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ABSTRACT 
 
Due to their scalability, numerical techniques often form 
part of an inverse kinematics solver.  However, because 
of their iterative nature, such methods can be slow.  So 
far research into the field of kinematics has failed to find 
a general non-numerical solution to the problem.  Many 
researchers have proposed hybrid techniques yet these 
still rely on a numerical aspect.  It is therefore important 
to find ways of using numerical techniques as efficiently 
as possible.  In this paper we take a look at the 
Jacobian-based IK solver and techniques that allow this 
method to be used as an efficient real-time IK solver. 
 
 
INTRODUCTION 
 
Inverse kinematics is used to determine a set of joint 
angles in an articulated structure based upon the position 
of a given node in the hierarchical structure.  The 
problem domain that is tackled by inverse kinematics 
solvers was first formulated in the mechanical 
engineering literature [Crai55] and more specifically 
research into the field of robotics.  We are interested in 
its application in computer character animation.  The 
issue that inverse kinematics attempts to resolve is to 
find a set of joint configurations of an articulated 
structure based upon a desirable end-effector location. 
 
There have been many varied techniques used as an 
inverse kinematics solver.  The fastest techniques, such 
as analytical, tend to suffer from poor scalability 
whereas the scalable techniques such as numerical 
iteration, suffer from poor solver times.  Many 
techniques that have been proposed to offer speed 
advantages utilise numerical solvers therefore it is 
important to consider ways that such techniques can be 
used efficiently.  A review of many of the present IK 
techniques is given in the following section. 
 
After a review of techniques, we take a look at what the 
actual problem IK techniques attempt to solve.  This is a 
primer to the material we subsequently present during 
which we look at the iterative Jacobian approach to 
inverse kinematics and discuss techniques that allow the 
method to used effectively.  The following section of the 
report presents a real-time application that drives a 

walking character around rough terrain to demonstrate 
the effectiveness of our Jacobian interpretation.  We end 
the paper by presenting and discussing the results of our 
work. 
 
 
RELATED WORK 
 
The problem posed of inverse kinematics has resulted in 
a variety of different techniques that can be used to yield 
a desirable result.  Of these techniques, 4 different 
categories of solver can be identified: 
geometric/analytical algorithms, cyclic co-ordinate 
descent (CCD), differential techniques and hybrid 
methods [Tola00] which mix together various aspects of 
the first three techniques. 
 
The geometric/analytical algorithms [Chin96, Kwan00, 
Paul88] tend to be very quick because they reduce the IK 
problem to a mathematical equation that need only be 
evaluated in a single step to produce a result.  The 
limitations of this class of solver become apparent in the 
case of large chains.  In such cases, the task of reducing 
the problem to a single-step mathematical equation is 
impractical.  Therefore geometric/analytical techniques 
tend to be less useful in the field of character animation. 
 
IK solvers that are based on CCD [Eber01, Wang91, 
Welm93] use an iterative approach that takes multiple 
steps towards a solution.  The steps that the solver takes 
are formed heuristically, therefore this step can be 
performed relatively quickly.  An example of a possible 
heuristic would be to minimise the angle between pairs 
of vectors created when projecting lines through the 
current node and end-effector and current node and 
desired location.  However, because the iterative step is 
heuristically driven, accuracy is normally the price paid 
for speed.  Another issue with this technique is that one 
joint angle is updated at a time as opposed to the 
complete hierarchical structure of differential-based 
techniques.  This has the undesirable and unrealistic 
result of earlier joints moving much more than later 
limbs in the IK chain. 
 
In a similar way to the CCD technique, 
differential-based techniques [Watt92, Zhao94] utilise an 
iterative approach that requires multiple steps to find a 
solution.  The steps that the algorithm makes are 
determined via the use of the system Jacobian that 
relates small changes in joint configurations to positional 
offsets.  Since all the joint angles are updated in a single 
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step, the movements are dissipated over the whole chain 
which results in a more realistic looking posture. 
 
By their nature, iterative-based techniques are generally 
slower at producing desirable result when compared to 
their analytical counterparts.  However the problem with 
the analytical methods is their lack of scalability.  Fedor 
[Fedo03] explores this trade-off between speed, accuracy 
and scalability in an IK solver.  One of the results from 
this work demonstrates that differential-based numerical 
solutions, although slower than both CCD and analytical 
techniques, provide better results for larger chains.  This 
highlights the importance of refining numerical 
techniques such that we maintain accuracy and 
scalability but drive solution time down. 
 
One such solution proposed by Tang et al [Tang99] 
makes use of the SHAKE algorithm [Ryck77] to achieve 
a fast iterative-based IK solver.  This technique treats a 
hierarchical structure as point masses that are related by 
system constraints.  This is in contrast to the 
Jacobian-based technique that encapsulates the 
articulated information and thereby provides us the 
cohesion between links for free. 
 
In order to achieve a desired end-effector location, the 
mass points of the SHAKE system are adjusted per 
cycled until a global goal has been reached.  This 
includes meeting a threshold of acceptable error on the 
constraints.  However because of the lack of node 
dependency of the algorithm, normally the points will 
lose their distance relationships between each other.  To 
counter this issue, correcting forces are iteratively 
applied to each point to reassert cohesion between links 
therefore the accuracy of parent-child distances directly 
effects solver time.  Without a reasonable level of 
accuracy at this point, the appearance of rigid links 
moving about each other would occur.  This is an issue 
that the Jacobian-based techniques are not affected by. 
 
The time complexity of the SHAKE algorithm is 
suggested by Tang et al to be O(n2) with respect to the 
number of constraints.  However since each link in a 
hierarchical chain requires a constraint to impose 
cohesion, the time to solve a system is also minimally 
O(n2) with respect to the number of links in the chain.  
The inclusion of additional system constraints such as 
joint angle limits has a further detrimental effect on 
solution time therefore making the algorithm less 
applicable to real-time applications as the number of 
links increase.   
 
Another real-time IK technique proposed by Shin et al 
[Shin01] that is used for computer puppetry makes use 
of a hybrid solution.  This technique attempts to use 
analytical solutions where possible, except in cases 
where a large amount of body posturing is required, 
where a numerical implementation is invoked.  The 
numerical solver only acts upon the IK chain defined 

between the root and the upper body while the analytical 
solver is used for the limbs of the character. 
 
