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ABSTRACT 
 
Due to their scalability, numerical techniques often form part 
of an inverse kinematics (IK) solver.  However, because of 
their iterative nature, such methods can be slow.  So far 
research into the field of kinematics has failed to find a 
general non-numerical solution to the problem.  Many 
researchers have proposed hybrid techniques yet these still 
rely on a numerical aspect.  It is therefore important to find 
ways of using numerical techniques as efficiently as possible.  
In this paper we take a look at the Jacobian-based IK solver 
and techniques that allow this method to be used as an 
efficient real-time IK solver.  We demonstrate how the 
half-Jacobian can be used effectively where normally the full 
Jacobian would be considered the principal technique.  The 
result of this is much reduced computational costs when 
applying IK to articulated characters. 
 
 
INTRODUCTION 
 
The problem domain that is tackled by inverse kinematics 
solvers was first formulated in the mechanical engineering 
literature (Craig 1955) and more specifically research into the 
field of robotics.  We are interested in its application in 
computer character animation.  The issue that inverse 
kinematics attempts to resolve is to find a set of joint 
configurations of an articulated structure based upon a 
desirable end-effector location.  This is expressed 
mathematically in Equation 1.1 where θ represents the set of 
orientation values for a structure and 

�
 is the global position 

of a given limb in the hierarchy. 
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There have been many varied techniques used as an inverse 
kinematics solver.  The fastest techniques, analytical 
algorithms, tend to suffer from poor scalability, whereas the 
scalable techniques, such as numerical iteration, suffer from 
poor solver times.  Many techniques that have been proposed 
to offer speed advantages utilise numerical solvers therefore it 
is important to consider ways that such techniques can be 
used efficiently.  A review of many of the present IK 
techniques is given in the following section. 
 
We then present an analytical look at the iterative Jacobian 
approach to inverse kinematics and discuss techniques that 
allow the method to used effectively.  Following this we 
present a real-time application that drives a walking character 

around rough terrain to demonstrate the effectiveness of our 
Jacobian interpretation. 
 
 
RELATED WORK 
 
We can identify 4 different categories of IK solver: 
geometric/analytical algorithms, cyclic co-ordinate descent 
(CCD) techniques, differential techniques, and hybrid 
methods (Tolani et al. 2000) which mix together various 
aspects of the first three techniques. 
 
The geometric/analytical algorithms (Chin 1996, Kwang-Jin 
and Hyeong-Seok 2000, Paul and Shimano 1988) tend to be 
very quick because they reduce the IK problem to a 
mathematical equation that need only be evaluated in a single 
step to produce a result.  However, for large chains of links 
the task of reducing the problem to a single-step mathematical 
equation is impractical.  Therefore geometric/analytical 
techniques tend to be less useful in the field of character 
animation. 
 
IK solvers that are based on CCD (Eberly 2001, Wang and 
Chen 1991, Welman 1993) use an iterative approach that 
takes multiple steps towards a solution.  The steps that the 
solver takes are formed heuristically, therefore this step can 
be performed relatively quickly.  An example of a possible 
heuristic would be to minimise the angle between pairs of 
vectors created when projecting lines through the current 
node and end-effector and current node and desired location.  
However, because the iterative step is heuristically driven, 
accuracy is normally the price paid for speed.  Another issue 
with this technique is that only one joint angle is updated at a 
time, which has the unrealistic result of earlier joints moving 
much more than later limbs in the IK chain. 
 
As with the CCD technique, differential-based techniques 
(Watt and Watt 1992, Zhao and Badler 1994) utilise an 
iterative approach that requires multiple steps to find a 
solution.  The steps that the algorithm makes are determined 
via the use of the system Jacobian that relates small changes 
in joint configurations to positional offsets.  Since all the joint 
angles are updated in a single step, the movements are 
dissipated over the whole chain which results in a more 
realistic looking posture. 
 
By their nature, iterative-based techniques are generally 
slower at producing a desirable result when compared to their 
analytical counterparts.  However the problem with the 
analytical methods is their lack of scalability.  Fedor (Fedor 
2003) explores this trade-off between speed, accuracy and 
scalability in an IK solver.  One of the results from this work 
demonstrates that differential-based numerical solutions, 



although slower than both CCD and analytical techniques, 
provide better results for larger chains.  This highlights the 
importance of refining numerical techniques such that we 
maintain accuracy and scalability but drive solution time 
down. 
 
