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Abstract

The auditory system must separate an acoustic mixture in order to create a perceptual description of each
sound source. It has been proposed that this is achieved by a process of auditory scene analysis (ASA) in
which a number of streams are produced, each describing a single sound source.

Few computer models of ASA attempt to incorporate attentional effects, since ASA is typically seen as a
precursor to attentional mechanisms. This assumption may be flawed: recent work has suggested that
attention plays a key role in the formation of streams, as opposed to the conventional view that attention
merely selects a pre-constructed stream.

This study presents a conceptual framework for auditory selective attention in which the formation of
groups and streams is heavily influenced by conscious and subconscious attention. This framework is
implemented as a computational model comprising a network of neural oscillators which perform stream
segregation on the basis of oscillatory correlation. 

Within the network, attentional interest is modelled as a gaussian distribution in frequency. This determines
the connection weights between oscillators and the attentional process - the attentional leaky integrator
(ALI). A segment or group of segments are said to be attended to if their oscillatory activity coincides
temporally with a peak in the ALI activity. The output of the model is an ‘attentional stream’: a description
of which frequencies are being attended at each epoch.

The model successfully simulates a range of psychophysical phenomena. Furthermore, a number of
predictions are made and a psychophysical experiment is conducted to investigate the time course of
attentional allocation in a binaural streaming task. The results support the model prediction that attention
is subject to a form of ‘reset’ when the attentional focus is moved in space.
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Chapter 1. Introduction
1.1 Making sense of a complex environment

For hundreds of years, philosophers and psychologists have argued that the act of
perception is a process which allows us to produce a mental representation of the
world from the multitude of information gathered by our senses. In turn, this
implies that we have a mechanism of forming such representations and then using
these to formulate plans and perform actions. In other words, we have the ability to
Making sense of a complex environment 1



Introduction
conceptually move from raw sensory input to some representation of the world
described by that input.

Unfortunately, this is not as easy as it may first appear. In order to bridge the gap
between the sensory input and the perceptual representation, we need to decide
which bits of the input belong together. If we were unable to do this, everything
would coalesce into an unmeaningful whole: the input contains plenty of ‘meaning’
but it needs to be extracted. Therefore, the problem is one of how to accurately
partition the sensory input.

An overall representation of the world is made up of a number of smaller
representations of individual ‘things’. Visually, these could correspond to physical
objects; in audition, these could be individual sounds. The important question,
therefore, is how each representation is made from the sensory data. In visual scene
analysis, one problem can be thought of as being how regions in a scene are
allocated to a particular object. Visually, a simplistic answer to this could be to
allocate each bounded region to an individual object. However, this is clearly
overly simplified since when observing an occluded object, we are able to allocate
the visible regions to a single representation.

Such fundamental problems of how to bridge the gap between the input and the
representation are also present in audition. Such difficulties are clearly
demonstrated in Bregman’s (1990) metaphor, which makes an analogy between
sound waves and the waves on a lake:

Your friend digs two narrow channels up from the side of a lake. Each is a
few feet long and a few inches wide and they are spaced a few feet apart.
Halfway up each one, your friend stretches a handkerchief and fastens it to
the sides of the channel. As the waves reach the side of the lake they travel up
the channels and cause the two handkerchiefs to go into motion. You are
allowed to look only at the handkerchiefs and from their motions to answer a
series of questions: How many boats are there on the lake and where are
they? Which is the most powerful one? Which one is closer? Is the wind
blowing? Has any large object been dropped suddenly into the lake?

Bregman (1990, pp. 5-6)

As Bregman points out, this problem seems impossible but is in fact exactly the
same as that faced by the auditory system. The channels at the side of the lake
correspond to the ear canals and the handkerchiefs correspond to the ear drums.
Simply by analysing the motion of the ear drums, the auditory system can answer
analogous questions regarding the sound environment (c.f. the lake). Are there
2 Making sense of a complex environment



Introduction
people talking nearby? If so, what are they saying? Is there any music playing?
Which sound sources are moving? 

As we have mentioned above, in order to make sense of an environment, we must
be able to partition the incoming input into representations of objects (be they
visual or auditory). In the lake analogy, we have seen that despite a mixture of
sounds reaching the ears, the human listener can still ‘pick out’ a particular voice or
instrument demonstrating that they can separate this complex mixture. The
robustness of such an ability is demonstrated by Cherry’s (1953) now famous study
on the separability of concurrent conversations. He found that when two messages
were recorded by the same speaker and replayed simultaneously to a listener, ‘the
result is a babel, but nevertheless the messages may be separated’ (p. 976) - an
ability colloquially termed the cocktail party effect.

Our ability to perform well in this task highlights another important aspect in
making sense of a complex environment: attention. It is through attention that we
can select, or ‘pick out’, particular objects for more detailed study. In Cherry’s
work, the listener was consciously attending to one particular message. In a similar
experiment, Spieth et al. (1954) investigated conditions under which a military
communication’s operator could best recognise and attend to one speech message
when it was presented simultaneously with another irrelevant message. Such
communication messages did not provide visual cues to aid in the identification of
the sender or the perception of the message. While redundancy within a message is
high, competing messages are of similar form, content, and vocabulary. Spieth et al.
concluded that ‘the operator could acquire rapidly [an attentional] “set” to listen
to the “high-pitched” message only or the “low-pitched” message only’ (p. 394). 

Since these initial studies, much psychoacoustic research has been conducted into
the ability to make sense of a complex acoustic environment - with particular
reference to trying to uncover how the auditory system achieves this. In other
words, to investigate how the auditory system may form a representation of the
acoustic world. Bregman (1990) has drawn upon this body of work to convincingly
argue that the acoustic signal is subject to a similar form of scene analysis as vision. 

1.2 Auditory Scene Analysis

Bregman (1990) proposed that auditory scene analysis (ASA) takes place in two
stages. Firstly, the signal is decomposed into a number of discrete sensory elements.
These are then recombined into streams on the basis of the likelihood of them
Auditory Scene Analysis 3
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having arisen from the same physical source in a process termed perceptual
grouping. Therefore, a stream can be considered to be a cognitive representation of
a sound source.

Bregman distinguished between two different, but complementary, mechanisms
involved in the grouping problem. The first is called primitive grouping in which
decisions on how to group the sensory elements are made in a purely data-driven
manner. In contrast, the other grouping mechanism, termed schema-driven
grouping, employs prior knowledge of commonly experienced acoustic stimuli.

Primitive grouping principles are believed to be innate and can be described by the
Gestalt principles of perceptual organisation (e.g. Koffka, 1936). The Gestalt
psychologists proposed a number of rules governing the manner in which the brain
forms mental patterns from elements of its sensory input. For instance:

• Common fate: elements whose properties change in a similar way over time
tend to be grouped.

• Similarity: elements that are similar in physical attributes (such as timbre, pitch,
or loudness) tend to be grouped 

• Proximity: grouping strength between elements, or groups of elements, is
proportional to the distance between them.

• Continuity: provided the changes between consecutive elements are smooth
then the elements tend to be grouped.

• Closure: elements that form a complete, but possibly partially obscured, object
tend to be grouped.

Such rules were originally formulated to explain grouping in the visual domain but,
as we will see in chapter 2, they are equally applicable to auditory grouping. For
example, when one observes a partially occluded object, it is usually quite easy to
form a mental representation of the whole object. The same is true of auditory
occlusion (masking) in which listeners are able to perceptually restore parts of
sounds masked by louder sounds - a concept known as auditory induction (e.g.
Miller and Licklider, 1950).

Computational auditory scene analysis

There are some practical reasons for trying to understand [ASA]. There are
engineers that are currently trying to design computers that can understand
what a person is saying. However in a noisy environment, the speaker’s voice
comes mixed with other sounds. To a naive computer, each different sound
that the voice comes mixed with makes it sound as if different words were
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being spoken, or as if they were spoken by a different person. The machine
cannot correct for the particular listening conditions as the human can. If the
study of human audition were able to lay bare the principles that govern the
human skill, there is some hope that a computer could be designed to mimic
it. 

Bregman (1990, p. 3)

As Bregman (1990) indicates, a major goal of computational auditory scene
analysis (CASA) is to improve automatic speech recognition (ASR) performance in
noisy environments. Early work concentrated on the separation of multiple voices
using engineering solutions. For example, Parsons (1976) aimed to completely
characterise the frequency spectrum of the target voiced speech which would then
allow an individual speech ‘stream’ to be resynthesised, an approach that has seen
recent refinement (Denbigh and Zhao, 1992). Work has also concentrated on
producing faithful models of the human auditory periphery to both produce CASA
solutions and gain insights into the mechanisms of the auditory system. Within this
framework, researchers began to separate voiced speech for both stationary sounds
(e.g. Scheffers 1983; Meddis and Hewitt 1992) and non-stationary sounds (e.g.
Weintraub, 1985). 

However, many of the early CASA solutions made rather restrictive assumptions
such as there being at most two sources, both of which are voiced speech.
Furthermore, the performance of these systems relied on each source having a
different fundamental frequency. To avoid such limitations, a different approach to
the problem was adopted by a number of workers who developed purely data-
driven solutions (e.g. Cooke 1991/1993; Mellinger, 1991; Brown 1992). These
systems segmented the signal into atomic units (regions of time-frequency that
contain energy judged as belonging to a single source) which were then grouped
together on the likelihood of them having arisen from the same source, using cues
described by Bregman (1990). Recent neural network solutions (e.g. Wang 1996;
Brown and Cooke, 1997; Wang and Brown, 1999), based on the neurophysiological
speculations of von der Malsburg and Schneider (1986), form the foundations of a
model which will be presented in later chapters of this thesis. 

1.3 Attention in listening

The term ‘attention’ commonly appears in every day language and can be
considered to be a fundamental part of daily life. As we have seen in the work of
Cherry (1953) and Spieth et al. (1954), it refers to both the selectivity and capacity
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limitation of cognitive processing. It is widely accepted that conscious perception is
selective and that perception encompasses only a small fraction of the information
impinging upon the senses. The second phenomenon - that of capacity limitation -
can be illustrated by the fact that two tasks when performed individually pose no
problem; however, when they are attempted simultaneously, they become difficult.
In other words, when one focuses attention on something, we are effectively
highlighting it as requiring further processing, at the expense of everything else.

In modelling auditory scene analysis, attention has traditionally been viewed as a
distinct process in which the ASA output is subjected to some form of selection to
pick the ‘winning’ stream. Indeed, a number of computational models, which will
be reviewed in chapter 4, make explicit the assumption that attentional input is
distinct from the grouping process and hence leave it for future work. For example,
although McCabe and Denham (1997) include an ‘attentional input’ in their model
architecture (see chapter 4, figure 9), the authors acknowledge that the role of
attention was not addressed in the model processing.

However, a recent psychoacoustic study (Carlyon et al., 2001) cast doubt on this
assumption when it was found that without attention, stream formation did not
occur. In this case, attention can no longer be viewed as an ‘optional extra’: it must
be incorporated into computational models of ASA if they are to behave in a similar
way to human listeners. With this in mind, we have developed a model of
computational auditory scene analysis in which the allocation of attention is at the
heart of the stream formation mechanism.

1.4 Motivation

Since the importance of attention to auditory scene analysis has only recently been
highlighted, the model presented here is motivated by two different goals. Firstly, in
addition to demonstrating that attention can be successfully incorporated into the
heart of an ASA system, such a model can be used to make predictions and indicate
directions for future psychophysical experiments (see chapter 7). 

Secondly, the model is also motivated by a practical application. Since the advent of
computational models of auditory scene analysis, such systems have been
considered to form the natural evolution of current hearing aid technology.
Conventional hearing aids have a microphone that gathers sound, an amplifier that
increases the volume of sound and a receiver that transmits this amplified sound to
the ear. Clearly, such hearing aids will amplify both the source of interest (such as
6 Motivation
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speech) as well as any interfering noise. Ideally, an implementation based on the
stream formation and segregation mechanisms of a computational ASA system
would be preferable. Instead of amplifying the entire frequency range, such devices
could segregate the acoustic environment into any number of streams, one of which
(for example, a speech stream) could be selected with all the others being
attenuated.

The interesting enhancement that is made possible by incorporating attention into
models of ASA is to allow such an advanced hearing aid to be ‘intelligent’ to some
degree. The processing performed by these prostheses would mimic the hearing
ability of a unimpaired listener. Instead of enhancing the stream of interest at all
times at the expense of the others, attentional effects such as the unconscious
overruling of conscious selection (such as the startle reflex; see chapter 5) would
allow the wearer to become aware of new, loud and potentially important sounds.
Imagine crossing a road whilst in mid-conversation with a friend; it would certainly
be advantageous for the sound of a car horn to come to the fore at the expense of the
conversation stream - an effect that may not occur in a conventional streaming
solution.

It ought to be noted that the incorporation of some attentional effects into models of
ASA may not be desirable in all engineering paradigms. The ability of an ASA
system to produce a number of streams each representing a particular sound source
has been viewed as a possible robust front-end for automatic speech recognition
(ASR) in noise (e.g. Barker et al., 2001; Brown et al., 2001). In this situation, the
noise would be encapsulated in its own distinct stream allowing ASR to be
performed on the relatively clean speech stream. However, in contrast to the
example given above, an ASR system would not want the speech stream to be
removed from the fore in favour of the car horn: the task of ASR is generally to be
robust to intruding noise and be able to process as much of the speech as possible.

1.5 Modelling approach

Bregman acknowledges that the Gestalt based grouping principles he describes
only provide a description of the phenomena but do not give any insight into how or
why they occur. This level of explanation, together with its analogies with visual
scene analysis, draws clear parallels between his framework and that of David Marr
(Marr, 1982). Hence, it is all the more intriguing that Bregman makes no mention of
Marr’s influential theoretical framework for describing the processes of early vision
(Williams et al., 1990). Marr (1982) defined three levels of explanation of a system.
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The computational theory describes the function and motivation of a system and the
knowledge it has available to achieve this. In other words, the ‘what and why’. The
next level of explanation describes the representation of the data and the algorithm
by which it is to be manipulated: ‘how’ the system works. Finally, the most
concrete level of explanation is that of the implementation: the physical realisation
of the data and algorithm. Furthermore, Marr argued that these three different levels
are only loosely related such that explanations at each level can be largely
independent from each other. 

In terms of Marr’s three levels, Bregman’s description of auditory scene analysis is,
in effect, a computational theory of auditory perception (Williams et al., 1990;
Cooke, 1991/1993). It is at the level of the representation and algorithm that many
CASA solutions can be categorised. In other words, they describe how the general
Gestalt principles of grouping can be implemented and combined in their particular
data representation framework. Unfortunately, at the level of the neural
implementation, researchers are only just scratching the surface in their endeavours
to describe how the brain implements such complex grouping principles. Indeed,
Feng and Ratnam (2000) note in their review of work in this field that ‘clearly,
physiological investigations of neural mechanisms of scene analysis are still in
their infancy, and gaps in our understanding are profound’ (p. 717). With this in
mind, the model presented in later chapters also belongs in the intermediate level of
explanation. It is how attentional processes influence the scene analysis algorithm
which is of interest in this work.

It ought to be noted, however, that the Marrian approach does have its difficulties.
As Brown (1992) indicates, the loose coupling of Marr’s three levels of explanation
can lead to an unprincipled model unless care is taken to ‘employ representations
that are motivated by the ... organisation of the higher auditory system’ (p. 6).
Churchland and Sejnowski (1992) also point out that in many studies, including
those of Marr himself, the coupling between explanation levels is not as loose as
Marr proposes. In a departure from the independence of the algorithmic level from
its implementation, ‘downward glances [to the implementation level] figured
significantly in Marr’s attempts to find problem analyses and algorithmic solutions’
(p. 18). Marr was significantly influenced by neurobiological considerations and
the findings from such research heavily influenced his computational and
algorithmic insights. Indeed, this blurring of the boundaries is what Brown (1992),
and many who propose ‘physiologically plausible’ solutions, advocate. Churchland
and Sejnowski (1992) emphasise that,

The issue of independence of levels marks a major conceptual difference
between Marr (1982) and the current generation of researchers studying
8 Modelling approach



Introduction
neural and connectionist models. In contrast to the doctrine of independence,
current research suggests that considerations of implementation play a vital
role in the kinds of algorithms that are devised and the kind of computational
insights available to the scientist. Knowledge of brain architecture, far from
being irrelevant to the project, can be the essential basis and invaluable
catalyst for devising likely and powerful algorithms - algorithms that have a
reasonable shot at explaining how in fact the neurons do the job.

Churchland and Sejnowski (1992, p. 19)

To summarise, Marr’s framework of different explanatory levels allows the
problem of human perception to be split into convenient blocks for analysis.
However, the independence between these levels should not have to be strictly
enforced and, in fact, often isn’t. This does not necessarily weaken Marr’s theory:
in attempting to understand how the brain works, why should we not gain
inspiration from how the brain is implemented? It is in this way that we approach
the problem presented in later chapters: despite presenting a computational theory
of how attention interacts with ASA, insights into brain architecture and how
grouping may be signalled at a neuronal level heavily influence our algorithm and
implementation.

1.6 Thesis overview

Chapter 2 explains the principles of auditory scene analysis introduced above in
greater detail. As we have discussed, these principles can be considered to be a
computational theory of hearing: they give no insights into how the brain may
represent a number of features as belonging together. The human brain relies solely
on time varying electrical impulses with no ‘symbolic’ input as suggested by
Bregman’s theory. Chapter 3 looks at a number of ways in which the brain may
represent stimulus features and perform feature grouping. One possibility is
temporal synchronisation in which neurons that code features of the same source
have a synchronised firing response (phase-locked with zero phase lag) and which
are desynchronised from neurons that code features of different sources. We will
also look at how neurons which exhibit an oscillatory firing behaviour, neural
oscillators, have been used in previous computational models to simulate auditory
grouping and argue for their use in the model presented here. One advantage of the
neural oscillator approach is that it is well suited to implementation in hardware
allowing the potential of real-time performance; clearly a requirement if such
systems are to be deployed in advanced hearing prostheses as suggested above.
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Chapter 4 describes a number of psychophysical experiments which allow us to
draw conclusions as to the way in which attentional processes influence ASA. The
manner in which such influences are combined in auditory scene analysis are
discussed in chapter 5.

Chapter 6 deals with the implementation of a neural oscillator model of auditory
selective attention which takes into account both the ‘conventional’ ASA principles
of Bregman (1990) and of the attentional influences described in chapters 4 and 5.
The model is then evaluated in chapter 7 by simulating the outcomes of a number of
psychophysical experiments described in preceding chapters. The analysis of these
results are used to formulate predictions which can be made by the model and also
highlight a number of areas for future psychophysical investigation.
10 Thesis overview



Chapter 2. Auditory Scene Analysis
2.1 Introduction

Our ability to make sense of a world which is almost constantly filled with sounds
has been investigated by numerous psychoacousticians ever since the term ‘cocktail
party effect’ was introduced by Cherry (1953). This effect is related to how a
listener at a party, subjected to multiple sound sources, is able to separate, and
participate in, a single conversation; a problem which scales to ask how a listener
makes sense of any complex auditory environment. 
Introduction 11
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The use of psychoacoustic experiments consisting of simple sounds, such as sine
waves and noise bursts, has made it possible to derive very important conclusions
on how the auditory system processes sound mixtures; many of these findings are
incorporated into the conceptual framework of auditory scene analysis (ASA)
(Bregman, 1990). ASA proposes that the acoustic signal is subject to a similar form
of scene analysis as vision. Such auditory scene analysis takes place in two stages.
Firstly, the signal is decomposed into a number of discrete sensory elements. These
are then recombined into streams on the basis of the likelihood of them having
arisen from the same physical source in a process termed perceptual grouping.

2.2 Perceptual grouping and streams

At the heart of Bregman’s (1990) account of auditory scene analysis is the
formation of streams: a perceptual unit that represents a single acoustic source
(figure 1). 

The word sound is insufficient as it is essential that the perceptual unit be able to
incorporate more than one acoustic event. For example, the perception of a piano
being played is a single experiential event which is made up of numerous individual
sounds - notes. In this example, there is only one source: the piano. A source is the
physical generator of a sound. It is usual for a sequence of sounds originating from
the same source to be perceived as a stream. However, it is also possible for a
number of sources to contribute to one stream (e.g. the perception of music) and for
multiple streams to be formed from a single source (e.g. auditory streaming).

As mentioned in the introduction, the initial stage of auditory scene analysis is the
decomposition of a sound into a collection of sensory elements. The second stage of
processing is stream formation and segregation. The mechanism by which these
sensory elements are combined is termed grouping; this is split further into
primitive and schema-driven grouping.

source stream

Figure 1 The relationship between a sound source and its percept - the stream.
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2.2.1 Primitive grouping

Primitive grouping (bottom-up processing) encompasses the data-driven
simultaneous and sequential perceptual organisations of sound. Bregman (1990)
explains primitive grouping in terms of Gestalt principles of perceptual
organisation (e.g. Koffka, 1936). Gestalt psychology was founded in Germany by
Max Wertheimer, Wolfgang Köhler and Kurt Koffka at the beginning of the
twentieth century as a challenge to the then-prevailing theory of Structuralism. A
key assumption of Structuralism was elementarism which argued that complex
perceptions could be understood by identifying the elemental components of the
experience. However, Gestalt theorists argued that perception was much more than
the sum of its parts. A melody transposed in key remains the same melody despite
each constituent note having been shifted in frequency (and thus each note being
different): the melody is an emergent property of the sequence of notes created by
some organisation of the nervous system. In order to explain how such
organisations may be formed, Wertheimer proposed a number of grouping laws by
which the visual system creates perceptual wholes. He proposed that elements tend
to be grouped together if they exhibit some degree of proximity or similarity; form
a closed contour; or move in a similar way. 

Almost a century later, Wertheimer’s laws of grouping are still used to explain
perceptual organisations in both visual and auditory modalities (e.g. Bregman,
1990); indeed ‘not one of them has been refuted’ (Rock and Palmer, 1990). The
following are some of the important grouping cues in auditory scene analysis. It
should be noted, however, that a certain degree of competition occurs between cues
which suggest contradictory grouping decisions and some cues dominate others
(Donnelly et al., 1991; Elder and Zucker, 1993; Kovacs and Julesz, 1993). The
method by which such competitions are resolved remains uncertain.

Common fate

Common fate describes the tendency to group components whose properties change
in a similar way over time. Stimulus features which are subject to these common
fluctuations are generally perceived as one object, making it difficult to focus on
the individual components. 

Grouping by harmonicity is an example of common fate organisation which occurs
in many listening situations. Many natural sounds, especially animal
communication, are caused by the vibration of some physical structure and an
element of filtering and resonance (see Fant, 1960). For example, in speech the
vocal cords are drawn close together and the force of the exhaled air from the lungs
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causes them to vibrate. The sound wave resulting from this vibration consists of a
fundamental and a number of related harmonics (components whose frequencies
are integer multiples of the fundamental). Various harmonics are then ‘reinforced’
within the air cavities of the vocal tract. It is this reinforcement, or resonance, that
produces the formants commonly found in speech. The presence of fundamentals
and harmonics are also seen in other complex sounds, such as music.

Indeed, support for harmonicity grouping is strengthened by evidence which shows
that when one listens to two steady complex sounds (e.g. two musical notes or two
vowel sounds) the two are generally easily separable. This means that we are able
to decide which harmonics belong to each sound percept even if the harmonics are
coincident or interleaved. It is important to note that this behaviour is more easily
observed if each sound has a different fundamental frequency (Broadbent and
Ladefoged, 1957; Scheffers, 1983; Assmann and Summerfield, 1987, 1994;
McKeown and Patterson, 1995). 

Similarly, common onset and offset are also part of the wider common fate cue, and
correspond to the perceptual grouping of components whose onsets and / or offsets
occur simultaneously. Darwin (1984) has shown that a tone that starts or stops at the
same time as a vowel sound is more likely to be heard as part of the vowel complex
than if the onset and / or offset times had been different. In support of this grouping
principle, Roberts and Moore (1991) demonstrated that tones added to a vowel
sound had a significantly stronger effect on vowel quality when presented with
identical onset and offset times.

Similarity and proximity

The degree of similarity between elements also plays a role in the grouping process.
In hearing, similarity usually implies closeness of timbre, pitch, or loudness. In
figure 2 (panels a and c), the formation of two groups occurs when a difference in
colour is introduced. In audition, it is this ability that allows successive notes of an
instrument to be segregated from notes of another instrument, even when both are
played in the same register and spatial location: in this case timbre difference is the
cause (Wessel, 1978). Indeed, timbre tends to be the dominant similarity cue as
opposed to pitch. Van Noorden (1975) investigated this using sequences of complex
tones with missing fundamentals and various missing harmonics. Tones with the
same missing fundamental (and hence the same pitch) did not necessarily form a
single stream whereas tones with different pitches but similar timbres did.

The Gestalt proximity principle states that the grouping strength between elements,
or groups of elements, is proportional to the distance between them. For example in
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figure 2, when the spacing between adjacent elements is similar, the grouping
strength is also comparable. However, once differences in separation are
introduced, two groups emerge due to members of one cluster being closer to other
members of that cluster than members belonging to the other cluster. The auditory
correlate of this visual cue is the separation of acoustic elements in time and
frequency.

For example, the relationship between frequency proximity and temporal proximity
has been studied extensively using the two tone streaming phenomenon (see
Bregman, 1990 for a review). The closer in frequency two tones are, the more likely
it is that they are grouped into the same stream. Similarly, the proximity of two
tones in time, also determines likelihood of streaming. As presentation rate
increases, tones of similar frequency group together into separate streams. (see
figure 3).

Figure 2 Gestalt proximity describes how closer elements are more strongly grouped.
Panel (a) shows one large group. Panel (b) shows how slight alteration of the
element locations causes two groups to emerge. Gestalt similarity describes
how similar elements are more strongly grouped. Panel (c) shows how the
large group segregates when colour differences are introduced: elements of
similar colour form distinct groups.

(a) (b) (c)

time
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Figure 3 Spectrogram of six alternating tones of A-B... format. Initially, the tones are
temporally coherent and a single stream is present containing the entire A-B...
sequence (dotted lines). If stream segregation occurs, the high tone sequence
and the low tone sequence form separate streams (indicated by the solid lines)
with one stream containing a A-A-A sequence and the other a B-B-B sequence.
Perceptual grouping and streams 15



Auditory Scene Analysis
Continuity and closure

Certain interrupted and / or smoothly changing forms are perceptually grouped into
a whole. For the continuity perception to occur, there must be sufficient evidence to
support the hypothesis that the form is obscured rather than interrupted. Such
behaviour is evident from figure 4 in which a solid bar appears to be obscured by a
gray band. When the gray band is missing, it is clear that there are two distinct bars.
Similarly, when the figures are considered to be pseudospectrograms (frequency on
the ordinate and time on the abscissa) with the bar representing a tone and the gray
band representing noise, provided the noise is sufficiently loud, the noise band will
be perceived as obscuring a single tone, rather than separating two distinct tones.
This effect can also been seen for speech signals which are obscured by noise. The
speech sounds much more intelligible and continuous when interrupted by noise
than when interrupted by silence (Miller and Licklider, 1950; see also Warren et al.,
1972).

Good continuation is also recognised as playing an important role in perceptual
grouping. Provided the changes between consecutive elements are smooth then the
elements tend to be grouped together. This can be illustrated using a second closure
example. Consider the left hand diagram in figure 5. This shows the closure
example as in figure 4. The second reason why the two bars form a single percept is
that they also exhibit good continuation: there is no significant jump in frequency.
The same is true for the middle diagram. Here, although the second bar begins at a
frequency which is significantly different to that at which the first bar finished, the
combination of closure gives it the appearance of a smoothly changing tone which
is partially obscured. The final diagram shows that although closure could play a
role in the perceptual grouping in this instance, good continuation is not present,
hence the two bars are not grouped together to form a whole (see Ciocca and
Bregman, 1987).

Figure 4 Gestalt closure. The gray band present in the left diagram appears to obscure
a single bar. However, when the band is removed, it becomes clear that two
distinct bars are present.
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Darwin and Bethell-Fox (1977) demonstrated how good continuation of F0 affects
speech perception. They synthesised spectral patterns which varied smoothly and
repeatedly between two vowel sounds. When the pattern had a constant F0, the
sounds were perceived as belonging to a single stream. However, when the pattern
exhibited a discontinuous F0 contour between the two vowel sounds, each sound
was perceived as belonging to a distinct stream with illusory silences during the
portions of the signal attributed to the other stream. Components were grouped only
in the situation in which the signal had good continuation (i.e. smooth change) of
F0. 

As mentioned above, there is a degree of competition between grouping cues.
Competition between good continuation and proximity can be demonstrated by the
use of a frequency-alternating tone sequence. Bregman and Dannenbring (1973)
showed that the tendency of such a sequence to split into two streams (see figure 3)
is reduced when successive tones are connected by frequency glides. A similar
effect, albeit less effective in disrupting the streaming percept, is observed when
partial glides are used. Caution should be exercised when drawing conclusions
from these findings; Bregman and Dannenbring originally claimed that the
disruption effect was due solely to good continuation cues: the glides enhanced the
predictability of the position of the next tone in frequency. However, Bregman
(1990) has since suggested that the presence of glides simply reduce the frequency
separation of the tones allowing the disruption of streaming to be attributable
entirely to proximity cues. Indeed, unpublished experiments performed by
Bregman and Dannenbring at the time of the 1973 paper support this proposal
(Bregman, 1990). 

Simultaneous and sequential grouping

The grouping factors described above can be considered to fall into two general
categories (Bregman and Pinker, 1978). Simultaneous grouping rules (proximity
and common fate) are concerned with stimulus components which occur at the

Figure 5 Gestalt closure combined with good continuation. Only bars which exhibit a
smooth change are grouped into a perceptual whole. 
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same time; sequential grouping rules (similarity and good continuation) are
concerned with components which arise from the same source over time. A further
example of the competition between grouping rules highlights the interaction
between simultaneous and sequential grouping cues when organising a sound
scene. As described above, the frequency components of a complex tone are
grouped on the basis of common fate - a simultaneous grouping cue (see page 13).
However, such grouping can be disrupted in the presence of sequential grouping
factors. Darwin et al. (1989; see also Darwin et al., 1995) embedded a complex
tone within a sequence of pure tones in order to perceptually remove a single
frequency component from the complex (at the frequency of the pure tones). In the
presence of the tone sequence, the sequential grouping cue of similarity relating to
the tone sequence and complex component became the dominant cue, thus
preventing the component from being grouped with the rest of the complex. The
frequency component was grouped as an additional tone of the sequence and was
hence removed from the complex.

2.2.2 Schema-driven grouping

Schema - A mental codification of experience that includes a particular
organized way of perceiving cognitively and responding to a complex
situation or set of stimuli.

Merriam-Webster Collegiate Dictionary

In contrast to the primitive, bottom-up, grouping mechanisms described above, the
perceptual system can also employ prior knowledge about common sounds, such as
speech or music, to organise the acoustic environment into streams: schema-driven
grouping. It is believed that schemas directly encode the spectral characteristics of a
stimulus; however, the precise information stored and how it is represented is still
unknown. Such schemas can represent sounds of arbitrary duration, ranging from
phonemes, to words and even entire melodies (Dowling, 1973; see also Hartmann
and Johnson, 1991). 

The former can be demonstrated by the perceptual restoration of a phoneme which
has been replaced by a burst of noise (Warren and Warren, 1970). The stimulus used
was of the form “the *eel was on the axle” or “the *eel was on the orange”, where
“*” indicates the noisemasked deleted phoneme. For these two examples, listeners
reported hearing wheel and peel respectively: a top-down schema processes the
speech before conscious perception occurs even when the disambiguating word
occurred several words later than the deletion.
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2.3 Computational ASA

Computational solutions to the ASA problem are generally motivated by one of two
applications. The first is the goal of improving automatic speech recognition (ASR)
performance in noisy environments. The accuracy of ASR systems whose input
speech has been obtained in all but the quietest of backgrounds is poor compared to
that of the human listener particularly if the noise is non-stationary. An ASA model
that can successfully segregate speech from any number of interfering sound
sources (including other speech) could be used as a first stage of pre-processing in a
larger recognition system. The second motivation is to produce ‘advanced’, or
‘intelligent’, hearing prostheses. Instead of amplifying the entire frequency range,
such devices could segregate the acoustic environment into any number of streams,
one of which (for example, a speech stream) could be selected with all the others
being attenuated. The further inclusion of attentional mechanisms to semi-automate
the stream selection process would be a logical progression.

