
PED: Pedestrian Environment Designer

James McIlveen, Steve Maddock, Peter Heywood and Paul Richmond
Department of Computer Science, University of Sheffield, Sheffield, UK

Environment created in the PED interface being simulated.

Abstract

Pedestrian simulations have many uses, from pedestrian planning for architecture
design through to games and entertainment. However, it is still challenging to
efficiently author such simulations, especially for non-technical users. Direct pedestrian
control is usually laborious, and, while indirect, environment-level control is often
faster, it currently lacks the necessary tools to create complex environments easily
and without extensive prior technical knowledge. This paper describes an indirect,
environment-level control system in which pedestrians’ behaviour can be specified
efficiently and then interactively tuned. With the Pedestrian Environment Designer
(PED) interface, authors can define environments using tools similar to those found
in raster graphics editing software such as PhotoshopTM. Users paint on two-
dimensional bitmap layers to control the behaviour of pedestrians in a three-dimensional
simulation. The layers are then compiled to produce a live, agent-based pedestrian
simulation using the FLAME GPU framework. Entrances and exits can be inserted,
collision boundaries defined, and areas of attraction and avoidance added. The
system also offers dynamic simulation updates at runtime giving immediate author
feedback and enabling authors to simulate scenarios with dynamic elements such
as barriers, or dynamic circumstances such as temporary areas of avoidance. As a
result, authors are able to create complex crowd simulations more effectively and
with minimal training.

1



1 Introduction
Pedestrian simulations find many uses, from games and films through to evacuation
simulations and disaster planning programs. As these simulations become more advanced,
with more complex environments and greater numbers of pedestrians and behaviours,
efficient and effective authoring approaches are required to create, control and direct
the simulations. Our focus is on creating a system where non-technical authors can do
this. For pedestrian simulation, we use an agent-based approach combined with force-
vector fields [Rey99], both supported within the FLAME GPU framework [RR11,fla].
Agent-based pedestrians infer their behaviour from a defined environment, based on a
behaviour model. Our Pedestrian Environment Designer (PED) is an intuitive tool for
the creation of these environments.

PED uses layers of two-dimensional bitmaps, each representing different aspects
of behaviour within a three-dimensional environment. In analogy to raster graphics
editing software such as PhotoshopTM, a user paints entrances and exits, areas of attraction
and avoidance, and collision boundaries onto layers. Another layer might contain a
reference image, e.g. a map of a train station, which can be used as a guide for the
information on subsequent layers. In the resulting simulation, pedestrians (agents) use
the information in the layers to control their behaviour in the environment. Complex
simulations can be easily created with an approach that doesn’t require any prior technical
knowledge of crowd simulations. In addition, using PED, authors can dynamically
update the simulation environment, producing a trial and error approach for simulation
authoring, e.g. a barrier can be added or removed, the attraction of an area increased or
the flow of pedestrians varied.

In order to demonstrate the capabilities of PED, two sets of results will be presented.
First, we demonstrate the ease with which a range of complex environments and associated
simulations can be created. Second, we present the results of an experiment in which
an environment was created by users with no prior technical knowledge of crowd
simulations, thus demonstrating the intuitive nature of PED.

Section 2 will first cover the related work in the field. Section 3 will then cover
PED, including the features it offers and how they have been implemented. This is
followed by the results and discussion in Section 4 and then the conclusions 5.

2 Related Work
Two separate levels of control can be identified in pedestrian simulations, micro and
macro, although both are often used in conjunction. Micro control defines rules that
affect individual pedestrians, and parameters are set on a per pedestrian basis. In
contrast, macro control is concerned with parametrising behaviours shared by many
pedestrians.

Micro-level control can be seen as a local model of a pedestrian’s behaviour, with
an agent-based approach perhaps being the most popular. Reynolds’ [Rey87] work
on modelling the interaction in flocks and herds used micro-level controls. Helbing
then adapted Reynold’s ideas to crowd simulations to produce the Social-Force model
[HM95], Paris used velocity-space analysis to resolve the problem of pedestrian avoidance

2



[PPD07], and Guy proposed the PLEdestrian model [GCC∗10] which attempts to minimise
metabolic work by pedestrians using the ‘Path of Least Effort’.

