
Using a Half-Jacobian for Real-Time Inverse Kinematics

Michael Meredith & Steve Maddock
Department of Computer Science

University of Sheffield
United Kingdom

E-mail: M.Meredith@dcs.shef.ac.uk, S.Maddock@dcs.shef.ac.uk

KEYWORDS
Inverse Kinematics, Computer Character Animation,
Real-time

ABSTRACT

Due to their scalability, numerical techniques often form part
of an inverse kinematics (IK) solver. However, because of
their iterative nature, such methods can be slow. So far
research into the field of kinematics has failed to find a
general non-numerical solution to the problem. Many
researchers have proposed hybrid techniques yet these still
rely on a numerical aspect. It is therefore important to find
ways of using numerical techniques as efficiently as possible.
In this paper we take a look at the Jacobian-based IK solver
and techniques that allow this method to be used as an
efficient real-time IK solver. We demonstrate how the
half-Jacobian can be used effectively where normally the full
Jacobian would be considered the principal technique. The
result of this is much reduced computational costs when
applying IK to articulated characters.

INTRODUCTION

The problem domain that is tackled by inverse kinematics
solvers was first formulated in the mechanical engineering
literature (Craig 1955) and more specifically research into the
field of robotics. We are interested in its application in
computer character animation. The issue that inverse
kinematics attempts to resolve is to find a set of joint
configurations of an articulated structure based upon a
desirable end-effector location. This is expressed
mathematically in Equation 1.1 where θ represents the set of
orientation values for a structure and

�
 is the global position

of a given limb in the hierarchy.

)(1 Xf −=θ (1.1)

There have been many varied techniques used as an inverse
kinematics solver. The fastest techniques, analytical
algorithms, tend to suffer from poor scalability, whereas the
scalable techniques, such as numerical iteration, suffer from
poor solver times. Many techniques that have been proposed
to offer speed advantages utilise numerical solvers therefore it
is important to consider ways that such techniques can be
used efficiently. A review of many of the present IK
techniques is given in the following section.

We then present an analytical look at the iterative Jacobian
approach to inverse kinematics and discuss techniques that
allow the method to used effectively. Following this we
present a real-time application that drives a walking character

around rough terrain to demonstrate the effectiveness of our
Jacobian interpretation.

RELATED WORK

We can identify 4 different categories of IK solver:
geometric/analytical algorithms, cyclic co-ordinate descent
(CCD) techniques, differential techniques, and hybrid
methods (Tolani et al. 2000) which mix together various
aspects of the first three techniques.

The geometric/analytical algorithms (Chin 1996, Kwang-Jin
and Hyeong-Seok 2000, Paul and Shimano 1988) tend to be
very quick because they reduce the IK problem to a
mathematical equation that need only be evaluated in a single
step to produce a result. However, for large chains of links
the task of reducing the problem to a single-step mathematical
equation is impractical. Therefore geometric/analytical
techniques tend to be less useful in the field of character
animation.

IK solvers that are based on CCD (Eberly 2001, Wang and
Chen 1991, Welman 1993) use an iterative approach that
takes multiple steps towards a solution. The steps that the
solver takes are formed heuristically, therefore this step can
be performed relatively quickly. An example of a possible
heuristic would be to minimise the angle between pairs of
vectors created when projecting lines through the current
node and end-effector and current node and desired location.
However, because the iterative step is heuristically driven,
accuracy is normally the price paid for speed. Another issue
with this technique is that only one joint angle is updated at a
time, which has the unrealistic result of earlier joints moving
much more than later limbs in the IK chain.

As with the CCD technique, differential-based techniques
(Watt and Watt 1992, Zhao and Badler 1994) utilise an
iterative approach that requires multiple steps to find a
solution. The steps that the algorithm makes are determined
via the use of the system Jacobian that relates small changes
in joint configurations to positional offsets. Since all the joint
angles are updated in a single step, the movements are
dissipated over the whole chain which results in a more
realistic looking posture.