Attempts to create computer models that mimic auditory scene analysis have led to
the field of study known as computational auditory scene analysis (CASA). Early
work concentrated on speech separation by use of engineering solutions which
didn’t draw upon any of the insights gained from analysis of the auditory system.
For example, the model of Parsons (1976) aimed to completely characterise the
frequency spectrum of the target voiced speech by identifying the speaker’s pitch
and all associated harmonics. The use of a pitch tracker to maintain speaker
continuity from frame to frame thus allowed the resynthesis of an individual speech
‘stream’. A similar approach, albeit more refined with the inclusion of spatial
location information, was used in the work of Denbigh and Zhao (1992).

More recently, many researchers have been concerned with producing faithful
models of the human auditory periphery to both produce CASA solutions and gain
insights into the mechanisms of the auditory system. Much work has been
conducted on the separation of voiced speech in which the ability to separate
concurrent vowels by pitch is investigated (e.g. Scheffers 1983; Meddis and Hewitt
1992; Assmann and Summerfield 1994). However, despite success in duplicating
the recognition rate for vowel-pairs as a function of fundamental-frequency
difference, it should be noted that such sounds are an unrealistic test of a CASA
system. Vowel sounds are ‘stationary’: their average spectral characteristics are
constant over time; whereas most sounds are non-stationary. 

Weintraub (1985) was one of first researchers to attempt to separate non-stationary
sounds whilst drawing inspiration from the behaviour of the auditory system. His
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system separated two simultaneous speakers by analysing the pitch of each voice
extracted by analysing the temporal fine structure of each auditory filterbank
channel. 

All the solutions described above suffer from important limitations. Firstly, each
model has made strong assumptions about the number and characteristics of the
sources present: generally, each assumes at most two sources, both of which are
periodic. The majority of environments, especially those in which ASR is to be
used, contain many more than two sound sources, some of which will have non-
speech characteristics. Recent work has aimed to produce more generic analysers in
which no assumptions are made on the number and type of sources present.

One approach has been to model the organizational function of the auditory system
to perform segregation in a purely data-driven manner (e.g. Cooke 1991/1993;
Mellinger, 1991; Brown 1992). These systems pre-process the signal using an
auditory ‘front-end’ to model the auditory periphery. This output is then segmented
to form atomic units (regions of time-frequency that contain energy judged as
belonging to a single source) which are then grouped together on the likelihood of
them having arisen from the same source using cues described by Bregman (1990).
A significant problem with these particular solutions is the lack of top-down
schema-related information which could be incorporated into the grouping process.
One method of avoiding this ‘one-way data stream’ is to use a blackboard
architecture (Erman et al., 1980; Engelmore and Morgan, 1988) in which
independent knowledge sources create and modify a number of grouping
hypotheses which reside on the blackboard. It is these hypotheses which constitute
the entire ‘state’ of the analysis system at any one time. This technique has been
successfully used in a number of CASA systems (e.g. Cooke et al., 1993; Lesser et
al.,1995; Ellis, 1996; Godsmark and Brown, 1999) as it allows many different types
of knowledge (bottom-up primitive grouping rules, top-down schemas, etc.) to
interact. Another solution related to the blackboard architecture is based on the
multiagent paradigm (e.g. Nakatani et al. 1994; Nakatani et al. 1998; see also
Minsky, 1986; Maes, 1991) in which an ‘agent’ is dynamically allocated to a sound
stream and maintains that stream on the basis of consistent attributes in the input.
The entire system consists of a number of agencies, each with responsibility for
extracting specific information (e.g. spatial information, stream fragment
extraction). In turn, each agency is split into a number of agents, each of which
extract stream fragments from the input which are consistent with some attributes
(e.g. harmonicity). In addition to these, there are a number of agencies who
combine the output of the other agencies to produce the final stream outputs.
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Both of these types of solutions rely heavily on rule-based sound organisation.
Recent neural network solutions (e.g. Wang 1996; Brown and Cooke, 1997; Wang
and Brown, 1999) based on the neurophysiological speculations of von der
Malsburg and Schneider (1986) move away from rule-based organisation in favour
of ‘emergent properties’ of an array of interconnected nodes in which
synchronisation of node activities signals successful grouping of components. This
type of solution, and its use in the model presented in this thesis, will be discussed
in more detail in later chapters.

2.4 Summary

This chapter has introduced some of the concepts involved in performing auditory
scene analysis. The primitive, data-driven, grouping cues arise from the perceptual
grouping rules proposed by Gestalt psychologists in the 1930s. Despite their age,
they still form the core of visual and auditory grouping principles (Bregman, 1990).
To complement these cues, the perceptual system also draws on schema-based
information in which prior knowledge of common sounds can be used to perform
grouping. The previous section briefly described a number of solutions to the
auditory scene analysis problem, each of which employ different computational
strategies. Despite the success of such systems on limited problem-sets, few scale
well to tackle the full ASA problem and none is as robust as the human listener.

The difficulty involved in producing a computational solution is related to the
mismatch between theories of perception, such as Bregman’s, and the physiological
processing substrate. Consider the two tone streaming stimulus (figure 3). Theories
of perception are implied from experimental observations. Applying such
mechanisms to figure 3, one can conclude that as the frequency separation
decreases, it is more likely that the tones will be grouped together. Similarly, as
temporal separation decreases, sequential tones will also be more likely to group.
However, the neurophysiological mechanisms underlying auditory stream
formation are poorly understood and it is not known how groups of features are
coded and communicated within the auditory system. What does it mean to talk of
‘frequency proximity’ or ‘temporal proximity’? The human brain relies solely on
time-varying electrical impulses with no ‘symbolic’ input as suggested by
Bregman’s theory. The following chapter looks at a number of ways in which the
brain may represent stimulus features and perform feature grouping.
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Chapter 3. The Binding Problem
3.1 Introduction

In order to perceive a unified representation of an object, the brain must be able to
correctly associate all the different types of features (e.g. location, colour, texture,
pitch, etc.) derived from that object. Such associations, or bindings, are even more
important when the stimulus consists of more than one object, in which case the
brain must avoid incorrectly associating features from different objects: illusory
conjunctions (e.g. Treisman and Schmidt, 1982). Evidence from work on illusory
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conjunctions (e.g. Wolfe and Cave, 1999) demonstrates that this task poses a
problem for the brain. For example, figure 1 shows a number of coloured shapes
and letters flanked by two black digits. Treisman and Schmidt (1982) instructed
their subjects to report the two flanking digits. They found that the accuracy of
reports were high, but reports concerning the objects between the digits (for which
they were not forewarned about making) included a large number of illusory
conjunctions. Such illusory conjunctions were found to involve all the features
tested: size, colour, solidity and shape. Indeed, there is also significant evidence to
show that even features within the same modality (such as auditory, olfactory,
visual, etc.) can be encoded in widely distributed, spatially discontiguous, regions
of the brain (e.g. Posner, 1980; van Essen and Maunsell, 1983; Damasio, 1985;
Livingstone and Hubel, 1988). 

It is this representational complexity which lies at the heart of the binding problem:
how does the brain, confronted with many features, encoded in many different
regions, draw them all together to form a perceptual whole? 

Despite the importance of the binding problem in the fields of psychology,
philosophy, neuroscience and computational modelling, the precise meaning of
‘binding’ is rarely made clear. Many different types of association fall under the
general umbrella term of the binding problem. Most common is the binding of
features within a modality: associating neural activities across cortical space.
However, it is equally important to bind neural activities corresponding to features
in other modalities such as to associate a sound with a visual object and possibly
even a smell. In addition to these ‘perceptual’ bindings, binding is also used to refer

Figure 1 Illusory conjunction demonstration. 1. There are two large numbers on the left
and right of this figure. Determine if they are both odd and then read ahead for
more instructions. 2. Without looking back at the figure, ask yourself if it
contains the letters ‘R’, ‘P’ or ‘Q’? Did you see a vertical yellow bar? Did you
see a horizontal green bar? If you thought you saw an ‘R’, a ‘Q’ or a horizontal
green bar, you have made an ‘illusory conjunction’. From Wolfe and Cave
(1999, figure 1).
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to the mechanism by which concepts are associated with a particular percept. For
example, one binds the visual representation of an apple to all the semantic
knowledge stored about it such as the fact that it is edible and how it tastes
(Roskies, 1999). 

The following sections introduce three broad classes of solution to the binding
problem.

3.2 Combinatorial solutions

In the early 1970s a revolution in how the neuron was considered took place. The
neuron had previously been thought of as a noisy indication of more basic and
reliable processes involved in mental operations - the much higher reliability of the
nervous system as a whole was explained by the supposed redundancy in neural
circuits and averaging processes within the system. The advent of improved signal
detection technology allowed physiologists to analyse the activity of single neurons
and dispell this view. Neurons were no longer regarded as noisy indicators, but as
the prime substrate of mental processes (e.g. Barlow, 1972).

With the evidence that the activity of a single neuron can play an important role in
perception, new theories of brain function at the neuron level emerged. One popular
proposal was that neural activity is organised hierarchically with progressively
higher levels of processing being performed by increasingly fewer active neurons
(Barlow, 1972). At the lowest level, neurons deal with the ‘raw’ sensory data. This
information then converges on neurons with a higher level of perceptual
abstraction. This continues until the activity of one neuron simply states the
presence of a particular feature or pattern, thus allowing the binding problem to be
avoided altogether. Using Barlow’s example, the activity of a low-level neuron can
be thought of as the occurrence of a letter, that of a high-level neuron being the
occurrence of a word. 

Within such a combinatorial framework, cells at higher processing levels are often
more specific than those at lower levels: the upper levels of Barlow’s hierarchy
correspond to particular groups of features. An extreme example is that of the
hypothetical grandmother cell (Barlow, 1972; see also Sherrington, 1941) which
responds well to all views of grandmother’s face. It has been argued that there are
too few neurons to support all possible percepts (e.g. Engel et al., 1992, 1997;
Singer, 1993; Singer and Gray, 1995) and no site has been found which is large
enough to accommodate the ultimate site of convergence (see Damasio, 1989): the
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combinatorial explosion. However, this assumes that a strong interpretation of the
hierarchical encoding mechanism is employed. Although our gaze will fall upon an
almost infinite number of objects, the important question to be asked is not how
many we will see, but how many we need to discriminate. If the perceptual system
cannot distinguish between two objects, they need only have a single representation
in the nervous system. Indeed, it has been estimated that people can distinguish
between less than 100,000 different types of objects (Biederman, 1987) and
untrained subjects cannot perceive differences between objects that are readily
observable by trained subjects (Goldstone, 1998; see also Simons and Levin, 1997).

In support of a combinatorial framework, it has been found that early stages of
visual cortical processing contain neurons that encode simple visual attributes
whilst those at later stages encode more complex information about the visual scene
(e.g. Van Essen and Gallant, 1994; Kobatake and Tanaka, 1994; Gallant et al.,
1996). Furthermore, there is evidence to suggest that neurons in the macaque
inferotemporal cortex (IT) are tuned to views of complex objects such as faces
(Bruce et al., 1981). It is widely believed that the auditory system also exhibits such
hierarchical processing stages (e.g. see Eggermont, 2001, for a review).

A criticism levelled at the framework is that there is no way to anticipate what
different objects we will need to distinguish. In other words, there is no distinction
between physically ‘seeing’ and cognitively ‘identifying’ (e.g. Kahneman et al.,
1992; Treisman, 1992). Novel (previously unseen or unimagined) objects are
instantly seen and correctly bound even though we have no knowledge of them. For
example, when viewing a previously undiscovered cell through an electron
microscope, its features are immediately bound and the cell is perceived even
though we have never seen it before and hence would not have a cardinal cell to
represent it. A large ‘reservoir’ of uncommitted cells would be required for all the
unseen objects which would have to maintain latent input connections from all
feature-selective neurons at lower levels as well as consolidate the new perception
instantaneously. Neurophysiological studies suggest that neurons can change their
stimulus preferences to match the properties of a new object or feature allowing
new discriminations to be made (Sakai and Miyashita, 1991, 1994; Logothetis and
Pauls, 1995; Gibson and Maunsell, 1997; Kobatake et al., 1998) although this
would take finite time. However, novel objects are visible immediately. It has been
suggested that temporal coherence (see below) could be used to disambiguate
responses to stimuli before a combination-coding network for the stimulus in
question has been formed (von der Malsburg, 1999) by synaptic plasticity (Konen
and von der Malsburg, 1993). A further problem is how the brain stores the
hierarchical structure of an object allowing a object’s structure to be analysed. One
possible mechanism is to encode the hierarchical path that leads to the cardinal cell
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in question. However, if one begins to inspect activities at ‘lower levels’ in the
processing hierarchy, the binding problem re-emerges: how are different low-level
groups of neuronal activities made distinct?

Hierarchical representations may also conflict with how a subject draws experience
from a particular event (von der Malsburg, 1999). How would the grandmother cell
indicate that her face shares features with all other faces? Perceptions are not
isolated; various aspects overlap giving a richness and relation to other perceptions
which isolated events cannot convey. As one moves up the combinatorial hierarchy,
the combinations become more complex and hence the context becomes more
specialised. However, experience tends to encode information in a very general
context, otherwise it cannot be exploited in other contexts without it being
specifically learned in that context. For example, the absolute position of a pattern’s
constituent elements on a piece of paper is of little importance; it is the relative
position of the pattern’s elements that is of use (von der Malsburg, 1999).

Bruce et al. (1981) also found that the cells of the macaque responding specifically
to faces also exhibited strong scale and translational invariance: changes in size and
position of the facial image had no effect on the robustness of cell firing. Such
invariance would allow the perceptual system to overcome the problem described
above and allow it to store context-independent (to some degree) experiences. This
experimental finding was used to enhance Hubel and Wiesel’s (1965) original
model of visual object representation and recognition to incorporate invariance (e.g.
Perrett and Oram, 1993; Wallis and Rolls, 1997). This advance, however,
complicated the hierarchical framework and the binding problem re-emerged.

3.3 Attentional solutions

Another class of solution to the binding problem employs attention to increase the
saliency of certain features. Moran and Desimone (1985) found that when two
stimuli appeared within the receptive field of a particular cell in either V4 or
inferior temporal cortex, the response illicited from the cell depended on which of
the two stimuli was being attended. The stimulus pair consisted of one which
produced a strong response from the cell when presented alone (the preferred
stimulus) and one which produced a weak response when presented alone (the poor
stimulus). When attention was directed to the preferred stimulus, the cell responded
strongly to the pair. However, when attention was directed toward the poor
stimulus, the pair illicited a weak response, despite the preferred stimulus still being
within the cell’s receptive field. These findings are supported by studies of other
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areas of the visual cortex (V2, V4, MT and MST) which showed that attention
directed toward a preferred stimulus caused a higher cell response than when
directed toward a poor stimulus (Treue and Maunsell, 1996; Luck et al., 1997;
Reynolds et al., 1999). 

From such findings, it was concluded that attention can modulate the receptive field
size: when attention is directed to a particular stimulus within a cell’s receptive
field, this receptive field ‘constricts’ around the attended stimulus leaving the
unattended stimulus (or stimuli) outside the receptive field. This effectively
increases the spatial resolution of the visual system so that even neurons with
multiple stimuli within their normally large receptive field can process information
about a single stimulus at the attended location.

It ought to be noted that the ability of attention to modulate the neuronal response
patterns of cells may be dependent on the processing stage in question and the task
in hand: Seidemann and Newsome (1999) found similar attentional effects for an
MT neuron as described above but their modulations were much weaker.
Psychophysical evidence supports the theory that attention increases the spatial
resolution of the visual system (Yeshurun and Carrasco, 1999; see also DeValois
and DeValois, 1988; Graham, 1989) and fMRI studies have also provided support
for attention modulation (Kastner et al., 1998, 1999).

The studies outlined above suggest that attention has the ability to influence
receptive field size. However, this says little about binding per se. Attention
increases the saliency (represented by an increase in the neuronal response) of a
particular stimulus and hence this increased neuronal response would allow the
attended stimulus to win over an unattended stimulus in a competition for binding.
In this ‘strong’ version of the framework, it is still unclear how a perceptual whole
can be formed using this mechanism. When any scene is analysed (be it visual or
auditory) binding produces many different grouped sets of features, only some of
which are actually attended. Two difficulties arise: firstly, if an increase in neuronal
response signifies a number of features which are to be bound, how are multiple,
independent, groups of features to be bound without all the features forming a
single, incorrectly bound, object? This implies that a form of figure-ground
encoding is occurring. The figure-ground concept is a visual analogy in which there
is one ‘special’ object which is the focus of one’s attention and everything else falls
into the background. However, the fact that the subjects in Treisman and Schmidt’s
(1982) study bound features into multiple objects (albeit sometimes incorrectly)
demonstrates that more than two groups (equating to figure and ground) were
present.
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Secondly, if one sets aside the first objection, the framework implies that for any set
of features to be bound, attention needs to be directed to each in turn in order to
increase their neuronal responses. Hence, it is necessary for attention to be directed
to all features within a scene in order to bind them into perceptual objects (no
matter how loose that binding may be). This appears to conflict with the concept
that attention is there to avoid such all-encompassing processing (see James, 1890). 

The original hypothesis that attention is required to perform feature binding has
since been relaxed in the light of challenges to the framework in which it has been
shown that features can be correctly conjoined without attention and attention may
not always assure correct binding (e.g. Tsal, 1989), hence resolving our second
objection above. Indeed, it has been suggested that there exists a pre-attentive loose
binding of features (Tsal, 1989; Cohen and Ivry, 1989; Prinzmetal and Keysar,
1989; Ashby et al., 1996). 

Illusory conjunctions (e.g. Treisman and Gelada, 1980) occur when bindings break
down at some processing level. The role of attention is viewed not as conjoining
pre-attentive features but allowing such binding failures to be rebuilt and / or
maintained (Reynolds and Desimone, 1999). For example, extensions to Treisman’s
Feature Integration Theory (FIT; e.g. Treisman and Gelada, 1980) such as Guided
Search (Wolfe et al., 1989; Cave and Wolfe, 1990; Wolfe and Bennett, 1997)
incorporate this loose bundling: features are not accurately bound to form objects in
early ‘pre-attentive’ stages of processing and are merely held together on the basis
of spatial proximity. It is only the deployment of attention that binds these features
together into a representation that can be recognised (Nothdurft, 1993; Suzuki and
Cavanagh, 1995).

Such a framework may be efficient at solving illusory conjunctions in which the
spatial resolution of confusing boundaries can be increased. However, our first
objection (see above) remains: how can simple increases in neuronal response
allow the brain to form multiple bindings? It appears that another mechanism is still
required to encode these multiple bound groups.

3.4 Temporal correlation solutions

As mentioned in section 3.2, the incorporation of invariance into the perceptual
system to allow a degree of context-independent encoding, caused the binding
problem to re-emerge in the combinatorial framework. Indeed,
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‘As generalisations are performed independently for each feature,
information about neighbourhood relations and relative position, size and
orientation is lost. This lack of information can lead to the inability to
distinguish between patterns that are composed of the same set of invariant
features.’

von der Malsburg (1995, p. 523)

An alternative mechanism of grouping to the hierarchical approach is based on the
concept of an assembly: a large number of spatially distributed neurons (Hebb,
1949; Braitenburg, 1978; Edelman, 1978; Palm, 1981, 1990; von der Malsburg,
1986; Gerstein et al., 1989). The major advantage of the scheme over a hierarchical
approach is the benefit of neuron ‘overloading’: an individual cell can participate in
the representation of multiple perceptual objects. Thus assembly coding is
relational because the significance of an individual neuron’s response depends
entirely on its context. 

With a distributed representation it is necessary to be able to distinguish a neuron as
belonging to one assembly or another. Therefore, the responses of related neurons
must be labelled as such. It was proposed by von der Malsburg (1981; see also
Milner, 1974) that the means of labelling different assemblies is by temporal
synchronisation of the responses of assembly members. Segregation was hence
expressed by the desynchronisation of different assembly responses. Thus, each
assembly is identified as a group of synchronised neurons. The advantage of
synchronisation is that the extra dimension of phase allows many simultaneous
assemblies, each being desynchronised with the others. 

However, the computational expense of evaluating synchrony between multiple
spike trains is high; to alleviate this problem, von der Malsburg and Schneider
(1986) proposed a mechanism in which the mean discharge response of a pool of
cells is represented by an oscillator. In this manner, groups of features form streams
if their oscillators are synchronised and the oscillations of additional streams
desynchronise. Using this technique von der Malsburg and Schneider constructed a
network of fully connected oscillators (E-cells), each receiving input from one
frequency band of the auditory periphery and inhibition from an H-cell. In this
framework, the global inhibitor simulates the thalamus which is known to have
mutual connections with the cortex. Connections between E-cells can be modified
on a fast timescale according to their degree of synchronisation. E-cells which
receive simultaneous inputs synchronise through strengthened excitatory
connections, and desynchronise with other cells due to inhibition. Hence, this
model simulates stream segregation based upon onset synchrony. 
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Oscillatory activity in the brain was first observed 70 years ago from recordings
made from the scalp. However, neural information was thought to be defined purely
by amplitude and provenance. Hence, timing received little attention and was
‘averaged out’ of many studies. More recent work using multielectrode recordings
to analyse internally generated covariations of firing pattern has shown that neurons
can sychronise their discharges (Gray and Singer, 1989; Gray et al., 1989). These
studies also found that such stimulus-driven, context-dependent sychronisations
were are associated with oscillatory modulation of cell firing in the γ frequency
range (30-50 Hz). It was also noted that the observed sychronisation was internally
generated and was not due to stimulus-locked changes in discharge rate; and the
synchronisation probability changed in a systematic way in a stimulus/context-
dependent manner.

Electroencephalogram (EEG) studies have also revealed prominent activity,
especially in the β and γ frequency range. These so-called 40 Hz oscillations proved
to be one of the most widely recognised but least understood electrophysiological
activities of the cerebral cortex. Barth and MacDonald (1996) reported that
stimulation of the acoustic thalamus modulated cortex-based γ oscillations and
suggest coupling of sensory processing between these cortical zones. A study by
Joliot et al. (1994) confirmed that 40 Hz oscillatory activity was involved in human
primary sensory processing and also suggested that it forms part of a solution to the
binding problem. In their tests, one or two acoustic clicks were presented at varying
times (3-30 ms interstimulus intervals) while a magnetoencephalograph (MEG)
was used to study the auditory area of the brain. Analysis showed that at low
interstimulus intervals (less than 12-15 ms) only one 40 Hz response was recorded
and subjects reported only perceiving a single click. At longer intervals, each
stimulus evoked its own 40 Hz response and listeners perceived two separate clicks. 

The major problem associated with a temporal correlation framework is that it
requires a high temporal precision of cell discharge which is exacerbated when such
temporal precision is required over large cortical distances. However, cortical
networks can operate with high temporal precision. Studies of single-cell response
from the mammalian auditory cortex have shown pattern reproduction with
millisecond accuracy from trial to trial (DeCharms et al., 1998; Kilgard and
Merzenich, 1998; see also Yu and Margoliash, 1996; Doupe, 1997). Furthermore,
there is evidence that neurons distributed within and across cortical areas can
synchronise their discharges on the basis of γ oscillations (Singer and Gray, 1995;
see also Livingstone, 1996; Brecht et al., 1998). 

Long range temporal precision can be obtained by employing mechanisms such as
synfire chains (Abeles, 1991; see also Shadlen and Newsome, 1998) in which
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discharges are synchronised across parallel channels formed by cross-coupling
parallel channels using converging and diverging axon collaterals (see below). Such
a technique has been shown to perform well (Aertsen et al., 1996; Diesmann et al.,
1997) due to the fact that it promotes highly synchronised excitatory postsynaptic
potential (EPSP) barrages which are more effective than temporally distributed
ones at triggering postsynaptic discharges. Thus, the temporal structure of the
stimulus can be can transmitted over many synaptic junctions with little latency
jitter. 

Furthermore, it should be noted that perfect simultaneity would only be required if
one neuron were to evaluate the object representation as a whole, which is not
required in this framework. In this case, a certain degree of temporal ‘drift’ is
acceptable as long as this happens in a continuous fashion across encoding regions
(von der Malsburg, 1999).

It has been suggested that oscillatory behaviour is merely an emergent property of
the experimental design: many studies use anaesthetised animals and hence
oscillations may reflect a state of sleep rather than feature binding (e.g. Horikawa,
1994). However, oscillatory activity has been successfully observed in awake
animals (Singer, 1993). Indeed, evidence that synchronised activity encodes salient
information is supported by studies in which human subjects displayed a high
correlation between perception and neuronal response synchronisation (Tononi and
Edelman, 1998; Tononi et al., 1998). Additionally, an engagement in cognitive
tasks has also been found to increase γ oscillations in task-dependent cortical areas
(e.g. Tallon-Baudry et al., 1998; Keil et al., 1999). Similar γ oscillation increases
have also been found in states of focused attention (see Pulvermüller et al., 1997). 

3.5 Interim summary

In the previous sections, we have looked at three broad classes of solution to the
binding problem, each of which has its advantages and disadvantages.
Combinatorial coding frameworks (e.g. Barlow, 1972) allow the binding problem
to be avoided altogether: every percept is represented by an individual ‘cardinal’
cell. Indeed, the commonly cited problem with this mechanism - insufficient
numbers of neurons to encode all percepts - has been argued to be irrelevant if only
distinguishable percepts are encoded (e.g. Biederman, 1987; Goldstone, 1998; see
also Simons and Levin, 1997). However, the difficulty of rapidly encoding new
percepts and analysing the hierarchical structure of objects may require a further
segregation mechanism to be employed such as temporal correlation. Furthermore,
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invariant object recognition (Bruce et al., 1981) which has been incorporated into a
number of models of visual recognition (e.g. Perrett and Oram, 1993; Wallis and
Rolls, 1997) also causes problems for combination-coded representations. These
solutions decompose the sensory pattern into elementary features each of which is
represented by an individual cell connected to a single invariant feature cell.
Therefore, the invariance cell receives the same feature from all different points on
the generalisation continuum (e.g. location). However, at these higher levels,
information about the relative position, size and orientation is lost (von der
Malsburg, 1995) and the binding problem re-emerges. It has been suggested that
temporal correlation could be used at a low processing level before generalisation
has occurred. These ‘spatial’ patterns then resonate with and activate
isomorphically arranged higher level circuits (von der Malsburg, 1981, 1988;
Hummel and Biedermann, 1992).

There is also evidence that attention plays a role in solving the binding problem
(e.g. Moran and Desimone, 1985; see also Pulvermüller et al., 1997) by allowing
groups of cells encoding particular features to be given increased saliency (by
means of increased neuronal response) and hence bind them together. However,
such effects have occasionally been found to be weak (Seidemann and Newsome,
1999) and indeed attention has also been found to be unnecessary in some
situations (e.g. Tsal, 1989; see also Riesenhuber and Poggio, 1999). It is now
believed that features are loosely bound pre-attentively and it is only the
deployment of attention that binds these features together into a representation that
can be recognised (Nothdurft, 1993; Suzuki and Cavanagh, 1995). As discussed
above, it is unclear how multiple bound groups can be formed when the only way of
signalling a to-be-bound group in increase neuronal response. One possible way of
distinguishing between these groups is to use temporal coherence.

Temporal coherence was proposed by von der Malsburg (1981) to overcome the
ambiguities that arise from the loss of information in combination-coded
representations when feature invariance occurs. Indeed, it should be made clear that
temporal coherence is not a solution to the binding problem per se, merely a way of
representing the output of some solution. As mentioned above, such a framework
lends itself to solving some of the fundamental problems associated with
attentional- and combinatorial-based solutions.

To conclude, it is likely that a combination of all three mechanisms are used to
solve the binding problem. Temporal coherence is useful for segregating many
different groups (e.g. within an attentional framework, or an invariant hierarchical
framework). Synchronised circuits and specialised conjunction units are compatible
(Tanaka, 1996) and point toward both being used. Indeed, the existence of illusory
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conjunctions (e.g. Treisman and Gelada, 1980) which can disappear given
sufficient viewing time suggest that relevant combinations of features are not
represented solely by combination-coding and that the brain requires time to form
the correct bindings.

3.6 Computational models of feature binding

In this section, we will describe two computational models of binding based on
temporal coherence. The first model - synfire chains - uses spike trains in which the
correlation of the temporal fine structure of two spike trains is used to asses
synchrony. The second model employs neural oscillators which demonstrate a more
computationally efficient mechanism of assessing synchrony. In particular, we will
look at how both models can be used to perform frequency proximity grouping of
pure tones, since this relates to issues studied later in this thesis.

Synfire chains

As described above, a certain degree of long range temporal precision may be
required to allow distantly separated brain regions to participate in synchronous
activity. The simplest mechanism is to employ a single multi-neuron link (figure
2a) in which spikes travel from one neuron to another along a chain of neurons.
However, if one neuron in the chain becomes damaged or dies, the entire chain
becomes inoperative. This is significant because neurons are constantly dying and
cannot be replaced - between the ages of twenty and eighty years, an average
human loses one third of their cortical cells (Gerald et al., 1980) without significant
loss in information processing ability. Therefore, some form of redundancy is
required in such systems. The use of parallel serial chains (figure 2b) provides this.
However, an inordinate number of neurons is required to maintain system
functionality over an extended period (e.g. the life span of a human). A network of
neurons connected using diverging and converging pathways (figure 2c)
incorporates redundancy while limiting the number of neurons required. As
mentioned above, a diverging and converging pathway topology also allows the
temporal structure of a stimulus to be transmitted over many synaptic junctions
with little latency jitter.

Abeles (1991) contends that information transmission in the cortex is likely to
occur between sets of neurons connected by such diverging and converging
pathways: synfire transmission (see also Griffith, 1963). 
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For the pathways between two nodes to be a synfire link, the following conditions
must hold,

• Whenever n cells of the sending node become synchronously active, at least k
cells of the receiving node must become synchronously active.

• k must not be smaller than n.

For a network of neurons connected with diverging/converging (feedforward)
pathways to be a synfire chain, the following condition must hold,

• All connections between nodes must be synfire links such that the receiving
node of one link is also the sending node of the following link.

Our early work (Wrigley and Brown, 2000; see also Wrigley, 1999) considered if
such a topology may also be used to explain frequency proximity grouping in the
auditory system. The use of diverging projections with decreasing synaptic saliency
from the central link (von der Malsburg, 1973; Hubel, 1988) appears to lend itself
well to proximity segregation: more distant input (in terms of frequency separation)
will experience much weaker synaptic influence from the other frequency band and
hence will be less likely to produce synchronous activity. According to the temporal
correlation theory, the activities of two frequency bands are said to be grouped if
the output spike trains for each band display a high level of temporal correlation
(figure 3). 

Synfire chains can be used to demonstrate grouping by frequency proximity by
ensuring that k is smaller than the node width. In other words, it must be possible
for each group of k neurons to which a frequency band projects to be distinct. In this
way, widely separated frequency bands each excite a group of n neurons whose
projections to the next node do not overlap: without a significant overlap, the
activities of the respective k neurons cannot influence each other and hence cannot
synchronise.

(a)

(b)

(c)

Figure 2 Alternative connections between neurons. (a) serial; (b) parallel serial; (c)
diverging/converging. After Abeles (1991), figure 6.1.1.
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The network used to investigate this proposal consists of five synfire links, the first
of which receives input from 50 frequency channels (figure 5). Each cell is
modelled as an integrate and fire neuron (see Lapicque, 1907; Tuckwell, 1988)
incorporating an absolute refractory period; input to the cell is in the form of spikes
which are represented as binary values. The membrane potential E at time t is
defined as

(1)

where Er is the membrane resting potential (-60 mV); Ts is the sampling period (1

ms);  is the decay time constant (10 ms); Ht is the increase in membrane potential
due an incoming spike (8 mV) if an input spike occurred at time t, otherwise Ht = 0
mV. Et becomes equal to the refractory membrane potential (-70 mV) for a period

of 3 ms and a spike is produced if Et exceeds the threshold potential (-50 mV). The
behaviour of this type of neuron model is illustrated in figure 4. 