In contrast, macro level controls can affect all pedestrians at once or particular
subsets of pedestrians based on pedestrians’ states. Macro level controls are often
used in conjunction with micro controls in order to provide global simulation path
finding and configuration. Examples include Reynolds’ Force Vector Fields (FVFs)
[Rey99], where an FVF is a matrix of vectors which represent directional velocities
that define the motion of agents within a specific area, Chenney’s Flow Tiles [Che04],
which allow users to create FVFs by combining smaller tiles of reusable FVFs, and
Banerjee’s work [BAK08] on layering of FVFs in order to simplify the creation of
complex behaviours. Another macro level approach is the use of continuum theory.
Here, Hughes [Hug02] defines dynamic potential fields that can be used for global
navigation and local collision avoidance. This was then improved by Treuille [TCP06]
to produce continuum crowds by tuning Hughes’ model with empirical data.

While micro and macro controls parametrise the features of both the pedestrians
and their environment, they can interact with each other in two different ways: either
directly, or by inference (indirectly). All of the work covered so far in this section
is used in systems that utilise inferred control. Inferred pedestrian control does not
require that pedestrian trajectories are specified, but instead requires a set of rules to
be defined that pedestrians use to calculate their actions based on their state, the state
of other pedestrians and their environment. Pedestrian movements are a product of the
simulation’s current state and the environment. Simulations of this nature require an
environment to be created in order to produce the desired behaviours.

In contrast, direct pedestrian control is where micro and macro controls manipulate
the pedestrians in a fully authoritarian manner. All pedestrian trajectories and actions
are completely parametrised. This form of control allows a simulation author to produce
fine-tuned simulations as all control is explicit, but at the cost of the required time
to define this fidelity. Both Kwon [KLLT08] and Kim [KSKL14] showed that once
basic pedestrian trajectories had been made, it was possible to perform motion editing
on these trajectories. Takahashi showed that it is possible to create pedestrian trajec-
tories that collectively transform pedestrians’ positions from one group formation to
another using a spectral-based approach [TYK∗09]. Yersin proposed Crowd Patches
[YMPT09] a system that defines a volume containing several pedestrian trajectories in
3D space. These patches can be combined together to create a larger grid of patches
and pedestrians can traverse trajectories spanning several patches. Jordao built upon
the idea of Crowd Patches with Crowd Sculpting [JPCC14], a system which proposes
a Crowd Patch graph system where patches can be arranged and distorted to create
specified scenarios.

Finally, we focus on tools used for authoring simulations. Some of the aforemen-
tioned studies also present simulation creation tools alongside their control method-
ologies. Kim created a tool [KSKL14] which allows for interactive manipulation of
pedestrian trajectories and Jordao’s Crowd Sculpting system [JPCC14] showed this
sort of interactive control was also possible with Crowd Patches. Ulicny created Crowd
Brush [UCT04] which allows simulation authors to use a brush tool to create and
remove pedestrians by clicking within an environment. The brush tool also allows
authors to individually or collectively set properties and behaviours of pedestrians by

3



selecting them with the brush tool. In contrast to Crowd Brush, Agent Paint [MR05]
used image mapping as a way to create behavioural environments instead of agent
properties. Behavioural traits within a 3D environment can be specified by painting
different colours onto a bitmap which is then mapped to a 3D plane.

Our system, PED, uses the paint concept for environment behaviour that can also
be seen in Agent Paint [MR05], although Agent Paint does not split behaviours into
separate layers, nor does it include functionality to dynamically update the simulation
at run time to provide authors with the feedback that is necessary to tune the behaviours
within the environment. PED can also be likened to Crowd Brush [UCT04], in that
brush-like tools are used to influence behaviours within the environment. The main
difference is that Crowd Brush directly affects pedestrians, whereas PED affects the
environment of the pedestrians.

3 The System
PED focuses on enabling authors to create environments that pedestrians can infer their
movement from within a simulation. Authors can create environments on a single plane
by creating multiple bitmap layers that represent behaviours. There are different types
of layers that an author can add, each affecting the pedestrians behaviour in different
ways. These layers can be painted using tools similar to those found in common raster
image editing software.

