
Web-based automatic speech recognition service - webASR

Stuart N. Wrigley, Thomas Hain

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello, Sheffield S1 4DP, UK
s.wrigley@dcs.shef.ac.uk, t.hain@dcs.shef.ac.uk

Abstract

A state-of-the-art automatic speech recognition (ASR) system
was developed as part of the AMIDA project whose core do-
main was the transcription of small to medium sized meet-
ings. The system has performed well in recent NIST evalua-
tions (RT’07 and RT’09). This research-grade ASR system has
now been made available as a free web service (webASR) tar-
geting non-commercial researchers. Access to the service is via
and standard browser-based interface as well as an API. The
service provides the facility to upload audio recordings which
are then processed by the ASR system to produce a word-level
transcript. Such transcripts are available in a range of formats
to suite different needs and technical expertise. The API allows
the core webASR functionality to be integrated seamlessly into
applications and services. Detailed descriptions of the system
design and user interface are provided.
Index Terms: speech recognition, interface, api, transcription,
web service

1. Introduction
Automatic speech recognition (ASR) is becoming a common
feature of many products and applications ranging from smart-
phone utilities to automated call centres and beyond. However,
the majority of such services tend to tailored to the specific
needs of the customer; in this way, optimal performance can be
gained by training and testing the system on a specific domain.
The disadvantage of this approach is that (commercial) effort
is largely focused on high return markets (professional dicta-
tion, etc); speech recognition systems for other fields is usually
embedded in applications and not freely accessible.

Natural language processing applications are thriving and,
similar to speech processing, attention is increasingly focussed
on texts which were previously unavailable in machine read-
able form such as broadcast news and discussions. More re-
cently transcripts of small to large group meetings such as tu-
torials, lectures, committee meetings, court-room proceedings,
etc. have also seen increased interest. Current research is nor-
mally based on well annotated corpora such as the AMI cor-
pus [1]. However, for many databases, speech transcripts are
not included. Furthermore, most groups interested in natural
language research do not have access to research-grade speech
recognition software. Similarly, in other fields such as sociolog-
ical or educational research, an increased demand for transcripts
can be observed.

In this paper we present a web-based interface1 to our state-
of-the-art speech recognition systems [2, 3]. The aim of this
interface is to provide the scientific research community with

1http://www.webasr.org/

an interface to free speech transcription for domains and appli-
cations where the generation of such transcripts was not previ-
ously feasible. We briefly describe the underlying ASR system
before describing the design of the webASR service and the the
functionality it provides.

2. ASR system
WebASR speech recognition systems are derived from the AMI
and AMIDA systems for meeting transcription [4, 2] but are
not confined to such domains. Other systems are available; for
example, the transcription of telephone speech [4] and broad-
cast news data. Most systems are the result of collaboration
with other research groups, most notably within the AMI con-
sortium2. One of the key aspects of the webASR systems is
grid computing-based offline processing in multiple stages, i.e.
initial recognition passes are used to adapt the existing acous-
tic and language models. Table 1 illustrates the significant
gain from initial to final pass. However, as later stages require
more CPU time per percentage gain (note smaller improvement
in performance following second half of processing compared
with after first half of processing time in Table 1), normally
the number of processing stages is reduced, statically or even
dynamically during processing time. Naturally the adaptation
performance is also a function of the amount of speech avail-
able; performance may remain poor when only short segments
of audio are uploaded.

Pass Close-talking Far field
Initial 41.3 44.2

After ≈ ½ processing time 28.3 36.3
Final 27.2 33.2

Table 1: % WER on the NIST 2009 RT evaluation test set for
webASR systems

2.1. ASR processing

Depending on the input, systems include automatic segmenta-
tion, speaker clustering, acoustic filtering, or beam-forming on
the front, and post-processing such as confidence score estima-
tion or fluency filtering. Typically the output from several sys-
tem stages is provided in the resulting transcript files.

