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Abstract

Listeners are remarkably adept at recognising speech in natural multisource environments,

while most Automatic Speech Recognition (ASR) technology fails in these conditions. It

has been proposed that this human ability is governed by Auditory Scene Analysis (ASA)

processes, in which a sound mixture is segregated into perceptual packages, called ‘streams’,

by a combination of bottom-up and top-down processing.

This thesis examines a novel ASR framework based on the ASA account, Speech Fragment

Decoding (SFD). A ‘fragment’ is a spectro-temporal region where energy from a single sound

source dominates. SFD employs techniques developed from knowledge about the auditory

system to identify fragments. A decoding process using statistical speech models is applied to

the fragment representation to simultaneously identify speech evidence and recognise speech.

In this study three techniques for improving SFD are investigated. Firstly, explicit duration

modelling is exploited to combat the corruption of acoustic data which often causes the

decoder to produce word matches with unrealistic durations. Secondly, it is argued that

the top-down information in recognition models may be insufficient to mediate the speech

identification. Knowledge that can assist the decoder in the choice of speech evidence is

investigated. Thirdly, pitch cues derived from structure in the correlogram are used in the

fragment generation process.

A range of small-vocabulary speech recognition experiments are conducted for evaluation.

The improved SFD system is able to produce word error rates significantly lower than con-

ventional ASR, and is relatively insensitive to a range of noise conditions. In conclusion,

the framework provides some progress towards finding a general solution to the robust ASR

problem in multisource environments.
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Chapter 1

Introduction

1.1 Speech Recognition in Complex Environments

Imagine sitting in a busy restaurant amongst friends. What can you hear? Perhaps a fa-

miliar piece of music playing quietly in the background, the babble of distant voices broken

occasionally by unexpected laughter, continuous clinking and clattering of dining-ware . . .

And yet with all these sounds reaching your ears at once, you do not experience any problem

conversing with your friends. In fact, the conversation can be so pleasant that you do not

even notice any of the other sounds.

Indeed, in daily listening environments speech is naturally mixed with various other sounds,

but human listeners are remarkably adept at recognising speech in such complex environ-

ments. This experience is so common that the perceptual ability of listeners is often taken

for granted. In the 1950s, Colin Cherry, a British engineer, described this phenomenon as

the ‘cocktail party problem.’

How do we recognise what one person is saying when others are speaking at the

same time (the “cocktail party problem”)? On what logical basis could one design

a machine (“filter”) for carrying out such an operation? – Cherry [28]

So, how could one design a machine that can recognise speech in multisource environments

with a performance that matches the robustness of human speech recognition (HSR)? This

question asked by Cherry has been the ultimate goal of many scientists and engineers. For

many decades, research on automatic speech recognition (ASR) has progressed dramatically

1



Chapter 1. Introduction 2

– from recognising isolated words with a limited vocabulary to large vocabulary continuous

speech recognition tasks, and from recognising artificially prepared speech to increasingly

spontaneous conversations recorded without human intervention. And yet today we are still

unable to build a device even for a seemingly simple task (e.g. connected digits recognition)

that can work as well as listeners in real (i.e. noisy) acoustic environments. As we will see

in Section 2.2, most ASR systems are typically designed to work well in narrowly specified

and highly predictable noise conditions. They would generally break down if the operating

environment is not carefully controlled [119, 54]. For example, a computer dictation program

which performs well in quiet office environments would most likely fail if background music

were present.

This characteristic of current ‘robust’ ASR systems is largely due to, arguably, a historical

reason. In the early stage of speech technology research it was a sufficient challenge to just

handle the great variability of the speech signal itself. Most research therefore focused on the

recognition of ‘clean’ speech, i.e. an unrealistic listening situation. This is in sharp contrast

to studies in computer vision [127], where great attention was focused on scene analysis from

the beginning.

The remarkable robustness of human speech recognition has inspired researchers to look for

solutions to the robust ASR problem in the underlying processes of human speech perception,

just like many successful applications of biological methods and systems found in nature to the

study and design of engineering machines. Researchers believe that better understanding of

how listeners recognise speech in noise may lead to better strategies for building machines to

solve the same problem [32, 176, 86]. This is the question with which the thesis is concerned.

1.2 Auditory Scene Analysis

Understanding the principles underlying the perception of complex acoustic mixtures in hu-

mans is a challenging problem. The human auditory system is hugely complicated and

involves complex interactions with the brain and other sensory systems. Although many

underlying principles still remain unclear, decades of psychoacoustic research has brought us

some promising insight into the mysterious process. It is generally believed that listeners

are able to segregate individual sound sources from a complex mixture of sounds arriving
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at our ears into perceptual packages, allowing whatever package is of interest at the time to

be selectively attended to. Bregman [21] described this process as auditory scene analysis

(ASA).

In one of the first attempts to seek solutions to the ASA problem, Cherry [28] conducted

perception experiments in which subjects were asked to listen to two different messages

simultaneously mixed on tape and try to repeat one of them word by word. His work revealed

that the ability of listeners to separate sound sources is often based on the characteristics

of the sounds, such as the gender of the speaker, voices, speaking speed, and the direction

from which the sound is coming. Bregman [21] summarised evidence from a large number

of perceptual experiments in his well-known book, “Auditory Scene Analysis”, which has

suggested that listeners solve the ASA problem by interactively exploiting primitive data-

driven grouping principles, which are innate constraints driven by various properties of the

acoustic input, as well as schema-driven constraints, which employ prior knowledge of familiar

patterns that have been learnt from acoustic environments.

1.2.1 Data-Driven Processing

Primitive data-driven grouping principles describe how elements extracted from the input

sound mixture may be grouped across time/frequency (T/F) according to characteristics.