Activation of each frequency band is simulated by random spike trains with an
interspike interval of no less than 1 ms (absolute refractoriness). The diverging
connections are subject to synaptic strengths which vary with distance in a gaussian
fashion (von der Malsburg, 1973; Hubel, 1988). It is a combination of the
feedforward network topology and the gaussian connection weighting that gives
rise to grouping by frequency proximity. The n channels of the stimulated
frequency band will project to k cells in the receiving node; therefore, for
synchronous activity between the two bands to occur, the k receiving cells for each
band must show a significant overlap.
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Figure 3 Desired synfire chain network response to spectrally distant stimuli (a) and
spectrally close stimuli (b).
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The correlation of channel outputs X and Y is used to assess the degree of temporal
synchrony between two channels, 

(2)

where  and  is the mean of X(t).

Figure 6 shows that as frequency separation increases, the correlation (and hence
the tendency to group) between the outputs of the centre frequencies decreases. It
can also be seen that the n:k ratio (an indication of how many cells, k, a group of n
cells projects to) determines the sensitivity of frequency proximity grouping: as the
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Figure 4 Sample behaviour of the integrate and fire cell in response to a random spike
input train. This cell model forms the basis of the synfire chain.
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ratio tends toward 1, the network becomes more sensitive to the size of the
frequency separation.

This section has described how a synfire chain (Abeles, 1991) can be used to
perform grouping by frequency proximity. The ‘spread’ of the diverging
connections within each synfire link determines the sensitivity of the network to
frequency proximity: as the spread increases, widely separated bands are more
likely to become synchronised and hence viewed as being grouped according to the
temporal correlation theory (figure 6). However, when considering large networks
of cells, the computational complexity of (2) becomes significant: to assess
synchrony in the network output, (2) must be applied to every channel pair

(adjacent or not): a problem with O(n2) complexity. 

An alternative solution which draws upon the temporal correlation theory uses
neural oscillators (e.g. von der Malsburg and Schneider, 1986) as opposed to
computational models of spiking cell dynamics. This significantly reduces the
complexity of synchrony assessment to O(n): the application of a threshold to each
channel output.

Figure 6 Correlation between band centre frequencies decreases as frequency
separation increases. The sensitivity of the network to frequency separation
can be adjusted by altering the n:k ratio (legend shows n:k ratio).
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Neural oscillators

The previous section described the success of a synfire chain in segregating channel
activities on the basis of frequency proximity. However, it also requires a
mechanism for assessing synchrony within the outputs of such a model (equation 2)
that is computationally expensive. As described above, von der Malsburg and
Schneider (1986) proposed an alternative mechanism which extended the temporal
correlation theory of von der Malsburg (1981) by using oscillators as the processing
substrate. An oscillator is regarded as a model for the behaviour of a single neuron,
or as a mean field approximation to a group of reciprocally connected excitatory
and inhibitory neurons. Within this mechanism, the phase of an oscillator’s activity
can be used to assess synchrony, thus avoiding the need for a correlation metric: all
oscillators whose activities are above a given threshold at time t are said to be
synchronised. Hence, a set of features form a group if the corresponding oscillators
oscillate in phase with zero phase lag (synchronisation); oscillators representing
different groups oscillate out of phase (desynchronisation). Furthermore, by using
an activity threshold, synchronisation can be determined using only the activities at
time t whereas (2) requires a time series of previous cell activities necessitating
some form of activity buffer for each channel.

Recent work by a number of researchers (Lui et al., 1994; Wang, 1996; Brown and
Cooke, 1997; Brown and Wang, 1999; Wang and Brown, 1999) has extended the
oscillator-based stream segregation model with some success. The approach of
Wang and colleagues uses a two-dimensional time-frequency network of relaxation

Figure 7 Diagram of Wang’s (1996) segregation network. To aid clarity, only the lateral
connections from one oscillator in the network are shown. From Wang (1996).
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oscillators in which lateral excitation connections promote synchrony and a global
inhibitor aids desynchronisation (figure 7). This approach is based upon studies of
locally excitatory globally inhibitory networks of relaxation oscillators (LEGION,
see Terman and Wang, 1995) and has been termed the oscillatory correlation
framework (Wang, 1996). This can be considered a special case of temporal
correlation. 

The building block of the network is a single oscillator, which consists of a
reciprocally connected excitatory unit and inhibitory unit whose activities are
represented by x and y respectively:

(3)

(4)

Here, ε, γ and β are parameters; S represents overall coupling from other oscillators
in the network and ρ is a noise term used to aid desynchronisation between

oscillator groups. The x-nullcline (  = 0) is a cubic function and the y-nullcline (
= 0) is a sigmoid function (see figure 8). When I > 0, the two nullclines intersect at
a point along the middle branch of the cubic (see figure 8a) and give rise to a stable

periodic orbit provided  is sufficiently small. In this situation, the oscillator is said
to be enabled. The solution of an enabled oscillator alternates between a phase of
high x values (active phase) and a phase of low x values (silent phase); transitions
between these two phases occur on a much faster time scale compared to time spent

Figure 8 Nullclines of a single oscillator. (a) The bold line shows the limit cycle of an
enabled oscillator whose direction of motion is indicated by the arrow heads.
(b) An disabled oscillator approaches a stable fixed point. From Wang (1996).
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in active and silent phases. When I < 0, the nullclines intersect on the left branch of
the cubic (see figure 8b) and produce a stable fixed point at a low value of x. When
the oscillator is in this state of equilibrium, it is said to be disabled. The parameter

 can be used to adjust the amount of time an oscillator spends in the two phases: a

smaller value of  results in a shorter active phase duration. It is clear, therefore,
that oscillations are stimulus dependent: they are only observed when the external
input to the oscillator is greater than zero. Because it has two timescales, the
oscillator in (3) and (4) belongs to a family of relaxation oscillators. It is related to
both the van der Pol oscillator and to the simplifications of the Hodgkin-Huxley
equations for action potential generation in nerve membrane (van der Pol, 1926;
Hodgkin and Huxley, 1952; FitzHugh 1961; Nagumo et al., 1962).

Connections between oscillators are used to promote synchronous activity. The
connection between oscillators i and j is in fact described by a pair of weights
(Wang and Terman, 1995; Terman and Wang, 1995; see also von der Malsburg,
1981; von der Malsburg and Schneider, 1986) in which one is permanent (Tij) and
one is dynamic (Jij). The strength of the Tij connections on the grid fall off

exponentially with the distance between them (figure 7) according to a two-
dimensional Gaussian distribution. This endows the oscillator network with
sensitivity to the frequency and temporal proximity of acoustic components. The
strength of the Jij connections are modified during simulation, depending on the
state of synchronisation in the network, using dynamic normalization (Wang, 1993;
1995). This mechanism combines a Hebbian rule (Hebb, 1949) that emphasises
coactivation of oscillators i and j and normalises all incoming connections to an
oscillator.

The overall coupling S from other oscillators in the network to oscillator i is defined
as:

(5)

where Wij is the combined Tij and Jij connection strength between oscillators i and j.
xk is the activity of oscillator k. The parameter θx is a threshold above which an

oscillator can affect others in the network. Hence, the first term of (5) describes the
lateral excitatory connections to oscillator i; the last term describes the inhibition
from the global inhibitor.  is a ‘squashing function’ which compresses

oscillator activity to be within a certain range:

γ
γ

Si WijS∞ xk θx,( )
j

∑ WzS∞ z θz,( )–=
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(6)

Wz in (5) is the weight of inhibition from the global inhibitor which is denoted by
the unit z and is defined as:

(7)

where σ∞ = 0 if xi < θz for each oscillator i, and σ∞= 1 if xi ≥ θz for at least one
oscillator i. Hence θz is another threshold. If σ∞ = 1, z → 1 and every oscillator in
the network receives inhibition; if σ∞ = 0, z → 0 and none of the oscillators in the

network receives inhibition. φ determines the rate at which the global inhibitor
reacts to stimulation.

The global inhibitor receives excitation from each oscillator, and in turn inhibits
each oscillator of the network. Once a group of oscillators ‘jump’ up to the active
phase, it triggers the global inhibitor, which then inhibits the entire network, thus
suppressing the activity of other groups of oscillators. A group (and subsequently a
stream) is formed by synchronizing oscillators in the two-dimensional time-
frequency network. 

As the ‘frequency’ of the global inhibitor activity in relation to that of the network
oscillators is dictated by the total number of groups in the network, this activity also

S∞ x θ,( ) 1

1 e
κ x θ–( )–+

----------------------------=

z· φ σ∞ z–( )=

Figure 9 Oscillator activities (b and d) in response to alternating tone sequences (a and
c). From Wang (1996).
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forms a useful cue in determining how many groups exist and which oscillators
belong to them.

Using this network, grouping is performed on a time-frequency pattern input: the
network works on a pseudo-spectrogram with a time resolution of 40ms. It is
hypothesised that the time axis is produced by a system of delay lines. When
presented with binary input, the network quickly achieves a stable state in which
groups of oscillators representing streams ‘pop out’ one after the other. 

Wang (1996) investigated grouping by frequency proximity using an alternating
tone sequence. Figures 9a,c show the pseudo-spectrogram diagrams of the stimuli
conditions with large (figure 9a) and small (figure 9c) frequency separations as they
would be mapped to the oscillator network. Each square in the figures represents
the input to a single oscillator in the two-dimensional network. 

Figures 9b,d show the oscillator activities for the stimulated frequency channels
and the global inhibitor activity over the full duration of the stimulus. It is clear
from the oscillator plots that when the frequency separation is small, the two sets of
oscillators are synchronised (phase locked with zero phase lag - figure 9d).
However, if the frequency separation is large, the oscillators are desynchronised
(figure 9b) and the frequency bands are not considered to be grouped. In each of
these plots (figures 9b,d) the activity of the global inhibitor is shown at the bottom.
As noted above, the global inhibitor activity forms a useful cue in determining how
many groups exist. When the two frequency bands are segregated (figure 9b) the
frequency of the global inhibitor is twice that of the global inhibitor when the
frequency bands are grouped (figure 9d). It is also important to note the simplicity
of assessing synchronisation: oscillators which are synchronised jump up to the
active phase and drop back down to the silent phase simultaneously. Furthermore,
the global inhibitor ensures that only one group of synchronised oscillators are in
that active phase at any one time. Hence the application of a threshold is sufficient
to determine which oscillators are grouped: all oscillators in the active phase at the
same time (x activities above a certain threshold) are to be grouped.

This model will be discussed further in later chapters in which the LEGION
network is used as the basis for a model of auditory attention.
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3.7 Summary

This chapter has presented three general classes of solution to the binding problem,
each of which have their individual advantages and disadvantages. The
combinatorial framework (e.g. Barlow, 1972) is based on the proposition that
progressively higher levels of processing are performed by increasingly fewer
active neurons. Ultimately, the highest processing level consists of a single neuron
whose activity signifies the presence of a particular object in the scene. For
example, the hypothetical ‘grandmother cell’ whose activity signals the presence of
grandmother’s face in the visual scene (see Lettvin, 1995). Despite refinements of
the framework to incorporate a level of context-independent storage, these
introduced difficulties in being able to distinguish between multiple ‘invariant’
feature sets. A similar problem arises with attentional solutions. This framework
proposes that attention is used to increase the saliency (represented by an increase
in the neuronal response of the feature-encoding cells) of features that are to be
perceptually grouped. However, this mechanism suffers from the same problem as
the invariant combinatorial framework: how are multiple grouped feature sets
distinguished? To solve this problem, von der Malsburg (1981; see also Milner,
1974) proposed that the multiple groups of feature sets could be distinguished on
the basis of the temporal fine structure of their neural responses: cells representing
features which are to be grouped synchronise their activities; groups of
synchronised cells representing different objects are desynchronised.

The final section of this chapter demonstrated two types of solution which draw on
the temporal correlation theory of von der Malsburg (1981), and show that grouping
by proximity (one of the Gestalt grouping cues described in the previous chapter)
can be an emergent property of appropriately connected neural networks. Synfire
chains (Abeles, 1991) demonstrate how synchronous spike trains can be transmitted
over large distances with little temporal jitter. The simulation above demonstrated
that they can also perform frequency proximity grouping by virtue of their
diverging and converging pathways. However, the computational complexity of the

synchrony assessment becomes significant: it has O(n2) complexity.

The use of oscillators (e.g. von der Malsburg and Schneider, 1986; Wang, 1996)
within large networks avoids such issues. Firstly, the phase of an oscillator is used
to assess synchrony. Within this mechanism, a set of features form a group if the
corresponding oscillators oscillate in phase with zero phase lag (synchronisation);
oscillators representing different groups oscillate out of phase (desynchronisation).
As a result, many different groups can be represented simply by adjusting the phase
of each group’s oscillators (e.g. see Wang and Terman, 1995).
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Secondly, the computationally expensive cross-correlation process required to
evaluate network synchronisation in synfire chains can be replaced with a simple
threshold and hence reduce the problem complexity to O(n): all oscillators in the
active phase at the same time (x activities above a certain threshold) are to be
grouped. Of course, such considerations of computational cost may not be relevant
when considering a highly parallel structure such as the brain.

The second example above showed how neural oscillators within the oscillatory
correlation framework can perform grouping by frequency proximity (Wang,
1996). The two-dimensional network used by Wang (1996) consists of a grid of
oscillators connected by two types of connection: permanent and dynamic. The
permanent weighting between a pair of oscillators on the grid falls off exponentially
with the distance between them, thus providing sensitivity to the frequency (and
temporal) proximity of acoustic components. Conceptual issues related to the
design of Wang’s network and the implementation of an attentional mechanism
presented in this paper will be discussed in more depth in chapters 5 and 6. 
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Chapter 4. Auditory Selective Attention
4.1 Introduction

‘Everyone knows what attention is.’

William James (1890)

The term attention is commonly encountered in ordinary language and its meaning
appears simple. Unlike other fields of research, people have strong convictions
about its precise nature which haven’t been arrived at by scientific investigation: it
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is a fundamental part of daily life and therefore something about which one ought to
know a great deal.

In common usage, attention usually refers to both selectivity and capacity
limitation. It is widely accepted that conscious perception is selective and that
perception encompasses only a small fraction of the information impinging upon
the senses. The second phenomenon - that of capacity limitation - can be illustrated
by the fact that two tasks when performed individually pose no problem; however,
when they are attempted simultaneously, they become difficult. This occurs even
when the two tasks are not physically incompatible such as reading a book and
listening to the radio. In turn, this leads to the common conclusion that attention is a
finite resource.

Awareness of stimuli details only occurs if they are attended to and the finite nature
of attention leads to capacity limitation: when attending to one task there is less
attention to devote to other tasks. Devotion of attention to one task is assumed to
enhance performance (‘pay attention to your driving’) but can also be detrimental
in some highly automatic tasks such as tying one's shoes. 

Selectivity of auditory perception and the voluntary control of this selection are the
core phenomena addressed in the remainder of this chapter. Specifically, we will
look at how attention can be directed in frequency and location; evidence will be
presented to suggest that this allocation occurs in the ‘shape’ of a gaussian
distribution. Finally, we consider a psychophysical study that has cast doubt on the
traditional role of attention and also look at how previous models of attention fail to
explain findings of perceptual studies.

4.2 Attentional allocation in audition

Frequency location

It has been known for some time that listeners are better able to detect expected
tones as opposed to unexpected tones. Greenberg and Larkin (1968) developed a
probe-signal paradigm to assess the extent of this expectancy effect. Subjects were
presented with two intervals, both filled with white noise, one of which contained a
pure tone. Listeners were instructed to indicate which interval contained the tone.
The subjects were led to expect the tone to be of a particular frequency (this signal
was termed the primary). However, on less than a third of trials, the tone presented
was of an unexpected frequency (this signal was termed the probe). Greenberg and
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Larkin found that detection performance was best for primary signals, intermediate
for probes within the critical band and worst for probes outside the critical band. 

This form of experimental design has subsequently been used by a number of
researchers (e.g. Schlauch and Hafter, 1991) to study the effect of expectancy on
detection performance. In order to extend and substantiate such experiments,
Mondor and Bregman (1994) investigated frequency selectivity within the context
of an identification paradigm. Instead of embedding the tone in noise, the signal
was presented in isolation and listeners were requested to indicate whether the
target tone was longer or shorter in duration than the cue tone. On valid trials, the
target and cue tones were of the same frequency. On invalid trials, the frequency
separation of the two tones was manipulated to investigate the role of frequency
similarity. In addition to this, Mondor and Bregman adjusted the interval between
cue and target in order to determine whether the frequency selectivity effect
depended on the time available to allocate attention to the cued frequency region.

Both validly and invalidly cued targets were equally likely to be one of three
different frequencies. This ensured that the experiment would be able to determine
whether superior performance on valid trials was due to differential familiarity with
the target or allocation of attention to a cued frequency region. 

Figure 1 shows that performance (indicated by the median time from target onset to
listener response for each trial) declines as frequency separation increases. This
implies that judgements about specific features of an auditory stimulus (in this case
duration) may be facilitated (in this case made more rapidly) by orienting attention
to the frequency at which the stimulus occurred. It can also be seen that increasing
the duration of the cue-target interval improves performance suggesting that a finite

Figure 1 Response time as a function of trial type and interstimulus interval. From
Mondor and Bregman (1994), figure 1
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amount of time is required before attention is fully allocated to a particular
frequency region.

Spatial location

As indicated above, cues that provide accurate frequency information lead to faster
and more accurate target identification and classification. This is also true of cues to
the spatial location of an acoustic target. Mondor and Zatorre (1995) examined
whether the time required to perform a shift of attention was proportional to the
physical distance of the shift. Each subject was placed at the centre of a semicircle
of speakers (figure 2); a fixation sequence was used to control the focus of attention
at the beginning of each trial: listeners were instructed to detect a drop in intensity
of a steady tone presented from a particular location. Following this, a brief noise
burst was delivered as a spatial cue from the spatial location from which the target
tone would sound. The shift distance is defined as the spatial separation in degrees
between the location of the fixation sequence and the location of the cue and target. 

Despite all trials being valid, the cue-target interval was varied to control the
amount of time available to orient attention. Figure 3a shows a similar trend to that
of figure 1, in which performance increases as cue-target interval increases.
However, it is important to note that the shift distance has no effect on performance.
This is in direct contrast to evidence gathered by Rhodes (1987) in which she found
that response times increased linearly with spatial separation up to a certain point,
beyond which response times were similar. From this, Rhodes concluded that
analogical shifts (in which shift time is linearly proportional to the shift distance)
occurred for relatively short distances and discrete movements occurred for larger
shifts. Despite accounting for her data, Rhodes’ hypothesis is unique in combining
the two types of shift, even when considered in the context of visual spatial

Figure 2 Schematic description of the speaker array used in the experiments of Mondor
and Zatorre. From Mondor and Zatorre (1995), figure 1.
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attention. Despite the mechanism for the shift of visual spatial attention having
been a controversial topic of debate, Mondor and Zatorre remark that,

none of the investigators of visual attention has argued in favour of a model
that incorporates both analogical and discrete movements

Mondor and Zatorre (1995, p. 388).

From this and the experimental findings of their more rigorous study, Mondor and
Zatorre suggest that Rhodes misinterpreted her data, due to a correction procedure
which failed to eliminate the effect of azimuthal position on localisation
performance. 

The most consistent explanation of Mondor and Zatorre’s findings is that the cue is
causing attention to be oriented to that location. However, one could also argue that
the cue was simply acting as a general alert to the listener. In a minor alteration to
the first experiment, Mondor and Zatorre introduced a number of inaccurate spatial
cues on a portion of the trials. If an auditory cue acts solely to alert the listener, then
both valid and invalid cues ought to result in identical performance. However, if
auditory attention is oriented on the basis of the spatial cue, increased performance
ought to be observed with valid cues. As expected, targets preceded by a valid cue
were identified more quickly than those preceded by invalid cues. This provides
strong evidence that listeners orient attention to the position in which the cue
sounds. 

In summary, Mondor and Zatorre (1995) found that performance improved as time
available to shift attention to a cued spatial position increased. Furthermore,

(a) (b)

Figure 3 (a) Response time as a function of attentional shift distance and cue-target
onset interval. From Mondor and Zatorre (1995), figure 2. (b) Response time as
a function of cue validity and cue-target onset interval. From Mondor and
Zatorre (1995), figure 3.
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accurate spatial cues facilitated performance more than inaccurate ones:
performance declined as the distance of an unexpected target from a cue spatial
location increased. Their evidence is also consistent with a discrete attention-
allocation model.

Space-frequency allocation

Previous sections have demonstrated that the performance of target identification
can be influenced by cues to the frequency or location of an imminent target. These
results are taken to be evidence for the allocation of some form of auditory attention
to single sites (Mondor and Bregman, 1994; Mondor and Zatorre, 1995). If a cue
contained information from more than one modality, which would take precedence?
Deutsch (1974; Deutsch and Roll, 1976) investigated this question by presenting
listeners with a succession of pure tones dichotically. In one ear, an 800Hz tone was
presented three times followed by two presentations of a 400Hz tone. In the other
ear, a 400Hz tone was presented three times followed by two 800Hz tones. The
particular frequency heard and the location from which that frequency apparently
originated seemed to be governed by separate processes: the frequency heard was
that presented to the listeners dominant ear and the location was that of the high
tone. However, Bregman and Steiger (1980) argued that this illusion was likely to
be a conflict of two perceptual organisation principles: grouping by frequency and
grouping by location. It was suggested that this conflict was forcing the listeners’
auditory system to call upon another, more reliable, form of grouping: the use of a
higher harmonic to determine the location of a complex. It was unfortunate that
Deutsch used an 800Hz tone which can be viewed as a harmonic of the lower,
400Hz tone. From this, Bregman and Steiger concluded that Deutsch’s illusion was
in fact the emergent behaviour of a preattentive process in which perceptual
features are combined. Indeed, Bregman remarked, 

The perceptual stream-forming process has the job of grouping those
acoustic features that are likely to have arisen from the same physical source.
Since it is profitable to attend to real qualities, locations, and so on, rather
than to arbitrary sets of features, attention should be strongly biased toward
listening to streams.

Bregman (1990, p. 138)

Mondor et al. (1998) investigated this interdependence of frequency and spatial
information to determine if attention is directed at such streams. Using the same
form of speaker array as their earlier experiments (Mondor and Zatorre, 1995), as
shown in figure 2, listeners were given the task of categorising pure tones on the
basis of frequency (low vs. high) or spatial location (central vs. peripheral). In
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controlled conditions, no variation was made in the ‘irrelevant’ dimension.
However, in the selective attention conditions, variations were made in the
irrelevant dimension which were uncorrelated to variations in the relevant
condition. If auditory attention is allocated separately to the location and frequency
dimensions, then no performance degradation should be observed. Alternatively, if
auditory attention cannot be allocated separately to the two dimensions, the
performance will suffer interference from the variations in the irrelevant dimension. 

Consistent with the notion that attention is directed toward streams, listeners found
it impossible to ignore variation on an uninformative dimension while making
classification judgements on the basis of a second dimension. Mondor et al.
conclude that “auditory attention acts to select streams” (p. 68). When the relative
salience of the frequency and location dimension was investigated, listeners were
unable to guide selection independently by location or frequency. In other words,
neither dimension dominates. 

This suggests that auditory attention acts on groups of features rather than
individual features and attending to different stimulus features which are integrated
ought to result in similar cerebral activity. Zatorre et al. (1999) aimed to investigate
this prediction by instructing listeners to perform a task which required detection of
tones of a specified frequency or at a specified spatial location while undergoing
positron emission tomography (PET) scanning. Their findings indicate that an
auditory attentional task engages a specialised network of right-hemisphere
regions, in particular the joint participation of the right parietal, frontal and
temporal cortex. As expected, changes in the cerebral blood flow were very similar
when subjects attended to spatial or to spectral features of the acoustic input
supporting the model of Mondor et al. (1998) in which an initial stage of feature
integration precedes selection on the basis of such streams. 

Interdependencies have also been observed for pitch, timbre and loudness (Melara
and Marks, 1990). This is in conflict with theories of selective attention which have
arisen from visual experiments. The feature integration theory (FIT) of Treisman
and colleagues (Treisman and Gelade, 1980; Treisman and Gormican, 1988)
postulates that selective attention is required to perform a discrimination or
detection task only when two or more features are in conjunction and not in
variations of one feature. However, evidence collected by Mondor et al. (1998)
suggests that classification cannot be based on a single feature. Furthermore, no
evidence was found to support the dominant role of location present in the FIT.
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Attentional ‘shape’

In the light of the evidence supporting the allocation of attentional resources to one
or more sites simultaneously, it is interesting to consider the ‘shape’ of the
attentional deployment. Two general classes of model have been proposed to
describe the focus of attention. Spotlight models propose that attention is allocated
to a discrete range of frequencies with an even distribution within this range. The
edges of this spotlight are characterised by a sharp demarcation between attended
and unattended frequencies. Alternatively, the attentional focus may be defined as a
gradient with the density of the attentional resources being the greatest at the cued
frequency and declining gradually with frequency separation from the focal point of
attention. 

In a similar experiment to that described above, Mondor and Bregman (1994)
increased the number of possible frequency separations used on invalid trials to
three. Not only is another strong cue validity effect observed (figure 4) but the
effect of frequency separation is only consistent with a gradient of attention. As
frequency separation increases, so too does the response time. A model
incorporating a spotlight of attention with abrupt changes between attended and
unattended frequencies could not account for this result. The gradient model of
attentional allocation is also supported by evidence gathered by Mondor and
Zatorre (1995).

Two forms of attention

It has been suggested that visual attention may be oriented by two different
mechanisms which rely on differing amounts of conscious intervention by the
listener. The exogenous system is considered to take place automatically under pure
stimulus control: attention is drawn to the site of the stimulus. Endogenous

Figure 4 Response time as a function of trial type and cue-target interval. From Mondor
and Bregman (1994), figure 2.
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attention is considered to be under control of the listener, whereby attention can be
consciously oriented to a particular site (Jonides and Yantis, 1988; Müller and
Rabbitt, 1989). In other words, the exogenous system is engaged by peripheral
cues. In contrast, the endogenous system is engaged by cues which have to be
processed and interpreted before attention can be oriented, such as the selection of a
single voice from a mixture. Spence and Driver (1994) have argued that these
systems are also present in the allocation of auditory spatial attention. If this is true,
the studies investigating frequency sensitivity (e.g. Mondor and Bregman, 1994;
Schlauch and Hafter, 1991) and spatial sensitivity effects (e.g. Mondor and Zatorre,
1995) are, in fact, examining the allocation of endogenous attention. 

Support for these two mechanisms can be found in the data collected by Hafter et
al. (1993) in which the effectiveness of two types of cues for reducing frequency
uncertainty was studied: iconic cues and relative cues. Iconic cues are those usually
employed in the probe-signal methods described in previous sections. Relative cues
were set to be two thirds the frequency of the expected signal - they acted as the
symbolic cues which would stimulate the endogenous system. Hafter et al. found
that both relative and iconic cues were successful in reducing the amount of
uncertainty compared to the no-cue situation. However, it also emerged that the
listening bands used with relative cues were wider than those measured for iconic
cues by a factor of roughly 1.6. This suggests that the use of iconic and relative cues
does indeed engage different mechanisms of attention.

4.3 Interim summary

The previous section has presented evidence that auditory attention is deployed in a
number of interesting ways. Fundamentally, attention can be directed to a site of
interest identified by some form of cuing (e.g. Greenberg and Larkin, 1968;
Mondor and Bregman, 1994; Mondor and Zatorre, 1995). Furthermore, Mondor et
al. (1998) have argued that there is an interdependence of frequency and spatial
information consistent with the hypothesis that attention is directed at streams.
Brain imaging studies (e.g. Zatorre et al., 1999) have provided data consistent with
this conclusion. These researchers have also shown that it is highly likely that the
focus of attention can be described by a gradient model in which the density of the
attentional resources is the greatest at the cued frequency and declines gradually
with frequency separation from the focal point of attention. In addition to this,
Jonides and Yantis (1988) and Müller and Rabbitt (1989) have argued that attention
can be split into two mechanisms: unconscious and conscious allocation
(exogenous and endogenous, respectively).
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4.4 Selective attention in stream formation

We now turn to the relationship between attention and mechanisms of auditory
grouping. Consider the cocktail party effect (Cherry, 1953) in which a listener has
the task of following a conversation in a noisy environment. It is undoubtedly true
that the process of selective attention is assisted by the speaker’s voice having some
acoustic properties which separate it from the other voices. Because these factors
are similar to ones involved in primitive stream segregation - for example,
differences in F0 - it can be argued that stream segregation is a form of selective
attention. Bregman (1990) rejects this view; rather, he regards stream segregation as
being largely the result of grouping by a pre-attentive mechanism. In support of
this, Bregman cites an experiment by Bregman and Rudnicky (1975) in which the
central part of the stimulus was a four tone pattern FABF (figure 5). Listeners were
given the task of judging whether A and B formed an ascending or descending pair.
In the absence of tones F, listeners found the task easy. However, in the presence of
tones F, the pattern formed a single stream and the AB subpattern was found very
difficult to extract. When a sequence of capturing tones C were included preceeding
and following and F tones, they captured the latter into a new stream. Thus, tones A
and B were separated into a different stream and their relative ordering was again
found easy to judge. Bregman and Rudnicky argued that even though the stream of
captor tones C was not attended to (listeners were concentrating on the occurrence
of tones A and B) it was still able to capture tones F. The implication is that stream
segregation can occur without attention. 

Recent work by Carlyon et al. (2001) brings this theory into question. Their study
aimed to manipulate attention more rigorously than Bregman and Rudnicky (1975)
by presenting a tone sequence monaurally. When attention was to be oriented away
from the tone sequence, subjects were required to perform a competing task in the
contralateral ear. Specifically, a 21s sequence of A and B pure tones alternating in
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Figure 5 Tone sequence used by Bregman and Rudnicky (1975).
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an ABA-ABA sequence (e.g. van Noorden, 1975) was presented to the left ear.
When the frequency separation of the tones is low or the repetition rate is low, the
sequence is perceived as having a galloping rhythm. However, at higher repetition
rates and larger separations, the sequence splits into two streams: one containing
the high frequency tone and the other stream containing the low frequency tones. In
this situation, the galloping rhythm is lost as only one of the streams is attended. In
addition to this behaviour, there is a tendancy for the percept to build over time in
such a way that at the beginning, listeners only perceive the galloping rhythm,
whereas towards the end of the sequence, the rhythm is lost and only tone bursts of
a single frequency stream are heard (Anstis and Saida, 1985). 

In the ‘baseline’ condition of the Carlyon et al. experiments, no stimulus was
presented to the right ear. Subjects were instructed to indicate whether they heard a
galloping rhythm or two separate streams. In the ‘two-task’ condition, a series of
bandpass filtered noise bursts were presented to the right ear for the first 10s of the
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Figure 6 Build up of streaming over time for four frequency differences. Scores are
averaged across listeners and repetitions for the baseline (triangles), two-task
(circles), and one-task-with-distractor (squares) conditions. From Carlyon et
al. (2001), figure 3.
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stimulus. The noise bursts were labelled as either approaching (linear increase in
amplitude) or departing (the approaching burst reversed in time). For the initial 10s,
subjects were instructed to ignore the tones in the left ear and simply concentrate on
labelling the noise bursts

The labelling was achieved by pressing ‘A’ on a computer keyboard after each
approaching noise burst, and key ‘D’ after each departing noise burst. After 10s the
subjects switched their attention to the tone sequence. In the ‘one-task-with-
distractor’ condition the noise bursts were presented to the right ear, as in the two-
task condition, but subjects were told to ignore them and to perform the streaming
task on the tones in the left ear throughout the 21s sequence. Consistent with Anstis
and Saida (1985), subjects heard a single stream at the beginning of each sequence
with an increased tendency to hear two streams as the sequence progressed in time.
However, for the two-task condition the amount of streaming after ten seconds
(during which period listeners had been concentrating on labelling the noise bursts)
is similar to that at the beginning of the baseline sequence - in the absence of
attention, streaming had not built up (figure 6). It can be argued that the Bregman
and Rudnicky (1975) experiment was flawed as the listener did not have a
competing attentional task to perform: despite the listener having been instructed to
only concentrate on the A and B tones, there was no other task to distract the
listeners attention from the C tones. Indeed, Carlyon et al. note that,

it seems likely that listeners were in fact attending to the C tones, as they
were the only sounds present at the time, and there was no other task
competing for attention.