The hybrid use of IK solvers used by Shin et al 
demonstrates a good method for performing real-time IK 
however the analytical aspect assumes some knowledge 
about the character’s structure [Lee99, Tola96].  This 
means that the overall IK technique is not a general one 
that can be applied to arbitrary IK chains.  The other 
potential problem with the hybrid technique is similar to 
the CCD techniques in that not all joint angles are 
updated simultaneously which means unrealistic and 
unproportional posture configurations could result. 
 
From the research done in the field of real-time IK, it is 
apparent that analytical solutions by themselves are just 
not scalable enough to meet much of the demands of 
modern computer-based IK problems.  Therefore 
numerical techniques are used as either a substitute or in 
serial with an analytical solution which serves to 
highlight the importance of having fast numerical 
solutions.  Furthermore these solutions should operate on 
the whole hierarchical structure equally to avoid 
unrealistic postures.  These are the issues we address 
with our Jacobian-based approach for real-time IK. 
 
 
PRIMARIES 
 
Kinematics 
 
The application of kinematic algorithms for character 
animation is used to posture articulated creatures based 
on a simple definition of joint angles and limb lengths.  
These creatures may take practically any form from 
humanoid bipedal characters to quadruped animals to 
just about anything that can be imagined using a 
hierarchal structure.   
 
Structures described using a hierarchical form are 
defined using a parent-child system similar to that of tree 
structures.  In the case of computer characters, each rigid 
limb of the structure is a child node in the tree whose 
parent node provides a reference point from which it is 
described.  The parents are themselves child nodes of 
limbs above in the hierarchy and this recursive 
relationship continues up to a root node.  The parent of 
the root node is effectively taken as the global frame of 
reference and defined as such.   
 
At the other end of the tree are leaf nodes which are 
children that have no descendants of their own.  An 
End-effector in terms of kinematic chains is any node 
within the hierarchy that an animator wishes to directly 
position, for example to interact with the environment.  
End-effectors are commonly the leaf nodes of an 
articulated structure as it is the feet and hands that 
generally interact with the world. 
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The definition of each node within the structure is 
simply an offset from its parent’s local centre of 
reference, a rotation about a locally defined axis and an 
object to display.  In the case of rigid body animation, 
the limbs are non-prismatic so the offset parameters are 
considered as constants.  Therefore in order to define a 
character’s posture the orientation parameters are the 
only changeable settings plus the global position of the 
root node.  Figure 1.1 illustrates a humanoid hierarchal 
structure where the root node is the Hips whose children 
are the Chest, LeftHip and RightHip limbs.  End-
effectors of the articulated character in Figure 1.1 consist 
of the Head, Hands and Feet. 
 
There are two distinct variations of kinematic control 
called forward and backward (or inverse) which are used 
to achieve very different goals.  However in many areas 
of character animation they coexist to aid in the 
production of a complete structural definition.  These are 
described in detail in the following subsections. 
 
 
Forward Kinematics 
From the definition of nodes within a hierarchy there are 
very few parameters to set for each node, namely an 
orientation and offset from its parent.  Specifying all of 
these parameters for each node within the hierarchy is 
termed forward kinematics.   
 
When calculating the complete posture of a character, 
the defined parameters of parent nodes effect the 
absolute locations of its children thereby creating a 
propagation effect of parent settings.  The rippling effect 
of parameters starts with the root and spreads outwards 
through the hierarchy to its children, grandchildren, and 
so on.  Therefore by the time a leaf node is reached, its 
absolute location is calculated based on its local 
orientation and offset plus all of its ancestors’  local 
orientations and offsets.  This leads to Equation 1.1 for 
defining forward kinematic structures where θ represents 
the complete set of orientation values for a structure and �

 is the global position of a given limb in the hierarchy. 
 

)(θfX =    (1.1) 
 
An advantage of hierarchically defined structures lies in 
the ability to locally orientate a character’s limbs by 
setting its local orientations thereby eliminating 
problems of aligning and maintaining segment 
relationships.  The principle of forward kinematics 
allows a character’s posture to be easily set up using a 
parameter copy of a similarly structured character which 
will result in a good natural looking pose albeit perhaps 
not entirely accurate to the environment. 
 
A limitation of the forward kinematic technique is the 
inability to easily position limbs at absolute positions in 
space, for example to touch an object in space.  This 
drawback arises because a limb is only orientated locally 
with respect to its parent therefore the absolute position 
depends on all of its parents.  For short child-parent 
relationships from the desired limb to the root (termed a 
chain) this issue is not too much of a problem because it 
is possible to image the path and with a little foresight 
set the orientation values of the limbs.  However for 
larger chains, this requires much trial and error to get a 
realistic posture.  This is where inverse kinematics (IK) 
techniques prove to be an invaluable tool in character 
animation. 
 
 
Inverse Kinematics 
 
The principle behind inverse kinematics reverses that of 
forward kinematics and as opposed to determining 
absolute limb positions given joint orientations, joint 
orientations are calculated based on absolute limb 
positions.  Usually only the leaf nodes need to be 
positioned in space.  However, any limb within the 
hierarchy can be position using this technique.   
 
The usefulness of this tool becomes apparent when 
characters interact with the environment, like grasping a 
mug, because instead of imaging what the chain will 
look like in order to configure the character as in the 
case of forward kinematics, all inverse kinematics 
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Figure 1.1: Hierarchically Defined Humanoid Character 
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requires is the location of the mug in space.  The 
mathematical representation of the inverse kinematics 
technique is defined in Equation 1.2. 
 

 )(1 Xf −=θ    (1.2) 
 
Through the combined use of forward and backward 
kinematics, animators have the freedom and flexibility to 
pose characters easily.  However, inverse kinematics is 
not as simple a process as forward kinematics and much 
work has gone into finding a quick and accurate solution 
to the problem.  The next section presents our approach. 
 