By their nature, iterative-based techniques are generally
slower at producing a desirable result when compared to their
analytical counterparts. However the problem with the
analytical methods is their lack of scalability. Fedor (Fedor
2003) explores this trade-off between speed, accuracy and
scalability in an IK solver. One of the results from this work
demonstrates that differential-based numerical solutions,

although slower than both CCD and analytical techniques,
provide better results for larger chains. This highlights the
importance of refining numerical techniques such that we
maintain accuracy and scalability but drive solution time
down.

One such solution proposed by Tang et al. (Tang et al. 1999)
makes use of the SHAKE algorithm (Ryckaert et al. 1997) to
achieve a fast iterative-based IK solver. This technique treats
a hierarchical structure as point masses that are related by
system constraints. This is in contrast to the Jacobian-based
technique that encapsulates the articulated information and
thereby provides us the cohesion between links for free.

In order to achieve a desired end-effector location, the mass
points of the SHAKE system are adjusted per cycle until a
global goal has been reached. This includes meeting a
threshold of acceptable error on the constraints. However
because of the lack of node dependency of the algorithm,
normally the points will lose their distance relationships
between each other. To counter this issue, correcting forces
are iteratively applied to each point to reassert cohesion
between links therefore the accuracy of parent-child distances
directly effects solver time. Without a reasonable level of
accuracy at this point, the appearance of rigid links moving
about each other would occur. This is an issue that the
Jacobian-based techniques are not affected by.

The time complexity of the SHAKE algorithm is suggested
by Tang et a.l to be O(n2) with respect to the number of
constraints. However since each link in a hierarchical chain
requires a constraint to impose cohesion, the time to solve a
system is also minimally O(n2) with respect to the number of
links in the chain. The inclusion of additional system
constraints such as joint angle limits has a further detrimental
effect on solution time therefore making the algorithm less
applicable to real-time applications as the number of links
increases.

Another real-time IK technique proposed by Shin et al.
(Shin et al. 2001) that is used for computer puppetry makes
use of a hybrid solution. This technique attempts to use
analytical solutions where possible, except in cases where a
large amount of body posturing is required, where a
numerical implementation is invoked. The numerical solver
only acts upon the IK chain defined between the root and the
upper body while the analytical solver is used for the limbs of
the character.

The hybrid use of IK solvers used by Shin et al demonstrates
a good method for performing real-time IK. However the
analytical aspect assumes some knowledge about the
character’s structure (Lee and Shin 1999, Tolani et al. 1996).
This means that the overall IK technique is not a general one
that can be applied to arbitrary IK chains. The other potential
problem with the hybrid technique is similar to the CCD
techniques in that not all joint angles are updated
simultaneously which means unrealistic and unproportional
posture configurations could result.

From the research done in the field of real-time IK, it is
apparent that analytical solutions by themselves are not
scalable enough to meet the demands of modern

computer-based IK problems. Therefore numerical
techniques are used as either a substitute or in serial with an
analytical solution, which serves to highlight the importance
of having fast numerical solutions. Furthermore these
solutions should operate on the whole hierarchical structure
equally to avoid unrealistic postures. These are the issues we
address with our Jacobian-based approach for real-time IK.

OUR INVERSE KINEMATICS SOLUTION

Jacobian Inverse Kinematics

Our implementation of inverse kinematics is based upon the
well-established Jacobian technique. The objective of this
technique is to incrementally change joint orientations from a
stable starting position towards a configuration state that will
result in the required end-effector being located at the desired
position in absolute space. The amount of incremental
change on each iteration is defined by the relationship
between the partial derivatives of the joint angles, θ, and the
difference between the current location of the end effector, X,
and the desired position, Xd. The link between these two sets
of parameters leads to the system Jacobian, J. This is a
matrix that has dimensionality (m x n) where m is the spatial
dimensional of X and n is the size of the joint orientation set,
θ. The Jacobian is derived from the equation for forward
kinematics, Equation 1.2, as follows:

)(θfX = (1.2)

 Taking partial derivatives of Equation 1.2:

 θθ dJdX)(= (1.3)
where

i

j
ij x

f
J

∂
∂

= (1.4)

Rewriting Equation 1.3 in a form similar to inverse
kinematics (Equation 1.1) results in Equation 1.5. This form
of the problem transforms the under-defined system into a
linear one that can be solved using iterative steps.

dXJd 1−=θ (1.5)

The problem now is that Equation 1.5 requires the inversion
of the Jacobian matrix. However because of the under-
defined problem that the inverse kinematics technique suffers
from, the Jacobian is very rarely square. Therefore, in our
implementation we have used the right-hand generalised
pseudo-inverse to overcome the non-square matrix problem,
as given in equation 1.6.