Since the API-based interface allows XML metadata (input
segmentation information, manual transcripts or lists of words
that are likely to occur) to be associated with the audio, en-
hanced stages such as adaptation of word lists and language
models become possible, or even non-recognition tasks such as,
for example, audio-to-text alignment.

The flexibility of the ASR systems deployed on webASR is

2http://www.amiproject.org/

Copyright © 2011 ISCA 28-31 August 2011, Florence, Italy

INTERSPEECH 2011

3265



achieved by an implementation using the resource optimisation
toolkit (ROTK). Here the ASR processes are implemented as
key processing modules that can be arranged flexibly and dy-
namically. The exact arrangement of the modules itself is sub-
ject to optimisation. When input data is provided it is not lin-
early fed through the processing graph. Instead data is split into
parts, independently for each module, and then submitted to a
grid computing facility. Automatic generation of module/data
dependency allows the split of the overall task into hundreds, if
not thousands, of pieces. The result is system output obtained at
much lower latency than the actual CPU run-time for the data.
This structure also makes it easy to add new systems and to
control throughput by efficient use of compute resources.

3. WebASR design
The goal of webASR is to provide free access to state-of-the-art
speech recognition to as wide a community as possible while at
the same time having as low an adoption overhead as possible.
To this end, it was decided that the core means of interacting
with the service would be via a standard web browser; this re-
moved the necessity for platform specific development, requires
no software be installed on the user’s computer and allows the
service to be accessed anywhere in the world while still hav-
ing access to all previous uploads and transcripts. The webASR
service is implemented as a Java Servlet based web application
hosted using the Apache Tomcat open source servlet container3.

The webASR web application uses a standard design pat-
tern known as the model-view-controller pattern (also known as
the front controller, or Model 2) and was implemented entirely
in Java. A Servlet – a special type of Java class (conforming
to the Java Servlet API) which allows it to respond to HTTP
requests – acts as the controller, providing a centralised point
of control for all page requests. The controller is responsible
for delegating requests to the appropriate Java class which pro-
cesses the incoming request and data and makes any necessary
changes to the underlying model. The model encapsulates all
the domain-specific information on which the application oper-
ates. Upon successful completion, the controller then redirects
the user’s browser to the new page. Here, the model (persistent
storage mechanism) was implemented using a MySQL database
and the view (the user interface / web pages) used JavaServer
Pages (JSP).

Care was taken during the database schema design to enable
maximum flexibility as well as reduce inadvertent data loss by
users. For example, most objects stored in the database have a
boolean ‘deleted’ flag associated with them. When users delete
an object that they own (e.g., an upload) this flag is set to true as
opposed to physically deleting the object in the database. The
advantage of this approach is that recovering lost data becomes
trivial (and hence requires less time from administrators).

Since it was necessary to perform a number of client-side
analyses on the files chosen for upload by the user (audio type,
file size, etc.) it was decided to use a Java Applet. The use
of an applet rather than a standard web page also allowed the
upload process to be obfuscated to reduce the opportunities for
malicious use.

However, Java virtual machines run applets under a differ-
ent security regime than standard applications: applets are au-
tomatically considered ‘untrusted’ in order to protect the user’s
computing resources from malicious or faulty applets. Such ap-

3Note that Tomcat should not be confused with the Apache web
server, which is a conventional HTTP web server

Figure 1: CAPTCHA example to prevent bot / non-human reg-
istrants.

plets are prevented from accessing the user’s hard disk and any
files on it. To resolve this issue, the applet must be signed using
a digital certificate. The certificate specifies who the applet is
from and contains the digital signature of the ‘certificate author-
ity’. The certificate authority is a trusted organisation (usually
well known, such as VeriSign) which vouches for the applet’s
trustworthiness. The applet used here is currently self-signed
but future versions will be signed by a recognised authority.

