
Real-Time Inverse Kinematics: The Return of the Jacobian 1

Real-Time Inverse Kinematics: The Return of the Jacobian

Michael Meredith & Steve Maddock
Department of Computer Science

University of Sheffield
United Kingdom

E-mail: M.Meredith@dcs.shef.ac.uk, S.Maddock@dcs.shef.ac.uk

KEYWORDS
Inverse Kinematics, Computer Character Animation,
Real-time

ABSTRACT

Due to their scalability, numerical techniques often form
part of an inverse kinematics solver. However, because
of their iterative nature, such methods can be slow. So
far research into the field of kinematics has failed to find
a general non-numerical solution to the problem. Many
researchers have proposed hybrid techniques yet these
still rely on a numerical aspect. It is therefore important
to find ways of using numerical techniques as efficiently
as possible. In this paper we take a look at the
Jacobian-based IK solver and techniques that allow this
method to be used as an efficient real-time IK solver.

INTRODUCTION

Inverse kinematics is used to determine a set of joint
angles in an articulated structure based upon the position
of a given node in the hierarchical structure. The
problem domain that is tackled by inverse kinematics
solvers was first formulated in the mechanical
engineering literature [Crai55] and more specifically
research into the field of robotics. We are interested in
its application in computer character animation. The
issue that inverse kinematics attempts to resolve is to
find a set of joint configurations of an articulated
structure based upon a desirable end-effector location.

There have been many varied techniques used as an
inverse kinematics solver. The fastest techniques, such
as analytical, tend to suffer from poor scalability
whereas the scalable techniques such as numerical
iteration, suffer from poor solver times. Many
techniques that have been proposed to offer speed
advantages utilise numerical solvers therefore it is
important to consider ways that such techniques can be
used efficiently. A review of many of the present IK
techniques is given in the following section.

After a review of techniques, we take a look at what the
actual problem IK techniques attempt to solve. This is a
primer to the material we subsequently present during
which we look at the iterative Jacobian approach to
inverse kinematics and discuss techniques that allow the
method to used effectively. The following section of the
report presents a real-time application that drives a

walking character around rough terrain to demonstrate
the effectiveness of our Jacobian interpretation. We end
the paper by presenting and discussing the results of our
work.

RELATED WORK

The problem posed of inverse kinematics has resulted in
a variety of different techniques that can be used to yield
a desirable result. Of these techniques, 4 different
categories of solver can be identified:
geometric/analytical algorithms, cyclic co-ordinate
descent (CCD), differential techniques and hybrid
methods [Tola00] which mix together various aspects of
the first three techniques.

The geometric/analytical algorithms [Chin96, Kwan00,
Paul88] tend to be very quick because they reduce the IK
problem to a mathematical equation that need only be
evaluated in a single step to produce a result. The
limitations of this class of solver become apparent in the
case of large chains. In such cases, the task of reducing
the problem to a single-step mathematical equation is
impractical. Therefore geometric/analytical techniques
tend to be less useful in the field of character animation.

IK solvers that are based on CCD [Eber01, Wang91,
Welm93] use an iterative approach that takes multiple
steps towards a solution. The steps that the solver takes
are formed heuristically, therefore this step can be
performed relatively quickly. An example of a possible
heuristic would be to minimise the angle between pairs
of vectors created when projecting lines through the
current node and end-effector and current node and
desired location. However, because the iterative step is
heuristically driven, accuracy is normally the price paid
for speed. Another issue with this technique is that one
joint angle is updated at a time as opposed to the
complete hierarchical structure of differential-based
techniques. This has the undesirable and unrealistic
result of earlier joints moving much more than later
limbs in the IK chain.

In a similar way to the CCD technique,
differential-based techniques [Watt92, Zhao94] utilise an
iterative approach that requires multiple steps to find a
solution. The steps that the algorithm makes are
determined via the use of the system Jacobian that
relates small changes in joint configurations to positional
offsets. Since all the joint angles are updated in a single

Real-Time Inverse Kinematics: The Return of the Jacobian 2

step, the movements are dissipated over the whole chain
which results in a more realistic looking posture.

By their nature, iterative-based techniques are generally
slower at producing desirable result when compared to
their analytical counterparts. However the problem with
the analytical methods is their lack of scalability. Fedor
[Fedo03] explores this trade-off between speed, accuracy
and scalability in an IK solver. One of the results from
this work demonstrates that differential-based numerical
solutions, although slower than both CCD and analytical
techniques, provide better results for larger chains. This
highlights the importance of refining numerical
techniques such that we maintain accuracy and
scalability but drive solution time down.

One such solution proposed by Tang et al [Tang99]
makes use of the SHAKE algorithm [Ryck77] to achieve
a fast iterative-based IK solver. This technique treats a
hierarchical structure as point masses that are related by
system constraints. This is in contrast to the
Jacobian-based technique that encapsulates the
articulated information and thereby provides us the
cohesion between links for free.

In order to achieve a desired end-effector location, the
mass points of the SHAKE system are adjusted per
cycled until a global goal has been reached. This
includes meeting a threshold of acceptable error on the
constraints. However because of the lack of node
dependency of the algorithm, normally the points will
lose their distance relationships between each other. To
counter this issue, correcting forces are iteratively
applied to each point to reassert cohesion between links
therefore the accuracy of parent-child distances directly
effects solver time. Without a reasonable level of
accuracy at this point, the appearance of rigid links
moving about each other would occur. This is an issue
that the Jacobian-based techniques are not affected by.

The time complexity of the SHAKE algorithm is
suggested by Tang et al to be O(n2) with respect to the
number of constraints. However since each link in a
hierarchical chain requires a constraint to impose
cohesion, the time to solve a system is also minimally
O(n2) with respect to the number of links in the chain.
The inclusion of additional system constraints such as
joint angle limits has a further detrimental effect on
solution time therefore making the algorithm less
applicable to real-time applications as the number of
links increase.

Another real-time IK technique proposed by Shin et al
[Shin01] that is used for computer puppetry makes use
of a hybrid solution. This technique attempts to use
analytical solutions where possible, except in cases
where a large amount of body posturing is required,
where a numerical implementation is invoked. The
numerical solver only acts upon the IK chain defined

between the root and the upper body while the analytical
solver is used for the limbs of the character.