Generating the pseudo-inverse of the Jacobian in this way can
lead to inaccuracies in the resulting inverse that need to be
reduced. Any inaccuracies of the inverse Jacobian can be
detected by multiplying it with the original Jacobian then
subtracting the result from the identity matrix. A magnitude
error can be determined by taking the second norm of the
resulting matrix multiplied by dX, as outlined in Equation 1.7.

If the error proves too big then dX can be decreased until the
error falls within an acceptable limit.

An overview of the algorithm we used to implement an
iterative inverse kinematics solution is as follows:

1) Calculate the difference between the goal position and

the actual position of the end-effector:

XXdX g −=

2) Calculate the Jacobian matrix using the current joint
angles: (using Equation 1.4)

3) Calculate the pseudo-inverse of the Jacobian:
11)(−− = TT JJJJ (1.6)

4) Determine the error of the pseudo-inverse

dXJJIerror)(1−−= (1.7)

5) If error > e then
2/dXdX =

restart at step 4
6) Calculate the updated values for the joint orientations

and use these as the new current values:

dXJ 1−+= θθ
7) Using forward kinematics determine whether the new

joint orientations position the end-effector close enough
to the desired absolute location. If the solution is
adequate then terminate the algorithm otherwise go back
to step 1.

The computational demand of the algorithm is relatively high
over a number of iterations, so well-defined character
hierarchies are advantageous. This means that each node in
the articulation is defined by the minimum number of degrees
of freedom (DOF) required thereby making θ as small as
possible. For example, pivot joints such as an elbow would
only be modelled using a single DOF whereas a ball and
socket joint like the shoulder would need 3 Euler DOFs to
represent the range of possible movements.

The use of well-defined hierarchies further helps to prevent
the inverse kinematics solver from producing
unnatural-looking postures. However this still does not cover
all of the potential unnatural poses the solver can return. In
order to restrict the IK solver to the orientation space of only
possible character configurations, joint orientation restrictions
can be enforced within the scope of the existing algorithm.
The simplest way of incorporating such constraints is to crop
the joint angles. This requires Step 6 of the algorithm to be
modified in the following way:

6) Calculate the updated values for the joint orientations

and use these as the new current values:

��
��
�

+
=

− dXJ

upperbound

lowerbound

1θ
θ

otherwise

upperbounddXJif

lowerbounddXJif

>+
<+

−

−

1

1

θ
θ

The time to complete the IK algorithm for a given
end-effector is an unknown quantity due to an arbitrary
number of iterations required. However the time to complete
a single iteration is constant with respect to the
dimensionality of X and θ which is unchanged under a

complete execution of the algorithm. Therefore by placing an
upper limit on the number of iterations we can set a maximum
time boundary for the algorithm to return in. If the solver
reaches the limit then the algorithm returns the closest result it
has seen.

In 3-dimensional space, the dimensionality of X in a
Jacobian-based inverse kinematics solver is generally either 3
or 6. The 6-dimensional X vector is normally used as it
contains both positional and orientation information whereas
a 3-dimensional vector only contains positional information
for an end-effector.

From the inverse kinematics algorithm outlined above, it is
clear that the 3-dimensional X vector is quicker over its
counterpart and should always be used when orientation is not
required. However there are times that orientation is required
but it is still possible to use the 3-dimensional vector which is
demonstrated in our application of the algorithm present later.

To see how much of a cost difference there is between the
two sizes of X vector, the corresponding complexity analysis
of them is illustrated in the following section.

Complexity Analysis Of The X Vector

We need a technique to perform the inverse of the square
matrix JJT. For the 3-dimensional X vector, which uses a
(3 x 3) matrix we use an analytical solution whereas for the
6-dimensional X vector, which uses a (6 x 6) matrix, we use
LU Decomposition.