For example, T/F components will show a tendency to group together if they share a com-

mon fundamental frequency [22, 167, 5], if they have synchronised changes in frequency or

amplitude [21, p.250], or if their energy comes from the same direction [44, 47].

Among many, grouping by harmonic relation appears to be the most popular cue in ASA

models. Pitch, which represents the perceived fundamental frequency (F0) of sound, is the

most studied auditory attribute of the quasi-periodic speech signal. Perceptual experiments

have shown that pitch plays a significant role in separating simultaneous voices. For example,

in the well studied ‘double vowel’ experiments [167, 5, 43], researchers demonstrated that a

very small difference in F0 can significantly improve listeners’ performance in identifying two

simultaneous vowels. There is also evidence that listeners use the harmonicity cue to help

them in sequential grouping of sound components. For example, van Noorden [180] described

how two rapidly alternating tones may group sequentially based on F0 continuity. When
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close in frequency the two tones were perceived as one coherent stream with a ‘galloping

rhythm’. With a larger frequency difference between the two tones the coherence was lost

and instead two separate perceptual streams were heard.

Experiments have suggested that the harmonicity-based cue is one of the most robust group-

ing cues. For example, Darwin and Hukin [49] reported that pitch cue is more resistant to

reverberation than spatial cues. Therefore grouping by harmonic relation has been employed

in most successful computational models of auditory scene analysis [e.g. 30, 23, 186].

There is plenty evidence that listeners employ more than one cue to help them achieve robust

perceptual source separation. For example, listeners have no problems in separating unvoiced

sound sources which do not have harmonic structures. For simultaneous vowels with the same

F0, although with more difficulties than if F0 is different, listeners are still able to perform

separation with an accuracy significantly greater than the chance level [167, 4] 1. It is likely

that various grouping cues interact in forming an overall segregation [46].

1.2.2 Schema-Driven Processing

Schema-driven processes, by contrast, work ‘top-down’ by actively finding support for learnt

models of commonly occurring sounds in the mixtures – an active ‘hearing-out’ for a given

pattern. The effect of schema-driven processing can be very strong as listeners actively try

to associate sound scenes with the patterns they have learnt. With different knowledge of

patterns perception can often be different.

A compelling example of such schema-driven processing in audition is the perception of a

‘click’ sound employed by some African languages in which a change in the position of the

clicks within a word can change its meaning. Listeners who are unfamiliar with these lan-

guages would hear two separate perceptual streams – with one stream sounding like someone

speaking a foreign language, and the other sounding like a rapid sequence of click sound. For

those who do not have experience of these languages, the click fits better to their knowledge

as a non-speech sound. Native speakers of these languages, however, will hear the clicks

and the rest speech sounds as an integrated whole – the clicks sound coherent with other

1It should be noted that the schema-driven processing should also have effect in these experiments. See Section 1.2.3

for discussion on interaction between primitive and schema-driven processes.
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speech sounds as well as more familiar plosives sound to native English speakers. A detailed

discussion of this example can be found in [21, p.686], which also provides more supporting

evidence of the schema-based process.

Another example of this schema-based process in everyday environments is that when you

hear someone speaking English with a strong accent which you are not familiar with, you

often have difficulty in understanding the speaker even the speaker uses perfect grammar. I

had personal experience on this example – a friend of mine (a native English speaker) could

not initially understand many English words I spoke, but after some time this was less of a

problem for her. “It’s not because your English has improved,” she later told me, which is

largely true, “I just know what to listen for.” Although she did say this partly because she

wanted to disappoint me, this is a common experience for many people when presented an

unfamiliar sound. Listeners learn to listen to details of a sound, e.g. a good musician can be

trained to identify the instruments in a music mixture even they have the same fundamental

frequency.

The schema-driven processing also commonly occurs in vision. For example, the UK clothing

company ‘French Connection’ fully exploited the top-down process to attract consumers’

attention with its controversial brand name ‘fcuk’ (see Fig. 1.1) – an acronym for ‘French

Connection United Kingdom’.

Figure 1.1: An example of exploiting schema-driven processing.

1.2.3 Interaction Between the Two Processes

The boundary between data-driven and schema-driven processes is not clear, and there is

often debate over the extent to which auditory organisation is based by the primitive pro-

cesses [159], or whether it is driven primarily by learnt patterns of sounds [63]. Remez et al.

[159] criticised ASA on the grounds that it fails to account for the coherence of speech.

They used an artificial speech stimulus, known as sine-wave speech (SWS), to argue that

the speech stimulus, despite violating the ASA grouping principles discussed by Bregman, is

still perceived as a coherent whole. However, Barker [9] carried out a series of experiments
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using SWS and demonstrated that although very few, there are still primitive grouping cues

available for SWS (e.g. common onsets). The fact that SWS lacks many auditory grouping

cues makes its recognition much harder than normal speech. Barker further pointed out that

the argument by Remez et al. [159] was based on an extreme view in which auditory scenes

analysis is entirely dependent on primitive processes with no interactive link to knowledge

about the sound sources expected to be present.