 
OUR INVERSE KINEMATICS SOLUTION 
 
Jacobian Inverse Kinematics 
 
Our implementation of inverse kinematics is based upon 
the well-established Jacobian technique.  The objective 
of this technique is to incrementally change joint 
orientations from a stable starting position towards a 
configuration state that will result in the required 
end-effector being located at the desired position in 
absolute space.  The amount of incremental change on 
each iteration is defined by the relationship between the 
partial derivatives of the joint angles, θ, and the 
difference between the current location of the end 
effector, X, and the desired position, Xd.  The link 
between these two sets of parameters leads to the system 
Jacobian, J.  This is a matrix that has dimensionality 
(m x n) where m is the spatial dimensional of X and n is 
the size of the joint orientation set, θ.  The Jacobian is 
derived from Equation 1.1 as follows.  Taking partial 
derivatives of Equation 1.1: 
 

 θθ
����� ��

=   (1.3) 
where 

 �
�� � �
	



∂
∂

=    (1.4) 

 
Rewriting Equation 1.3 in a form similar to inverse 
kinematics (Equation 1.2) results in Equation 1.5.  This 
form of the problem transforms the under-defined 
system into a linear one that can be solved using iterative 
steps. 
 

dXJd 1−=θ    (1.5) 
 
The problem now is that Equation 1.5 requires the 
inversion of the Jacobian matrix.  However because of 
the under-defined problem that the inverse kinematics 
technique suffers from, the Jacobian is very rarely 
square.  Therefore, in our implementation we have used 
the right-hand generalised pseudo-inverse to overcome 
the non-square matrix problem, as given in equation 1.6. 
 

Generating the pseudo-inverse of the Jacobian in this 
way can lead to inaccuracies in the resulting inverse that 
need to be reduced.  Any inaccuracies of the inverse 
Jacobian can be detected by multiplying it with the 
original Jacobian then subtracting the result from the 
identity matrix.  A magnitude error can be determined by 
taking the second norm of the resulting matrix multiplied 
by dX, as outlined in Equation 1.7.  If the error proves 
too big then dX can be decreased until the error falls 
within an acceptable limit. 
 
An overview of the algorithm we used to implement an 
iterative inverse kinematics solution is as follows: 
 
1) Calculate the difference between the goal position 

and the actual position of the end-effector: 

XXdX g −=  

2) Calculate the Jacobian matrix using the current 
joint angles: (using Equation 1.4) 

3) Calculate the pseudo-inverse of the Jacobian: 
11 )( −− = TT JJJJ   (1.6) 

4) Determine the error of the pseudo-inverse 

dXJJIerror )( 1−−=  (1.7) 

5) If error > e then  
2/dXdX =  

restart at step 4 
6) Calculate the updated values for the joint 

orientations and use these as the new current 
values: 

dXJ 1−+= θθ  
7) Using forward kinematics determine whether the 

new joint orientations position the end-effector close 
enough to the desired absolute location.  If the 
solution is adequate then terminate the algorithm 
otherwise go back to step 1. 

 
The computational demand of the algorithm is relatively 
high over a number of iterations, so well-defined 
character hierarchies are advantageous.  This means that 
each node in the articulation is defined by the minimum 
number of degrees of freedom (DOF) required thereby 
making θ as small as possible.  For example, pivot joints 
such as an elbow would only be modelled using a single 
DOF whereas a ball and socket joint like the shoulder 
would need 3 Euler DOFs to represent the range of 
possible movements. 
 
The use of well-defined hierarchies further helps to 
prevent the inverse kinematics solver from producing 
unnatural-looking postures.  However this still does not 
cover all of the potential unnatural poses the solver can 
return.  In order to restrict the IK solver to the orientation 
space of only possible character configurations, joint 
orientation restrictions can be enforced within the scope 
of the existing algorithm.  The simplest way of 
incorporating such constraints is to crop the joint angles.  
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This requires Step 6 of the algorithm to be modified in 
the following way: 
 
6) Calculate the updated values for the joint 

orientations and use these as the new current 
values: 

��
��
�

+
=

− dXJ

upperbound

lowerbound

1θ
θ     

otherwise

upperbounddXJif

lowerbounddXJif

>+
<+

−

−

1

1

θ
θ

 

 
The time to complete the IK algorithm for a given 
end-effector is an unknown quantity due to an arbitrary 
number of iterations required.  However the time to 
complete a single iteration is constant with respect to the 
dimensionality of X and θ which is unchanged under a 
complete execution of the algorithm.  Therefore by 
placing an upper limit on the number of iterations we can 
set a maximum time boundary for the algorithm to return 
in.  If the solver reaches the limit then the algorithm 
returns the closest result it has seen.   
 
In 3-dimensional space, the dimensionality of X in a 
Jacobian-based inverse kinematics solver is generally 
either 3 or 6.  The 6-dimensional X vector is normally 
used as it contains both positional and orientation 
information whereas a 3-dimensional vector only 
contains positional information for an end-effector. 
 
From the inverse kinematics algorithm outlined above, it 
is clear that the 3-dimensional X vector is quicker over 
its counterpart and should always be used when 
orientation is not required.  However there are times that 
orientation is required but it is still possible to use the 
3-dimensional vector which is demonstrated in our 
application of the algorithm present later. 
 
To see how much of a cost difference there is between 
the two sizes of X vector, the corresponding complexity 
analysis of them is illustrated in the following section. 
 
 
Complexity Analysis Of The X Vector 
 
So far we have not specified what technique is used to 
perform the inverse of the square matrix JJT that forms 
part of the pseudo-inverse of the Jacobian (Equation 
1.6).  Depending on whether the X vector is either a 6- or 
3-dimensional vector, the JJT matrix will have 
dimensionality (6 x 6) or (3 x 3) respectively.  For the 
3-dimensioned matrix an analytical solution is readily 
derivable however the larger matrix is better suited with 
a numerical solution.  For our purposes we have used an 
LU decomposition algorithm for the (6 x 6) matrix and 
analytical inversion for the (3 x 3) matrix.  The 
complexities of both techniques are now outlined. 
 
LU Decomposition and Analytical Inversion 
LU decomposition can be used to determine the inverse 
of a square matrix by using the matrix identity, AA-1 = I, 

where I is an identity matrix (and in this case it has 
dimensionality (6 x 6)).  The application of LU 
decomposition to this equation requires matrix A to be 
split into 2 further matrices that have the form of lower 
and upper matrices as illustrated in Equation 1.8. 
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LUA  

(1.8) 
 
Our algorithm for decomposing the original (6 x 6) 
matrix A into its upper and lower components is given in 
Appendix A.  From this code, the complexity of the 
decomposition can be calculated as being 151 
floating-point operations (flops): 55 multiplications, 16 
divisions and 80 additions & subtractions. 
 