Access to the system is restricted to registered (and manu-
ally approved) users each of which are assigned a specific level
of authority (e.g., administrator, public user, etc.) and an up-
load quota (e.g., 1 GB over 30 days). The quotas can be im-
posed in a very flexible manner simply by specifying the max-
imum upload amount over a specified duration. Both of these
features prevent use of the system which could be deemed mali-
cious or beyond fair use. Furthermore, the use of upload quotas
allows us to impose broad, high-level, usage limits on the ser-
vice since it is hosted on a conventional University-based net-
work without the resources for industrial strength load balanc-
ing and bandwidth provisions.

A large number of audio file formats exist and for each one
there are a plethora of ways in which the audio samples can
be encoded: sampling rate, bits per sample, number of channels
and encoding algorithm (e.g, PCM, µ-Law, etc.). Therefore, the
webASR system keeps a detailed list of all the different audio
formats which can be accepted for processing.

3.1. Browser interface

The primary mode of interaction with the service is via the
browser-based interface.

3.1.1. User functionality

The first step to using the system is to register via the web form.
This gathers basic information regarding the users name and
affiliation. In addition, we employ a CAPTCHA test4 which
protects the service from unwanted registrations by bots. It gen-
erates and evaluates tests that humans can pass but current com-
puter programs cannot. For example, only humans can read dis-
torted text such as that shown in Fig. 1. The registration request
is logged by the system and an appropriate message is displayed
when a member of the ‘administrator’ group logs in.

Once approved (see Section 3.1.2), a user can perform
three high-level activities: manage their profile, manage their
existing uploads and, finally, upload audio files containing
speech to be transcribed.

Profile management. This allows the user to ensure their login
and contact details are up to date on the system.

Audio upload. Before ASR processing can proceed, the audio
containing the speech must be uploaded together with relevant
metadata. This metadata covers two broad areas: information
about the environment in which the recording took place and in-
formation about the speech content itself. The former captures
details of the number of microphones used, the type of micro-

4http://www.captcha.net/

3266



Figure 2: Java Applet to control upload of audio data.

phone (lapel, headset, farfield, array, etc.) and the physical lo-
cation of the recording (street, office, etc.). By specifying more
than one microphone, the user has the option of having them
processed as a microphone array. In this case, additional beam-
forming processing is included to improve the speaker segmen-
tation during the speech recognition processing. Metadata re-
garding the speech content covers aspects such as the number
of participants, the gender mix, the type of conversation (dis-
cussion, free conversation, presentation, etc.) and the topics
that appeared in the discourse.

The final stage is the selection of the audio files to be
uploaded. This is achieved through the use of a Java Applet. As
mentioned above, this approach was motivated by a number of
factors. Firstly, it allows the system to inspect, before upload,
each audio file selected by the user to ensure it is of a format
supported by the system. Secondly it allows the system to
ensure, again before upload, that any selected files would not
exceed the user’s upload allowance. Thirdly, if microphone
array recordings have been specified in the metadata collection
stage, it allows the system to ensure that the correct number of
audio files (one per microphone) have been selected. Finally, if
an upload fails for any reason, it can be resumed from the point
of failure, thus minimising bandwidth wastage. None of these
can be performed using a conventional HTML-based upload
form. Once all the files have been selected (and the total size is
within the user’s upload quota), the files are transferred to the
webASR servers for processing.

Upload management. Once one or more audio files have been
uploaded, they, together with their associated ASR processing
and transcripts, can be managed using the interface shown in
Fig. 3. The user’s account page provides information regarding
the status of their account as well as details of all the uploads
that they have made. For the example user shown in Fig. 3,
the right hand panel provides information about their account:
the number of files uploaded and the cumulative size of all their
uploads over the whole lifetime of their account. In addition, in-
formation is provided regarding their upload quota: the size of
uploads made during this quota period and the amount remain-
ing.The lefthand side of the panel lists all the uploads ordered
by date. Each upload has an icon associated with it to quickly
convey the processing status of the audio upload. In this case,
both audio uploads have successfully completed their ASR pro-
cessing (indicated by a green tick). Other symbols indicate on-
going ASR processing or possible faults. For more information
on each upload, the user is able to click on the grey arrow to the
left of the filename to expose the upload and transcript pane.
For each upload, aspects of the metadata are shown such as the

Figure 3: Account information showing uploads and available
transcripts.

path of the audio file (based on the user’s filesystem not that of
the webASR server), the audio file format and the file size. This
information is useful to differentiate different uploads made in
close succession.