One such solution proposed by Tang et al. (Tang et al. 1999) 
makes use of the SHAKE algorithm (Ryckaert et al. 1997) to 
achieve a fast iterative-based IK solver.  This technique treats 
a hierarchical structure as point masses that are related by 
system constraints.  This is in contrast to the Jacobian-based 
technique that encapsulates the articulated information and 
thereby provides us the cohesion between links for free. 
 
In order to achieve a desired end-effector location, the mass 
points of the SHAKE system are adjusted per cycle until a 
global goal has been reached.  This includes meeting a 
threshold of acceptable error on the constraints.  However 
because of the lack of node dependency of the algorithm, 
normally the points will lose their distance relationships 
between each other.  To counter this issue, correcting forces 
are iteratively applied to each point to reassert cohesion 
between links therefore the accuracy of parent-child distances 
directly effects solver time.  Without a reasonable level of 
accuracy at this point, the appearance of rigid links moving 
about each other would occur.  This is an issue that the 
Jacobian-based techniques are not affected by. 
 
The time complexity of the SHAKE algorithm is suggested 
by Tang et a.l to be O(n2) with respect to the number of 
constraints.  However since each link in a hierarchical chain 
requires a constraint to impose cohesion, the time to solve a 
system is also minimally O(n2) with respect to the number of 
links in the chain.  The inclusion of additional system 
constraints such as joint angle limits has a further detrimental 
effect on solution time therefore making the algorithm less 
applicable to real-time applications as the number of links 
increases.   
 
Another real-time IK technique proposed by Shin et al. 
(Shin et al. 2001) that is used for computer puppetry makes 
use of a hybrid solution.  This technique attempts to use 
analytical solutions where possible, except in cases where a 
large amount of body posturing is required, where a 
numerical implementation is invoked.  The numerical solver 
only acts upon the IK chain defined between the root and the 
upper body while the analytical solver is used for the limbs of 
the character. 
 
The hybrid use of IK solvers used by Shin et al demonstrates 
a good method for performing real-time IK.  However the 
analytical aspect assumes some knowledge about the 
character’s structure (Lee and Shin 1999, Tolani et al. 1996).  
This means that the overall IK technique is not a general one 
that can be applied to arbitrary IK chains.  The other potential 
problem with the hybrid technique is similar to the CCD 
techniques in that not all joint angles are updated 
simultaneously which means unrealistic and unproportional 
posture configurations could result. 
 
From the research done in the field of real-time IK, it is 
apparent that analytical solutions by themselves are not 
scalable enough to meet the demands of modern 

computer-based IK problems.  Therefore numerical 
techniques are used as either a substitute or in serial with an 
analytical solution, which serves to highlight the importance 
of having fast numerical solutions.  Furthermore these 
solutions should operate on the whole hierarchical structure 
equally to avoid unrealistic postures.  These are the issues we 
address with our Jacobian-based approach for real-time IK. 
 
 
OUR INVERSE KINEMATICS SOLUTION 
 
Jacobian Inverse Kinematics 
 
Our implementation of inverse kinematics is based upon the 
well-established Jacobian technique.  The objective of this 
technique is to incrementally change joint orientations from a 
stable starting position towards a configuration state that will 
result in the required end-effector being located at the desired 
position in absolute space.  The amount of incremental 
change on each iteration is defined by the relationship 
between the partial derivatives of the joint angles, θ, and the 
difference between the current location of the end effector, X, 
and the desired position, Xd.  The link between these two sets 
of parameters leads to the system Jacobian, J.  This is a 
matrix that has dimensionality (m x n) where m is the spatial 
dimensional of X and n is the size of the joint orientation set, 
θ.  The Jacobian is derived from the equation for forward 
kinematics, Equation 1.2, as follows: 
 

)(θfX =     (1.2) 
 
 Taking partial derivatives of Equation 1.2: 
 
 θθ dJdX )(=     (1.3) 
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Rewriting Equation 1.3 in a form similar to inverse 
kinematics (Equation 1.1) results in Equation 1.5.  This form 
of the problem transforms the under-defined system into a 
linear one that can be solved using iterative steps. 
 

dXJd 1−=θ     (1.5) 
 
The problem now is that Equation 1.5 requires the inversion 
of the Jacobian matrix.  However because of the under-
defined problem that the inverse kinematics technique suffers 
from, the Jacobian is very rarely square.  Therefore, in our 
implementation we have used the right-hand generalised 
pseudo-inverse to overcome the non-square matrix problem, 
as given in equation 1.6. 
 