Other people may take an extreme view that auditory scene analysis can be accomplished

entirely by schema-driven processes. For example, Ellis [63] argued that primitive grouping

principles can be considered as implicit models of sound sources that have been learnt from

acoustic environments. Although such a strong view is valid to some extent, it claims that

listeners cannot segregate sources unless they have some kind of prior model for at least one of

the sources. Primitive grouping rules are generally difficult and inefficient to be represented

using any types of models. They are developed in an early stage of the auditory system [128]

and can apply to general sounds. By contrast, schema-driven processing is developed to learn

familiar patterns from particular sounds. Without some primitive mechanisms to group the

mixed sounds into some initial coherent structures in the first place, there would be nothing

for schema-driven processes to work on. As Bregman wrote:

It is important to emphasize again that the way that sensory inputs are grouped by

our nervous systems determines the patterns that we perceive. – Bregman [21]

In his book Bregman showed strong evidence that the two processes work interactively to-

gether to organise sounds. Primitive grouping alone is not able to segregate sound sources

reliably, especially when dealing with highly dynamic sources such as speech. Instead, it

appears that the data-driven processing would suggest some initial groupings to form local

coherent spectro-temporal regions. Schema-driven processing is necessary in order to merge

local regions together into common streams based on a logical explanation of the present

auditory scenes.
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1.3 From Scene Analysis to Speech Recognition

Given the current understanding of auditory scene analysis, there is another tremendously

important and practical question: Are there good ways of exploiting knowledge to engineer

machines that perform ASR in the presence of multiple sound sources? The problems of audi-

tory scene analysis and automatic speech recognition were traditionally addressed separately,

often by different research communities. This causes great difficulties in integration of scene

analysis and speech recognition systems – primarily their incompatible representations. For

example, ASR assumes that the speech input is a sequence of acoustic feature vectors which

deliberately excludes detail with great variability such as voicing periodicity. By contrast,

periodicity is the most popular cue in ASA systems. ASR systems typically employ decorre-

lated feature representations (e.g. cepstral features) which can be compactly modelled, while

ASA systems work on a spectro-temporal representation of the acoustic input. Despite these

difficulties, growing research has focused on building ASR systems that can benefit from the

understanding of auditory scene analysis, mainly through the development of computational

auditory scene analysis (CASA) [187].

1.3.1 Computational Auditory Scene Analysis

Motivated by extensive research on ASA, the field of CASA has evolved with increasing

interest, which aims to develop computer programs to perform sound source separation based

on perceptual principles. Different from many other sound separation techniques, such as

the blind source separation technique [107], CASA is perceptually motivated and provides

a general perspective in which speech is regarded as just one of many sound sources in a

complex acoustic environment. Therefore, ASA principles can apply equally well to all sound

sources. This offers an alternative approach which directly addresses the problems raised by

complex acoustic scenes, just like its counterpart in the field of computer vision.

CASA systems usually employ a spectro-temporal representation of sound signals derived

from computer models of the peripheral auditory system [30]. Rather than detailed physio-

logical models of auditory mechanics, the computer peripheral models were largely motivated

by the known psychoacoustical properties of the human auditory system and provide a fre-

quency analysis which is consistent with the properties of cochlea frequency selectivity. An
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Figure 1.2: Frequency responses of a gammatone filterbank with ten filters whose centre frequencies are

equally spaced between 50 Hz and 4 kHz on the ERB-rate scale.

auditory filterbank is commonly used to simulate the motion of the basilar membrane within

the cochlea as a function of time, in which the output of each filter models the frequency

response of the basilar membrane at a single place.

The gammatone filter [101] is widely used in models of the auditory system. Gammatone

filter modelling was a physiologically motivated strategy to mimic the structure of peripheral

auditory processing stage [30]. The gains of the filters were chosen to reflect the transfer

function of the outer and middle ears. More details about the gammatone filter can be found

in Appendix A.

A gammatone filterbank is normally defined in such a way that the filter centre frequencies

are distributed across frequency in proportion to their bandwidth, commonly known as the

equivalent rectangular bandwidth (ERB) scale [75]. The ERB scale is an approximately

logarithmic function on which the filter centre frequencies are equally spaced. Fig. 1.2 shows

frequency responses of a gammatone filterbank with ten filters whose centre frequencies are

equally spaced between 50 Hz and 4 kHz on the ERB scale.

Output of the gammatone filterbank can be further processed with some form of non-linear

rectification to derive a spectro-temporal representation: the ‘cochleagram’. The cochleagram

is commonly employed as a front-end for CASA studies, e.g. for pitch analysis (see Chap-

ter 6). For visualisation the cochleagram contains too detailed information and therefore is

normally simplified by smoothing over time, down-sampling and compressing to produce a
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Figure 1.3: Comparison between (a) narrowband spectrogram, (b) wideband spectrogram, and (c) cochlea-

gram computed for the same utterance ‘lay white by L 5 please’ spoken by an English female speaker.

spectrogram-like representation, or an auditory spectrogram 2. Fig. 1.3 shows a narrowband

spectrogram and a cochleagram computed for the same utterance ‘lay white by L 5 please’

spoken by an English female speaker. The spectrogram was produced using 512 frequency

points and a 20 ms Hamming window with 10 ms overlap. The log-compressed cochleagram

was produced using a 64-channel gammatone filterbank whose output was smoothed with an

8 ms window and sampled at 10 ms intervals. The cochleagram has a few advantages over

conventional spectrograms. First, with the ERB-rate spacing it has better spectral resolu-

tion at the low frequency end, which results in individual harmonics of sounds being resolved.

Resolved harmonics allow sources to be tracked and detected at unfavourable signal-to-noise

ratios (SNRs) as source energy is heavily concentrated at its harmonics. Second, the shorter

smoothing window offers better temporal resolution at the high frequency end which causes

onsets of acoustic events to be emphasised in the cochleagram.

Using the cochleagram many researchers have proposed automatic sound separation systems

based on the known principles of human hearing and achieved some success [e.g. 23, 186,

64]. A good review of CASA development can be found in the recently published CASA

2As the cochleagram approximates firing rates of the auditory nerve the auditory spectrogram is also referred to as

the ‘ratemap’ representation [23].
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book edited by Wang and Brown [187]. Some successful CASA systems will be discussed in

Section 2.4.4.