The hybrid use of IK solvers used by Shin et al
demonstrates a good method for performing real-time IK
however the analytical aspect assumes some knowledge
about the character’s structure [Lee99, Tola96]. This
means that the overall IK technique is not a general one
that can be applied to arbitrary IK chains. The other
potential problem with the hybrid technique is similar to
the CCD techniques in that not all joint angles are
updated simultaneously which means unrealistic and
unproportional posture configurations could result.

From the research done in the field of real-time IK, it is
apparent that analytical solutions by themselves are just
not scalable enough to meet much of the demands of
modern computer-based IK problems. Therefore
numerical techniques are used as either a substitute or in
serial with an analytical solution which serves to
highlight the importance of having fast numerical
solutions. Furthermore these solutions should operate on
the whole hierarchical structure equally to avoid
unrealistic postures. These are the issues we address
with our Jacobian-based approach for real-time IK.

PRIMARIES

Kinematics

The application of kinematic algorithms for character
animation is used to posture articulated creatures based
on a simple definition of joint angles and limb lengths.
These creatures may take practically any form from
humanoid bipedal characters to quadruped animals to
just about anything that can be imagined using a
hierarchal structure.

Structures described using a hierarchical form are
defined using a parent-child system similar to that of tree
structures. In the case of computer characters, each rigid
limb of the structure is a child node in the tree whose
parent node provides a reference point from which it is
described. The parents are themselves child nodes of
limbs above in the hierarchy and this recursive
relationship continues up to a root node. The parent of
the root node is effectively taken as the global frame of
reference and defined as such.

At the other end of the tree are leaf nodes which are
children that have no descendants of their own. An
End-effector in terms of kinematic chains is any node
within the hierarchy that an animator wishes to directly
position, for example to interact with the environment.
End-effectors are commonly the leaf nodes of an
articulated structure as it is the feet and hands that
generally interact with the world.

Real-Time Inverse Kinematics: The Return of the Jacobian 3

The definition of each node within the structure is
simply an offset from its parent’s local centre of
reference, a rotation about a locally defined axis and an
object to display. In the case of rigid body animation,
the limbs are non-prismatic so the offset parameters are
considered as constants. Therefore in order to define a
character’s posture the orientation parameters are the
only changeable settings plus the global position of the
root node. Figure 1.1 illustrates a humanoid hierarchal
structure where the root node is the Hips whose children
are the Chest, LeftHip and RightHip limbs. End-
effectors of the articulated character in Figure 1.1 consist
of the Head, Hands and Feet.

There are two distinct variations of kinematic control
called forward and backward (or inverse) which are used
to achieve very different goals. However in many areas
of character animation they coexist to aid in the
production of a complete structural definition. These are
described in detail in the following subsections.

Forward Kinematics
From the definition of nodes within a hierarchy there are
very few parameters to set for each node, namely an
orientation and offset from its parent. Specifying all of
these parameters for each node within the hierarchy is
termed forward kinematics.

When calculating the complete posture of a character,
the defined parameters of parent nodes effect the
absolute locations of its children thereby creating a
propagation effect of parent settings. The rippling effect
of parameters starts with the root and spreads outwards
through the hierarchy to its children, grandchildren, and
so on. Therefore by the time a leaf node is reached, its
absolute location is calculated based on its local
orientation and offset plus all of its ancestors’ local
orientations and offsets. This leads to Equation 1.1 for
defining forward kinematic structures where θ represents
the complete set of orientation values for a structure and �

 is the global position of a given limb in the hierarchy.

)(θfX = (1.1)

An advantage of hierarchically defined structures lies in
the ability to locally orientate a character’s limbs by
setting its local orientations thereby eliminating
problems of aligning and maintaining segment
relationships. The principle of forward kinematics
allows a character’s posture to be easily set up using a
parameter copy of a similarly structured character which
will result in a good natural looking pose albeit perhaps
not entirely accurate to the environment.

A limitation of the forward kinematic technique is the
inability to easily position limbs at absolute positions in
space, for example to touch an object in space. This
drawback arises because a limb is only orientated locally
with respect to its parent therefore the absolute position
depends on all of its parents. For short child-parent
relationships from the desired limb to the root (termed a
chain) this issue is not too much of a problem because it
is possible to image the path and with a little foresight
set the orientation values of the limbs. However for
larger chains, this requires much trial and error to get a
realistic posture. This is where inverse kinematics (IK)
techniques prove to be an invaluable tool in character
animation.

Inverse Kinematics

The principle behind inverse kinematics reverses that of
forward kinematics and as opposed to determining
absolute limb positions given joint orientations, joint
orientations are calculated based on absolute limb
positions. Usually only the leaf nodes need to be
positioned in space. However, any limb within the
hierarchy can be position using this technique.

The usefulness of this tool becomes apparent when
characters interact with the environment, like grasping a
mug, because instead of imaging what the chain will
look like in order to configure the character as in the
case of forward kinematics, all inverse kinematics

��� ���
�	��
�
���

�������

����� �������

� � ��� ���
�
� ����� ���
�
�

� � ��� � �����

Figure 1.1: Hierarchically Defined Humanoid Character

Real-Time Inverse Kinematics: The Return of the Jacobian 4

requires is the location of the mug in space. The
mathematical representation of the inverse kinematics
technique is defined in Equation 1.2.

)(1 Xf −=θ (1.2)

Through the combined use of forward and backward
kinematics, animators have the freedom and flexibility to
pose characters easily. However, inverse kinematics is
not as simple a process as forward kinematics and much
work has gone into finding a quick and accurate solution
to the problem. The next section presents our approach.

OUR INVERSE KINEMATICS SOLUTION

Jacobian Inverse Kinematics

Our implementation of inverse kinematics is based upon
the well-established Jacobian technique. The objective
of this technique is to incrementally change joint
orientations from a stable starting position towards a
configuration state that will result in the required
end-effector being located at the desired position in
absolute space. The amount of incremental change on
each iteration is defined by the relationship between the
partial derivatives of the joint angles, θ, and the
difference between the current location of the end
effector, X, and the desired position, Xd. The link
between these two sets of parameters leads to the system
Jacobian, J. This is a matrix that has dimensionality
(m x n) where m is the spatial dimensional of X and n is
the size of the joint orientation set, θ. The Jacobian is
derived from Equation 1.1 as follows. Taking partial
derivatives of Equation 1.1:

 θθ
����� ��

= (1.3)
where

 �
�� � �
	

∂
∂

= (1.4)

Rewriting Equation 1.3 in a form similar to inverse
kinematics (Equation 1.2) results in Equation 1.5. This
form of the problem transforms the under-defined
system into a linear one that can be solved using iterative
steps.

dXJd 1−=θ (1.5)

The problem now is that Equation 1.5 requires the
inversion of the Jacobian matrix. However because of
the under-defined problem that the inverse kinematics
technique suffers from, the Jacobian is very rarely
square. Therefore, in our implementation we have used
the right-hand generalised pseudo-inverse to overcome
the non-square matrix problem, as given in equation 1.6.