Generating the pseudo-inverse of the Jacobian in this way can 
lead to inaccuracies in the resulting inverse that need to be 
reduced.  Any inaccuracies of the inverse Jacobian can be 
detected by multiplying it with the original Jacobian then 
subtracting the result from the identity matrix.  A magnitude 
error can be determined by taking the second norm of the 
resulting matrix multiplied by dX, as outlined in Equation 1.7.  



If the error proves too big then dX can be decreased until the 
error falls within an acceptable limit. 
 
An overview of the algorithm we used to implement an 
iterative inverse kinematics solution is as follows: 
 
1) Calculate the difference between the goal position and 

the actual position of the end-effector: 

XXdX g −=  

2) Calculate the Jacobian matrix using the current joint 
angles: (using Equation 1.4) 

3) Calculate the pseudo-inverse of the Jacobian: 
11 )( −− = TT JJJJ    (1.6) 

4) Determine the error of the pseudo-inverse 

dXJJIerror )( 1−−=   (1.7) 

5) If error > e then  
2/dXdX =  

restart at step 4 
6) Calculate the updated values for the joint orientations 

and use these as the new current values: 

dXJ 1−+= θθ  
7) Using forward kinematics determine whether the new 

joint orientations position the end-effector close enough 
to the desired absolute location.  If the solution is 
adequate then terminate the algorithm otherwise go back 
to step 1. 

 
The computational demand of the algorithm is relatively high 
over a number of iterations, so well-defined character 
hierarchies are advantageous.  This means that each node in 
the articulation is defined by the minimum number of degrees 
of freedom (DOF) required thereby making θ as small as 
possible.  For example, pivot joints such as an elbow would 
only be modelled using a single DOF whereas a ball and 
socket joint like the shoulder would need 3 Euler DOFs to 
represent the range of possible movements. 
 
The use of well-defined hierarchies further helps to prevent 
the inverse kinematics solver from producing 
unnatural-looking postures.  However this still does not cover 
all of the potential unnatural poses the solver can return.  In 
order to restrict the IK solver to the orientation space of only 
possible character configurations, joint orientation restrictions 
can be enforced within the scope of the existing algorithm.  
The simplest way of incorporating such constraints is to crop 
the joint angles.  This requires Step 6 of the algorithm to be 
modified in the following way: 
 
6) Calculate the updated values for the joint orientations 

and use these as the new current values: 
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The time to complete the IK algorithm for a given 
end-effector is an unknown quantity due to an arbitrary 
number of iterations required.  However the time to complete 
a single iteration is constant with respect to the 
dimensionality of X and θ which is unchanged under a 

complete execution of the algorithm.  Therefore by placing an 
upper limit on the number of iterations we can set a maximum 
time boundary for the algorithm to return in.  If the solver 
reaches the limit then the algorithm returns the closest result it 
has seen.   
 
In 3-dimensional space, the dimensionality of X in a 
Jacobian-based inverse kinematics solver is generally either 3 
or 6.  The 6-dimensional X vector is normally used as it 
contains both positional and orientation information whereas 
a 3-dimensional vector only contains positional information 
for an end-effector. 
 
From the inverse kinematics algorithm outlined above, it is 
clear that the 3-dimensional X vector is quicker over its 
counterpart and should always be used when orientation is not 
required.  However there are times that orientation is required 
but it is still possible to use the 3-dimensional vector which is 
demonstrated in our application of the algorithm present later. 
 
To see how much of a cost difference there is between the 
two sizes of X vector, the corresponding complexity analysis 
of them is illustrated in the following section. 
 
 
Complexity Analysis Of The X Vector 
 
We need a technique to perform the inverse of the square 
matrix JJT.  For the 3-dimensional X vector, which uses a 
(3 x 3) matrix we use an analytical solution whereas for the 
6-dimensional X vector, which uses a (6 x 6) matrix, we use 
LU Decomposition. 
 