1.3.2 CASA-Driven Approaches to ASR

Although CASA seems to be a natural solution to the robust ASR problem in achieving

human performance, it is not obvious how CASA and ASR can be effectively combined.

Weintraub [190] was the first to systematically study this problem. In his work, ASA prin-

ciples were applied in an attempt to separate monaural voice mixtures of two speakers by

finding periodicities in each frequency channel based on an autocorrelation-like neural coin-

cidence function [117]. Each speech signal can be in one of four states (voiced, unvoiced,

silent or transitional) and a Markov model was used to find the best state sequence using

a dual-pitch tracking algorithm based on dynamic-programming. The pitch estimates were

then used to recover the spectra of each voice. Weintraub assessed the performance of his

speech separation system using the conventional metrics of recognition accuracy by feeding

the separated and reconstructed speech into a speech recogniser. Although the results were

disappointing, which is not surprising given the development of ASR at that time, Weintraub

himself was quite clear about the limitation of his model and suggested that any complete

model of auditory organisation would necessarily involve more than just data-driven process-

ing.

Obviously, CASA can be employed as a ‘front-end’ to produce effectively ‘noise-free’ speech

before passing the output to an ASR ‘back-end’. However, this ‘separation–resynthesis–

recognition’ strategy is problematic itself. Although enhanced speech signals may sound more

intelligible for human listeners, they are not necessarily suitable for ASR. The artifacts intro-

duced during the enhancement process often cause a dramatic problem for machines, which

humans may find a trivial distraction. Partly because of the lack of an advanced statistical

framework, after Weintraub’s initial efforts researchers often used other metrics to evaluate

CASA systems3. For example, Cooke [30] examined the similarity between the segregated

target and the pre-mixed target signal in the spectro-temporal plane. Brown and Cooke [23]

and Wang and Brown [186] measured performance in terms of improvements in signal-to-noise

3Another important reason is that ASR is not the only application for CASA and there are many ohter major

applications, e.g. hearing aids.
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ratio. Evaluation based on subject listening experiments were also reported [177].

In the 1990’s, researchers at Sheffield University developed a statistical framework that allows

ASA models to be linked with ASR without the need to resynthesise target speech signals

– the ‘missing-data’ approach to robust ASR [33, 81, 119, 35]. Missing-data ASR assumes

that when speech is corrupted by noise, some spectro-temporal regions will remain reliable

(i.e. the observed energy is close to actual speech energy) and can be identified for automatic

speech recognition. Cooke et al. [34] demonstrated that robust speech recognition can be

achieved based on only a small portion (10%) of speech evidence. Missing-data ASR was

systematically discussed in [35] and will be examined in detail in Section 2.4.

Although missing-data ASR provides a statistical approach to linking the output of CASA

with ASR, the problems of segregation and recognition are decoupled. The convenience of this

strategy is that the CASA front-end and the ASR back-end can be developed independently.

However, as we have seen in Section 1.2, sound organisation requires both the data-driven and

schema-driven processes to be interacted when interpreting complex acoustic scenes. Nearly

all existing CASA studies have focused on data-driven processes. We will see in Section 2.4.5

that the decoupling of segregation and recognition ultimately limits such a simple ‘left-to-

right’ strategy and more sophisticated solutions are needed.

Recently, a technique termed ‘multisource decoding’ [10, 15] emerged as a promising frame-

work for CASA-based ASR which follows the auditory scene analysis account of sound or-

ganisation. The technique combines segregation and recognition in a tightly coupled pro-

cess. Primitive grouping techniques are applied to segment the spectro-temporal plane of

the acoustic mixture into local regions where energy from a single sound source dominates.

These spectro-temporal regions are called ‘fragments’ in this study. The identities of frag-

ments do not have to be decided at this stage. Statistical schema-driven processes then

employ recognition models to simultaneously search for the most likely word sequence and

foreground/background segregation. The multisource decoding technique can serve as a po-

tential solution to the problem in linking ASA with ASR. When the target sound source is

constrained to be speech, Barker et al. [15] termed the technique ‘speech fragment decoding’

(SFD) (see Chapter 3). This doctoral work is based on the SFD framework.
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1.4 Informing Multisource Decoding

The strength of SFD is that it is designed to operate without strong assumptions about the

nature of the interfering noise, in contrast with many conventional approaches to robust ASR.

However, there are several additional factors to be considered when multiple sound sources

are present:

• SFD bases speech recognition on partial acoustic evidence. The corruption of acoustic

features and the weak duration constraints implicitly modelled in HMMs often lead to

word matches with unrealistic durations by ASR in noisy conditions. Stronger duration

constraints may need to be introduced into the speech decoding process to combat the

corruption.

• SFD assumes that each fragment is part of either the speech foreground or the noise

background with equal probability. Although accurate noise models are difficult to

estimate, knowledge about the noise is often available which can distinguish speech

fragments from noise fragments. This information can be exploited to assist the decoder

in the choice of fragments.

• The quality of the fragments generated can also affect the recognition performance of

SFD. If the fragments are not coherent, i.e. contain too much energy that belongs to

different sources, the recognition accuracy will be expected to be low.

This thesis will examine the SFD framework and investigate three techniques for improving

speech decoding in multisource environments. Firstly, explicit duration modelling is exploited

to combat the corruption of acoustic data which often causes the decoder to produce word

matches with unrealistic durations. Secondly, it is argued that the top-down information in

recognition models may be insufficient to mediate the speech identification. Knowledge that

can assist the decoder in the choice of speech evidence is investigated. Thirdly, pitch cues

derived from structure in the correlogram are used in the fragment generation process.