Carlyon et al. (2001, p. 115)

Perception without attention

Many theories of visual perception assume that the extraction of groups of features
occurs preattentively: object-based theories maintain that the visual scene is first
parsed in accordance with Gestalt principles and then attention is directed to the
perceptual objects that result from the parsing process (e.g. Duncan, 1984). In
contrast with this view, recent work (e.g. Mack et al., 1992) has suggested that little
grouping, if any, occurs preattentively. Mack et al. developed an experimental
method to investigate what can be perceived under conditions of inattention (the
stimuli are within a person’s visual field but no attention has been directed toward
them). Subjects were presented with a difficult perceptual task, such as identifying
the longest arm on a briefly presented cross, superimposed on a background of
coloured dots. On the majority of trials, these dots were randomly black or white.
On one trial, however, these dots would form a salient pattern if grouping occurred.
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At the end of the experiment, subjects were unexpectedly asked to make a forced
choice decision about the background pattern. If grouping occurs without attention,
then despite not attending to the background, subjects would still be able to report
the pattern that had occurred. 

The results from Mack et al.’s study show that accuracy was at chance, with a
number of participants even denying that a pattern had even occurred. This is in
contrast with traditional object-based theories which would have predicted a high
pattern identification accuracy. 

Although the subjects were unable to report the pattern, this does not imply that
grouping did not occur. A possibility is that the subject may not be able to
remember the pattern: the perception of the background on the critical trial may not
have been encoded into memory. To control for this factor, Moore and Egeth (1997)
employed a difficult line-length discrimination task on two horizontally oriented
line segments superimposed on a background of dots which occasionally formed a
pattern. 

If grouped, these patterns in the background dots could influence the perceived
lengths of the lines such as in the Ponzo and Müller-Lyer illusions (figure 7). The
stimuli were arranged such that on trials in which the background did form a
pattern, the lengths of the horizontal line segments were identical. If the
background dots were not grouped, the discrimination task performance would be
at chance. However, if the dots were grouped, this ought to influence the perceptual
task and the line nearest the convergence (for the Ponzo illusion) or the inward
pointing arrowheads (Müller-Lyer illusion) would be reported as longest more often
than chance. Indeed, the latter was observed: the background pattern influenced the
length discrimination task. Furthermore, at the end of the experiment, the subjects
were asked if they saw a pattern and were given a forced choice decision over
which pattern they saw. A negligible number of participants reported observing a

(a) (b)

Figure 7 Two perceptual illusions. (a) The Ponzo illusion: the line segment closer to the
converging lines appears longer than the identical other. (b) The Müller-Lyer
illusion: the line segment with arrowheads that point in appears longer than
the identical line segment with arrowheads that point out. Redrawn from
Moore and Egeth (1997) figure 2.
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pattern and the identification accuracy was chance. This strongly suggests that
grouping did occur during the experiment but that the patterns were either forgotten
or never encoded into memory.

In summary, Mack et al. (1992) suggested that even salient grouping patterns are
not perceived when not directly attended. Moore and Egeth (1997) extend this
finding by showing that grouping of the unattended stimuli does occur: the grouped
patterns influence the perceptual task. However, such preattentive grouping cannot
be later reported. Moore and Egeth suggest that 

attention [may be] required not for perceptual organisation but for encoding
the results of that organisation in memory

Moore and Egeth (1997, p. 350)

Support for preattentive grouping and/or analysis can be found in the mismatch
negativity (MMN) studies of Sussman and colleagues (Sussman et al., 1998, 1999;
Sussman and Winkler, 2001). The MMN is a component of event-related potentials
(ERPs) which provides information about preattentive auditory processing. It is
believed that the MMN is the outcome of a comparison process when the incoming
stimulus differs from the memory of the stimulus in the recent past. It is considered
preattentive because attention is not required to elicit a response. Sussman et al.
(1999) presented listeners with an AB sequence (similar to that used by Carlyon et
al., 2001) to investigate the effect of attention on two tone streaming (Bregman and
Campbell, 1971; van Noorden, 1975). In this well-studied phenomenon, listeners
are more likely to hear two streams when the tones are presented at a high rate (one
stream being A-A-A and the other being B-B-B). At low rates, streaming fails to
occur and subjects continue to hear the AB sequence. Sussman et al. reasoned that
if grouping occurs preattentively, it may be possible to illicit a MMN response to a
deviant which could only be perceived if streaming had occurred. Furthermore, no
MMN ought to be observed in the slow presentation situation. Figure 8 shows the
standard AB sequence and the deviants predicted to illicit a MMN response. In all
cases, the subjects performed another task and were told to ignore the stimuli. As
expected, when the tones were presented at the fast pace, MMNs were detected in
response to the deviant sequences occurring in both the high and low tones. When
the tones were presented at the slow pace, no MMNs occurred for either the high or
low tones. From this, Sussman et al. concluded that the streaming effect occurred
automatically, (independently of attention) at, or before, the level of the MMN
system.

Further work on these stimuli (Sussman et al., 1998) suggested that attention could
even force streaming to occur in certain occurrences of the slow pace situation.
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Listeners were instructed to attend to only the high tones and signal when they
detected a deviant sequence. The results of their study show listeners could keep
track of the standard three tone pattern within the high tones by employing highly
focused attention. Additionally, MMNs were detected for both the attended (high)
tones and the unattended (low) tones suggesting that selective attention can alter the
organisation of sensory input.

The observance of a MMN in the unattended stream suggests that all groupings,
whether attended or not, are subject to difference analysis. This finding is support
by further MMN work by Sussman (Sussman and Winkler, 2001) in which MMN
responses were detected for changes in an unattended auditory stimulus.

(c)

(d) (e)

(a) (b)

Figure 8 (a) Perception of the AB sequence under slow presentation; (b) perception of
the same sequence under rapid presentation. (c) The standard AB cycle of
tones. Note both high and low tones exhibit a rising frequency trend. (d) and
(e) Deviants to the standard cycle in the low tones and high tones respectively.
Adapted from Sussman et al. (1999) figure 1.
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4.5 Interim summary

Caution should be exercised with respect to the extent to which attention was
diverted away from the tone sequences in Sussman et al.’s (1998, 1999)
experiments. In the situation when subjects were instructed to ignore the stimuli,
the distracting task was to read a book - a passive, visual exercise. It was
nevertheless the case that the tones were the only sounds present in the experiment.
Duncan et al. (1997) have suggested that the visual and auditory attentional systems
are largely independent and so one could speculate that some degree of attention
was still being directed toward the auditory stimuli. The observance of streaming
by Sussman et al. (1998, 1999) in a situation of inattention is in contrast to that of
Carlyon et al. (2001) in which a more rigorous distractor mechanism was employed
prevented streaming from occurring. Finally, despite the claim that mismatch
negativity responses provides information about preattentive processing, it is
interesting to note that Sussman et al. (1998) have concluded that attention can
influence MMN responses (see also Alain and Woods, 1997; Trejo et al., 1995). 

4.6 Computational models of ASA incorporating 
attention

Few computational models of ASA incorporate attentional effects and those that do
adhere to the traditional view that attention is used to select a pre-formed stream. In
this section we will look at two functional CASA models which incorporate
attentional mechanisms. Finally, we will look at two neural oscillator-based
solutions, one of which demonstrates how attention is commonly viewed as a
separate extension to the model and one in which attention has been incorporated
into an existing framework resulting in unrealistic properties. We argue that these
models have unrealistic properties and are incompatible with the findings reviewed
previously in this chapter.

Functional approaches

Beauvois and Meddis (1991; 1996) contend that perceptual principles could prove
to be the emergent properties of a simple low-level system. Their system is aimed
specifically at the two-tone streaming problem and is intended to provide an
explanation for two general principles: the perceptual accentuation of the attended
stream and the apparently spontaneous shifts in attention between streams. These
were investigated using a three-channel model with two centre frequencies at the
tone frequencies and the other at their geometric mean. Noise is added to the output
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of the hair cell model for each channel in proportion to its activity. This is then used
as the input to a leaky integrator. Finally, the dominant channel is selected and the
activities of the other two channels are attenuated by 50%. The decision between
streaming and temporal coherence is made on the basis of the ratio of activity in the
tone channels: equal activity signifies temporal coherence, otherwise streaming. 

Beauvois and Meddis showed that temporal coherence occurs when tone repetition
times (TRT) are low due to the inability of the system to generate a random walk:
long periods of silence prevent the build up of activity-related noise input. In this
case the tone channels have equal activity. However, when the TRT is high, the
random noise bias has little time to decay and so random walks are more likely and
so, in turn, is the occurrence of streaming. Temporal coherence will also occur
when the tone frequency difference is low due to the overlap of channel activation
causing each tone to stimulate both its own filter and that of the other tone. In this
case, the activities are equal. When the frequency difference is large, the
combination of attenuation and random walk makes streaming more likely. 

Despite the relative simplicity of the model, it is shown to behave consistently with
a range of phenomena including grouping by frequency and temporal proximity as
well as demonstrating the build up of streaming over time (Anstis and Saida, 1985).
However, the model cannot simulate cross-channel grouping phenomena.

The model of Beauvois and Meddis (1991) was used as a starting point for the
multichannel streaming model of McCabe and Denham (1997). Instead of using
attenuation of the non-dominant channel to produce streaming, McCabe and
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Figure 9 Diagram of the McCabe and Denham (1997) network showing the connectivity
of the streaming arrays F (foreground array) and B (background array).
Excitatory and inhibitory connections are indicated by + and - symbols
respectively. Redrawn from McCabe and Denham (1997).
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Denham employ inhibitory feedback signals which produce inhibition related to
frequency proximity. The model also proposes that streaming occurs as a result of
spectral associations and so the input to the system is represented by a multi-modal
Gaussian rather than temporal fine structure as in the Beauvois and Meddis model.
The model consists of two interacting arrays of neurons: a foreground array and a
background array (figure 9). These terms are simply used for convenience as the
system is symmetrically connected. Each array receives the excitatory tonotopic
gaussian input pattern. In addition to this, the foreground array receives inhibitory
input reflecting the activity of the background array and the inverse of the
foreground activity. The background array receives similar inhibition. The
inhibitory input to each array serves to suppress responses to those frequencies that
the second array is responding to and also to suppress weak responses from itself.
The streaming / temporal coherence decision is based upon the correlation between
the output of the foreground array and that input. A high correlation to an input tone
will mean that the tone is also present in the foreground array response. If
successive tones elicit similar responses then the signal is said to be coherent; if one
tone elicits a much larger response than another then streaming has occurred.

The interplay of frequency dependent inhibition and the time course of previous
array activity successfully produces the two tone streaming effect and produced a
good match to experimental data. Although an ‘attentional input’ was included in
the model architecture (see figure 9), the authors acknowledge that the role of
attention was not addressed in the model processing and remark that the influence
of schema-driven grouping should not be ignored. 

Neural oscillator-based approaches

In the neural oscillator model of Brown and Cooke (1997), the last stage is an
attentional mechanism inspired by Crick’s (1984) proposal for an attentional
‘searchlight’. This was proposed in order to simulate the responses of thalamic cells
which, when firing in synchrony with the oscillators of a particular group, caused
that group to become the ‘attentional foreground’. However, Brown and Cooke
concede that,

an attentional mechanism is not currently implemented in our computer
model.

Brown and Cooke (1997, p. 92)

Instead, a correlation metric of the form used in the synfire example of the previous
chapter is employed, thus incorporating the same limitations of complexity as
described there.
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Wang (1996, see also previous chapter) also proposes an attentional mechanism
(‘shifting synchronisation theory’) as part of his network. He assumes that,

attention is paid to a stream when its constituent oscillators reach their
active phases. 

Wang (1996, p. 444)

Therefore, attention quickly alternates between each stream. This theory introduces
unrealistic elements to the model. Wang has proposed that stream multiplexing
occurs and that all streams are perceived equally at all times. This contradicts
experimental findings (see Bregman, 1990) which show that listeners perceive one
stream as dominant. When the two tone stimulus, described above, is presented in
such a way as to promote streaming, the low tones or the high tones dominate.
Furthermore, this theory cannot explain how attention may be redirected by a
sudden stimulus. Such an event would be encoded by Wang’s network as an
individual stream which would be multiplexed as normal - with no attentional
emphasis. The shifting synchronisation theory lies on top of the grouping layer in
the network and thus operates on a two dimensional time-frequency snapshot.
Therefore, attention alternates quickly between each stream in the entire snapshot
in turn. Hence this forces attention to switch from a stream at the beginning of the
snapshot to one at the end (later in time) and back again. This is a further
consequence of the confusion in Wang’s model between ‘oscillator time’ and ‘real
time’. Attention exists in real time - but in Wang’s system it shifts in oscillator time. 

Wang (2001) recognises that such an attentional mechanism is unrealistic when he
notes that the ‘treatment of auditory attention in [the] 1996 article is too
preliminary’. In later work, Wang (e.g. 1999) employs a winner take all (WTA)
network topology to simulate visual selective attention. In this framework, an input
pattern produces only one active neuron (or group of neurons) by means of either
global inhibition or mutual inhibitory connections. However, previous WTA neural
network theories of visual selective attention have not captured object-level
selection: only a winning pixel (or location) is found (e.g. Koch and Ullman, 1985;
Niebur, Koch and Rosin, 1993; Niebur and Koch, 1996). Wang (1999) uses a
similar network to that described in the previous chapter (Wang, 1996) with the
addition of a second, slower, global inhibitor. In response to a visual scene, the
network inhibits all regions but the largest; in other words, the largest block sets the
level of slow inhibition, which can then only be overcome by that block. Within this
framework, only object selection based on the size of an object is possible, despite
this only being one type of stimulus saliency (Treisman and Gormican, 1988;
Desimone and Duncan, 1995). The ease with which other features, such as motion
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or colour, could be parsimoniously incorporated into the selection mechanism
remains to be seen.

4.7 Attentional allocation in vision

In the previous section, we saw how a computational model originally created for
visual scene analysis (Wang, 1996) was adapted for an auditory scene analysis task.
Before looking at a conceptual model of auditory attentional effects, it is interesting
to look at the development of attentional research in the visual domain and
highlight a number of contrasting concepts between visual and auditory processing.

Psychophysics

The spotlight concept has often been used to describe the function of visual
attention: a selected region of the image is selected in a similar way to a torch
illuminating an object at night. It is important to note, however, that this spotlight is
not the same as visual saccades: the focus of attention can be moved independently
of saccades. Posner (1980) found that signal detection efficiency increased when
subjects were instructed to attend to a particular region of the visual field, whilst
keeping the position of the eyes fixed. Furthermore, Posner found that a similar
increase in performance was observed when the signals were presented at locations
to which the subject was about to move their eyes, implying that a shift of attention
precedes a saccade. As described above, auditory attention can be considered to be
split into two forms: endogenous (conscious) and exogenous (subconscious).
Evidence has been presented which suggests a similar split in visual attention in
which one component is driven involuntarily (e.g. by the flickering of a light) and
the other is under conscious control (Nakayama and Mackeben, 1989). Hence, it is
an endogenous form of attention which is being oriented in Posner’s study. A
further analogue between auditory and visual attention can be made. In the previous
section, evidence was presented which suggested that attention was required for
detailed information about a auditory stimulus to be perceived. Similarly, O’Regan
et al. (1999) found that dramatic changes to a visual scene being inspected by a
subject may go unnoticed unless those changes occur at a location being attended
by the subject.

Visual search and pop-out studies have been used to investigate bottom-up
(stimulus-driven) processing of signals. In these studies, the observer is instructed
to locate an odd target embedded within an array of distracting stimuli (Treisman
and Gelade, 1980). The conjunctive search experiments of Treisman and Gelade
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differentiated between the target and the distractors by an alteration in the
conjunction of the constituent features. For example, one task may involve locating
a vertical bar within an array of horizontal bars. Similarly, the distinguishing feature
may be colour: identifying a red bar in the midst of identically oriented green bars
(see figure 10, left panel). From these experiments, it was found that targets which
differed by a single feature (such as colour) ‘popped out’ after a period of time
independent of the number of distractors. However, when the target was only
distinguishable by a combination of features (such as colour and orientation - see
figure 10, right panel), the time required to locate the target bar increased linearly
with the number of distractors. Treisman and Gelade (1980) concluded that there
was a processing dichotomy in which single feature differences could be processed
rapidly, in parallel, whereas conjunction searches required a slower, serial search. It
was later shown that these were simply two extremes of a processing continuum
based on task difficulty (see Treisman, 1988; Wolfe, 1996). However, the
fundamental conclusion remained: a target which differentiates itself strongly from
the surrounding distractors, can immediately attract attention to itself.

Computational models

The visual search experiments and the Feature Integrative Theory (FIT) of
Treisman and Gelade (1980) formed the basis of many computational models of
visual attention in which simple visual features (such as contrast, colour and
orientation) are processed rapidly in parallel while attention is necessary to bind
conjunctions of these features. Many models of visual attention commonly
incorporate a saliency map. A saliency map is a two-dimensional topographical
map which encodes stimulus saliency at every point in the incoming image. It is on
the basis of this map that decisions are made as to where to orient attention. This

Figure 10 Pop-out (left and middle) tasks and a conjunctive task (right) of the type
pioneered by Treisman and Gelade (1980). Adapted from Itti and Koch (2000),
figure 5.
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structure formed the basis of Koch and Ullman’s (1985) computational model
which was closely related to FIT. This was later developed by Itti and Koch (2000)
in which all the two-dimensional topographical feature maps converge on a single
saliency map. The selection of the most salient area in the image is achieved by a
winner take all (WTA) neural network. To prevent a single area of the map
permanently being the focus of attention, an inhibitory mechanism is incorporated
which slowly suppresses the currently attended location leading to attentional
scanpaths (Koch and Ullman, 1985; Itti and Koch, 2000). One danger of saliency
maps is that the large number of different types of saliency projecting to a single
map can make it as noisy as the original scene. An alternative to a single saliency
has been proposed in which feature saliency can be encoded implicitly by
modulations in each feature map (Desimone and Duncan, 1995; see also Wolfe,
1996). In this case, attentional selection occurs by top-down weighting of feature
maps which are relevant to the current task. 

Once a decision has been made regarding the location to which visual attention is to
be oriented, a mechanism which ‘routes’ information flow to further processing
stages is required. A model for such routing was proposed by Olshausen et al.
(1993) in which control neurons (driven by a form of saliency map) modify the
synaptic strengths of attended regions to allow neural responses to propagate to
higher cortical areas.

Auditory and visual attention

From this brief review, it is important to note a number of factors which
differentiate visual processing from auditory processing. Firstly, visual processing
acts on a two-dimensional representation of the visual scene. In general, any object
which appears in the visual scene is a contiguous whole; the task of binding and
selecting such an object involves processing that contiguous area. It is from this
property that the spotlight term originates: the beam of light used to illuminate an
object is contiguous. However, auditory processing requires potentially widely
separated discontiguous frequency regions (such as harmonics and/or fricatives) to
be bound into a single object and attended. This problem of processing separated
elements within a single feature dimension is exacerbated when the time-course of
a stimulus is considered. In general, a visual object is observed in its entirety
instantaneously. However, an auditory event requires a finite amount of time to be
heard from beginning to end. The difficulty in applying visual processing and
attentional principles to audition is highlighted when visual models are directly
applied to auditory scene analysis and auditory attention. For example, a two-
dimensional topology is commonly used in which the two spatial dimensions are
replaced with ‘frequency’ and ‘time’. Although such models have had success in
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analysing the scene (e.g. Cooke, 1991/1993; Brown, 1992; Ellis, 1996; Wang,
1996; Wang and Brown, 1999) few have modelled attention. Those that have (e.g.
Wang, 1996) employ visual mechanisms similar to attentional scanpaths in visual
attention (Koch and Ullman, 1985; Itti and Koch, 2001) in which attention cycles
through every ‘object’ in the two dimensional (time-frequency) scene. As described
above, this mechanism does not realistically model auditory attention.

4.8 Summary

This chapter has presented a number of fundamental properties of attentional
allocation. Firstly, single modality studies have produced evidence to suggest that
attention can be allocated to one or more spatial locations or frequency regions;
such allocation is believed to occur in the form of a gaussian distribution. When
investigating more complex stimuli, it was shown that attention acts to select
particular groups rather than individual features (Mondor et al., 1998). Secondly,
evidence has been presented which suggests a certain degree of pre-attentive
(exogenous) grouping of features occurs. Indeed, it is suggested that endogenous
attention is required not only for stream selection and formation, but also for
encoding a percept into memory: only groups which are attended are encoded into
memory in detail and hence perceived (Moore and Egeth, 1997).

As described above, few models of computational auditory scene analysis
incorporate the attentional findings presented in this chapter in a plausible manner,
and those that use visual attentional mechanisms as their foundation produce
unrealistic properties. In the next chapter, we present a conceptual framework in
which attention plays a significant role in the stream formation and selection
process. This will be used as the basis for a computational model which
demonstrates a tight integration between attentional mechanisms and perceptual
grouping.
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Chapter 5. A Conceptual Framework for 
Auditory Selective Attention
5.1 Introduction

The studies presented in the previous chapter highlight a number of experimental
factors which must be emulated by a conceptual model of auditory attention. Most
important is the finding by Carlyon et al. (2001) that the distraction of auditory
attention prevents the percept of streaming from occurring: stream formation
requires attention, at least for alternating tone sequences. Furthermore, it has been
suggested that attention can be engaged by two different mechanisms: the
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exogenous (subconscious) and endogenous (conscious) systems (Jonides and
Yantis, 1988; Müller and Rabbitt, 1989; see also James, 1890). These two types of
attention form the basis of our model: exogenous attention accounts for

subconscious (preattentive1) processing and the endogenous system controls which
organisations are perceived and/or processed further. Before describing the new
framework, an overview of previous theories of attention will be presented together
with a number of studies which highlight their deficiencies.

5.2 Theories of selective attention

As noted in the previous chapter, attention is conventionally assumed to act as a
selector. The point at which selection occurs has been the topic of much debate.
Early selection (e.g. Broadbent, 1958) proposes that all stimuli reaching the sensory
system are analysed for fundamental properties such as loudness and pitch. Later
stages of processing are assumed to be able to process only one stimulus at a time.
This approach hypothesises a filter which is used to select a particular stimulus
which is to be processed on the basis of simple physical attributes. In contrast to
this, theories of late selection (e.g. Deutsch and Deutsch, 1963) propose that all
stimuli are recognised unselectively without capacity limitation, no matter how
many stimuli are present. It is only later capacity-limited processing which
necessitates a filtering of the processed stimuli. Since subjects are generally
unaware of unattended stimuli, late selection theories propose that subsequent
mechanisms are responsible for a particular stimulus to reach ‘awareness’ and be
perceived (e.g. Duncan, 1980).

Early selection

Early selection is at the heart of Broadbent’s (1958) general theory of attention. It
was proposed that the hypothetical filter can be tuned by the observer to any one of
a number of input ‘channels’ (figure 1). Broadbent reasons that a filter is required
because cognitive mechanisms (at higher levels than the filter) have finite capacity
and hence a certain degree of selectivity is necessary. Only information in a single
channel to which the filter has been tuned is passed to later processing stages.
Broadbent suggests a wide range of possible information types that can be

1.For the purposes of this model, it is necessary to clarify the meaning of the term preattentive. The classical
meaning of this term refers to processing which occurs before conscious intervention by the subject. In the
framework of endogenous and exogenous attention, preattentive processing can be considered to be equivalent
to exogenous attentive processing.
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conveyed within a channel such as responses from sense organs, directions in
space, and voice qualities. 

The findings of Cherry’s (1953) perceptual studies could be explained by
Broadbent’s theory. Cherry presented listeners with two spoken sentences
simultaneously, one to each ear. The subjects were instructed to shadow one of the
sentences (immediately repeat the spoken material). It was found that despite the
ease with which listeners could shadow one of the sentences, they could recall little
of the ignored sentence other than the fact that sounds had been present. Indeed,
subjects did not notice when the ignored speech changed language, or was played in
reverse. It was only when the gender of the ignored speaker changed, or the speech
was replaced by a pure tone, that listeners reliably reported an alteration. It is
interesting to note that such a phenomenon is not restricted to the percept of speech.
Deutsch (1986) reported that when listeners sang along with a melody presented to
one ear, they were unable to give any information about the melody presented to the
other ear.

Within Broadbent’s framework, it can be argued that the speech from both ears is
analysed for primitive features such as pitch and location, and that selection occurs
at the ‘selective filter’ stage. Only the stimuli of the correct pitch and ear reach the
limited capacity processing channel. Broadbent argues that a listener’s ability to
detect changes in the ignored sentence (such as pitch) is important as it aids the
decision made by the selective filter, even though the actual words are ignored. 

Related work by Moray (1959) suggests that Broadbent’s model is too restrictive:
the selective filter only allows the information within a single channel to pass
through to later processing stages. In contrast to this, it has been shown that
information from a ‘rejected’ input can influence later processing. Moray (1959)
demonstrated that instructions presented to the unattended ear of a listener were

Figure 1 Schematic of Broadbent’s (1958) filter theory. After Treisman (1964b).
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ignored in a similar fashion to the subjects in Cherry’s study; however, when an
instruction was prefaced by the listener’s name, it was perceived and acted upon.
Indeed, the enhanced ability to detect one’s name is demonstrated by the ability to
wake sleeping subjects by speaking their name (Oswald et al., 1960). Note that
within Broadbent’s framework, information from a rejected (unattended) input
channel cannot reach the later processing stage and influence the subject’s
response. 

The sentence shadowing studies of Treisman (1960) have also identified contextual
influences on the selection process. As described above, subjects were instructed to
shadow the sentence in a particular ear and ignore the other. At a particular point in
the presentation, the sentences were switched to the opposite ears. It was found that
at the point of the switch, listeners continued to shadow the original sentence for a
few words, despite it now being presented in the ‘wrong’ ear. Subsequently,
subjects reverted to the correct ear and shadowed the ‘new’ sentence. This suggests
that there is more than a simple channel selection process at work: contextual

information is used for attentional stream2 propagation. It is only when the listener
becomes aware of the conflict between this subconscious decision to follow the
contextually-correct sentence and the conscious desire to shadow a particular ear
that they are able to rectify this and continue to shadow the new sentence in the
correct ear.

Treisman (1960) proposed a relaxation of Broadbent’s model in which the filter
attenuates the incoming signals as opposed to blocking them completely. It is then
assumed that different words require different signal intensities for recognition: a
signal detection problem. An adjustable cut-off is adopted above which signals are
accepted and below which they are rejected as being noise. This cut-off is adjusted
on the basis of current contextual cues and word ‘importance’. For example, this
cut-off would be lowered for the detection of one’s name. In the case of unattended
streams, which have been attenuated by the filter, their information would only
flow on to later processing stages if they contained words which passed the signal
detection test. Therefore, Treisman proposes that the difference between an
attended and an unattended stream is attenuation: the attended stream being the
louder. However, at a cocktail party, the ignored (or unattended) voices do not seem
less loud simply because they are not the attentional focus.

2.It is useful to define a term to describe the time course of the perceptual process; we define ‘attentional stream’ to
refer to the time varying conscious percept. It is important to note that this is related to, but different from, the
definition of a stream in ASA as defined in chapter 2. At any point in time, the attentional stream is equivalent to
one attentionally selected ASA stream. 
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Further support for processing of unattended streams comes from later sentence-
shadowing work by Treisman (1964a, 1964b). In these studies, an interesting
alteration was made to the conventional shadowing task: the unattended sentence
was a time-delayed version of the shadowed sentence. Despite the subjects not
expecting the sentences to be the same, every subject eventually became aware of
this. Indeed, when this experiment was repeated on bilingual subjects and the
unattended ear was played a translation of the shadowed sentence, a number of
subjects still reported the identity. 

Late selection

An alternative explanation of these results is to assume that all groups are processed
completely and attention then selects one to become the attentional stream: an
example of late selection (e.g. Moray, 1959; Deutsch and Deutsch, 1963; Norman,
1968; MacKay, 1973; Duncan, 1980). However, this introduces a different
conceptual problem: a significant amount of processing must be occurring in order
to fully analyse every possible stream. Furthermore, if this processing must take
place, why is so little of each unattended stream perceived? 

Evidence in support of the same degree of semantic analysis of the rejected
message as that of the attended message has often been disputed. For example,
Corteen and Wood (1972) used autonomic responses to keywords (city names)
which had been previously paired with mild but unpleasant electric shocks. When
tested, subjects shadowed a sentence of prose whilst ignoring a contralaterally
presented sentence which contained shock-associated city names, unassociated city
names and unrelated nouns. A significantly higher proportion of conditioned
galvanic skin responses (GSR) were detected when the unattended message
contained an associated city than when the unattended message contained unrelated
nouns. A similar, although smaller, effect was observed for the unassociated city
names. When questioned on the content of the ignored message, subjects did not
recall the presence of the shock-associated city names and no loss of shadowing
performance was observed at the times of shock-associated city name presentation.
This was taken as evidence for the semantic analysis of the unattended message.
Dawson and Schell (1982) carefully analysed this effect and found that when lapses
in selective monitoring (such as switching ears) were discounted, GSR responses to
the rejected message were almost, but not completely, abolished. This suggests that
Corteen and Wood (1972) may simply have observed subjects occasionally lapsing
when shadowing a sentence. However, it should be noted that these findings do not
necessarily contradict those of Moray (1959) in which unattended utterances were
recognised when associated with keywords. Moray demonstrated this phenomenon
with a highly salient keyword - the subject’s name. In contrast, the keyword set
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used by Corteen and Wood was arguably ‘contrived’: despite the learning period,
each city name would still be of relatively low saliency to the subject when
compared to their name. It is possible that the saliency of Corteen and Wood’s
keyword set was not high enough to trigger recognition within the rejected
(unattended) speech.

Similarly, the shadowing experiments of MacKay (1973) have been called into
question, in which the meaning of an ambiguous shadowing sentence could be
influenced by a word in the ignored message. Newstead and Dennis (1979) found
that this effect was only observed when the disambiguating word was the only one
present in the ignored message. When a full sentence was presented to the
unattended ear, the effect was not observed. They concluded that the presence of a
single word in the unattended ear disrupted the channel selection decision; hence,
the word momentarily became the focus of attention, and was analysed. 

5.3 Interim summary

None of the experimental findings presented above fully support either early or late
theories of selection: a compromise between the two is necessary. A relaxation of
Broadbent’s framework is required to allow a certain degree of keyword (such as
one’s name) and semantic analysis (contextual influences) to occur. Indeed, the
previous attentional frameworks view attention as a selector of incoming stimuli
whose constituents have been analysed to a lesser or greater degree. Early selection
theories assumes that stream formation occurs after selection; late selection theories
assume that stream formation occurs before selection. Evidence presented in the
previous chapter draws this assumption into question. Carlyon et al. (2001)
demonstrated that attention is an integral part of the stream formation process.

In the next section a new conceptual framework for auditory selective attention will
be presented in which the experimental findings of the previous chapter and the
findings of early versus late selection studies will be incorporated. This framework
will form the basis of the implementation presented in the next chapter.
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5.4 A new conceptual framework for auditory 
selective attention

Before introducing the framework in detail, it will be useful to briefly review the
key experimental findings which have been presented above. 

• Auditory attention can be allocated, or oriented, to a specific frequency region;
this allocation takes the form of a gradient with the peak centred on the
frequency of choice (e.g. Mondor and Bregman, 1994). 

• The allocation of attention to a particular frequency is a conscious activity;
Spence and Driver (1994) have suggested that attention is comprised of two
types: conscious and unconscious (endogenous and exogenous, respectively).
When attention is directed toward a particular frequency, it is actually
endogenous attention which is involved; exogenous attention is concerned with
primitive grouping of features and the detection of gross changes in the input. 