LU Decomposition and Analytical Inversion 
LU decomposition can be used to determine the inverse of a 
square matrix by using the matrix identity, AA-1 = I, where I 
is an identity matrix (and in this case it has dimensionality 
(6 x 6)).  The application of LU decomposition to this 
equation requires matrix A to be split into 2 further matrices 
that have the form of lower and upper matrices as illustrated 
in Equation 1.8. 
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(1.8) 
 
The decomposition of A into the two matrices allows the 
original matrix identity to be rewritten into the form of 
Equation 1.9, which can be solved using forward and 
backward substitution. 
 

ILUA =−1   => IUAL =− )( 1  

=> ILY =    (1.9a) 

YUA =∧ −1   (1.9b) 
 



Our algorithm for performing a (6 x 6) LU Decomposition 
inverse gives a complexity of 619 flops (Meredith and 
Maddock 2004). 
 
In comparison, the analytical inversion of a (3 x 3) matrix is 
given in Equation 1.10.  This equation can be directly 
encoded.  The complexity of calculation is 51 flops (Meredith 
and Maddock 2004): 36 multiplications, 1 division and 14 
additions & subtractions. 
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The decision to use an analytical solver for the smaller matrix 
and LU decomposition for the larger one is demonstrated in 
Figure 1.1.  The results given in Figure 1.1 were obtained 
using a matrix with all elements non-zero so the analytical 
technique was unable to make use of zeros to cut off the 
co-factor expansions.  This is a valid assumption because it 
would be most unlikely that the (6 x 6) matrix that needs to be 
inverted in the pseudo-inverse would actually contain any 
zeros. 
 
Figure 1.1 shows that the analytical approach to solving 
matrix inversion is only better for matrices that have 
dimensionality equal to or less than 3.  After this size, the 
number of flops required to solve an analytical inverse 
increases in a cubic fashion with respect to dimensionality 
whereas the LU technique increases at the lower squared rate.  
This analysis justifies the use of an analytical solution for the 
(3 x 3) matrix while using LU decomposition for the 
inversion of the larger (6 x 6) matrix. 

Calculating The Jacobian 
 
If the Jacobian definition of Equation 1.4 is divided by a 
differential time element, the resulting equivalence provides a 
mapping between angular velocities in state space, θ, and 
linear velocities in Cartesian space, X.  This result is 
illustrated in equation 1.11.  
 

θθ �� )(JX =     (1.11) 
 

In the case of a 6-dimensional X vector, X� consists of linear 
velocity, V, and angular velocity, Ω, components, whereas the 
3-dimensional X vector only includes the linear velocity.  
Both the linear velocity and angular velocity are with respect 
to a global frame of reference as too are the partial derivatives 
of the Jacobian.  The Jacobian linking the linear and angular 
velocity of the end-effector, with the intermediary local 
angular velocities, is given in equation 1.12, where there are i 
DOFs in the IK chain. 
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In Equation 1.12, the a components are of the local axes for a 
given link transformed into the global frame of reference.  
The b elements of the Jacobian are the cross products of the 
corresponding a axis with the spatial difference between the 
global origin of the current limb and the absolute location of 
the end of the articulation, Pe (Equation 1.14).  The DOFs 
within the state space are normally ordered such that limbs 
from the root are considered first followed by their children, 
following this pattern to the end of the chain.  Using this 
pattern, the orientation values of the required axes for each 
limb can be obtained from a transformation matrix, 0Tj, that 
converts points defined in the limb’s local orientation into a 
global position.  Equation 1.13 illustrates this for the j th limb 
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Figure 1.1: Demonstration of the complexity of solving a square matrix using an analytical and LU decomposition technique. 



in the IK chain (note that this assumes a right-handed 
coordinate system): 
 ��

����=
1000

0 jzjyjxj
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T   (1.13) 

 
The parameter Pj in Equation 1.13 also gives the global 
position of the origin of the limb thereby aiding in the 
determination of the b components in Equation 1.14. 
 

)( jei PPab −×=    (1.14) 

 
Using the chaining principle for calculating the transforms of 
the local axes into a global reference frame (0Tj = 

0T1 x 1T2 x 
… x j-1Tj.), the direct implementation of this subsection in 
3-dimensional space yields a constant complexity.  Assuming 
that each link has 3 DOFs, the complexity associated with 
each limb in the IK chain is given by 162 flops: 98 
multiplications and 64 additions & subtractions.  The 
assumption of 3 DOFs does not add a great deal of 
complexity if it is an overestimate since each DOF 
contributes only 9 flops to the overall result (where the 9 
flops is the calculation of the cross product). 
 