LU Decomposition and Analytical Inversion
LU decomposition can be used to determine the inverse of a
square matrix by using the matrix identity, AA-1 = I, where I
is an identity matrix (and in this case it has dimensionality
(6 x 6)). The application of LU decomposition to this
equation requires matrix A to be split into 2 further matrices
that have the form of lower and upper matrices as illustrated
in Equation 1.8.

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

	

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

	

==

*000

**00

***0

1***

01**

001*

0001

�����

�����

LUA

(1.8)

The decomposition of A into the two matrices allows the
original matrix identity to be rewritten into the form of
Equation 1.9, which can be solved using forward and
backward substitution.

ILUA =−1 => IUAL =−)(1

=> ILY = (1.9a)

YUA =∧ −1 (1.9b)

Our algorithm for performing a (6 x 6) LU Decomposition
inverse gives a complexity of 619 flops (Meredith and
Maddock 2004).

In comparison, the analytical inversion of a (3 x 3) matrix is
given in Equation 1.10. This equation can be directly
encoded. The complexity of calculation is 51 flops (Meredith
and Maddock 2004): 36 multiplications, 1 division and 14
additions & subtractions.

)()()(201121100222102012012112221100

011011002100012011202110

120002100220220022101220

021112012201022112212211

1

222120

121110

020100

rrrrrrrrrrrrrrr

rrrrrrrrrrrr

rrrrrrrrrrrr

rrrrrrrrrrrr

rrr

rrr

rrr

−+−+−

�
�
�

�

�

�
�
�

�

�

−−−
−−−
−−−

=�
�
�

�

�

�
�
�

�

� −

 (1.10)

The decision to use an analytical solver for the smaller matrix
and LU decomposition for the larger one is demonstrated in
Figure 1.1. The results given in Figure 1.1 were obtained
using a matrix with all elements non-zero so the analytical
technique was unable to make use of zeros to cut off the
co-factor expansions. This is a valid assumption because it
would be most unlikely that the (6 x 6) matrix that needs to be
inverted in the pseudo-inverse would actually contain any
zeros.

Figure 1.1 shows that the analytical approach to solving
matrix inversion is only better for matrices that have
dimensionality equal to or less than 3. After this size, the
number of flops required to solve an analytical inverse
increases in a cubic fashion with respect to dimensionality
whereas the LU technique increases at the lower squared rate.
This analysis justifies the use of an analytical solution for the
(3 x 3) matrix while using LU decomposition for the
inversion of the larger (6 x 6) matrix.

Calculating The Jacobian

If the Jacobian definition of Equation 1.4 is divided by a
differential time element, the resulting equivalence provides a
mapping between angular velocities in state space, θ, and
linear velocities in Cartesian space, X. This result is
illustrated in equation 1.11.

θθ ��)(JX = (1.11)

In the case of a 6-dimensional X vector, X� consists of linear
velocity, V, and angular velocity, Ω, components, whereas the
3-dimensional X vector only includes the linear velocity.
Both the linear velocity and angular velocity are with respect
to a global frame of reference as too are the partial derivatives
of the Jacobian. The Jacobian linking the linear and angular
velocity of the end-effector, with the intermediary local
angular velocities, is given in equation 1.12, where there are i
DOFs in the IK chain.

�
�
�
�
�

�

	

�

�

�
�

	

�

�

=�
�

	

�

�

Ω

i

i

i

aaa

bbbV

θ

θ
θ

�

2

1

21

21

,...,,

,...,,
 (1.12)

In Equation 1.12, the a components are of the local axes for a
given link transformed into the global frame of reference.
The b elements of the Jacobian are the cross products of the
corresponding a axis with the spatial difference between the
global origin of the current limb and the absolute location of
the end of the articulation, Pe (Equation 1.14). The DOFs
within the state space are normally ordered such that limbs
from the root are considered first followed by their children,
following this pattern to the end of the chain. Using this
pattern, the orientation values of the required axes for each
limb can be obtained from a transformation matrix, 0Tj, that
converts points defined in the limb’s local orientation into a
global position. Equation 1.13 illustrates this for the j th limb

