
The state of
semantic
technology today –
Overview of the
First SEALS
Evaluation
Campaigns

Raúl García-Castro, Mikalai Yatskevich,
Cássia Trojahn dos Santos, Stuart N.
Wrigley, Liliana Cabral, Lyndon Nixon and
Ondřej Šváb-Zamazal

April 2011

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Document Information

IST Project
Number

FP7 – 238975 Acronym SEALS

Full Title Semantic Evaluation at Large Scale
Project URL http://www.seals-project.eu/

Authors

Raúl Garćıa-Castro (Universidad Politécnica de Madrid), Mikalai Yatske-
vich (University of Oxford), Cássia Trojahn dos Santos (INRIA), Stu-
art N. Wrigley (University of Sheffield), Liliana Cabral (Open University),
Lyndon Nixon (STI) and Ondřej Šváb-Zamazal (University of Economics,
Prague, Czech Republic)

Contact Author

Name Raúl Garćıa-Castro E-mail rgarcia@fi.upm.es
Inst. Universidad

Politécnica de
Madrid

Phone +34 91 336 3670

Abstract

This report describes the first five SEALS Evaluation Campaigns over
the semantic technologies covered by the SEALS project (ontology en-
gineering tools, ontology reasoning systems, ontology matching tools,
semantic search tools, and semantic web service tools). It presents the
evaluations and test data used in these campaigns and the tools that
participated in them along with a comparative analysis of their results.
It also presents some lessons learnt after the execution of the evaluation
campaigns and draws some final conclusions.

Keywords
semantic technology, evaluation, evaluation campaign, ontology engineer-
ing, reasoning, ontology matching, semantic search, semantic web service

2 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Table of Contents

List of figures 6

List of tables 7

1 Introduction 8

2 Overview of the SEALS Evaluation Campaigns 9
2.1 Technologies covered in the evaluation campaigns 9
2.2 The SEALS evaluation campaign process 9
2.3 Overview of the SEALS Platform . 11

3 Ontology engineering tools evaluation campaign 13
3.1 Previous Evaluations . 13
3.2 Evaluation Scenarios . 14

3.2.1 Evaluating Conformance . 14
3.2.2 Evaluating Interoperability . 15
3.2.3 Evaluating Scalability . 15

3.3 Test Data . 16
3.3.1 Conformance and Interoperability 16
3.3.2 Scalability . 17

3.4 Tools Evaluated . 18
3.5 Evaluation Results . 19

3.5.1 Conformance . 19
3.5.2 Interoperability . 21
3.5.3 Scalability . 22

3.6 Lessons Learnt . 22

4 Storage and reasoning systems evaluation campaign 24
4.1 Previous evaluations . 24
4.2 Evaluation scenarios . 25

4.2.1 Evaluation Criteria . 25
4.2.2 Evaluation Metrics . 26
4.2.3 Evaluation Process . 26

4.3 Testing data . 28
4.4 Tools evaluated . 29
4.5 Evaluation results . 30

4.5.1 Classification . 30
4.5.2 Class satisfiability . 30
4.5.3 Ontology satisfiability . 31
4.5.4 Entailment . 31

4.6 Lessons learnt . 32
4.6.1 Classification . 32
4.6.2 Class satisfiability . 32
4.6.3 Ontology satisfiability . 32

3 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

4.6.4 Entailment . 32

5 Ontology matching tools evaluation campaign 34
5.1 Previous evaluations . 34
5.2 Data sets and evaluation criteria . 35

5.2.1 OAEI data sets . 35
5.2.2 Evaluation criteria and metrics 35

5.3 Evaluation process . 36
5.4 Participants . 37
5.5 Evaluation results . 38

5.5.1 Benchmark results . 38
5.5.2 Anatomy results . 40
5.5.3 Conference results . 43

5.6 Lessons learnt . 45

6 Semantic search tools evaluation campaign 48
6.1 Introduction . 48
6.2 Evaluation design . 49

6.2.1 Two-phase approach . 49
6.2.2 Criteria . 49
6.2.3 Metrics and Analyses . 50
6.2.4 Questionnaires . 51

6.3 Datasets and Questions . 51
6.4 Participants . 52
6.5 Results . 53

6.5.1 Automated Phase . 53
6.5.2 User-in-the-Loop Phase . 54

6.6 Usability Feedback and Analysis . 55
6.6.1 Input Style . 55
6.6.2 Processing feedback . 56
6.6.3 Results Presentation . 56

7 Semantic web service tools evaluation campaign 58
7.1 Introduction . 58
7.2 Previous Evaluations . 59
7.3 Evaluation Design . 60
7.4 Evaluation Scenario . 61

7.4.1 The SWS Plugin . 62
7.4.2 Implemented Measures . 62

7.5 Test Data . 63
7.6 Tools Evaluated . 65

7.6.1 Tool Parameter Settings . 65
7.7 Evaluation Results . 66
7.8 Lessons Learnt . 68

8 Conclusions 70

4 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

References 71

5 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

List of Figures

2.1 Categories covered in the Semantic Web Framework. 9
2.2 The evaluation campaign process. 10
2.3 Architecture of the SEALS Platform. 12

5.1 Precision/recall graphs for benchmarks. 41
5.2 F-measures depending on confidence. 44

6.1 Summary of the semantic search evaluation feedback. 55

6 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

List of Tables

3.1 List of tools evaluated. 18

4.1 DLBS interface methods . 27
4.2 Meta-data of the most important ontologies from the dataset 29
4.3 Classification evaluation results . 30
4.4 Class satisfiability evaluation results . 31
4.5 Ontology satisfiability evaluation results 31
4.6 Entailment evaluation results . 31
4.7 Non entailment evaluation results . 32

5.1 Participants and the state of their submissions. 38
5.2 Results obtained by participants on the benchmark test case. 39
5.3 Results for subtasks #1, #2 and #3 in terms of precision, F-measure,

and recall (in addition recall+ for #1 and #3). 42
5.4 Changes in precision, F-measure and recall based on comparing A1∪Rp

and A4 against reference alignment R. 43
5.5 Confidence threshold, precision and recall for optimal F-measure for

each matcher. 44
5.6 Degree of incoherence and size of alignment in average for the optimal

a posteriori threshold. 45

6.1 Tools which participated in the semantic search evaluation campaign. . 52
6.2 Semantic search tool performances on the automated scenario. 53
6.3 Semantic search tool performance on the user-in-the-loop scenario. . . . 54

7.1 Description of Metrics as implemented by Galago (reproduced for con-
venience). 64

7.2 Evaluation campaign participating tools. 66
7.3 Goals (service requests) in evaluation. 66
7.4 Comparative tool performance on the OWLS-TC4 dataset. 67

7 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

1. Introduction

The role of the SEALS initiative is two-fold: to create a lasting infrastructure for
evaluating semantic technologies and to organise and execute two series of international
evaluation campaigns over the different types of semantic technologies covered in the
project.

Over the past 18 months, the SEALS consortium has designed and implemented
a general methodology for carrying out evaluation campaigns; within this framework,
the consortium has created the infrastructure for organising five international evalu-
ation campaigns focussed on ontology engineering tools, ontology reasoning systems,
ontology matching tools, semantic search tools and, finally, semantic web services.
Each of these five evaluation campaigns was conducted during the Summer of 2010.

This report provides a summary of these first five SEALS Evaluation Campaigns;
further details about the evaluation campaigns and its results can be found in the
SEALS public deliverables1 devoted to each of the campaigns.

The chapters about the different evaluation campaigns are similarly structured,
covering previous evaluations related to the evaluation campaign, an overview of the
evaluation scenarios defined for the evaluation campaign and of the test data used
in them, the tools that have participated in the evaluation campaign, the results for
these tools in the different evaluation scenarios, and the main lessons learnt during
the evaluation campaign.

The report is structured as follows. Chapter 2 gives an overview of the common
process followed in the SEALS Evaluation Campaigns and of how these campaigns were
organised. Chapters 3, 4, 5, 6, and 7 each describes one of the evaluation campaigns
over ontology engineering tools, ontology reasoning systems, ontology matching tools,
semantic search tools, and semantic web service tools, respectively. Finally, chapter 8
draws some final conclusions for this report.

1http://about.seals-project.eu/deliverables

8 of 76

http://about.seals-project.eu/deliverables

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

2. Overview of the SEALS Evaluation Campaigns

2.1 Technologies covered in the evaluation campaigns

As mentioned in the introduction, in the SEALS Evaluation Campaigns we dealt
with five different types of semantic technologies: ontology engineering tools, ontology
reasoning systems, ontology matching tools, semantic search tools, and semantic web
services.

Figure 2.1 shows how these evaluation campaigns map the functionality-based cat-
egorization of the Semantic Web Framework [29]. We can see that in this first set
of evaluation campaigns we fully cover the “Querying and Reasoning” dimension and
partially cover the “Ontology Engineering” and “Semantic Web Services” ones.

Data
repository

Ontology
learner

Alignment
repository

Ontology
discovery and

ranking

Ontology
evaluator

Ontology
editor

Ontology
browser

Ontology
adaptation
operators

ONTOLOGY
ENGINEERING

ONTOLOGY
CUSTOMIZATION

SEMANTIC
 WEB

SERVICES

Manual
annotation

Ontology
populator

Query
answering

Instance
editor

ONTOLOGY
INSTANCE

GENERATION

QUERYING
AND

REASONING

ONTOLOGY
EVOLUTION

Ontology view
customization

Ontology
localization
and profiling

Ontology
matcher

Semantic
query

processor

Semantic
query
editor

Ontology
repository

Information
directory
manager

Automatic
annotation

Metadata
registry

Web Service
discoverer

Web Service
selector

Web Service
composer

Web Service
choreography

engine

Web Service
process
mediator

Web Service
grounding

Web Service
profiling

DATA & METADATA
MANAGEMENT

Ontology
versioner

Ontology
evolution
manager

Ontology
evolution
visualizer

Web Service
registry

Figure 2.1: Categories covered in the Semantic Web Framework.

2.2 The SEALS evaluation campaign process

In the SEALS project, a common methodology and process for organizing an exe-
cuting evaluation campaigns was defined, based in an analysis of previous evaluation
campaigns in different domains [27].

The tasks of the evaluation campaign process are carried out by different actors:
one Organizing Committee is in charge of the general organization and monitoring of all
the evaluation campaigns, each evaluation campaign will have an Executing Committee
in charge of organizing the evaluation scenarios that are performed in the evaluation
campaign and of taking them to a successful end, and each evaluation campaign will
have a number of participants, tool providers or people with the permission of tool
providers, that participate with a tool in the evaluation campaign.

9 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Since the evaluation campaign process must be general to accommodate different
types of evaluation campaigns, it only suggests a set of general tasks to follow, not
imposing any restrictions or specific details in purpose. Some tasks have alternative
paths that can be followed; in these cases, all the possibilities are presented so the
people carrying out the task can decide which path to follow. Moreover, the description
of the tasks is completed with a set of recommendations extracted from the analysis
of other evaluation campaigns.

INITIATION	
 INVOLVEMENT	

PREPARATION	
 AND	
 EXECUTION	
 DISSEMINATION	

Figure 2.2: The evaluation campaign process.

The evaluation campaign process is composed of four main phases (shown in Fig-
ure 2.2). The main goals of these phases are the following:

• Initiation phase. It comprises the set of tasks where the different people in-
volved in the organization of the evaluation campaign and the evaluation sce-
narios are identified and where the different evaluation scenarios are defined.

• Involvement phase. It comprises the set of tasks in which the evaluation
campaign is announced and participants show their interest in participating by
registering for the evaluation campaign.

• Preparation and Execution phase. It comprises the set of tasks that must
be performed to insert the participating tools into the evaluation infrastructure
and to execute each of the evaluation scenarios and analyse their results.

• Dissemination phase. It comprises the set of tasks that must be performed
to disseminate the evaluation campaign results by publicly presenting them and
to make all the evaluation campaign result and resources available.

The activities performed in the SEALS evaluation campaigns in each of these four
phases (and in the tasks that constitute them) are next described.

Initiation. During this phase, an initial effort was performed to initiate and coor-
dinate all the evaluation campaigns.

To this end, first, the organizers of the evaluation campaigns were identified. In
SEALS there is one committee in charge of the general organization and monitoring
of all the evaluation campaigns and there have been different committees in charge of
organizing the evaluation scenarios of each evaluation campaign and of taking them
to a successful end.

Then, the different evaluation scenarios to be executed in each evaluation campaign
were discussed and defined. This involved describing the evaluation to be performed
over the tools and the test data to be used in it.

10 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Involvement. In order to involve participants in the evaluation campaigns, the cam-
paigns were announced using different mechanisms: the project dissemination mecha-
nisms (e.g., portal, blog), relevant mailing lists in the community, leaflets and presen-
tations in conferences and workshops, etc.

Participant registration mechanisms were prepared in the SEALS Community por-
tal to allow potential participants to indicate their interest in the evaluation campaigns.
Even if not every material to be used in the evaluation scenarios was ready by that
time, this allowed involving participants early in the campaign.

Preparation and execution. In this phase, the organizers of each evaluation cam-
paign provided to the registered participants with all the evaluation materials needed
in the evaluation (e.g., descriptions of the evaluation scenarios and test data, instruc-
tions on how to participate, etc.). These materials were made available through the
SEALS Community Portal.

In the SEALS project we have developed the SEALS Platform to support the
execution of evaluations by providing different services to manage test data, execute
evaluations, manage evaluation results, and so on.

Participants connected their tools with the SEALS Platform and, in the case of
some relevant tools, members of the SEALS project connected these relevant tools.

Once all the participating tools were connected to the SEALS Platform, the dif-
ferent evaluation scenarios were executed with the corresponding test data and tools.
The results obtained were stored in the platform and later analysed; in most of the
cases, result visualisation services were developed to facilitate this analysis.

Dissemination. The results of all the evaluation campaigns were published in pub-
lic SEALS deliverables and disseminated jointly in the International Workshop on
Evaluation of Semantic Technologies1 and separately in other events. Also, this report
has been produced to provide an overview of the five evaluation campaigns and their
results.

Finally, all the evaluation resources used in the evaluations have been made publicly
available through the SEALS Platform.

2.3 Overview of the SEALS Platform

The SEALS Platform offers independent computational and data resources for the
evaluation of semantic technologies and, as mentioned in the previous section, we used
the first versions of the evaluation services developed for the platform to execute the
evaluation scenarios of each evaluation campaign.

The SEALS Platform follows a service-oriented approach to store and process se-
mantic technology evaluation resources. Its architecture comprises a number of com-
ponents, shown in Figure 2.3, each of which are described below.

• SEALS Portal. The SEALS Portal provides a web user interface for interacting
with the SEALS Platform. Thus, the portal will be used by the users for the

1http://oeg-lia3.dia.fi.upm.es/iwest2010/

11 of 76

http://oeg-lia3.dia.fi.upm.es/iwest2010/

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

SEALS	
 	

Service	
 Manager	

Run1me	

Evalua1on	

Service	

SEALS	
 Portal	

Test	
 Data	
 	

Repository	

Service	

Tools	
 	

Repository	

Service	

Results	
 	

Repository	

Service	

Evalua1on	

Descrip1ons	

Repository	
 Service	

Technology
Providers

Evaluation Organisers

Technology
Adopters

Software agents,
i.e., technology evaluators SEALS Repositories

Entity
management

requests

Evaluation
requests

Figure 2.3: Architecture of the SEALS Platform.

management of the entities in the SEALS Platform , as well as for requesting the
execution of evaluations. The portal will leverage the SEALS Service Manager
for carrying out the users’ requests.

• SEALS Service Manager. The SEALS Service Manager is the core module of
the platform and is responsible for coordinating the other platform components
and for maintaining consistency within the platform. This component exposes a
series of services that provide programmatic interfaces for the SEALS Platform.
Thus, apart from the SEALS Portal, the services offered may be also used by
third party software agents.

• SEALS Repositories. These repositories manage the entities used in the plat-
form (i.e., test data, tools, evaluation descriptions, and results).

• Runtime Evaluation Service. The Runtime Evaluation Service is used to
automatically evaluate a certain tool according to a particular evaluation de-
scription and using some specific test data.

12 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

3. Ontology engineering tools evaluation campaign

The SEALS Evaluation Campaign for Ontology Engineering Tools
included three scenarios to evaluate the conformance, interoperability
and scalability of these tools. In the conformance and interoperability
scenarios we aimed to fully cover the RDF(S) and OWL specifications;

in the scalability scenario we evaluated tools using both real-world
ontologies and synthetic test data.

3.1 Previous Evaluations

The first characteristic that we have covered in the evaluation campaign is confor-
mance. Previously, conformance has only been measured in qualitative evaluations
that were based on tool specifications or documentation, but not on running the tools
and obtaining results about their real behaviour (e.g., the evaluation performed in the
OntoWeb project [52] or the one performed by Lambrix and colleagues [41]).

Besides, some previous evaluations provided some information about the confor-
mance of the tools since such conformance affected the evaluation results. This is the
case of the EON 2002 ontology modelling experiment [1], the EON 2003 interoperabil-
ity experiment [59], or the evaluations performed in the RDF(S) [24] and OWL [25]
Interoperability Benchmarking activities.

However, currently the real conformance of existing tools is unknown since such
conformance has not been evaluated. Therefore, we will evaluate the conformance of
ontology engineering tools and we will cover the RDF(S) and OWL recommendations.

A second characteristic that we have covered, highly related to conformance, is in-
teroperability. Previously, an interoperability experiment was proposed in the EON
2003 workshop [59] where participants were asked to export and import to an interme-
diate language to assess the amount of knowledge lost during these transformations.

Later, the RDF(S) [24] and OWL [25] Interoperability Benchmarking activities in-
volved the evaluation of the interoperability of different types of semantic technologies
using RDF(S) and OWL as interchange languages and provided a set of common test
data, evaluation procedures and software to support these evaluations.

In this evaluation campaign we have extended these evaluations with test data for
OWL DL and OWL Full to fully cover the RDF(S) and OWL specifications.

Scalability is a main concern for any semantic technology, including ontology
engineering tools. Nevertheless, only one effort was previously performed for evaluating
the scalability of this kind of tools (i.e., the WebODE Performance Benchmark Suite1

[23]) and it was specific to a single tool.
In scalability evaluations, the generation of test data is a key issue. The WebODE

Performance Benchmark Suite includes a test data generator that generates synthetic
ontologies in the WebODE knowledge model according to a set of load factors and these
ontologies can be later exported to several languages (RDF(S), OIL, DAML+OIL,

1http://knowledgeweb.semanticweb.org/wpbs/

13 of 76

http://knowledgeweb.semanticweb.org/wpbs/

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

OWL, etc.). Also, one of the most common test data generators used when evaluating
ontology management frameworks is the Lehigh University Benchmark (LUBM)[32].

On the other hand, other evaluations use real ontologies as test data (e.g., subsets
of ARTstor art metadata and the MIT OpenCourseWare metadata were used in the
scalability evaluation performed in the SIMILE project [43].

In this first evaluation campaign we have established the grounds for the automatic
evaluation of the scalability of ontology engineering tools, using both real ontologies
and generated data, with the aim of proposing an extensible approach to be further
extended in the future.

3.2 Evaluation Scenarios

The next sections describe three scenarios to evaluate the conformance, interoperability
and scalability of ontology engineering tools.

The approach followed in them has been motivated by the need of having an
automatic and uniform way of accessing most tools and, therefore, the way chosen
to automatically access the tools is through the following two operations commonly
supported by most of the tools: to import an ontology from a file, and to export an
ontology to a file.

These two operations are viewed as an atomic operation. Therefore, there is not
a common way of checking how good importers and exporters are; we just have the
results of combining the import and export operation (the file exported by the tools).
This causes that if a problem arises in one of these steps, we cannot know whether it
was originated when the ontology was being imported or exported because we do not
know the state of the ontology inside each tool.

3.2.1 Evaluating Conformance

The conformance evaluation has the goal of evaluating the conformance of semantic
technologies with regards to ontology representation languages, that is, to evaluate up
to what extent semantic technologies adhere to the specification of ontology represen-
tation languages.