The webASR service has been designed to allow each up-
load to be processed multiple times. This is particularly useful
if the user has access to different ASR systems and wishes to
experiment with those to, for example, determine which pro-
vides the optimal performance given a particular type of data.
Each time an ASR system is used to produce a transcript of an
audio file, the details of this processing is shown as a numbered
list with the upload and transcript pane. In this example, the
audio file has been processed once by the en-mtg-sdm09a-001
(Adapted SDM system for meeting data) system. Indeed, as can
be seen from the drop down box at the bottom of the upload
and transcript pane, the user has the option of having this au-
dio file processed with an alternative ASR system; in this case
one entitled Meeting transcription system - 2 pass adapted. For
each ASR process, a transcript is generated which, internally,
is stored as XML. This allows the service to offer a wide range
of output formats (PDF, STM, XML, HTML, MLF, etc.) with
maximum efficiency: all the available formats are created ‘on-
the-fly’ using XSLT stylesheets applied to the base XML. This
approach reduces the storage required as well as making it very
easy to augment the available output formats and make them
available, ‘retrospectively’, to pre-existing transcripts.

3.1.2. Administration functionality

Users of the system can also have ‘administration’ rights which
provides access to all the system’s configuration and manage-
ment interfaces.
User management. Full control is provided over any user’s pro-
file including the ability to disable the account. In addition to
this, it is possible to view all their uploads using the same inter-
face used for ‘user’ level upload management (Fig. 3) as well as
adjust their upload quota. As mentioned in Section 3, adminis-
trators can also manage a user’s deleted uploads, processes and
transcripts and, if requested, undelete them. Furthermore, ad-
ministrators can also initiate audio recognition using an ASR
system for which that user would not normally have access per-
missions (see below).
Process management. It is useful to be able to monitor the ASR
processes which are currently running in response to audio up-
loads. Here, administrators can view the details of the associ-
ated upload, the system being used to generate the transcript
and also the current status of the job (queued, running, etc). In

3267



addition, it is possible to stop processing.
User group management. Each user is associated with a single
user group. It is through the use of user groups that webASR
determines which ASR systems are available to particular users.
For example, some systems require significantly more compute
resources than others and their use is restricted to certain users.
Note, however, that administrators can also create exceptions to
system-access permissions on a per-user basis thus adding extra
flexibility to the user group approach.
Policy management. Policies related to upload quotas, user
groups and execution permissions can be edited or deleted; new
ones can also be created.
ASR system management. WebASR has a number of ASR sys-
tems available for use. Here, administrators can add, edit or
delete such systems. For each, a name and description can be
defined as well as the system type (lapel, array, ihm, etc) as
well as a clearance level. The latter is used in conjunction with
the user group permissions to determine who has access to each
system.
Notice management. At certain times, maintenance or upgrade
work needs to be carried out either to the server code or the un-
derlying infrastructure. System-wide announcements provide
an easy way to distribute information or downtime warnings:
the announcement is displayed in a notification box once the
user has logged in.
Documentation. Administrators also have full access to all the
internal documentation covering database and server configura-
tion through to details of the applet and API plugins.

3.2. Application programming interface (API)

An application programming interface (API) specifies the pre-
cise details of how a software program or service can be ac-
cessed by another software agent. In the context of the we-
bASR service, the webASR API specifies the way in which any
software program can upload audio and retrieve the associated
transcripts via HTTP with no recourse to the browser-based in-
terface described in Section 3.1.