Generating the pseudo-inverse of the Jacobian in this
way can lead to inaccuracies in the resulting inverse that
need to be reduced. Any inaccuracies of the inverse
Jacobian can be detected by multiplying it with the
original Jacobian then subtracting the result from the
identity matrix. A magnitude error can be determined by
taking the second norm of the resulting matrix multiplied
by dX, as outlined in Equation 1.7. If the error proves
too big then dX can be decreased until the error falls
within an acceptable limit.

An overview of the algorithm we used to implement an
iterative inverse kinematics solution is as follows:

1) Calculate the difference between the goal position

and the actual position of the end-effector:

XXdX g −=

2) Calculate the Jacobian matrix using the current
joint angles: (using Equation 1.4)

3) Calculate the pseudo-inverse of the Jacobian:
11)(−− = TT JJJJ (1.6)

4) Determine the error of the pseudo-inverse

dXJJIerror)(1−−= (1.7)

5) If error > e then
2/dXdX =

restart at step 4
6) Calculate the updated values for the joint

orientations and use these as the new current
values:

dXJ 1−+= θθ
7) Using forward kinematics determine whether the

new joint orientations position the end-effector close
enough to the desired absolute location. If the
solution is adequate then terminate the algorithm
otherwise go back to step 1.

The computational demand of the algorithm is relatively
high over a number of iterations, so well-defined
character hierarchies are advantageous. This means that
each node in the articulation is defined by the minimum
number of degrees of freedom (DOF) required thereby
making θ as small as possible. For example, pivot joints
such as an elbow would only be modelled using a single
DOF whereas a ball and socket joint like the shoulder
would need 3 Euler DOFs to represent the range of
possible movements.

The use of well-defined hierarchies further helps to
prevent the inverse kinematics solver from producing
unnatural-looking postures. However this still does not
cover all of the potential unnatural poses the solver can
return. In order to restrict the IK solver to the orientation
space of only possible character configurations, joint
orientation restrictions can be enforced within the scope
of the existing algorithm. The simplest way of
incorporating such constraints is to crop the joint angles.

Real-Time Inverse Kinematics: The Return of the Jacobian 5

This requires Step 6 of the algorithm to be modified in
the following way:

6) Calculate the updated values for the joint

orientations and use these as the new current
values:

��
��
�

+
=

− dXJ

upperbound

lowerbound

1θ
θ

otherwise

upperbounddXJif

lowerbounddXJif

>+
<+

−

−

1

1

θ
θ

The time to complete the IK algorithm for a given
end-effector is an unknown quantity due to an arbitrary
number of iterations required. However the time to
complete a single iteration is constant with respect to the
dimensionality of X and θ which is unchanged under a
complete execution of the algorithm. Therefore by
placing an upper limit on the number of iterations we can
set a maximum time boundary for the algorithm to return
in. If the solver reaches the limit then the algorithm
returns the closest result it has seen.

In 3-dimensional space, the dimensionality of X in a
Jacobian-based inverse kinematics solver is generally
either 3 or 6. The 6-dimensional X vector is normally
used as it contains both positional and orientation
information whereas a 3-dimensional vector only
contains positional information for an end-effector.

From the inverse kinematics algorithm outlined above, it
is clear that the 3-dimensional X vector is quicker over
its counterpart and should always be used when
orientation is not required. However there are times that
orientation is required but it is still possible to use the
3-dimensional vector which is demonstrated in our
application of the algorithm present later.

To see how much of a cost difference there is between
the two sizes of X vector, the corresponding complexity
analysis of them is illustrated in the following section.

Complexity Analysis Of The X Vector

So far we have not specified what technique is used to
perform the inverse of the square matrix JJT that forms
part of the pseudo-inverse of the Jacobian (Equation
1.6). Depending on whether the X vector is either a 6- or
3-dimensional vector, the JJT matrix will have
dimensionality (6 x 6) or (3 x 3) respectively. For the
3-dimensioned matrix an analytical solution is readily
derivable however the larger matrix is better suited with
a numerical solution. For our purposes we have used an
LU decomposition algorithm for the (6 x 6) matrix and
analytical inversion for the (3 x 3) matrix. The
complexities of both techniques are now outlined.

LU Decomposition and Analytical Inversion
LU decomposition can be used to determine the inverse
of a square matrix by using the matrix identity, AA-1 = I,

where I is an identity matrix (and in this case it has
dimensionality (6 x 6)). The application of LU
decomposition to this equation requires matrix A to be
split into 2 further matrices that have the form of lower
and upper matrices as illustrated in Equation 1.8.

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

	

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

	

==

*000

**00

***0

1***

01**

001*

0001

�����

�����

LUA

(1.8)

Our algorithm for decomposing the original (6 x 6)
matrix A into its upper and lower components is given in
Appendix A. From this code, the complexity of the
decomposition can be calculated as being 151
floating-point operations (flops): 55 multiplications, 16
divisions and 80 additions & subtractions.

The decomposition of A into the two matrices allows the
original matrix identity to be rewritten into the form of
Equation 1.9, which can be easily solved.

ILUA =−1 => IUAL =−)(1

=> ILY = (1.9a)

YUA =∧ −1 (1.9b)

The first step is to solve Y from Equation 1.9a which
rewrites into a set of n linear equations where n is the
number of cols/rows in the inverse matrix; in this case,
n=6. Due to the nature of the lower matrix, the n linear
equations are already in the form that allows a simple
forward substitution technique to be applied. Once
Equation 1.9a has been solved, Equation 1.9b can be
solved to find A-1 using a similar technique that also
results in a set of n linear equations. Again, because of
the form of the upper matrix, the resulting simultaneous
equations can be solved using a backward substitution
algorithm. Appendix B gives the code we used to solve
the equations in Equation 1.9.

The complexity for this part of the inverse algorithm for
a (6 x 6) matrix is calculated at 468 flops: 180
multiplications, 36 divisions and 252 additions &
subtractions.

Adding together the analysis of the two parts of the LU
decomposition results in the total complexity of 619
flops for a (6 x 6) matrix inversion.