Once an author has finished creating their environment, the environment can be
compiled and loaded into the pedestrian simulation program written using the FLAME
GPU framework. Pedestrians can be seen to move around the environment in real-time.
An author can then make changes to the environment if desired, and the environment
can then be dynamically transferred to the running simulation. PED is based on the
ideas of layered FVFs [Rey99, BAK08], painted behaviours [MR05] and the Social-
Force model [HM95].

3.1 Interface
PED’s interface (fig. 2) is split into three distinct sections: the Environment Workspace
(bottom left), the Layer Viewer (bottom right) and the Toolbox (top). The Environment
Workspace shows the current state of the environment, and is where the tools are used.
All of the currently visible layers can be seen here, and can be zoomed and translated
to allow authors to see the part of the environment they are currently working on. The
Layer Viewer shows all of the layers within the current environment, and allows for
the creation of new ones. A preview for each layer is displayed, and users can rename,
reorder and configure the layers from this menu. The layer which is currently being
edited is highlighted in blue and can be changed by clicking on another layer. The
Environment Workspace only shows the current layer and those below it so that the
view of the topmost layer is not obscured. The Toolbox allows the user to select and
configure the current tool. The menu bar at the very top of the interface can be used for
environment management (new, save, open), environment compilation and simulation
execution.

4



3.2 FLAME GPU Pedestrian Simulation
Environments that are created in PED are run using a modified version of the pedestrian
simulation created by Karmakharm [KRR10] using the FLAME GPU framework [fla].
This system represents pedestrians using agents that are controlled by the Social-Force
model where FVFs provide global pedestrian navigation and obstacle avoidance. Pedestrians
enter environments at a specified location and the make their way to prescribed exits.
Separate FVFs are used to navigate agents to each of the available exits, one FVF per
exit, irrespective of entrance, and another is used for global collision avoidance . PED
is specifically tailored to creating environments that use this methodology for crowd
simulation.

3.3 Layers
A layer in PED consists of a bitmap and configuration for that layer. Each layer
represents a different behaviour within the environment and the collection of layers
represents the environment (Figures 3 and 4). Each of the layers is only effective where
the user has painted the bitmap with colour. All layers can be configured through
the Layer Viewer panel and all layers can be enabled and disabled to allow for easy
editing of environments. The following list describes the six types of behavioural layer
available to PED authors.

• Entrance/Exit layers define where pedestrians spawn and exit the environment.
When a pedestrian enters the scene, an exit (on any entrance/exit layer) is chosen
at random for the pedestrian to head towards, and eventually exit the environment
from. A different layer is used for each unique exit and each layer is displayed
in a unique colour. Emission rates can be configured and exit probabilities can
be defined for each pair of layers (entrance and exit) so that realistic pedestrian
flows can be imitated. Painting on this layer is discrete; pixel opacity is binary.

• Collision layers define where pedestrians are able to move within the environment.
Painted areas block pedestrians from passing, and unpainted areas are walkable.
Collision layers have a configurable height value. This height does not effect the
obstructive nature of the layer, but is used to produce visualisations where the
collision area is swept upwards to create simple 3D models within the resultant
simulation to provide author feedback. While many collision layers can be
created, all layers are combined during compilation so multiple layers are only
used for organisation purposes and to define different heights in different areas.
Collision layers are displayed in crimson within the Environment Workspace.

• Areas of Attraction layers are used to define a model of pedestrian distribution.
Painting on these layers (using different levels of paint opacity) attracts pedestrians
to move through the painted areas while moving towards their exit. Areas of
Attraction have a strength value which can be configured to make the area more
or less attractive to pedestrians. While Areas of Attraction can affect the path a
pedestrian takes, the pedestrian is still guaranteed to eventually reach their exit
if there is a possible path. Areas of Attraction are displayed in green.

5



• Areas of Avoidance layers are like Areas of Attraction, but instead of attracting
pedestrians to move through them, they discourage movement through their
specified areas. Similarly, Areas of Avoidance also have a configurable strength
value to adjust their influence. Areas of Avoidance are displayed in red.