In many respects, the usage model of the API is a restricted
version of the browser-based interface and follows the same un-
derlying HTTP protocol.
Authentication. In order to access the service, the user must log
in using the API-specific authentication details. Upon success-
ful authentication, a cookie is provided which is required for all
subsequent communication with the webASR service.
Supported audio types. Since the webASR service will only
accept a finite set of audio file formats, it is necessary that the
client application ensure that all files are suitable for upload.
The set of acceptable file formats can be downloaded in XML
format; it is necessary to perform this step regularly since sup-
ported file formats may change without notice.
Audio file upload. For every file sent to the webSR service (both
via the API as well as the applet), file metadata must also be
sent. This XML file encapsulates details such as file size, client
filename, the internal audio format and an MD5 hash. The file
size is used to check, server-side, that the complete file has been
uploaded. The service can also be configured to use the MD5
hash to save bandwidth: if an audio file has been uploaded with
the same hash (and thus almost certainly the same audio file)
the file is not uploaded again, rather it is linked to the exist-
ing server-side copy. Upload of the same file is common when
test data for an evaluation is released and multiple, independent,
users wish to recognise it. Finally, in addition to the audio file
itself, the API also provides the ability (not available via the

browser interface) to upload metadata related to the audio con-
tent. This is freeform XML but is commonly used to convey
segmentation information to assist the ASR process. A unique
upload ID is returned upon successful upload.
Status. The processing status associated with a previously up-
loaded audio file can be determined by sending the unique up-
load ID. The returned status can be queued, running, failed,
killed or completed.
Wait time. An estimate of the amount of audio data (in seconds)
to be processed on the system gives an indication of how long a
client may need to wait for their transcript.
Transcript. An audio transcript can be downloaded in XML for-
mat. A number of the ASR systems available to webASR are
multipass; this means that partial output may be available be-
fore the final, higher accuracy, transcript is available. An HTTP
response header indicates whether it is complete or not.

Integration of the API-based service is facilitated by the
availability of a plugin DLL for Microsoft Windows platforms.
This was written in C# and thus the source code can be inte-
grated with any .NET application. The service can also been
integrated in Mac OS X applications.

4. Conclusions
We have presented the webASR system which provides a free
to access web-based interface to the state-of-the-art AMIDA
speech transcription system. The webASR system provides
two modes of access: via a standard web browser and progra-
matically via an API. The former approach provides an easy-
to-use way of transcribing audio recordings without any need
for technical expertise (in either speech recognition or web ser-
vices). The latter allows the service to be seamlessly integrated
into applications and other services without the need to use the
browser-based interface. For the first time, the webASR service
brings free speech recognition within the reach of the wider sci-
entific community.

5. Acknowledgements
The authors would like to thank all contributors to webASR speech
recognition systems, from the AMI consortium, or otherwise. In par-
ticular we would like to mention Vincent Wan and Asmaa El Hannani
formerly of University of Sheffield; Lukas Burget and Martin Karafiat
from University of Technology, Brno; Mike Lincoln from University
of Edinburgh; John Dines and Phil Garner from Idiap; Thomas Niesler
and Febe de Wet from University of Stellenbosch; Phil Woodland from
Cambridge University; and many others from these and other sites.

This work was partly supported by the European IST Programme
Project AMIDA (Augmented Multi-party Interaction with Distance Ac-
cess) FP6-033812.

6. References
[1] J. Carletta et al., “The AMI meeting corpus,” in Proc. MLMI’05,

Edinburgh, 2005.

[2] T. Hain, L. Burget, J. Dines, P. N. Garner, A. El Hannani, M. j.
Huijbregts, M. Karafiat, M. Lincoln, and V. Wan, “The AMIDA
2009 Meeting Transcription System,” in Interspeech’10, 2010, pp.
358–361.

[3] T. Hain, A. el Hannani, S. Wrigley, and V. Wan, “Automatic speech
recognition for scientific purposes - webASR,” in Interspeech’08,
2008, pp. 504–507.

[4] T. Hain, L. Burget, J. Dines, M. Karafiat, D. van Leeuwen, M. Lin-
coln, G. Garau, and V. Wan, “The 2007 AMI(DA) system for meet-
ing transcription,” in Proc. NIST RT07 Workshop, 2007.

3268


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Stuart N. Wrigley
	Also by Thomas Hain
	----------

