An Architecturefor Portable Serious Games

Ahmed BinSubaih Steve Maddocdk and Daniela Roma#o

1Department of Computer Science
University of Sheffield
Regent Court, 211 Portobello Street
Sheffield, S1 4DP, UK
{A.BinSubaih, S.MaddockD.Romano}@dcs.shef.ac.uk

Abstract. The current approaches employed for developingegausing game engines tend to restrict the
ability to port the game to different engines. lddtressing this issue causes the game to be sereehni the
engine’s own proprietary format which causes attagbhitectural coupling to exist between the tivois work
shows how the development could follow a differemite that leads to an architecture where the esiphs
placed on decoupling the game — thus making itgbet This approach has been put into practiceaand
architecture demonstrating how this is feasible basn developed. The architecture validity was then
evaluated in three ways. First, a sample trainiagh@ was developed and linked it to two differentnga
engines without having to modify it. Second we hasged an architectural evaluation method (ATAM) to
verify that the architectural main goal was achieand more importantly to find out which architeefu
decisions have contributed to its success and wines undermined it. Finally, we have developedrags
game on the architecture to train traffic accidenestigators how to attend a virtual traffic aesitd and an
empirical study was conducted for 56 police officer measure its effectiveness.

Keywords: portability, software architecture, game enginesiosis games.

1 Introduction

Game engines are finding increasing use in acadess&arch projects. The advantages for researtictusie
the outsourcing of unrelated work such as physiesworking, rendering of complex objects and chiarac
animation, which allows them to focus on the coféheir work, and the reduction in software devehemt
costs. As a relatively new movement it seems likeraning formula for both researchers and the gardastry.
But, are there any hidden costs and unforeseeadsgbat could prove costly later on in the ganwifife? The
issue we examine in this work is the complexityolved in moving a game between engines. We corgithis
to the way the engines draw researchers or develdpesurrender the game to the engine’s speaifiméat
(using the game engine’s object model and propsidenguage). Examples of this vary across domdimsm
the military training domain there are: America’s#y* which is built on top of the Unreal engine, DARW&R
Ambush! [1] built on top of Operation Flash Poiatd Tactical Iraqi [2] built on top of the Unreaigine. For
first responders there are: Hazmat: Hotzone [3ebiged on top of Unreal engine, a virtual terrositack on
the computer science building built on top of Hafe [4], and UnrealTriage [5] built on top of UrakIn the
field of search and rescue a game was developddsi than three months using the Unreal engine [6].
Unfortunately the issue of a proprietary formand unique to developers using game engines ortlalso to
developers using Virtual Environment (VE) engineshsas VR JugglérAVOCADO [7], and DIVE [8].

Considering that the game logic is the core ofgame and where much time is spent during the dpredat
lifecycle it is unfortunate that the engines eneger the use of their proprietary format. What wadotdmore
beneficial is to have the logic separate from & of the engine. The benefits gained are thréefelst, it
could encourage more researchers to make use dafiesngince a particular engine’s future capabifdy
potential discontinuation) would not be a worry aglifferent engine could easily be substituted.o8d¢ it
would reduce the development time by making thesttet to chose an engine not so critical, as the ob the
system (i.e. the game logic) is not affected bg tttioice. Third, it would increase logic reusapilitetween
projects using the same architecture and additipitavould increase interoperability between potgeusing
game engines.

Besides the projects that use engines the work sleoalld also be of benefit for providing an alté¢ive
development route for projects that have been deeel from scratch (e.g. ACTIVE [9] and CACTUS [16})
raising their awareness to the risks associateu tvé tight coupling of logic to the application.

1 http://www.americasarmy.com/
2 http://www.vrjuggler.org/

1.1 Problem Statement

Building a game from scratch and using commercféthe-shelf (COTS) products are both vulnerable to
surrendering the logic to the engine. The logithis ‘brain’ of the game and the engine is the mediborough
which the game is experienced. The way the twdiaked is the main focus of this research whichdthesis
that the current approaches employed underminenportant architectural quality attribute, namelytpbility.
Portability is the ability to migrate the game twother engine without having to redevelop or modlify game
specifically to suit that engine. There is a neadd mechanism that reduces the tight couplingfzdld when
using engines.

1.2 Current State of the Art Approaches

There are some existing and emerging initiatives@ojects that can aid game portability. Theselmadivided
into the following four groups: Al architecturesytérfaces, standards and file formats, and framiesvor
protocols.