• Areas of Interest layers enable authors to create waypoints within environments.
Normally pedestrians move from their point of emission to their exit, but pedestrians
can switch to moving towards an Area of Interest on their way to their exit.
Probabilities can be defined that specify a pedestrian’s chances of switching to
navigating towards an Area of Interest and back again. Areas of Interest are
displayed in fuchsia and currently only one such layer can be added.

• Reference layers are the only layers that do not influence behaviour within the
system. They allow the author to load a reference image, e.g. a map of a railway
station, into their environment that can then be used as a guide for environment
creation. Reference layers are also visualised within final simulations to provide
spacial context.

3.4 Layer Editing Tools
To edit layers within PED, users are provided with three tools: the Block tool, the
Brush tool and the Eraser tool. All three of these tools can be selected as the current
tool and configured from within the Toolbox at the top of the system interface (fig. 2).
Once selected a tool can be used to manipulate the current layer within the Environment
Workspace.

All tools are similar to those found in common raster graphics software packages.
The Block tool allows the user to click and drag to create rectangle shapes. The brush
tool paints within a circle of influence wherever a user clicks or drags. The Eraser tool
removes painted behaviours within layers wherever it is dragged. The brush and eraser
tool have settings to change properties such as their size and step, but the block tool
does not.

3.5 Environment Compilation
After a collection of layers has been produced, a compilation process is used that
converts the layers into an XML model input format for FLAME GPU. PED represents
behavioural environments using bitmaps, and the pedestrian simulation requires environments
to be represented using a set of agents known as navmap agents. Navmap agents
represent the entire environment and are organised into a grid. They specify: their
coordinates within the environment, whether or not they are an entrance/exit and also
vectors for each of the navigation, collision and Area of Interest FVFs for that position.

Navigation FVFs guide the pedestrians to their respective exit. They are calculated
for each exit in the environment so pedestrians can navigate towards them in the simulation.
To calculate each Navigation FVF, an iterative Djikstra floodfill algorithm is used. All
collision layer bitmaps are flattened and converted into a 2D boolean array that defines
collision areas. All Entrance/Exit layers are also converted into a boolean array like

6



this as specified by their respective bitmaps. The algorithm then uses these arrays to
create a distance map, which marks the distance from every cell in the environment to
the current exit (fig. 5). The resultant distance map is then used to create FVF vectors
that guide pedestrians to the exit (fig. 5). If a cell is part of the collision area, or exit
area, or was not reachable by the flood fill algorithm, it is not given a vector.

To create the Collision FVF used by the simulation, a similar process to the one
used to create the Navigation FVF is used. All space that is not marked as a collision
area is given a distance of 0 when creating the distance map and the environment is
then flood-filled from those cells. The resultant Collision FVF will then always direct
pedestrians outwards from the collision zone to the nearest non-collision area.

Area of Avoidance layers are accounted for by converting all Area of Avoidance
layer bitmaps into a single cost mask that is used as an overlay when calculating the
distance map for each exit. The alpha values for the pixels in each layer are multiplied
by the layer strength and combined to create the cost mask. The result of this is a
weighted array of cost values that represents all of the layers of avoidance. When
calculating navigation layers, distance values are augmented by the corresponding
cost value. The result is that the navigation FVFs avoid guiding pedestrians through
avoidance areas where possible, but the strength of the deterrent is determined by the
strength of the layer.

Area of Attraction layers are similar to Area of Avoidance layers. The only difference
is that attraction layers add a cost for wherever the layer has not been painted instead
of where it has been painted. The change in the algorithm is simple – the transparency
value is inverted. The produced cost mask then works in the same way as the one
produced by the Area of Avoidance layers.

Areas of Interest also require their own navigation FVF layers. During the simulation,
pedestrians that are currently moving towards an Area of Attraction use this FVF to
guide them to the area. These navigation layers are calculated in the same way that the
entrance/exit navigation FVF layers are calculated except they guide the pedestrians
towards the Area of Attraction instead of towards their exit. Area of Attraction and
Area of Avoidance layers are all also applied to these layers.