This study focuses on single-channel signals. Although there is strong evidence that listeners

exploit various (and multi-modal) cues to recognise speech in a noisy environment, e.g. inter-

aural information available from the two ears, or lip-reading when speech is barely audible

in a noisy bar, they are still able to effectively extract target audio streams from monaural
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acoustic mixtures with little effort, for example, listening to speech/music mixtures on a

mono radio program. However, separating and recognising speech in single-channel signals,

the problem considered in this thesis, still remains a challenging problem for machines.

1.5 Thesis Organisation

In this chapter we have reviewed the fundamentals of auditory scene analysis and its appli-

cation to ASR. Chapter 2 will briefly explain the standard statistical ASR framework and

examine some traditional approaches that have been widely applied to deal with noisy speech

data. It will proceed to examine in detail some developments of CASA-inspired approaches to

ASR. The traditional ASR approaches will be contrasted with CASA-based approaches. In

particular, missing-data ASR [35] will be examined. The CASA-based approaches that can

be employed to identify the reliable speech evidence for missing-data ASR will be reviewed

at the end of the chapter.

Having examined the ASR approaches which effectively decouple source segregation and

recognition, Chapter 3 will begin by arguing that this strategy is ultimately limited and

more sophisticated approaches are needed. The speech fragment decoding technique – the

framework this doctoral work is based on – is then presented as a potential solution to the

problem of CASA and ASR combination. Finally, Chapter 3 will show that there are several

possibilities to improve speech recognition for the SFD model in multisource environments,

which will be investigated in following chapters.

It is well known that hidden Markov models (HMMs) do not directly characterise some impor-

tant temporal information such as duration constraints [153]. The weak duration constraints

may cause speech decoders to produce word matches with unrealistic durations. This is of

particular importance for missing-data ASR and SFD which uses missing-data techniques at

its core as speech recognition is based on only partial acoustic evidence. Chapter 4 will inves-

tigate the effect of explicit duration modelling in the context of missing-data ASR. Duration

constraints are modelled at both state-level in Section 4.2 and word-level in Section 4.3. In

particular, the ‘prepausal lengthening effect’ [41] – the property that before a speech pause,

the preceding speech unit (particularly vowels) tends to lengthen – is investigated.
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Chapter 5 will demonstrate that the top-down information provided by speech models is

often insufficient to recruit enough speech fragments, which will lead to poor recognition

performance. To assist the decoder in the choice of fragments, Chapter 5 will introduce a

‘speechiness’ measure for fragments – a degree of confidence that the fragment is part of the

speech foreground. A technique based on the modulation spectrogram [82] is proposed as a

speechiness measure, which emphasises the characteristic low-frequency modulation energy

of speech.

Chapter 6 is concerned with the use of primitive CASA models to address the problem of

fragment generation for SFD. The quality of fragments can affect the recognition performance

of SFD. Chapter 6 will commence by reviewing correlogram-based CASA models. Pitch cues

derived from a particular tree-like correlogram structure are employed in fragment genera-

tion. The coherence of the fragments is compared with that of fragments generated using a

technique based on the summary correlogram. Chapter 6 will also present evaluation using

ASR experiments on a simultaneous speech recognition task.

Chapter 7 summarises the thesis and presents future development.



Chapter 2

Robust Automatic Speech Recognition

This study is concerned with single-channel approaches. Before examining strategies for cou-

pling CASA and ASR, this chapter will first review the standard statistical ASR framework

and some traditional approaches that have been widely employed to deal with noise. After

all, our goal is to engineer a machine that can perform robust speech recognition and it is

important to understand the limitations of many existing robust ASR techniques. Readers

are referred to [154, 100, 92, 72] for a detailed account of the statistical ASR framework.

Comprehensive reviews of robust ASR can be found in [104, 77, 72]. This chapter will also

review, in detail, some of the earlier attempts that have been made to tackle the problem

of robust ASR using perceptually inspired approaches. These approaches will be contrasted

with traditional ASR approaches at the end of the chapter where their limitations will also

be discussed.

2.1 The Statistical ASR Framework

Automatic speech recognition (ASR) is the process of automatically converting spoken words

to machine-readable input. Typically the audio waveform is first converted into a temporal

sequence of acoustic feature vectors as the acoustic input to a speech recogniser. Popular

choices of ASR features are those represented in an orthogonal domain, such as mel-frequency

cepstral coefficients (MFCC), which are decorrelated and can be modelled more efficiently.

The goal of the recogniser in continuous speech recognition is to find the most probable

sequence of words W given the acoustic input X, an acoustic model and a language model.

15
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We can treat the acoustic input X as a sequence of individual observations:

X = x1, x2, x3, . . . , xT (2.1)

Similarly, we can treat the sequence of words as:

W = w1, w2, w3, . . . , wL (2.2)

When formulated in a statistical manner, the goal is then to find the word sequence Ŵ that

has the maximum a posteriori (MAP) probability given the sequence of acoustic observations

X:

Ŵ = arg max
W

P (W |X) (2.3)

Eq. 2.3 is guaranteed to give us the optimal sentence Ŵ . However, it is much simpler and more

practical to calculate the likelihood, P (X|W ), and this can be interpreted as the probability

that a sequence of feature vectors generated by a particular word sequence. We can use

Bayes’ rule to break Eq. 2.3 down as follows:

Ŵ = arg max
W

P (X|W )P (W )

P (X)
(2.4)

Since the probability of the acoustic observation sequence, P (X), remains constant for each

word sequence, Eq. 2.4 becomes:

Ŵ = arg max
W

P (X|W )P (W ) (2.5)

This formulation was developed by Baker [8], Jelinek [99], Bahl et al. [6]. The first term,

P (X|W ), the observation likelihood, is termed the acoustic model. P (W ), the prior probabil-

ity, is termed the language model. For the sake of simplicity it is assumed that the parameters

in the likelihood and priors are independent and can be estimated separately.