The Al architectures group uses an Al componenis €amponent could be custom made or off-the-shgh

as the Al Middleware (e.g. SOAR [11], RenderWaré, All.Implant’, etc). The need for this emerged as the Al
complexities increased and the processing timecatéal for them also increased; it became morecdiffito
reinvent the Al wheel every time a game is devalopgom a software engineering perspective thistjpa is
encouraged as it promotes above all reusabilityirtdathe logic in the Al middleware format is nohat we
eventually want since this merely moves it from gmeprietary format (game engines) to another (Al
middleware). Nevertheless it is a step in the rigjh¢ction of moving the logic away from the gam®iee’s
format. The architectures we have found so far ginemote portability more than others are those atlaw
complete removal of the logic from the game engineh as TIELT [12]. Others that only partially rerache
logic are obviously less portable such as Mime$8] pnd MissionEngine [14]. Similarly to the gamegimes
practices this group promotes the use of their @noprietary format. Furthermore suggesting a maonioli
architecture as a complete entity is not what ednénstead initiatives must examine the causdbeoproblem
and provide practical solutions that can be emmayeen if their architecture or middleware is nobsen.

The second group is the interfaces group whichccuther be subdivided into two sections; ones gnavide
common interfaces and others that provide an imterper game engine. An example of the commonfacies

is the initiative by the working group on world eéntacing in the International Game Developers Agdmg?
(IGDA) which aims to provide a standard interfacithvthe game’s virtual world. In the group’s 2003naal
report [15] three basic elements for interactiothvthe game’s world have been mandated: sensitiggaand
data format used for communication. If the initiatigets acceptance by the game industry it wouddoar
portability cause by having one common interfageugh which we can access all the game enginesrritan
one per engine, as we currently have to do. Angthgject that looks at standardising game intedas®©ASIS
[16]. Examples of interfaces targeting single gangines are Gamebots [17] which is interfaced witheal
game enginand an interface to the Urban Terror First-Persboofr Game by [18]. This group is facing an
uphill struggle against a fast evolving industrgttlis nowhere near its maturity if only to be juddey the
minimal use of software engineering practices thave been around for decades. This suggests that an
agreement on the interface will not occur any teoen. Therefore, as the number of the projectsgugame
engines increases there is a need for a more inmngodution that can provide alternative approaches

The third group is the standards and file-basethéts such as VRML/X3Dand COLLADA. There are two
reasons why for these kinds of approaches it igasy to get a buy-in from the industry. Firstytkgll lack the
maturity needed for games. Second, standardizatigit not be the best practice to push down ansingu
known to have emerged from a ‘cottage’ industry.

The fourth group is the frameworks or protocold tid interoperability between different simulatiolike the
High Level Architecture (HLA) [19] and Java AdamiDynamic Environment (JADE) [20]. Despite the fact
that this category focuses more on the interopktybetween simulations and less on how the lagjiinked to
the simulation it is mentioned here to illustrabatt portability exists at different levels. HLA fanstance
promotes it at the simulation and object level 3ABE promotes interoperability at the functionaliyel.

1.3 Contributions

The main contributions of this thesis are:
» Identifying practices used to develop games usamgegengines and examining how they affect portgbili
This analysis should result in a diagnosis of @ueses and a set of recommended practices to psgsbility.

3 http://www.renderware.com/ai.asp
4 http:/iwww.biographictech.com/

5 http://www.igda.org/ai

6 http://www.web3d.org/x3d/

7 http://www.collada.org

A new architecture for allowing games to be porabktween game engines is developed using the
practices identified above. A sample training gamas then built using the new architecture to dermates
how that is possible.

* A new architecture that shows how portability, niiadiility, and performance quality attributes coudd
feasible on the same architecture without rendeiingnusable. This is then evaluated using a sirect
architecture evaluation method developed by SHéda\rchitecture Tradeoff Analysis Method (ATAM)1R

e To further evaluate the scalability of the arcHitiee a serious game was developed on top of itatio t
traffic police investigators on how to attend vataccidents. This was then followed by an emplisgtady to
assess its usability.

2 New Architecture

This section starts by identifying the practiceattbause tight coupling of the game to the engirien it
provides a solution to the problem and demonstitat@sit was used to develop the new architecture.