Once all of the navigation FVFs have been created, taking into account both Areas
of Attraction and Areas of Avoidance, they are then smoothed. Smoothing is used
to avoid diagonal convergence of pedestrians due to harshly formed FVFs that guide
pedestrians using the absolute minimum distance to their exit. Smoothing is done by
using a nearest neighbour average, where each cell is an average of all its non-zero
vectors neighbours within a particular radius. This is one of the more computationally
demanding parts of the algorithm so summed area tables are used to compute averages
efficiently.

Once all FVFs have been calculated, all fields are then converted to the pedestrian
simulation’s navmap data structure. Information about whether each navmap agent
is an entrance/exit is also added, and also its height if it is part of the collision area.
These navmap agents are then encoded into a binary format and saved. This binary also
includes global configuration including emission rates, Area of Interest layer probabilities
and the reference image bitmap.

7



3.6 Final Simulations
Once an environment has been compiled and saved it can then be used to initialise a
simulation. In PED, authors are provided functionality to compile and start a simulation
with a single button click. The simulation program then loads the environment, and
displays the visualisation of the simulation to the user (Figure 1). Pedestrians can
be seen to walk around in accordance with the environment, collision area models
are swept upwards to their configured height, and the reference image can be seen
underneath the pedestrians.

When a simulation is started, the simulation program continually watches the binary
file that the environment was loaded from. If it is overwritten, the new environment is
loaded into the simulation. All of the current pedestrians remain, but the environment
is updated. From within the PED interface, the user only need press a button to update
the simulation with the current version of the environment seen in the editor. This
allows for dynamic environment update at runtime.

4 Results and Discussion

4.1 Sample Environments
Six sample environments were created to exercise the system: a train station, a university
student union, a supermarket, a simple environment with doors, a festival, and a swirling
path. Table 1 details how many layers each environment used, the average number of
pedestrians and the time required for an experienced user to create the environment.
While the number of layers may seem high, most are simple layers (e,g, an entrance/exit),
and the number was also increased by splitting collision layers into multiple collision
pieces, both for organisation purposes (i.e. focussing on different areas of collision in
the environment) and to create a visualisation of different 3D heights in the simulation.

Environment Layer count Peds. Time

Train station 28 540 50 mins
Student’s Union 31 560 60 mins
Supermarket 25 220 60 mins
Festival 15 52000 10 mins
Doors 12 2400 10 mins
Swirl 11 18500 10 mins

Table 1: Sample environment metrics

The creation of these sample environments showed that the system is capable of
creating specific scenarios. Entrance and exits could be created to define the flow of
pedestrians in a controlled fashion. Collision layers could be used to create buildings,
fences or other obstacles within the environment. Areas of Attraction were particularly
useful for defining paths and in some cases, such as tight corners, proved useful in
making pedestrian flows look more organic (Figure 6). While Areas of Avoidance

8



acted in much the same way to Areas of Attraction, they were useful for easily defining
concepts such as roads. Environments including roads that used Areas of Avoidance
to mark them would see pedestrians either use a crossing if provided, or otherwise
minimise their time spent in the road by crossing orthogonally rather than diagonally.

Areas of Interest were effective at filling buildings with people (Figure 7). The train
station (Figure 8) environment used them to populate a main lobby where pedestrians
would view arrival boards and the student union environment used them to populate
inside the union building. Reference layers proved useful in providing spatial context
for the created environments, especially when used in conjunction with the swept
Collision layer models. Dynamic update provided the means to create environments
that included doors, and also vary pedestrian distribution models. Dynamic update was
also used extensively while creating the sample environments to iteratively improve the
environment based on a short feedback loop of editing, compiling and viewing.

The sample environments also highlighted that there are still improvements that
can be made within the system. The behaviours available in the system were shown
to have limitations in certain situations. The Areas of Attraction and Avoidance were
shown to not be able to model pedestrian heterogeneity adequately in all situations.
Pedestrians moving to a single exit tend to all move in the same direction, and creating
environments where pedestrians would take multiple routes proved difficult. Areas of
Interest were good at easily being able to change pedestrian goals within the environment,
but exhibited a lack of pedestrian control when pedestrians reached the defined area as
they no longer had a goal to infer navigation from (Figure 9).

