
Some Further Complexity Classes – Lecture 18
James Marshall

NP-Complete: the ‘hardest’ problems in NP

Are all the ‘hard’ problems (in) NP-Complete?

Consider 3-SAT = {〈w〉 | w is a satisfiable 3-CNF Boolean formula}

Design a TM M(〈w〉)

€

M w() =

accept if

 loop forever otherwise

"

$

%
$

Definition

NP-Hard: A language A is (in) NP-Hard iff

1. All languages in NP are polynomial time reducible to A
2. BUT A itself need not be in NP

NP-Hard: At least as hard as the hardest problems in NP

What about space?

Often, computational time can be reduced by increasing computational space, or vice
versa.

However, space can be re-used… time cannot!

Definitions

Let f(n) be a function
Define the space complexity class SPACE(f(n)) to be the collection of all languages
decidable by a deterministic Turing Machine in O(f(n)) space.

Define the space complexity class NSPACE(f(n)) to be the collection of all languages
decidable by a nondeterministic Turing Machine in O(f(n)) space

Savitch’s Theorem

For any function where

Informally: Although simulating a non-deterministic Turing Machine requires
exponential time, it requires space that is polynomial in the size of the input

Definition

PSPACE =
k
 SPACE nk()

Conjecture (what most Computer Scientists believe):

In summary: There is a lot more to learn about computation and complexity