0

2000

4000

6000

8000

10000

12000

14000

16000

2 2.5 3 3.5 4 4.5 5 5.5 6
Dimension of Square Matrix

N
o

of
 fl

op
s

LU

Analytical

0

50

100

150

200

250

300

350

2 2. 5 3 3. 5 4

Figure 1.1: Demonstration of the complexity of solving a square matrix using an analytical and LU decomposition technique.

in the IK chain (note that this assumes a right-handed
coordinate system):
 ��

����=
1000

0 jzjyjxj
j

Paaa
T (1.13)

The parameter Pj in Equation 1.13 also gives the global
position of the origin of the limb thereby aiding in the
determination of the b components in Equation 1.14.

)(jei PPab −×= (1.14)

Using the chaining principle for calculating the transforms of
the local axes into a global reference frame (0Tj =

0T1 x 1T2 x
… x j-1Tj.), the direct implementation of this subsection in
3-dimensional space yields a constant complexity. Assuming
that each link has 3 DOFs, the complexity associated with
each limb in the IK chain is given by 162 flops: 98
multiplications and 64 additions & subtractions. The
assumption of 3 DOFs does not add a great deal of
complexity if it is an overestimate since each DOF
contributes only 9 flops to the overall result (where the 9
flops is the calculation of the cross product).

Determining The Pseudo-Inverse Of The Jacobian

Using the complexity derivation of the inversion of a square
matrix from the above sections, the complexity of the pseudo-
inverse of the Jacobian, as given in Equation 1.6, can be
calculated. Table 1.1 outlines the number of flops required to
calculate the pseudo-inverse depending on the size of the
X vector. The variable n is the size of the state space, θ (i.e.
the sum of all the links’ DOFs). It should also be noted that
there is no inclusion of complexity to calculate the transpose
of matrices when they are required as this can be handled at
no extra cost be simply swapping out indexing parameters.

Complexity Of The Whole IK Solver

The complexity of a single loop of the IK algorithm described
above can be derived using the complexity analyses of the
smaller parts of the algorithm already determined. This is
shown in Table 1.2 where m is the number of inner loops
executed at stage 5 of our algorithm.

As Table 1.2 illustrates, the use of a 3-dimensional X vector
appears to be about 2½ times less computationally demanding

than its 6-dimensional counterpart. Considering only the
major factor of the complexity, which is the size of the state
space, n, the 3-dimensional X vector should be 238.9%
quicker than the alternative. However, the complexity of
each algorithm is not only dependent on the size of the state
space but also on the number of inner loops which are
required to make the inversion of the Jacobian stable enough
to provide meaningful results. Therefore it needs to be shown
that the use of a smaller Jacobian in the 3-dimensional
X vector case does not adversely affect the pseudo-inverse.
This does not appear to be the case as illustrated with the
empirical dataset present in the following section.

Since the smaller X vector can be shown to be less
computationally demanding by a significant factor, it raises
the issue of whether the smaller X vector can be used even
when orientation is important. The following section gives a
brief discussion of possible application areas for using the
half-Jacobian over the full-Jacobian. Thereafter we illustrate
an example for which we have used the half-size Jacobian in
an application that would normally be considered a full-sized
Jacobian problem domain.

USING THE HALF- OVER THE FULL-JACOBIAN

An obvious application of the half-Jacobian is in applications
that do not discriminate against the orientation of the final
link in an inverse kinematics chain. In applications of inverse
kinematics where the orientation of the end-effector has little
consequence, the 3-dimensional X vector should always be
used to reduce the computation effort required. For example,
when configuring a spider’s legs using IK, because the spider
effectively walks on the tips of its legs, the orientation of this
end point is immaterial. Therefore only the 3-dimensional
X vector would be required. As illustrated in Table 1.2, using
the full-sized Jacobian in such cases would be less efficient
than the half-sized Jacobian.

