
Some Theory of Computation Exercises – Week 1

Section 1 – Deterministic Finite Automata

Question 1.3
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Question 1.4

Part c - {w |w has even a′s and one or two b′s}

First we ask whether w has an even number of as, which requires two states – one to signify
that an even number of as has been observed thus far, and one to signify that an odd number
have been observed thus far:

a

a

bb

Next we must determine whether w contains precisely one or two bs, which needs four states:
initialization, a single b, two bs and the failure state

a

b

a a

b

a

a, b

These two devices must now be combined to create a recogniser for their intersection. Every
pair of states will be represented by a single state in the new device, so we can lay it out in a
4× 2 grid thus:
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even as

odd as

0 bs 1 b 2 bs > 2bs

b

b

b b

bb

a a a a a a a a

b

b

Notice that the two states in the dotted rectangle can be combined into a single state, as no
sequence of characters will allow the device to escape from the box and neither state is an
accepting state.

Question 1.5

Part h – recognise {w |w is any string except ′′a′′, ′′b′′}

As suggested in the question we can first construct a device which recognises the complement of
this language, namely {a, b}, and then negate its output to find the solution which we are
looking for.

a, b a, b

a, b

To negate its output we convert all the accepting states into rejecting states and vice-versa:

a, b a, b

a, b

Question 1.6

Part i –{w| every odd position is 1}

This is similar to the even/odd number of as required in question 1.4 above. Here we need a
gadget to keep track of whether we are looking at an odd/even numbered position, which will
head into an attracting failure state if the position is odd and is not 1.
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even

odd

Here’s an odd/even detector, to which we just need to add the fail state

We can only fail by detecting a 0 when the position is odd, so we get something like this:

even

odd

1, 0 1

0 fail

1, 0
Adding that we accept if we don’t fail

Question 1.33 - multiplying by 3

Here Σ =

{

(

0

0

)

,
(

0

1

)

,
(

1

0

)

,
(

1

1

)

}

and we want to prove the regularity of the set of strings from

Σ∗ wherein the bottom row is three times the top row, so for example:

In L Not in L
(

0

0

)

– 0× 3 =0

(

0

1

)

– 0× 3� 1
(

0 1

1 1

)

– 1× 3= 3 etc

Table 1. Some example strings

Since we are given that regularity of the reverse of a language implies the regularity of the lan-
guage, we prove that L is regular by constructing a DFA which recognises the reverse of L, in
which the least significant bit comes first.

For the language to be regular it must be possible to perform the recognition using an amount
of memory which doesn’t increase with the length of the input (this is where we record our cur-
rent state), and with access only to one symbol of input at a time. Multiplying by 3 definitely
has this property, as we can work with 1 column at a time and the carry never exceeds 2. For
example:

C1 0 1 1 0 0
C0 1 1 1 1 0
(7) 0 0 1 1 1
(3) 0 0 0 1 1
(7× 3) 1 0 1 0 1
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Reading this from right to left:

1. 1× 1 = 1 + no carry = 1 (output), and

1× 1 = 1 (new carry state is 01)

2. 1× 1 = 1 + carry (1) = 10, so output is 0 and C0 =1

1× 1 = 1, so we are now carrying 2, C1 = 1 (1 from above and 1 from this)

3. 1× 1 = 1 + carry (2) = 11 (3), so output is 1 and C0 =1

1× 1 = 1, so we are still carrying 2

4. 1× 0 = 0 + carry (2) = 10 (2), so output is 0 and C0 =1

1× 0 = 0 = 0 so C1 = 0

5. 1× 0 = 0 + carry (1) = 1, so output is 1 and C0 = 0

1× 0 = 0 = 0 so C1 = 0

So we need 3 states, one for no carry, one for a single carry and one for two carries, and then for
any valid transition the result bit must be the least significant bit of the sum of the input bit
and the current carry. The current carry is then updated to be the most significant bit of the
sum of input and old carry + the input; that gives us the following DFA. Any missing transi-
tions lead to an inescapable failure state which I haven’t drawn in the interests of parsimony.