During the evaluation, a common group of tests is executed in two steps. Starting
with a file containing an ontology, the execution consists in importing the file with the
ontology into the origin tool and then exporting the ontology to another file.

After a test execution, we have two ontologies in the ontology representation lan-
guage, namely, the original ontology and the final ontology exported by the tool. By
comparing these ontologies we can know up to what extent the tool conforms to the
ontology language.

From the evaluation results, the following three metrics for a test execution can be
defined:

• Execution (OK /FAIL/P.E.) informs of the correct test execution. Its value
is OK if the test is carried out with no execution problem; FAIL if the test
is carried out with some execution problem; and P.E. (Platform Error) if the
evaluation infrastructure launches an exception when executing the test.

14 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

• Information added or lost shows the information added to or lost from the
ontology in terms of triples. We can know the triples added or lost by comparing
the original ontology with the final one; then we can store these triples in some
human-friendly syntax (e.g., N32).

• Conformance (SAME/DIFFERENT /NO) explains whether the ontology has
been processed correctly with no addition or loss of information. From the
previous basic metrics, we can define Conformance as a derived metric that is
SAME if Execution is OK and Information added and Information lost are void;
DIFFERENT if Execution is OK but Information added or Information lost are
not void; and NO if Execution is FAIL or P.E..

3.2.2 Evaluating Interoperability

The interoperability evaluation has the goal of evaluating the interoperability of se-
mantic technologies in terms of the ability that such technologies have to interchange
ontologies and use them.

In concrete terms, the evaluation takes into account the case of interoperability
using an interchange language, that is, when an ontology is interchanged by storing it
in a shared resource (e.g., a fileserver, a web server, or an ontology repository) and is
formalised using a certain ontology language.

During the evaluation, a common group of tests is executed in two sequential steps.
Let start with a file containing an ontology. The first step consists in importing the
file with the ontology into the origin tool and then exporting the ontology to a file.
The second step consists in importing the file with the ontology exported by the origin
tool into the destination tool and then exporting the ontology to another file.

After a test execution, we have three ontologies in the ontology representation
language, namely, the original ontology, the intermediate ontology exported by the first
tool, and the final ontology exported by the second tool. By comparing these ontologies
we can know up to what extent the tools are interoperable. For each of the two steps
and for the whole interchange we have metrics similar to those presented above for
evaluating conformance. Therefore, we can use the Execution and Information added
and lost metrics as well as an Interoperability one, which explains whether the ontology
has been interchanged correctly with no addition or loss of information.

3.2.3 Evaluating Scalability

The scalability evaluation has the goal of evaluating the scalability of ontology engi-
neering tools in terms of time efficiency. More concretely to our case, the scalability
evaluation is concerned with evaluating the ability of ontology engineering tools to
handle large ontologies.

The scalability evaluation scenario is similar to the conformance one. During the
evaluation, a common group of tests is executed and each test describes one input
ontology that has to be imported by the tool and then exported to another file. In the

2http://www.w3.org/TeamSubmission/n3/

15 of 76

http://www.w3.org/TeamSubmission/n3/

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

evaluation we measure the time (in milliseconds) before the import/export operation
is executed and the time after the import/export operation is executed.

After a test execution, we have as result:

• Execution informs of the correct test execution, as in the previous scenarios.

• Import/export duration contains the duration of the import/export opera-
tion in milliseconds.

3.3 Test Data

3.3.1 Conformance and Interoperability

This section presents the test data that has been used for the conformance and inter-
operability evaluations.

In the first evaluation campaign, the conformance and interoperability evaluations
have covered the RDF(S) and OWL specifications. To this end, we will use four dif-
ferent test suites that contain synthetic ontologies with simple combinations of com-
ponents of the RDF(S), OWL Lite, OWL DL, and OWL Full knowledge models.

These test suites are based in the following assumptions: (1) To have a small
number of tests since, even if the execution of the tests is automatic, a large number
of tests leads to an increment in the time required for analysing the results. (2) To
use the RDF/XML syntax3 for serialising ontologies since this syntax is the most used
by Semantic Web tools for importing and exporting ontologies. (3) To define correct
ontologies only. The ontologies defined in the tests do not contain syntactic or semantic
errors. (4) To define simple ontologies only. This will allow detecting problems easily
in the tools.

Any group of ontologies could have been used as input for the evaluations. For
example, we could have employed a group of real ontologies in a certain domain, on-
tologies synthetically generated such as the Leigh University Benchmark (LUBM) [32]
or the University Ontology Benchmark (UOBM) [46], or the OWL Test Cases4 (devel-
oped by the W3C Web Ontology Working Group). Although these ontologies could
complement our experiments, we aim at using simple ontologies that, even though they
do not cover exhaustively the language specifications, are simple and allow isolating
problem causes and highlighting problems in the tools. Besides, using real, large, or
complex ontologies can be useless if we do not know whether the tools can deal with
simple ontologies correctly.

The RDF(S) and OWL Lite Import Test Suites already exist (they were named
the RDF(S) Import Benchmark Suite5 and the OWL Lite Import Benchmark Suite6,
respectively) and detailed descriptions of them can be found in [22]. The OWL DL

3http://www.w3.org/TR/rdf-syntax-grammar/
4http://www.w3.org/TR/owl-test/
5http://knowledgeweb.semanticweb.org/benchmarking_interoperability/rdfs/rdfs_

import_benchmark_suite.html
6http://knowledgeweb.semanticweb.org/benchmarking_interoperability/owl/import.

html

16 of 76

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/owl-test/
http://knowledgeweb.semanticweb.org/benchmarking_interoperability/rdfs/rdfs_import_benchmark_suite.html
http://knowledgeweb.semanticweb.org/benchmarking_interoperability/rdfs/rdfs_import_benchmark_suite.html
http://knowledgeweb.semanticweb.org/benchmarking_interoperability/owl/import.html
http://knowledgeweb.semanticweb.org/benchmarking_interoperability/owl/import.html

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

and OWL Full Import Test Suites have been developed in the context of the SEALS
project and are described in [28]. Next, we provide a brief description of them.

The OWL DL Import Test Suite contains OWL DL ontologies that have been
generated following a keyword-driven test suite generation process implemented by the
OWLDLGenerator tool7.

The OWLDLGenerator tool uses a Keyword Library that contains the definition
of all the keywords that can be used to define conformance tests. In our case, these
keywords define combinations of ontology components that can be composed to build
the ontology that will be used in the test and have been extracted from the OWL
abstract syntax grammar [53], which defines the production rules that can be used to
generate OWL DL ontologies.

We defined 561 tests to cover all the simple combinations of components of the
OWL DL knowledge model that can be extracted from the abstract syntax grammar
and classified them in groups according to the combinations of components they cover
(e.g., class descriptions, property descriptions, etc.). The script used to generate the
OWL DL Import Test Suite can be found online8.

The OWL Full Import Test Suite is complementary to both the RDF(S) Import
Test Suite and the OWL DL Import Test Suite. On the one hand, the test suite
provides ontologies that are syntactically valid in OWL Full but generally invalid in
OWL DL. On the other hand, the test suite makes specific use of OWL vocabulary
terms and therefore goes beyond the typical content of RDF(S) ontologies.

A basic design principle when defining this test suite was to focus on distinctive
syntactic features of OWL Full, that is, features that are outside the syntactic speci-
fication of OWL DL and that will typically not be found in RDF(S) ontologies.

For each of the defined features, one ontology has been developed and can be
seen as an “representative” for the feature. Finally, the set of these 90 representative
ontologies builds the OWL Full Import Test Suite.

3.3.2 Scalability

For the scalability evaluations, two test suites were defined. The first one is based on
existing real-world ontologies and the second one has been generated using the LUBM
ontology generator.

The Real-World Ontologies Scalability Test Suite includes real-world ontologies in
OWL DL that have been identified in [26] as being relevant for scalability evaluation.
We have selected 20 ontologies of various sizes (up to 37.7 Mb): AEO9, the NCI

7http://knowledgeweb.semanticweb.org/benchmarking_interoperability/

OWLDLGenerator/
8http://knowledgeweb.semanticweb.org/benchmarking_interoperability/

OWLDLGenerator/OWLDLTSScript.csv
9http:/www.boemie.org/ontologies

17 of 76

http://knowledgeweb.semanticweb.org/benchmarking_interoperability/OWLDLGenerator/
http://knowledgeweb.semanticweb.org/benchmarking_interoperability/OWLDLGenerator/
http://knowledgeweb.semanticweb.org/benchmarking_interoperability/OWLDLGenerator/OWLDLTSScript.csv
http://knowledgeweb.semanticweb.org/benchmarking_interoperability/OWLDLGenerator/OWLDLTSScript.csv
http:/www.boemie.org/ontologies

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Thesaurus10, GALEN11, the Foundational Model of Anatomy Ontology12 (FMA), the
OBO Foundry13, Robert’s family ontology, and the wine and food ontologies14.

The LUBM Generator Scalability Test Suite contains ontologies generated using
the Lehigh University Benchmark (LUBM) data generator [32]. Five ontologies with
the correspondence instances based on UBA 1.7 were generated. The number of uni-
versities, which is the minimum unit of data generation, is increasing with each test
in order to find out how the tool scales with the linearly growing data. Therefore the
size of the generated ontologies varies from 8 Mb up to 50 Mb.

3.4 Tools Evaluated

In the first evaluation campaign over ontology engineering tools we have evaluated
six different tools: three ontology management frameworks (Jena15, the OWL API16,
and Sesame17) and three ontology editors (the NeOn Toolkit18, Protégé OWL19, and
Protégé version 419).

Sometimes tools use ontology management frameworks for processing ontologies,
which has an effect in their conformance and interoperability. Table 3.1 shows the
tools evaluated and the ontology management frameworks (i.e., APIs) that they use,
including in both cases their version numbers.

Table 3.1: List of tools evaluated.
Ontology management frameworks
Tool Version
Jena 2.6.3
OWL API 3.1.0 1592
Sesame 2.3.1
Ontology editors
Tool Version API API version
NeOn Toolkit 2.3.2 OWL API 3.0.0 1310
Protégé 4 4.1 beta 209 OWL API 3.1.0 1602
Protégé OWL 3.4.4 build 579 Protégé OWL API 3.4.4 build 579

10http://www.mindswap.org/papers/WebSemantics-NCI.pdf
11http://www.opengalen.org/index.html
12http://sig.biostr.washington.edu/projects/fm/AboutFM.html
13http://obofoundry.org
14http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine
15http://jena.sourceforge.net/
16http://owlapi.sourceforge.net/
17http://www.openrdf.org/
18http://neon-toolkit.org/
19http://protege.stanford.edu/

18 of 76

http://www.mindswap.org/papers/WebSemantics-NCI.pdf
http://www.opengalen.org/index.html
http://sig.biostr.washington.edu/projects/fm/AboutFM.html
http://obofoundry.org
http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine
http://jena.sourceforge.net/
http://owlapi.sourceforge.net/
http://www.openrdf.org/
http://neon-toolkit.org/
http://protege.stanford.edu/

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

3.5 Evaluation Results

3.5.1 Conformance

The conformance results show that Jena and Sesame have no problems when processing
the ontologies included in the test suites for the different languages. Therefore, no
further comments will be made about these tools.

Moreover, as shown in table 3.1, the NeOn Toolkit and Protégé 4 use the OWL
API for ontology management.

The version of Protégé 4 that has been evaluated uses a version of the OWL API
that is quite contemporary to the one evaluated. Therefore, after analysing the results
of Protégé 4 we obtained the same conclusions as for the OWL API.

However, the version of the NeOn Toolkit that has been evaluated uses a version of
the OWL API that differs in some months to the one evaluated. In general, from the
results of the NeOn Toolkit we obtained the same conclusions as those obtained for
the OWL API. In the next sections we will only note those cases where the behaviour
of the NeOn Toolkit and the OWL API differ.

RDF(S) Conformance

When the OWL API processes RDF(S) ontologies, it always produces different on-
tologies because it converts the ontologies into OWL 2.

For this conversion, the OWL API applies a set of rules to transform RDF(S)
ontology components into OWL 2. Some of these rules apply direct transformations
on the components (e.g., instances are converted into OWL 2 named individuals)
and other rules transform components according to their use in the ontology (e.g.,
undefined resources that have instances are defined as classes).

However, in some cases the application of a rule (or a combination of them) causes
unexpected effects; for example, transforming an RDF property into both an object
property and a datatype property or transforming classes into individuals.

When Protégé OWL processes an RDF(S) ontology, the ontology is always cre-
ated as an OWL ontology with a randomly generated name20. Regardless of this, it
always produces the same ontology except when the origin ontology contains a prop-
erty with an undefined resource as range (the undefined resource is created as a class)
or a literal value (which is created with a datatype of xsd:string and, therefore, it is
a different literal. According to the RDF specification, one requirement for literals to
be equal is that either both or neither have datatype URIs21.

OWL Lite Conformance

When the OWL API processes OWL Lite ontologies, it converts the ontologies into
OWL 2. Since OWL 2 covers the OWL Lite specification, most of the times the
OWL API produces the same ontologies. However, one effect of this conversion is that
individuals are converted into OWL 2 named individuals.

20E.g., http://www.owl-ontologies.com/Ontology1286286598.owl
21http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-typed-literal

19 of 76

http://www.owl-ontologies.com/Ontology1286286598.owl
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-typed-literal

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

The cases when the ontologies are different are when the ontology contains a named
individual related through an object property with an anonymous individual, and this
anonymous individual is related through a datatype property with a literal value. In
this case, the named individual is related through the object property to an anonymous
resource, another anonymous resource is related through a datatype property with a
literal value, and the anonymous individual is not related to anything.

After analysing the results of the NeOn Toolkit we obtained the same conclusions
that were previously presented for the OWL API with one exception. When the
ontology contains an anonymous individual related to a named individual through an
object property, the execution of the NeOn Toolkit fails.

When Protégé OWL processes an OWL Lite ontology, most of the times it pro-
duces the same ontology. The only exception is when the ontology contains a literal
value, which is created with a datatype of xsd:string and, as mentioned above, it is a
different literal.

OWL DL Conformance

When the OWL API processes OWL DL ontologies, it converts the ontologies into
OWL 2. Since OWL 2 covers the OWL DL specification, most of the times the OWL
API produces the same ontologies. However, one effect of this conversion is that
individuals are converted into OWL 2 named individuals.

The cases when the ontologies are different are those when the ontology contains
an anonymous individual related through an object property with some resource or
through a datatype property with a literal value (in this case, an anonymous resource is
related through the property with the resource or literal, and the anonymous individual
is not related to anything) or a datatype property that has as range an enumerated
datatype (in this case, an owl:Datatype class is created as well as an anonymous
individual of type owl:Datatype. However, the owl:Datatype class does not exist in the
RDF(S), OWL or OWL 2 specifications, only rdfs:Datatype exists).

Also, there is one case when the test execution fails; in the cases when the ontology
imports another ontology, the OWL API does not produce any ontology. This happens
because, since the OWL API cannot find the ontology in the owl:imports property, it
does not import anything. However, the tool should not rely on having full access to
the imported ontology for just importing one ontology.

After analysing the results of the NeOn Toolkit we obtain the same conclusions
that were previously presented for the OWL API with one exception. When the
ontology contains an anonymous individual related to another anonymous individual
through an object property, the execution of the NeOn Toolkit fails.

When Protégé OWL processes OWL DL ontologies, it usually produces the same
ontology. The cases when the ontologies are different are those when the ontology
contains a literal value (the literal value is created with a datatype of xsd:string and,
therefore, it is a different literal) or class descriptions that are the subject or the
object of a rdfs:subClassOf property (in these cases, the class description is defined
to be equivalent to a new class named “Axiom0”, and this new class is the subject or
the object of the rdfs:subClassOf property).

20 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

OWL Full Conformance

When the OWL API processes OWL Full ontologies, it produces different ontologies
in the majority of cases. OWL API typically adds declaration triples for classes, object
and data properties, and it also declares individuals as OWL 2 named individuals. In
some cases it has been observed that an object property is additionally declared as a
data or annotation property, or that a built-in vocabulary term is explicitly declared as
a class or an object property. Even some built-in datatypes are occasionally declared as
classes. For the encoding of property restriction class expressions, an owl:Restriction
triple is being created if it is missing, an owl:differentFrom triple is replaced by the
RDF encoding of an owl:AllDifferent axiom, and the order of elements in the argument
list of a construct, such as owl:intersectionOf, is often being changed. There have also
been heavily broken conversions, which may in some or all cases be due to errors in
the OWL API. For example, under some circumstances, statements containing blank
nodes are being completely removed.

Mainly the same conclusions as for the OWL API have been obtained for Protégé 4
and the NeOn Toolkit. However, unlike the OWL API, the execution of the NeOn
Toolkit fails on five of the eight test cases that probe the use of blank nodes in ways
that are outside the scope of OWL DL.

The results for Protégé OWL differ from those of the rest of the evaluated tools
in that it succeeds to reproduce the original ontology for the majority of test cases, but
still fails or produces different results for 16 test cases. Execution fails, for example,
when a blank node is associated to a URI via owl:sameAs. If an ontology header is
missing, Protégé OWL adds one with a random ontology URI. On the other hand, some
kinds of statements are being removed, such as owl:sameAs statements associating a
blank node with a typed literal.

3.5.2 Interoperability

The conclusions about the behaviour of the tools that can be obtained from the in-
teroperability results are the same as those already presented when analysing their
conformance. The only new facts obtained while analysing the interoperability results
are explained next.

In interchanges of OWL DL ontologies from the OWL API (or from those tools
that use the OWL API, i.e., Protégé 4 and the NeOn Toolkit) to Protégé OWL, when
the ontology contains an anonymous individual related through a datatype property
with a literal value, Protégé OWL has execution problems.

In addition, when using the OWL Full test suite as test data, when the origin
tools are the OWL API, Protégé 4 or the NeOn Toolkit and the destination tools are
either Jena or Protégé OWL, in most of the cases, no ontology was produced by the
destination tool. An analysis of the situation has revealed that the OWL API (which
also underlies Protégé 4 or the NeOn Toolkit) produces broken URIs under certain
circumstances. Most test cases in the current version of the OWL Full test suite use
the ontology URI http://example.org#h. That URI can be found in the output
ontologies produced by OWL API, but it is not a valid URI. Both Jena and Protégé

21 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

OWL stop by signalling an error for ontologies with this URI. All the other evaluated
tools seem to be tolerant against this error.

In summary, in terms of interoperability:

• Regardless of the ontology language used in the interchange, while Jena and
Sesame have no interoperability problems the rest of the tools have some issues
that prevent their full interoperability.

• Tools based on the OWL API convert RDF(S) ontologies into OWL 2 and,
therefore, they cannot interoperate using RDF(S) as the interchange language.

3.5.3 Scalability

Scalability evaluation was performed on the local machine with the following config-
uration: Intel Core 2 Duo CPU 2,40 GHz, 3,00 GB RAM, 64-bit OS. When running
scalability evaluation with real-world ontologies some tools failed to load the ontolo-
gies. Sesame showed the best performance results in the scalability evaluation and
could process large ontologies efficiently. Jena performed fast on processing small and
medium sized ontologies (less than 10MB), while the large tests led to a significant
execution time increase. As the OWL API is used in the NeOn Toolkit and Protégé
version 4, the performance is practically the same for these tools and framework. There
is a direct dependence between execution time and the size of ontologies for all tools
and frameworks.

In the scalability results using the LUBM-generated ontologies, it is seen that the
size of the ontology leads to a time increase, specifically there is a linear dependence
between ontology size and execution time. The best performance was provided by
Sesame for large ontologies, while Protégé OWL failed to execute the two scalability
tests, which contained the largest ontologies, due to GC overhead limit excess. The re-
sults of OWL API, NeOnToolkit, Protégé 4 are relatively the same. In addition, those
tools, which showed good results in exporting/importing relatively small ontologies,
performed well with the largest ontologies.

3.6 Lessons Learnt

In the conformance and interoperability results, we can see that all those tools that
manage ontologies at the RDF level (Jena and Sesame) have no problems in processing
ontologies regardless of the ontology language. Since the rest of the tools evaluated are
based in OWL or in OWL 2, their conformance and interoperability is clearly better
when dealing with OWL ontologies.