In comparison, the analytical inversion of a (3 x 3)
matrix is given in Equation 1.10. This inversion can be
encoded using the fragment of C++ source code given in
Appendix C. The complexity of this is 51 flops: 36

Real-Time Inverse Kinematics: The Return of the Jacobian 6

multiplications, 1 division and 14 additions &
subtractions.

)()()(201121100222102012012112221100

011011002100012011202110

120002100220220022101220

021112012201022112212211

1

222120

121110

020100

rrrrrrrrrrrrrrr

rrrrrrrrrrrr

rrrrrrrrrrrr

rrrrrrrrrrrr

rrr

rrr

rrr

−+−+−

�
�
�

�

�

�
�
�

�

�

−−−
−−−
−−−

=�
�
�

�

�

�
�
�

�

� −

 (1.10)

The decision to use an analytical solver for the smaller
matrix and LU decomposition for the larger one is
demonstrated in the Figure 1.2. The results given in
Figure 1.2 were obtained using a matrix with all
elements non-zero so the analytical technique was
unable to make use of zeros to cut off the co-factor
expansions. This is a valid assumption because it would
be most unlikely that the (6 x 6) matrix that needs to be
inverted in the pseudo-inverse would actually contain
any zeros.

Figure 1.2 shows the analytical approach to solving
matrix inversion is only better for matrices that have
dimensionality equal to or less than 3. After this size,
the number of flops required to solve an analytical
inverse increases in a cubic fashion with respect to
dimensionality whereas the LU technique increases at
the lower squared rate. This analysis justifies the use of
an analytical solution for the (3 x 3) matrix while using
LU decomposition for the inversion of the larger (6 x 6)
matrix.

Calculating The Jacobian

If the Jacobian definition of Equation 1.4 is divided by a
differential time element, the resulting equivalence
provides a mapping between angular velocities in state
space, θ, and linear velocities in Cartesian space, X. This
result is illustrated in equation 1.11.

θθ ��)(JX = (1.11)

In the case of a 6-dimensional X vector, X� consists of
linear velocity, V, and angular velocity, Ω, components,
whereas the 3-dimensional X vector only includes the
linear velocity. Both the linear velocity and angular
velocity are with respect to a global frame of reference
as too are the partial derivatives of the Jacobian. The
Jacobian linking the linear and angular velocity of the
end-effector, with the intermediary local angular
velocities, is given in equation 1.12, where there are i
DOFs in the IK chain.

�
�
�
�
�

�

	

�

�

�
�

	

�

�

=�
�

	

�

�

Ω

i

i

i

aaa

bbbV

θ

θ
θ

�

2

1

21

21

,...,,

,...,,
 (1.12)

In Equation 1.12, the a components are of the local axes
for a given link transformed into the global frame of
reference. The b elements of the Jacobian are the cross
products of the corresponding a axis with the spatial
difference between the global origin of the current limb
and the absolute location of the end of the articulation,
Pe (Equation 1.14). The DOFs within the state space are
normally ordered such that limbs from the root are

0

2000

4000

6000

8000

10000

12000

14000

16000

2 2.5 3 3.5 4 4.5 5 5.5 6
Dimension of Square Matrix

N
o

of
 fl

op
s

LU

Analytical

0

50

100

150

200

250

300

350

2 2. 5 3 3. 5 4

Figure 1.2: Demonstration of the complexity of solving a square matrix using an analytical

and LU decomposition technique.

Real-Time Inverse Kinematics: The Return of the Jacobian 7

considered first followed by their children, following this
pattern to the end of the chain. Using this pattern, the
orientation values of the required axes for each limb can
be obtained from a transformation matrix, 0Tj, that
converts points defined in the limb’s local orientation
into a global position. Equation 1.13 illustrates this for
the jth limb in the IK chain (note that this assumes a
right-handed coordinate system):
 ��

����=
1000

0 jzjyjxj
j

Paaa
T (1.13)

The parameter Pj in Equation 1.13 also gives the global
position of the origin of the limb thereby aiding in the
determination of the b components in Equation 1.14.

)(jei PPab −×= (1.14)

Using the chaining principle for calculating the
transforms of the local axes into a global reference frame
(0Tj =

0T1 x 1T2 x … x j-1Tj.), the direct implementation of
this subsection in 3-dimensional space yields a constant
complexity. Assuming that each link has 3 DOFs, the
complexity associated with each limb in the IK chain is
given by 162 flops: 98 multiplications and 64 additions
& subtractions. The assumption of 3 DOFs does not add
a great deal of complexity if it is an overestimate since
each DOF contributes only 9 flops to the overall result
(where the 9 flops is the calculation of the cross
product).

Determining The Pseudo-Inverse Of The Jacobian

Using the complexity derivation of the inversion of a
square matrix from the above sections, the complexity of
the pseudo-inverse of the Jacobian, as given in
Equation 1.6, can be easy calculated. Table 1.1 outlines
the number of flops required to calculate the pseudo-
inverse depending on the size of the X vector. The
variable n is the size of the state space, θ (i.e. the sum of
all the links’ DOFs). It should also be noted that there is
no inclusion of complexity to calculate the transpose of
matrices when they are required as this can be handled at
no extra cost be simply swapping out indexing
parameters.

Size of Matrix

Operation
(3 x n)

3D X Vector
(6 x n)

6D X Vector
TJJA = 18n - 9 72n - 36

1−= AB 51 619

BJ T 15n 33n

11)(−− = TT JJJJ 33n + 42 105n + 583

Table 1.1: Number of flops required to calculate the
pseudo-inverse of a non-square matrix.

Complexity Of The Whole IK Solver

The complexity of a single loop of the IK algorithm
described above can be derived using the complexity
analyses of the smaller parts of the algorithm already
determined. This is shown in Table 1.2 where m is the
number of inner loops executed at stage 5 of our
algorithm.

As Table 1.2 illustrates the use of a 3-dimensional
X vector appears to be about 2½ times less
computationally demanding than its 6-dimensional
counterpart. Considering only the major factor of the
complexity, which is the size of the state space, n, the
3-dimensional X vector should be 238.9% quicker than
the alternative. However, the complexity of each
algorithm is not only dependent on the size of the state
space but also on the number of inner loops which are
required to make the inversion of the Jacobian stable
enough to provide meaningful results. Therefore it
needs to be shown that the use of a smaller Jacobian in
the 3-dimensional X vector case does not adversely
affect the pseudo-inverse. This does not appear to be the
case as illustrated with the empirical dataset present in
the following section.