The decomposition of A into the two matrices allows the 
original matrix identity to be rewritten into the form of 
Equation 1.9, which can be easily solved. 
 

ILUA =−1   => IUAL =− )( 1  

=> ILY =   (1.9a) 

YUA =∧ −1  (1.9b) 
 
The first step is to solve Y from Equation 1.9a which 
rewrites into a set of n linear equations where n is the 
number of cols/rows in the inverse matrix; in this case, 
n=6.  Due to the nature of the lower matrix, the n linear 
equations are already in the form that allows a simple 
forward substitution technique to be applied.  Once 
Equation 1.9a has been solved, Equation 1.9b can be 
solved to find A-1 using a similar technique that also 
results in a set of n linear equations.  Again, because of 
the form of the upper matrix, the resulting simultaneous 
equations can be solved using a backward substitution 
algorithm.  Appendix B gives the code we used to solve 
the equations in Equation 1.9. 
 
The complexity for this part of the inverse algorithm for 
a (6 x 6) matrix is calculated at 468 flops: 180 
multiplications, 36 divisions and 252 additions & 
subtractions.   
 
Adding together the analysis of the two parts of the LU 
decomposition results in the total complexity of 619 
flops for a (6 x 6) matrix inversion. 
 
In comparison, the analytical inversion of a (3 x 3) 
matrix is given in Equation 1.10.  This inversion can be 
encoded using the fragment of C++ source code given in 
Appendix C.  The complexity of this is 51 flops: 36 
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multiplications, 1 division and 14 additions & 
subtractions. 
 

)()()( 201121100222102012012112221100

011011002100012011202110

120002100220220022101220

021112012201022112212211

1

222120

121110

020100

rrrrrrrrrrrrrrr

rrrrrrrrrrrr

rrrrrrrrrrrr

rrrrrrrrrrrr

rrr

rrr

rrr

−+−+−

�
�
�

�

�

�
�
�

�

�

−−−
−−−
−−−

=�
�
�

�

�

�
�
�

�

� −

     (1.10) 
 
The decision to use an analytical solver for the smaller 
matrix and LU decomposition for the larger one is 
demonstrated in the Figure 1.2.  The results given in 
Figure 1.2 were obtained using a matrix with all 
elements non-zero so the analytical technique was 
unable to make use of zeros to cut off the co-factor 
expansions.  This is a valid assumption because it would 
be most unlikely that the (6 x 6) matrix that needs to be 
inverted in the pseudo-inverse would actually contain 
any zeros. 
 
Figure 1.2 shows the analytical approach to solving 
matrix inversion is only better for matrices that have 
dimensionality equal to or less than 3.  After this size, 
the number of flops required to solve an analytical 
inverse increases in a cubic fashion with respect to 
dimensionality whereas the LU technique increases at 
the lower squared rate.  This analysis justifies the use of 
an analytical solution for the (3 x 3) matrix while using 
LU decomposition for the inversion of the larger (6 x 6) 
matrix. 
 
 

Calculating The Jacobian 
 
If the Jacobian definition of Equation 1.4 is divided by a 
differential time element, the resulting equivalence 
provides a mapping between angular velocities in state 
space, θ, and linear velocities in Cartesian space, X.  This 
result is illustrated in equation 1.11.  
 

θθ �� )(JX =    (1.11) 
 

In the case of a 6-dimensional X vector, X� consists of 
linear velocity, V, and angular velocity, Ω, components, 
whereas the 3-dimensional X vector only includes the 
linear velocity.  Both the linear velocity and angular 
velocity are with respect to a global frame of reference 
as too are the partial derivatives of the Jacobian.  The 
Jacobian linking the linear and angular velocity of the 
end-effector, with the intermediary local angular 
velocities, is given in equation 1.12, where there are i 
DOFs in the IK chain. 
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In Equation 1.12, the a components are of the local axes 
for a given link transformed into the global frame of 
reference.  The b elements of the Jacobian are the cross 
products of the corresponding a axis with the spatial 
difference between the global origin of the current limb 
and the absolute location of the end of the articulation, 
Pe (Equation 1.14).  The DOFs within the state space are 
normally ordered such that limbs from the root are 
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Figure 1.2: Demonstration of the complexity of solving a square matrix using an analytical 

and LU decomposition technique. 



Real-Time Inverse Kinematics: The Return of the Jacobian      7 

considered first followed by their children, following this 
pattern to the end of the chain.  Using this pattern, the 
orientation values of the required axes for each limb can 
be obtained from a transformation matrix, 0Tj, that 
converts points defined in the limb’s local orientation 
into a global position.  Equation 1.13 illustrates this for 
the jth limb in the IK chain (note that this assumes a 
right-handed coordinate system): 
 ��

����=
1000

0 jzjyjxj
j

Paaa
T  (1.13) 

 
The parameter Pj in Equation 1.13 also gives the global 
position of the origin of the limb thereby aiding in the 
determination of the b components in Equation 1.14. 
 

)( jei PPab −×=   (1.14) 

 
Using the chaining principle for calculating the 
transforms of the local axes into a global reference frame 
(0Tj = 

0T1 x 1T2 x … x j-1Tj.), the direct implementation of 
this subsection in 3-dimensional space yields a constant 
complexity.  Assuming that each link has 3 DOFs, the 
complexity associated with each limb in the IK chain is 
given by 162 flops: 98 multiplications and 64 additions 
& subtractions.  The assumption of 3 DOFs does not add 
a great deal of complexity if it is an overestimate since 
each DOF contributes only 9 flops to the overall result 
(where the 9 flops is the calculation of the cross 
product). 
 
 
Determining The Pseudo-Inverse Of The Jacobian 
 
Using the complexity derivation of the inversion of a 
square matrix from the above sections, the complexity of 
the pseudo-inverse of the Jacobian, as given in 
Equation 1.6, can be easy calculated.  Table 1.1 outlines 
the number of flops required to calculate the pseudo-
inverse depending on the size of the X vector.  The 
variable n is the size of the state space, θ (i.e. the sum of 
all the links’  DOFs).  It should also be noted that there is 
no inclusion of complexity to calculate the transpose of 
matrices when they are required as this can be handled at 
no extra cost be simply swapping out indexing 
parameters. 