2.1 Tight coupling diagnosis

We have identified three dependencies that

cause tight coupling to exist between the gam Game Engine

and the engine. These are referred to as |the Game Space Game L ogic
unwanted dependencies in figure 1. The dotfed G Stat G Stat
line around the game space means that it doeg >2Me >'ate X ame tate
not exist physically on its own, but instead |it

lives inside the game engine. We put it on Jts | me Model 5 Game Model

own to demonstrate how it is linked within the
game engine.
The first unwanted dependency arises whep a Behaviour
game is being developed and the engine used
asks for the game state to be put in its own

game state format. Instead what developer&ey Process X Unwanted Depenc
should aim to do is to have the game state
living outside the game engine and find a way Figure 1: The three unwanted dependencies

to communicate between the two states.

The second warning should be flagged when the gamgme requires objects to be represented in its game

or object model representation. The goal shoulddido have a game model that is only accessibtith the
game engine’s interface but have a game modelctratexist and be accessed outside the game efidiise.
could then be used by the behaviour engine to abtite game by modifying the game state. The caresace

of using the game engine’s game model would meanthie manipulation of the game state would alwagy/s
dependent on the game engine’s interface which dvoairespondingly mean that it would have to beiedr
along with the game when moving to another gaménenghe final flag should be raised when the game
engine requires the behaviour to be specifiederngime engine’s own language.

% Scripting/APl/eti

2.2 Solution

Figure 2 shows the new architecture which congithree subsystems: the game space, the adaptetshe
game engines. The game space consists of gamegsaie model, and behaviour engine. The game d@ece
components (not shown in the figure) like ApplicatiProgramming Interface (API), scripting interpret
sockets, and persistent storage. These are usednage the game and communicate it to the gameesndn
the View part of the diagram it shows the game magiomponents which follow the decomposition scheme
suggested by [22].

The architectural decisions made to counter theamt®d dependencies are:

« Dependency 1: the direct link between the game space’s gamie stad the game engine’'s game state
should be broken. The architectural decisions ntadehieve this were: model-view-controller (MVQjtgern
[23], asynchronous messaging, mid-game scriptidd [2

Dependency 2: the direct link between the game space’s gameehrartt] the game engine’s game model must
be broken. To achieve this the following architeatwecisions were made: ontologies [25], API, emd-game
scripting.

e Dependency 3: the game behaviour should not be formatted ingdw@e engine’s proprietary format. To
achieve this the architectural decisions made wald; mid-game scripting, scripts mapping tablej abjects
mapping table.

Model Controller View

Game Engine A
Communicates the gar —
state & commands Game Application
Layer
TN 5 .
/ Game Logc Game View
Game Space Adapter Layer Layer
A \ :
Game Game r AP Scripts \
& &
State Model Scripts .
3 Messagas Game Engine B
Messaggs Game Application
Behaviour Layer
N
Adapter
B Game Logic Game View
_/ Layer Layer

Figure 2: Game-based architecture using the MV@&pat

3 Evaluation

The main objective of any architecture evaluatientd address the concerns and anxieties of thereift
stakeholders involved in the architecture. From #hehor’'s perspective it is important to verify thhe
architecture works as described. Additionally iaiso important to understand the weaknesses asnysits of

the architecture before evolving it any furtheroara user’s point of view this evaluation provides with a
proof of the architecture usability and a thorowytaluation should allow him to make an informedisiea
about its adoption.

The evaluation started by throwing random challsrgfethe architecture. The first challenge wasathiéty to

run the same training game on two different engiffié® second challenge addressed the performanttee of
architecture. Both of these challenges are destribe[27]. Obviously this approach does not follamy
structured method and we call it the ad hoc appro®espite this the approach managed to show us the
capability of the architecture even if it was omdicative. We have some reservations about thisageh that

we have detailed in [28]. The major reservations: ahis approach does not guarantee that all thim ma
architecture’s components are going to be exeraikethg the evaluation, and worst, some of the lehgkes
might be redundant as they probe the same component

Because of the above reservations we wanted a thoreugh examination of our architecture. We wardad
examination that would reveal its weaknesses anehgiths and could establish correlation between the
architectural decisions we have made to solve thapility issue and how they have contributed rdermined

our goal. We researched a number of architectuethods such as: ATAM, SAAM [29], ARID [30], ABAS,
PASA, CBAM [31], etc. ATAM stood out as the mosttable one to address our concerns. Our case study
demonstrating the use of ATAM and the results geteeris described in [28].