So, since the smaller X vector can be shown to be less
computationally demanding by a significant factor, it
raises the question of whether the smaller X vector can
be used even when orientation is important? The
following section proves this is possible

Size of X Vector
Algorithm Stage

3 6

1. Calc. increment 3 flops 6 flops
2. Calc. Jacobian 162 flops 162 flops
3. Calc. Pseudo-Inverse 33n + 42 flops 105n + 583 flops
4. Check for convergence 18n + 15 flops 72n + 66 flops

5. Reduce � � 18m flops 72m flops
6. Update joint angles 6n flops 12n flops
7. Calc. new position 38n flops 38n flops

Total 95n + 18m + 252 flops 227n + 72m + 817 flops
Table 1.2: Complexity analysis of our Jacobian based IK solver

Real-Time Inverse Kinematics: The Return of the Jacobian 8

USING THE HALF- OVER THE FULL-JACOBIAN

An obvious application of the half-Jacobian is in
applications that do not discriminate against the
orientation of the final link in an inverse kinematics
chain. In applications of inverse kinematics where the
orientation of the end-effector has little consequence, the
3-dimensional X vector should always be used to reduce
the computation effort required. For example, when
configuring a spider’s legs using IK, because the spider
effectively walks on the tips of its legs, the orientation of
this end point is immaterial therefore only the
3-dimensional X vector would be required. As
illustrated in Table 1.2, using the full-sized Jacobian in
such cases would be less efficient than the half-sized
Jacobian.

Another, more subtle, application of the half-sized X
vector is in situations where the penultimate link in the
IK chain has unlimited and full use of all 3 DOFs (in 3
dimensional space). In this scenario the first step is to
calculate the position of the penultimate link based on
the desired position and orientation of the final node.
The 3-dimensional X vector can then be used to position
the penultimate node in the chain. Once this is done the
desired orientation of the final node can be specified
thereby allowing the correct end configuration of the
chain.

Other applications where the half-size Jacobian would
prove a better technique to employ over the full-size
version is in situations of low resolution modelling. For
example, if a complex articulated model is being
animated as a background entity in a scene, it would be
advantageous to switch to the quicker half-Jacobian to
solve its configuration. This means that more avatars
can be animated in the background of a scene.

There are many other applications where the half-sized
Jacobian could substitute for the traditional full-sized
version. Currently we have applied the quick
half-Jacobian inverse kinematic solver to motion capture
retargetting and IK-driven character walking. Both of
these applications can easily run in real-time as
demonstrated in the following section which describes
the latter of our applications.

IK-GENERATED HUMANIOD WALKING

The coupling of a procedural model and an inverse
kinematics solver provides the basic building blocks
needed to generate the walking motion of a computer
character. The procedural model describes the path
through which the foot travels during a stride while the
IK solver positions (and orientates) the foot along this
path over time. The task of tracing the foot along the
path would initially appear to require the full-sized
Jacobian, inherently requiring the foot to be orientated in
a forward facing direction. Without the orientation of

the foot taken into account, there are an infinite number
of anatomically correct positions the heel could take in
order to meet a simple positional constraint. This is
possible because the hip joint for a leg can rotate about
the axis of the femur approximately ±90 degrees from
the forward facing pose, as illustrated in Figure 1.3.

Figure 1.3: Infinite number of positional solutions to
fixing a heel plant without regard to the orientation of

the foot. The purple ring shows the location of all
possible knee positions.

From the evidence of Figure 1.3, it would seem that the
full-sized Jacobian is the only choice of IK solver to
drive the walking motion of a humanoid character.
However, by realising that in the course of a walking
motion, any large hip joint rotations result in unnatural
postures, additional constraints can be added to restrict
movement to only plausible ranges. This would allow
the smaller Jacobian to be used to calculate the position
of the heal and thus simultaneously reduce the potential
for orientation error and increase the performance of the
solver.

This approach has been used in our implementation of an
IK-driven humanoid character. The following sections
present results and comparisons with the conventional
full-Jacobian for both performance and realism.

Real-Time Inverse Kinematics: The Return of the Jacobian 9

Generating Motion

Our IK-driven character walker, called MovingIK, is
separated into two main layers. At the bottom level
there is the Animation Layer that includes the inverse
kinematics engine and the procedural stride. Sitting
above this level is the Control Layer that sets up the
parameters required by the Animation Layer. Both
layers are outlined below. The coupling between the two
layers to produce a walking motion is described after the
Control layer.

The Animation Layer
The inverse kinematics component of the Animation
layer was implemented as a switchable module so that
either the half- or the full-sized Jacobian could be easily
used. The implementation of the IK solver is a direct
encoding of the algorithm described above in the
Jacobian Inverse Kinematics section.

The source for the procedural stride model in our
application comes from a simple mathematical equation
that is illustrated in Equation 1.15. The graphical
representation of the procedural stride is illustrated in
Figure 1.4 where a complete cycle ranges between 0 and
3π.

If � ≤ π
)cos(1 xY −=

else ��
���� +−=

2
cos1

x
Y

π
 (1.15)

0.0

1.0

0.5

0 π 2π 3π
Stride Time

R
el

at
iv

e
H

ei
gh

t

Figure 1.4: Graph of procedural stride based on

Equation 1.15

Over uneven terrain this curve is rotated to make the end
points of it match up with the height of the heel at the
start and the height of the ground at the end of the walk
cycle.

Along with the procedural model used to drive the
character’s foot through the air, we have a pre-flight
stage that rolls the foot from a heel supporting phase to a
complete foot supporting phase. This uses the inverse
kinematics algorithm to simultaneously plant the heel of

the character and gravitate the toes towards the ground.
This extra bit of the walking cycle increases the
realistic-looking nature of the resulting animation and
gives us the ability to model the complete foot as
opposed to just the heel. On overview of this procedure
is outlined in Figure 1.5 and Table 1.3.

The Control Layer
The responsibility of the control source is to read input
from an analogue source that is control by the user and
provide the Animation layer with all of the initial values
it requires to generate a motion. Such parameters
include stride length, stride speed, direction of travel and
details about the terrain immediately surrounding the
character in order to rotate the stride curve.

Using the values that the Control Level passes down, the
Animation layer generates the walking stride. This first
includes the pre-flight motion followed by the actual
heel flight using the procedural model.