 
Size of Matrix 

Operation 
(3 x n) 

3D X Vector 
(6 x n) 

6D X Vector 
TJJA =   18n -   9  72n -  36 

1−= AB          51        619 

BJ T   15n  33n 

11 )( −− = TT JJJJ   33n +  42 105n + 583 

Table 1.1: Number of flops required to calculate the 
pseudo-inverse of a non-square matrix. 

 
 
Complexity Of The Whole IK Solver 
 
The complexity of a single loop of the IK algorithm 
described above can be derived using the complexity 
analyses of the smaller parts of the algorithm already 
determined.  This is shown in Table 1.2 where m is the 
number of inner loops executed at stage 5 of our 
algorithm. 
 
As Table 1.2 illustrates the use of a 3-dimensional 
X vector appears to be about 2½ times less 
computationally demanding than its 6-dimensional 
counterpart.  Considering only the major factor of the 
complexity, which is the size of the state space, n, the 
3-dimensional X vector should be 238.9% quicker than 
the alternative.  However, the complexity of each 
algorithm is not only dependent on the size of the state 
space but also on the number of inner loops which are 
required to make the inversion of the Jacobian stable 
enough to provide meaningful results.  Therefore it 
needs to be shown that the use of a smaller Jacobian in 
the 3-dimensional X vector case does not adversely 
affect the pseudo-inverse.  This does not appear to be the 
case as illustrated with the empirical dataset present in 
the following section. 
 
So, since the smaller X vector can be shown to be less 
computationally demanding by a significant factor, it 
raises the question of whether the smaller X vector can 
be used even when orientation is important?  The 
following section proves this is possible 
 
 

Size of X Vector 
Algorithm Stage 

3 6 

1. Calc. increment                3 flops                6 flops 
2. Calc. Jacobian              162 flops              162 flops 
3. Calc. Pseudo-Inverse  33n +        42 flops 105n +       583 flops 
4. Check for convergence  18n +        15 flops  72n +        66 flops 

5. Reduce � �         18m       flops        72m       flops 
6. Update joint angles   6n             flops  12n             flops 
7. Calc. new position  38n             flops  38n             flops 

Total  95n + 18m + 252 flops 227n + 72m + 817 flops 
Table 1.2: Complexity analysis of our Jacobian based IK solver 
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USING THE HALF- OVER THE FULL-JACOBIAN 
 
An obvious application of the half-Jacobian is in 
applications that do not discriminate against the 
orientation of the final link in an inverse kinematics 
chain.  In applications of inverse kinematics where the 
orientation of the end-effector has little consequence, the 
3-dimensional X vector should always be used to reduce 
the computation effort required.  For example, when 
configuring a spider’s legs using IK, because the spider 
effectively walks on the tips of its legs, the orientation of 
this end point is immaterial therefore only the 
3-dimensional X vector would be required.  As 
illustrated in Table 1.2, using the full-sized Jacobian in 
such cases would be less efficient than the half-sized 
Jacobian. 
 
Another, more subtle, application of the half-sized X 
vector is in situations where the penultimate link in the 
IK chain has unlimited and full use of all 3 DOFs (in 3 
dimensional space).  In this scenario the first step is to 
calculate the position of the penultimate link based on 
the desired position and orientation of the final node.  
The 3-dimensional X vector can then be used to position 
the penultimate node in the chain.  Once this is done the 
desired orientation of the final node can be specified 
thereby allowing the correct end configuration of the 
chain. 
 
Other applications where the half-size Jacobian would 
prove a better technique to employ over the full-size 
version is in situations of low resolution modelling.  For 
example, if a complex articulated model is being 
animated as a background entity in a scene, it would be 
advantageous to switch to the quicker half-Jacobian to 
solve its configuration.  This means that more avatars 
can be animated in the background of a scene. 
 
There are many other applications where the half-sized 
Jacobian could substitute for the traditional full-sized 
version.  Currently we have applied the quick 
half-Jacobian inverse kinematic solver to motion capture 
retargetting and IK-driven character walking.  Both of 
these applications can easily run in real-time as 
demonstrated in the following section which describes 
the latter of our applications. 
 
 
IK-GENERATED HUMANIOD WALKING 
 
The coupling of a procedural model and an inverse 
kinematics solver provides the basic building blocks 
needed to generate the walking motion of a computer 
character.  The procedural model describes the path 
through which the foot travels during a stride while the 
IK solver positions (and orientates) the foot along this 
path over time.  The task of tracing the foot along the 
path would initially appear to require the full-sized 
Jacobian, inherently requiring the foot to be orientated in 
a forward facing direction.  Without the orientation of 

the foot taken into account, there are an infinite number 
of anatomically correct positions the heel could take in 
order to meet a simple positional constraint.  This is 
possible because the hip joint for a leg can rotate about 
the axis of the femur approximately ±90 degrees from 
the forward facing pose, as illustrated in Figure 1.3. 
 

 
Figure 1.3: Infinite number of positional solutions to 
fixing a heel plant without regard to the orientation of 

the foot.  The purple ring shows the location of all 
possible knee positions. 

 
From the evidence of Figure 1.3, it would seem that the 
full-sized Jacobian is the only choice of IK solver to 
drive the walking motion of a humanoid character.  
However, by realising that in the course of a walking 
motion, any large hip joint rotations result in unnatural 
postures, additional constraints can be added to restrict 
movement to only plausible ranges.  This would allow 
the smaller Jacobian to be used to calculate the position 
of the heal and thus simultaneously reduce the potential 
for orientation error and increase the performance of the 
solver. 
 
This approach has been used in our implementation of an 
IK-driven humanoid character.  The following sections 
present results and comparisons with the conventional 
full-Jacobian for both performance and realism. 
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Generating Motion 
 
Our IK-driven character walker, called MovingIK, is 
separated into two main layers.  At the bottom level 
there is the Animation Layer that includes the inverse 
kinematics engine and the procedural stride.  Sitting 
above this level is the Control Layer that sets up the 
parameters required by the Animation Layer.  Both 
layers are outlined below.  The coupling between the two 
layers to produce a walking motion is described after the 
Control layer. 
 
