A Neural Oscillator Model of Auditory Selective Attention

Stuart N. Wrigley and Guy J. Brown

Speech and Hearing Research Group Department of Computer Science University of Sheffield, UK

{s.wrigley,g.brown}@dcs.shef.ac.uk http://www.dcs.shef.ac.uk/~stu

SLIDE 1

Introduction

- **Sounds are generally heard in a mixture** this needs to be separated to form a perceptual description of each sound source.
- Auditory Scene Analysis (ASA) (Bregman, 1990) performs this separation. Takes place in two conceptual stages:
 - Segmentation acoustic mixture separated into its constituent 'atomic' units.
 - Grouping units likely to have arisen from same source recombined.

One or more **Streams** - perceptual 'objects' produced by auditory grouping **over time**. Each stream describes a single sound source.

Connectionist ASA

- Oscillatory correlation framework is a temporal correlation solution to the binding problem.
- Oscillators corresponding to grouped auditory elements are synchronised, and are desynchronised from oscillators encoding other groups.

• Supported by neurobiological findings:

Joliot et al.

40 Hz oscillations associated with auditory grouping

Llinás and Ribary 40 Hz activity synchronised over large distances

Barth and MacDonald

Auditory cortex oscillations modulated by thalamus

Atte	ention in A	ASA	
• Atte	ntional research a	ddresses tv	vo core phenomena:
	Capacity limits Perceptual selectivity and its control		
• A number of properties to be modelled:			
	Allocation	Shape	Two forms
			Endogenous Exogenous
• Atte 2001	ntion is required 1).	for stream	formation and not just stream selection (Carlyon

• Only attended streams are **encoded into memory** and perceived (e.g. Moore and Egeth, 1997).

Oscillators

• *x* and *y* and each represent **mean activity** of a population of neurons.

- Population y acts as an inhibitor to the excitatory population x (See Terman and Wang, 1995).
- Oscillators corresponding to grouped auditory elements are synchronised, and are desynchronised from oscillators encoding other groups.

Attentional selection can be modelled by synchronising an attentional process to a particular group.

Oscillator Array

Segment formation: excitatory and inhibitory connections promote synchronisation and desynchronisation of oscillator groups.

• Segments grouped on basis of harmonicity and stimulus 'age' (old-plus-new heuristic).

• Each oscillator in network feeds **excitatory input** to global inhibitor (a leaky integrator). Global inhibitor, in turn, feeds **inhibitory input** back to each oscillator.

• When one group of synchronised oscillators is active, all others are **suppressed**; i.e. only one group can be active at any one time.

• Variance analysis of instantaneous frequency to identify channels stimulated by noise.

SLIDE 10

ALI: Stream Selection and Formation

 ALI connection strength determined by 'conscious' attentional interest - a Gaussian in accordance with the gradient model of attention (e.g. Mondor and Zatorre, 1995).

• **Build-up** of streaming modelled by a slow leaky integrator to modulate connection strengths.

• Generally, only the activity of oscillators whose connections fall under this attentional peak influence the ALI.

• ALI activity is **synchronised** with that of the attended stream.

Simulation Results

• Mistuned harmonic

Simulation Results

• Tone capture (0% mistuning)

ALI same as monaural ALI but:

• Attentional interest vector A_k is modulated by a spatial interest weighting.

• Attentional build-up subject to a reset when change in spatial interest detected.

Binaural Simulation Results

• Two Tone Streaming with distractor (Carlyon et al., 2001)

Binaural Simulation Results

• Complex tone and contralaterally presented mistuned harmonic (Darwin *et al.*, 1995)

Directions For Future Research

• Joint allocation: exclusive allocation enforced by the neural oscillator network. Can't account for duplex perception (e.g. Rand, 1974; Moore *et al.*, 1985).

Brown and Wang (1996) work on double vowels: oscillators can be members of 2 groups.

- **Divided attention**: attention can be divided to multiple frequency regions simultaneously. Our model only incorporates selective attention.
- Binaural front end and neural oscillator network.
- Investigation into timecourse of binaural attentional allocation.

Summary

- A model of **attentionally modulated** auditory scene analysis has been presented.
- Uses an oscillatory correlation framework.
- Produces a time-varying estimate of the attentional foreground.
- Accounts for streaming of alternating tone sequences, build-up over time and the oldplus-new heuristic.
- Accounts for binaural grouping.
- Accounts for lack of streaming when attention directed elsewhere and non-transfer of streaming build-up when attention moved in space.