C = 0 C =1

(

0

0

)

(

1

1

)

(

0

1

)

C =2

(

1

0

)

(

0

0

)

(

1

1

)

So for example in C = 2 when we see an input bit of 1 we are adding 1 × 1 + 2 = 3 = 11 to the
total, so we expect to see an output bit of 1 (the low bit), and a carry of at least 1 (the high
bit). We are also adding 1 × 1 in the next column, so the carry must remain at 2. Similar argu-
ments hold for all the other valid transitions.
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Deterministic Finite Automata

1. Exercises in pages 83-84.
Exercise 1.1

a. The start state of each machine is q1.
b. The sets of accept states of M1 and M1 are respectively F={q2} and F={q1,q4}.

c. M1 goes through states q1, q2, q3, q1 and q1. M2 goes through states q1, q1, q1, 

q2 and q4.

d. M1 does not accept the string aabb.  M1 does.

e. M1 does not accept ε. M2 does.

Exercise 1.2
a. Formal description of M1.

={a,b}Σ

Q={q1,q2,q3}
F={q2}
δ is given by

a b

q1 q2 q1

q2 q3 q3

q3 q2 q1

b. Formal description of M2.

={a,b}Σ

Q={q1,q2,q3,q4}
F={q3,q4}
δ is given by

a b

q1 q1 q2

q2 q3 q4

q3 q2 q1

q4 q3 q4



Exercise 1.3



Exercise 1.4
a. The formal definition of a machine  M1 accepting the language L(M1)={w|w has 

at least three a's} is as follows:

={a,b}Σ

Q1={s0,s1,s2,s3}
q01= s0

F1 ={s3}
δ is given by

a b

s0 s1 s0

s1 s2 s1

s2 s3 s2

s3 s3 s3

The formal definition of a machine M2 accepting the language L(M2)={w|w has 
at least two b's} is as follows:

={a,b}Σ

Q2={t0,t1,t2}
q02= t0

F2 ={t2}
δ is given by

a b

t0 t0 t1

t1 t1 t2

t2 t2 t2



The formal definition of a machine  M accepting the language L(M)={w|w has 
at least three a's and at least two b's} is as follows:

={a,b}Σ

Q=Q1×Q2

q0= (s0,t0)
F =F1xF2={(s3,t2)}
δ is given by

a b

(s0,t0) (s1,t0) (s0,t1)

(s0,t1) (s1,t1) (s0,t2)

(s0,t2) (s1,t2) (s0,t2)

(s1,t0) (s2,t0) (s1,t1)

(s1,t1) (s2,t1) (s1,t2)

(s1,t2) (s2,t2) (s1,t2)

(s2,t0) (s3,t0) (s2,t1)

(s2,t1) (s3,t1) (s2,t2)

(s2,t2) (s3,t2) (s2,t2)

(s3,t0) (s3,t0) (s3,t1)

(s3,t1) (s3,t1) (s3,t2)

(s3,t2) (s3,t2) (s3,t2)



b. The formal definition of a machine M1 accepting the language L(M1)={w|w has 
exactly two a's} is as follows:

={a,b}Σ

Q1={s0,s1,s2,s3}
q01= s0

F1 ={s2}
δ is given by

a b

s0 s1 s0

s1 s2 s1

s2 s3 s2

s3 s3 s3

The formal definition of a machine M2 accepting the language L(M2)={w|w has 
at least two b's} is as follows:

={a,b}Σ

Q2={t0,t1,t2}
q02= t0

F2 ={t2}
δ is given by

a b

t0 t0 t1

t1 t1 t2

t2 t2 t2



The formal definition of a machine M accepting the language L(M2)={w|w has 
at exactly two a's and at least two b's} is as follows:

={a,b}Σ

Q=Q1×Q2

q0= (s0,t0)
F =F1xF2={(s2,t2)}
δ is given by

a b

(s0,t0) (s1,t0) (s0,t1)

(s0,t1) (s1,t1) (s0,t2)

(s0,t2) (s1,t2) (s0,t2)

(s1,t0) (s2,t0) (s1,t1)

(s1,t1) (s2,t1) (s1,t2)

(s1,t2) (s2,t2) (s1,t2)

(s2,t0) (s3,t0) (s2,t1)