 
The Animation Layer 
The inverse kinematics component of the Animation 
layer was implemented as a switchable module so that 
either the half- or the full-sized Jacobian could be easily 
used.  The implementation of the IK solver is a direct 
encoding of the algorithm described above in the 
Jacobian Inverse Kinematics section. 
 
The source for the procedural stride model in our 
application comes from a simple mathematical equation 
that is illustrated in Equation 1.15.  The graphical 
representation of the procedural stride is illustrated in 
Figure 1.4 where a complete cycle ranges between 0 and 
3π. 
 

If � ≤ π 
)cos(1 xY −=  
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���� +−=
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Figure 1.4: Graph of procedural stride based on 

Equation 1.15 
 
Over uneven terrain this curve is rotated to make the end 
points of it match up with the height of the heel at the 
start and the height of the ground at the end of the walk 
cycle. 
 
Along with the procedural model used to drive the 
character’s foot through the air, we have a pre-flight 
stage that rolls the foot from a heel supporting phase to a 
complete foot supporting phase.  This uses the inverse 
kinematics algorithm to simultaneously plant the heel of 

the character and gravitate the toes towards the ground.  
This extra bit of the walking cycle increases the 
realistic-looking nature of the resulting animation and 
gives us the ability to model the complete foot as 
opposed to just the heel.  On overview of this procedure 
is outlined in Figure 1.5 and Table 1.3. 
 
 
The Control Layer 
The responsibility of the control source is to read input 
from an analogue source that is control by the user and 
provide the Animation layer with all of the initial values 
it requires to generate a motion.  Such parameters 
include stride length, stride speed, direction of travel and 
details about the terrain immediately surrounding the 
character in order to rotate the stride curve. 
 
Using the values that the Control Level passes down, the 
Animation layer generates the walking stride.  This first 
includes the pre-flight motion followed by the actual 
heel flight using the procedural model. 
 
 
Making the Character Walk 
There are two cases under which the character can move 
forward; walking in a straight line or turning.  The 
Control layer uses input from either an analogue joystick 
or keyboard to determine the way the character moves.  
If there is no sideways movements then the walking 
forward technique is used otherwise a turning action is 
executed. 
 
• Move the character forwards  
When the Control later receives a joystick movement it 
calculates the stride length and speed based on the 
analogue input.  The maximum stride length is half the 
leg length plus the distance the trailing leg is from the 
hips in a horizontal direction.  The hips of the character 
only move half this distance because each leg only 
moves once for every 2 complete walking cycles (i.e. left 
leg cycle followed by a right leg cycle). 
 
The stride time represents the temporal window used to 
complete stage (a) of the walking cycle of Figure 1.5.  
The time to complete stage (b) of Figure 1.5 is 
dependent on the distance the front toes are from the 
ground at the end of the first stage.  Using the distance 
between the ground and the toes, the hips of the 
character are moved by an equal magnitude along the 
direction of travel.  The time to perform the final stage is 
calculated using this distance value and the velocity of 
the character from stage (a).  Such a timing system is 
used to decouple the animation speed from the physical 
frame rate. 
 
While walking forward, the leg that will be trailing 
behind is fixed to the floor by the toes of the foot while 
the heel of the foot leading is lifted off the ground and 
follows the procedural path given in Equation 1.15 in the 
vertical direction.  The other dimensional components 



Real-Time Inverse Kinematics: The Return of the Jacobian      10 

are driven in a direction parallel to the direction of the 
walking direction.  A linear percentage of time is used to 
determine how far along the path the foot should be and 
the Inverse Kinematics solver is used to position the heel 
to that point, while in a separate application of the solver 
the toes are clamped to the floor for the trailing foot. 
 
Once the toes of the back foot are clamped to the ground 
there is enough freedom within the constraints of the 
human body for the back heel to be lower than the toes 
and hence penetrate the floor.  In order to eliminated this 
impossible pose, the position of the back heel is checked 
against the height of the floor at that point.  If the heel is 
lower than the floor a separate algorithm is used to 
calculate the position that the heel would have to be in 

such that the position of the toes are maintained but 
allowing the heel to be repositioned onto the surface of 
the floor.   Similarly, when the front heel is positioned 
along the curve, there is the possibility that the toes of 
the foot will penetrate the floor so this is checked and 
adjusted to reposition them just on the surface while 
maintaining the heel position. 
 
When the appropriate amount of time has transpired for 
the first stage of the step cycle, the heel of the front foot 
will be in contact with the floor as will the trailing toes 
and it is time to initiate the second stage.  The purpose of 
stage (b) is to maintain both the current heel and toe 
plants and gravitate the toes on the front foot towards the 
ground while still moving the character in a forward 

  
(a) Start of walk cycle            (b) Final part of walk          (c) Start walk cycle again on other foot 

Figure 1.5:  Demonstration of the cycles implementing in our system.  Each frame represents the start of the cycle 
with the arrows pointing in the direction of travel the node will take until it reaches the start of the next part of the 

cycle.  The red triangles represent plants of the character’s limbs. 

Stage 
Description 

(a) (b) 

Starting Configuration   
• Left Foot Both heels and toes are planted on 

the floor 
Toes are planted on the floor 

• Right Foot Toes are planted on the floor Heel is planted on the floor 
 

Movement 1. Hips move forward, 
2. Right heel is advanced 

forward through the air, 
3. Only the left toes remain 

planted. 

1. Hips move forward, 
2. Right toes are gravitated 

towards the floor, 
3. Left toes remain planted to 

the floor 
Table 1.3:  Illustration of the 2 stage walk cycle where the initial configuration is with the left foot in front and the 

right foot behind the body. 
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direction.  At this stage, the front heels and back toes 
remained clamped to the floor while the hips continue to 
move.  The front ankle orientation is also adjusted 
linearly such that at the end of the new temporal window 
the toes will be in contact with the floor too and thus 
preparing the character to start a step cycle on the other 
foot. 
 
• Making the character turn 
The foot planting phase of making the character walk in 
an arc is similar to that used to make it walk in a straight 
line.  The vertical component of the leg lifting process is 
identical to that of walking in a straight line.  However 
instead of making the character walk in a straight line in 
the direction the character is facing, both the hips and the 
leading leg’s motion is described as a curve in the 
horizontal plane.  The curves that the limbs follow are 
describe by a centre of rotation, radius and angular 
difference.  With the turning radius determined based on 
the sharpness of turn, the centre of the circle can be 
calculated as well as an angular difference which will be 
linearly interpolated to give the corresponding position 
in time.  We will now outline how the turning centre of 
the arc is calculated. 
 