• Carlyon et al. (2001) have shown that endogenous attention is essential for
stream formation and hence a stream’s constituent features and/or groups of
features can only be successfully combined at the endogenous attention stage. 

• Furthermore, it is only a stream which has been formed from endogenous
attentional processes that is fully perceived (e.g. Moore and Egeth, 1997).

The framework presented here assumes a number of exogenous processes can occur
simultaneously and that endogenous attention is required to allow the outcome of
these processes to be perceived and encoded into memory (figure 2).

Exogenous processes are responsible for performing primitive grouping (see
chapter 2) of individual features within the stimulus. These groups are then passed
to the endogenous processing stage, which takes into account the conscious
decision of the listener, changes in the stimulus input and schema information to
form an ‘attentional stream’: the time varying conscious percept.

Each of these endogenous factors compete to produce a single stream. For example,
it is possible for a subject’s attentional focus to be reoriented, contrary to their
conscious preference, to an alternative grouping. Schema information can overrule
a conscious decision if sufficient support for such a reorientation is provided. For
example, a person’s name can be considered to be an important schema: if the
person’s name is detected, the grouping that contained that information ought to
become the attentional focus. All of the groups created by the exogenous
processing stages are analysed to see if they match the schema. If one of them does,
then attention is reoriented, against the subject’s intentions, to the previously
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unattended group. This results in the percept that the subject’s attention has been
drawn from the original conversation to one in which their name appeared (see
Moray, 1959). Once this has occurred, it then becomes a conscious decision for the
subject to decide whether to remain with the ‘new’ conversation or revert to their
original stream. Experimental findings described previously suggest that such
schema only encode small amounts of strongly salient information such as one’s
name, or one’s partner’s name: when subjects were instructed to learn arbitrary
pieces of information, awareness of their presence in an unattended stream was
significantly reduced (Dawson and Schell, 1982).

Another form of unconscious redirection of conscious attention can happen in
virtually any environment: a loud, usually transient, sound occurring unexpectedly
such as a bang or a crack which initiates a startle reflex (e.g. Winslow et al., 2002).
In this situation, exogenous information about the gross change in the stimulus
triggers the detector bank and endogenous attention is directed to the new sound
without regard for the listener’s conscious preference. Indeed, physiological studies
provide support for the hypothesis of exogenous monitoring of unattended stimuli
(e.g. Sussman and Winkler, 2001; see also Winkler and Czigler, 1998).

Schema information can also be used to aid the grouping of the exogenous
processing outputs and form the attentional stream. In particular, schemas can
encapsulate semantic information about grammar and contextual meaning. For
example, despite a subject’s conscious intention to shadow the speech in a
particular ear, Treisman (1960) found that when the two sentences switched ears,
the subject shadowed the original sentence. This implies that at the stage of
endogenous processing, schema information related to the sentence semantics is
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Figure 2 Structure of the attentional model. Note that endogenous processing is
required before exogenous perceptual organisations can be encoded into
memory and perceived.
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being employed to overrule the listeners conscious decision to shadow a particular
ear.

In summary, endogenous processing requires more than conscious input; it is
proposed that other processes such as ‘change’ detectors, schema recognisers, etc.
can overrule a conscious decision. This mechanism is shown in figure 3. One or
more exogenous processes are responsible for grouping and streaming of stimuli
reaching the ears. The perceptual organisations of these processes are directed into
the endogenous selection module. It is at this stage that both conscious decisions
and salient information about the incoming organisations are combined and a
selection made. Salient information could be gathered from a number of sources
such as difference detectors and schema recognisers (both contained within the
detector bank abstraction of figure 3): changes in intensity or overall grouping
structure may be considered in the difference detectors. Such an assumption finds
support in the mismatch negativity studies conducted by Sussman and colleagues
(Sussman et al. 1998, 1999; Sussman and Winkler, 2001) which suggest that a
component of event-related potentials indicates the outcome of a comparison
process when the incoming stimulus differs from the memory of the stimulus in the
recent past. The fact that conscious attention is not required to illicit such a
response is consistent with the assumption made in this model that such difference
detectors function continually and may influence the selection process. In a similar
fashion, schema driven processing can influence endogenous attention
independently of the particular stream attended. As described above, a listener will
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Figure 3 Enlargement of the endogenous processing mechanism from figure 2. The
detector bank indicated in the diagram corresponds to the proposed ‘change’
detectors and schema detectors of the model.
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become aware of the information in an unattended stream only when that stream
contains some highly salient information such as their name (Bregman, 1990; see
also Moray, 1959). This implies that schema recognition is being carried out on all
exogenous process inputs and influences the final selection process.

The last stage of the endogenous selection process is the combination of all the
decision factors: schema and difference detection outcomes and conscious choice.
In the absence of any evidence from the detector banks, the decision will be
consistent with the conscious choice. However, should evidence appear that
important information is present in a currently unattended stream, the selector
overrules the conscious choice and directs attention to that stream.

Endogenous attention

In the framework proposed here, it is the manner in which endogenous attention is
deployed which accounts for the finding that attention is required for stream
formation. We have seen in the previous chapter that attention occurs in the ‘shape’
of a gradient and can be assigned to a particular frequency (e.g. Mondor and
Bregman, 1994). We model this attentional focus ‘shape’ as a gaussian distribution.
Furthermore, only feature groups which are subject to attention are perceived by the
subject. Therefore, it can be theorised that group segregation on the basis of
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Figure 4 Influence of attentional allocation on the formation of streams. In both
situations, the allocation of attention is focused on the high frequency tones.
(a) At low frequency separations, both sets of tones fall under the attentional
focus (denoted by the gray area) and segregation is not observed. (b) At higher
frequency separations, one set of tones does fall outside of the attentional
focus and as such does not contribute to the attentional stream: segregation
occurs. In both diagrams, the time-course of the attentional stream is indicated
by black connecting lines. 
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frequency proximity occurs due to the nature of the attentional focus: features and/
or groups which fall beyond the skirts of the attentional allocation are said to be
outside the influence of attention and hence do not contribute to the attentional
stream. Consider the ABA-ABA two tone streaming phenomena (van Noorden,
1975) which has been described in previous chapters; the stimulus consists of a
sequence of tones whose frequencies alternate over a period of time. Provided both
the low and high frequency tones are sufficiently close in frequency as to fall under
the attentional focus, they will both be temporally grouped (figure 4a). However, if
the frequency separation is large, only one set of tones will fall under the focus of
attention and be perceived as belonging to the attentional stream: the other set are
outside the influence of attention and remain unattended (figure 4b). The
framework can also account for the streaming of complex tones (van Noorden,
1975) in which the same form of sequence is used as above with the exception that
the pure tones are replaced by complex tones. In this situation, each harmonic
complex will be grouped by exogenous processes. When attention is directed to a
particular frequency region containing a harmonic, that harmonic and all other
grouped components contribute to the attentional stream.

A further phenomenon is observed with alternating tone sequences (van Noorden,
1975) when the frequency separation and/or repetition rate fall in what is termed
the ‘ambiguous region’. In this situation, the listener can consciously decide
whether to perceive temporal coherence (galloping ABA percept) or segregation
(A-A-A or B-B-B). Our framework suggests that this occurs when one set of tones
are presented in the tails of the gaussian attentional focus. Evidence from auditory
research (see Moore, 1997) suggests that the size of the attention focus can be
adapted on a task by task basis and also with training. Hence, if the size of the
attentional focus is consciously adaptable, the listener would be able to either
contract the width of the gaussian and promote segregation, or expand the gaussian
to promote temporal coherence.

Anstis and Saida (1985) demonstrated that the segregation percept did not occur
instantaneously: despite a sequence of tones being widely separated in frequency, it
still took some time (up to ten seconds) for the streaming percept to occur. This
agrees with Bregman’s contention that the default auditory organisation is a whole
(Bregman, 1990; see also Bregman, 1978): initially, all features are contained
within the attentional stream. The proposed framework accounts for this behaviour
by associating a time-course to the attentional allocation. At the beginning of a
stimulus, all frequencies are attended; however, over time, allocation adapts so that
only frequencies ‘covered’ by the gaussian attentional focus can contribute to the
attentional stream (figure 5). Further support for an attentional time course comes
from evidence in which the percept of auditory streaming decays over a finite
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period of time (Cusack and Carlyon, 2001). Cusack and Carlyon presented listeners
with a stimulus consisting of a repeating cycle of an ABA alternating tone sequence
lasting for ten seconds followed by a gap. Four conditions were used in which the
gaps were of 1, 2, 5 and 10 seconds. Throughout each presentation, listeners were
instructed to signal when their percept changed from one stream to two streams and
vice versa. It was found that the size of the pause between bursts of the alternating
tone sequence was proportional to the likelihood of subjects hearing a single stream
at the beginning of the next alternating tone burst despite having perceived two
streams at the end of the preceding burst.

Jones (1976; see also Large and Jones, 1999) proposed an alternative mechanism by
which such stimuli could be grouped using ‘pattern’ information. This theory
envisages an attentional process which groups auditory events with a sequence of
stimuli which are already attended to. In other words, if the ‘new’ events conform
with the multidimensional pattern of the attended sequence, it is integrated with that
sequence. This is achieved by predicting the multidimensional position of the next
sound in the sequence from the preceding ones (e.g. in time, frequency, etc.). The
prediction then informs the attentional process of where to shift in order to capture
the next consistent sound. Such predictions are made on the basis of ‘global’ rules
which describe the entire sequence pattern of the sounds perceived thus far. The
theory also argues that as grouping rules become simpler, their corresponding
sequences become easier to attend to (Jones et al., 1978). However, Bregman
(1990) argues that such a theory is flawed since it is too rule-based and hence not
sufficiently general. For example, consider a form of the alternating tone sequence
example in which a random process determines the ordering of the A and B tones.
In this situation, a listener will integrate or segregate the sequence purely on the
basis of the frequency separation of the tones. However, since the sequence is
random, Jones’ theory would fail to produce an appropriate rule by which to

Figure 5 Time-course of attentional allocation. Initially, all frequency regions receive
equal attentional influence; over time, the allocation adapts so that the
gaussian form of allocation only covers the attended frequency region. The
arrow on the right hand side of the figure indicates the desired (conscious)
focus of the attentional allocation. Similar to figure 4, the time-course of the
attentional stream is indicated by black connecting lines. 
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describe the sequence. In this case, it is unclear what her theory would predict.
Despite the random process, our framework would emulate the behaviour of a
listener since the integration / segregation process is based only on the frequency
separation of the tones and not any temporal pattern. Jones et al. (1981) presented
further evidence which suggested rhythm favoured segregation. They used a
sequence similar to that of Bregman and Rudnicky (1975; see also previous
chapter) in which a sequence of tones C were used to capture flanking tones F from
a four tone pattern FABF. Jones et al. pointed out that the captor tone were not only
related in frequency to the flanking tones but also rhythmically related. They
argued that the AB tones were being segregated from the C and F tones on the basis
of rhythm; a conclusion which was supported by further trials in which the rhythm
of the sequence was adapted and altered the ease with which and AB tones could be
segregated from the rest of the sequence. Indeed, they concluded that ‘temporal
predictability may be a prerequisite to the establishment of stream segregation
based on frequency relationships’ (Jones et al., 1981, p.1071). Bregman (1990)
argues that such a conclusion may be too strong; he notes that the Bregman and
Rudnicky (1975) sequence is influenced by both primitive grouping principles and
exogenous attention. Bregman argues that rhythmic information ‘assists the
selection process directly rather than indirectly through its effects on primitive
grouping’ (Bregman, 1990, p.445, italics his). In other words, rhythm acts as a
schema at the endogenous processing level of our framework rather than at the
exogenous processing level. This concept can be considered to be at the core of
Baird’s (1996) stream segregation architecture. Baird models Jones’ theory of
rhythmic attention using subsets of oscillatory associative memories which form a
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Figure 6 Behaviour of the model in response to the Carlyon et al. (2001) stimulus of
tone sequences and noise bursts. Gray arrows indicate exogenous processing
which is not encoded into memory due to endogenous attention being directed
toward other exogenous processing (black arrows).
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scale of potential rhythms and establish rhythmic expectancies. Patterns which
meet these expectancies are subject to an amplitude increase in their response and
become attended to. Patterns which fail to meet the expectancies cause a simulated
mismatch negativity response (see previous chapter) which promotes that input to
form a new stream. These oscillatory associative memories can be considered to be
schemas within our framework which can aid the propagation of (rhythmic) streams
and also signal high level changes (in this case, rhythmic changes) in the input to
influence the endogenous decision making process.

We have looked at how the model can explain the streaming of an alternating tone
sequence and also the associated time course for this percept to appear. We will now
consider the more complex scenario used by Carlyon et al. (2001) in which noise
bursts are presented simultaneously with a galloping ABA-ABA tone sequence.
The initial state of perception is that of fusion: a single stream is perceived to which
endogenous attention is directed by default. The listener rapidly (almost
instantaneously) becomes aware of the two types of sounds: tones and noise bursts,
the features of which are organised into two distinct groups by exogenous
processes. At this stage, the subject has to decide as to which perceptual object to
attend to (figure 6). In this example, the subject is instructed to attend to the noise
bursts and perform a perceptual task on them: to classify them as approaching
(linear increase in amplitude) or departing (the approaching burst reversed in time).
Our framework suggests that exogenous processing occurs at all times for all
streams. However, only groups subject to endogenous attention can form a stream
and then be encoded into memory and perceived. Therefore, in this state of diverted
attention the build up of streaming does not occur as the tones are not subject to
endogenous attention. Later in the experiment, the listener is instructed to switch
tasks and concentrate on the alternating tones. In this situation endogenous
attention is directed toward the tones and the streaming process occurs with the
associated time-course. 

5.5 Summary

This chapter has presented a conceptual framework in which the allocation of
attention lies at the heart of the stream formation process. It is proposed that
exogenous processes perform primitive grouping of stimulus features to produce a
number of groups. These are then passed to the endogenous processing mechanism
which takes into account schema information extracted from the groups, exogenous
factors such as gross changes in the stimulus characteristics and the conscious
decisions of the subject to create an attentional stream. We suggest that this
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framework can account for the two tone streaming phenomenon (van Noorden,
1975) as well as the experimental findings of Carlyon et al. (2001), whose results
indicate that attention is a requirement of stream formation. 

The next chapter will present a neural oscillator based implementation of this
framework which will allow us to demonstrate the ability of the model to account
for psychophysical phenomena. Indeed, this level of explanation (see Marr, 1982)
will allow us to make predictions, and identify areas for further investigation, with
greater detail. Furthermore, it will allow us to investigate how an attentional
mechanism can be parsimoniously incorporated into the temporal correlation
framework.
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Chapter 6. A Computational Model of 
Auditory Selective Attention
6.1 Introduction

One difficulty involved in producing a computational solution to the ASA problem
is the lack of a strong link between Gestalt theories of perception (see Bregman,
1990) and the underlying physiological process. Consider the two tone streaming
stimulus described previously (see figure 1). Theories of perception are implied
from experimental observations. Applying such theories to figure 1, one can
conclude that as the frequency separation - δf - decreases, it is more likely that the
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tones will be grouped together. Similarly, as repetition time of the tones - TRT -
decreases, sequential tones will also be more likely to group provided δf is not too
large.

However, the neurophysiological mechanisms underlying auditory stream
formation are poorly understood and it is not fully known how groups of features
are coded and communicated within the auditory system. What does it mean to talk
of ‘frequency proximity’ or ‘temporal proximity’? The human brain relies solely on
time varying electrical impulses with no ‘symbolic’, time-frequency representation
as suggested by Bregman’s theory. Despite this, some computational models have
taken a symbolic time-frequency approach to describing an auditory scene (e.g.
Cooke, 1991/1993; Brown and Cooke, 1994). For example, once a stimulus has
been processed by a model of the auditory periphery, to simulate cochlear filtering
and inner hair cell transduction, Brown and Cooke (1994) extract features which
can be used for auditory grouping. Specifically, they use periodicities, onsets,
offsets and frequency transitions to produce ‘symbols’ which represent individual
harmonics or formants through time and frequency. One can regard this
representation as a ‘cartoon’ of the stimulus. The final stage involves a search of all
the symbols to determine which belong together based upon Gestalt grouping
principles. For instance, symbols which start and stop at the same time (same onset
and offsets) and belong to the same fundamental frequency are likely to have arisen
from the same source and are hence grouped.

However, it is unlikely that the brain reasons about groups of auditory symbols. The
temporal correlation approach draws on the suggestion that the nervous system may
signal the grouping of auditory channels by the phase of firing of feature detecting
cells (see chapter 3 for a discussion of temporal correlation based binding
solutions). For example, the neural oscillator based solutions of Wang and
collaborators (Wang and Terman, 1995; Terman and Wang, 1995; Wang, 1996; see
also Brown and Wang, 1999; Wang and Brown, 1999) represent auditory activity
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Figure 1 Portion of an alternating tone sequence.
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within a time-frequency grid. Each point in the grid is associated with a neuron that
has an oscillating response pattern and the time dimension is created by a system of
delay lines.

However, the use of a time-frequency grid on which to perform grouping also
requires unrealistic assumptions. Firstly, no physiological evidence to support the
existence of such a structure has been found. Secondly, the implementation of
Wang’s two dimensional grid suffers from low time resolution: the input to the
model is sampled at 40 ms intervals. In Wang’s architecture, input to each time slice
in the time-frequency grid is a multiple of this 40 ms. However, in order to increase
the time resolution of the grid, a significantly higher number of delay units would
be required. The existence of such large arrays of a delay lines is yet to be
determined and the ability of such delay lines to maintain temporal accuracy over
large distances is uncertain.

Of more concern is the manner in which the simulated behaviour of attention is
influenced by such a topology. In chapter 4, we discussed how attention has been
incorporated into existing neural oscillator models. In particular, Wang’s (1996)
shifting synchronisation theory states that ‘attention is paid to a stream when its
constituent oscillators reach their active phases’. This implies that the process of
sound segmentation and grouping and the process of attentional selection are
linked, if not identical. Once a stream has been formed, it will be attended to when
its associated set of oscillators reach the active phase. Since each synchronised
block of oscillators within the time-frequency grid become active in a repeating
sequence, attention quickly alternates between each different stream at different
positions on the time-frequency grid. Hence, stream multiplexing occurs and all
streams are perceived as equally salient at all times. This contradicts experimental
findings (see Bregman, 1990) which show that listeners perceive one stream as
dominant. This theory cannot explain how attention may be redirected by a sudden
stimulus. Such an event would be encoded by Wang’s network as an individual
stream which would be multiplexed as normal - with no attentional emphasis.
Furthermore, Terman and Wang (1995) demonstrated that the overall time that the
system takes to represent individual patterns is no greater than m cycles of
oscillations, where m is the number of patterns simultaneously presented to the
network. Such rapid stream formation is problematic since Anstis and Saida (1985)
have demonstrated that segregation in two tone streaming can take many seconds to
occur.

These attentional problems relate directly to the use of a two dimensional time-
frequency grid and as such it can be argued that time has not been properly
considered in such models. The time-frequency grid is derived from the two
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dimensional spatial grid used in Wang’s visual scene analysis research (e.g. Wang,
1999; 2000). In order to apply the same architecture to auditory scene analysis, the
acoustic input is represented as a two dimensional time-frequency pattern. Indeed,
it is acknowledged that grouping of streams over time is not addressed in such
auditory scene analysis models: ‘our model does not address sequential grouping;
in other words, there is no mechanism to group segments that do not overlap in
time’ (Wang and Brown, 1999, p. 691).

The traditional view of attentional mechanisms within computational models of
ASA is that stream formation and segregation are performed within a ‘sealed unit’:
attention does not influence this process, it merely selects a particular stream that is
generated (see chapter 4). The core of Wang’s stream segregation system can be
interpreted in this way: the oscillator array is a CASA preprocessor for subsequent
attentional selection mechanisms. However, as such, it cannot explain attentionally
modulated stream formation such as in the two tone streaming task described by
Carlyon et al. (2001).

In summary, the success of the two dimensional network does not outweigh its
conceptual disadvantages. It is useful to take a step back for a moment and consider
what we are trying to achieve. Sound is a time-varying pattern of air pressure
changes which is converted into a pattern of time-varying electrical signals by the
ear. This is the only input available: a continual flow of electrical signals. From this,
animals and humans can perform grouping and stream segregation which allows
them to make sense of the most complex of sound environments. It is this idea that
the following model takes as its starting point: a one dimensional network which
receives time-varying patterns and produces a time-varying estimate of stream
content at each temporal instant.

6.2 Monaural computational model

The model comprises three main stages, as shown in figure 2. The input to the
model is a sound signal sampled at 8 kHz. The first stage of the model simulates
peripheral auditory processing. The signal is passed through a bank of cochlear
filters representing basilar membrane processing. The gain of each filter is set to
reflect the outer-middle ear transfer function. An approximation to the inner hair
cell transduction process is then computed from the output of each filter. This
provides an estimate of auditory nerve firing response used in later stages of the
model.
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The second stage of the model extracts periodicity information by means of a
correlogram (Slaney and Lyon, 1990; Meddis and Hewitt, 1991a, 1991b; Brown
and Cooke, 1994) allowing primitive grouping to be performed on the basis of
harmonicity. Each channel in the correlogram is obtained by computing the
autocorrelation of that channel’s auditory nerve approximation. The resulting two-
dimensional representation has channel centre frequency and autocorrelation lag on
orthogonal axes. By summing all the frequency channels, a ‘summary correlogram’
is formed, the largest peak of which corresponds to the dominant fundamental
frequency (F0) of the sound.

The third stage of our model is the one-dimensional neural oscillator network in
which auditory grouping and segregation takes place. The network is based upon
the locally excitatory globally inhibitory oscillator network (LEGION, see Terman
and Wang, 1995) with two exceptions. Most importantly, the oscillator network is
one-dimensional such that each frequency channel is represented by a single
oscillator. The input to the network does not have any extent in time (as in Wang
and colleagues’ networks): the network processes the instantaneous values of the
peripheral model output. Secondly, long range excitatory connections are permitted
to allow harmonicity grouping. A cross channel correlation mechanism identifies
contiguous regions of acoustic activity in the correlogram corresponding to
Bregman’s (1990) concept of elements: atomic parts of the acoustic scene. These
are encoded in the network by locally excitatory connections and are observed as
synchronised blocks of oscillators. Information from the summary correlogram is
then used to group these segments on the basis of their conformity with the
fundamental frequency estimate. Long range excitatory connections promote these
oscillator blocks to synchronise to form an oscillatory ‘group’. Blocks of oscillators
which are not harmonically related desynchronise from each other.

NetworkCorrelation

Neural
Oscillator

Correlogram

CrossRectification,
Compression

Cochlear
Filtering

Signal

Attentional
Stream

Channel
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Stage 1 Stage 2 Stage 3

and 
Lateral Inhibition

Segment
Formation

Figure 2 Schematic diagram of the monaural model (the attentional leaky integrator is
labelled ALI).
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Each oscillator in the network feeds activity to the attentional leaky integrator
(ALI): the core of our attentionally motivated stream segregation mechanism. The
output of the ALI is the attentional stream as defined in the previous chapter. The
connection weights between the network and the ALI are modulated by endogenous
processes including ‘conscious’ preference. Initially, these weights are maximal for
all channels to simulate the default grouping being a whole. For example, a burst of
white noise contains random cues for fusion and segregation, but is perceived as a
single coherent source (Bregman, 1990). In this initial condition, all segments and
groups contribute to the attentional stream. Over a period of time, these weights
adapt to the gaussian shape of the endogenous attentional focus in which the peak
of the gaussian is centred on the frequency channel of interest. In this situation, only
oscillators under the attentional focus can influence the ALI. In terms of the
computational model, the attentional stream is defined as containing all frequencies
whose oscillators are synchronously active with the ALI. The reliance on
synchrony to assess selection allows harmonic groups, most of whose harmonics
may be outside of the attentional focus, to contribute to the attentional stream
simply by attending to one harmonic.

Auditory peripheral processing

A linear system can be characterised by its response to a brief click - the impulse
response. de Boer and de Jongh (1978) estimated the impulse response of auditory
nerve fibres using a reverse correlation technique. The gammatone function (see
Patterson et al., 1988; see also Lyon, 1996, for an alternative implementation using
an all-pole approach) is an analytical approximation to their (de Boer and de Jongh,
1978) physiological measurements. Here, the frequency selectivity of the basilar
membrane is modelled by a bank of 128 gammatone filters with overlapping
passbands (see Moore, 1997); the output of each filter represents the frequency
response of the membrane at a specific position.

The gammatone filter of order n and centre frequency f Hz is given by:

(1)

where φ represents the phase, b is related to the bandwidth, n is the order of the
filter and H(t) is the unit step (Heaviside) function:

(2)
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The name gammatone comes from the fact that the envelope of the filter impulse
response is the statistical gamma function and the fine structure of the impulse
response is a tone of frequency f and phase φ.

Because the gammatone filter is linear, it cannot simulate well known non-
linearities such as cochlear echoes. For instance, Kemp (1978) suggested that
cochlear mechanics are influenced by active biological processes. When a low-
level auditory click was applied to the ear, sound was detected by a small
microphone sealed into the ear canal following delays of between 5 to 60 ms (too
long to be attributable to middle ear reflection). The reflected sound did not contain
the same frequency content as the stimulating click, suggesting only particular
points on the BM were involved. Furthermore, the response intensity varied
nonlinearly with click intensity, in which low click levels resulted in the largest
relative response levels. Another example of cochlear nonlinearity is known as a
combination tone. When the ear is presented with two tones of frequency f1 and f2
(f1 < f2), an echo can be detected with frequency 2f1 - f2 (Kim et al., 1980) and

subjects often report a tone of pitch 2f1 - f2 (Plomp, 1965; Goldstein, 1967). Such a
phenomenon suggests a nonlinearity in the auditory system which is likely to occur
at the basilar membrane; a suggestion supported by observed basilar membrane
responses (Robles et al., 1991).

Despite its linearity, when the order of the gammatone filter (n) is in the range 3-5,
its magnitude characteristic exhibits a very good fit to the roex(p) function
commonly used to represent the magnitude characteristic of the human auditory
filter shapes (see Patterson and Moore, 1986). This property justifies its use to
model auditory frequency selectivity.

In our model, the gammatone filters are distributed in frequency between 50 Hz and
3.5 kHz according to their bandwidths, which increase quasilogarithmically with
increasing centre frequency (see Palmer, 1987; Glasberg and Moore, 1990). The
bandwidth b of a filter with centre frequency f Hz is set to the equivalent
rectangular bandwidth (ERB), a psychophysical measurement of critical bandwidth
in human subjects (Glasberg and Moore, 1990):

(3)

When f >> b, the bandwidth of the filter is proportional to b, a proportionality
which depends only on the filter order n. For a gammatone filter of order 4, the
bandwidth b is defined as (Patterson et al., 1988):

ERB f( ) 24.7
4.37f
1000
------------ 1+ 
 =
Monaural computational model 93



A Computational Model of Auditory Selective Attention
(4)

The gain of each filter is adjusted according to the ISO standard for equal loudness
contours (ISO, 226) in order to simulate the pressure gains of the outer and middle
ears. Since later stages of the model only require channel energy and periodicity
information, the auditory nerve response is approximated by half-wave rectifying
and square root compressing the output of each filter. The half-wave rectification
process corresponds to the phase-locking action of the inner hair cells, which
respond to movement of the basilar membrane in one direction for centre
frequencies of up to approximately 5 kHz (see Pickles, 1988). A more detailed
model of hair cell transduction (e.g. Meddis 1986, 1988; see also Hewitt and
Meddis, 1991) is not used since, for our purposes, the increased accuracy of such a
representation is outweighed by the computational cost. The approximation
adopted here does not simulate the phenomenon of adaptation in which a sharp
onset response in the auditory nerve is observed, which rapidly decays over the first
10-20 ms and then more slowly to a steady state over a period of 20-100 ms. It has
been suggested that this form of adaptation is responsible for the reduced
contribution of a mistuned component to the pitch of a complex when the mistuned
component onset is slightly before that of the complex (e.g. Meddis and Hewitt,
1992). However, Ciocca and Darwin (1993; see also Darwin and Sutherland, 1984;
Darwin, 1984) present evidence that suggests that adaptation only has limited
influence on this phenomenon and that perceptual grouping principles play the
dominant role. We argue that such findings justify the simplified approach adopted
here.

To sharpen the frequency responses and reduce cross channel activity spread, the
AN firing rate approximation at each time instant is convolved with a difference of
gaussians (‘mexican hat’ shaped) kernel d (of size s):

    c = -s..s (5)

Here, σ determines the width of each gaussian in frequency (a value of s/4.444) and
w is a weighting constant (a value of 0.8). The size s has the value 5. The resulting
response is then half-wave rectified to avoid negative AN activities.

In addition to extracting the basilar membrane response from the gammatone filter,
the instantaneous frequency and instantaneous envelope are used in later processing
stages. The quantities are usually derived from an analytic signal (Gabor, 1946).
The analytic signal a(t) of a real signal s(t) is defined as:
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(6)

where  is the Hilbert transform and j is . 

Cooke (1991/1993) describes a complex version of the gammatone in which the
cosine term is replaced with a complex sinusoid:

(7)

where ω is the radian centre frequency of the channel and b is the bandwidth. In
turn, this can be rewritten as

(8)

where . It can be shown that, under certain conditions, g(t) in (8) is
approximately an analytic signal since the imaginary part of the gammatone filter
closely approximates the Hilbert transform of the filter’s real part (see Cooke 1991/
1993 Appendix C for a derivation). Thus, it is possible to measure instantaneous
frequency directly from the filter outputs and avoid having to compute a Hilbert
transform. The instantaneous phase φ(t) of an analytic signal is defined as:

(9)

Therefore, in terms of the gammatone filter, instantaneous phase is given by:

(10)

where  and  represent the outputs of the real and imaginary parts of the
gammatone filter respectively. Instantaneous frequency v(t) is the time derivative of
instantaneous phase. Since the gammatone filter is implemented by frequency
shifting by the centre frequency, lowpass filtering and then frequency shifting back
(see Holdsworth et al., 1988), the instantaneous frequency is found by adding the
radian centre frequency ω to the derivative of (10) giving:

(11)

The instantaneous envelope α(t) of the filter is given by:
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(12)

Pitch and harmonicity analysis

Theories of pitch perception can be considered to lie on a continuum with pattern
recognition models and temporal models at the extremities. Consider the example
in which a pitch of a complex tone can be perceived even when there is no energy
present at the fundamental frequency due to, for example, filtering out the lower
harmonics. Schouten (1940; see also Schouten, 1970) called this phenomenon the
‘residue’ pitch (also ‘virtual’ pitch). He argued that such a residue pitch did not
require activity on the basilar membrane at the point which would respond
maximally to a pure tone of similar pitch. The classical ‘place theory’ of pitch
perception in which the pitch corresponds to the position of maximum excitation
fails to account for this. In response to this behaviour, pattern recognition models
(e.g. Goldstein, 1973) attempt to find the best fitting harmonic series to a set of
resolved harmonics. For example, when analysing a complex which is missing at
least its fundamental, the harmonic series which best matches the resolved
harmonics present is sought. The fundamental of this series is hence said to be
equivalent to the fundamental of the complex. Indeed, evidence exists that suggests
that low frequency, resolved, harmonics contribute strongly to the pitch percept (see
Moore, 1997). However, this type of model cannot account for residue pitches
originating from complexes containing only high frequency, unresolved, harmonics
(e.g. Moore and Rosen, 1979). By contrast, the temporal models of pitch perception
(e.g. Schouten et al., 1962) use the temporal fine structure of the auditory nerve
firings to determine the pitch. They rely on the fact that the pattern of basilar
membrane response due to unresolved harmonics overlap to a certain extent.
Therefore, the basilar membrane waveform is a result of the interference (beating)
of a number of high frequency harmonics and hence displays a periodicity equal to
that of the signal’s (residue) pitch. However, it ought to be noted that Schouten’s
model implies that a residue pitch can only be perceived if two or more
(unresolved) harmonics are interacting.