(s2,t1) (s3,t1) (s2,t2)

(s2,t2) (s3,t2) (s2,t2)

(s3,t0) (s3,t0) (s3,t1)

(s3,t1) (s3,t1) (s3,t2)

(s3,t2) (s3,t2) (s3,t2)



c. The formal definition of a machine M1 accepting the language L(M1)={w|w has 
an even number of a's} is as follows:

={a,b}Σ

Q1={s0,s1,s2}
q01= s0

F1 ={s2}
δ is given by

a b

s0 s1 s0

s1 s2 s1

s2 s1 s2

The formal definition of a machine M2 accepting the language L(M2)={w|w has 
one or two b's} is as follows:

={a,b}Σ

Q2={t0,t1,t2,t3}
q02= t0

F2 ={t1,t2}
δ is given by

a b

t0 t0 t1

t1 t1 t2

t2 t2 t3

t3 t3 t3



The formal definition of a machine  M accepting the language L(M)={w|w has 
an even number of a's and one or two b's} is as follows:

={a,b}Σ

Q=Q1×Q2

q0= (s0,t0)
F =F1xF2={(s2,t1),(s2,t2)}
δ is given by

a b

(s0,t0) (s1,t0) (s0,t1)

(s0,t1) (s1,t1) (s0,t2)

(s0,t2) (s1,t2) (s0,t3)

(s0,t3) (s1,t3) (s0,t3)

(s1,t0) (s2,t0) (s1,t1)

(s1,t1) (s2,t1) (s1,t2)

(s1,t2) (s2,t2) (s1,t3)

(s1,t3) (s2,t3) (s1,t3)

(s2,t0) (s1,t0) (s2,t1)

(s2,t1) (s1,t1) (s2,t2)

(s2,t2) (s1,t2) (s2,t3)

(s2,t3) (s1,t3) (s2,t3)



d. The formal definition of a machine M1 accepting the language L(M1)={w|w has 
an even number of a's} is as follows:

={a,b}Σ

Q1={s0,s1,s2}
q01= s0

F1 ={s2}
δ is given by

a b

s0 s1 s0

s1 s2 s1

s2 s1 s2

The formal definition of a machine  M2 accepting the language  L(M2)={w|in w 
each a is followed by at least one b} is as follows:

={a,b}Σ

Q2={t0,t1,t2,t3}
q02= t0

F2 ={t0,t2}
δ is given by

a b

t0 t1 t0

t1 t3 t2

t2 t1 t2

t3 t3 t3



The formal definition of a machine  M accepting the language L(M)={w|w has 
an even number of a's and each is followed by at least one 
b} is as follows:

={a,b}Σ

Q=Q1×Q2

q0= (s0,t0)
F =F1xF2={(s0,t0),(s0,t2)}
δ is given by

a b

(s0,t0) (s1,t1) (s0,t0)

(s0,t1) (s1,t3) (s0,t2)

(s0,t2) (s1,t1) (s0,t2)

(s0,t3) (s1,t3) (s0,t3)

(s1,t0) (s2,t1) (s1,t0)

(s1,t1) (s2,t3) (s1,t2)

(s1,t2) (s2,t1) (s1,t2)

(s1,t3) (s2,t3) (s1,t3)

(s2,t0) (s1,t1) (s2,t0)

(s2,t1) (s1,t3) (s2,t2)

(s2,t2) (s1,t1) (s2,t2)

(s2,t3) (s1,t3) (s2,t3)

2. Not included in this solution sheet.



a. The formal definition of a machine M1 accepting the language L(M1)={w|w has 
an odd number of a's} is as follows:

={a,b}Σ

Q1={s0,s1,s2}
q01= s0

F1 ={s1}
δ is given by

a b

s0 s1 s0

s1 s2 s1

s2 s1 s2

The formal definition of a machine M2 accepting the language L(M2)={w|w ends 
with a b} is as follows:

={a,b}Σ

Q2={t0,t1}
q02= t0

F2 ={t1}
δ is given by

a b

t0 t0 t1

t1 t0 t1



The formal definition of a machine  M accepting the language  L(M)={w|w has 
an odd number of a's and ends with a b} is as follows:

={a,b}Σ

Q=Q1×Q2

q0= (s0,t0)
F =F1xF2={(s1,t1)}
δ is given by

a b

(s0,t0) (s1,t0) (s0,t1)

(s0,t1) (s1,t0) (s0,t1)

(s1,t0) (s2,t0) (s1,t1)

(s1,t1) (s2,t0) (s1,t1)

(s2,t0) (s1,t0) (s2,t1)

(s2,t1) (s1,t0) (s2,t1)

b. The formal definition of a machine M1 accepting the language L(M1)={w|w has 
an even length} is as follows:

={a,b}Σ

Q1={s0,s1}
q01= s0

F1 ={s0}
δ is given by

a b

s0 s1 s1

s1 s0 s0



The formal definition of a machine M2 accepting the language L(M2)={w|w has 
an odd number of a's} is as follows:

={a,b}Σ

Q2={t0,t1,t2}
q02= t0

F2 ={t1}
δ is given by

a b

t0 t1 t0

t1 t2 t1

t2 t1 t2

The formal definition of a machine  M accepting the language  L(M)={w|w has 
an even length and an odd number of a's} is as follows:

={a,b}Σ

Q=Q1×Q2

q0= (s0,t0)
F =F1xF2={(s0,t1)}
δ is given by

a b

(s0,t0) (s1,t1) (s1,t0)

(s0,t1) (s1,t2) (s1,t1)

(s0,t2) (s1,t1) (s1,t2)

(s1,t0) (s0,t1) (s0,t0)

(s1,t1) (s0,t2) (s0,t1)

(s1,t2) (s0,t1) (s0,t2)



Exercise 1.5
a. The  formal  definition  of  a  machine  M1 accepting  the  language  L(M1)={w|w 

contains the substring ab} is as follows:

={a,b}Σ

Q1={s0,s1,s2}
q01= s0

F1 ={s2}
δ is given by

a b

s0 s1 s0

s1 s1 s2

s2 s2 s2

A machine M2 accepting the language L(M2)={w|w does not contain the 
substring ab} is defined by the same alphabet, the same states, the same 

transition  function,  the  same  start  state  and  a  set  of  accept  states  F2=Q-
F1={s0,s1}.

b. The  formal  definition  of  a  machine  M1  accepting  the  language  L(M1)={w|w 
contains the substring baba} is as follows:

={a,b}Σ

Q1={s0,s1,s2,s3,s4}
q01= s0

F1 ={s4}
δ is given by

a b

s0 s0 s1

s1 s2 s1

s2 s0 s3

s3 s4 s1

s4 s4 s4



A machine M2 accepting the language L(M2)={w|w does not contain the 
substring baba} is defined by the same states, the same transition function, 

the same start state and a set of accept states F2=Q-F1={s0,s1,s2,s3}.

c. The  formal  definition  of  a  machine  M1 accepting  the  language  L(M1)={w|w 
contains either the substring ab or ba} is as follows:

={a,b}Σ

Q1={s0,s1,s2,s3}
q01= s0

F1 ={s3}
δ is given by

a b

s0 s1 s2

s1 s1 s3

s2 s3 s2

s3 s3 s3

A machine M2 accepting the language L(M2)={w|w contains neither the 
substring ab or ba} is defined by the same alphabet, the same states, the 

same transition function, the same start state and a set of accept states F2=Q-
F1={s0,s1,s2}.



d. The formal definition of a machine  M1 accepting the language  L(M1)={w|w is 
any string in a*b*} is as follows:

={a,b}Σ

Q1={s0,s1,s2,s3,s4}
q01= s0

F1 ={s0,s1,s2,s3}
δ is given by

a b

s0 s1 s2

s1 s1 s3

s2 s4 s2

s3 s4 s3

s4 s4 s4

A machine M2 accepting the language L(M2)={w|w is any string not in 
a*b*} is defined by the same alphabet, the same states, the same transition 

function, the same start state and a set of accept states F2=Q-F1={s4}.



e. The formal definition of a machine M1 accepting the language L(M1)={w|w is 
any string in (ab+)*} is as follows:

={a,b}Σ

Q1={s0,s1,s2,s3}
q01= s0

F1 ={s0,s3}
δ is given by

a b

s0 s2 s1

s1 s1 s1

s2 s1 s3

s3 s2 s3

A machine M1 accepting the language L(M1)={w|w is any string not in 
(ab+)*} is defined by the same alphabet, the same states, the same transition 

function, the same start state and a set of accept states F2=Q-F1={s1,s2}.

f. The formal definition of a machine M1 accepting the language L(M1)={w|w is 
any string in a*Ub*} is as follows:

={a,b}Σ

Q1={s0,s1,s2,s3}
q01= s0

F1 ={s0,s1,s2}
δ is given by

a b

s0 s1 s2

s1 s1 s3

s2 s3 s2

s3 s3 s3



A machine M2 accepting the language L(M2)={w|w is any string not in 
a*Ub*}  defined by the same alphabet,  the same states, the same transition 

function, the same start state and a set of accept states F2=Q-F1={s3}.

g. The formal definition of a machine M1 accepting the language L(M1)={w|w is 
any string that contains exactly two a's} is as follows:

={a,b}Σ

Q1={s0,s1,s2,s3}
q01= s0

F1 ={s2}
δ is given by

a b

s0 s1 s0

s1 s2 s1

s2 s3 s2

s3 s3 s3

A machine machine M2 accepting the language L(M2)={w|w is any string 
that doesn't contain exactly two a's} defined by the same alphabet, 

the same states, the same transition function, the same start state and a set of 
accept states F2=Q-F1={s0,s1,s3}.



h. The formal definition of a machine M1 accepting the language L(M1)={w|w is 
any string a or b} is as follows:

={a,b}Σ

Q1={s0,s1,s2}
q01= s0

F1 ={s1}
δ is given by

a b

s0 s1 s1

s1 s2 s2

s2 s2 s2

A machine M2 accepting the language L(M2)={w|w is any string except 
a and b} is defined by the same alphabet, the same states, the same transition 

function, the same start state and a set of accept states F2=Q-F1={s0,s2}.

Exercise 1.6
a) {w|w begins with a 1 and ends with a zero}.



b) {w|w contains at least three 1s}

c) {w|w contains the substring 0101}

d) {w|w has length at least three and its third symbol is a 0}



e) {w|w starts with 0 and has odd length, or starts with 1 and has even length}

f) {w|w doesn't contain the substring 110}



g) {w|the length of w is at most 5}

h) {w|w is any string except 11 and 111}

i) {w|every odd position of w is a 1}



j) Not included in this solution sheet.

k) {empty,0}

l) Not included in this solution sheet.

m) The empty string.

n) Any string except the empty string.



2. For  each  of  the  following  regular  expressions,  draw  a  DFA  recognizing  the 
corresponding language.

a) (0 U 1)*110*

b) (11 U 10)*

c) (1 U 110)*0



3. Not included in this solution sheet.
4.



Nondeterministic Finite Automata

Exercise 1.11
Given a NFA M1=(Q1, Σ1, S01, F1, δ1) construct a NFA  M2=(Q2, Σ2, S02, F2, δ2) as follows 

(given that F1={f1,f2,f3,...,fn}).

Q2=Q1

Σ2=Σ1

S02= S01

F2={fk}, 1 k n≤ ≤

δ2=δ1 plus the mappings  (f, δ ε)={fk}, for every f F∈ 1 and f F∉ 2.

Exercise 1.14

a) Given a NFA M1=(Q1, Σ1, S01, F1, δ1) if the accept states are swapped the result is a new 

NFA  M2=(Q2, Σ2, S02, F2, δ2) with the following definitions:

Q2=Q1

Σ2=Σ1

S02= S01

F2=Q1-F1

δ2=δ1

The fact that the set of accept states of M2 (F2) is the complement of F1 

it guarantees that M2 accepts only those words that are not accepted by 
M1, i.e., the complement language of M1.

b)  The following NFA recognises the language L={w|w is a}.



The following machine was  constructed  by  swapping  the  accept  states  of  the  previous  but  it 

doesn't accept the language L={w|w is not a}.