From the results presented in chapter 3.5 we can see that conformance and inter-
operability are highly influenced by development decisions. For example, the decision
of the OWL API developers (propagated to all the tools that use it for ontology man-
agement) of converting all the ontologies into OWL 2 makes the RDF(S) conformance
and interoperability of these tools quite low.

Since the OWL Lite language is a subset of the OWL DL one, there is a dependency
between the results obtained using the test suites for OWL Lite and OWL DL. In the

22 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

results we can also see that, since the OWL DL test suite is more exhaustive than
the OWL Lite one, the OWL DL evaluation unveiled more problems in tools than
the OWL Lite evaluation. These included issues not only related to the OWL DL
language, but also related to OWL Lite ontologies included in the OWL DL test suite.

The results also show the dependency between the results of a tool and those of the
ontology management framework that it uses; using a framework does not isolate a
tool from having conformance or interoperability problems. Besides inheriting existing
problems in the framework (if any), a tool may have more problems if it requires further
ontology processing (e.g., its representation formalism is different from that of the
framework or an extension of it) or if it affects the correct working of the framework.

However, using ontology management frameworks may help increasing the confor-
mance and interoperability of the tools, since developers do not have to deal with the
problems of low-level ontology management. Nevertheless, as observed in the results,
this also requires being aware of existing defects in these frameworks and regularly
updating the tools to use their latest versions.

The results of the scalability evaluation showed the linear dependence between
the ontology size and export/import operations execution. However, the performance
between the tools varies to a considerable extent, namely between Sesame, Jena and
Protégé OWL. As the OWL API is used in the NeOn Toolkit and Protégé version 4,
the performance is practically the same for them. Therefore, based on the obtained
evaluation results we can conclude that Sesame is one of the most suitable tools for
handling large ontologies.

While managing ontologies at an RDF level prevents conformance and
interoperability problems, not every tool is able to do so. However,
OWL (or OWL 2) tools include richer knowledge representation and
reasoning capabilities that provide added value as long as users are
aware of their potential problems (including those of the underlying

ontology management frameworks that they use). In terms of
scalability tool behaviour considerably varies, which requires analysing

tools’ efficiency in deep before opting for one.

23 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

4. Storage and reasoning systems evaluation campaign

The SEALS Storage and Reasoning Systems evaluation campaign
focused on interoperability and performance evaluation of advanced

reasoning systems. Class satisfiability, classification, ontology
satisfiability and entailment evaluations have been performed on a

wide variety of real world tasks.

4.1 Previous evaluations

Definition, execution, and analysis of evaluations for testing description logic based
systems (DLBS) has been extensively considered in the past to compare the perfor-
mances of these kind of systems and to prove their suitability for real case scenarios.
The implementation of new optimisations for existing DLBS or the development of
new DLBS has been disseminated together with specific evaluations to show how they
improve the state of the art of DLBS.

Several attempts to systematise the evaluation of DLBS and to provide a last-
ing reference framework for automatisation of this kind of evaluations have failed in
the past. The community of developers and researchers of DLBS still do not have a
common open platform to execute evaluations and to study the results of these ex-
ecutions. The test data, DLBS and evaluation results were temporally available in
dispersed Web sites that after some years are not longer available. Even with recent
papers it is nearly impossible to reproduce and verify the evaluation results that their
authors claimed.

However, all previous work on evaluation of DLBS provides a solid foundation
to accomplish our objectives towards the correct design of evaluations and the im-
plementation of specific software components for the execution and analysis of these
evaluations using the SEALS platform.

For the sake of conciseness, we will discuss only some relevant previous contribu-
tions starting with the first notorious attempt of building a framework for testing ABox
reasoning. Largely inspired by the Wisconsin benchmark [15] for testing database man-
agement systems, the Lehigh University Benchmark (LUBM) is still the facto standard
for testing ABox reasoning. LUBM provides a simple TBox with 43 classes and 32
properties encoded in OWL-Lite. This TBox describes Universities, their departments
and some related activities. LUBM also includes a synthetic data generator for pro-
ducing ABoxes of different sizes. A set of 14 predefined SPARQL queries has been
specifically designed for measuring five different factors related to ABox reasoning ca-
pabilities. LUBM was extended to provide some TBox reasoning evaluation support
and to increase the complexity of the ABoxes generated. The UOBM [45] enriched
the original TBox with new axioms that use most of OWL-DL constructors. In fact,
UOBM provides two TBoxes, one in OWL-DL and one in OWL-Lite. The OWL-DL
TBox has 69 classes and 43 properties, and the OWL-Lite TBox includes 51 classes
and 43 properties. The ABox generator was also improved to provide higher connected
ABoxes.

24 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Gardiner et al. [30], developed a Java application for testing and comparing DLBS.
This Java application used the DIG interface for accessing the system to be tested and
MySQL for storing evaluation results. On the contrary to LUBM, the test data used
was a selection of nearly 300 real ontologies of different size and expressivity. To warm-
up DLBS prior the execution of an evaluation (classification of a selected ontology),
the DLBS was forced to complete 4 tasks. Gardiner et al. were measuring the time
needed to complete the classification reasoning task and they were comparing the
classification results of several DLBS to check correctness.

Recent efforts of Luther et al. [44] have been focused on the study of the insights
of testing environments and their influence in the evaluation results. They use the
UOBM for evaluation of scalability for ABox reasoning, and they use a real TBox
for testing classification. Luther et al. have shown the remarkable influence of native
and standard (like the OWL API) interfaces or the impact of the version of the Java
virtual machine used during the execution of the evaluations. Even, they compare the
evaluation results of several versions of the same DLBS with interesting outcomes.

4.2 Evaluation scenarios

4.2.1 Evaluation Criteria

According to the ISO-IEC 9126-1 standard [37], interoperability is a software function-
ality sub-characteristic defined as “the capability of the software product to interact
with one or more specified systems”. In order to interact with other systems a DLBS
must conform to the standard input formats and must be able to perform standard
inference services. In our setting, the standard input format is the OWL 2 language.
We evaluate the standard inference services:

• Class satisfiability;

• Ontology satisfiability;

• Classification;

• Logical entailment.

The last two are defined in the OWL 2 Conformance document1, while the first two
are extremely common tasks during ontology development, and are de facto standard
tasks for DLBSs.

The performance criterion relates to the efficiency software characteristic from
ISO-IEC 9126-1. Efficiency is defined as “the capability of the software to provide
appropriate performance, relative to the amount of resources used, under stated con-
ditions”. We take a DLBS’s performance as its ability to efficiently perform the stan-
dard inference services. We will not consider the scalability criterion for the Storage
and Reasoning Systems Evaluation Campaign 2010 because suitable test data is not
currently available. The reason for this is the fact that while hand crafted ontologies
can be tailored to provide interesting tests, at least for particular systems it is very

1http://www.w3.org/TR/2009/PR-owl2-conformance-20090922/

25 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

difficult to create hand crafted ontologies that are resistant to various optimisations
used in modern systems. Furthermore, hand crafted ontologies are rather artificial
since their potential models often are restricted to those having a very regular struc-
ture. Synthetic DL formulas may be randomly generated [35, 48, 54]. Thus, no correct
answer is known for them in advance. There have been extensive research on random
ABox generation in recent years [31, 45]. These works are tailored to query answer-
ing scalability evaluation. Real-world ontologies provide a way to assess the kind of
performance that DLBSs are likely to exhibit in end-user applications, and this is by
far the most common kind of evaluation found in recent literature. However, it is
not a trivial task to create a good scalability test involving real-world ontologies. To
the best of our knowledge, no such tests are available at the moment. The particular
problems are parameterization and uniformity of the input.

4.2.2 Evaluation Metrics

The evaluation must provide informative data with respect to DLBS interoperability.
We use the number of tests passed by a DLBS without parsing errors is a metric of a
system’s conformance to the relevant syntax standard. The number of inference tests
passed by a DLBS is a metric of a system’s ability to perform the standard inference
services. An inference test is counted as passed if the system result coincides with
a “gold standard”. In practice, the “gold standard” is either produced by a human
expert or computed. In the latter case, the results of several systems should coincide
in order to minimise the influence of implementation errors. Moreover, systems used
to generate the “gold standard” should be believed to be sound and complete, and
should be known to produce correct results on a wide range of inputs.

The evaluation must also provide informative data with respect to DLBS perfor-
mance. The performance of a system is measured as the time the system needs to
perform a given inference task. We also record task loading time to assess the amount
of preprocessing used in a given system. It is difficult to separate the inference time
from loading time given that some systems perform a great deal of reasoning and
caching at load time, while others only perform reasoning in response to inference
tasks. Thus, we account for both times reflecting the diversity in DLBS behaviour.

4.2.3 Evaluation Process

We evaluate both interoperability and performance for the standard inference services.
Our evaluation infrastructure requires that systems either conform to the OWL API
3 [33] or implement API methods depicted on Table 4.1.

The output of an evaluation is the evaluation status. The evaluation status is one of
the following TRUE, FALSE, ERROR, UNKNOWN. TRUE is returned if ontology and
ontology class are satisfiable and in the case the entailment holds. FALSE is returned
if ontology and ontology class are unsatisfiable and in the case the entailment does
not hold. ERROR indicates a parsing error. UNKNOWN is returned if a system is
unable to determine an evaluation results.

26 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Table 4.1: DLBS interface methods
OWLOntology Classifies an ontology
classifyOntology(OWLOntology ontology)
boolean entails(OWLOntology premise, Checks whether premise entails
OWLOntology consequent) consequent
boolean isSatisfiable(OWLOntology ontology) Checks ontology satisfiability
boolean isSatisfiable(OWLOntology ontology, Checks class satisfiability
OWLClass class)
OWLOntology loadOntology(IRI iri) Loads ontology from IRI
IRI saveOntology(OWLOntology ontology, Saves ontology to IRI
IRI iri)

Class satisfiability evaluation

Class satisfiability is a standard inference service that is widely used in ontology engi-
neering. The goal of class satisfiability evaluation is to assess both the interoperability
and the performance of DLBSs in the standard class satisfiability tasks. Interoperabil-
ity is assessed w.r.t. to both syntactic conformance and semantic correctness given
that the result for each class satisfiability test is known. The ontology loading time
and the satisfiability time are measured to assess performance. A class satisfiability
evaluation input is an OWL 2 ontology and one or more class URIs. The result of
a class satisfiability evaluation is the class satisfiability status, the ontology loading
time, and the satisfiability tests times.

Ontology satisfiability evaluation

Ontology satisfiability is a standard inference service typically carried out before pre-
forming any other reasoning task—if the ontology is unsatisfiable, most other reasoning
tasks are meaningless/trivial. The ontology satisfiability evaluation goal is to assess
both the interoperability and performance of DLBSs in the standard ontology satis-
fiability tasks. Interoperability is assessed w.r.t. to both syntactic conformance and
semantic correctness given that the result for each ontology satisfiability test is known.
The ontology loading time and the ontology satisfiability time is measured to assess
performance. An ontology satisfiability evaluation input is an OWL 2 ontology. The
result of an ontology satisfiability evaluation is the ontology’s satisfiability status, the
test ontology loading time, and the satisfiability test time.

Classification evaluation

Ontology classification is an inference service that is typically carried out after testing
ontology satisfiability and prior to performing any other reasoning task. The goal of
classification evaluation is to assess both the interoperability and the performance of
DLBSs in the typical ontology classification tasks. Interoperability is assessed w.r.t.
to both syntactic conformance and semantic correctness, i.e., if the class hierarchy
produced by a system coincide with “gold standard” class hierarchy the classification
process is counted as being correct. The ontology loading time and the classification

27 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

time is measured to assess performance. A classification evaluation input is an OWL 2
ontology. The result of a classification evaluation is the OWL 2 ontology, the ontology
loading time and the ontology classification time. Classification quality metric is cal-
culated using comparison with “gold standard”. Classification hierarchy are extracted
from resulting ontology and compared with “gold standard” classification hierarchy.
If hierarchies are the same classification result is correct.

Logical entailment evaluation

Logical entailment is a standard inference service that is the basis for query answering.
The goal of logical entailment evaluation is to assess both the interoperability and
the performance of DLBSs in the typical logical entailment tasks. Interoperability is
assessed w.r.t. to both syntactic conformance and semantic correctness given that for
each logical entailment test the result is known. The ontologies loading times and the
entailment time is measured to assess performance. A logical entailment evaluation
input is two OWL 2 ontologies. The logical entailment evaluation status is produced
as an output.

4.3 Testing data

Our collected data set contains most of the ontologies that are well established and
widely used for testing DBLS’s inference services. More precisely, it contains:

• The ontologies from the Gardiner evaluation suite. This suite now contains over
300 ontologies of varying expressivity and size. The test suite was originally
created specifically for the purpose of evaluating the performance of ontology
satisfiability and classification of DLBSs [30]. It has since been maintained and
extended by the Oxford University Knowledge Representation and Reasoning
group2, and has been used in various other evaluations (e.g., [50]).

• The ontology repository described in [65] with more than 600 ontologies of diverse
expressivity and size

• Various versions of the GALEN ontology [56]. The GALEN ontology is a large
and complex biomedical ontology which has proven to be notoriously difficult
for DL systems to classify, even for modern highly optimized ones. For this
reason several “weakened” versions of GALEN have been produced by system
developers in order to provide a subset of GALEN which some reasoners are able
to classify.

• Various ontologies that have been created in EU funded projects, such as SEM-
INTEC, VICODI and AEO.

Table 4.2 presents some meta-data about the most important ontologies that we
have managed to collect and include in our testing dataset. Since domain and range
restrictions as well as functional number restrictions are usually translated into GCI

2http://web.comlab.ox.ac.uk/activities/knowledge/index.html

28 of 76

http://web.comlab.ox.ac.uk/activities/knowledge/index.html

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

axioms this number is an aggregation of the number of explicitly defined GCIs in the
ontology with the number of such axioms. Nevertheless, there are proposed optimiza-
tions in the literature that do not treat domain and range restrictions as GCIs but
they perform a form of lazy unfolding [63].

Ontology Classes Roles Indvs SubClass EqvCl GCIs Disj RBox ABox DL
AEO 760 63 16 1,441 0 15 1,957 18 16 SHIN (D)
NCI 66,725 190 0 85,335 10,280 261 171 278 0 ALCH(D)

GALEN-full 23,141 950 0 25,563 9,968 674 0 1,436 0 ALEHIFR+

GALEN-module1 6,362 162 0 10,901 3,614 59 0 160 0 ALEHIFR+

GALEN-undoctored 2,748 413 0 3,480 699 514 0 649 0 ALEHIFR+

GALEN-doctored 2,748 413 0 3,238 699 507 0 649 0 ALEHIFR+

GALEN-horrocks 2,748 413 0 3,480 699 363 0 442 0 ALEHR+

FMA 41,651 168 93 122,136 559 366 0 28 85 ALCOIF
FMA-lite 75,145 3 46,225 119,558 0 0 0 3 46,225 ALEIR+

GeneOntology 20,526 1 0 28,997 0 0 0 1 0 ALER+

Robert’s Family 61 87 405 5 55 123 4 143 1,524 SROIQ(D)
Food & Wine 138 17 207 228 88 31 39 9 494 SHOIN (D)
SNOMED CT 304,802 62 0 514,061 59,182 0 0 12 0 ALER+

Table 4.2: Meta-data of the most important ontologies from the dataset

We use the OWL 2 conformance document as a guideline for conformance testing
data. In particular, we aim at semantic entailment and non-entailment conformance
tests. 148 entailment tests and 10 non-entailment tests from the OWL 2 test cases
repository3 are used for evaluating a DLBS’s conformance.

4.4 Tools evaluated

The testing data was used for evaluation of three DLBSs HermiT 1.2.2 4, FaCT++
1.4.1 5 and jcel 0.8.0 6.

HermiT is a reasoner for ontologies written using the OWL [36]. HermiT is the first
publicly-available OWL reasoner based on a novel hypertableau calculus [51] which
provides efficient reasoning capabilities. HermiT can handle DL Safe rules and the
rules can directly be added to the input ontology in functional style or other OWL
syntaxes supported by the OWL API (see [6]).

FaCT++ [62] is the new generation of the well-known FaCT [34] OWL-DL rea-
soner. FaCT++ uses the established FaCT algorithms, but with a different internal
architecture. Additionally, FaCT++ is implemented using C++ in order to create a
more efficient software tool, and to maximise portability.

jcel is a reasoner for the description logic EL+. It is an OWL 2 EL [9] reasoner
implemented in Java.

3http://owl.semanticweb.org/page/OWL 2 Test Cases
4http://hermit-reasoner.com/
5http://owl.man.ac.uk/factplusplus/
6http://jcel.sourceforge.net/

29 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

4.5 Evaluation results

The evaluation has been run on two AMD Athlon(tm) 64 X2 Dual Core Processor
4600+ machines with 2GB of main memory. DLBSs were allowed to allocate up to 1
GB. To obtain the comparable results from both machines we executed a small subset
of the class satisfiability tasks on them comparing the systems performance. The re-
sults have shown the influence of the software installed on the machines on the systems
execution times. For example, average loading time (ALT) for class satisfiability tasks
differ in 0.74 times for HermiT reasoner depending on the evaluation machine while av-
erage reasoning time (ART) differ in 1.29 times. Thus, we factored the results obtained
to make them comparable. The systems had the 10 seconds evaluation time frame for
single class satisfiability computation. More complex evaluations such as entailment
and classification consists of many class satisfiability computations. Storage and rea-
soning systems evaluation component [68] has been used in the evaluation. All three
systems support OWL API 3 [33]. The evaluation have been performed exploiting it
as a common interface to DLBSs. Thus, the systems were run on the subset of the
evaluation tasks that is OWL-API 3 parsable. OWL API 3.0 was used for evaluation.
isSatisfiable(), isConsistent(), isEntailed() from OWLReasoner class were used for class
satisfiability, ontology satisfiability and entailment evaluations. fillOntology method
of InferredOntologyGenerator class initialized with InferredSubClassAxiomGenerator
passed as list parameter was used for classification evaluation.

4.5.1 Classification

The evaluation results for classification evaluation are depicted in Table 4.3. It depicts
ALT, ART, number of correct results (TRUE), number of incorrect results (FALSE),
number of errors (ERROR), number of evaluation tasks that were not completed within
the given time frame (UNKNOWN).

Table 4.3: Classification evaluation results
FaCT++ HermiT jcel

ALT, ms 68 856
ART, ms 15320 2144
TRUE 160 16
FALSE 0 0
ERROR 47 4
UNKNOWN 3 0

4.5.2 Class satisfiability

The evaluation results for class satisfiability evaluation are depicted in Table 4.4. It
depicts ALT, ART, number of correct results (TRUE), number of incorrect results
(FALSE), number of errors (ERROR), number of evaluation tasks that were not com-
pleted within the given time frame (UNKNOWN).

30 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Table 4.4: Class satisfiability evaluation results
FaCT++ HermiT jcel

ALT, ms 1047 255 438
ART, ms 21376 517043 1113
TRUE 157 145 15
FALSE 1 0 0
ERROR 36 35 5
UNKNOWN 16 30 0

4.5.3 Ontology satisfiability

The evaluation results for ontology satisfiability evaluation are depicted in Table 4.5.
It depicts ALT, ART, number of correct results (TRUE), number of incorrect results
(FALSE), number of errors (ERROR), number of evaluation tasks that were not com-
pleted within the given time frame (UNKNOWN).

Table 4.5: Ontology satisfiability evaluation results
FaCT++ HermiT jcel

ALT, ms 1315 708
ART, ms 25175 1878
TRUE 134 16
FALSE 0 0
ERROR 45 4
UNKNOWN 31 0

4.5.4 Entailment

jcel system does not support entailment evaluation tasks. Therefore, we will provide
the results for FaCT++ and HermiT. The evaluation results for entailment evaluation
are depicted in Table 4.7. It depicts ALT, ART, number of correct results (TRUE),
number of incorrect results (FALSE), number of errors (ERROR), number of evalua-
tion tasks that were not completed within the given time frame (UNKNOWN).