Making the Character Walk
There are two cases under which the character can move
forward; walking in a straight line or turning. The
Control layer uses input from either an analogue joystick
or keyboard to determine the way the character moves.
If there is no sideways movements then the walking
forward technique is used otherwise a turning action is
executed.

• Move the character forwards
When the Control later receives a joystick movement it
calculates the stride length and speed based on the
analogue input. The maximum stride length is half the
leg length plus the distance the trailing leg is from the
hips in a horizontal direction. The hips of the character
only move half this distance because each leg only
moves once for every 2 complete walking cycles (i.e. left
leg cycle followed by a right leg cycle).

The stride time represents the temporal window used to
complete stage (a) of the walking cycle of Figure 1.5.
The time to complete stage (b) of Figure 1.5 is
dependent on the distance the front toes are from the
ground at the end of the first stage. Using the distance
between the ground and the toes, the hips of the
character are moved by an equal magnitude along the
direction of travel. The time to perform the final stage is
calculated using this distance value and the velocity of
the character from stage (a). Such a timing system is
used to decouple the animation speed from the physical
frame rate.

While walking forward, the leg that will be trailing
behind is fixed to the floor by the toes of the foot while
the heel of the foot leading is lifted off the ground and
follows the procedural path given in Equation 1.15 in the
vertical direction. The other dimensional components

Real-Time Inverse Kinematics: The Return of the Jacobian 10

are driven in a direction parallel to the direction of the
walking direction. A linear percentage of time is used to
determine how far along the path the foot should be and
the Inverse Kinematics solver is used to position the heel
to that point, while in a separate application of the solver
the toes are clamped to the floor for the trailing foot.

Once the toes of the back foot are clamped to the ground
there is enough freedom within the constraints of the
human body for the back heel to be lower than the toes
and hence penetrate the floor. In order to eliminated this
impossible pose, the position of the back heel is checked
against the height of the floor at that point. If the heel is
lower than the floor a separate algorithm is used to
calculate the position that the heel would have to be in

such that the position of the toes are maintained but
allowing the heel to be repositioned onto the surface of
the floor. Similarly, when the front heel is positioned
along the curve, there is the possibility that the toes of
the foot will penetrate the floor so this is checked and
adjusted to reposition them just on the surface while
maintaining the heel position.

When the appropriate amount of time has transpired for
the first stage of the step cycle, the heel of the front foot
will be in contact with the floor as will the trailing toes
and it is time to initiate the second stage. The purpose of
stage (b) is to maintain both the current heel and toe
plants and gravitate the toes on the front foot towards the
ground while still moving the character in a forward

(a) Start of walk cycle (b) Final part of walk (c) Start walk cycle again on other foot

Figure 1.5: Demonstration of the cycles implementing in our system. Each frame represents the start of the cycle
with the arrows pointing in the direction of travel the node will take until it reaches the start of the next part of the

cycle. The red triangles represent plants of the character’s limbs.

Stage
Description

(a) (b)

Starting Configuration
• Left Foot Both heels and toes are planted on

the floor
Toes are planted on the floor

• Right Foot Toes are planted on the floor Heel is planted on the floor

Movement 1. Hips move forward,
2. Right heel is advanced

forward through the air,
3. Only the left toes remain

planted.

1. Hips move forward,
2. Right toes are gravitated

towards the floor,
3. Left toes remain planted to

the floor
Table 1.3: Illustration of the 2 stage walk cycle where the initial configuration is with the left foot in front and the

right foot behind the body.

Real-Time Inverse Kinematics: The Return of the Jacobian 11

direction. At this stage, the front heels and back toes
remained clamped to the floor while the hips continue to
move. The front ankle orientation is also adjusted
linearly such that at the end of the new temporal window
the toes will be in contact with the floor too and thus
preparing the character to start a step cycle on the other
foot.

• Making the character turn
The foot planting phase of making the character walk in
an arc is similar to that used to make it walk in a straight
line. The vertical component of the leg lifting process is
identical to that of walking in a straight line. However
instead of making the character walk in a straight line in
the direction the character is facing, both the hips and the
leading leg’s motion is described as a curve in the
horizontal plane. The curves that the limbs follow are
describe by a centre of rotation, radius and angular
difference. With the turning radius determined based on
the sharpness of turn, the centre of the circle can be
calculated as well as an angular difference which will be
linearly interpolated to give the corresponding position
in time. We will now outline how the turning centre of
the arc is calculated.

The equation for a circle whose origin is located at
(Cx, Cy) is given in Equation 1.16 where

�
≤ θ ≤ � π �

)sin,cos(),(θθ rCyrCxYX +−=

(1.16)

The character’s location must lie on this circle so (X, Y)
can be taken to be the current location of the hips
projected onto the horizontal plane. This allows
Equation 1.16 to be rearranged to give Equation 1.17
thereby making the centre of the circle the subject:

)sin,cos(),(θθ rYrXCyCx −+=

 (1.17)

This still leaves θ as an unknown variable in the system
of equations, but θ can be calculated by realising that it
is the amount the character has already turned from a
fixed axis. In our work, we take this axis to be the
global Z-axis and therefore θ can be calculated by taking
the arc sin of the X component of the normalised
forward-facing direction vector of the character. When
the character is turning in an anticlockwise direction
about the Y-axis, this angle can be directly plugged into
the above equation. However when the character is to
turn in a clockwise direction about the Y-axis, the angle
needs to be negated. This process is illustrated in
Figure 1.6.

Once the centre of rotation has been determined, the next
stage is to calculate how many degrees the character
should be rotated. This is achieved though the use of
Equation 1.18 that links properties of an arc where � is

the arc length, θ is the number of radians subscribing the
arc, and � is the radius of the arc.

 θrs = (1.18)

With the radius fixed and setting the arc length to be the
magnitude displacement that the hips would undergo if
the character were walking in a straight line, the number
of radians that will be covered during the walking cycle
can be calculated. This value is linearly interpolated
over the time step of the walking phase to calculate the
position and orientation of the hips using Equation 1.16.
The other path that comes directly from these
calculations is that of the leading heel. A similar process
is used to determine the corresponding values that the
heel will take during the walking cycle where the centre
of orbit is used from the calculation of the hips, as
illustrated in Figure 1.7. The radius of the arcs used to
drive the heels of the character differs from that of the
hips only by a factor of the difference between the model
centre of the hips and the femur. The combination of
these arc paths result in the ability to smoothly turn the
character in either direction at varying rates dependent
on changeable parameters such as radius and stride
length.