In most successful ASR systems the acoustic model is represented using hidden Markov

models (HMMs). HMMs are a general stochastic representation that can be applied to various

problems. Their applications have been developed in the context of a long history of pattern

recognition technology. Although specific methods are changing, the pattern recognition

perspective continues to be useful for the description of many problems and their proposed

solutions. An HMM is defined with a sequence of states Q = q1, q2, . . . , qN , a set of transition

probabilities aij representing the probability of moving from state qi to state qj , and a set of
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output observation distributions bj(xt) expressing the probability of an observation xt being

generated from a state qj . Two conditional independence assumptions are made for HMMs:

• states qj are conditionally independent of all other states given the previous state qj−1

(i.e. the first-order Markov assumption);

• observations xt are conditionally independent of all other observations given the state

qt that generates xt

The topology of an HMM is defined by state transitions. There are three commonly used

topologies of HMM: the ergodic topology where each state is connected to each other, the

left-to-right no-skip topology where each state must be traversed from left to right as time

passes, and the skipped state topology in which some states may be skipped. In speech

recognition the left-to-right no-skip topology (see Fig. 2.1) is mostly employed, because it is

useful for modelling signals with characteristics that change with time, such as speech signals.

Each state has a probability density function (p.d.f.) for the feature vectors that is used to

determine the probability that a particular feature vector could be generated by the state.

The fact that the exact state sequence that determined the output is unobserved makes the

model a hidden Markov model.

Figure 2.1: Outline of a left-to-right no-skip HMM.

HMMs can have either discrete or continuous probability distributions. Discrete density

HMMs use vector quantisation to assign probabilities to a discrete set of code words (or sym-

bols) representing acoustic data being generated. In continuous density HMMs (CDHMMs)

each state is associated with a p.d.f. that models the distribution of the acoustic data. Be-

fore the HMMs can be used in recognition they have to be trained, most commonly using the

Baum-Welch algorithm [18], which is a generalised example of the expectation-maximization

(EM) algorithm [53]. The Baum-Welch algorithm gives a local optimum which is known to

produce an estimate of the parameters that is more likely than the initial estimate [153]. The

re-estimation is terminated when the increase in likelihood falls beneath some pre-determined
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threshold.

After the estimation phase, the HMMs can be used for recognition. In connected word recog-

nition, the Viterbi algorithm [185] is widely used to find the most probable path through a

probabilistically scored time/state lattice, given the observation features [140]. This approach

is time-synchronous, and computes the most likely path to every state in every model at time

t, given the corresponding paths at time t−1. An exhaustive search over all state sequences is

effectively performed without the need to calculate all possible paths. The Viterbi algorithm

is a special case of dynamic programming. It makes use of the fact that the probability of

generating the first t observations and being in state i at time t, depends only on the state

occupied at time t − 1, i.e. it exploits the first order Markov property on which the model

is based. In this way the search effectively finds the best path through the utterance with-

out evaluating all possible paths independently. A detailed treatment of HMMs and their

operations can be found in [153, 72].

2.2 Conventional Approaches to Robust ASR

HMM based automatic speech recognition has achieved great success in controlled environ-

ments. The scale and complexity of viable speech recognition tasks has significantly increased

in recent years. However, while most ASR systems produce acceptable recognition accuracy

for speech collected in quiet situations, their performance degrades dramatically in noisy en-

vironments [77]. Traditional approaches to achieving noise robustness exploit the differences

that are assumed to exist between the training and operating environments and their goal is

to minimise the mismatch, typically using engineering methods. Many well established tech-

niques have been widely applied with some success, either alone or in combination. These

techniques can be split roughly into three categories by their initial objectives: exploitation

of noise-robust features, feature compensation and model compensation.

2.2.1 Exploitation of Noise-Robust Features

Acoustic features that are inherently less sensitive to noise can be employed to improve noise

robustness. An example of this approach is the use of a speech feature representation known

as RASTA, an acronym for ‘RelAtive Spectral TrAnsform’ [88, 87]. Conventional acoustic
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features typically represent the short-term speech spectrum, which is vulnerable to spectral

distortions. Human auditory perception tends to operate with long constants, especially in

adverse environments [87]. The temporal properties of speech are often quite different from

those of environmental effects. Therefore, the RASTA processing technique can be employed

to filter out noises with modulation frequencies outside the narrow frequency range (4 to 50

Hz) that characterises speech [82]. RASTA applies band-pass filtering of time trajectories to

the energy of each spectral component in order to smooth over short-term noise variations

and to provide a cancellation of slowly varying additive noise resulting from static spectral

correlation in the speech channel, e.g. from a telephone line. The technique is generalised

in JRASTA to accommodate non-stationary convolutive noise. RASTA features are often

combined with other signal processing algorithms such as perceptual linear predictive (PLP)

analysis [85], which was originally proposed by Hermansky as a way of warping spectra to

minimise the differences between speakers while preserving the important speech information.

The combination has become a popular speech feature representation known as RASTA-

PLP [88].

Speech recognition experiments [87] employing RASTA-PLP showed better noise robustness

over standard PLP or MFCC parameters. Although these techniques can be very effective

in some situations, they are clearly limited by the dependence on an easily characterised

difference between the target speech and the interfering noise. If the noise source has a

similar acoustic property to that of speech, e.g. a second speaker, then such techniques will

be unlikely to bring robustness to an ASR system.