Since neither theory can account for all the experimental data, there are also models
of pitch perception which incorporate pattern recognition and temporal mechanisms
such that temporal information from both resolved and unresolved harmonics is
used to form a pitch estimate (e.g. Licklider, 1951; Slaney and Lyon, 1993; Meddis
and Hewitt, 1991a, 1991b; Meddis and O’Mard, 1997). For example, Licklider’s
(1951) ‘duplex’ theory describes spectral analysis in the frequency domain
occurring simultaneously with periodicity analysis in the time domain. He
suggested that auditory nerve activity at each characteristic frequency is subjected

α t( ) ℜ 2 t( ) ℑ 2 t( )+=
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to a form of autocorrelation analysis (Licklider, 1959). Autocorrelation is the
multiplication of a signal with a time-delayed version of itself. For periodic signals,
a peak is observed at the time-delay relating to the fundamental frequency of the
signal. 

It is also known that a difference in fundamental frequency (F0) can assist the
perceptual segregation of complex sounds (e.g. Broadbent and Ladefoged, 1957;
Brokx and Nooteboom, 1982; Scheffers, 1983; Assman and Summerfield, 1987;
McKeown and Patterson, 1995; see also Moore, 1997). For example, Scheffers
(1983) found that two simultaneous vowels can be identified better when their F0s
differ than when they are the same. One explanation for this result is ‘harmonic
sieving’ (c.f. Goldstein, 1973) in which a harmonic series is detected by using a
sieve which has ‘holes’ at integer multiples of the fundamental frequency (for an
alternative based on harmonic cancellation, see de Cheveigné, 1993). Harmonics
which are related to the fundamental frequency align with the holes and ‘fall
through’ and hence contribute to the pitch percept. All other harmonics are blocked.
Experiments using complexes with mistuned harmonics have been used to
investigate how precisely such harmonics have to be aligned with the sieve holes.
For example, data collected by Darwin et al. (1995) suggests that mistuning up to
approximately 4%, the mistuned harmonic made a normal contribution to the
percept. However, for mistuning of 4-8% this contribution declined until
mistunings of more that 8% had no effect on the pitch percept of the complex. This
implies that the auditory system has a certain degree of tolerance when grouping
components with a common fundamental frequency.

In order to take advantage of such periodicity information in the grouping process,
the second stage of the model extracts pitch information from the simulated
auditory nerve responses. Similar to Licklider’s model, this is achieved by
computing the autocorrelation of the activity in each channel to form a correlogram
(e.g. Meddis and Hewitt, 1991a; Slaney and Lyon, 1993). At time t, the
autocorrelation of channel i with lag τ is given by:

(13)

Here, r(i,t) is the auditory nerve activity in channel i at time t. The autocorrelation
for channel i is computed using a 25 ms (P = 200) rectangular window w (see
Assmann, 1996, p. 1151) with lag steps equal to the sampling period (0.125 ms), up
to a maximum lag of 20 ms.
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Figure 3 shows a correlogram for a 12-harmonic complex tone with a fundamental
frequency of 155 Hz. Channel centre frequency is represented on the ordinate and
autocorrelation lag is represented on the abscissa. The characteristic ‘spine’
(vertical alignment of peaks) can be seen in the correlogram at the lag
corresponding to the fundamental period (approximately 6.5 ms). When the
correlogram is summed across frequency, the resulting ‘summary correlogram’
exhibits a large peak at the lag corresponding to the fundamental period of the
stimulus (see figure 3). The summary correlogram is calculated by

(14)
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Figure 3 A correlogram of a 12-harmonic complex tone with a fundamental frequency of
155 Hz. The main panel (a) shows the correlogram generated from the
sharpened auditory nerve response; the lower panel (b) shows the summary
correlogram. For clarity, only time-delay lags up to 12.5 ms have been shown.
The cross correlation is shown on the right (c) with the segment ‘mask’ (d) in
which black areas denote segments. The vertical misalignment of the
correlogram compared with the cross correlation and segment diagrams is
due to an offset used in generating the correlogram diagram to improve clarity.
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where N is the number of channels in the correlogram.

The peak of the summary, whose lag represents the fundamental period, is
identified by normalising the summary by the energy (zero delay) and then centre
clipping (Sondhi, 1968; see also Dubnowski et al., 1975) by a factor of 80% to
leave only the dominant peaks. Since the correlogram summary only contains
positive excursions from zero, the centre clipping function is described by

(15)

where θclip is the absolute clipping value. The first local maximum is the pitch
period estimate. To improve the resolution of the summary peak, a parabolic curve
is fitted to the peak. The actual point at which the summary reaches a maximum
may occur between two discrete values (i.e. between two lag values) and hence an
accurate estimate of the maximum value and position cannot be obtained directly
from the discrete summary. The parabolic curve fitted to the three samples centred
on the peak has the equation

(16)

where X represents the lag axis; m0, n0 and p0 are constants. Therefore, for the three
samples of concern, the equations are

,  and 

Algebraic manipulation of these three equations allow the values of m0, n0 and p0 to

be determined
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To find the position at which the true peak occurs, these values for m0, n0 and p0 are
substituted into the equation resulting from differentiating Y with respect to X

(20)

The correlogram summary reaches a maximum when (20) becomes equal to 0

(21)

By substituting the X and Y values for the three points centred on the peak into (21),
an accurate estimate of the peak lag, and hence the fundamental frequency, can be
found.

Segment identification

The correlogram is also used to identify formant and harmonic regions due to their
similar patterns of periodicity: contiguous regions of the filterbank respond to the
same spectral event. Such contiguous areas of acoustic energy are used to form
‘segments’ (Wang and Brown, 1999) which correspond to significant acoustic
features. This is achieved by computing the cross correlations between adjacent
channels of the correlogram as follows:

(22)

Here,  is the autocorrelation function of (13) which has been normalised to
have zero mean and unity variance to ensure that C(i) is only sensitive to periodicity
in the correlogram and not to the mean firing rate of each channel; τmax is the
maximum autocorrelation lag in samples (τmax = 160; equivalent to 20 ms). Figure

3c shows the cross correlation function for the 12-harmonic complex tone. It can be
seen from the figure that areas of contiguous activity, especially at low frequency,
are characterised as having high correlation and that these areas are separated by
regions of low correlation.

Once the cross correlation C(i) has been computed, it is necessary to decide a
‘similarity score’ by which adjacent channels are deemed to be sufficiently similar
to be grouped together to form a segment. This is achieved by applying a threshold
to the energy-weighted cross correlation: adjacent channels whose cross
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correlations are above a certain threshold form a segment. In other words, channels
i and i+1 are said to contribute to a segment when

(23)

where θs is the segment membership threshold. The cross correlation is energy-
weighted in order to increase the contrast between spectral peaks and spectral dips.
A high threshold would result in a small number of segments as few adjacent
channels would be nearly identical; as the threshold is lowered, so too is the
similarity requirement and so similar adjacent channels form segments. These
segments are encoded by a binary mask, which is unity when a channel contributes
to a segment and zero otherwise.

In order to deal with noise stimuli, an alternative segment formation strategy is used
since, by definition, periodicity information cannot be obtained from the
correlogram for channels containing noise. Instead, the instantaneous frequency
(see Cooke, 1991/1993) of each gammatone filter is used. In response to a pure
tone, a channel’s instantaneous frequency over time will be stable. However, in
response to noise, it exhibits significant fluctuations (see figure 4). This property
can be exploited by calculating the inverse variance of the instantaneous frequency
in each channel - responses to periodic signals will produce low signal variance and
hence high inverse variance. When weighted by channel energy (obtained from the
correlogram), a large peak indicates periodic activity in that channel; a smaller peak
indicates noise activity (figure 5). The segment estimation process occurs in two
stages. First, periodic segments are identified: channels for which a peak exists in
the energy weighted inverse variance function which exceeds a given ‘tonal’
threshold θt (see figure 5b). All channels under such peaks are said to constitute a
tonal segment; this information is used to confirm the periodic segments identified
by the cross-correlation technique described above. These peaks are then removed
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Figure 4 Instantaneous frequency response of a gammatone filter with a centre
frequency of 1 kHz to a 1 kHz pure tone (a) and broadband noise (b). It can be
seen that the noise response is subject to significantly more fluctuations than
that of the pure tone.
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from the energy weighted inverse variance function. The final stage identifies noise
segments: channels for which any remaining peaks in the function exceed a second,
‘noise’, threshold θn (see figure 5b). It ought to be noted that the use of
instantaneous frequency is not as physiologically plausible as other processing
stages in the model but provides a convenient mechanism for representing noise
segments as required in later chapters.

To further improve the frequency resolution of the oscillator array, each segment is
‘skeletonised’: a process by which each segment is replaced by one of fixed
frequency channel spread (see also Palomäki et al., 2001). For example, a segment
with a channel spread of five, centred on channel 54, would be replaced by one with
a channel spread of three, centred on channel 54. This process is similar in principle
to lateral inhibition, and leads to a sharpening of the cross-frequency responses thus
reducing the tendency for segments which are close in frequency to merge together.
This is especially important for elements (such as harmonics) at higher frequencies
where the bandwidth of the peripheral filters are relatively large in comparison to
the separation of harmonic elements. Since this model investigates how individual
acoustic elements are influenced by grouping rules and attentional mechanisms, it
is important that each is represented by an individual segment wherever possible.
Similarly, since it is only important for the model identify the presence of a noise
segment and its location in frequency, it is unnecessary to produce detailed spectral
and temporal descriptions of noise regions as seen in previous CASA models (e.g.
noise clouds of Ellis, 1996). It ought to be noted that this merely alters the
representation of the stimulus in the model and does not alter the way in which the
stimulus is conceptually processed. Figure 3d shows the segments identified by this
process from the 12-harmonic complex tone used to generate the correlogram
displayed in figure 3a.
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Figure 5 Response to a mixture containing a 1 kHz tone (centred on channel 68) and a 2
- 3 kHz noise band (centred on channel 107). (a) Inverse variance and channel
energy. (b) Energy weighted inverse variance function with tonal and noise
thresholds.
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Despite such models of periodicity analysis being able to account for a wide range
of perceptual phenomena (see Meddis and Hewitt, 1991a, 1991b), their
physiological plausibility has been questioned (e.g. Summerfield et al., 1990). One
such criticism is the computational complexity of computing an autocorrelation
function. However, this assumes a serial processing mechanism which is in direct
contrast with biological networks which are highly parallel in nature. Indeed,
parallel computational autocorrelation solutions have been shown to achieve real-
time performance (e.g. Slaney, 1991). A second criticism has been the lack of
evidence for delay lines as suggested by Licklider (1951) for performing the time-
delayed coincidence detection required for neural autocorrelations, although such
structures are known to underlie binaural localisation (e.g. Konishi et al., 1988; Yin
and Chan, 1988). The latter issue may not be problematic since the autocorrelation
function can be considered to be similar to the production of an interspike interval
histogram (ISIH) of nerve firings. An ISIH represents the distribution of intervals
between successive auditory nerve events and tends to be polymodal. The positions
of major interval peaks correspond to the period of the pitch that is heard (i.e. the
fundamental period for harmonic complexes) and its multiples (e.g. Cariani et al.,
1997; Cariani, 1999). These peaks are analogous to the peaks in the summary
correlogram which also correspond to the pitch period and multiples thereof.
Hence, it ought to be noted that the correlogram model used here should be
considered a functional abstraction of the periodicity analysis occurring in the
auditory system. Furthermore, this computational model does not place any
restrictions on the behaviour of later stages of the implementation.

Neural oscillator network

The network consists of an array of 128 oscillators and is based upon the locally
excitatory globally inhibitory oscillator network (LEGION) of Wang described in
chapter 3 (e.g. Terman and Wang, 1995; Wang, 1996). Within LEGION, oscillators
are synchronised by placing local excitatory links between them. Additionally, a
global inhibitor receives excitation from each oscillator, and inhibits every
oscillator in the network (see figure 6). This ensures that only one block of
synchronised oscillators can be active at any one time. Hence, separate blocks of
synchronised oscillators - which correspond to the notion of a segment in ASA -
arise through the action of local excitation and global inhibition.

The model described here differs from Wang’s (1996) approach in three respects.
Firstly, the network is one-dimensional rather than two-dimensional; we have
argued, above, that this is more plausible since it avoids the explicit representation
of time on a two-dimensional, vision related grid. Furthermore, the adoption of a
single dimensional array avoids the attentional multiplexing problems and
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difficulties in representing the attentional time course in a two-dimensional network
described above. Secondly, excitatory links are global as well as local; this allows
harmonically-related segments to be grouped. Finally, we introduce an attentional
leaky integrator (ALI), which selects one block of oscillators to become the
attentional stream (i.e., the stream which is in the attentional foreground).

The building block of the network is a single oscillator, which consists of a
reciprocally connected excitatory unit and inhibitory unit whose activities are
represented by x and y respectively:

(24)

(25)

Here, ε, γ and β are parameters. As described previously, oscillations are stimulus
dependent; they are only observed when Io > 0, which corresponds to a periodic
solution to (24) and (25) in which the oscillator cycles between an ‘active’ phase
and a ‘silent’ phase (see chapter 3, figure 8). The system may be regarded as a
model for the behaviour of a single neuron in which x represents the membrane
potential of the cell and y represents the inhibitory ion channel activation, or as a
mean field approximation to a group of reciprocally connected excitatory and
inhibitory neurons. The input Io to oscillator i is a combination of three factors:
external input Ir , network activity and global inhibition as follows:

(26)

Here, Wik is the connection strength between oscillators i and k; xk is the activity of

oscillator k. The parameter θx is a threshold above which an oscillator can affect
others in the network and Wz is the weight of inhibition from the global inhibitor z.
Similar to θx, θz acts a threshold above which the global inhibitor can affect an

oscillator. S is a squashing function which compresses oscillator activity to be
within a range suitable for input to an oscillator:

(27)

Here, K determines the steepness of the sigmoidal function. The activity of the
global inhibitor is defined as
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(28)

where H is the Heaviside function.

Segment formation and primitive grouping

Oscillators within a segment are synchronized by excitatory connections. The
external input (Ir) of an oscillator whose channel is a member of a segment is set to

Ihigh (0.2) otherwise it is set to Ilow (-5).

A further set of connections are made between segments if a majority of channels in
each segment are consistent with the pitch estimate as derived above. This involves
assessing which segments conform with the pitch estimate. For each segment which
covers the frequency channel closest to a harmonic of the pitch estimate, the fine
structure of the autocorrelation for each channel in the segment is inspected. If the
ratio of channel energy to autocorrelation value at the pitch lag is above a certain
threshold θc (0.8) the channel is classified as being consistent with the pitch
estimate (Brown and Wang, 1997). It is this tolerance in the measure of harmonicity
that allows the model to account for the perceptual grouping of harmonics which
have been mistuned by limited amounts (see Darwin et al., 1995). In other words,
channel i is consistent with a fundamental period of τ0 when

(29)
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Figure 6 The one-dimensional, single layer oscillator network performs segmentation
and grouping followed by stream selection via the attentional leaky integrator
(ALI) to produce an ‘attentional stream’.
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If the majority of segment channels are consistent, the entire segment is said to be
consistent with the pitch estimate. A single connection is made between the centres
of all harmonically related segments.

It is at this stage that the old plus new heuristic is incorporated into the model. The
old-plus-new heuristic (Bregman, 1990) refers to the auditory system’s preference
to ‘interpret any part of a current group of acoustic components as a continuation
of a sound that just occurred’. In our model, ‘age trackers’ are attached to each
channel of the oscillator array. The age trackers are leaky integrators:

(30)

Here, Bk is the age of the channel, Mk is the (binary) value of the segment mask at
channel k; small values of cB and dB result in a slow rise (dB) and slow decay (cB)

for the integrator. gB is a gain factor. [n]+ = n if n ≥ 0 and [n]+ = 0 otherwise. These
parameters have the values dB=0.001, cB=5, gB=3. Excitatory links are placed
between harmonically related segments only if the two segments are of similar age.
The age of a segment is defined as:

(31)

where Q is the number of channels in the segment. Two segments are considered to
be of similar age if:

(32)

where AS1 and AS2 are the ages of the two segments and the threshold θa (0.1)

defines the degree of similarity in age between the two segments.

Consider two segments that start at the same time; the age trackers for their
constituent channels all begin receiving input at the same time and continue to
receive the same input: the values of the leaky integrators will be the same.
However, if the two segments had started at different times, the age trackers for the
earlier segment will have already built up to a certain value when the second
segment starts (whose age trackers will be initially at zero): the two ages will be
different.
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Attentional Leaky Integrator (ALI)

Each output channel of the oscillator array is connected to the attentional leaky
integrator (ALI) by excitatory links (see figure 6); the strength of these connections
is modulated by endogenous attention. Input to the ALI is a weighted version of the
oscillator array output:

(33)

Here, IALI is defined as:

(34)

Here, H is the unit step, or Heaviside, function; xk is the activity of oscillator k in
the array. The parameter θALI is a threshold above which oscillator array activity
can influence the ALI. αk is the instantaneous envelope of the gammatone filter

response to the stimulus at channel k (see (12)). θα is a normalising factor which
determines how intense a stimulus needs to be to overcome the conscious
attentional interest.

Tk is the attentional threshold which is related to the endogenous interest at channel
k:

(35)

Here, Ak is the endogenous attentional interest at channel k and L is the leaky

integrator defined as:

(36)

Here, small values of cL and dL result in a slow rise (dL) and slow decay (cL) for the
integrator. gL is a gain factor. These parameters have the values dL=0.0005, cL=5,
gL=3. R is given by

(37)

where xmax is the largest output activity of the oscillator array.
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In accordance with the experimental findings of Mondor and Bregman (1994), the
attentional interest is modelled as a gaussian:

(38)

Here Ak is the attentional interest at frequency channel k; maxAk is the maximum
value that Ak can attain; p is the channel at which the peak of attentional interest

occurs and σALI determines the width of the peak. In order to allow segments which
are outside of the attentional interest vector, but are sufficiently loud, to overrule the
attentional selection, the Ak vector must be non-zero to both sides of the peak.
Hence, a minimum Ak value of minAk is enforced:

(39)

In the model, a segment or group of segments are considered to be attended to if
their oscillatory activity coincides temporally with a peak in the ALI activity. In
other words, their connection strengths to the ALI are sufficiently large to promote
activity within the ALI. Initially, the connection weights between all oscillators in
the array and the ALI are strong and hence all segments feed large amounts of
excitation to the ALI. This means that initially all segments contribute to the
attentional stream representing the default grouping percept of fusion (Bregman,
1990). 

During sustained activity in the oscillator array, these weights relax toward the Ak

interest vector such that strong weights exist for channels of high attentional
interest and low weights exist for channels of low attentional interest. This
relaxation toward the Ak interest vector is achieved by the use of the leaky
integrator L. Thus, after a finite period of time, oscillators which are
desynchronised to ones within the attentional interest (e.g. harmonically unrelated)
will be subject to low connection weights to the ALI and will be unlikely to
overcome the θALI threshold required to influence the ALI. Such ‘relaxation’ of the
connection weights towards the attentional interest vector simulates the period of
build-up observed in auditory streaming (Anstis and Saida, 1985). ALI peaks will
only coincide with activity within the attentional interest peak and any perceptually
related (i.e. synchronised) activity outside the Ak peak. All other activity will occur
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within a trough of ALI activity. This behaviour allows both individual tones and
harmonic complexes to be attended using only a single Ak peak.

A table of model parameters can be found in appendix A.

6.3 Interim summary

The previous section has described the computational model which accounts for
monaurally presented stimuli. It consists of three main processing stages: peripheral
analysis, harmonicity and segmentation analysis and, finally, the neural oscillator
array and attentional leaky integrator (ALI). The first stage - peripheral analysis -
simulates the behaviour of the outer and middle ears followed by a model of the
frequency analysis carried out by the cochlea. The output of this stage is an
approximation to the activity of the auditory nerve at 128 centre frequencies
ranging from 50 to 3500 Hz. 

The second stage of the model uses this activity to produce a correlogram by
computing the autocorrelation of each channel for a range of delays. This produces
a two dimensional representation in which frequency is expressed on the ordinate
and autocorrelation delay on the abscissa. For each channel, the first largest
autocorrelation peak occurs at the period of the dominant frequency in that channel.
When summed over frequency, an estimate of the dominant frequency can be
obtained. In addition to estimating the dominant pitch period, the degree of
correlation between adjacent channels’ activities can be used to determine the
presence of a region of contiguous acoustic energy: a segment (c.f. acoustic
elements of Bregman, 1990). If the activities of adjacent channels exhibit a high
degree of correlation it is highly likely that they are responding to the same spectral
event and hence those channels are said to form a segment. 

The final stage of the model consists of an array of 128 neural oscillators, each
representing a particular channel centre frequency. Input to each oscillator is
determined by the presence of a segment in that channel. Only oscillators which
receive input are able to produce oscillations. Excitatory connections are placed
between oscillators representing the same segment hence forming a synchronised
block of oscillators. In addition to these, excitatory connections are also placed
between segments whose channels agree with the dominant pitch estimate obtained
from the correlogram. Segments which are connected by such connections then
form a synchronised group of oscillator blocks. Segments which are not connected
in this way become desynchronised. 
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Each oscillator in the array is connected to the attentional leaky integrator (ALI) by
connections, the strength of which are modulated by conscious attentional interest
expressed by Ak. Since the efficacy of this attentional interest requires a finite
period of time to build up, the connection strengths are initially maximal to
simulate the ‘default’ percept of fusion (see Bregman, 1990). In this case, all
channels of the oscillator array feed input to the ALI and hence ALI activity is
observed to be synchronous with all segments. Over time, only connections which
are subject to high attentional interest can influence the ALI and so only oscillator
activity corresponding to the attentionally selected frequency region can influence
the ALI. From this, it can be said that any segment whose oscillator activities
coincide with ALI activity are attended to. It is important to note that since
harmonically related segments are temporally synchronised, if ALI activity
coincides with one segment, it will also coincide with the activities of any other
harmonically related segments. Thus, they are also said to be attended to. Since the
lowest value of the attentional interest vector Ak is non-zero, extremely loud stimuli
which are outside of the attentional interest can also influence the ALI allowing the
model to account for the unconscious reorientation of attention caused by, for
example, a loud bang.

6.4 Binaural computational model

In order to account for binaural grouping phenomenon (e.g. Carlyon et al., 2001;
Darwin et al., 1995) the computational model must be able to process binaural
signals. Therefore, a second processing pipeline is required for the additional
signal. Figure 7 shows the schematic structure of the binaural model. Each
peripheral processing pipeline incorporates basilar membrane processing and an
approximation to inner hair cell transduction. Furthermore, each pipeline has its
own correlogram which is used to extract periodicity information and contiguous
regions of activity for segment formation. This periodicity information is then
combined to produce a ‘binaural’ F0 estimate (e.g. Moore, 1997, p. 208) to enable
binaural harmonicity grouping. The structure and functionality of these stages is
identical to that of the monaural model described above. The binaural model differs
in the structure of the neural oscillator network.

Figure 8 shows the network topology in more detail. Each ear has an individual
oscillator array which functions in the same way as the one described for the
monaural model. The mechanism by which segments in opposite ears are grouped
together is described below. Importantly, both oscillator arrays share a single global
inhibitor to ensure that only perceptually related groups of segments (potentially in
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different ears) are active simultaneously. In other words, the common global
inhibitor ensures that unrelated activity, in either the same or different ears, does
not occur simultaneously. Similarly, both ears share a single attentional leaky
integrator (ALI) representing the central decision process.

Segment grouping

As described previously, Darwin et al. (1995) investigated the effect of a mistuned
harmonic upon the pitch of a 12 component complex tone. As the degree of
mistuning of the fourth harmonic increased towards 4%, the shift in the perceived
pitch of the complex also increased. This effect was less pronounced for mistunings
of more than 4%; beyond 8% mistuning, little pitch shift was observed. Apparently,
the pitch of a complex tone is calculated using only those channels which belong to
the corresponding stream. When the harmonic is subject to mistunings below 8%, it
is grouped with the rest of the complex and so can affect the pitch percept.
Mistunings of greater than 8% cause the harmonic to be segregated into a second
stream, and so it is excluded from the pitch percept. This effect was found when the
mistuned harmonic was presented both ipsilaterally and contralaterally. 
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Figure 7 Schematic diagram of the binaural model (the attentional leaky integrator is
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This suggests that the auditory system can assess whether a tone in one ear ought to
be grouped with a contralateral sound on the basis of harmonicity. In the monaural
computational model, a harmonic is deemed to belong to a complex if it is
consistent with the overall pitch estimate. Hence, it is assumed that binaural
harmonicity grouping proceeds in the same manner: an overall pitch estimate from
both ears is calculated and harmonic grouping is performed using this pitch
estimate. Computationally, a ‘binaural correlogram’ is formed by aggregating the
channels from both ears (c.f. Moore, 1997, p. 208). The summary sb is then found
by summing all the channels in the binaural correlogram:

(40)

where Ae(i,t,τ) is the autocorrelation of channel i at time t with lag τ for ear e. The
summary is then found using the same techniques described above and used to
estimate the dominant fundamental frequency. Harmonics which agree with the
fundamental frequency estimate have excitatory links placed between them (as in
the monaural system). Additionally, links are also placed between contralateral
segments if they are harmonically related.
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Attentional Leaky Integrator (ALI)

As described in chapter 4, Carlyon et al. (2001) demonstrated that auditory
streaming (the tendency to segregate high and low tones from an alternating
sequence on the basis of frequency separation and repetition rate) did not occur
when listeners attended to an alternative stimulus presented simultaneously.
However, when they were instructed to attend to the tone sequence, auditory
streaming occurred as normal. From this, it was concluded that attention is required
for stream formation and not only for stream selection.

In our model, attention can be directed toward a particular ear at the expense of the
other in addition to the ‘no preference’ situation in which attention is allocated to
both ears equally. Computationally, each ear has an attention gain, ranging from 0
to 1, representing ear preference Aear such that (35) becomes

(41)

In principle, such a mechanism should account for both the Darwin et al. (1995)
and Carlyon et al. (2001) data. The Darwin study investigated the effect of a
mistuned fourth harmonic upon the pitch of a 12 component complex tone. The
degree of mistuning was randomly selected (ranging from 0% to 8%) and the ear of
presentation of the fourth harmonic also varied randomly (ipsilateral or
contralateral to the remainder of the complex). Since the stimulus presentation was
alternated randomly between the ears, listeners were unable to become accustomed
to a particular presentation side: both ears had to be attended and thus Aear would

be high for both ears. Thus, binaural grouping of the complex and fourth harmonic
in the model proceeds as in the monaural situation, with excitatory links placed
between the two provided they satisfy the old-plus-new and harmonicity
constraints. 

In the Carlyon study, listeners are instructed to concentrate on a stimulus in a
particular ear. Initially, this is a sequence of noise bursts with increasing or
decreasing amplitude; the task is to classify the amplitude ramp. After a period of
time (ten seconds) the subject is told to concentrate on a sequence of alternating
tones in the other ear. In this situation, listeners showed a greatly reduced amount of
streaming relative to the situation in which they are allowed to listen to the
alternating tones from the beginning of the task. In the model, a particular ear is
given a higher attentional weighting than the other by making Aear high for the
attended ear and low for the other; only activity in this ear can affect the ALI.
Initially, the ear corresponding to the noise bursts is dominant and the ALI is
stimulated by the noise segments. After the ten second period, the ear dominance is

Tk 1 AearAk
–( )L=
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swapped and the attentional interest peak is moved into the tone frequency region.
When an ear dominance (Aear) change is detected, the model’s attentional
mechanism ‘resets’ - the leaky gain factor L on the Ak vector described in (36), used
to model the build up of the attentional effect, is reset to zero. Hence, after the
change, the attentional interest requires time to build up before streaming of the two
tones can be observed.

6.5 Summary

This chapter has described the computational implementation of the conceptual
model described in the previous chapter. The model makes a number of key
assumptions:

• A binaural pooling of pitch to allow across-ear grouping by harmonicity.

• Attentional build-up is modelled as a form of leaky integrator with build-up and
decay timescales in the order of seconds.

• Resetting of attentional build-up when the focus of attention moves between
ears.

• The old-plus-new heuristic is embodied in low-level mechanisms.

The model consists of three core stages, namely auditory peripheral processing,
periodicity analysis and finally the neural oscillator network. Once the signal has
been processed to simulate cochlear filtering and auditory nerve encoding
mechanisms, periodicity information is extracted using the autocorrelation-based
correlogram technique. Such information allows both the F0 of the signal to be
extracted as well as identify areas of contiguous periodic energy which correspond
to Bregman’s (1990) concept of acoustic elements. Further analysis of the cochlear
filtering outputs allow noise segments (i.e. non-periodic regions of energy) to be
identified. 

Within the network, each oscillator in the array corresponds to a particular
frequency channel; segments are encoded by placing excitatory connections
between the relevant oscillators which promote their individual activities to
synchronise. These segments are then grouped on the basis of common harmonicity
by using further excitatory connections between constituent oscillators. Each
oscillator is connected to the attentional leaky integrator (ALI) by means of
connections whose strengths are modulated by ‘conscious’ attentional interest:
maximum strength occurs at the frequency of highest interest and decay over
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frequency in a gaussian manner. Such a decay is only observed over a period of
time in order to model the finite time course of auditory stream buildup reported by
Anstis and Saida (1985). Only the activity of oscillators representing frequency
channels of high attentional interest can influence the ALI and hence any activity
synchronised with the ALI is said to contribute to the attentional stream. The
following chapter will present a number of simulations of published experimental
stimuli which demonstrate the behaviour of the model.
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Chapter 7. Evaluation
7.1 Introduction

The output of the model is evaluated by inspecting the time course of the neural
oscillator array activity and the attentional leaky integrator (ALI). This information
allows the behaviour of the grouping and attentional processes to be compared with
the findings of the relevant psychophysical studies. The simulations are presented in
terms of monaural and binaural content. However, before presenting the results, we
describe the format in which the oscillator array and ALI outputs will be presented.
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Output representation

The activity of the oscillator array over the time course of a stimulus is represented
in a pseudospectrogram format, as shown in figure 1. Channel centre frequency is
represented on the ordinate and time is represented on the abscissa. Each diagram
contains three types of information: the location in time-frequency of segments
(gray pixels), the times at which channel oscillators are active (black pixels) and the
activity of the ALI (black blocks along the top of the diagram). Any oscillators
which are temporally synchronised with the ALI are considered to be in the
attentional foreground. The presence of a segment is also equivalent to the external
input to the corresponding oscillator: gray signifies Ihigh (causing the oscillator to

be stimulated) and white signifies Ilow (causing the oscillator to be unstimulated).
Such diagrams are constructed on a frame by frame basis: after each stimulus
sample has been processed, the state of the oscillator array is recorded and forms a
vertical slice in the diagram. 

As described in the previous chapter, the oscillator array consists of 128 neural
oscillators, each representing one frequency channel. It is also important to recall
that these channels are spaced quasi-logarithmically on the equivalent rectangular
bandwidth (ERB) scale. The x activity of an oscillator is used to assess its state;
figure 2 shows a typical x activity trace of a stimulated oscillator. When inspecting
such traces, the important information to be extracted is the relative times at which
the oscillator becomes active. Two oscillators are said to be synchronised, and
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Figure 1 Sample output of the oscillator array in response to a 3-harmonic complex
tone with a fundamental of 500 Hz and a duration of 90 ms.
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hence perceptually grouped within the model, if they are active simultaneously.
Since the output of the oscillator array involves 128 channels, possibly over a
significant period of time, displaying the ‘raw’ x activity of each oscillator would
produce an overly complicated diagram. The technique used in figure 1, and
throughout the remainder of this chapter, is to apply an activity threshold to produce
a binary output for each oscillator such that a value of 1 represents the active phase,
and 0 represents the silent phase (see figure 2). 

7.2 Monaural stimuli

In this section, we will demonstrate how the model performs monaural grouping
and attentionally modulated streaming. The role of attention in the stream
formation and segregation process is investigated by the model’s response to an
alternating tone sequence such as the one used by van Noorden (1975). The model
requires the allocation of attentional interest for such a sequence to segregate
provided the frequency separation of the tones is sufficiently large. Grouping is
examined using the Darwin et al. (1995) mistuned harmonic stimuli in which
varying degrees of mistuning have differing effects upon the perceived pitch of a
complex tone. This type of stimulus is also used to demonstrate how the old-plus-
new (Bregman, 1990) heuristic influences grouping by using asynchronous
harmonic onsets and captor tones to segregate a harmonic from a complex tone. 