The equation for a circle whose origin is located at 
(Cx, Cy) is given in Equation 1.16 where 

�
≤ θ ≤ � π �  

 
)sin,cos(),( θθ rCyrCxYX +−=  

(1.16) 
 
The character’s location must lie on this circle so (X, Y) 
can be taken to be the current location of the hips 
projected onto the horizontal plane.  This allows 
Equation 1.16 to be rearranged to give Equation 1.17 
thereby making the centre of the circle the subject: 
 

)sin,cos(),( θθ rYrXCyCx −+=  

 (1.17) 
 
This still leaves θ as an unknown variable in the system 
of equations, but θ can be calculated by realising that it 
is the amount the character has already turned from a 
fixed axis.  In our work, we take this axis to be the 
global Z-axis and therefore θ can be calculated by taking 
the arc sin of the X component of the normalised 
forward-facing direction vector of the character.  When 
the character is turning in an anticlockwise direction 
about the Y-axis, this angle can be directly plugged into 
the above equation.  However when the character is to 
turn in a clockwise direction about the Y-axis, the angle 
needs to be negated.  This process is illustrated in 
Figure 1.6. 
 
Once the centre of rotation has been determined, the next 
stage is to calculate how many degrees the character 
should be rotated.  This is achieved though the use of 
Equation 1.18 that links properties of an arc where �  is 

the arc length, θ is the number of radians subscribing the 
arc, and �  is the radius of the arc. 
 
 θrs =    (1.18) 
 
With the radius fixed and setting the arc length to be the 
magnitude displacement that the hips would undergo if 
the character were walking in a straight line, the number 
of radians that will be covered during the walking cycle 
can be calculated.  This value is linearly interpolated 
over the time step of the walking phase to calculate the 
position and orientation of the hips using Equation 1.16.  
The other path that comes directly from these 
calculations is that of the leading heel.  A similar process 
is used to determine the corresponding values that the 
heel will take during the walking cycle where the centre 
of orbit is used from the calculation of the hips, as 
illustrated in Figure 1.7.  The radius of the arcs used to 
drive the heels of the character differs from that of the 
hips only by a factor of the difference between the model 
centre of the hips and the femur. The combination of 
these arc paths result in the ability to smoothly turn the 
character in either direction at varying rates dependent 
on changeable parameters such as radius and stride 
length. 
 
The algorithm to make the character turn is effectively 
the same as that of walking forward but instead of 
assuming that the character’s hips and leading leg will be 
moved in a straight line, the path is an arc determined 
using the technique outlined.  This allows the direct 
application of the heel and toe plants that are used in the 
forward walking algorithm. 
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Figure 1.6: Calculating the centre of rotation for 

turning a character. 
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• Other Motion Details 
The character further has the ability to walk smoothly 
over uneven terrains.  This is achieved by determining 
the ideal position of the hips at the end of a given walk 
cycle based on the height of the floor at that point and 
the character’s leg length.  This distance is linearly 
interpolated with the current height of the hips during the 
cycle along with a small sinusoidal wave that gives the 
effect of the hips naturally moving up and down as the 
character moves.  This difference is also added into the 
heel height equation for position so that the graph 
illustrating the heel height in Figure 1.4 is effectively 
skewed to take into account any varying levels in the 
ground.  The hips are also rotated about the vertical to 
give the effect of the hips swinging.  Both the added hip 
cycles can be adjusted to give different behaviours – i.e. 
smaller or larger hip swings. 
 
Weights on the IK chain are also implemented in the IK 
solver to provide a way of controlling how much each 
limb within the IK chain is altered comparatively.  For 
example, to prevent the heel of the trailing foot leaving 
the ground too quickly after it’s anchor is removed, more 
weighting is applied to changing the femur and tibia 
limbs. 
 
 
Empirical Results 
 
The results in Table 1.4 are obtained from running 
MovingIK on a Pentium 4 1.4GHz processor with a 
GeForce2 Ultra.  There was a maximum iteration count 
imposed on the IK solver for the outer loop of 200 cycles 

while the inner loop was subject to a 20-cycle ceiling.  
These limits were determined by the empirical running 
of the IK solver to determine over what limits a solution 
was very rarely found.  The character driven by the user 
is made up of 18 hierarchical segments where only 
naturally-occurring DOFs within the human body were 
permitted.  The constraints on each remaining DOF were 
further limited to joint angles within the scope of normal 
human movement. 
 
The results given were obtained by driving the character 
around both flat and uneven terrains.  In the case of the 
uneven terrain, several randomly-generated surfaces 
were used (including a flight of steps) and the overall 
results were obtained by averaging the results.  Each of 
the uneven terrains had the same number of vertices and 
polygons in the model (64,082 polygons compared to 2 
polygons for even terrain).  The character displayed was 
that of either a stick figure or a 3D model consisting of 
11,101 polygons. 
 
MovingIK was not optimised to use either the half or full 
Jacobian but instead provided the ability to switch 
between the two techniques at run-time.  There are three 
different configurations possible to switch between.  The 
first two modes use only the half or full Jacobian 
respectively to calculate the configuration of the 
character to position the leading foot and trailing toes.  
The third mode uses a hybrid approach that uses the full 
Jacobian to determine the configuration of the leading 
foot and the half Jacobian to anchor the trailing toes. 
 
The empirical results of driving the computer character 
within MovingIK are illustrated in Table 1.4.  It should 
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Figure 1.7: Calculation of the amount to rotate the character about based on the radius of the circle and stride length.  

The inner dotted circles represent the path the inside leg would take if it is the leading leg while the dotted outer path is 
that of the outside leg when leading.  The red circles (left) are those when the character turns right while the blue circles 

(right) represents the character turning left. 
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be noted that during a single frame, MovingIK solves 
two IK chains – one for each leg.  An illustration of 
MovingIK is given in Figure 1.8. 
 