2.2.2 Feature Compensation

This category of methods attempt to pre-process the noisy speech in such a way that the

resulting features better fit the models trained using clean speech. This scheme is often

termed ‘speech enhancement’. The simplest approach in this category is to ‘clean-up’ noisy

speech using spectral subtraction [e.g. 118, 121, 111]. The approach assumes that the

noise is statistically stationary. It makes use of the fact that power spectra of additive

independent signals are also additive. Hence, additive noise signals can be effectively removed

if they have a relatively stationary spectrum compared to that of the speech signal. As a

result of the fluctuations of noise spectrum around its mean value, negative estimates of the
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speech spectrum may occur. Usually some ad hoc flooring is required to make the estimates

consistent. This non-linear operation puts residual noise in the output signal commonly

referred to as ‘musical noise’ [77].

The popularity of spectral subtraction is largely due to its relative simplicity and efficiency.

However, it would fail with non-stationary noises. A common approach to this problem is to

estimate the noise spectrum in periods where speech is known to be absent [e.g. 12]. This

approach, however, requires prior knowledge of speech segmentation, and is ineffective when

the noise spectrum is difficult to estimate.

Cepstral mean normalisation (CMN) [120] is also a common technique employed to remove

the global shift of the mean affecting the cepstral vectors. This normalization compensates for

the main effect of channel distortion and some of the side effects of additive noise. However,

the nonlinear effects of additive noise on cepstral features cannot be treated by CMN and

this limits its effectiveness to only moderate levels of additive noise.

Recently, Cui and Alwan [42] proposed a feature compensation technique based on polynomial

regression of utterance signal-to-noise ratio (SNR) for noise robust ASR. In this method the

bias between clean and noisy speech features is approximated by a set of polynomials which

are estimated from adaptation data for the new environment using an EM algorithm under

the maximum likelihood criterion. During decoding the utterance SNR is first estimated and

noisy speech features are then compensated for by corresponding regression polynomials.

de la Torre et al. [52] proposed a method to compensate for nonlinear distortions in acoustic

features based on the histogram equalization (HEQ) technique commonly used in digital

image processing [79]. This method assumes that the effect of the noise distortion is a

monotonic transformation in the feature space. It provides a transformation mapping the

histogram of each component of the feature vector onto a reference histogram.

The noise can also be successfully separated from speech using cues from multiple sensors,

e.g. when a microphone array is present. If there are at least as many sensors present as

sound sources, techniques such as blind source separation (BSS) [107] based on independent

component analysis (ICA) can be employed to recover independent sources given only sensor

observations, which are are treated linear mixtures of the source signals [146]. However, these

techniques cannot be applied for single-channel mixtures.
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It should be noted that many techniques in this category were originally developed to improve

speech quality. Therefore they may increase speech intelligibility for human listeners, but not

necessarily the performance of automatic speech recognisers.

2.2.3 Model Compensation

Instead of estimating the clean speech from the noisy observations, model-based techniques

attempt to modify the speech models in order to account for the interfering noise. Such

schemes are potentially able to deal with time varying noises, although normally require a

statistical model of the corrupting noise. For example, HMM decomposition [182] involves

creating a noise model that captures the variability expressed in the noise. This noise model

is decoded in parallel with speech models which can jointly explain the noisy observations.

In order to be mathematically feasible, it requires that the noise and speech be modelled in

the log-spectral domain and treated as independent. Gales and Young [71] extended the idea

in the parallel model combination (PMC) technique to perform model compensation in the

cepstral domain. It combines the models for speech and noise to derive a ‘noisy speech model’

using a mismatch function that approximates the effect of the noise on speech. Therefore the

model compensation can be done before recognition, unlike HMM decomposition in which

model combination is performed during recognition time. PMC also has the advantage over

HMM decomposition that it can be applied in the cepstral domain and therefore orthogonal

features can be employed.

Both HMM decomposition and PMC techniques have been shown to produce very low word

error rates when the noise can be adequately modelled. However, the requirement that

detailed models are available for all the noise sources is often difficult to meet, especially in

an unpredictable noisy environment. One solution would be to keep a library of many different

noise models, if feasible, and combine the speech model with each of the noise models during

recognition. This is, however, extremely computationally heavy due to the factorial nature

of HMM combination. When more than a few models are involved the model combination

can have an explosion in the size of the state space.

Although originally developed for speaker adaptation, maximum likelihood linear regression

(MLLR) [112] is also an effective way to adapt the clean acoustic models to a different op-
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erating environment [e.g. 70, 191]. MLLR obtains the environmentally matched models by

rotating and shifting the means of the Gaussian mixtures in clean HMMs using linear regres-

sion. In comparison with PMC, MLLR is more computationally cheap but the performance of

linear transformation is limited. Zhang and Furui [191] proposed piecewise-linear transforma-

tion (PLT) technique based on MLLR, in which various types of noise are clustered according

to their spectral property. A noisy speech HMM set corresponding to each clustered noise

and SNR condition is made and the best matching HMM set is selected and further adapted

using MLLR.

If the noise conditions are known in advance, another simple strategy is to train recognition

systems on a range of noisy examples of the speech – ‘multicondition training’ [150]. Multi-

condition training can bring more robust recognition performance against noise than training

using clean speech provided that the operating noise condition is similar to that during train-

ing. However, without prior knowledge of the noise it is often difficult to design a proper

training set of noisy speech. Training systems on a greater range of noisy examples might

sound advantageous but will significantly decrease the discriminating ability of recognition

models.