Table 4.6: Entailment evaluation results
FaCT++ HermiT

ALT, ms 21 81
ART, ms 3 34502
TRUE 6 55
FALSE 47 0
ERROR 11 9
UNKNOWN 0 0

The evaluation results for non entailment evaluation are depicted in Table 4.7. It
depicts ALT, ART, number of correct results (TRUE), number of incorrect results

31 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

(FALSE), number of errors (ERROR), number of evaluation tasks that were not com-
pleted within the given time frame (UNKNOWN).

Table 4.7: Non entailment evaluation results
FaCT++ HermiT

ALT, ms 53 92
ART, ms 7 127936
TRUE 5 7
FALSE 0 0
ERROR 3 1
UNKNOWN 0 0

4.6 Lessons learnt

4.6.1 Classification

The results for HermiT system was not obtained due to limited time allocated for
Storage and Reasoning Systems Evaluation Campaign 2010. Most errors were related
to the datatypes not supported in FaCT++ system. There were several description
logic expressivity related errors such as NonSimpleRoleInNumberRestriction. There
also were several syntax related errors where FaCT++ was unable to register a role
or a concept.

4.6.2 Class satisfiability

FaCT++ clearly outperformed HermiT on the most of the reasoning tasks. Most errors
for both FaCT++ and HermiT were related to the datatypes not supported in the
systems. The evaluation tasks proved to be challenging enough for the systems. Thus,
16 and 30 evaluation tasks respectively were not solved in the given time frame. The
relatively poor HermiT performance can be explained taking into account the small
number of very hard tasks where FaCT++ was orders of magnitude more efficient.

4.6.3 Ontology satisfiability

The results for HermiT system was not obtained due to limited time allocated for Stor-
age and Reasoning Systems Evaluation Campaign 2010. Most FaCT++ errors were
related to not supported datatypes. There were several description logic expressivity
related errors such as NonSimpleRoleInNumberRestriction. There also was several
syntactic related errors where FaCT++ was unable to register a role or a concept.

4.6.4 Entailment

The HermiT time was influenced by small number of very hard tasks. FaCT++
demonstrated a big number of false and erroneous results.

32 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

The DL reasoners designed for less expressive subsets of the OWL 2
language not surprisingly demonstrated superior performance

illustrating trade off between expressivity and performance. Most of
the errors demonstrated by systems designed to work for more

expressive language subsets were related to non supported language
features. Further work includes the addition of the query answering

evaluation and automatically generated datasets.

33 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

5. Ontology matching tools evaluation campaign

The SEALS Evaluation Campaign for Ontology Matching Tools has
been coordinated with the Ontology Alignment Evaluation Initiative

(OAEI) 2010 campaign. This chapter reports the evaluation results for
this coordinated campaign, presenting the data sets and criteria used

in the evaluation.

5.1 Previous evaluations

Since 2004, a group of researchers on ontology matching has organized annual evalua-
tion campaigns for evaluating matching tools. This initiative is identified as Ontology
Alignment Evaluation Initiative1 (OAEI) campaigns. The main goal of the OAEI is to
compare systems and algorithms on the same basis and to allow anyone for drawing
conclusions about the best matching strategies.

OAEI had its first execution in 2004 and was realized together with two complemen-
tary events: (i) the Information Interpretation and Integration Conference (I3CON)
held at the NIST Performance Metrics for Intelligent Systems (PerMIS) workshop and
(ii) the Ontology Alignment Contest held at the Evaluation of Ontology-based Tools
(EON) workshop of the annual International Semantic Web Conference (ISWC) [60].
In 2005, the campaign had its results discussed at the workshop on Integrating On-
tologies held in conjunction with the International Conference on Knowledge Capture
(K-Cap) [3]. From 2006, the OAEI campaigns are held at the Ontology Matching
workshops collocated with ISWC [21, 20, 11, 18, 19].

In these campaigns, participants are invited to submit the results of their systems
to organizers, who are responsible for running evaluation scripts and delivering the
evaluation result interpretations. Since 2010, OAEI is being coordinated with the
SEALS project and the plan is to integrate progressively the SEALS infrastructure
within the OAEI campaigns. A subset of the OAEI tracks has been included in the
new SEALS modality. Participants are invited to extend a web service interface2 and
deploy their matchers as web services, which are accessed in an evaluation experiment.
This setting enables participants to debug their systems, run their own evaluations and
manipulate the results immediately in a direct feedback cycle.

In this chapter, we report the evaluation results for the first OAEI/SEALS cam-
paign. We describe the data sets and criteria used in this evaluation (§5.2) and detail
how the evaluation itself was conducted (§5.3). Next, we present the participants of
the campaign (§5.4) and summarize their results, per SEALS track (§5.5). Finally, we
comment on the lessons learnt (§5.6) and conclude the chapter (§??).

1http://oaei.ontologymatching.org
2http://alignapi.gforge.inria.fr/tutorial/tutorial5/

34 of 76

http://oaei.ontologymatching.org
http://alignapi.gforge.inria.fr/tutorial/tutorial5/

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

5.2 Data sets and evaluation criteria

5.2.1 OAEI data sets

OAEI data sets have been extended and improved over the years. In OAEI 2010, the
following tracks and data sets have been selected:

The benchmark test aims at identifying the areas in which each matching algo-
rithm is strong and weak. The test is based on one particular ontology dedi-
cated to the very narrow domain of bibliography and a number of alternative
ontologies of the same domain for which alignments are provided.

The anatomy test is about matching the Adult Mouse Anatomy (2744 classes) and
the NCI Thesaurus (3304 classes) describing the human anatomy. Its reference
alignment has been generated by domain experts.

The conference test consists of a collection of ontologies describing the domain of
organising conferences. Reference alignments are available for a subset of test
cases.

The directories and thesauri test cases propose web directories (matching web-
site directories like open directory or Yahoo’s), thesauri (three large SKOS sub-
ject heading lists for libraries) and generally less expressive resources.

The instance matching test cases aim at evaluating tools able to identify similar
instances among different data sets. It features web data sets, as well as a
generated benchmark.

Anatomy, Benchmark and Conference have been included in the SEALS evaluation
modality. The reason for this is twofold: on the one hand these data sets are well known
to the organizers and have been used in many evaluations contrary to the test cases
of the instance data sets, for instance. On the other hand these data sets come with
a high quality reference alignment which allows for computing the compliance based
measures, such as precision and recall. These data sets are detailed in the following.
Full description of these tests can be found on the OAEI web site.3

5.2.2 Evaluation criteria and metrics

The diverse nature of OAEI data sets, specially in terms of the complexity of test
cases and presence/absence of (complete) reference alignments, requires to use different
evaluation measures. For the three data sets in the SEALS modality, compliance of
matcher alignments with respect to the reference alignments is evaluated. In the case
of Conference, where the reference alignment is available only for a subset of test cases,
compliance is measured over this subset. The most relevant measures are precision
(true positive/retrieved), recall (true positive/expected) and f–measure (aggregation
of precision and recall). These metrics are also partially considered or approximated

3http://oaei.ontologymatching.org/2010/

35 of 76

http://oaei.ontologymatching.org/2010/

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

for the other data sets which are not included in the SEALS modality (standard
modality).

For Conference, alternative evaluation approaches have been applied. These ap-
proaches include manual labelling, alignment coherence [49] and correspondence pat-
terns mining. These approaches require a more deep analysis from experts than tradi-
tional compliance measures. For the first version of the evaluation service, we concen-
trate on the most important compliance based measures because they do not require a
complementary step of analyse/interpretation from experts, which is mostly performed
manually and outside an automatic evaluation cycle. However, such approaches will
be progressively integrated into the SEALS infrastructure.

Nevertheless, for 2010, the generated alignments are stored in the results database
and can be retrieved by the organizers easily. It is thus still possible to exploit alter-
native evaluation techniques subsequently, as it has been done in the previous OAEI
campaigns.

All the criteria above are about alignment quality. A useful comparison between
systems also includes their efficiency, in terms of runtime and memory consumption.
The best way to measure efficiency is to run all systems under the same controlled
evaluation environment. In previous OAEI campaigns, participants have been asked to
run their systems on their own and to inform about the elapsed time for performing the
matching task. Using the web based evaluation service, runtime cannot be correctly
measured due the fact that the systems run in different execution environments and,
as they are exposed as web services, there are potential network delays.

5.3 Evaluation process

Once the data sets and evaluation criteria have been specified, the evaluation campaign
takes place in four main phases:

Preparatory phase ontologies and alignments are provided to participants, which
have the opportunity to send observations, bug corrections, remarks and other
test cases;

Preliminary testing phase participants ensure that their systems can load the on-
tologies to be aligned and generate the alignment in the correct format (the
Alignment API format [17]);

Execution phase participants use their algorithms to automatically match the on-
tologies;

Evaluation phase the alignments provided by the participants are evaluated and
compared.

The four phases are the same for both standard and SEALS modality. However,
different tasks are required to be performed by the participants of each modality. In
the preparatory phase, the data sets have been published on web sites and could be
downloaded as zip-files. In the future, it will be possible to use the SEALS portal
to upload and describe new data sets. In addition, the test data repository supports

36 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

versioning, which is an important issue regarding bug fixes and improvements that
have taken place over the years.

In the phase of preliminary testing, the SEALS evaluation service pays off in terms
of reduced effort. In the past years, participants submitted their preliminary results
to the organizers, who analyzed them semi-automatically, often detecting problems re-
lated to the format or to the naming of the required results files. Via a time-consuming
communication process these problems have been discussed with the participants. It
is now possible to check these and related issues automatically.

In the execution phase, standard OAEI participants run their tools on their own
machines and submit the results via mail to the organizers, while SEALS participants
run their tools via web service interfaces. They get a direct feedback on the results
and can also discuss and analyse this feedback in their results paper4. Prior to the
hard deadlines, for many of the data sets, results could not be delivered in the past to
participants by the organizers in time.

Finally, in the evaluation phase, organizers are in charge of evaluating the received
alignments. For the SEALS modality, this effort has been minimized due the fact
that the results are automatically computed by the services in the infrastructure, as
detailed in the next section.

5.4 Participants

The campaign had 15 participants in 2010 [19]: AgrMaker5, AROMA6, ASMOV7,
BLOOMS8, CODI, Ef2Match, Falcon-AO9, GeRoMeSMB, LNR2, MapPSO10, NBJLM,
ObjectRef, RiMOM11, SOBOM and TaxoMap12. Regarding the SEALS tracks, 11
participants have registered their results for Benchmark, 9 for Anatomy and 8 for
Conference. Some participants in Benchmark have not participated in Anatomy or
Conference and vice-versa. The list of participants is summarized in Table 2. In this
table, confidence stands for the type of result returned by a system: it is ticked when
the confidence has been measured as non boolean value.

4Notice that each participant in the OAEI, independently of the modality, has to write a paper
that contains a system description and an analysis of results from the point of view of the system
developer.

5http://agreementmaker.org/
6http://aroma.gforge.inria.fr/
7http://infotechsoft.com/products/asmov.aspx
8http://wiki.knoesis.org/index.php/BLOOMS
9http://iws.seu.edu.cn/page/english/projects/matching/

10mappso.sourceforge.net/
11http://keg.cs.tsinghua.edu.cn/project/RiMOM/
12http://www.lri.fr/~hamdi/TaxoMap/TaxoMap.html

37 of 76

http://agreementmaker.org/
http://aroma.gforge.inria.fr/
http://infotechsoft.com/products/asmov.aspx
http://wiki.knoesis.org/index.php/BLOOMS
http://iws.seu.edu.cn/page/english/projects/matching/
mappso.sourceforge.net/
http://keg.cs.tsinghua.edu.cn/project/RiMOM/
http://www.lri.fr/~hamdi/TaxoMap/TaxoMap.html

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

System A
g
rM

a
k
er

A
R

O
M

A

A
S

M
O

V

B
L

O
O

M
S

C
O

D
I

E
f2

M
a
tc

h

F
a
lc

o
n

-A
O

G
eR

o
M

eS
M

B

L
N

R
2

M
a
p

P
S

O

N
B

J
L

M

O
b

je
ct

R
ef

R
iM

O
M

S
O

B
O

M

T
a
x
o
M

a
p

T
o
ta

l=
1
5

Confidence
√ √ √ √ √ √ √ √ √ √ √ √ √ √

benchmarks
√ √ √ √ √ √ √ √ √ √ √

11
anatomy

√ √ √ √ √ √ √ √ √
9

conference
√ √ √ √ √ √ √ √

8
directory

√ √ √ √
4

iimb
√ √ √ √ √

5

Total 3 2 5 1 4 3 2 4 1 2 1 1 2 3 3 37

Table 5.1: Participants and the state of their submissions.

5.5 Evaluation results

5.5.1 Benchmark results

Eleven systems have participated in the benchmark track of this year’s campaign (see
Table 5.1). Table 5.2 shows the results, by groups of tests (harmonic means). Relaxed
precision and recall correspond to the three measures of [16]: symmetric proximity,
correction effort and oriented. The same results have been obtained using these three
measures. Weighted precision and recall takes into account the confidence associated
to correspondence by the matchers. We display the results of participants as well as
those given by some simple edit distance algorithm on labels (edna). The full results
are in [19].

As shown in Table 5.2, two systems achieve top performances: ASMOV and Ri-
MOM, with AgrMaker as a close follower, while SOBOM, GeRMeSMB and Ef2Match,
respectively, had presented intermediary values of precision and recall. In the 2009
campaign, Lily and ASMOV had the best results, with aflood and RiMOM as follow-
ers, while GeRoME, AROMA, DSSim and AgrMaker had intermediary performance.
The same group of matchers has been presented in both campaigns. No system had
strictly lower performance than edna.

In general, systems have improved their performance since last year: ASMOV
and RiMOM improved their overall performance, AgrMaker and SOBOM signifi-
cantly improved their recall, while MapPSO and GeRMeSBM improved precision.
Only AROMA has significantly decreased in recall. There is no unique set of systems
achieving the best results for all cases, which indicates that systems exploiting different
features of ontologies perform accordingly to the features of each test case.

The results have also been compared with the relaxed measures proposed in [16],
namely symmetric proximity, correction effort and oriented measures (“Relaxed mea-
sures” in Table 5.2). They are different generalisations of precision and recall in order
to better discriminate systems that slightly miss the target from those which are
grossly wrong. We have used strict versions of these measures (as published in [16]
and contrary to previous years). As Table 5.2 shows, there is no improvement when
comparing classical and relaxed precision and recall. This can be explained by the
fact that participating algorithms miss the target, by relatively far (the false negative

38 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

sy
st

em
re

fa
li
g
n

ed
n

a
A

g
rM

a
k
er

A
R

O
M

A
A

S
M

O
V

C
O

D
I

E
f2

M
a
tc

h
F

a
lc

o
n

G
eR

M
eS

M
B

M
a
p

P
S

O
R

iM
O

M
S

O
B

O
M

T
a
x
o
M

a
p

te
st

P
R

P
R

P
R

P
R

P
R

P
R

P
R

P
R

P
R

P
R

P
R

P
R

P
R

1
x
x

1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

8
1
.0

0
1
.0

0
0
.9

8
1
.0

0
1
.0

0
1
.0

0
0
.9

9
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.3

4
2
x
x

1
.0

0
1
.0

0
0
.4

3
0
.5

7
0
.9

5
0
.8

4
0
.9

4
0
.4

6
0
.9

9
0
.8

9
0
.8

3
0
.4

2
0
.9

8
0
.6

3
0
.8

1
0
.6

3
0
.9

6
0
.6

6
0
.6

7
0
.5

9
0
.9

9
0
.8

3
0
.9

7
0
.7

4
0
.8

6
0
.2

9
3
x
x

1
.0

0
1
.0

0
0
.5

1
0
.6

5
0
.8

8
0
.5

8
0
.8

3
0
.5

8
0
.8

8
0
.8

4
0
.9

5
0
.4

5
0
.9

2
0
.7

5
0
.8

9
0
.7

6
0
.9

0
0
.4

2
0
.7

2
0
.3

9
0
.9

4
0
.7

6
0
.7

9
0
.7

5
0
.7

1
0
.3

2
H

-m
ea

n
1
.0

0
1
.0

0
0
.4

5
0
.5

8
0
.9

5
0
.8

4
0
.9

4
0
.4

8
0
.9

8
0
.8

9
0
.8

4
0
.4

4
0
.9

8
0
.6

5
0
.8

2
0
.6

5
0
.9

6
0
.6

7
0
.6

8
0
.6

0
0
.9

9
0
.8

4
0
.9

7
0
.7

5
0
.8

6
0
.2

9

R
el

a
x
ed

1
.0

0
1
.0

0
0
.4

5
0
.5

8
0
.9

5
0
.8

4
0
.9

4
0
.4

8
0
.9

9
0
.8

9
0
.8

4
0
.4

4
0
.9

8
0
.6

5
0
.8

2
0
.6

5
0
.9

6
0
.6

7
0
.6

8
0
.6

0
0
.9

9
0
.8

4
0
.9

7
0
.7

5
0
.8

6
0
.2

9

W
ei

g
h
te

d
1
.0

0
1
.0

0
0
.6

8
0
.5

7
0
.9

5
0
.8

3
0
.9

4
0
.4

2
0
.9

8
0
.6

1
0
.8

4
0
.4

4
0
.9

8
0
.6

4
0
.9

6
0
.4

6
0
.9

6
0
.6

4
0
.8

6
0
.5

6
0
.9

9
0
.8

3
0
.9

8
0
.3

7
0
.8

7
0
.2

8

T
ab

le
5.

2:
R

es
u
lt

s
ob

ta
in

ed
b
y

p
ar

ti
ci

p
an

ts
on

th
e

b
en

ch
m

ar
k

te
st

ca
se

.

39 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

correspondences found by the matchers are not close to the correspondences in the
reference alignment) so the gain provided by the relaxed measures has no impact.

As last year, many algorithms provided their results with confidence measures. It
is thus possible to draw precision/recall graphs in order to compare them. Figure 5.1
shows the precision and recall graphs of this year. These results are only relevant
for the results of participants who provide confidence measures different from 1 or
0 (see Table 5.1). These graphs show the real precision at n% recall and they stop
when no more correspondences are available (then the end point corresponds to the
precision and recall reported in Table 5.2). The values are not anymore an average
but a real precision and recall over all the tests. The numbers in the legend are
the Mean Average Precision (MAP): the average precision for each correct retrieved
correspondence. These new graphs represent well the effort made by the participants
to keep a high precision in their results, and to authorize a loss of precision with a few
correspondences with low confidence.

The results presented in Table 5.2 and those displayed in Figure 5.1 single out the
same group of systems, ASMOV, RiMOM and AgrMaker, which perform these tests
at the highest level. Out of these, ASMOV has slightly better results than the two
others. So, this confirms the previous observations on raw results.

5.5.2 Anatomy results

Anatomy track13 had in 2010 more systems that participated for the first time (5
systems) than in previous years (in average 2 systems). See Table 5.1 for the list of
the participants in 2010.

As in previous years, the matching task was divided into four subtasks:

Subtask #1 The matcher has to be applied with its standard settings.

Subtask #2 An alignment has to be generated that favours precision over recall.

Subtask #3 An alignment has to be generated that favours recall over precision.

Subtask #4 A partial reference alignment has to be used as additional input.

Subtask #1 is compulsory for participants of the anatomy track, while subtask #2,
#3 and #4 are again optional tasks. Detailed results on runtime can be found in [19].

Main results for subtask #1.

The results for subtask #1 are presented in Table 5.3 ordered with respect to the
achieved F-measure. Systems marked with a * do not participate in other tracks or
have chosen a setting specific to this track. Note that ASMOV modified its standard
setting in a very restricted way (activating UMLS as additional resource). Thus, we
did not mark this system.

In 2010, AgreementMaker (AgrMaker) generated the best alignment with respect
to F-measure. This result is based on a high recall compared to the systems on the

13This section is a summary from the Antomy Results section in [19], which has been provided by
Christian Meilicke.