The lack of support for multiple environment heights was also problematic. Several
sample environments are spread over multiple levels (e.g. the train station environment
which has stairways and corridors over train tracks, see Figure 8) and the single plane
that PED offers is insufficient to model these. In cases requiring multiple heights,
compromises needed to be made to model areas on a 2D plane. Also, the FVF system
used within the simulation does not account for pedestrian congestion, which means
pedestrians do not alter their navigation to try and avoid build ups.

4.2 User Testing
To assess the system’s usability and to check whether it is usable by non-technical
authors, eight users were asked to use the tool to create a prescribed environment.
Participants were first given written instructions that guided them through making a
sample environment using the tool, and then were asked to make one of their own.
Participants then filled in a survey that detailed what they thought about the system
and their experience creating the prescribed environment. The environment they were
asked to make was the area around a church in the middle of a city (Figure 10). All
participants knew the area well in real life. They were given a satellite image as a
reference image and a maximum of an hour to create a visually-convincing pedestrian
simulation of the area.

The eight participants almost unanimously agreed that the system was intuitive, and
that pedestrian simulations were easy to create using the system. They thought that the
system provided tools that were simple to use even with no prior technical knowledge
and it could be used to adequately control pedestrians within an environment to produce

9



pedestrian flows that the felt mimicked real life. The results also show that the partic-
ipants valued the ability to dynamically update the environment and the immediate
feedback directly aided their creation process.

All participants were able to create the church environment (Figures 10 and 11) and
were convinced that what they had created was accurate. The average time that partic-
ipants used to make the environment was 44 minutes. Table 2 details how many layers
each participant used, the average number of pedestrians in the church environment
and the creation time required. Participants created the environment using varying
numbers of layers. This was due to personal participant preference to the level of layer
organisation and collision visualisation creation. The most used layers were collision
layers which made up 36% of the layers used followed by Entrance/Exit layers that
contributed 32% of the used layers. It is possible to condense all of the collision layers
for a PED environment into a single layer, but these statistics show that users value the
organisational and visualisation benefits gained from using separate layers.

Participant Layer count Peds. Time

A 14 140 54 mins
B 22 150 47 mins
C 23 200 43 mins
D 18 190 30 mins
E 15 90 40 mins
F 18 150 42 mins
G 19 210 51 mins
H 17 134 40 mins

Table 2: Church environment metrics

5 Conclusions
We have shown that PED can be used to create complex environments and can be
used by non-technical authors to create pedestrian simulations quickly and efficiently.
Simulation environment update has been shown to make dynamic scenarios possible
while also providing a mechanism that authors can use as an interactive feedback loop
to help easily fine-tune their environments.

There is still room for improvement. Currently different levels within a 3D simulation
cannot be modelled, e.g. the stairs and passages over train tracks. One way to address
this may be to introduce a teleportation layer type which could be used to transport
pedestrians from one level or area of the environment to another. Other functionality
could also be considered, such as Guidance Fields [PVdBC∗11], which define areas in
which pedestrians can only move in one direction, and continuum dynamics [TCP06]
to address issues such as congestion avoidance. Further work could also be done on
the software system itself so that users could specify and compile new layer types
themselves.

10



References
[BAK08] BANERJEE B., ABUKMAIL A., KRAEMER L.: Advancing the layered

approach to agent-based crowd simulation. In Principles of Advanced
and Distributed Simulation, 2008. PADS’08. 22nd Workshop on (2008),
IEEE, pp. 185–192.

[Che04] CHENNEY S.: Flow tiles. In Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation (2004),
Eurographics Association, pp. 233–242.

[fla] FLAME GPU, http://www.flamegpu.com/.

[GCC∗10] GUY S. J., CHHUGANI J., CURTIS S., DUBEY P., LIN M., MANOCHA
D.: Pledestrians: a least-effort approach to crowd simulation. In
Proceedings of the 2010 ACM SIGGRAPH/Eurographics symposium on
computer animation (2010), Eurographics Association, pp. 119–128.