Two tone streaming

The ABA-ABA two tone streaming phenomena, which has been described in
previous chapters, consists of a sequence of pure tones A and B whose frequencies
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Figure 2 Temporal activity of a neural oscillator with activity threshold. The
representation of the oscillator’s time course, which will be used in
subsequent figures, is shown in the top set of axes. Black pixels represent
times at which the oscillator is in the active phase and above a given
threshold; white pixels represent times at which the oscillator is in the silent
phase.

activity threshold
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alternate over time. It has been shown that if the frequency separation of the tones is
sufficiently large and the repetition rate is appropriate, the sequence will segregate
into two streams, one consisting of A-A-A and the other of B---B---B where ‘-’
indicates silence (van Noorden, 1975; see figure 3). In addition to this, it has been
observed that such auditory streaming (Bregman, 1990) requires a finite period of
time to become evident (Anstis and Saida, 1985): up to ten seconds can elapse
before subjects report the percept of streaming. 

Carlyon et al. (2001) have shown that when listeners are instructed to divert their
attention away from the alternating tone sequence, streaming does not occur. From
these findings, Carlyon et al. suggested that attention is a prerequisite for auditory
streaming to occur. We have argued in previous chapters that the deployment of
endogenous attention is a fundamental part of the stream formation process and
hence can account for the segregation of the alternating tones in this example.
Figure 4 shows the response of the oscillator network to an alternating tone
sequence. In figure 4a, the frequency separation of the tones is 200 Hz
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Figure 3 Percept of an alternating sequence of tones, A and B, at two different
frequency separations. When presented at low frequency separation, the tones
form a single perceptual stream: temporal coherence (a). When the separation
is increased, the tones are more likely to form two perceptual streams:
auditory streaming (b).

(a)
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(approximately 3.5 semitones); in this situation, van Noorden (1975) showed that
the percept of temporal coherence predominated such that both the A and B tones
of the ABA sequence were contained in the same stream. For two events, separated
in time, to be grouped in our model, their corresponding oscillator activities must
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Figure 4 Model response to ABA-ABA alternating tone sequences. In both sequences,
the tones are of duration 50 ms with a intertone gap of 5 ms and an inter ABA
gap of 50 ms. In both examples, tone B is 1000 Hz and endogenous attention is
directed toward tone B (indicated by an arrow). In example (a), tone A is 1200
Hz. Upon inspection of the ALI activity, both the A and B tones are the subject
of attentional interest throughout the signal: ALI activity is synchronous with
the oscillator activity of both tones indicating both tones are in the attentional
stream: temporal coherence (c.f. figure 3a). In example (b), the separation is
increased such that tone A is 2000 Hz. In this situation, it can be seen that the
percept of streaming builds up until half way through the signal, ALI activity
only occurs during tone B: two streams have formed, one containing the B
tones and the other the A tones (c.f. figure 3b). Since attention is directed
toward the B tones, it is this group that becomes the attentional stream. To
improve the clarity of the diagrams, the rate of endogenous adaptation has
been increased so that streaming will occur over a rapid timescale.

(a)

(b)
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be synchronised to the activity of the ALI. If so, they can be said to belong to the
attentional stream. ALI activity in figure 4a is synchronised to all the tones
throughout the signal: both the A and B tones are present in the attentional stream
and are hence perceived to be grouped: temporal coherence. By contrast, when the
frequency separation of the tones is increased to 1000 Hz (13 semitones), the
reported percept is one of auditory streaming in which the A and the B tones have
been segregated; attention can then be directed to one of these streams. This
behaviour would be indicated in the model by the activity of the ALI being
synchronised to the response of only one set of tones. For example, if endogenous
attention had been directed to the low frequency tones after the build-up of
streaming had occurred, ALI activity would be seen only when the oscillators
corresponding to the low frequency tone are active. This is seen in figure 4b in
which endogenous attention is directed to the 1000 Hz tone. After a period of time,
ALI activity only occurs when the oscillators corresponding to the 1000 Hz tone are
active; the ALI is silent during periods of tone A oscillator activity. In this case,
streaming can be considered to have occurred and the attended stream contains only
the low frequency B tones.

An additional property of auditory streaming which can be observed in the model is
the ability to change the stream to which attention is directed without affecting the
perceptual organisation of the signal. For example, once a two tone sequence has
segregated, listeners can decide which stream to attend to and switch between
streams at will. In our model, this is achieved simply by moving the focus of
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Figure 5 Model response to the ABA-ABA alternating tone sequence presented in figure
4b. To demonstrate the ability to attend to different streams, the attentional
focus is moved from the B tones to the high frequency A tones after
segregation had occurred (after 600 ms). 
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attentional allocation Ak such that the peak of the gaussian falls over the alternative

stream. To demonstrate this property, the two tone sequence used in figure 5 is
used. Initially, the focus of attention is directed toward the low frequency B tones
causing the ALI activity to be synchronised with the low frequency tone oscillators
once the streaming percept has built up. However, after this has occurred, the focus
of attention is moved to the high frequency A tones and they become the attentional
stream with the B tones no longer being attended to. The switch in attentional focus
occurs after 600 ms (see figure 5). ALI activity is synchronised to the high
frequency A tones for the remainder of the signal.

It is evident from figure 5 that, occasionally, oscillator activities at the end of a
segment do not influence the ALI, despite the segment being under the attentional
focus. This is due to the ‘dying off’ of segments in which there is enough energy in
the auditory nerve representation to justify a segment being formed but that this
value, once scaled by θα, is insufficient to influence the ALI as described in (34) of
chapter 6.
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Figure 6 Unconscious, exogenous, redirection of attention due to a loud stimulus. In
(a), the later, high frequency, tone blip is not sufficiently loud to redirect
endogenous attention away from the continuous low frequency tone. However,
in (b), the intensity of the high frequency tone blip has been significantly
increased such that the ALI is influenced by this tone and it becomes the
attentional stream. In both cases, endogenous attention has fully built up and
is focused on the low frequency tone (indicated by an arrow).

(a)

(b)
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Redirection of attention

The unconscious, exogenous, redirection of attention due to a loud stimulus can be
demonstrated by presenting the model with a pure tone and a tone blip. In the first
condition, the tone blip is less intense than the attended tone. In this case, attention
will not be redirected toward the new tone: attention remains with the consciously
selected one. Figure 6a shows that the ALI is only influenced by the endogenously
selected low frequency tone. However, when the intensity of the tone blip is
increased in the second condition, endogenous selection is overruled and the ALI is
influenced by the tone blip. This occurs since the intensity of the blip is sufficiently
high to overcome the intensity threshold θα (see chapter 6) and hence the oscillators
corresponding to the blip are able to provide input to the ALI. In this situation, the
blip momentarily becomes the attentional stream. As can be seen in figure 6b, the
low frequency, endogenously selected, tone becomes the attentional stream again
after the exogenous reorientation. A future enhancement to the model could be to
detect this override and make a decision on whether to stay with new stimulus or
return to original by changing the Ak vector. This would be equivalent to a listener
making a brief analysis of the interrupting sound and deciding whether or not it
merited further investigation. Only if the new sound appeared to be more salient
than the currently attended sound, would the Ak vector be consciously altered.

Harmonic segregation within a complex tone

Darwin et al. (1995) investigated the effect of a mistuned harmonic upon the pitch
of a 12 component complex tone. As the degree of mistuning of the fourth
harmonic increased towards 4%, the shift in the perceived pitch of the complex also
increased. This effect was less pronounced for mistunings of more than 4%; beyond
8% mistuning, little pitch shift was observed. This suggests that the pitch of a
complex tone is calculated using only those channels which belong to the
corresponding stream. When the harmonic is subject to mistunings below 8%, it is
grouped with the rest of the complex and so can affect the pitch percept.

For mistuning greater than 8%, the lack of influence on the pitch percept exerted by
the mistuned harmonic implies that it has been perceptually segregated from the
representation of the complex. In other words, for mistunings below 8%, a single
group exists; mistunings beyond 8% result in two groups.

This behaviour is reproduced by our model; figure 7 shows the response of the
network to stimuli subjected to mistunings of 0%, 5%, 7% and 8%.
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Figure 7 Model response to a 12-harmonic complex tone whose 4th harmonic
(indicated by an arrow) is mistuned by varying degrees: 0% (a), 5% (b), 7% (c)
and 8% (d). Attentional interest is focused on the fourth harmonic.

(a)

(b)

(c)

(d)
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For mistunings of less than 8%, the network forms a single perceptual group
containing all the harmonics which becomes the attentional stream (figure 7a).
Recall that the diagram is a pseudospectrogram which displays information about
the position in time and frequency of segments (gray areas), oscillator activities
(black areas superimposed over segments) and ALI activity (black blocks along the
top of the diagram). In figure 7a, the 12 harmonics of the 155 Hz complex -
represented as segments - can clearly be seen. The activities of their corresponding
neural oscillators exhibit temporal synchrony, indicating that all the harmonics have
been grouped. Similar behaviour is observed when the harmonic is mistuned by 5%
and 7%, although a greater degree of initial ‘jitter’ is observed before the network
settles. This is especially so for 7% where clear synchronisation is only achieved
after 70 ms. Nevertheless, synchronisation does occur and the harmonic is said to
be perceptually grouped with the complex even at this relatively high degree of
mistuning. When the degree of mistuning reaches 8%, the fourth harmonic is
segregated from the rest of the complex: the oscillators corresponding to the fourth
harmonic are temporally desynchronised from the remaining oscillators (figure 7d).
As described in the previous chapter, it is the activity of the global inhibitor that
prevents both groups from being active simultaneously. Hence, at any point in time,
only oscillators corresponding to one of the groups may be active. Two distinct
perceptual groups are now present: one containing the fourth harmonic and the
other containing the remainder of the complex tone. ALI activity displayed at the
top of the diagrams in figure 7 indicate that both the complex and the segregated
harmonic are attended to since the stimuli are of insufficient duration for attentional
build up to occur.

A comparison of the pitch shifts found by Darwin et al. (1995) and the shifts
predicted by the model is shown in figure 8. The pitch of the complex was
calculated by creating a summary correlogram (similar to that described in the
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Figure 8 Pitch shift versus degree of mistuning. A Gaussian derivative is fitted to each
data set. Experimental data from Darwin et al. (1995).
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previous chapter) using frequency channels contained within the complex tone
group. Only segment channels below 1.1 kHz were used for this summary since
low frequency (resolved) harmonics are known to dominate the pitch percept (see
Moore, 1997). Indeed, Moore et al. (1985) showed that mistuning of low harmonics
had a much greater influence over pitch percepts than the mistuning of high
harmonics. They found that above the 6th harmonic, there was very little effect on
the pitch percept implying that only lower harmonics are used to produce a percept
of pitch

Darwin et al. (1995) also showed that the effect of mistuning was almost eliminated
when the fourth harmonic was ‘captured’ from the complex by four preceding tones
at the same frequency. In this situation, no matter how small the mistuning, the
harmonic was segregated from the complex and did not influence the pitch percept.
Figure 9 shows the capture of the fourth harmonic even when there is no mistuning.
During the 550 ms before onset of the complex tone, the age tracker activities Bk

for the captor tone channels build up. When the complex tone begins, there is a
significant age difference between the frequency channels stimulated by the fourth
harmonic and those stimulated by the remainder of the complex. Such a difference
prevents excitatory harmonicity connections from being made between the fourth
harmonic and the remaining harmonics. It can be seen in the diagram that the
oscillator activities corresponding to the fourth harmonic temporally desynchronise
from those of the remainder of the complex tone. This behaviour is consistent with
the old-plus-new heuristic; a current acoustic event is interpreted as a continuation
of a previous stimulus unless there is evidence to do otherwise.
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Figure 9 Model response to a 12-harmonic complex tone whose 4th harmonic is
preceded by four ‘captor’ tones. Note that despite the fourth harmonic being
harmonically related to the complex, it is segregated (indicated by temporal
desynchronisation) by virtue of the captor tones. 
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The old-plus-new heuristic can be further demonstrated by starting the fourth
harmonic before the rest of the complex. Figure 10 shows the output of the model
when the fourth harmonic is subject to a 50 ms onset asynchrony. During this time,
the age trackers of channels excited by the fourth harmonic increase to a
significantly higher value than those of the remaining harmonics. This is the same
mechanism by which captor tones, in the previous example, caused the harmonic to
segregate. Once again, this difference in segment activity age prevents excitatory
connections from being made between the fourth harmonic and the other
harmonically related segments. Thus, the early harmonic is desynchronised from
the rest of the complex and two groups are formed. However, after a period of time,
the importance of the onset asynchrony decreases as the channel ages approach
their maximal values. Once this occurs, there is no longer any evidence to prevent
excitatory links from being made between the fourth harmonic and the rest of the
complex. Grouping by harmonicity then occurs for all segments: the complex and
the early harmonic synchronise to form a single stream. This is consistent with
experimental data (e.g. Darwin and Ciocca, 1992) in which the effect of segregation
on the pitch shift of a complex due to asynchronous onset is reduced for stimuli of
longer duration. In other words, the proportion of time that the harmonic is
segregated relative to the overall duration of the stimuli decreases resulting in a
lower overall pitch shift effect.

Timecourse of attentional build-up

As demonstrated by the model’s response to an alternating tone sequence the
allocation of attention to a particular frequency region occurs over a period of time
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Figure 10 Response of the model to a 12 harmonic complex tone with fundamental
frequency of 155 Hz whose fourth harmonic begins 50 ms before the
remainder of the complex.
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with maximal efficacy only occurring after a number of seconds. Initially, all
frequency regions contribute equally to the attentional stream and hence all
segment groups are attended to. Gradually, the attentional allocation becomes more
focused until the desired attentional allocation, defined by Ak, is achieved. At this
stage only segment groups under the focus of attentional allocation are attended to.
In the previous simulations, we investigated how mistuned harmonics,
asynchronous onsets and the use of captor tones influence the grouping of a
harmonic complex. The durations of the stimuli used in these simulations were
between 90 ms and 700 ms: much shorter than the time period required for
attentional build up as demonstrated previously. As such, for the very short stimuli,
both the complex and segregated harmonic are contained within the attentional
stream. This means that each group is attended to equally, a percept that is observed
during informal listening. The simulations in which captor tones are used to
segregate a harmonic from a complex tone, the time constant controlling the
attentional build up, dL (see (36) in chapter 6), is adjusted such that the segregated

harmonic becomes the attentional stream. We argue that this is plausible since
cognitive processing of sound can occur at different timescales for different tasks
(ranging from microseconds for sound source localisation to many seconds for
stream formation and segregation). 

7.3 Binaural stimuli

This section presents similar results to those described in the previous section with
the exception that these stimuli exercise the model’s ability to perform binaural
grouping and attentional allocation. Binaural attentional allocation is simulated
using the experimental stimulus of Carlyon et al. (2001) in which an alternating
tone sequence is presented in the opposite ear to a distractor task. When instructed
to perform a classification task on the distractor stimulus, the streaming percept
failed to build up for the alternating tone sequence. However, when told to ignore
the distractor task, segregation occurred as normal suggesting that attention plays a
key role in the streaming process. Such behaviour is seen in the performance of our
model. Binaural grouping is investigated using a stimulus consisting of a mistuned
harmonic within a complex tone (Darwin et al., 1995) is used to show how the
degree of mistuning of a contralaterally presented harmonic can still influence the
perceived pitch of a complex; i.e. the contralateral harmonic is being grouped with
the remainder of the complex tone. Similarly, the deployment of asynchronous
onsets or captor tones can remove this influence over the pitch percept by
segregating the harmonic from the complex tone, even for mistunings of 0%.
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Two tone streaming with distractor task

Carlyon et al. (2001) used the alternating tone sequence stimulus described above
to investigate the role of attention in the stream formation and segregation process.
To achieve this, subjects were presented with a binaural stimulus in which the
signal to the left ear contained the alternating tone sequence and the right ear
contained noise bursts. Specifically, an alternating tone sequence, 21 seconds in
duration, was presented to the left ear; bandpassed noise bursts (2 - 3 kHz band),
each of duration 400 ms, were presented to the right ear for the first 10 seconds of
the stimulus at a rate of one per second. For the remaining 11 seconds, silence was
presented to the right ear. Each noise burst was subject to a linear amplitude ramp
which was either increasing (a gain of 0 to 1 over the 400 ms) or decreasing (a gain
of 1 to 0 over the 400 ms). Figure 11 shows a symbolic representation of the
stimulus used. In the ‘two task’ condition, Carlyon et al. (2001) instructed listeners
to attend to the noise bursts and classify the type of amplitude ramp that had been
applied to each noise burst. After 10 seconds had elapsed, they were then instructed
to move their attention to the alternating tone sequence in the other ear and use a
computer keyboard to report the percept of the tones: one stream or two. In the ‘one
task with distractor’, the same stimulus was used but listeners were instructed to
ignore the noise bursts and concentrate on assessing the alternating tone percept for
the full stimulus duration. Carlyon et al. (2001) found that the stream segregation
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Figure 11 Symbolic representation of the stimulus format used by Carlyon et al. (2001)
and presented to the model. Arrows indicate the points at which excerpts of
the model output are presented in figure 12.
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percept had occurred by the 10 second point in the ‘one task with distractor’
condition.
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(d)

Figure 12 Model response to the Carlyon et al. (2001) data after varying time periods: 1
second (a), 8 seconds (b), 11 seconds (c) and 20 seconds (d). Response of the
left ear network is shown in the top panel and the right ear network in the lower
panel in each case. Note that the noise bursts in the right ear cease after 10
seconds.
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However, after the 10 second point in the ‘two task’ condition, the percept was that
of a single stream and the associated build up period was required before two
streams were perceived: no build up of the streaming percept had occurred after 10
seconds when listeners were attending to the noise bursts.

The stimulus described by Carlyon et al. (2001) was used as input to the model and
the output of the oscillator network is shown in figure 12. The movement of
attention from the right ear (noise bursts) to the left ear (alternating tone sequence)
was simulated by altering Aear after 10 seconds. For the first half of the stimulus
Aleft = 0 and Aright = 1, causing attention to be directed toward the right ear; for the
remainder of the stimulus Aleft = 0 and Aright = 1, so that attention is directed toward

the left ear.

Since the Carlyon stimulus is 21 seconds long, it is difficult to present the entire
output image and maintain sufficient clarity to inspect the synchronisation of
oscillators and the time course of the ALI. In view of this, figure 12 shows four
representative excerpts from the network output: the state of the oscillator array
after one second, eight seconds, 11 seconds and finally 20 seconds of the stimulus.
Figure 12a shows the network after one second of the stimulus. At this stage,
attention is directed toward the noise bursts simulating the classification task
performed by the listeners in the Carlyon et al. experiment. Since only one second
has elapsed, the level of attention build up has not reached a sufficiently high level
as to exclude activity from the ‘ignored’ tones. However, after a period of time, this
build up has occurred and the ALI is only influenced by the noise segment
indicating that only the noise burst is contained in the attentional stream (figure
12b). After 10 seconds, the simulated switch of attention from the right ear to the
left ear occurs and the attentional ‘reset’ occurs. Following this switch, the ALI is
once again influenced by all the segments present (figure 12c) until the build up
period has elapsed. Once the attentional build up has occurred, streaming is
observed since attention is now directed toward the high frequency tone within the
alternating tone sequence. This is indicated by ALI activity being synchronous only
with the oscillators corresponding to the high frequency tone.

Harmonic segregation within a complex tone

In addition to the monaural experiments discussed above, Darwin et al. (1995) also
investigated the effect of a contralaterally presented mistuned harmonic upon the
pitch of a 12 component complex tone.
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As in the monaural situation, the degree of mistuning of the fourth harmonic
influenced the shift in the perceived pitch of the complex for mistunings of up to
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Figure 13 Model response to a 12-harmonic complex tone (155 Hz fundamental
frequency) whose contralaterally presented 4th harmonic is mistuned by
varying degrees: 0% (a), 5% (b), 7% (c) and 8% (d). Response of the left ear
network is shown in the top panel and the right ear network in the lower panel
in each case.
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8%; mistunings of more than 8% had little effect of the perceived pitch. These
results imply that even harmonics presented contralaterally are assessed to see if
they match an overall binaural pitch estimate and are grouped accordingly. Figure
13 shows similar stimuli to those presented in figure 7 with the exception that the
mistuned fourth harmonic is presented contralaterally to the remainder of the
complex. Similar to figure 7a, figure 13a shows that the oscillator activities
corresponding to both the complex and the contralateral fourth harmonic are
temporally synchronised indicating that all the segments have been grouped on the
basis of common harmonicity. Similar behaviour is observed when the harmonic is
mistuned by 5% and 7% (figure 13b and 13c) and the harmonic is said to be
perceptually grouped with the complex even at these relatively high degrees of
mistuning. When the degree of mistuning reaches 8%, the fourth harmonic is
segregated from the rest of the complex: the oscillators corresponding to the fourth
harmonic are temporally desynchronised from the remaining oscillators (figure
13d). Once again, ALI activity displayed at the top of the diagrams in figure 13
indicates that both the complex and the segregated harmonic are attended to.

The effect of harmonic capturing upon the pitch percept of the complex can also be
demonstrated binaurally. Darwin et al. (1995) found that the binaural grouping of
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Figure 14 Model response to a 155 Hz fundamental frequency complex tone whose
fourth harmonic is presented contralaterally and is preceded by four captor
tones of identical frequency. 
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the complex and the contralaterally presented harmonic can be prevented if the
contralateral fourth harmonic is preceded by a number of captor tones of the same
frequency as the harmonic. In this situation, the mistuning of the harmonic had no
effect on the pitch percept implying that it had been segregated from the complex
and hence could not affect the pitch. Figure 14 shows the model response to the
stimulus. It can be clearly seen that despite the fourth harmonic being subject to 0%
mistuning, it is still segregated from the complex. This is indicated by the temporal
desynchronisation of the oscillators corresponding to the fourth harmonic and those
corresponding to the complex. 

7.4 Predictions

A benefit of producing conceptual and computational models is the ability to draw
predictions that can subsequently be used as the basis for further psychophysical
studies. This section presents a number of predictions made by the model which
could be investigated by future studies.

Nature of the attentional reset when the attentional focus is moved in space

To simulate the experimental findings of Carlyon et al. (2001), the model
incorporates an attentional ‘reset’ when the attentional focus is moved from one ear
to the other. This behaviour is also supported by data presented by Anstis and Saida
(1985) in which the streaming build-up effect for an alternating tone sequence does
not transfer between ears. They presented listeners with a tone sequence in one ear,
and silence in the other ear, for a duration sufficient to induce streaming. When the
sequence was then moved to the other ear, the streaming percept was no longer
present. Both of these studies presented stimuli over headphones, and subjects were
instructed to attend to one ear or the other. As such, stimulus presentation was
dichotic, a situation which does not occur in free field listening. In free field, the
stimuli could be presented via speakers positioned either side of the listener. In this
case, both ears would receive both signals, albeit subject to interaural time
differences and interaural intensity differences. This implies that spatial attention
must be allocated more subtly than simply selecting a particular ear. 

Our model predicts that when attention is moved from any spatial location to
another in a discrete manner, an attentional reset occurs. This is a consequence of
the attentional ‘reset’ described in the previous chapter in which the leaky gain
factor on the Ak vector, used to model the build up of the attentional effect, is reset
to zero when a change in the ear dominance (Aear) is detected (see chapter 6).
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Conceptually, one would expect such a reset to occur because an abrupt movement
of the source is likely to be interpreted as the cessation of the initial source and the
appearance of a new source. Furthermore, if this is the case, the principle of good
continuation (see chapter 2) implies that there would be an associated threshold in
which movements of the perceived source can be too small to trigger an attentional
reset and would instead be interpreted as natural movement of the source.

 This prediction can be investigated by using an alternating tone sequence presented
over headphones in which an interaural intensity difference is applied to lateralise
the signal to one side of the head. The sequence would be of sufficient duration for
the streaming percept to occur. Following this, the interaural intensity difference
would be altered such that the perceived location would be on the other side of the
listener (see figure 15). Throughout the stimulus, listeners would be instructed to
indicate, via a keyboard, times at which their percept changes from one stream to
two streams. The model predicts that listeners will perceive one stream following
the simulated source movement.

Streaming percept would not be reset by unconscious reorientation of attention

A reset of the attention gain factor in (36) (see chapter 6) will only occur when
endogenous attention is moved to a different ear. Therefore, the model predicts that
if an alternating tone sequence was momentarily interrupted by an unexpected loud
noise in the other ear, any streaming percept would remain since the noise burst
only became the attentional stream exogenously. This experiment relies on the
assumption that the listener will not consciously move their attention to the ear of
the interrupting noise burst even when instructed to only concentrate on the
alternating tones. This prediction arises from that fact that there would be no
change in the ear dominance (Aear) and hence no reset of the attentional build up
would occur. However, designing an experimental paradigm in which one can be

Figure 15 Representation of the source locations to be used to investigate if a reset
occurs when attention is moved. (a) Initial position of the sound source. (b)
Final position of the sound source. The source is only moved to this latter
position after sufficient time for a streaming percept to have been built up for
position (a).

(a) (b)
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sure that the intruding sound never causes an endogenous reorientation of attention
may prove difficult.

For a mistuned harmonic, segregation occurs over a finite period of time (albeit
extremely rapidly) as groups of oscillators desynchronise. Does this happen with
listeners?

The model predicts that the initial percept of a complex tone with a harmonic
mistuning of more than 8% is fused; however, this harmonic is segregated after
approximately 25 ms - the period of one oscillation (see figure 16). This is
consistent with the concept that the default grouping state is ‘fusion’ (Bregman,
1990). Only when sufficient evidence has been gathered (i.e. an accurate estimate
of the fundamental), does segregation take place. We suggest that this could be
investigated using the pitch matching technique employed by Darwin et al. (1995).
The effect of mistuning on the perceived pitch ought to be greater for short stimuli
since the proportion of the stimulus duration in which the mistuned harmonic is
grouped with the complex, and hence contributing to the pitch percept, is greater
than for longer stimuli. In other words, the pitch shift is inversely proportional to
the stimulus duration. Specifically, listeners would be presented with bursts of the
complex of varying length, but fixed mistuning, and then instructed to determine
the pitch.
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Figure 16 In the model, a finite period of time is required for a mistuned harmonic to
segregate from the complex. 
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Do captor tones presented to the opposite ear to complex have the same capturing
effect?

The examples presented above in which captor tones are used to segregate a
harmonic from a complex presented the captor tones in the same ear as the
harmonic. The model predicts that captor tones presented to the ear contralateral to
that to which the harmonic is to be presented (see figure 17) would have no
capturing effect.

7.5 Psychophysical investigation of the spatial 
allocation of attention

In the previous section, we predicted that an attentional reset would occur if an
attended stimulus was moved discretely in space. In this section we describe a
psychophysical experiment in which an alternating tone sequence is used to test this
prediction. In a similar manner to previous alternating tone sequence studies (e.g.
Anstis and Saida, 1985; Carlyon et al., 2001), the experiment investigates the time
course of auditory stream segregation. It ought to be noted that this type of
experiment differs from studies which investigate stream segregation based upon
spatial location (e.g. Deutsch, 1975; van Noorden, 1975). Instead of presenting
successive tones to different ears, each alternate tone in our experiment is presented
at the same azimuth. The switch in position occurs once: it is the effect that this has
on the time course of the streaming percept that is of interest and not the ability (or
inability) to stream based purely on spatial location.

Figure 17 Presentation of captor tones to the opposite ear to which the complex will be
presented. The model predicts that the captor tones would have no
segregating effect on the complex.
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Anstis and Saida (1985) presented listeners with a tone sequence in one ear and
silence in the other ear, for a duration sufficient for streaming to occur. The
sequence was then moved to the other ear and the subsequent changes in the
listener’s percept were recorded. Throughout the experiment, listeners were
instructed to use a computer keyboard to record their percept of the tone sequence:
coherence or segregation. The experimental design described below is similar to
that of Anstis and Saida (1985, experiment four, p. 264) but instead of presenting
the stimuli dichotically, the tone sequence in our experiment was presented
binaurally using interaural intensity differences to simulate movement of the
stimulus from one spatial location to another. To achieve this, the tone sequence
was presented to one side of the head for the first half of the stimulus and was then
moved to the same spatial offset on the other side of the head by swapping the left
and right ear signals.

The stimulus consisted of an alternating ABA tone sequence similar to that used by
van Noorden (1975) and Carlyon et al. (2001) with a duration of 20 seconds. The
low frequency tone was fixed at 1 kHz and the high frequency tone was set for each
subject such that streaming would occur after approximately five seconds when the
sequence was presented diotically (i.e. with the perceived location in the midplane). 

For each presentation, an alternating tone sequence was presented to the listener in
which an intensity difference between the two ears was applied. After 10 seconds,
the intensity difference was reversed such that the stimulus appeared to move to the
other side of the head. Each intensity difference was presented eight times in a
randomised order that was different for each subject. The side of the head on which
the stimulus started was also randomised. For example, on a presentation in which
the intensity difference was 10 dB, the intensity difference would be +10 dB for the
first ten seconds and -10 dB for the remaining ten seconds (i.e. an overall spatial
movement equivalent to a 20 dB intensity difference). 

A pretest was conducted, using three listeners (SC, ST and KP), in which the
intensity difference between the two ears on each trial was selected from the range
0, 5, 10, 15, 20 or 25 dB allowing for a range of perceived spatial locations. The
data from the pretest suggested that the reset effect becomes apparent for intensity
differences between 0 dB and 10 dB: no significant change in the characteristics of
the reset was observed above 10 dB. Hence, the experiment described below used
intensity differences of 0, 1, 2, 4, 8 and 16 dB in order to better observe the
emergence of the reset effect.

Subjects continually made forced choice judgments of stream segregation by
holding down one of two computer keys over a listening period of 20 seconds. They
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held down key (1) when the stimulus sounded like a single stream of tones with a
galloping rhythm - coherence - and held down (2) when they heard two streams of
tones in which one was faster than the other - segregation. Each subject was
presented with 48 different examples (6 intensity differences x 8 presentations).

Experimental method

Subjects

5 subjects were used, namely 4 males (GB, SC, SM, ST) and 1 female (JE), all of
whom had some experience with psychophysical experiments. None of the subjects
reported hearing difficulties.

Stimulus

The alternating tone sequences were generated using a Tucker-Davis Technologies
(TDT) System 3 RP2.1 device incorporating a TDT HB7 headphone driver and
were presented to a pair of Sennheiser HD250 linear II headphones. Subjects sat in
a single walled sound-attenuating booth (IAC 402-A Audiometric Booth). The
amplitude of the stimuli was set to a comfortable listening level (no direct SPL
measurements were taken). All stimuli were presented binaurally. The tone duration
was set to 120 ms and the tone repetition time (TRT), as defined by van Noorden
(1975), was also set to 120 ms. The frequency separation of the alternating tones
was set for each subject during a pre-test in which the subject was presented with an
alternating tone sequence of default frequency separation (75 Hz) with the low
frequency tone set at 1 kHz. If stream segregation did not occur after approximately
five seconds, the subject could increase the separation by 10 Hz and re-listen to the
sequence. This procedure was repeated until stream segregation occurred.

Procedure

Subjects were instructed, via text presented on a computer screen, to continuously
hold down one of two computer keys, changing keys to report their percepts, over a
listening period of 20 seconds. They held down key (1) when the stimulus sounded
like a single stream of tones with a galloping rhythm - coherence - and held down
(2) when they heard two streams of tones in which one was faster than the other -
segregation. For each subject, the experiment was broken up into sections
consisting of five presentations. Subjects were permitted a short break between
sections if desired.
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Results

For each intensity difference, the 40 response sequences (5 subjects x 8
presentations), consisting of discrete judgements (1 or 2), were averaged and scaled
to between 0 and 1. This provided the mean time course of adaptation to the
alternating tone sequence in which each point is interpreted as a probability of
streaming. These results are shown in figure 18. Each figure shows that the
probability of hearing two streams at the beginning of the presentation was low but
that this increased over time as previously demonstrated by Anstis and Saida
(1985). For presentations in which the intensity difference was 4 dB or more, there
was an associated decrease in the probability of hearing two streams when the
intensity difference was reversed after 10 seconds; a second period of build up was
then observed. This decrease in streaming probability was strongest (observed as a
deeper and wider trough) for presentations in which a large intensity difference was
applied. Individual subject responses can be found in appendix B.

