable while still playable at acceptable performance. 
The goal was to find the architectural decisions that contributed to the wanted quality attributes. 
ATAM managed to reveal and scrutinize these architectural decisions and label them as 
supportive or undermining. It also managed to identify risk themes that need to be addressed. To 
conclude we have found ATAM extremely useful in revealing the strengths and weaknesses of 
the architecture in away that we did not see when using the ad hoc way. It also provided us with 
a platform from which we can evolve our architecture with confidence knowing exactly what 
decisions are very sensitive and need to be closely monitored, what decisions need to be 
remedied, and what decisions are crucial for the success of our architecture. 
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Figure 6: Architecture Reactive View (ARV) consolidating the disparate tables generated for each 
scenario into a single artifact.  P, M, and PE refer to portability, modifiability and performance 
respectively. 

 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 
R1 √        
R2 √    √ √   
R3  √ √      
R4   √    √  
R5        √ 
T1 √        
T2  √       
T3   √      
T4    √     
T5     √    
S1  √   √ √   
S2  √   √ √   
S3        √ 
S4    √   √  
N1 √        
N2  √       
N3   √      
N4     √ √   
N5 √        
N6     √    
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