The speed-up factor between the full Jacobian and the 
half Jacobian, based on the empirical average time per 
iteration, is 238.5% which when compared to the 
analytical computed result of 238.9% reinforces the 
advantages of using the half Jacobian over the full 
Jacobian whenever possible.   
 
A further conclusion that can be obtained from these 
results is that the use of the full Jacobian does not 
necessarily make the IK solver any more stable.  This 
logical conclusion comes form the fact that the analytical 
speed-up factor calculated assumes that the inner loop is 
executed an equal number of times for both algorithms.  
If this were not the case then the empirical results would 
show a larger difference in speed up factor due to one 
algorithm executing the inner loop more times than the 
other. 
 
 
Conclusions & Future Work 
 
From this analysis of the empirical and analytical results, 
there is no proven stability advantage over using the full 
Jacobian.  Therefore there is a definite argument for 
using the half-sized Jacobian when only the position of 
an end-effector is needed.   
 
As we have shown, there is also scope for using the 
quicker half Jacobian for limited domains when 
orientation is required as well as position.  Although we 
have only demonstrated this for a walking motion, this 
represents one of the most fundamental movements in 
computer character animation.  In other work we have 
also applied this technique to the field of motion capture 
retargeting with similarly successful results in both 
speed and visual accuracy.  There are many other 
conceivable domains in which this application can be 
used by placing extra dynamic constraints on joint angles 
to prevent the orientation from deviating too much from 

a natural-looking configuration.  An arm, for example, 
would prove just as suitable a subject for the technique. 
 
The advantages of using dynamic constraints to 
transform an orientation and positional IK problem into a 
position-only task are a speed-up factor of about 238%.  
There is also no extra cost to adding in constraints to the 
half-sized Jacobian algorithm because its framework 
already operates using joint restrictions.  Effectively you 
get the dynamic constraints for free in the 
Jacobian-based IK solver. 
 
 
We have already integrated our quick real-time inverse 
kinematics solver into a motion capture retargeting 
application where the next step will be to use the solver 
to simultaneously individualise the character.  For this 
we are looking into the application of weighted IK 
chains such that different parts of the articulation change 
with a varying rate to the others.  This would give rise to 
the very simple and quick production of say injuries or 
even varying character builds in computer figures. 
 
 

IK Mode 
Measurement 

All Half Jacobian 
(3D X Vector) 

All Full Jacobian 
(6D X Vector) 

Hybrid Method 

Flat Floor with  
Stick Character 

260 fps 95 fps 115 fps 

Flat Floor with  
Skeleton 

140 fps 69 fps 83 fps 

Uneven Terrain with  
Stick Character 

97 fps 54 fps 64 fps 

Uneven Terrain with Skeleton 
Character 

75 fps 42 fps 53 fps 

Average time to execute each 
IK solver 

0.24 ms 5.5 ms - - - - 

Average Number of iterations 
 

18.15 180 - - - - 

Average time per iteration 
 

0.013 ms 0.031 ms - - - - 

Table 1.4: Empirical Results from MovingIK 
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Figure 1.8: Analogue joystick-controlled real-time IK over uneven terrain; green pyramids represent the intended 

position of the leading foot while the red pyramids indicate desired location of the training toes. 
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APPENDIX A 
 
C/C++ code snippet for performing the LU 
decomposition process where um is the upper matrix, U, 
lm is the lower matrix, L, and am is the original matrix, 
A. 
 
for (i=0; i<6; i++) 
{ 
  um[0][i]=am[0][i]; 
  lm[i][0]=am[i][0]/um[0][0]; 
} 
 
for (i=1; i<6; i++) 
{ 
  for (j=i; j<6; j++) 
  { 
    sum=0; 
    for (m=0; m<i; m++) 
      sum+=(lm[i][m]*um[m][j]); 
    um[i][j]=am[i][j]-sum; 
  } 
 
  lm[i][i]=1.0f; 
  for (j=i+1; j<6; j++) 
  { 
    sum=0; 
    for (m=0; m<i; m++) 
      sum+=(lm[j][m]*um[m][i]); 
    lm[j][i]=(am[j][i]-sum)/um[i][i]; 
  } 
} 

 
 
APPENDIX B 
 
C/C++ code snippet for performing the forward and 
backward substitution required to solve Equation 1.9. 
 
for (i=0; i<6; i++) 
{ 
  // Solved the ith column of ym 
  for (j=0; j<6; j++)   
  { 
    sum=0; 
    for (m=0; m<j; m++) 
      sum+=(lm[j][m]*ym[m]); 
    ym[j]=ident[j][i]-sum; 
  } 
  // Solved the ith column of inverse 
  for (j=5; j>=0; j--)  
  { 
    sum=0; 
    for (m=j+1; m<6; m++) 
      sum+=(um[j][m]*inverse[m][i]); 
    inverse[j][i]=(ym[j]-sum)/um[j][j]; 
  } 
} 

 

APPENDIX C 
 
The following C/C++ code calculates an analytical 
inverse of a general (3 x 3) dimension matrix, r. 
 
float det=1/ 
(r[0][0]*(r[1][1]*r[2][2]-r[1][2]*r[2][1]) 
+r[0][1]*(r[1][2]*r[2][0]-r[1][0]*r[2][2]) 
+r[0][2]*(r[1][0]*r[2][1]-r[1][1]*r[2][0]) 
); 
 
inverse[0][0]= 
(r[1][1]*r[2][2]-r[2][1]*r[1][2])*det; 
inverse[1][0]= 
(r[2][0]*r[1][2]-r[1][0]*r[2][2])*det; 
inverse[2][0]= 
(r[1][0]*r[2][1]-r[2][0]*r[1][1])*det; 
 
inverse[0][1]= 
(r[2][1]*r[0][2]-r[0][1]*r[2][2])*det; 
inverse[1][1]= 
(r[0][0]*r[2][2]-r[2][0]*r[0][2])*det; 
inverse[2][1]= 
(r[2][0]*r[0][1]-r[0][0]*r[2][1])*det; 
 
inverse[0][2]= 
(r[0][1]*r[1][2]-r[1][1]*r[0][2])*det; 
inverse[1][2]= 
(r[1][0]*r[0][2]-r[0][0]*r[1][2])*det; 
inverse[2][2]= 
(r[0][0]*r[1][1]-r[1][0]*r[0][1])*det; 
 
 
 
 
 