Another, more subtle, application of the half-sized X vector is

Size of X Vector
Algorithm Stage

3 6

1. Calc. increment 3 flops 6 flops
2. Calc. Jacobian 162 flops 162 flops
3. Calc. Pseudo-Inverse 33n + 42 flops 105n + 583 flops
4. Check for convergence 18n + 15 flops 72n + 66 flops

5. Reduce � �
 18m flops 72m flops

6. Update joint angles 6n flops 12n flops
7. Calc. new position 38n flops 38n flops

Total 95n + 18m + 252 flops 227n + 72m + 817 flops
Table 1.2: Complexity analysis of our Jacobian based IK solver

Size of Matrix
Operation

(3 x n)
3D X Vector

(6 x n)
6D X Vector

TJJA = 18n - 9 72n - 36

1−= AB 51 619

BJ T 15n 33n

11)(−− = TT JJJJ 33n + 42 105n + 583

Table 1.1: Number of flops required to calculate the
pseudo-inverse of a non-square matrix.

in situations where the penultimate link in the IK chain has
unlimited and full use of all 3 DOFs (in 3 dimensional space).
In this scenario the first step is to calculate the position of the
penultimate link based on the desired position and orientation
of the final node. The 3-dimensional X vector can then be
used to position the penultimate node in the chain. Once this
is done the desired orientation of the final node can be
specified thereby allowing the correct end configuration of
the chain.

Other applications where the half-size Jacobian would prove a
better technique to employ over the full-size version is in
situations of low resolution modelling. For example, if a
complex articulated model is being animated as a background
entity in a scene, it would be advantageous to switch to the
quicker half-Jacobian to solve its configuration. This means
that more avatars can be animated in the background of a
scene.

There are many other applications where the half-sized
Jacobian could substitute for the traditional full-sized version.
Currently we have applied the quick half-Jacobian inverse
kinematic solver to motion capture retargetting and IK-driven
character walking. Both of these applications can easily run
in real-time as demonstrated in the following section which
describes the latter of our applications.

IK-GENERATED HUMANIOD WALKING

The coupling of a procedural model and an inverse
kinematics solver provides the basic building blocks needed
to generate the walking motion of a computer character. The
procedural model describes the path through which the foot
travels during a stride while the IK solver positions (and
orientates) the foot along this path over time. The task of
tracing the foot along the path would initially appear to
require the full-sized Jacobian, inherently requiring the foot to
be orientated in a forward facing direction. Without the
orientation of the foot taken into account, there are an infinite
number of anatomically correct positions the heel could take
in order to meet a simple positional constraint. This is
possible because the hip joint for a leg can rotate about the
axis of the femur approximately ±90 degrees from the
forward facing pose, as illustrated in Figure 1.2.

From the evidence of Figure 1.2, it would seem that the
full-sized Jacobian is the only choice of IK solver to drive the
walking motion of a humanoid character. However, by
realising that in the course of a walking motion, any large hip
joint rotations result in unnatural postures, additional
constraints can be added to restrict movement to only
plausible ranges. This would allow the half-sized Jacobian to
be used to calculate the position of the heal and thus
simultaneously reduce the potential for orientation error and
increase the performance of the solver.

This approach has been used in our implementation of an
IK-driven humanoid character, MovingIK (Meredith and
Maddock 2004) which has the ability to walk over uneven
terrain in real-time.

MovingIK, makes use of a procedural stride model to define
how the foot moves over time as the character is walking.
The source for the procedural stride model in our application
comes from a simple mathematical equation whose form is
illustrated in Figure 1.3 where a complete cycle ranges
between 0 and 3π.

Along with the procedural model used to drive the character’s
foot through the air, we have a pre-flight stage that rolls the
foot from a heel supporting phase to a complete foot
supporting phase. This uses the inverse kinematics algorithm
to simultaneously plant the heel of the character and gravitate
the toes towards the ground. This extra bit of the walking
cycle increases the realistic-looking nature of the resulting
animation and gives us the ability to model the complete foot
as opposed to just the heel.

Figure 1.2: Infinite number of positional solutions to
fixing a heel plant without regard to the orientation of

the foot. The purple ring shows the location of all
possible knee positions.