 
Determining The Pseudo-Inverse Of The Jacobian 
 
Using the complexity derivation of the inversion of a square 
matrix from the above sections, the complexity of the pseudo-
inverse of the Jacobian, as given in Equation 1.6, can be 
calculated.  Table 1.1 outlines the number of flops required to 
calculate the pseudo-inverse depending on the size of the 
X vector.  The variable n is the size of the state space, θ (i.e. 
the sum of all the links’  DOFs).  It should also be noted that 
there is no inclusion of complexity to calculate the transpose 
of matrices when they are required as this can be handled at 
no extra cost be simply swapping out indexing parameters. 
 
 
Complexity Of The Whole IK Solver 
 
The complexity of a single loop of the IK algorithm described 
above can be derived using the complexity analyses of the 
smaller parts of the algorithm already determined.  This is 
shown in Table 1.2 where m is the number of inner loops 
executed at stage 5 of our algorithm. 
 
As Table 1.2 illustrates, the use of a 3-dimensional X vector 
appears to be about 2½ times less computationally demanding 

than its 6-dimensional counterpart.  Considering only the 
major factor of the complexity, which is the size of the state 
space, n, the 3-dimensional X vector should be 238.9% 
quicker than the alternative.  However, the complexity of 
each algorithm is not only dependent on the size of the state 
space but also on the number of inner loops which are 
required to make the inversion of the Jacobian stable enough 
to provide meaningful results.  Therefore it needs to be shown 
that the use of a smaller Jacobian in the 3-dimensional 
X vector case does not adversely affect the pseudo-inverse.  
This does not appear to be the case as illustrated with the 
empirical dataset present in the following section. 
 
Since the smaller X vector can be shown to be less 
computationally demanding by a significant factor, it raises 
the issue of whether the smaller X vector can be used even 
when orientation is important.  The following section gives a 
brief discussion of possible application areas for using the 
half-Jacobian over the full-Jacobian.  Thereafter we illustrate 
an example for which we have used the half-size Jacobian in 
an application that would normally be considered a full-sized 
Jacobian problem domain. 
 
 
USING THE HALF- OVER THE FULL-JACOBIAN 
 
An obvious application of the half-Jacobian is in applications 
that do not discriminate against the orientation of the final 
link in an inverse kinematics chain.  In applications of inverse 
kinematics where the orientation of the end-effector has little 
consequence, the 3-dimensional X vector should always be 
used to reduce the computation effort required.  For example, 
when configuring a spider’s legs using IK, because the spider 
effectively walks on the tips of its legs, the orientation of this 
end point is immaterial.  Therefore only the 3-dimensional 
X vector would be required.  As illustrated in Table 1.2, using 
the full-sized Jacobian in such cases would be less efficient 
than the half-sized Jacobian. 
 
Another, more subtle, application of the half-sized X vector is 

Size of X Vector 
Algorithm Stage 

3 6 

1. Calc. increment                3 flops                6 flops 
2. Calc. Jacobian              162 flops              162 flops 
3. Calc. Pseudo-Inverse  33n +        42 flops 105n +       583 flops 
4. Check for convergence  18n +        15 flops  72n +        66 flops 

5. Reduce � �
        18m       flops        72m       flops 

6. Update joint angles   6n             flops  12n             flops 
7. Calc. new position  38n             flops  38n             flops 

Total  95n + 18m + 252 flops 227n + 72m + 817 flops 
Table 1.2: Complexity analysis of our Jacobian based IK solver 

Size of Matrix 
Operation 

(3 x n) 
3D X Vector 

(6 x n) 
6D X Vector 

TJJA =  18n -   9 72n -  36 

1−= AB  51 619 

BJ T  15n 33n 

11 )( −− = TT JJJJ  33n +  42 105n + 583 

Table 1.1: Number of flops required to calculate the 
pseudo-inverse of a non-square matrix. 

 



in situations where the penultimate link in the IK chain has 
unlimited and full use of all 3 DOFs (in 3 dimensional space).  
In this scenario the first step is to calculate the position of the 
penultimate link based on the desired position and orientation 
of the final node.  The 3-dimensional X vector can then be 
used to position the penultimate node in the chain.  Once this 
is done the desired orientation of the final node can be 
specified thereby allowing the correct end configuration of 
the chain. 
 