Finally, being in the field of games where veryeofta game engine success is judged by the suctdlss o
games that have been developed on it we saw thliefaeanother type of evaluation, an evaluationclilshows

a complete game development. Moreover, this shfwrtier address the usability and the scalabildagoerns
(considering the small samples developed earlisnduhe ad hoc evaluation process). The game dpedlis a
serious game to train traffic police investigatorsattending virtual traffic accidents. An empifistudy was
conducted and the usability of the architecture wesasured by the effectiveness of the game. Wentlgce
completed this study and we are in the processalfyaing and writing up the results.

4 Conclusions

The thesis work has investigated the issue of piitiain game engines. It started by examining Wey games
are developed using game engines and identifie¢dhses of the tight coupling that exists whichrigtsthe

ability to migrate the game to different enginessdution was proposed to address the causesfiddraind an
architecture was developed. The architecture mahtmgeallow the same game to be ported to diffeegigines

without having to modify the game. This architeetwas then evaluated using an ad hoc evaluatioroagip
and a more structured approach. These manageudal the architecture’s strengths and weaknessesoof

identifying the causes and developing a new archite to show how the problem can be solved, tesish
should serve to raise awareness of the hidden damg®n surrendering the logic to the engine’s &irend

provide an alternative development route that cbelgut into practice straightaway.

References

1. Diller, D., Roberts, B.: DARWARS Ambush! A Cast@y in the Adoption and Evolution of a Game-ba€edvoy Trainer by the U.S.
Army. Simulation Interoperability Standards Orgarimat18-23 September (2005).

2. Elizabeth, L.: In Country with Tactical Iraqirdst, Identity, and Language Learning in a MilitAfideo Game. Proceedings of the 6th
Digital Arts and Culture Conference. Copenhagesnrark: University of Copenhagen, (2005): 69-78.

3. Carless, S.. Postcard From SGS 2005: Hazmat: oHetz - First-Person First Responder Gaming
http://www.gamasutra.com/features/20051102/carlelds s@tml, November 2, (2005).

4. Hall, R.H., Wilfred, L.M., Hilgers, M.G., Leu, @., Walker, C.P., Hortenstine, J.M.: Virtual Tefsb Attack on the Computer Science
Building: A Research Methodology. Presence-Conrd), http://www.presence-connect.com/ (2004)

5. McGrath, D., Hill, D.: UnrealTriage: A Game-Bas&imulation for Emergency Response. The HuntsvilluBtion Conference,
October 2004. Sponsored by The Society for Modedimgj Simulation International (2004).

6. Wang J., Lewis M., Gennari J.: Emerging aredsamoperations and UCAVs: a game engine based siotutz the NIST urban search
and rescue arenas. 35th Winter Simulation Conferedew Orleans, Louisiana, 1039-1045, (2003)

7. Tamberend, H.: Avocado: A Distributed VirtuaMienment Framework”. Ph.D.thesis, University of Bieeld, (2003).

8. Frécon E., Stenius, M.: DIVE: A Scaleable netwarchitecture for distributed virtual environmerifistributed Systems Engineering
Journal (special issue on Distributed Virtual Eamiments), 5(3), Sept. (1998), 91-100.

9. Romano, D.: Features that Enhance the Learffi@@ltaborative Decision Making Skills under Stréss/irtual Dynamic Environments.
Ph.D.thesis, Computer Based Learning, Universityeafds, UK, August (2001).

10. Williams, R, J.: A Simulation Environment to $opt Training for Large Scale Command and Controk¥asPh.D. thesis, School of
Computer Studies, University of Leeds, UK, Decen{t685).

11. Laird, J.E., Assanie, M., Bachelor, B., Benhiof, N., Enam, S., Jones, B., Kerfoot, A., Lauver, Magerko, B., Sheiman, J. Stokes,
D. Wallace, S.: A Testbed for Developing Intellig&ynthetic Characters. In Artificial Intelligenaed Interactive Entertainment: Papers
from the 2002 AAAI Spring Symposium, Menlo Park, C%Q2).

12. Aha, D.W., Molineaux, M.: Integrating learniiginteractive gaming simulators. Challenges of GarhePfoceedings of the AAAI'04
Workshop (Technical Report WS-04-04). San Jose, A%l Press, (2004).