40 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

recall0. 1.
0.

p
re
ci
si
on

1.

refalign
1.00

edna
0.58

AgrMaker
0.84

AROMA
0.47

ASMOV
0.88

CODI
0.44

Ef2Match
0.65

Falcon
0.63

GeRMeSMB
0.66

MapPSO
0.59

RiMOM
0.84

SOBOM
0.74

TaxoMap
0.29

Figure 5.1: Precision/recall graphs for benchmarks.

41 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Task #1 Task #2 Task #3 Recall+
System Prec. F Rec. Prec. F Rec. Prec. F Rec. #1 #3

AgrMaker* 0.903 0.877 0.853 0.962 0.843 0.751 0.771 0.819 0.874 0.630 0.700
Ef2Match 0.955 0.859 0.781 0.968 0.842 0.745 0.954 0.859 0.781 0.440 0.440
NBJLM* 0.920 0.858 0.803 - - - - - - 0.569 -
SOBOM 0.949 0.855 0.778 - - - - - - 0.433 -
BLOOMS 0.954 0.828 0.731 0.967 0.829 0.725 - - - 0.315 -
TaxoMap 0.924 0.824 0.743 0.956 0.801 0.689 0.833 0.802 0.774 0.336 0.414
ASMOV 0.799 0.785 0.772 0.865 0.808 0.757 0.717 0.753 0.792 0.470 0.538
CODI 0.968 0.779 0.651 0.964 0.785 0.662 0.782 0.736 0.695 0.182 0.383
GeRMeSMB 0.884 0.456 0.307 0.883 0.456 0.307 0.080 0.147 0.891 0.249 0.838

Table 5.3: Results for subtasks #1, #2 and #3 in terms of precision, F-measure, and
recall (in addition recall+ for #1 and #3).

following positions. Even the SAMBO system of 2007 could not generate a higher
recall with the use of UMLS.

AgreementMaker is followed by three participants (Ef2Match, NBJLM and SOBOM)
that clearly favour precision over recall. Notice that these systems obtained better
scores or scores that are similar to the results of the top systems in the previous years.
One explanation can be seen in the fact that the organizers of the track made the
reference alignment available to the participants. More precisely, participants could
at any time compute precision and recall scores via the SEALS services to test dif-
ferent settings of their algorithms. This allows to improve a matching system in a
direct feedback cycle, however, it might happen that a perfect configuration results in
problems for different data sets.

Recall+ and further results.

We use again the recall+ measure as defined in [20]. It measures how many non
trivial correct correspondences, not detectable by string equivalence, can be found
in an alignment. The top three systems with respect to recall+ regarding subtask
#1 are AgreementMaker, NBJLM and ASMOV. Only ASMOV has participated in
several tracks with the same setting. Obviously, it is not easy to find a large amount
of non-trivial correspondences with a standard setting.

In 2010, six systems participated in subtask #3. The top three systems regarding
recall+ in this task are GeRoMe-SMB (GeRMeSMB), AgreementMaker and ASMOV.
Since a specific instruction about the balance between precision and recall is missing
in the description of the task, the results vary to a large degree. GeRoMe-SMB
detected 83.8% of the correspondences marked as non trivial, but at a precision of 8%.
AgreementMaker and ASMOV modified their settings only slightly, however, they were
still able to detect 70% and 53.8% of all non trivial correspondences.

In subtask #2, seven systems participated. It is interesting to see that systems like
ASMOV, BLOOMS and CODI generate alignments with slightly higher F-measure for
this task compared to the submission for subtask #1. The results for subtask #2 for
AgreementMaker are similar to the results submitted by other participants for subtask
#1. This shows that many systems in 2010 focused on a similar strategy that exploits
the specifics of the data set resulting in a high F-measure based on a high precision.

42 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

System ∆-Precision ∆-F-measure ∆-Recall

AgrMaker +0.025 0.904→0.929 −0.002 0.890→0.888 −0.025 0.876→0.851

ASMOV +0.029 0.808→0.837 +0.006 0.816→0.822 −0.016 0.824→0.808

CODI −0.002 0.970→0.968 +0.019 0.824→0.843 +0.030 0.716→0.746

SAMBOdtf2008 +0.021 0.837→0.856 +0.011 0.852→0.863 +0.003 0.867→0.870

Table 5.4: Changes in precision, F-measure and recall based on comparing A1 ∪ Rp

and A4 against reference alignment R.

Subtask #4.

In the following, we refer to an alignment generated for subtask #n as An. In our
evaluation we use again the method introduced in 2009. We compare both A1 ∪
Rp and A4 ∪ Rp with the reference alignment R.14 Thus, we compare the situation
where the partial reference alignment is added after the matching process against
the situation where the partial reference alignment is available as additional resource
exploited within the matching process. Note that a direct comparison of A1 and A4

would not take into account in how far the partial reference alignment was already
included in A1 resulting in a distorted interpretation.

Results are presented in Table 5.4. Three systems participated in task #4 in 2010.
Additionally, we added a row for the 2008 submission of SAMBOdtf. This system
had the best results measured in the last years. AgreementMaker and ASMOV use
the input alignment to increase the precision of the final result. At the same time
these systems filter out some correct correspondences, finally resulting in a slightly
increased F-measure. This fits with the trend observed in the past years (compare with
the results for SAMBOdtf in 2008). The effects of this strategy are not very strong.
However, as argued in previous years, the input alignment has a characteristics that
makes hard to exploit this information. CODI has chosen a different strategy. While
changes in precision are negligible, recall increases by 3%. Even though the overall
effect is still not very strong, the system exploits the input alignment in the most
effective way. However, the recall of CODI for subtask #1 is relatively low compared
to the other systems. It is unclear whether the strategy of CODI would also work for
the other systems where a ceiling effect might prevent the exploitation of the positive
effects.

5.5.3 Conference results

Eight systems have participated in the conference track (Table 5.5), whose results are
presented below. In this chapter, we focus on the evaluation based on the reference
alignments and coherence, while the results of using other evaluation approaches (i.e.,
manual labelling and matching patterns) can be found in [19].

14We use A4 ∪Rp – instead of using A4 directly – to ensure that a system, which does not include
the input alignment in the output, is not penalized.

43 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

matcher confidence threshold Prec. FMeas. Rec.

AgrMaker 0.66 .53 .58 .62
AROMA 0.49 .36 .42 .49
ASMOV 0.22 .57 .60 .63
CODI * .86 .62 .48

Ef2Match 0.84 .61 .60 .58
Falcon 0.87 .74 .59 .49

GeRMeSMB 0.87 .37 .43 .51
SOBOM 0.35 .56 .56 .56

Table 5.5: Confidence threshold, precision and recall for optimal F-measure for each
matcher.

Evaluation based on the reference alignments.

We evaluated the results of participants against reference alignments (all pairwise
combinations between 7 different ontologies, i.e. 21 alignments). For a better com-
parison, we established the confidence threshold which provides the highest average
F-measure (Table 5.5). Precision, recall, and F-measure are given for this optimal
confidence threshold. The dependency of F-measure on the confidence threshold can
be seen from Figure 5.2. There is one asterisk in the column of confidence threshold
for matcher CODI which did not provide graded confidence.

Figure 5.2: F-measures depending on confidence.

In conclusion, the matcher with the highest average F-measure (62%) is CODI
which did not provide graded confidence values. Other matchers are very close to this
score (e.g. ASMOV with F-Measure 0.60, Ef2Match with F-Measure 0.60, Falcon with
F-Measure 0.59). However, we should take into account that this evaluation has been
made over a subset of all alignments (one fifth).

44 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Matcher AgrMaker AROMA ASMOV CODI Ef2Match Falcon GeRMeSMB SOBOM

Max-Card % >14.8% >17.5% 5.6% 0.1% 7.2% >4.8% >12.6% >10.7
N 17.1 16.4 18.2 6.9 12.8 8.9 18.2 11.7

Table 5.6: Degree of incoherence and size of alignment in average for the optimal a
posteriori threshold.

Evaluation based on alignment coherence.

In the following we apply the Maximum Cardinality measure as proposed in [49] to
measure the degree of alignment incoherence. Results are depicted in Table 5.6 which
shows the average for all test cases of the conference track except the test cases where
the ontologies confious and linklings are involved (the prefix > is added whenever the
search algorithm stopped in one of the test case due to a timeout of 1000 seconds
prior to finding the solution). These ontologies resulted in some combinations of
ontologies and alignments in reasoning problems. Note that we did not use the original
alignments, but the alignments with optimal threshold. However, the average size of
the resulting alignment still varies to a large degree.

Compared to the other participants CODI generates the lowest degree of inco-
herence. This result is partially caused by the small size of alignments that make
the occurrence of an incoherence less probable. Taking this into account, the ASMOV
system achieves a remarkable result. Even though the alignments of ASMOV comprise
the highest number of correspondences, the degree of incoherence 5.6% is relatively
small due to the verification component built into the system [38]. Overall it is a
surprising result that still only few matching systems take alignment incoherence into
account.

5.6 Lessons learnt

In the following, we highlight some of the outcomes from the experiences made with
this campaign.

OAEI continuity. We were not sure that switching to an automated evaluation
would preserve the success of OAEI, given that the effort of implementing a web
service interface was required from participants. This has been the case. The number
of participants is similar to the numbers we observed in the last years. Moreover, the
conference track has more participants than in the last years. This might be caused
by the fact that many participants mainly focus on participating in the benchmark
track. However, once the interface is implemented it is just one additional mouse click
to participate also in the conference track.

Implementing the interface. Implementing the web service interface requires some
effort on side of a tool developer. We stayed in contact with some of the tool develop-
ers during this process. Thereby, we observed that the time required for implementing
the interface varied between several hours and several days depending on the technical

45 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

skills of each developer. We also became aware that the first version of the provided tu-
torial contained some unclear information resulting in problems for some participants.
From the feedback of the developers, we have improved the tutorial. Another typical
problem is related to the fact that some tool developer had only restricted access to
a machine that is available from the Internet. These problems could finally be solved,
however, system administrators of the particular company or research institute should
be contacted early by participants.

Usage by participants. Once technical problems had been solved, the evaluation
service has been used by some of the participants in the phase of preliminary testing
extensively. Obviously, the direct feedback of the evaluation service has supported the
process of a formative evaluation well. Other participants used the service only for
submitting their final results. This might have been caused partially by a suboptimal
runtime performance during the first weeks. Even though we finally solved the under-
lying problems, these problems might have been the reason for some participants to
abandon from the use during the first weeks. Once the problems have been solved, we
contacted each participant in order to explain the problems and many of them started
to use the system again.

Organizational effort. On side of the organizers, the evaluation service reduced the
effort of checking the formal correctness of the results to a large degree. In the past,
it was required to communicate many of the problems in a time-consuming multilevel
process. Typical examples are invalid xml, missing or incorrect namespace information,
unsupported types of relations in generated alignments, incorrect directory structure
and an incorrect naming style used for the submissions. All of these problems are
now directly forwarded to the tool developer in an error message or in a preliminary
result interpretation that does not fit with the expectations. Moreover, the organizers
could analyze the results so far submitted at any time and had an overview on the
participants using the system.

Evaluation and analysis services. While some analysis methods are already avail-
able, a number of specific services and operations is still missing. The graphical support
of the OLAP visualization does, for example, not support the generation of precision
and recall graphs frequently used by OAEI organizers. In particular, evaluation and
visualization methods specific for ontology matching are not supported. However,
most of these operations are already implemented in the Alignment API and will be
made available in the future. On the other hand we already developed and tested a
component for measuring the degree of incoherence of an alignment. We will try to
include this additional metric in the next version of the SEALS platform.

Automatic test generation. The benchmark test case is not discriminant enough
between systems. The results presented above have shown this. Next year, we plan
to introduce controlled automatic test generation in the SEALS platform. This will
improve the situation and allow OAEI organizers and SEALS campaign organizers to
construct test suites with the required type of test cases.

46 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Configuration and control over matching systems. We have seen that not all
systems followed the general rule to use the same set of parameters in all tracks. This
problem will be solved when we deploy the systems in the SEALS platform in the
following campaign. However, we also have to support different system configurations
in a controlled environment. To run a system with specific settings is an explicit
requirement of subtask #2 and #3 of the anatomy track. It should thus be possible
to run a system deployed on the SEALS platform with different parameter setting.

The new technology introduced in the OAEI affected both tool
developers and organizers to a large degree and has been accepted

positively on both sides. For the next campaign, we plan to measure
runtime and memory consumption, which cannot be correctly

measured because a controlled execution environment is missing. The
same holds for the reproducibility of the results. We also plan to

integrate additional metrics and visualization components. Finally, we
will try to find more well suited data sets to be used as test suites in
the platform, what includes the development of a test generator that

allows a controlled automatic test generation of high quality data sets.

47 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

6. Semantic search tools evaluation campaign

The SEALS Semantic Search Tool Campaign followed a ‘two phase’
approach for evaluating search tool usability and performance. This
chapter introduces the criteria of interest followed by the associated
metrics and the test sets used in each phase. Finally, we provide an
overview of the key results followed by a detailed discussion of the

usability findings.

6.1 Introduction

State-of-the-art semantic search approaches are characterised by their high level of
diversity both in their features as well as their capabilities. Such approaches employ
different styles for accepting the user query (e.g., forms, graphs, keywords) and apply
a range of different strategies during processing and execution of the queries. They
also differ in the format and content of the results presented to the user. All of these
factors influence the user’s perceived performance and usability of the tool. This
highlights the need for a formalised and consistent evaluation which is capable of
dealing with this diversity. It is essential that we do not forget that searching is a
user-centric process and that the evaluation mechanism should capture the usability
of a particular approach.

In previous evaluation efforts, Kaufmann evaluated four approaches to querying
ontologies [39]. Three were based on natural language input (with one employing a
restricted query formulation grammar); the fourth employed a formal query approach
which was hidden from the end user by a graphical query interface. A comprehensive
usability study was conducted which focused on comparing the different query lan-
guages employed by the tools. It was shown that users preferred approaches based
around full natural language sentences to all other formats and interfaces. It was also
noted that users favour query languages and interfaces in which they can naturally
communicate their information need without restrictions on the grammar used or hav-
ing to rephrase their queries. Users were also found to express more semantics (e.g.,
relations between concepts) using full sentences rather than keywords.

Another work evaluated a “hybrid search” approach [7]. Their search approach
consisted of an intelligent combination of keyword-based search and semantically mo-
tivated knowledge retrieval. To assess the effectiveness and the performance of the
approach, an in vitro evaluation was conducted to compare it against keyword-based
alone and ontology-based alone searching approaches. Additionally, the authors con-
ducted an in vivo evaluation which involved 32 subjects who gave their opinion and
comments regarding the efficiency, effectiveness, and satisfaction of the system. In
both cases, the hybrid approach was observed to be superior.

The goal of the evaluation was to create a consistent and standard evaluation that
can be used for assessing and comparing the strengths and weaknesses of Semantic
Search approaches. This allows tool adopters to select appropriate tools and technolo-
gies for their specific needs and helps developers identify gaps and limitations with

48 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

their own tools which will facilitate improving them. Furthermore, the evaluation out-
comes identify new requirements of search approaches with the aim of more closely
matching users’ needs.

6.2 Evaluation design

6.2.1 Two-phase approach

The evaluation of each tool is split into two complementary phases: the Automated
Phase and the User-in-the-loop Phase. The user-in-the-loop phase comprises a series
of experiments involving human subjects who are given a number of tasks (questions)
to solve and a particular tool and ontology with which to do it. The subjects in the
user-in-the-loop experiments are guided throughout the process by bespoke software
– the controller – which is responsible for presenting the questions and gathering the
results and metrics from the tool under evaluation. Two general forms of metrics are
gathered during such an experiment. The first type of metrics are directly concerned
with the operation of the tool itself such as time required to input a query, and time
to display the results. The second type is more concerned with the ‘user experience’
and is collected at the end of the experiment using a number of questionnaires.

The outcome of these two phases will allow us to benchmark each tool both in terms
of its raw performance but also the ease with which the tool can be used. Indeed, for
semantic search tools, it could be argued that this latter aspect is the most important.
In addition to usability questionnaires, demographics data will be collected from the
subjects enabling tool adopters to assess whether a particular tool is suited for their
target user group(s).

6.2.2 Criteria

Scalability

The recent emergence of linked data and the trend of publishing open datasets not only
increased the amount of semantically annotated data on the Web but also changed a
core characteristic of the queried ontologies and datasets: their size. Heterogeneous
datasets such as dbpedia1 or domain specific ones such as GeoNames2 are commonly
characterised by their significant sizes; GeoNames contains over eight million place
names. This highlights the need to test the ability of semantic search approaches
to scale over large data sets. This includes the ability to query large repositories in
reasonable time; the ability to cope with a large ontology; and the ability to cope with
a large amount of results returned in terms of readability/accessibility of those results.
This is assessed in the automated phase.

1http://dbpedia.org/
2http://www.geonames.org/

49 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Usability of Input Style

Different input styles (e.g., form-based, natural language, etc.) can be compared with
respect to the input query language’s expressiveness and usability. These related con-
cepts are assessed by capturing feedback regarding the user experience and assess the
usefulness of the query language in supporting the user to express their information
needs and formulate searches [64]. Additionally, the expressive power of a query lan-
guage specifies what queries a user is able to pose [2]. Any data sets and associated
questions must be designed to fully investigate these issues.

Performance

Users are familiar with the performance of commercial search engines (e.g., Google) in
which results are returned within fractions of a second; therefore, it is a core criterion
to measure the tool’s performance with respect to the speed of execution. In addition,
measures such as the precision and recall of the results returned inform us about the
quality of the underlying search technique. Performance is assessed in both phases,
although the automated phase is the dominant phase.

6.2.3 Metrics and Analyses

In addition to ‘standard’ metrics such as the result set and the time required to execute
a query, a number of phase-specific metrics are also collected (see [67] for more details).

For the automated phase, we captured the success/failure of loading an ontology
by a tool. On successful loading, we store the actual set of results returned by the
tool in response to a query and the time required to return this set of results. We also
check for more general error conditions related to the tool throughout the evaluation.
The scalability criterion is assessed by both examining the success/failure of the tool
to load a given ontology as well as examining the average time to execute a query with
respect to the ontology size. Tool robustness is represented by the ratio between the
number of tests executed and the number of failed executions. Speed of response is
calculated based on the average time required by the tool to execute the given queries.
Finally, performance measures such as precision, recall and f-measure are calculated
using the set of results returned by the tool in response for a query.

For the user-in-the-loop phase, we captured if the user could, in their opinion, find
a satisfactory answer to their query and the number of attempts they made to obtain
that answer. We also retained user-specific statistics such as the time required to
formulate the query. Data regarding the user experience and satisfaction with the tool
was collected using questionnaires (see Sec. 6.2.4). Performance measures including
the precision, recall and also the speed of response are evaluated in a similar way as
in the automated phase. Usability and the expressiveness of the input query language
adopted were evaluated based on the user-specific statistics together with the responses
of the questionnaires.

50 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

6.2.4 Questionnaires

Three different types of questionnaires are used in the user-in-the-loop phase which
serve different purposes. The first is the System Usability Scale (SUS) question-
naire [8]. The test consists of ten normalized questions and covers a variety of usability
aspects, such as the need for support, training, and complexity and has proven to be
very useful when investigating interface usability [4].

We developed a second, extended, questionnaire which includes further questions
regarding the satisfaction of the users. This encompasses the design of the tool, the
input query language, the tool’s feedback, and the user’s emotional state during the
work with the tool. An example of a question used is ‘The query language was easy
to understand and use’ with answers represented on a scale from ‘disagree’ to ‘agree’.
Finally, a demographics questionnaire collected information regarding the participants.

6.3 Datasets and Questions

For the first evaluation campaign we have taken the decision to focus on purely
ontology-based tools. More complex test data (document-based, chaotic data, data
with partially known schemas) will be considered for later evaluation campaigns. In-
deed, the SEALS consortium actively encourages community participation in the spec-
ification of subsequent campaigns.