[HM95] HELBING D., MOLNAR P.: Social force model for pedestrian
dynamics. Physical review E 51, 5 (1995), 4282.

[Hug02] HUGHES R. L.: A continuum theory for the flow of pedestrians.
Transportation Research Part B: Methodological 36, 6 (2002), 507–
535.

[JPCC14] JORDAO K., PETTRÉ J., CHRISTIE M., CANI M.-P.: Crowd sculpting:
A space-time sculpting method for populating virtual environments.
In Computer Graphics Forum (2014), vol. 33, Wiley Online Library,
pp. 351–360.

[KLLT08] KWON T., LEE K. H., LEE J., TAKAHASHI S.: Group motion editing.
In ACM Transactions on Graphics (TOG) (2008), vol. 27, ACM, p. 80.

[KRR10] KARMAKHARM T., RICHMOND P., ROMANO D. M.: Agent-based
large scale simulation of pedestrians with adaptive realistic navigation
vector fields. TPCG 10 (2010), 67–74.

[KSKL14] KIM J., SEOL Y., KWON T., LEE J.: Interactive manipulation of large-
scale crowd animation. ACM Transactions on Graphics (TOG) 33, 4
(2014), 83.

[MR05] MILLÁN E., RUDOMIN I.: Agent paint: Intuitive specification
and control of multiagent animations. In Proceedings International
Conference in Computer Animation and Social Agents (CASA) (2005).

[PPD07] PARIS S., PETTRÉ J., DONIKIAN S.: Pedestrian reactive navigation for
crowd simulation: a predictive approach. In Computer Graphics Forum
(2007), vol. 26, Wiley Online Library, pp. 665–674.

11



[PVdBC∗11] PATIL S., VAN DEN BERG J., CURTIS S., LIN M. C., MANOCHA D.:
Directing crowd simulations using navigation fields. Visualization and
Computer Graphics, IEEE Transactions on 17, 2 (2011), 244–254.

[Rey87] REYNOLDS C. W.: Flocks, herds and schools: A distributed behavioral
model. In ACM SIGGRAPH computer graphics (1987), vol. 21, ACM,
pp. 25–34.

[Rey99] REYNOLDS C. W.: Steering behaviors for autonomous characters. In
Game developers conference (1999), vol. 1999, pp. 763–782.

[RR11] RICHMOND P., ROMANO D.: Template-driven agent-based modeling
and simulation with cuda. GPU Computing Gems Emerald Edition
(2011), 313.

[TCP06] TREUILLE A., COOPER S., POPOVIĆ Z.: Continuum crowds. ACM
Transactions on Graphics (TOG) 25, 3 (2006), 1160–1168.

[TYK∗09] TAKAHASHI S., YOSHIDA K., KWON T., LEE K. H., LEE J., SHIN
S. Y.: Spectral-based group formation control. In Computer Graphics
Forum (2009), vol. 28, Wiley Online Library, pp. 639–648.

[UCT04] ULICNY B., CIECHOMSKI P. D. H., THALMANN D.: Crowdbrush:
interactive authoring of real-time crowd scenes. In Proceedings of
the 2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation (2004), Eurographics Association, pp. 243–252.

[YMPT09] YERSIN B., MAÏM J., PETTRÉ J., THALMANN D.: Crowd patches:
populating large-scale virtual environments for real-time applications.
In Proceedings of the 2009 symposium on Interactive 3D graphics and
games (2009), ACM, pp. 207–214.

12



Figure 2: PED’s interface, highlighting the Environment Workspace and Layer Viewer.

13



Figure 3: Layered FVFs within the pedestrian simulation program.

Figure 4: Layered behaviours represented as bitmaps.

Figure 5: Distance map and FVF creation.

14



Figure 6: Pedestrians navigating a street corner.

Figure 7: Birds-eye view of Student’s Union sample environment.

15



Figure 8: Train station sample environment.

Figure 9: Supermarket sample environment.

16



Figure 10: Evaluation church environment 1.

Figure 11: Evaluation church environment 2.

17