0.0

1.0

0.5

0 π 2π 3π
Stride Time

R
el

at
iv

e
H

ei
gh

t

Figure 1.3: Graph of procedural stride used in MovingIK

The character is driven around an uneven terrain in real-time
using an analogue joystick that determines parameters such as
stride length, stride speed and direction of travel.

Using MovingIK we are able to compare the half-sized and
full-sized Jacobian techniques for both performance and
realism.

Empirical Results

The results in Table 1.4 are obtained from running MovingIK
on a Pentium 4 1.4GHz processor with a GeForce2 Ultra.
There was a maximum iteration count imposed on the IK
solver for the outer loop of 200 cycles while the inner loop
was subject to a 20-cycle ceiling. These limits were
determined by the empirical running of the IK solver to
determine over what limits a solution was very rarely found.
The character driven by the user is made up of 18 hierarchical
segments where only naturally-occurring DOFs within the
human body were permitted. The constraints on each
remaining DOF were further limited to joint angles within the
scope of normal human movement.

The results given were obtained by driving the character
around both flat and uneven terrains. In the case of the
uneven terrain, several randomly-generated surfaces were
used (including a flight of steps) and the overall results were
obtained by averaging the results. Each of the uneven terrains
had the same number of vertices and polygons in the model
(64,082 polygons compared to 2 polygons for even terrain).
The character displayed was that of either a stick figure or a
3D model consisting of 11,101 polygons.

MovingIK was not optimised to use either the half- or full
Jacobian but instead provided the ability to switch between
the two techniques at run-time. There are three different
configurations possible to switch between. The first two
modes use only the half- or full Jacobian respectively to
calculate the configuration of the character to position the
leading foot and trailing toes. The third mode uses a hybrid
approach that uses the full Jacobian to determine the
configuration of the leading foot and the half-Jacobian to
anchor the trailing toes.

The empirical results of driving the computer character within
MovingIK are illustrated in Table 1.4. It should be noted that
during a single frame, MovingIK solves two IK chains – one
for each leg. An illustration of MovingIK is given in
Figure 1.4.

The speed-up factor between the full Jacobian and the
half-Jacobian, based on the empirical average time per
iteration, is 238.5% which when compared to the analytical
computed result of 238.9% reinforces the advantages of using
the half-Jacobian over the full Jacobian whenever possible.

A further conclusion that can be obtained from these results is
that the use of the full Jacobian does not necessarily make the
IK solver any more stable. This logical conclusion comes
form the fact that the analytical speed-up factor calculated
assumes that the inner loop is executed an equal number of
times for both algorithms. If this were not the case then the
empirical results would show a larger difference in speed up
factor due to one algorithm executing the inner loop more
times than the other.

CONCLUSIONS & FUTURE WORK

From this analysis of the empirical and analytical results,
there is no proven stability advantage from using the full
Jacobian compared to that of the half-Jacobian. Therefore
there is a definite argument for using the half-sized Jacobian
when only the position of an end-effector is needed.

As we have shown, there is also scope for using the quicker
half-Jacobian for limited domains when orientation is
required as well as position. Although we have only
demonstrated this for a walking motion, this represents one of
the most fundamental movements in computer character
animation. In other work we have also applied this technique
to the field of motion capture retargeting with similarly
successful results in both speed and visual accuracy. There
are many other conceivable domains in which this application
can be used by placing extra dynamic constraints on joint
angles to prevent the orientation from deviating too much
from a natural-looking configuration. An arm, for example,
would prove just as suitable a subject for the technique.

IK Mode
Measurement

All Half Jacobian
(3D X Vector)

All Full Jacobian
(6D X Vector)

Hybrid Method

Flat Floor with
Stick Character

260 fps 95 fps 115 fps

Flat Floor with
Skeleton

140 fps 69 fps 83 fps

Uneven Terrain with
Stick Character

97 fps 54 fps 64 fps

Uneven Terrain with Skeleton
Character

75 fps 42 fps 53 fps

Average time to execute each
IK solver

0.24 ms 5.5 ms - - - -

Average Number of iterations

18.15 180 - - - -

Average time per iteration

0.013 ms 0.031 ms - - - -

Table 1.4: Empirical Results from MovingIK

The advantages of using dynamic constraints to transform an
orientation and positional IK problem into a position-only
task are a speed-up factor of about 238%. There is also no
extra cost to adding in constraints to the half-sized Jacobian
algorithm because its framework already operates using joint
restrictions. Effectively you get the dynamic constraints for
free in the Jacobian-based IK solver.