The algorithm to make the character turn is effectively
the same as that of walking forward but instead of
assuming that the character’s hips and leading leg will be
moved in a straight line, the path is an arc determined
using the technique outlined. This allows the direct
application of the heel and toe plants that are used in the
forward walking algorithm.

�

�

�
(Out of the page)

�
	
�

���	�������

���������

)(sin 1 dx−−=θ
(turning clockwise about Y-Axis)

θcosrXCx +=
θsinrYCy −=

θ

Figure 1.6: Calculating the centre of rotation for

turning a character.

Real-Time Inverse Kinematics: The Return of the Jacobian 12

• Other Motion Details
The character further has the ability to walk smoothly
over uneven terrains. This is achieved by determining
the ideal position of the hips at the end of a given walk
cycle based on the height of the floor at that point and
the character’s leg length. This distance is linearly
interpolated with the current height of the hips during the
cycle along with a small sinusoidal wave that gives the
effect of the hips naturally moving up and down as the
character moves. This difference is also added into the
heel height equation for position so that the graph
illustrating the heel height in Figure 1.4 is effectively
skewed to take into account any varying levels in the
ground. The hips are also rotated about the vertical to
give the effect of the hips swinging. Both the added hip
cycles can be adjusted to give different behaviours – i.e.
smaller or larger hip swings.

Weights on the IK chain are also implemented in the IK
solver to provide a way of controlling how much each
limb within the IK chain is altered comparatively. For
example, to prevent the heel of the trailing foot leaving
the ground too quickly after it’s anchor is removed, more
weighting is applied to changing the femur and tibia
limbs.

Empirical Results

The results in Table 1.4 are obtained from running
MovingIK on a Pentium 4 1.4GHz processor with a
GeForce2 Ultra. There was a maximum iteration count
imposed on the IK solver for the outer loop of 200 cycles

while the inner loop was subject to a 20-cycle ceiling.
These limits were determined by the empirical running
of the IK solver to determine over what limits a solution
was very rarely found. The character driven by the user
is made up of 18 hierarchical segments where only
naturally-occurring DOFs within the human body were
permitted. The constraints on each remaining DOF were
further limited to joint angles within the scope of normal
human movement.

The results given were obtained by driving the character
around both flat and uneven terrains. In the case of the
uneven terrain, several randomly-generated surfaces
were used (including a flight of steps) and the overall
results were obtained by averaging the results. Each of
the uneven terrains had the same number of vertices and
polygons in the model (64,082 polygons compared to 2
polygons for even terrain). The character displayed was
that of either a stick figure or a 3D model consisting of
11,101 polygons.

MovingIK was not optimised to use either the half or full
Jacobian but instead provided the ability to switch
between the two techniques at run-time. There are three
different configurations possible to switch between. The
first two modes use only the half or full Jacobian
respectively to calculate the configuration of the
character to position the leading foot and trailing toes.
The third mode uses a hybrid approach that uses the full
Jacobian to determine the configuration of the leading
foot and the half Jacobian to anchor the trailing toes.

The empirical results of driving the computer character
within MovingIK are illustrated in Table 1.4. It should

�

�

�
(Out of the page)

�

�

�

�

θ

θ

Figure 1.7: Calculation of the amount to rotate the character about based on the radius of the circle and stride length.

The inner dotted circles represent the path the inside leg would take if it is the leading leg while the dotted outer path is
that of the outside leg when leading. The red circles (left) are those when the character turns right while the blue circles

(right) represents the character turning left.

Real-Time Inverse Kinematics: The Return of the Jacobian 13

be noted that during a single frame, MovingIK solves
two IK chains – one for each leg. An illustration of
MovingIK is given in Figure 1.8.

The speed-up factor between the full Jacobian and the
half Jacobian, based on the empirical average time per
iteration, is 238.5% which when compared to the
analytical computed result of 238.9% reinforces the
advantages of using the half Jacobian over the full
Jacobian whenever possible.

A further conclusion that can be obtained from these
results is that the use of the full Jacobian does not
necessarily make the IK solver any more stable. This
logical conclusion comes form the fact that the analytical
speed-up factor calculated assumes that the inner loop is
executed an equal number of times for both algorithms.
If this were not the case then the empirical results would
show a larger difference in speed up factor due to one
algorithm executing the inner loop more times than the
other.

Conclusions & Future Work

From this analysis of the empirical and analytical results,
there is no proven stability advantage over using the full
Jacobian. Therefore there is a definite argument for
using the half-sized Jacobian when only the position of
an end-effector is needed.

As we have shown, there is also scope for using the
quicker half Jacobian for limited domains when
orientation is required as well as position. Although we
have only demonstrated this for a walking motion, this
represents one of the most fundamental movements in
computer character animation. In other work we have
also applied this technique to the field of motion capture
retargeting with similarly successful results in both
speed and visual accuracy. There are many other
conceivable domains in which this application can be
used by placing extra dynamic constraints on joint angles
to prevent the orientation from deviating too much from

a natural-looking configuration. An arm, for example,
would prove just as suitable a subject for the technique.

The advantages of using dynamic constraints to
transform an orientation and positional IK problem into a
position-only task are a speed-up factor of about 238%.
There is also no extra cost to adding in constraints to the
half-sized Jacobian algorithm because its framework
already operates using joint restrictions. Effectively you
get the dynamic constraints for free in the
Jacobian-based IK solver.

We have already integrated our quick real-time inverse
kinematics solver into a motion capture retargeting
application where the next step will be to use the solver
to simultaneously individualise the character. For this
we are looking into the application of weighted IK
chains such that different parts of the articulation change
with a varying rate to the others. This would give rise to
the very simple and quick production of say injuries or
even varying character builds in computer figures.