The Automated Phase used EvoOnt3. This is a set of software ontologies and data
exchange format based on OWL. It provides the means to store all elements necessary
for software analyses including the software design itself as well as its release and bug-
tracking information. For scalability testing it is necessary to use a data set which is
available in several different sizes. In the current campaign, it was decided to use sets
of sizes 1k, 10k, 100k, 1M, 10M triples. The EvoOnt data set lends itself well to this
since tools are readily available which enable the creation of different ABox sizes for
a given ontology while keeping the same TBox. Therefore, all the different sizes are
variations of the same coherent knowledge base.

The test questions for the automated phase ranged in their level of complexity
including simple ones like “Does the class x have a method called y?” and more complex
ones like “Give me all the issues that were reported in the project x by the user y and
that are fixed by the version z?”. The inspiration for the question templates was taken
from [12], [57] and [58]. The groundtruth SPARQL queries were generated manually.

The main requirement for the user-in-the-loop dataset is that it be from a simple
and understandable domain: it should be sufficiently simple and well-known that ca-
sual end-users are able to reformulate the questions into the respective query language
without having trouble to understand them. Additionally, a set of questions are re-
quired which subjects will use as the basis of their input to the tool’s query language
or interface. The Mooney Natural Language Learning Data4 fulfils these requirements
and is comprised of three data sets each supplying a knowledge base, English questions,
and corresponding logical queries. They cover three different domains: geographical

3http://www.ifi.uzh.ch/ddis/evo/
4http://www.cs.utexas.edu/users/ml/nldata.html

51 of 76

http://www.ifi.uzh.ch/ddis/evo/
http://www.cs.utexas.edu/users/ml/nldata.html

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

data, job data, and restaurant data. We chose to apply only the geography data set,
because it defines data from a domain immediately familiar to casual users. The ge-
ography OWL knowledge base contains 9 classes, 11 datatype properties, 17 object
properties and 697 instances. An advantage of using the Mooney data for the user-
in-the-loop evaluation is the fact that it is a well-known and frequently used data set
(e.g., [39], [55] and [61]). Furthermore, its use allowed the possibility of making the
findings comparable with other evaluations of tools in this area, such as Cocktail [61],
PANTO [55] and PRECISE [55].

The complete set of questions for each dataset can be found in [66].

6.4 Participants

The list of the participants and the phases in which they participated is shown in
Table 7.2. The last two columns in the table indicate whether the tool participated in
the user-in-the-loop (UITL) and / or the automated (Auto) phase.

Table 6.1: Tools which participated in the semantic search evaluation campaign.
Tool Description UITL Auto

K-Search K-Search allows flexible searching of semantic
concepts in ontologies and documents using a
form-based interface.
http://www.k-now.co.uk/ x x

Ginseng Guided Input Natural Language Search
Engine (Ginseng) is a natural language in-
terface based question answering system
that restricts the user input via word lists
extracted from the underlying ontology.
http://www.ifi.uzh.ch/ddis/research/

talking-to-the-semantic-web/ginseng/

x x

NLP-Reduce NLP-Reduce is a natural language query inter-
face that allows its users to enter full English
questions, sentence fragments and keywords.
http://www.ifi.uzh.ch/ddis/research/

talking-to-the-semantic-web/nlpreduce/

x x

Jena Arq 2.8.2 Arq is a query engine for Jena that supports
the SPARQL RDF Query language. This tool
has been used as a ‘baseline’ for the automated
phase. http://jena.sourceforge.net/ARQ/

x

PowerAqua PowerAqua is an open multi-ontology Question
Answering (QA) system for the Semantic Web
(SW) using a Natural Language (NL) user in-
terface. http://technologies.kmi.open.ac.

uk/poweraqua/

x x

52 of 76

http://www.k-now.co.uk/
http://www.ifi.uzh.ch/ddis/research/talking-to-the-semantic-web/ginseng/
http://www.ifi.uzh.ch/ddis/research/talking-to-the-semantic-web/ginseng/
http://www.ifi.uzh.ch/ddis/research/talking-to-the-semantic-web/nlpreduce/
http://www.ifi.uzh.ch/ddis/research/talking-to-the-semantic-web/nlpreduce/
http://jena.sourceforge.net/ARQ/
http://technologies.kmi.open.ac.uk/poweraqua/
http://technologies.kmi.open.ac.uk/poweraqua/

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

All registered tools attempted to run the automated phase of the evaluation cam-
paign. The Jena Arq tool did not participate in the user-in-the-loop phase because
this tool was only included in the campaign to act as a baseline within the automated
phase. Jena Arq does not have a user interface: it only provides programmatic access
to the underlying SPARQL query engine.

6.5 Results

This section presents the results and analyses from the first SEALS Evaluation Cam-
paign which was conducted during Summer 2010.

6.5.1 Automated Phase

The automated evaluation results are shown in Table 6.2. In order to facilitate the
discussion, the responses to each of the ten questions per dataset size have been av-
eraged. Also, due to space constraints, we include the results of the the smallest and
largest datasets only. Full results and analyses can be found in [66].

Table 6.2: Semantic search tool performances on the automated scenario.
Arq K-Search PowerAqua Ginseng NLP-Reduce

EvoOnt 1k

Load successful true false true true false
Load time (ms) 1516.0 - 4522.0 43919.0 -
Num queries completed 10 - 10 10 -
Mean query time (ms) 88.4 - 1593.1 28.8 -
Mean num results 5 - 19 14 -
Mean time / results 17.68 - 83.85 2.06 -
Mean precision 1 - 0.29 0.66 -
Mean recall 1 - 0.8 0.97 -
Mean f-measure 1 - 0.42 0.78 -

EvoOnt 10M

Load successful true false true false false
Load time (ms) 473367.0 - 1234.0 - -
Num queries completed 10 - 6 - -
Mean query time (ms) 4442.3 - 82625.67 - -
Mean num results 21844 - 5943 - -
Mean time / results 0.2 - 13.9 - -
Mean precision 1 - 0 - -
Mean recall 1 - 0.17 - -
Mean f-measure 1 - 0 - -

The most unexpected outcome of the automated phase was the failure of many of
the participating tools to load even the smallest ontology. The EvoOnt ontologies have
certain interesting characteristics which, although complex, are valid and commonly

53 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Table 6.3: Semantic search tool performance on the user-in-the-loop scenario.
Criterion K-Search Ginseng NLP-Reduce PowerAqua

Mean experiment time (s) 4313.84 3612.12 4798.58 2003.9
Mean SUS (%) 44.38 40 25.94 72.25
Mean ext. questionnaire (%) 47.29 45 44.63 80.67
Mean number of attempts 2.37 2.03 5.54 2.01
Mean answer found rate 0.41 0.19 0.21 0.55
Mean execution time (s) 0.44 0.51 0.51 11
Mean input time (s) 69.11 81.63 29 16.03
Max input time (s) 300.17 300.16 278.95 202.82
Mean overall question time (s) 257.25 216.19 246.95 109.51
Mean precision 0.44 0.32 0.16 0.57
Mean recall 0.61 0.32 0.55 0.68
Mean f-measure 0.46 0.27 0.21 0.57

found on the Semantic Web. One of these characteristics is importing of external
ontologies from the web. Also, the ontologies include orphan object and datatype
properties, and finally some concepts have cyclic relations with concepts in remote
ontologies. This informs the tools’ scalability, conformance with standards and suit-
ability to the Semantic Web. Unfortunately, many of the participating tools were not
able to cope with these standards. Such interoperability issues are critical to the wide
adoption of any search approach and associated tool.

6.5.2 User-in-the-Loop Phase

Table 6.3 shows the results for the four tools participating in this phase. The mean
number of attempts shows how many times the user had to reformulate their query
using the tool’s interface in order to obtain answers with which they were satisfied (or
indicated that they were confident a suitable answer could not be found). This latter
distinction between finding the appropriate answer after a number of attempts and
the user ‘giving up’ after a number of attempts is shown by the mean answer found
rate. Input time refers to the amount of time the subject spent formulating their query
using the tool’s interface, which acts as a core indicator of the tool’s usability.

Here, we focus solely on usability (see [66] for more detailed results analysis).
According to the ratings of SUS scores [5], none of the four participating tools fell
in either the best or worst category. Only one of the tools had a ‘Good’ rating with
a SUS score of 72.25, other two tools fell in the ‘Poor’ rating while the last one was
classified as ‘Awful’.

The results of the questionnaires were confirmed by the recorded usability measures.
Subjects using the tool with the lowest SUS score required more than twice the number
of attempts of the other tools before they were satisfied with the answer or moved on.
Similarly, subjects using the two tools with the highest SUS and extended scores found
satisfying answers to their queries twice the times as for the other tools. Altogether,

54 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Liked	
 Disliked	

Input	
 Style	

Query	

Execu6on	

Results	

Presenta6on	

View	

search	

domain	

Build	
 complex	

queries	
 (“AND”,	

“OR”,…	
)	

Input	
 format	

complexity	

Requires	

knowledge	

of	

ontologies	

Auto-­‐	

compleGon	

Restricted	

language	

model	

AbstracGon	
 of	

search	
 domain	
 	

No	
 	
 support	
 for	

superlaGves	
 or	

comparaGves	
 in	

queries	

Fast	
 response	

No	
 feedback	
 on	

execuGon	
 status	

Merging	

results	

Show	

provenance	
 of	

results	

Natural	
 &	
 familiar	

	
 language	

Easy	
 &	
 fast	

input	

Not	
 suitable	
 for	

casual	
 users	

No	
 feedback	
 on	

empty	
 results	

No	
 sorGng,	

grouping,	
 or	

filtering	
 of	
 results	

No	
 storing/
reuse	
 of	
 query	

results	

No	
 incremental	

results	

Figure 6.1: Summary of the semantic search evaluation feedback.

this confirms the reliability of the results and the feedback of the users and also the
conclusions based on them.

6.6 Usability Feedback and Analysis

This section discusses the results and feedback of the user-in-the-loop phase. Figure
6.1 summarises the features most liked and disliked by users based on their feedback.

6.6.1 Input Style

Uren et al. [64] state that forms can be helpful to explore the search space when it
is unknown to the users. However, Lei et al. [42] see this exploration as a burden on
users that requires them to be (or become) familiar with the underlying ontology and
semantic data. We found that form-based interfaces allow users to build more complex
queries than the natural language interfaces. However, building queries by exploring
the search space is usually time consuming especially as the ontology gets larger or the
query gets more complex [39]. Our analysis suggests a more nuanced behaviour. While
freeform natural language interfaces are generally faster in terms of query formulation,
we found this did not hold for approaches employing a very restricted language model.
This is further supported by user feedback in which it was reported that they would
prefer typing a natural language query because it is faster than forms or graphs.

Although natural language interfaces are often preferred [39] and offer more expres-
sivity [14], such approaches suffer from both syntactic as well as semantic ambiguities.
This makes the overall performance of such approaches heavily dependent upon the
performance of the underlying natural language processing techniques responsible for

55 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

parsing and analysing the users’ natural language sentences. This was supported both
by our evaluation’s user feedback as well as the lowest precision scores.

Using a restricted grammar as employed by Ginseng is an approach to limit the
impact of these problems. The ‘autocompletion’ provided by the system based on the
underlying grammar attempts to bridge the domain abstraction gap and also resembles
the form-based approach in helping the user to better understand the search space.
However, it still lacks the power of visualising the structure of the used ontology. The
impact of this ‘intermediate’ functionality can be observed in the user feedback with
a lower degree of dissatisfaction regarding the ability to conceptualise the underlying
data but still not completely eliminated. The restricted language model also prevents
unacceptable/invalid queries in the used grammar by employing a guided input natural
language approach. However, only accepting specific concepts and relations – found
in the grammar – limits the flexibility and expressiveness of the user queries. User
coercion into following predefined sentence structures proves to be frustrating and too
complicated [67, 39].

The results of our evaluation showed that using superlatives or comparatives in
the user queries was not supported by any of the participating tools which was disap-
pointing for the users.

6.6.2 Processing feedback

The lack of feedback on the status of the execution process increased the sense of
dissatisfaction: no tool indicated the execution progress or whether a problem had oc-
curred in the system. This lack of feedback resulted in users suspecting that something
had gone wrong with the system – even if the search was progressing as normal – and
try to start a new search. Furthermore, some tools made it impossible to distinguish
between an empty result set, a problem with the query formulation or a problem with
the search. This not only affected the users experience and satisfaction but also the
approach’s measured performance.

6.6.3 Results Presentation

Semantic Search tools tend to be used by casual users (i.e., users who may be experts
in the domain of the underlying data but may have no knowledge of semantic tech-
nologies). Such users usually have specific requirements and expectations of what and
how results should be presented to them.

In contrast, a number of the search tools did not present their results in a user-
friendly manner (collections of URIs or difficult to interpret instance labels) and this
was reflected in the feedback. Although potentially useful to an expert in the semantic
web field, this was not helpful to casual users.

The other commonly reported limitation of all the tools was the degree to which a
query’s results could be stored or reused. Users often wanted to use previous results
as the basis of a further query or to temporarily store the results in order to perform
an intersection or union operation with the current result set. Unfortunately, this
was not supported by any of the participating tools. Another means of managing
the results that users requested was the ability to filter results according to some

56 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

suitable criteria and checking the provenance of the results; only one tool provided the
latter. Indeed, even basic manipulations such as sorting were requested – a feature
of particular importance for tools which did not allow query formulations to include
superlatives.

There is still work to be done to ensure semantic search tools can load
or use as wide a range of ontologies and data sets as possible. The

usability phase identified a number of features that end users would
like: a hybrid approach to browsing the ontology and creating queries
which would combine both a visual representation of the underlying
ontology and natural language input; better feedback regarding the

processing state of the tool (e.g., to distinguish between a query
failure and an empty result set); improved result set management

(sorting, filtering, ability to use as the target of a subsequent query,
etc.) and the inclusion of ‘related’ information (possibly drawn from

other data sets).

57 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

7. Semantic web service tools evaluation campaign

The SEALS Evaluation Campaign for Semantic Web Service (SWS)
Tools consisted of the Discovery scenario. This was an experimental
evaluation that included existing tools and datasets available from

previous initiatives. We have also provided a common evaluation SWS
API and integrated a number of evaluation metrics in our

implementation.

7.1 Introduction

Semantic Web Service (SWS) technologies enable the automation of discovery, selec-
tion, composition, mediation and execution of Web Services by means of semantic
descriptions of their interfaces, capabilities and non-functional properties. SWS pro-
vide a layer of semantics for service interoperability by relying on a number of reference
service ontologies (e.g., OWL-S1, WSMO2 , WSMO-Lite3) and semantic annotation
extension mechanisms (e.g., SAWSDL4, SA-REST5, MicroWSMO6). The work per-
formed in SEALS regarding SWS tools is based upon the Semantic Web Service stan-
dardization effort that is currently ongoing within the OASIS Semantic Execution
Environment Technical Committee (SEE-TC)7. A Semantic Execution Environment
(SEE) is made up of a collection of components that are at the core of a Semantic
Service Oriented Architecture (SOA). These components provide the means for au-
tomating many of the activities associated with the use of Web Services, thus they
will form the basis for creating the SWS plugin APIs and services for SWS tools
evaluation.

The evaluation of Semantic Web Services is currently being pursued by a few ini-
tiatives using different evaluation methods. Although these initiatives have succeeded
in creating an initial evaluation community in this area, they have been hindered
by the difficulties in creating large-scale test suites and by the complexity of manual
testing to be done. In principle, it is very important to create test datasets where
semantics play a major role for solving problem scenarios; otherwise comparison with
non-semantic systems will not be significant, and in general it will be very difficult
to measure tools or approaches based purely on the value of semantics. Therefore,
providing an infrastructure for the evaluation of SWS that supports the creation and
sharing of evaluation artifacts and services, making them widely available and regis-
tered according to problem scenarios, using agreed terminology, can benefit evaluation
participants and organizers. In this chapter we describe the approach for the auto-

1http://www.w3.org/Submission/OWL-S/
2http://www.wsmo.org/
3http://www.w3.org/Submission/2010/SUBM-WSMO-Lite-20100823/
4http://www.w3.org/2002/ws/sawsdl/
5http://www.w3.org/Submission/SA-REST/
6http://www.wsmo.org/TR/d38/v0.1/
7www.oasis-open.org/committees/ex-semantics

58 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

matic evaluation of Semantic Web Services using the SEALS platform and the results
of the SWS evaluation campaign (2010).

Within SEALS, we propose an evaluation approach that is informed by and im-
proves existing SWS tool evaluation initiatives. In this sense, our approach shares the
goals and objectives of these initiatives. We describe the design of evaluations, con-
sidering existing test suites as well as repository management and evaluation measure
services that will enable evaluation campaign organizers and participants to evaluate
SWS tools. Currently, we focus on the SWS discovery activity, which consists of find-
ing Web Services based on their semantic descriptions. Tools for SWS discovery or
matchmaking can be evaluated on retrieval performance, where for a given goal, i.e.
a semantic description of a service request, and a given set of service descriptions,
i.e. semantic descriptions of service offers, the tool returns the match degree between
the goal and each service, and the platform measures the rate of matching correctness
based on a number of metrics. The evaluation of SWS tools uses metadata, described
via ontologies, about the evaluation scenario, tools, test data and results stored in
repositories. The evaluation scenario metadata informs which test suites and tools
participate in a specific evaluation event, and provides the evaluation workflow. The
test data metadata informs how the test data is structured for consumption. More
specifically, the metadata for SWS discovery test suites describes the set of service
descriptions, the list of goals and the reference sets (expert’s relevance values between
a goal and a service). In addition, the evaluation of SWS tools produces two types
of results: raw results, which are generated by running a tool with specific test data;
and interpretations, which are the results obtained after the evaluation measures are
applied over the raw results. The format of the results is also described via ontologies.

7.2 Previous Evaluations

In the following we provide information, extracted from the respective websites, about
three current SWS evaluation initiatives: the SWS Challenge; the S3 Contest; and the
WS Challenge (WSC).

The SWS Challenge8(SWSC) aims at providing a forum for discussion of SWS
approaches based on a common application base. The approach is to provide a set of
problems that participants solve in a series of workshops. In each workshop, partici-
pants self-select which scenario (e.g. discovery, mediation or invocation) and problems
they would like to solve. Solutions to the scenarios provided by the participants are
manually verified by the Challenge organising committee. The evaluation is based on
the level of effort of the software engineering technique. That is, given that a certain
tool can solve correctly a problem scenario, the tool is certified on the basis of being
able to solve different levels of the problem space. In each level, different inputs are
given that requires a change in the provided semantics. A report on the methodology
for the SWSC has been published in the W3C SWS Testbed Incubator9. One of the
important goals of the SWSC is to develop a common understanding of the various
technologies evaluated in the workshops. So far, the approaches range from conven-

8http://sws-challenge.org
9http://www.w3.org/2005/Incubator/swsc/XGR-SWSC-20080331

59 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

tional programming techniques with purely implicit semantics, to software engineering
techniques for modelling the domain in order to more easily develop application, to
partial use of restricted logics, to full semantics annotation of the web services.

The Semantic Service Selection10 (S3) contest is about the retrieval performance
evaluation of matchmakers for Semantic Web Services. S3 is a virtual and indepen-
dent contest, which runs annually since 2007. It provides the means and a forum
for the joint and comparative evaluation of publicly available Semantic Web service
matchmakers over given public test collections. S3 features three tracks: OWL-S
matchmaker evaluation (over OWLS-TC11); SAWSDL matchmaker evaluation (over
SAWSDL-TC12); cross evaluation (using JGD13 collection). The participation in the
S3 contest consists of: a) implementing the SME214 plug-in API for the participants
matchmaker together with an XML file specifying additional information about the
matchmaker; and b) using the SME2 evaluation tool for testing the retrieval perfor-
mance of the participants matchmaker over a given test collection. This tool has a
number of metrics available and provides comparison results in graphical format. The
presentation and open discussion of the results with the participants is performed by
someone from the organisational board at some event like the SMR2 workshop (Service
Matchmaking and Resource Retrieval in the Semantic Web).