We have already integrated our quick real-time inverse
kinematics solver into a motion capture retargeting
application where the next step will be to use the solver to
simultaneously individualise the character. For this we are
looking into the application of weighted IK chains such that
different parts of the articulation change with a varying rate to
the others. This would give rise to the very simple and quick
production of injuries or even varying character builds in
computer figures.

REFERENCES

Chin, K.W., “Closed-form and generalized inverse kinematic
solutions for animating the human articulated structure.” , Bachelor's
Thesis in Computer Science, Curtin University of Technology, 1996
Craig, J. J., “ Introduction to Robotics: Mechanics and Control” ,
Addison-Wesley, 1955
Eberly, D. H., “3D Game Engine Design” , Morgan Kaufmann, 2001
Fedor, M., “Application of Inverse Kinematics for Skeleton
Manipulation in Real-time”, International Conference on Computer
Graphics and Interactive Techniques, p.203-212, 2003
Kwang-Jin, C., Hyeong-Seok, K., “On-line Motion Retargetting” ,
The Journal of Visualization and Computer Animation, Vol. 11,
p.223-235, 2000
Lee, J., Shin, S. Y., “A Hierarchical Approach to Interactive Motion

Editing for Human-Like Figures” , Siggraph 99, p.39-48, 1999
Meredith, M., Maddock, S., “Real-Time Inverse Kinematics: The
Return of the Jacobian” , Technical Report No. CS-04-06,
Department of Computer Science, The University of Sheffield, 2004
Paul, R. P., Shimano, B., Mayer, G. E., “Kinematic Control
Equations for Simple Manipulators” , IEEE Transactions on System,
Man & Cybernetics, Vol. 11, No. 6, 1988
Ryckaert, J. P., Ciccotti, G., Berendsen, H. J. C., “Numerical
Integration of the Cartesian Equations of Motions of a System with
Constraints: Molecular Dynamics of n-Alkanes” , Journal of
Computational Physics, Vol. 23 p.327-341, 1977
Shin, H. J., Lee, J., Gleicher, M., Shin, S. Y., “Computer Puppetry:
An Importance-Based Approach”, ACM Transactions On Graphics,
Vol. 20, No. 2, p.67-94, April 2001
Tang, W., Cavazza, M., Mountain, D., Earnshaw, R., “A
Constrained Inverse Kinematics Technique for Real-time Motion
Capture Animation” , The Visual Computer, Vol. 15, p.413-425,
1999
Tolani, D., Badler, N. I., “Real-time Inverse Kinematics of the
Human Arm”, Presence, Vol. 5, No. 4, p.393-401, 1996
Tolani, D., Goswami, A., Badler, N., “Real-Time Inverse
Kinematics Techniques for Anthropomorphic Limbs” , Graphics
Models, Vol. 62, No. 6, p.353-388, 2000
Wang, L., Chen, C., “A Combined Optimisation Method for Solving
the Inverse Kinematics Problem of Mechanical Manipulators” , IEEE
Transactions on Robotics & Applications, Vol. 7, No. 4, p.489-499,
1991
Welman, C., “ Inverse kinematics and geometric constraints for
articulated figure manipulation” , Master of Science Thesis, School of
Computing Science, Simon Fraser University, 1993
Watt, A., Watt, M., “Advanced animation and rendering
techniques” , Addison-Wesley, 1992
Zhao, J., Badler, N. I., “ Inverse Kinematics Positioning Using
Nonlinear Programming for Highly Articulated Figures” , ACM
Transactions on Graphics, Vol. 13, No. 4, p.313-336, 1994

Figure 1.4: Analogue joystick-controlled real-time IK over uneven terrain; green pyramids represent the intended position of the

leading foot while the red pyramids indicate desired location of the training toes.