13. Young, R.M., Riedl, M.O., Branly, M., Jhala,,AMartin, R.J., Saretto, C.J.: An architecture fiotegrating plan-based behavior
generation with interactive game environments. Jdwin@ame Development , 1(1), 51-70, (2004).

14. Vilhjalmsson, H., Samtani, P.: MissionEngine: t¥aystem integration using Python in the Tacticahguage Project, PyCon 2005,
March 23-25, Washington, D.C. (2005).

15. Nareyek, A., Combs, N., Karlsson, B., Mesdaghij, Wilson, |.: The 2005 Report of the IGDA's Adial Intelligence Interface
Standards Committee. http://www.igda.org/ai/repo@&€eport-2005.html, (2005).

16. Berndt, C., Watson, I., Guesgen, H.: OASIS:@pen Al Standard Interface Specification to Suppeasoning, Representation and
Learning in Computer Games. IJCAI-05 Workshop on Beiag), Representation, and Learning in Computer Gadi-July (2005),
Edinburgh, 19-24.

17. Adobbati, R., Marshall, A.N., Scholer, A., Taga S., Kaminka, G., Schaffer, S., Sollitto, C.: @aots: A 3D Virtual World Test-Bed
For Multi-Agent Research. Proceedings of the Irdéamal Conference for Autonomous Agents, Worksbiepnfrastructure for Agents,
MAS, and Scalable MAS, Montreal, Canada, (2001).

18. Kondeti, B., Nallacharu, M., Youngblood, M., Ider, L.: Interfacing the D’Artagnan Cognitive Aiitdcture to the Urban Terror First-
Person Shooter Game. IJCAI-05 Workshop on ReaspRiegresentation, and Learning in Computer Game3du§1(2005). 55-60.

19. Smith, R.: Essential techniques for military mioty and simulation. Proceedings of the 30th aamfee on winter simulation, (1998),
805 — 812, ISBN:0-7803-5134-7

20. Oliveira, M., Crowcroft, J., Slater, M.: An iovative design approach to build virtual environmepstems. Proceedings of the
workshop on Virtual environments 2003, ACM Intefoaal Conference Proceeding Series; Vol. 39, Zu®hitzerland Pages: 143 —
151, (2003) ISBN:1-58113-686-2.

21. Clements, P., Kazman, R., Klein, M.: EvaluatBaftware Architectures: Methods and Case Studiddjson Wesley, (2001), ISBN:
020170482X.

22. McShaffrey, M.: Game Coding: Complete, Paraglypéss, ISBN: 1932111913, (2005).

23. Buschmann, F., Meunier, R., Rohnert, H., SommgeRa Stal, M.: Patter-Oriented Software Architeet A System of Patterns. Volume
1, (1996), John Wiley and Sons, ISBN: 0471958697

24. Ousterhout, J.: Scripting: Higher-Level Programgrfor the 21st Century, IEEE Computer, 31(3), (39p8. 23-30.

25. Chandrasekaran, B., Josephson, J., Benjamin&yhat are ontologies and why do we need them? IEEHigent Systems, Jan/Feb
(1999), 14(1), pp. 20-26.

26. Friedman-Hill E.: JESS in Action, Manning Pehtions Co, (2003), ISBN 1930110898.

27. BinSubaih A., Maddock S., Romano, D.M.: Gamgitdortability. ACM SIGCHI International Conferemon Advances in Computer
Entertainment Technology ACE 2005, Computer Gamebri@ogy session, June 15-17th, Valencia, Spain.

28. BinSubaih A.: Using ATAM to Evaluate a Gamedzh#érchitecture. Workshop on Architecture-Centriolgtion (ACE 2006). Hosted
at the 20th European Conference on Object-OrieRtedramming ECOOP 2006 July 3-7, 2006, Nantes, Ergauzepted)

29. Kazman, R., Bass, L., Abowd, G., Webb, M.: SAAMMethod for Analyzing the Properties Softwarechitectures. Proceedings of the
16th International Conference on Software EngimegiSorrento, Italy, May (1994), pp. 81-90.

30. Clements, P.: Active Reviews for Intermediateiffes (CMU/SEI-2000-TN-009), August, (2000).

31. Bahsoon, R., Emmerich, W.: Evaluating softwashitectures: development, stability and evolutibnthe Proceedings of ACS/IEEE
International Conference on Computer Systems andiggpipns, Tunis, Tunisia, July 14-18, (2003).