Figure 18 Mean probability of auditory streaming for intensity differences of 0, 1, 2, 4, 8
and 16 dB. The intensity difference between the two ears was reversed after 10
seconds.
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Discussion

Our results demonstrate the time course of adaptation to an alternating tone
sequence and are in agreement with the experimental data presented by Anstis and
Saida (1985). Since attention appears to be required for auditory streaming (e.g.
Carlyon et al., 2001), our data supports the hypothesis that an attentional reset
occurs when an attended stimulus is moved discretely in space. Furthermore, as we
suggested in the previous section, there appears to be a tolerance associated with
such an attentional reset in which small changes in source location have no effect;
intermediate differences result in a small degree of reset and large differences cause
a large reset effect. The data presented here suggests that this tolerance is of the
order of 2 - 4 dB (i.e. an overall interaural intensity difference equivalent to 4 - 8
dB).

As described in chapter 6, our model’s attentional mechanism resets when an ear
dominance (Aear) change is detected. This is achieved by resetting (to zero) the
leaky gain factor L on the Ak vector described in (36). The results presented in this
section suggest that this mechanism needs to be tuned such that only changes larger
than a certain threshold (a movement equivalent to a 4 - 8 dB intensity difference)
cause the attentional mechanism to be reset and that the leaky integrator L should
not be reset to zero in all circumstances: the degree of reset should depend on the
the magnitude of the Aear change.

7.6 Summary 

This chapter has described a number of simulations which have been used to
demonstrate the computational model’s ability to replicate the psychophysical
findings. These examples have fallen into two categories: monaural and binaural
stimuli. In each of these, the model’s ability to perform auditory grouping and
attentionally modulated stream formation and segregation has been investigated.
The effect of a mistuned harmonic on the pitch percept of a complex tone has been
used to investigate perceptual grouping (Darwin et al., 1995). Such stimuli have
been used to show how the model performs harmonicity grouping and incorporates
a degree of tolerance in the harmonic relationships between components.
Furthermore, the old-plus-new heuristic, which has been incorporated at a relatively
low level, accounts for the perceptual segregation of components which have been
subjected to asynchronous onsets or the presence of captor tones.
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The requirement of attention in the stream formation process has been
demonstrated both monaurally and binaurally. Figure 4 shows how differences in
frequency separation can affect the ability of listeners (and the model) to form two
streams from an alternating tone sequence. On the basis of psychophysical evidence
(Carlyon et al., 2001), we have argued that such streaming is due to the allocation
of attentional resources to the alternating tones sequence. Such endogenous,
conscious, attentional allocation is believed to occur in the ‘shape’ of a gaussian
distribution which can be assigned to a particular frequency (e.g. Mondor and
Bregman, 1994). Hence, the model simulates the allocation of attention in
frequency by weighting the tonotopical connections between the oscillator array
and the attentional leaky integrator (ALI). It is the width of this attentional
allocation which accounts for the ability of the model to ‘stream’ widely frequency-
separated tones. If a set of tones within the alternating tone sequence fall beyond
the tail of the attentional gaussian, it will be unable to influence the ALI once the
associated build up (Anstis and Saida, 1985) has occurred. The model also accounts
for the original binaural stimulus used by Carlyon et al. (2001) to investigate
attentional influences on auditory streaming. In this situation, the model simulates
the lack of streaming build up observed in listeners when their attention is diverted
away from an alternating tones sequence. 

The final section of this chapter presented a selection of predictions and testable
assumptions made by the computational model. A psychophysical study was
presented in which one of the predictions - the hypothesis that discrete movement
of the attentional focus over large spatial distances causes an associated reset of the
attentional build up - was investigated. The data from this experiment supported the
hypothesis and also suggested that such a reset is dependent on the degree of source
movement.

In the conclusions chapter, we will discuss the outcome of this evaluation and also
suggest areas of future work which will allow a clearer view of binaural attentional
allocation to be formed.
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Chapter 8. Conclusions
8.1 Summary

A model of auditory streaming has been presented in which the allocation of
attention lies at the heart of the stream formation process. Chapter 5 presented a
conceptual framework in which a number of different processes are responsible for
producing the final stream estimates. Firstly, we made the distinction between
exogenous and endogenous attention. Exogenous, unconscious, attention is
responsible for performing primitive grouping of individual features within the
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stimulus (see chapter 2). These groups are then passed to the endogenous
processing stage, which takes into account the conscious decision of the listener,
changes in the stimulus input and schema information to form an ‘attentional
stream’. It is at this stage of processing that attentional allocation influences stream
formation. It is proposed that schema information is used to both aid the grouping
of the exogenous processing outputs (e.g. Treisman, 1960), and to act as a form of
detector in which the detection of salient information in any group reorients
conscious attention (e.g. Moray, 1959). Furthermore, the conscious decision of the
listener can be overruled by, and attention forcibly reoriented to, loud sounds
occurring unexpectedly in the environment. This mimics the startle reflex observed
in most animals (e.g. Winslow et al., 2002).

The implementation of this framework as a computer model consists of three core
stages. The first stage of the model simulates peripheral auditory processing using a
bank of cochlear filters representing basilar membrane processing, with the gains of
each filter set to reflect the outer-middle ear transfer function. The output of these
filters are then passed through an approximation of inner hair cell transduction to
produce an estimate of auditory nerve activity. The second stage of the model
extracts periodicity information by means of a correlogram (e.g. Slaney and Lyon,
1990) in which each auditory nerve channel is subjected to an autocorrelation
analysis. This produces a two-dimensional representation with channel centre
frequency and autocorrelation lag on orthogonal axes. The dominant pitch for the
entire signal is made explicit by forming a summary correlogram by integrating
across frequency. The correlation between each adjacent channel pair is computed
in order to identify channels with similar patterns of response. Such channels are
responding to the same spectral event and therefore are signalled as belonging
together - they are grouped in the next processing stage. 

The final stage of the model is a one-dimensional neural oscillator network in
which auditory grouping and segregation takes place. This neural oscillator
network is based on LEGION (see Terman and Wang, 1995) but differs in its
unidimensionality and the incorporation of long range inter-oscillator connections.
The former avoids an explicit time axis, the problems of which were discussed in
chapter 6, and the latter allows grouping by harmonicity (or other across-channel
cues). Channels responding to the same spectral event (as identified from the cross-
correlation mechanism in the previous stage) are encoded in the network by locally
excitatory connections to form ‘segments’. Further sets of excitatory connections
are placed between individual segments whose periodicity conforms with the
fundamental frequency estimate of the summary correlogram. The activities of
oscillators with excitatory connections between them synchronise temporally to
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form an oscillatory ‘group’. Blocks of oscillators which are not linked by excitatory
connections desynchronise from each other.

Each oscillator in the network feeds activity to the attentional leaky integrator
(ALI). The ALI is the core of our attentionally motivated stream segregation
mechanism and produces an attentional stream as defined in chapter 5. The
connection weights between the network and the ALI are modulated by endogenous
processes including ‘conscious’ preference. This conscious preference is modelled
by a gaussian distribution with the peak centred on the frequency of choice (see
Mondor and Bregman, 1994). Initially, these weights are maximal for all channels
to simulate the default grouping being a whole (see Bregman, 1990). Hence, in this
initial condition, all segments and groups contribute to the attentional stream. Over
a period of time, these weights adapt to the endogenous attentional focus with the
effect that only oscillators under the attentional focus can influence the ALI. The
reliance on synchrony allows harmonic groups, most of whose harmonics may be
outside of the attentional focus, to contribute to the attentional stream simply by
attending to one harmonic.

The output of the model was evaluated by inspecting the time course of the neural
oscillator array activity and the ALI for a number of stimulus types. From this
information, one can assess how individual spectral events have been grouped and
which groups of segments contribute to the attentional stream. In other words, the
activity of the ALI indicates which portions of the stimulus a listener would be
attending to. To evaluate the success of the model, the network output was
compared to the findings of the relevant psychophysical studies.

Accounts of previous versions of the model can be found in Wrigley and Brown
(2001) and Wrigley and Brown (2002).

8.2 Original contribution

The purpose of this thesis is to present a model of auditory streaming. However, in
contrast to previous CASA systems, attention plays a crucial role in the stream
formation and segregation process of our model. We argue that, on the basis of
psychophysical research (e.g. Carlyon et al., 2001), distinct streams are not formed
unless attention is directed toward particular (groups of) features. To this end, we
have developed the attentional leaky integrator (ALI) and a representation of
attentional allocation across frequency, Ak. Ak corresponds to the conscious
preference of the listener and is modelled by a gaussian distribution in accordance
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with the psychophysical findings of Mondor and Bregman (1994). Furthermore, we
argue that this conscious preference cannot be deployed instantaneously: it is
subject to a build-up over time. Hence, the degree to which grouped frequency
channels can influence the ALI is determined by the timecourse of the Ak build-up.
The output of the ALI describes the frequency content of the ‘attentional stream’ at
each epoch. In chapter 5 (see also chapter 7) we demonstrated how this mechanism
can explain both auditory streaming (van Noorden, 1975) and the associated build-
up of streaming over time (Anstis and Saida, 1985).

In addition to this, it has been shown that when the ear of presentation of an
alternating tone sequence is switched, a second build-up period is required
immediately after the switch (e.g. Antis and Saida, 1985; Carlyon et al., 2001). We
contend that the buildup of attentional efficacy is subject to a ‘reset’ when abrupt
changes in the stimulus location are consciously detected and tracked. In other
words, the degree of attentional build-up is reset to its initial value following an
abrupt change of spatial attentional preference. It is to be noted that such a reset is
not observed when making abrupt movements in frequency.

In chapter 1, the development of an intelligent hearing aid was described as one of
the motivations for the model. Specifically, such a hearing aid would incorporate
attentional effects such as the unconscious overruling of conscious selection (such
as the startle reflex; see chapter 5) which would allow the wearer to become aware
of new, loud and potentially important sounds. This mechanism has been included
in our model such that sounds presented out of the attentional focus are still able to
influence the ALI and hence become attended to, provided they are sufficiently
loud.

The old-plus-new heuristic has been incorporated into the model and influences the
ability of the network to form harmonically related groups. If a segment is deemed
to be ‘older’ than other harmonically related segments, it is prevented from
becoming a member of that group. Previous ASA work has treated the old-plus-
new heuristic as being a ‘high level’ grouping principle similar to common fate or
harmonicity (see Bregman, 1990). However, we adopt an approach in which the
old-plus-new heuristic is embodied as a low level mechanism. Each channel in our
model has a leaky integrator associated with it which acts as an ‘age tracker’. The
leaky integrator only receives input when its associated channel is contributing to a
segment. Thus, the relative ages of concurrent segments can be assessed allowing
segments which are either too old or too young to be excluded from a particular
group.
148 Original contribution



Conclusions
In contrast to previous neural oscillator models of ASA (e.g. Wang, 1996; Wang
and Brown, 1999), the network presented here is one dimensional which removes
the necessity for an explicit time axis. In chapter 6, the problems associated with
two dimensional networks were discussed. Specifically, there is no physiological
evidence for large arrays of delay lines necessary to produce the time axis, and the
ability of such delay lines to maintain temporal accuracy over large distances is
uncertain. Furthermore, attempts to incorporate attention into such a network (e.g.
Wang, 1996) introduce unrealistic properties (see chapter 6). Our single
dimensional network processes the stimulus on a sample by sample basis and, in
turn, produces an estimate of the segments present and which of these are
contributing to the attentional stream at any epoch. Hence, the timecourse of
auditory organisation and attentional influence are implicit in the network output.

Many previous ASA systems exploit the redundancy found in the auditory nerve
response. For example, Brown (1992) identifies channels which are responding to
the same spectral dominance by performing a cross-correlation of their
autocorrelations. However, in order to identify noise segments, we also use channel
instantaneous frequencies (see Cooke, 1991/1993) of the gammatone filter. By
assessing the variance of the instantaneous frequency response over time, it is
possible to determine whether the channel is responding to a periodic or
nonperiodic stimulus. 

Section 7.5 presented a psychophysical study in which the time course of auditory
streaming was analysed. Although similar to that of Anstis and Saida (1985), the
experiment presented binaural stimuli as opposed to dichotic stimuli allowing
particular spatial locations to be simulated using interaural intensity differences.
This has extended the findings of Anstis and Saida (1985) by suggesting that an
attentional reset does occur, and that the degree of this reset is related to the
magnitude of the source movement in space.

8.3 Limitations of model

The model presented in this thesis is subject to a number of possible limitations
which are described in this section. A number of these are also discussed in the
future work section (section 8.4).

The peripheral processing stage of the model uses a bank of gammatone filters
which are linear. As discussed in chapter 6, auditory filters are known to exhibit
non-linearities such as cochlear echoes. However, the linear gammatone filter is a
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good first-order approximation since its magnitude characteristic exhibits a very
good fit to the roex(p) function commonly used to represent the magnitude
characteristic of the human auditory filter shapes (see Patterson and Moore, 1986).

Only the primitive grouping principles of harmonicity and the old-plus-new
heuristic are incorporated into the model. The model does not take into account
schema driven grouping. It would be possible to incorporate additional primitive
grouping principles by adding more analysis stages, the output of which would
influence the excitatory connections which are placed between segments to form
groups. It is also possible to incorporate schema influences on grouping using the
same temporal correlation framework implementation as employed in our model.
For example, the neural oscillator based vowel recognition model of Liu et al.
(1994) can be interpreted as a form of schema detector in which the identification of
a vowel is signalled by a particular pattern of synchronised oscillations. Such
synchronised oscillations could be used to reinforce primitive grouping decisions
and ensure a pattern of grouping consistent with the recognised sound. Similarly,
Wang and colleagues have used neural oscillators to store particular patterns in
associative memory (e.g. Wang et al., 1990; Wang and Liu, 2002). This memory
network is then able to influence the grouping and segmentation (including pattern
completion) of novel patterns represented in a LEGION network.

The neural oscillator network enforces the principle of exclusive allocation
(Bregman, 1990). This property was observed in chapter 7 when simulating the
effect of a mistuned harmonic on the pitch percept of a complex tone. Experimental
evidence suggests that the mistuned harmonic can contribute to more than one
group. Moore et al. (1986) found that for mistunings greater than 3%, the harmonic
tends to be heard as a pure tone standing out from the complex tone. However, that
harmonic still makes a contribution to the pitch of the complex (Moore et al.,
1985). 

The model processes the stimulus on a sample by sample basis with little regard for
previous activity. As a result, the segment estimates at each epoch do not explicitly
take into account previous segment estimates. The effect of this can be observed in
the model output in which some segments can be seen to step up and down in
frequency over a period of time.

In chapter 7, we demonstrated how the model can simulate the streaming of an
alternating tone sequence and its associated build-up timecourse. However, the
model does not incorporate a mechanism for the involuntary movement of attention
between the two streams as observed in some listeners. For example, Beauvois and
Meddis (1996) suggest that this phenomenon is due to the probabilistic nature of
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spike generation within the auditory system and as such they introduce a random
variation into the system. Beauvois and Meddis (1996) draw on this to produce a
‘random walk’ which determines which stream is in the foreground. It is difficult to
incorporate a similar mechanism into our model since we contend that streaming is
due to the allocation of endogenous attention which is, by definition, not stimulus
driven. We contend that top-down, albeit possibly unconscious, influences are
responsible for such spontaneous switches - an explanation acknowledged by
Beauvois and Meddis (1996) but not incorporated into their model. It is conceivable
that analysis is conducted on the attentionally selected stream and an alternative
stream becomes the foreground if novel characteristics are not encountered over a
certain time period.

Chapter 6 presented both monaural and binaural versions of the model. The
binaural model is made of two monaural systems which share the same global
inhibitor and attentional leaky integrator (ALI). This architecture is adequate for
simulating the perception of dichotic stimuli commonly used in psychophysical
experiments, especially those conducted over headphones (e.g. Darwin et al., 1995;
Carlyon et al., 2001). However, since the model does not incorporate a full model
of binaural processing, it cannot simulate the responses to ‘true’ binaural stimuli in
which the left ear and right ear signals are similar except for timing and level
differences. The model as it is presented here cannot represent a single acoustic
event which is present in both ears simultaneously as a single perceptual object.

8.4 Future work

Exclusive allocation

As we have seen previously, our model enforces the principle of ‘exclusive
allocation’ which prevents energy at a particular frequency from being allocated to
more than one percept. However, there are examples in which this principle does
not apply, ranging from the perception of mistuned harmonics (e.g. Moore et al.,
1985, 1986) to the perception of speech sounds (Rand, 1974; Liberman, 1982;
Mann and Liberman, 1983). Therefore, the model ought to be able to allow the joint
allocation of channels when necessary. 

Within the neural oscillator framework, Brown and Wang (1996) have proposed a
mechanism by which oscillators within a network can be associated with more than
one group. Their approach is to require that an oscillator be capable of jumping
back up into the active phase very quickly after having jumped down. To achieve
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this, Brown and Wang raise the oscillator’s cubic by a large amount such that it
intersects with the y-nullcline creating a stable fixed point (see figure 1). To explain
how this works, consider two oscillators O1 and O2 with mutual excitation. Assume
that O2 has just jumped down from the active phase and that O1 is just about to

jump up to the active phase. Since O2 is to also be associated with O1, O2 must be
able to jump back up more quickly than normal. O1 enters the active phase at a
relatively low position; due to the mutual excitation, O2 receives a large input

which raises its cubic to such a high position that it is able to jump up to the active
phase. Note that O2 has entered the active phase at a relatively high position. The
mutual excitation ensures that O1 now follows the trajectory of the higher cubic. As
O1 and O2 move toward the stable fixed point, their phase difference decreases and
they become synchronised. 

To prevent O1 and O2 from remaining at the stable fixed point, a second global

inhibitor, with a slower timescale, is introduced which lowers the cubics of O1 and
O2 to their original levels thus making them jump down to the silent phase
simultaneously. The slow inhibitor timescale is set such that the slow inhibitor is
activated when O1 and O2 approach the fixed point. Brown and Wang (1996)

successfully demonstrated how this technique can be used to model joint allocation
of frequency channels when modelling the segregation of double vowels (e.g.

Figure 1 Oscillator synchronisation with large phase variations. (a) Sycnchronisation is
jumping is achieved by mutual excitation between O1 and O2. The raised cubic
intersects with the sigmoid, creating a stable fixed point. (b) Synchronisation
in jumping down is achieved by slow inhibition. As O1 and O2 near the stable
fixed point, they jump down to the silent phase when the slow inhibitor is
activated. From Brown and Wang (1996) figure 7.
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Scheffers, 1983; Assmann and Summerfield, 1990). Hence, such an approach could
be employed in the model presented here to allow it to account for joint allocation.

Divided attention

The model we have presented demonstrates how selective attention influences the
stream formation and segregation process. However, it makes no attempt to
investigate the influence of divided attention on auditory perception.

In addition to studies concentrating on the role of single site attentional allocation
(see chapter 4), work has also been conducted in which there is uncertainty about
the frequency of the signal to be detected. Results from these types of experiments
are often compared to ideal listeners defined by assumptions regarding the nature
of the detecting mechanism (for example, parameters of a bank of bandpass filters).
A popular model to arise from this is based on the listener who monitors M
orthogonal bands (MOB), only one of which contains the target signal (Green and
Swets, 1966). Solutions from these models agree qualitatively with the observation
from human listeners that the signal level of the target must be increased for
detection as the number of monitored bands increases. However, Green (1960,
1961) had found that the predicted loss in sensitivity as M increased was in fact
larger than that seen in human listeners. He accounted for this by proposing that
there was an intrinsically high amount of uncertainty present in all conditions.
According to Schlauch and Hafter (1991) Green’s experiments were flawed: they
did not control for the possible cognitive influences on listening bands. A listening
band is defined as the band on whose output a listener decides whether or not a
signal has occurred. Green employed a traditional probe-signal method in which the

Figure 2 Schematic of three types of trials. (a) M=1 and an expected target. (b) M=2 and
an expected target. (c) M=4 and a probe signal. Probe signals are always 1.1
times one of cue frequencies. From Schlauch and Hafter (1991), figure 1
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cue signal was not presented on a trial-by-trial basis, forcing subjects to rely on
memory to monitor the appropriate frequency bands. The use of only two
frequencies to monitor also limited the fall in performance due to uncertainty. 

Schlauch and Hafter (1991) controlled for these factors by employing trial-by-trial
cuing of subjects (Greenberg and Larkin, 1968) and selecting the frequencies to be
monitored at random from a wide range of possibilities to avoid memory effects.
Finally, to increase the possible amount of performance loss due to uncertainty, the
number of bands to be monitored was doubled to four. Figure 2 shows a schematic
of their signals. As observed in single site expectancy experiments, detection
performance dropped for frequencies above and below the expected frequencies
(figure 3a). In addition to this data, Schlauch and Hafter also calculated the
psychometric function for each cued condition. It has been classically considered
that a threshold is that intensity above which a stimulus can be heard and below
which it can not. This is an oversimplification: if the intensity of a stimulus is
slowly increased from a low value, there is no well-defined point at which subjects
suddenly report the stimulus to be detectable. Instead, there is a range of intensities
over which the subject will sometimes declare the stimulus detectable and at other
times declare it undetectable. When the responses to a number of trials are plotted
with percent ‘detectable’ responses on the ordinate and signal magnitude on the
abscissa, a distinctive sigmoidal shape is produced. This plot is termed a
psychometric function. This allowed the performance in dB of probes relative to
expected targets to be inferred. Additionally, this allowed the hypothesis that the
slope of the psychometric function increases with M to be tested (Green and Swets,
1966).

(a) (b)

Figure 3 (a) Data from three subjects using one-, two- and four-tone complexes as a
cue. Abscissae represent ratio of signal to be detected to target frequency. (b)
Psychometric functions for the three subjects. Abscissae represent dB SPL
level of a 500Hz tone. From Schlauch and Hafter (1991).
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Figure 3b shows that the slope of the psychometric functions does indeed increase
as M increases which is consistent with evidence from Johnson and Hafter (1980)
reporting increased slopes as uncertainty increased. 

The performance in dB of probes relative to expected targets also produced
interesting results. The functions shown in figure 4 were provided by adjusting the
value of p in the ROEX(p) filter (Patterson and Moore, 1986). Patterson and Moore,
(1986) showed that the equivalent rectangular bandwidth (ERB) of a filter is (4/p)F
where F is the centre frequency. From this, it was found that the width of the filters
were 12%, 12.4% and 13.7% of the centre frequency for cases M=1, M=2 and M=4
respectively which are essentially the same as those obtained using notch-noise
masking (Moore and Glasberg, 1983).

In summary, Schlauch and Hafter (1991) show that there is a significant fall in
detection performance due to increasing M but that it was indeed possible to
monitor a number of harmonically unrelated frequency bands simultaneously. The
performance decrease as probes move out of these bands is consistent with the
hypothesis that attention is allocated to a number of discrete frequency regions but
that its effectiveness, or the ‘amount’ of attention available for each frequency
region, decreases as M increases. It would be interesting to investigate how the
division of attentional allocation influences the streaming process. Only then can a
model which encompasses both selective and divided attention be produced.

Binaural enhancements

As discussed in the previous section, the model cannot process binaural stimuli: it
can only simulate the perception of dichotic signals. The inclusion of a binaural
peripheral front end which would take into account interaural time and level
differences would provide useful information on the spatial location of particular
segments. Although the cue of spatial location is not believed to play a role in the

Figure 4 Average listening bands for one, two and four cues. Best fit lines are provided
by a ROEX(p) function. From Schlauch and Hafter (1991) figure 4.
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grouping process (Darwin and Hukin, 1999), it is vital in forming a representation
of the stimulus in which a single acoustic event, detected by both ears, is encoded as
a single event. The current model is unable to identify segments which appear in
both ears but represent the same acoustic event. 

With the inclusion of a binaural front end, the ability to allocate attention to a
particular spatial region would also be possible. A possible way in which the neural
oscillator network could be developed to incorporate this information is shown in
figure 5. The proposed network would be two-dimensional with frequency on one
axis and azimuth on the other. Note that this does not incur the unrealistic properties
associated with two-dimensional networks discussed in previous chapters since the
second dimension here is azimuth and not time: the network will still process the
stimulus on a sample-by-sample basis. Despite the requirement of time delays to
generate azimuth estimates, these would be much shorter than those required to
model an explicit time axis. Furthermore, there is evidence to support the existence
of such short delay lines for this task (e.g. Carr and Konishi, 1988).

The time course of attentional allocation in space remains unclear and is a topic
which ought to receive investigation. The Carlyon et al. (2001) study demonstrated
that attention is required for auditory streaming to occur. In their study, attention
was allocated spatially (albeit to a dichotic stimulus). Our approach to explain how
a buildup of attention is necessary, but does not transfer when attention is moved
from the distracting task to the alternating tones, is to employ a reset mechanism.
When the model detects a movement of spatial ‘interest’, the build up of attention is
reset. This assumption is also supported by the experimental findings of Anstis and
Saida (1985) in which the build up of the streaming percept did not transfer

Global
Inhibitor

Frequency

Azim
ut

h

Figure 5 Two dimensional binaural neural oscillator network. Each oscillator in the grid
represents a particular frequency-azimuth combination.
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between ears even when attention was always directed to the alternating tone
sequence. Once again, Anstis and Saida (1985) presented their stimuli over
headphones dichotically. Psychophysical data presented in the previous chapter
suggests that such a reset also occurs under binaural conditions. Furthermore, there
appears to be a degree of tolerance in which small changes in the perceived location
of the source have little or no effect on the time course of streaming. However, for
larger movements, a reset is observed and the magnitude of this reset may be
proportional to shift distance. It would be interesting to conduct a further
experiment to investigate how the streaming percept is affected by continuous,
smooth, changes in the sources apparent location. It is issues such as these that must
be investigated further before an accurate model of binaural attentional allocation
can be developed.

Computational efficiency

In many computational models of perceptual systems, the amount of processing
time required to produce a simulation is seen as one of the least important
implementation factors. However, one of the motivations behind this thesis is the
the production of an ‘intelligent’ hearing aid which can incorporate the attention
effects described previously. If this is the case, the implementation must be capable
of operating in real-time and with minimal processing lag. Unfortunately, our
binaural model falls short of this criterion: approximately forty minutes of
computation time is required for every second of acoustic input (2400 times real-
time). However, this may be improved since the model lends itself to a parallel
implementation. Every channel of the auditory front end can be processed
independently and each node in the network could be implemented on a separate
processor.

Grouping principles

Currently, the model only incorporates a small number of primitive grouping
principles. For example, active grouping by common onset is not strictly
implemented: the old-plus-new heuristic only actively segregates segments with
asynchronous onsets. Furthermore, the model does not have mechanism to use
common offset information. Another important grouping principle is that of
continuity: the model must have the ability to represent a frequency ‘trajectory’ in
order to track a potentially interrupted frequency glide. 

In addition to primitive grouping rules, the model would also benefit from the
inclusion of schema grouping principles and schema ‘detectors’ (see chapter 5). As
we have discussed earlier in this chapter, schema grouping principles can be
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incorporated within the existing neural oscillator framework relatively easily (e.g.
Wang et al., 1990; Liu et al., 1994; Wang and Liu, 2002) and would allow
commonly heard sounds to influence primitive grouping decisions such as in
pattern completion. Schema ‘detectors’ are important since the conscious allocation
of attention can be overridden by endogenous processing when a highly salient
piece of information, such as one’s name, is detected in one of the unattended
groups (e.g. Moray, 1959).

8.5 Conclusions

This chapter has summarised the work presented in this thesis and has also
identified a number of possible limitations of the model. The previous section has
presented some directions for future work which would improve the explanatory
power of the model. 

Arguably the two most important areas for future work are investigation into the
timecourse of binaural attentional allocation and the incorporation of schema-based
influences at the endogenous processing stage. In the introduction to this thesis, we
described how the importance of attention in analysing the auditory scene has been
known for some time (e.g. Cherry, 1953; Spieth et al., 1954). However, we also
noted that it is only recently that psychophysical experiments have begun to look at
how attention really influences our ability to perform ASA. Future research must
continue to investigate the importance of attention in ASA if we hope to produce
devices which attempt to mimic the human perception of sound.
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Appendix A. Computational Model 
Parameters
Parameter Description Typical Value

n Gammatone filter order 4

s Size of the difference of gaussians (DOG) kernel 5

w DOG weighting 0.8

σ Size of the gaussian kernel in the DOG function 2

τmax Maximum autocorrelation lag 20 ms

P Autocorrelation window size 25 ms

N Number of channels in the correlogram 128

K Steepness of the sigmoid in the squash function 50

ε Oscillator parameter 0.4

γ Oscillator parameter 6.0

β Oscillator parameter 0.1

Ilow ‘Off’ oscillator input -5.0

Ihigh ‘On’ oscillator input 0.2

Wz Global inhibitor weighting 0.7

Wik Weight between oscillators i and k -

- Internode excitatory weight within segments 1.0

- Internode excitatory weight between segments 5.0

θs Segment membership threshold 0.3

θt Segment tonal threshold 0.7

θn Segment noise threshold 0.2

θx Oscillator activity influence (squash) factor -0.5

θz Global inhibitor activity influence (squash) factor 0.1
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Computational Model Parameters
θclip Normalised centre clipping value 0.3

θc Energy : autocorrelation value threshold 0.65

cB Age tracker parameter (decay) 5

dB Age tracker parameter (rise) 0.001

gB Age tracker parameter (gain) 3

θa Age tracker threshold 0.1

θα Normalising factor for instantaneous envelope 3

cL Attentional leaky integrator parameter (decay) 1

dL Age tracker parameter (rise) 0.0005

gL Age tracker parameter (gain) 3

θALI Threshold above which oscillator array can 
influence ALI

0.2

σALI Width of the attentional interest peak 6

maxAk Maximum value of the attentional interest vector 1

minAk Minimum value of the attentional interest vector 0.05

Parameter Description Typical Value
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Appendix B.Psychophysical Experiment 
Subject Responses
B.1 Introduction

In section 7.5, we presented a psychophysical experiment in which the effect of
source movement on the time course of auditory streaming was investigated. It was
hypothesised that a movement of the source, and hence a movement of the
attentional focus, would result in an ‘reset’ of the attentional buildup responsible for
the streaming percept. This source movement was simulated by applying an
interaural intensity difference to the binaural signal. In order to determine if a
minimum movement was required to illicit a reset response, a range of movement
distances were simulated. 5 subjects participated in the study and each was
presented with 48 stimuli (6 intensity differences x 8 repetitions). The results shown
in chapter 7 figure 18 were produced by averaging the responses to each intensity
difference across subjects. In this appendix, the average of each subject’s responses
to each intensity difference is presented and error bars indicating ± 1 standard error
are displayed at one second intervals. Finally, the same diagrams as shown in
chapter 7 figure 18 are presented but with the addition of error bars indicating ± 1
standard error.
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Psychophysical Experiment Subject Responses
B.2 Subject GB
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Psychophysical Experiment Subject Responses
B.3 Subject JE
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Psychophysical Experiment Subject Responses
B.4 Subject SC
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Psychophysical Experiment Subject Responses
B.5 Subject SM

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

ba
bi

lit
y 

of
 s

tr
ea

m
in

g

Time (s)

Level difference: ± 16 dB

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 s

tr
ea

m
in

g

Time (s)

Level difference: ± 8 dB

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
P

ro
ba

bi
lit

y 
of

 s
tr

ea
m

in
g

Time (s)

Level difference: ± 4 dB

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 s

tr
ea

m
in

g

Time (s)

Level difference: ± 2 dB

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 s

tr
ea

m
in

g

Time (s)

Level difference: ± 1 dB

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 s

tr
ea

m
in

g

Time (s)

Level difference: ± 0 dB
Subject SM 191



Psychophysical Experiment Subject Responses
B.6 Subject ST
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Psychophysical Experiment Subject Responses
B.7 All subjects
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