IK Mode
Measurement

All Half Jacobian
(3D X Vector)

All Full Jacobian
(6D X Vector)

Hybrid Method

Flat Floor with
Stick Character

260 fps 95 fps 115 fps

Flat Floor with
Skeleton

140 fps 69 fps 83 fps

Uneven Terrain with
Stick Character

97 fps 54 fps 64 fps

Uneven Terrain with Skeleton
Character

75 fps 42 fps 53 fps

Average time to execute each
IK solver

0.24 ms 5.5 ms - - - -

Average Number of iterations

18.15 180 - - - -

Average time per iteration

0.013 ms 0.031 ms - - - -

Table 1.4: Empirical Results from MovingIK

Real-Time Inverse Kinematics: The Return of the Jacobian 14

REFERENCES

Chin96 K.W. Chin, “Closed-form and generalized
inverse kinematic solutions for animating the human
articulated structure.” , Bachelor's Thesis in Computer
Science, Curtin University of Technology, 1996
Crai55 J. J. Craig, “ Introduction to Robotics:
Mechanics and Control” , Addison-Wesley, 1955
Eber01 D. H. Eberly, “3D Game Engine Design” ,
Morgan Kaufmann, 2001
Fedo03 M. Fedor, “Application of Inverse Kinematics
for Skeleton Manipulation in Real-time” , International
Conference on Computer Graphics and Interactive
Techniques, p.203-212, 2003
Kwan00 C. Kwang-Jin, K. Hyeong-Seok, “On-line
Motion Retargetting” , The Journal of Visualization and
Computer Animation, Vol. 11, p.223-235, 2000
Lee99 J. Lee, S. Y. Shin, “A Hierarchical Approach to
Interactive Motion Editing for Human-Like Figures” ,
Siggraph 99, p.39-48, 1999
Paul88 R. P. Paul, B. Shimano, G. E. Mayer,
“Kinematic Control Equations for Simple Manipulators” ,
IEEE Transactions on System, Man & Cybernetics,
Vol. 11, No. 6, 1988
Ryck77 J. P. Ryckaert, G. Ciccotti, H. J. C. Berendsen,
“Numerical Integration of the Cartesian Equations of
Motions of a System with Constraints: Molecular
Dynamics of n-Alkanes” , Journal of Computational
Physics, Vol. 23 p.327-341, 1977

Shin01 H. J. Shin, J. Lee, M. Gleicher, S. Y. Shin,
“Computer Puppetry: An Importance-Based Approach” ,
ACM Transactions On Graphics, Vol. 20, No. 2,
p.67-94, April 2001
Tang99 W. Tang, M. Cavazza, D. Mountain, R.
Earnshaw, “A Constrained Inverse Kinematics
Technique for Real-time Motion Capture Animation” ,
The Visual Computer, Vol. 15, p.413-425, 1999
Tola96 D. Tolani, N. I. Badler, “Real-time Inverse
Kinematics of the Human Arm”, Presence, Vol. 5, No. 4,
p.393-401, 1996
Tola00 D. Tolani, A. Goswami, N. Badler, “Real-Time
Inverse Kinematics Techniques for Anthropomorphic
Limbs” , Graphics Models Vol. 62, No. 6, p.353-388,
2000
Wang91 L. Wang, C. Chen, “A Combined Optimisation
Method for Solving the Inverse Kinematics Problem of
Mechanical Manipulators” , IEEE Transactions on
Robotics & Applications, Vol. 7, No. 4, p.489-499, 1991
Welm93 C. Welman, “ Inverse kinematics and geometric
constraints for articulated figure manipulation” , Master
of Science Thesis, School of Computing Science, Simon
Fraser University, 1993
Watt92 A. Watt & M. Watt, “Advanced animation and
rendering techniques” , Addison-Wesley, 1992
Zhao94 J. Zhao, N. I. Badler, “ Inverse Kinematics
Positioning Using Nonlinear Programming for Highly
Articulated Figures” , ACM Transactions on Graphics,
Vol. 13, No. 4, p.313-336, 1994

Figure 1.8: Analogue joystick-controlled real-time IK over uneven terrain; green pyramids represent the intended

position of the leading foot while the red pyramids indicate desired location of the training toes.

Real-Time Inverse Kinematics: The Return of the Jacobian 15

APPENDIX A

C/C++ code snippet for performing the LU
decomposition process where um is the upper matrix, U,
lm is the lower matrix, L, and am is the original matrix,
A.

for (i=0; i<6; i++)
{
 um[0][i]=am[0][i];
 lm[i][0]=am[i][0]/um[0][0];
}

for (i=1; i<6; i++)
{
 for (j=i; j<6; j++)
 {
 sum=0;
 for (m=0; m<i; m++)
 sum+=(lm[i][m]*um[m][j]);
 um[i][j]=am[i][j]-sum;
 }

 lm[i][i]=1.0f;
 for (j=i+1; j<6; j++)
 {
 sum=0;
 for (m=0; m<i; m++)
 sum+=(lm[j][m]*um[m][i]);
 lm[j][i]=(am[j][i]-sum)/um[i][i];
 }
}

APPENDIX B

C/C++ code snippet for performing the forward and
backward substitution required to solve Equation 1.9.

for (i=0; i<6; i++)
{
 // Solved the ith column of ym
 for (j=0; j<6; j++)
 {
 sum=0;
 for (m=0; m<j; m++)
 sum+=(lm[j][m]*ym[m]);
 ym[j]=ident[j][i]-sum;
 }
 // Solved the ith column of inverse
 for (j=5; j>=0; j--)
 {
 sum=0;
 for (m=j+1; m<6; m++)
 sum+=(um[j][m]*inverse[m][i]);
 inverse[j][i]=(ym[j]-sum)/um[j][j];
 }
}

APPENDIX C

The following C/C++ code calculates an analytical
inverse of a general (3 x 3) dimension matrix, r.

float det=1/
(r[0][0]*(r[1][1]*r[2][2]-r[1][2]*r[2][1])
+r[0][1]*(r[1][2]*r[2][0]-r[1][0]*r[2][2])
+r[0][2]*(r[1][0]*r[2][1]-r[1][1]*r[2][0])
);

inverse[0][0]=
(r[1][1]*r[2][2]-r[2][1]*r[1][2])*det;
inverse[1][0]=
(r[2][0]*r[1][2]-r[1][0]*r[2][2])*det;
inverse[2][0]=
(r[1][0]*r[2][1]-r[2][0]*r[1][1])*det;

inverse[0][1]=
(r[2][1]*r[0][2]-r[0][1]*r[2][2])*det;
inverse[1][1]=
(r[0][0]*r[2][2]-r[2][0]*r[0][2])*det;
inverse[2][1]=
(r[2][0]*r[0][1]-r[0][0]*r[2][1])*det;

inverse[0][2]=
(r[0][1]*r[1][2]-r[1][1]*r[0][2])*det;
inverse[1][2]=
(r[1][0]*r[0][2]-r[0][0]*r[1][2])*det;
inverse[2][2]=
(r[0][0]*r[1][1]-r[1][0]*r[0][1])*det;