The Web Service Challenge15 (WSC) runs annually since 2005 and provides a
platform for researchers in the area of web service composition that allows them to
compare their systems and exchange experiences. Starting from the 2008 competition,
the data formats and the contest data are based on the OWL for ontologies, WSDL
for services, and WSBPEL for service orchestrations. In 2009, services were annotated
with non-functional properties. The Quality of Service of a Web Service is expressed
by values expressing its response time and throughput. The WSC awards the most
efficient system and also the best architectural solution. The contestants should find
the composition with the least response time and the highest possible throughput.
WSC uses the OWL format, but semantic evaluation is strictly limited to taxonomies
consisting of sub and super class relationship between semantic concepts only. Seman-
tic individuals are used to annotate input and output parameters of services. Four
challenge sets are provided and each composition system can achieve up to 18 points
and no less than 0 points per challenge set. Three challenge sets will have at least one
feasible solution and one challenge set will have no solution at all.

7.3 Evaluation Design

We can summarize the goals of SWS tool evaluation as below:

• Provide a platform for the joint and comparative evaluation of publicly available
Semantic Web service tools over public test collections.

10http://www-ags.dfki.uni-sb.de/ klusch/s3/index.html
11http://projects.semwebcentral.org/projects/owls-tc/
12http://projects.semwebcentral.org/projects/sawsdl-tc/
13http://fusion.cs.uni-jena.de/professur/jgd
14http://www.semwebcentral.org/projects/sme2/
15http://ws-challenge.georgetown.edu/wsc09/technical details.html

60 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

• Provide a forum for discussion of SWS approaches.

• Provide a common understanding of the various SWS technologies.

• Award tools as a result of solving common problems.

• Improve programmer productivity and system effectiveness by making semantics
declarative and machine-readable.

We are interested in evaluating performance and scalability as well as solution
correctness of application problems. We comment below on how we consider several
evaluation criteria for SWS tools.

• Performance - This is specific to the type of SWS activity. For retrieval per-
formance in discovery activities (i.e. service matchmaking), measures such as
Precision and Recall are usually used. More generic performance measures are
execution time and throughput.

• Scalability - Scalability of SWS tools are associated with the ability to perform an
activity (e.g. discovery) involving an increasing amount of service descriptions.
This can be measured together with performance (above), however, this is also
related to the scalability of repositories.

• Correctness - This is related to the ability of a tool to respond correctly to dif-
ferent inputs or changes in the application problem by changing the semantic
descriptions. This criterion is related to mediation and invocation of SWS. Mes-
sages resulting from the invocation or interaction of services should be checked
against a reference set.

• Conformance - We are not concerned with measuring the conformance of a tool
to a predefined standard. Instead, we will use a reference SWS architecture in
order to define a SWS plugin API and a measurement API.

• Interoperability - As we are interested in evaluating SWS usage activities instead
of the interchange of SWS descriptions, we are not concerned with measuring
interoperability between tools.

• Usability - Although it might be useful to know which SWS tools have an easy
to-use user interface or development environment, we consider that at this point
in time due to the few number of front-ends for SWS development, a comparison
would be more easily done using feedback forms. Therefore, we will not be
concerned with measuring usability of SWS tools.

7.4 Evaluation Scenario

In the first SEALS evaluation campaign (2010) we executed the SWS discovery eval-
uation scenario16. This evaluation scenario was performed experimentally in order to

16http://www.seals-project.eu/seals-evaluation-campaigns/semantic-web-services

61 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

test services of the SEALS platform. Note that not all capabilities were available at
the moment. Therefore, the results were also experimental and comparable to the
results obtained when participating for example in the S3 contest.

Basically, participants register their tool via the Web interface provided in the
SEALS website17 and the organizers download and run their tools as part of the
evaluation campaign scenario. Participants are also required to implement the SWS
Tool plugin API according to the instructions provided in the website. The organizers
make instructions available for the participants about the scenario and perform the
evaluation automatically by executing the evaluation workflow. The results become
available in the Results Repository.

We focused on the SWS discovery activity, which consists of finding Web Services
based on their semantic descriptions. Tools for SWS discovery or matchmaking can be
evaluated on retrieval performance, where for a given goal, i.e. a semantic description
of a service request, and a given set of service descriptions, i.e. semantic descriptions
of service offers, the tool returns the match degree between the goal and each service,
and the SEALS platform, through the provided services, measures the rate of matching
correctness based on a number of metrics.

7.4.1 The SWS Plugin

In SEALS we provide the SWS plugin API, available from the campaign website, that
must be implemented by tool providers participating in the SWS tool evaluation. The
SWS Plugin API has been derived from the SEE API and works as a wrapper for SWS
tools, providing a common interface for evaluation.

The Discovery Interface has 3 methods (init(), loadServices(), discover()) and
defines a class for returning discovery results. The methods are called in different steps
of the evaluation workflow. The method init() is called once after the tool is deployed
so that the tool can be initialized. The method loadServices() is called once for every
dataset during the evaluation (loop) so that the list of services given as arguments can
be loaded. The method discover() is called once for every goal in the dataset during
the evaluation (loop) so that the tool can find the set of services that match the goal
given as argument. The return type is defined by the class DiscoveryResult. The class
DiscoveryResult contains the goal and the list of service matches (class Match). The
class Match contains the service description URI, the order (rank), the match degree
(’NONE’, ’EXACT’, ’PLUGIN’, ’SUBSUMPTION’) and the confidence value, which
can be used as the score value. It is expected that the services that do not match are
returned with match degree ’NONE’.

7.4.2 Implemented Measures

Evaluation measures for SWS discovery will follow in general on the same principles
and techniques from the more established Information Retrieval (IR) evaluation re-
search area. Therefore we will use some common terminology and refer to common

17http://www.seals-project.eu/registertool

62 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

measures. For a survey of existing measures we refer the reader to existing published
papers, for example [13] and [40].

In SEALS we make the measurement services available as a plugin (currently Java
interfaces). That is, we can implement the interface using any publicly available met-
rics APIs. In the interface, DiscoveryMeasurement is the main class, which returns
metrics results for a given Discovery Result and Reference Set corresponding to the
same goal. This class also returns overall measures for a list of goals. The Discovery
Result class is part of the SWS plugin API (Section above). The DiscoveryRefer-
enceSet class contains the list of service judgments (class DiscoveryJudgement) for
a specific goal, which includes the service description URI, and the relevance value.
The relevance value is measured against the match degree or confidence (score) value
returned by a tool. The MetricsResult class will contain a list of computed measure
values such as precision and recall and also some intermediate results such as the as
number of returned relevant services for a goal.

In our current implementation of the DiscoveryMeasurement interface we use the
evaluation metrics available from Galago18 as described in Table 7.1. Galago is a
open source toolkit for experimenting with text search. It is based on small, pluggable
components that are easy to replace and change, both during indexing and during
retrieval. In particular, we used the retrieval evaluator component, which computes a
variety of standard information retrieval metrics commonly used in TREC. Galago is
written in Java and works on any system with a JDK version 1.5 or later.

7.5 Test Data

For our evaluation we used the OWLS-TC 4.0 test collection19, which is intended to be
used for evaluation of OWL-S matchmaking algorithms. OWLS-TC is used worldwide
(it is among the top-10 download favourites of semwebcentral.org) and the de-facto
standard test collection so far. It has been initially developed at DFKI, Germany, but
later corrected and extended with the contribution of many people from a number
of other institutions (including e.g. universities of Jena, Stanford and Shanghai, and
FORTH). The OWLS-TC4 version consists of 1083 semantic web services described
with OWL-S 1.1, covering nine application domains (education, medical care, food,
travel, communication, economy, weapons, geography and simulation). OWLS-TC4
provides 42 test queries associated with binary as well as graded relevance sets. 160
services and 18 queries contain Precondition and/or Effect as part of their descriptions.

In order to make the OWLS-TC4.0 test collection available via the SEALS test
data repository, we created metadata described with the Suite ontology and the Dis-
coveryTestSuite ontology as described in D5.4 [47] and D14.2 [10]. The test collection
suite was encapsulated in a ZIP file, including the metadata, which has the file name
Metadata.rdf and registered in the SEALS Test Data Repository.

According to the Suite ontology, the suite metadata is described with the concepts
Suite, SuiteItem and DataItem, where a Suite consist of multiple SuiteItems, which
itself consists of various DataItems. In the metadata for OWLS-TC4.0, the Suite

18http://www.galagosearch.org/galagosearch-core/apidocs/
19http://projects.semwebcentral.org/projects/owls-tc/

63 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Table 7.1: Description of Metrics as implemented by Galago (reproduced for conve-
nience).

Measure Description

Num Ret Number of retrieved documents
Num Rel Total number of documents judged relevant
Num Rel Ret Number of retrieved documents that were judged relevant
Aver Prec Average Precision. “Suppose the precision is evaluated once at

the rank of each relevant document in the retrieval. If a docu-
ment is not retrieved, we assume that it was retrieved at rank
infinity. The mean of all these precision values is the average
precision”.

NDCG @ N Normalized Discounted Cumulative Gain at cutoff point N.
“This measure was introduced in Jarvelin, Kekalainen, “IR Eval-
uation Methods for Retrieving Highly Relevant Documents” SI-
GIR 2001. The formula is copied from Vassilvitskii, “Using Web-
Graph Distance for Relevance Feedback in Web Search”, SIGIR
2006. Score = N

∑
i(2

r(i) − 1)/ log(1 + i) , where N is such that
the score cannot be greater than 1. We compute this by com-
puting the DCG (unnormalized) of a perfect ranking”.

NDCG Normalized Discounted Cumulative Gain. “NDCG at
(Math.max(retrieved.size(), judgments.size())”.

R-prec R-Precision. “Returns the precision at the rank equal to the
total number of relevant documents retrieved. This method is
equivalent to precision(relevantDocuments().size())”.

Bpref Binary Preference. “The binary preference measure, as pre-
sented in Buckley, Voorhees “Retrieval Evaluation with Incom-
plete Information”, SIGIR 2004. The formula is: 1/R

∑
r 1 −

|nrankedgreaterthanr|/R where R is the number of relevant
documents and n is a member of the set of first R judged ir-
relevant documents retrieved”.

Recip Rank Reciprocal Rank. “Returns the reciprocal of the rank of the first
relevant document retrieved, or zero if no relevant documents
were retrieved”.

Precision @ N Precision at cutoff point N. “Returns the precision of the re-
trieval at a given number of documents retrieved. The precision
is the number of relevant documents retrieved divided by the
total number of documents retrieved”.

Recall @ N Recall at cutoff point N. “Returns the recall of the retrieval at a
given number of documents retrieved. The recall is the number
of relevant documents retrieved divided by the total number of
relevant documents for the query”.

64 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Items in Metadata.rdf consist of 42 discovery tests, which correspond to the number
of reference sets in the test collection. Each Discovery Test Suite consists of a goal
document and a list of judged service documents associated with it. Each service has
a relevance element, indicating the relevance value between the service document and
the goal document. The test collection can be accessed via the Test Data Repository
Service20 We selected a number of queries and used the service descriptions (from the
test collection) included in their reference sets. The test collection was also deployed
locally in a Glassfish Server and made available as prescribed by OWLS-TC. For
example, service descriptions were available at http://127.0.0.1/services/1.1/.

7.6 Tools Evaluated

The list of participating tools is shown in Table 7.2. These tools are variants of
OWLS-MX21 and are publicly available. Each OWLS-MX variant runs a different
similarity measure algorithm and can be adjusted to run with certain parameters,
which include type of sorting (Semantic (2); Syntactic(1); hybrid (0)) and syntactic
similarity threshold (0.0 - 1.0) .

For our evaluation we packed each variant as a different tool, according to the
instructions provided in the website22. We downloaded the source code and created a
jar of the OWLS-MX API not including the GUI APIs.

Regarding the SWS Plugin API, we implemented the required methods (init(),
loadServices(), discover()) by calling the appropriate methods of the OWLS-MX API.

7.6.1 Tool Parameter Settings

OWLS-M0 was configured in a way that only semantic based results (degree of match
equals to 0 (exact), 1 (plugin), 2 (subsumes) or 3 (subsumed-by)) were included in
the set of retrieved matches (raw results). Thus, it used the semantic type of sorting
mentioned previously.

OWLS-M2 and OWLS-M3 were configured in a way that all results with syntactic
similarity greater than zero were included in the set of retrieved matches (raw results).
The degree of match was not taken into account. They used the syntactic type of
sorting mentioned previously.

OWLS-M4 was configured in a way that only syntactic based results (degree of
match equals 4 (nearest neighbour)) with syntactic similarity greater than 0.7 were
included in the set of retrieved matches (raw results). It used the syntactic type of
sorting mentioned previously.

The goals for these setting were: a) to compare the performance of a semantic
based variant (OWLS-M0) with the performance of a syntactic based variant (OWLS-
M4); and b) compare the performance of two syntactic based variants (OWLS-M2 and
OWLS-M3) using different matching algorithms (similarity measures).

20 http://seals.sti2.at/tdrs-web/testdata/persistent/OWLS-TC/4.0/suite/
21http://projects.semwebcentral.org/projects/owls-mx/
22http://www.seals-project.eu/seals-evaluation-campaigns/semantic-web-services

65 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

Table 7.2: Evaluation campaign participating tools.
Tool Description

OWLS-M0 OWLS-MX variant - Constraint Similarity Measure
OWLS-M2 OWLS-MX variant - Extended Jaccard Similarity Measure
OWLS-M3 OWLS-MX variant - Cosine Similarity Measure
OWLS-M4 OWLS-MX variant - Jensen Shannon Similarity Measure

7.7 Evaluation Results

We show the results for three individual Goals (service requests) within OWLS-TC
4.0 as shown in Table 7.3. We have not performed overall measures (over all goals).

Table 7.3: Goals (service requests) in evaluation.
Goal Name URI

request id=“5” car price service http://127.0.0.1/queries/1.1/
car price service.owls

request id=“8” 2 For 1 Price service http://127.0.0.1/queries/1.1/ dvd-
playermp3player price service.owls

request id=“21” Researcher address service http://127.0.0.1/queries/1.1/
researcher-in-
academia address service.owls

Results from our evaluation for the test data and tools explained in the previous
sections are given in Table 7.4. This table shows the comparative retrieval perfor-
mance per Goal (service request) of OWLS-M0, OWLS-M2, OWLS-M3, OWLS-M4
over OWLS-TC4 datasets. The two first rows indicate the parameter settings of the
tools as explained previously. The metrics have been explained in Table 7.1.

For reference purposes, we added a reference implementation (Ref), which accessed
the dataset and retrieved all the relevant services from the reference set. Thus, the
expected values for Precision and Recall of the Ref tool is one. We used the number
of documents retrieved as the cutoff point for all tests. Loading time was calculated
by measuring the time to execute the loadService() method in the SWS plugin.

We downloaded the test suites metadata from the SEALS repository and performed
the evaluation in a local machine. The configuration of the local machine was an Intel
Core 2 Duo CPU, 3 GHz processor, 64-bit OS, 4GB RAM, running Windows 7.

Ref OWLS-M0 OWLS-M2 OWLS-M3 OWLS-M4

Semantic Sorting - yes no no no
Syntactic Threshold - - 0 0 0.70

Request Id=05
Load time (ms) 243 22358 21713 21745 21592

continued on next page

66 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

continued from previous page

Ref OWLS-M0 OWLS-M2 OWLS-M3 OWLS-M4

Dataset size 176 176 176 176 176
Num Rel 93 93 93 93 93
Num Ret 93 21 174 174 5
Num Rel Ret 93 20 93 93 4
Aver Prec 47.00 2.26 47.00 47.00 0.11
NDCG 4.68 1.01 4.68 4.69 0.20
NDCG at Ret 4.68 2.75 4.68 4.68 1.36
R-prec 1.00 0 1.00 1.00 0
Bpref 0 0 0 0 0
Recip Rank 1.00 1.00 1.00 1.00 1.00
Precision at Ret 1.00 0.95 0.54 0.54 0.80
Recall at Ret 1.00 0.22 1.00 1.00 0.04

Request Id=08
Load time (ms) 715 29910 29892 30448 30558
Dataset size 171 171 171 171 171
Num Rel 27 27 27 27 27
Num Ret 27 24 164 164 44
Num Rel Ret 27 20 27 27 6
Aver Prec 14.00 7.78 14.00 14.00 0.78
NDCG 3.16 2.34 3.16 3.16 0.70
NDCG at Ret 3.16 2.53 3.16 3.16 0.70
R-prec 1.00 0 1.00 1.00 0.22
Bpref 0 0 0 0 0
Recip Rank 1.00 1.00 1.00 1.00 1.00
Precision at Ret 1.00 0.95 0.17 0.17 0.14
Recall at Ret 1.00 0.74 1.00 1.00 0.22

Request Id=21
Load time (ms) 756 144176 144421 144875 145062
Dataset size 283 283 283 283 283
Num Rel 72 72 72 72 72
Num Ret 72 19 76 76 5
Num Rel Ret 72 18 32 32 5
Aver Prec 36.50 2.38 7.33 7.33 0.21
NDCG 4.34 1.09 1.93 1.93 0.30
NDCG at Ret 4.34 2.64 1.93 1.93 1.70
R-prec 1.00 0 0.44 0.44 0
Bpref 0 0 0 0 0
Recip Rank 1.00 1.00 1.00 1.00 1.00
Precision at Ret 1.00 0.95 0.42 0.42 1.00
Recall at Ret 1.00 0.25 0.44 0.44 0.07

Table 7.4: Comparative tool performance on the OWLS-TC4 dataset.

67 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

SWS tools evaluation produces two types of results, stored in the Result Repository
Service: raw results23, which are generated by running a tool with specific test data,
and interpretations24, which are obtained after the evaluation metrics are applied over
the raw results.

7.8 Lessons Learnt

We have performed an experimental evaluation with the objective of testing the SEALS
infrastructure. The evaluation results are not meant to be conclusive in terms of tool
performance, but instead count as input to requirements for the SEALS infrastructure.
Currently, we do not provide comparative results in graphical form. Instead, evaluation
results are stored in RDF and can be visualized in HTML.

From our analysis, we find that public intermediate results and repeatability are
important for studying the behaviour of the tools under different settings (not only
best behaviour). In addition, the SEALS infrastructure can help in several steps of
the evaluation process, including generating and accessing datasets and results via
metadata.

With respect to the datasets we noticed that all variants of OWLS-MX could
retrieve all the same relevant services for a given reference set, provided that they
were set with the same parameters. Thus, either the algorithms are not being invoked
properly or the measures seem not to account for the different matching algorithms
(similarity measures) used by the different variants (e.g. execution time). When recall
at number retrieved is equal to 1 for a high number of queries, this indicates bias of
the test suite against the tool. It would be important to check whether OWLS-TC
has bias towards the OWLS-MX tools. It is important that the SWS community get
more engaged in creating non-biased datasets.

In addition, given that small changes in parameters can produce different results,
it is also important to make intermediate results available (via evaluation services)
and provide alternative metrics. Overall, it was not easy to say why some tools fail to
certain queries. But, we have noticed that some ontologies could not be read. Thus,
it is important to introduce some validation procedure.

With respect to measures, we have implemented for this evaluation the API pro-
vided by Galago, which provides several measures covering the ones provided by SME2
(S3 Contest), and also additional ones. The SEALS infrastructure allows to plugin
different source APIs as metrics services.

In this chapter we have shown how to use the ongoing approach and services for
SWS tools evaluation using the SEALS platform. The SWS plugin API is currently
very similar to SME2’s matchmaker plugin in what concerns discovery (matchmaking).
However, the former will be extended in order to account for other activities such as
composition, mediation and invocation. There are also many similarities in purpose
between our approach and existing initiatives in that they all intend to provide evalua-
tion services and promote discussion on SWS technologies within the SWS community.
In this case, the main difference is that SEALS is investigating the creation of common

23http://seals.sti2.at/rrs-web/results/
24http://seals.sti2.at/rrs-web/interpretations/

68 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

and sharable metadata specifications for test data, tools and evaluation descriptions
as well as respective public repositories. In addition, results are publicly available and
can be used for alternative visualizations by users.