Other applications where the half-size Jacobian would prove a 
better technique to employ over the full-size version is in 
situations of low resolution modelling.  For example, if a 
complex articulated model is being animated as a background 
entity in a scene, it would be advantageous to switch to the 
quicker half-Jacobian to solve its configuration.  This means 
that more avatars can be animated in the background of a 
scene. 
 
There are many other applications where the half-sized 
Jacobian could substitute for the traditional full-sized version.  
Currently we have applied the quick half-Jacobian inverse 
kinematic solver to motion capture retargetting and IK-driven 
character walking.  Both of these applications can easily run 
in real-time as demonstrated in the following section which 
describes the latter of our applications. 
 
 
IK-GENERATED HUMANIOD WALKING 
 
The coupling of a procedural model and an inverse 
kinematics solver provides the basic building blocks needed 
to generate the walking motion of a computer character.  The 
procedural model describes the path through which the foot 
travels during a stride while the IK solver positions (and 
orientates) the foot along this path over time.  The task of 
tracing the foot along the path would initially appear to 
require the full-sized Jacobian, inherently requiring the foot to 
be orientated in a forward facing direction.  Without the 
orientation of the foot taken into account, there are an infinite 
number of anatomically correct positions the heel could take 
in order to meet a simple positional constraint.  This is 
possible because the hip joint for a leg can rotate about the 
axis of the femur approximately ±90 degrees from the 
forward facing pose, as illustrated in Figure 1.2. 
 
From the evidence of Figure 1.2, it would seem that the 
full-sized Jacobian is the only choice of IK solver to drive the 
walking motion of a humanoid character.  However, by 
realising that in the course of a walking motion, any large hip 
joint rotations result in unnatural postures, additional 
constraints can be added to restrict movement to only 
plausible ranges.  This would allow the half-sized Jacobian to 
be used to calculate the position of the heal and thus 
simultaneously reduce the potential for orientation error and 
increase the performance of the solver. 
 
This approach has been used in our implementation of an 
IK-driven humanoid character, MovingIK (Meredith and 
Maddock 2004) which has the ability to walk over uneven 
terrain in real-time. 
 

MovingIK, makes use of a procedural stride model to define 
how the foot moves over time as the character is walking.  
The source for the procedural stride model in our application 
comes from a simple mathematical equation whose form is 
illustrated in Figure 1.3 where a complete cycle ranges 
between 0 and 3π. 

 
Along with the procedural model used to drive the character’s 
foot through the air, we have a pre-flight stage that rolls the 
foot from a heel supporting phase to a complete foot 
supporting phase.  This uses the inverse kinematics algorithm 
to simultaneously plant the heel of the character and gravitate 
the toes towards the ground.  This extra bit of the walking 
cycle increases the realistic-looking nature of the resulting 
animation and gives us the ability to model the complete foot 
as opposed to just the heel.  
 

 
Figure 1.2: Infinite number of positional solutions to 
fixing a heel plant without regard to the orientation of 

the foot.  The purple ring shows the location of all 
possible knee positions. 
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Figure 1.3: Graph of procedural stride used in MovingIK 
 



The character is driven around an uneven terrain in real-time 
using an analogue joystick that determines parameters such as 
stride length, stride speed and direction of travel. 
 
Using MovingIK we are able to compare the half-sized and 
full-sized Jacobian techniques for both performance and 
realism. 
 
 
Empirical Results 
 
The results in Table 1.4 are obtained from running MovingIK 
on a Pentium 4 1.4GHz processor with a GeForce2 Ultra.  
There was a maximum iteration count imposed on the IK 
solver for the outer loop of 200 cycles while the inner loop 
was subject to a 20-cycle ceiling.  These limits were 
determined by the empirical running of the IK solver to 
determine over what limits a solution was very rarely found.  
The character driven by the user is made up of 18 hierarchical 
segments where only naturally-occurring DOFs within the 
human body were permitted.  The constraints on each 
remaining DOF were further limited to joint angles within the 
scope of normal human movement. 
 