For future campaigns we plan to provide new datasets not yet
available from existing evaluation initiatives and add new evaluation

scenarios such as SWS composition

69 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

8. Conclusions

This report has presented an overview of the first series of evaluation campaigns or-
ganised in the SEALS project for the five types of technologies covered in it: ontol-
ogy engineering tools, ontology reasoning systems, ontology matching tools, semantic
search tools, and semantic web services.

In these five evaluation campaigns, 32 tools from all around the world were eval-
uated using common evaluation methods and test data. In some cases, we followed
existing evaluation methods and used available test data; in other cases, we defined
new evaluations methods and test data to enhance the evaluations performed in the
evaluation campaigns.

We have established as a result of our experiences from the first evaluation cam-
paigns that the chosen evaluation methodologies and test data are an appropriate
basis for discovering useful evaluation results from the participating tools. In general,
it can be seen that semantic tools are reaching maturity with respect to the key char-
acteristics for their domains, and hence there is a real value to be had in comparative
evaluation to guide tool selection, since different tools in the same domain still exhibit
significant differences in implementation or functionality which are of importance in
differing usage scenarios.

We aim in the second campaign to broaden the extent of involved tools in the
evaluations, since this will improve the possibility to determine the current state of
the art of the tools in the given domain, and how they compare to one another.

All the resources used in the SEALS Evaluation Campaigns as well as the results
obtained in them will be publicly available through the SEALS Platform. This way,
anyone interested in evaluating one of the technologies covered in the project will be
able to do so, and to compare to others, with a small effort. The SEALS evaluation
infrastructure will be open to all via the SEALS website, requiring only a simple pre-
registration in order to be able to access our Community Area. Within the Community
Area, there is the possibility to register a tool, describe it, upload it to SEALS and
execute evaluations upon it, gaining immediately an insight into how it compares to
the previously evaluated tools.

Our future plans are to extend the evaluations defined for the different types of
technologies and, once these extensions are ready, we plan to conduct a second edition
of the SEALS Evaluation Campaigns. This second Campaign is scheduled to begin in
the summer of 2011, and by the close of the SEALS project in early 2012 we will publish
a second white paper on semantic tool evaluation which is intended for potential tool
adopters, in order to guide them with respect to their choice of tools when seeking to
benefit from the use of semantic technology within their systems and IT projects.

70 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

References

[1] J. Angele and Y. Sure, editors. Proceedings of the 1st International Workshop
on Evaluation of Ontology-based Tools (EON2002), volume 62, Sigüenza, Spain,
September 2002. CEUR-WS.

[2] Renzo Angles and Claudio Gutierrez. The expressive power of SPARQL. In ISWC
’08: Proceedings of the 7th International Conference on The Semantic Web, pages
114–129, Berlin, Heidelberg, 2008. Springer-Verlag.

[3] Benhamin Ashpole, Marc Ehrig, Jérôme Euzenat, and Heiner Stuckenschmidt,
editors. Integrating Ontologies’05, Proc. of the K-Cap Workshop on Integrating
Ontologies, Banff (Canada), 2005.

[4] A. Bangor, P. T. Kortum, and J. T. Miller. An empirical evaluation of the
system usability scale. International Journal of Human-Computer Interaction,
24(6):574–594, 2008.

[5] A. Bangor, P. T. Kortum, and J. T. Miller. Determining what individual sus
scores mean: Adding an adjective rating scale. Journal of Usability Studies,
4(3):114–123, 2009.

[6] B.Glimm, M. Horridge, B. Parsia, and P. F. Patel-Schneider. A syntax for rules
in owl 2. In Proceedings of the 6th International Workshop on OWL: Experiences
and Directions (OWLED 2009), volume 529. CEUR, 2009.

[7] Ravish Bhagdev, Sam Chapman, Fabio Ciravegna, Vitaveska Lanfranchi, and
Daniela Petrelli. Hybrid search: Effectively combining keywords and ontology-
based searches. In Manfred Hauswirth, Manolis Koubarakis, and Sean Bechhofer,
editors, Proceedings of the 5th European Semantic Web Conference, LNCS, Berlin,
Heidelberg, June 2008. Springer Verlag.

[8] John Brooke. SUS: a quick and dirty usability scale. In P. W. Jordan, B. Thomas,
B. A. Weerdmeester, and I. L. McClelland, editors, Usability Evaluation in In-
dustry, pages 189–194. Taylor and Francis, 1996.

[9] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler.
OWL 2: The next step for OWL. Journal of Web Semantics, 6(4):309–322,
November 2008.

[10] L. Cabral, I. Toma, and Adrian Marte. D14.2. Services for the Automatic Evalua-
tion of Semantic Web Service Tools v1. Technical report, SEALS Project, August
2010.

[11] Caterina Caracciolo, Jérôme Euzenat, Laura Hollink, Ryutaro Ichise, Antoine
Isaac, Véronique Malaisé, Christian Meilicke, Juan Pane, Pavel Shvaiko, Heiner
Stuckenschmidt, Ondrej Sváb-Zamazal, and Vojtech Svátek. Results of the on-
tology alignment evaluation initiative 2008. In Proc. of the 3rd International
Workshop on Ontology Matching (OM-2008), collocated with ISWC-2008, pages
73–120, Karlsruhe (Germany), 2008.

71 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

[12] Brian de Alwis and Gail C. Murphy. Answering conceptual queries with fer-
ret. In ICSE ’08: Proceedings of the 30th international conference on Software
engineering, pages 21–30, New York, NY, USA, 2008. ACM.

[13] G. Demartini and S. Mizzaro. A Classification of IR Effectiveness Metrics. In
Proceedings of ECIR 2006. LNCS 3936, pp. 488 to 491, Springer, 2006.

[14] Elena Demidova and Wolfgang Nejdl. Usability and expressiveness in database
keyword search : Bridging the gap. In In Proceedings of the PhD Workshop at
VLDB, 2009.

[15] David J. DeWitt. The wisconsin benchmark: Past, present, and future. In Jim
Gray, editor, The Benchmark Handbookfor Database and Transaction Systems
(2nd Edition). Morgan Kaufmann, 1993.

[16] Marc Ehrig and Jérôme Euzenat. Relaxed precision and recall for ontology match-
ing. In Proc. of the K-Cap Workshop on Integrating Ontologies, pages 25–32, Banff
(Canada), 2005.

[17] Jérôme Euzenat. An API for ontology alignment. In Proc. of the 3rd In-
ternational Semantic Web Conference (ISWC-2004), pages 698–712, Hiroshima
(Japan), 2004.

[18] Jérôme Euzenat, Alfio Ferrara, Laura Hollink, Antoine Isaac, Cliff Joslyn,
Véronique Malaisé, Christian Meilicke, Andriy Nikolov, Juan Pane, Marta Sabou,
François Scharffe, Pavel Shvaiko, Vassilis Spiliopoulos, Heiner Stuckenschmidt,
Ondrej Sváb-Zamazal, Vojtech Svátek, Cássia Trojahn dos Santos, George
Vouros, and Shenghui Wang. Results of the ontology alignment evaluation ini-
tiative 2009. In Proc. of the 4th Workshop on Ontology Matching (OM-2009),
collocated with ISWC-2000, pages 73–126, Chantilly (USA), 2009.

[19] Jérôme Euzenat, Alfio Ferrara, Christian Meilicke, Juan Pane, François Scharffe,
Pavel Shvaiko, Heiner Stuckenschmidt, Ondrej Sváb-Zamazal, Vojtech Svátek,
and Cássia Trojahn dos Santos. Results of the ontology alignment evaluation
initiative 2010. In Pavel Shvaiko, Jérôme Euzenat, Fausto Giunchiglia, Heiner
Stuckenschmidt, Natasha Noy, and Arnon Rosenthal, editors, Proc. 5th ISWC
workshop on ontology matching (OM), Shanghai (Chine), pages 1–35, 2010.

[20] Jérôme Euzenat, Antoine Isaac, Christian Meilicke, Pavel Shvaiko, Heiner Stuck-
enschmidt, Ondrej Svab, Vojtech Svatek, Willem Robert van Hage, and Mikalai
Yatskevich. Results of the ontology alignment evaluation initiative 2007. In Proc.
of the 2nd International Workshop on Ontology Matching (OM-2008), collocated
with ISWC-2007, pages 96–132, Busan (Korea), 2007.

[21] Jérôme Euzenat, Malgorzata Mochol, Pavel Shvaiko, Heiner Stuckenschmidt, On-
drej Svab, Vojtech Svatek, Willem Robert van Hage, and Mikalai Yatskevich.
Results of the ontology alignment evaluation initiative 2006. In Proc. of the
1st International Workshop on Ontology Matching (OM-2006), collocated with
ISWC-2006, pages 73–95, Athens, Georgia (USA), 2006.

72 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

[22] R. Garćıa-Castro. Benchmarking Semantic Web technology, volume 3 of Studies
on the Semantic Web. AKA Verlag – IOS Press, January 2010.

[23] R. Garćıa-Castro and A. Gómez-Pérez. Guidelines for benchmarking the perfor-
mance of ontology management APIs. In Y. Gil, E. Motta, R. Benjamins, and
M. Musen, editors, Proceedings of the 4th International Semantic Web Conference
(ISWC2005), number 3729 in LNCS, pages 277–292, Galway, Ireland, November
2005. Springer-Verlag.

[24] R. Garćıa-Castro and A. Gómez-Pérez. RDF(S) interoperability results for seman-
tic web technologies. International Journal of Software Engineering and Knowl-
edge Engineering, 19(8):1083–1108, December 2009.

[25] R. Garćıa-Castro and A. Gómez-Pérez. Interoperability results for Semantic Web
technologies using OWL as the interchange language. Web Semantics: Science,
Services and Agents on the World Wide Web, 8:278–291, November 2010.

[26] R. Garćıa-Castro, S. Grimm, M. Schneider, M. Kerrigan, and G. Stoilos. D10.1.
Evaluation design and collection of test data for ontology engineering tools. Tech-
nical report, SEALS Project, November 2009.

[27] R. Garćıa-Castro and F. Mart́ın-Recuerda. D3.1 SEALS Methodology for Evalu-
ation Campaigns v1. Technical report, SEALS Consortium, 2009.

[28] R. Garćıa-Castro, I. Toma, A. Marte, M. Schneider, J. Bock, and S. Grimm.
D10.2. Services for the automatic evaluation of ontology engineering tools v1.
Technical report, SEALS Project, July 2010.

[29] Raúl Garćıa-Castro, Asunción Gómez-Pérez, Oscar Muñoz-Garćıa, and Lyn-
don J.B. Nixon. Towards a Component-Based Framework for Developing Se-
mantic Web Applications. In J. Domingue and C. Anutariya, editors, 3rd Asian
Semantic Web Conference (ASWC 2008), Lecture Notes in Computer Science,
pages 197–211, Bangkok, Thailand, December 2008. Springer-Verlag.

[30] T. Gardiner, I. Horrocks, and D. Tsarkov. Automated benchmarking of descrip-
tion logic reasoners. In Proc. of the 2006 Description Logic Workshop (DL 2006),
volume 189, 2006.

[31] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base
systems. Web Semantics: Science, Services and Agents on the World Wide Web,
3(2-3):158 – 182, 2005.

[32] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL
knowledge base systems. Web Semantics: Science, Services and Agents on the
World Wide Web, 3(2-3):158–182, October 2005.

[33] M. Horridge and S. Bechhofer. The OWL API: A Java API for Working with
OWL 2 Ontologies. In Rinke Hoekstra and Peter F. Patel-Schneider, editors,
OWLED, volume 529 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

73 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

[34] I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), pages 636–647, 1998.

[35] I. Horrocks, P. F. Patel-Schneider, and R. Sebastiani. An analysis of empirical
testing for modal decision procedures. Logic Journal of the IGPL, 8(3):293–323,
2000.

[36] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

[37] ISO/IEC. ISO/IEC 9126-1. Software Engineering – Product Quality – Part 1:
Quality model. 2001.

[38] Yves R. Jean-Mary, E. Patrick Shironoshitaa, and Mansur R. Kabuka. Ontology
matching with semantic verification. Journal of Web Semantics, 7(3):235–251,
2009.

[39] Esther Kaufmann. Talking to the Semantic Web — Natural Language Query
Interfaces for Casual End-Users. PhD thesis, Faculty of Economics, Business
Administration and Information Technology of the University of Zurich, Septem-
ber 2007.

[40] U. Kuester and B. Koenig-Ries. Measures for Benchmarking Semantic Web
Service Matchmaking Correctness. In Proceedings of ESWC 2010. LNCS 6089,
Springer, June 2010.

[41] P. Lambrix, M. Habbouche, and M. Pérez. Evaluation of ontology development
tools for bioinformatics. Bioinformatics, 19(12):1564–1571, 2003.

[42] Yuangui Lei, Victoria Uren, and Enrico Motta. Semsearch: A search engine for the
semantic web. In Proc. 5th International Conference on Knowledge Engineering
and Knowledge Management Managing Knowledge in a World of Networks, Lect.
Notes in Comp. Sci., Springer, Podebrady, Czech Republic, pages 238–245, 2006.

[43] L.Ryan. Scalability report on triple store applications. Technical report, SIMILE
Project, November 2004.

[44] Marko Luther, Thorsten Liebig, Sebastian Bhm, and Olaf Noppens. Who the
heck is the father of bob? In 6th Annual European Semantic Web Conference
(ESWC2009), pages 66–80, June 2009.

[45] L. Ma, Y. Yang, Z. Qiu, G. T. Xie, Y. Pan, and S. Liu. Towards a complete OWL
ontology benchmark. In ESWC, pages 125–139, 2006.

[46] Li Ma, Yang Yang, Zhaoming Qiu, GuoTong Xie, Yue Pan, and Shengping Liu.
Towards a complete OWL ontology benchmark. In Y. Sure and J. Domingue,
editors, Proceedings of the 3rd European Semantic Web Conference (ESWC 2006),
volume 4011 of LNCS, pages 125–139, Budva, Montenegro, June 11-14 2006.
Springer-Verlag.

74 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

[47] A. Marte and D. Winkler. D5.4 Iterative evaluation and implementation of the
Test Data Repository Service. Technical report, SEALS Project, November 2010.

[48] F. Massacci and F. M. Donini. Design and results of tancs-2000 non-classical
(modal) systems comparison. In TABLEAUX ’00: Proceedings of the Interna-
tional Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, pages 52–56, London, UK, 2000. Springer-Verlag.

[49] Christian Meilicke and Heiner Stuckenschmidt. Incoherence as a basis for measur-
ing the quality of ontology mappings. In Proc. of the 3rd Workshop on Ontology
Matching (OM-2008), collocated ISWC-2008, pages 1–12, Karlsruhe (Germany),
2008.

[50] B. Motik, R. Shearer, and I. Horrocks. Hypertableau reasoning for description
logics. J. of Artificial Intelligence Research, 2009. To appear.

[51] B. Motik, R. Shearer, and I. Horrocks. Hypertableau Reasoning for Description
Logics. Journal of Artificial Intelligence Research, 36:165–228, 2009.

[52] OntoWeb. Ontoweb deliverable 1.3: A survey on ontology tools. Technical report,
IST OntoWeb Thematic Network, May 2002.

[53] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language
Semantics and Abstract Syntax. Technical report, W3C Recommendation 10
February 2004, 2004.

[54] P. F. Patel-Schneider and R. Sebastiani. A new general method to generate
random modal formulae for testing decision procedures. J. Artif. Intell. Res.
(JAIR), 18:351–389, 2003.

[55] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. Towards a theory of natural
language interfaces to databases. In IUI ’03: Proceedings of the 8th international
conference on Intelligent user interfaces, pages 149–157, New York, NY, USA,
2003. ACM.

[56] A. L. Rector and J. Rogers. Ontological and practical issues in using a description
logic to represent medical concept systems: Experience from galen. In Reasoning
Web, pages 197–231, 2006.

[57] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Questions programmers
ask during software evolution tasks. In SIGSOFT ’06/FSE-14: Proceedings of
the 14th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 23–34, New York, NY, USA, 2006. ACM.

[58] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Asking and answering
questions during a programming change task. IEEE Transactions on Software
Engineering, 34:434–451, 2008.

[59] Y. Sure and O. Corcho, editors. Proceedings of the 2nd International Workshop
on Evaluation of Ontology-based Tools (EON2003), volume 87, Sanibel Island,
Florida, USA, October 2003. CEUR-WS.

75 of 76

FP7 – 238975

Overview of the First SEALS Evaluation Campaigns

[60] York Sure, Oscar Corcho, Jérôme Euzenat, and Todd Hughes, editors. Proc. of
the Workshop on Evaluation of Ontology-based Tools (EON-2004), collocated with
ISWC-2004, Hiroshima (Japan), 2004.

[61] Lappoon R. Tang and Raymond J. Mooney. Using multiple clause constructors in
inductive logic programming for semantic parsing. In In Proceedings of the 12th
European Conference on Machine Learning, pages 466–477, 2001.

[62] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–297. Springer,
2006.

[63] D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider. Optimizing terminological
reasoning for expressive description logics. J. Autom. Reasoning, 39(3):277–316,
2007.

[64] Victoria Uren, Yuangui Lei, Vanessa Lopez, Haiming Liu, Enrico Motta, and Ma-
rina Giordanino. The usability of semantic search tools: a review. The Knowledge
Engineering Review, 22(04):361–377, 2007.

[65] T. Wang, B. Parsia, and J. Hendler. A survey of the web ontology landscape. In
Proceedings of the International Semantic Web Conference, ISWC, 2006.

[66] S. N. Wrigley, K. Elbedweihy, D. Reinhard, A. Bernstein, and F. Ciravegna. D13.3
Results of the first evaluation of semantic search tools. Technical report, SEALS
Consortium, 2010.

[67] S. N. Wrigley, K. Elbedweihy, D. Reinhard, A. Bernstein, and F. Ciravegna. Eval-
uating semantic search tools using the seals platform. In International Workshop
on Evaluation of Semantic Technologies (IWEST 2010), ISWC 2010, 2010.

[68] M. Yatskevich, T. Tserendorj, J. Bock, and A. Marte. D11.2 Services for the
automatic evaluation of advanced reasoning systems. Technical report, SEALS
Consortium, 2010.

76 of 76

	List of figures
	List of tables
	Introduction
	Overview of the SEALS Evaluation Campaigns
	Technologies covered in the evaluation campaigns
	The SEALS evaluation campaign process
	Overview of the SEALS Platform

	Ontology engineering tools evaluation campaign
	Previous Evaluations
	Evaluation Scenarios
	Evaluating Conformance
	Evaluating Interoperability
	Evaluating Scalability

	Test Data
	Conformance and Interoperability
	Scalability

	Tools Evaluated
	Evaluation Results
	Conformance
	Interoperability
	Scalability

	Lessons Learnt

	Storage and reasoning systems evaluation campaign
	Previous evaluations
	Evaluation scenarios
	Evaluation Criteria
	Evaluation Metrics
	Evaluation Process

	Testing data
	Tools evaluated
	Evaluation results
	Classification
	Class satisfiability
	Ontology satisfiability
	Entailment

	Lessons learnt
	Classification
	Class satisfiability
	Ontology satisfiability
	Entailment

	Ontology matching tools evaluation campaign
	Previous evaluations
	Data sets and evaluation criteria
	OAEI data sets
	Evaluation criteria and metrics

	Evaluation process
	Participants
	Evaluation results
	Benchmark results
	Anatomy results
	Conference results

	Lessons learnt

	Semantic search tools evaluation campaign
	Introduction
	Evaluation design
	Two-phase approach
	Criteria
	Metrics and Analyses
	Questionnaires

	Datasets and Questions
	Participants
	Results
	Automated Phase
	User-in-the-Loop Phase

	Usability Feedback and Analysis
	Input Style
	Processing feedback
	Results Presentation

	Semantic web service tools evaluation campaign
	Introduction
	Previous Evaluations
	Evaluation Design
	Evaluation Scenario
	The SWS Plugin
	Implemented Measures

	Test Data
	Tools Evaluated
	Tool Parameter Settings

	Evaluation Results
	Lessons Learnt

	Conclusions
	References