The results given were obtained by driving the character 
around both flat and uneven terrains.  In the case of the 
uneven terrain, several randomly-generated surfaces were 
used (including a flight of steps) and the overall results were 
obtained by averaging the results.  Each of the uneven terrains 
had the same number of vertices and polygons in the model 
(64,082 polygons compared to 2 polygons for even terrain).  
The character displayed was that of either a stick figure or a 
3D model consisting of 11,101 polygons. 
 
MovingIK was not optimised to use either the half- or full 
Jacobian but instead provided the ability to switch between 
the two techniques at run-time.  There are three different 
configurations possible to switch between.  The first two 
modes use only the half- or full Jacobian respectively to 
calculate the configuration of the character to position the 
leading foot and trailing toes.  The third mode uses a hybrid 
approach that uses the full Jacobian to determine the 
configuration of the leading foot and the half-Jacobian to 
anchor the trailing toes. 
 

The empirical results of driving the computer character within 
MovingIK are illustrated in Table 1.4.  It should be noted that 
during a single frame, MovingIK solves two IK chains – one 
for each leg.  An illustration of MovingIK is given in 
Figure 1.4. 
 
The speed-up factor between the full Jacobian and the 
half-Jacobian, based on the empirical average time per 
iteration, is 238.5% which when compared to the analytical 
computed result of 238.9% reinforces the advantages of using 
the half-Jacobian over the full Jacobian whenever possible.   
 
A further conclusion that can be obtained from these results is 
that the use of the full Jacobian does not necessarily make the 
IK solver any more stable.  This logical conclusion comes 
form the fact that the analytical speed-up factor calculated 
assumes that the inner loop is executed an equal number of 
times for both algorithms.  If this were not the case then the 
empirical results would show a larger difference in speed up 
factor due to one algorithm executing the inner loop more 
times than the other. 
 
 
CONCLUSIONS & FUTURE WORK 
 
From this analysis of the empirical and analytical results, 
there is no proven stability advantage from using the full 
Jacobian compared to that of the half-Jacobian.  Therefore 
there is a definite argument for using the half-sized Jacobian 
when only the position of an end-effector is needed.   
 
As we have shown, there is also scope for using the quicker 
half-Jacobian for limited domains when orientation is 
required as well as position.  Although we have only 
demonstrated this for a walking motion, this represents one of 
the most fundamental movements in computer character 
animation.  In other work we have also applied this technique 
to the field of motion capture retargeting with similarly 
successful results in both speed and visual accuracy.  There 
are many other conceivable domains in which this application 
can be used by placing extra dynamic constraints on joint 
angles to prevent the orientation from deviating too much 
from a natural-looking configuration.  An arm, for example, 
would prove just as suitable a subject for the technique. 
 

IK Mode 
Measurement 

All Half Jacobian 
(3D X Vector) 

All Full Jacobian 
(6D X Vector) 

Hybrid Method 

Flat Floor with  
Stick Character 

260 fps 95 fps 115 fps 

Flat Floor with  
Skeleton 

140 fps 69 fps 83 fps 

Uneven Terrain with  
Stick Character 

97 fps 54 fps 64 fps 

Uneven Terrain with Skeleton 
Character 

75 fps 42 fps 53 fps 

Average time to execute each 
IK solver 

0.24 ms 5.5 ms - - - - 

Average Number of iterations 
 

18.15 180 - - - - 

Average time per iteration 
 

0.013 ms 0.031 ms - - - - 

Table 1.4: Empirical Results from MovingIK 



The advantages of using dynamic constraints to transform an 
orientation and positional IK problem into a position-only 
task are a speed-up factor of about 238%.  There is also no 
extra cost to adding in constraints to the half-sized Jacobian 
algorithm because its framework already operates using joint 
restrictions.  Effectively you get the dynamic constraints for 
free in the Jacobian-based IK solver. 
 
We have already integrated our quick real-time inverse 
kinematics solver into a motion capture retargeting 
application where the next step will be to use the solver to 
simultaneously individualise the character.  For this we are 
looking into the application of weighted IK chains such that 
different parts of the articulation change with a varying rate to 
the others.  This would give rise to the very simple and quick 
production of injuries or even varying character builds in 
computer figures. 
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Figure 1.4: Analogue joystick-controlled real-time IK over uneven terrain; green pyramids represent the intended position of the 

leading foot while the red pyramids indicate desired location of the training toes. 