2.2.4 An Alternative Hypothesis for Robust ASR

The problem caused by the interfering noise is conventionally viewed as a mismatch between

the conditions where a recogniser is trained and operates. Therefore most of the solutions

attempt to minimise the mismatch, either by compensating features to match the pre-trained

speech models or by adapting the speech models to accommodate the interfering noise. How-

ever, most of them are designed to operate in narrowly specified and highly predictable noise

conditions [54]. The narrowness of conventional robust ASR solutions is such that systems

designed for one environment cannot be expected to work in another (e.g. multicondition

training). If ASR systems were to operate in the wide range of noisy environments with

which listeners regularly cope, more general techniques have to be developed.

Common aspects of many distortions include the absence of spectro-temporal regions or the

presence of additive noise, resulting in incomplete (both spectral and temporal) acoustic

evidence. There is much evidence that listeners routinely handle the incomplete data sit-
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uation [67, 2, 188]. In the last two decades researchers started to consider an alternative

hypothesis – that sound being distorted by noise is a valid characterisation of the normal

listening situation [86, 32]. The rest of this chapter will examine several approaches to robust

ASR motivated by this hypothesis.

2.3 Multistream Speech Recognition

Fletcher [66] found that the error rate (represented as a fraction of one) for human phoneme

perception using the full frequency range was approximately equal to the product of the error

rate using high-pass filtered speech and the error rate using low-pass filtered speech at the

same cut-off frequency [2]. Furthermore, the overall error rate is independent of the cut-off

frequency used. Allen [2] interprets the work of Fletcher as suggesting that the acoustic

information in the speech signal is decoded independently in narrow frequency sub-bands

and the final decision is based on recombining the sub-band decisions. An alternative inter-

pretation of Fletcher’s work is that as long as any sub-band combination contains sufficient

information to decode the linguistic message, the information from the remaining sub-bands

(possibly corrupted) can be ignored [89]. This research inspired the use of multistream recog-

nition methods to deal with band-limited noise corruption [20, 89, 83, 139]. If noise corrupts

the data in some spectro-temporal regions, can results for uncorrupted regions be made to

prevail? This is the motivation behind multistream recognition methods as an alternative to

traditional ‘full-band’ based methods.

2.3.1 Full-band ASR vs. Multistream ASR

Traditional full-band ASR methods are sensitive to local feature corruption. Assuming fea-

tures are independent, the joint observation likelihood is a product of local observation proba-

bilities of each feature. As a result, the product is typically dominated by small probabilities.

This characteristic provides the model with a better discrimination between speech units

based on local feature differences, but also an increased sensitivity to local feature corrup-

tion.

In the multistream recognition approach, the whole speech spectrum is split into a number

of narrow frequency sub-bands, with features extracted independently from each sub-band
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being allocated a separate acoustic model. Recognition is done independently and the sub-

band recognition results are then recombined to give a final recognition decision. When

speech is corrupted by band-limited noise, a local sub-band corruption only degrades its

corresponding sub-band features and hence will not spread over the entire feature space.

Hermansky et al. [89] showed that the partial information from individual sub-bands can

be successfully merged, producing recognition error rates very close to that of a full-band

recogniser when tested on clean (i.e. uncorrupted) speech. The study by Hermansky et al. is

essentially the proof of concept of multistream ASR. Studies [20, 89, 83, 135] have also shown

that the sub-band based approach is able to improve ASR robustness against band limited

distortions over a conventional full-band based method.

2.3.2 The Multistream Recombination Problem

For multistream speech recognition, a critical issue is to find a way of recombining sub-band

information. Ideally, those bands that are less corrupted by noise should be selected and those

unreliable bands should be suppressed (wholly or partially) during the recombining process.

Identifying the reliable bands, however, is difficult without prior knowledge of the distortions.

Many researchers have proposed various methods for sub-band recombination, such as linear

combination [20, 89], neural networks [20, 89], the full-combination approach [19, 83, 139],

or the probabilistic union model [134, 135].

Bourlard and Dupont [20] examined a weighting scheme in which the contribution of each

sub-band was assigned a recombination weighting factor. Two different recombination func-

tions were examined: i) a linear weighting function and ii) a non-linear multilayer perceptron

(MLP). With the linear function the weighted sum of the log-likelihoods of all sub-band obser-

vations were calculated. The weighting factors can be estimated from normalised phoneme-

level recognition rates in each sub-band, or local signal-to-noise ratios (SNRs) estimated using

spectral subtraction. The weighting factors sum to 1. With the non-linear function, an MLP

parametrised in terms of the weighting factors was trained to estimate posterior probabilities

of each speech unit given the log-likelihoods of all sub-band observations. Both weighting

schemes allow different recombination levels such as HMM state level, word level or other

sub-unit levels. The schemes were also investigated by Hermansky et al. [89]. Their exper-

iments showed great potential of the multistream ASR technique for speech recognition in



Chapter 2. Robust Automatic Speech Recognition 25

noise.

The multistream approach reported in [20] has a few limitations. For example, the inde-

pendent sub-band processing loses important information about correlation between sub-

bands [19], such as spectral envelope shape. To better exploit the uncorrupted partial infor-

mation, Hermansky et al. [89] trained an independent neural network for each possible sub-

band combination, which is feasible provided the number of combinations is not too large.

They employed a seven sub-band system and therefore 127 networks (MLPs) were needed.

Their study showed a strong robustness to band limited distortions with manual selection

of the correct network given the prior knowledge about the distortions. Hermansky et al.

[89] also examined a few primitive methods to select the right combination based on some

heuristics. The problem was further addressed in the ‘full combination’ approach [19, 83],

in which the probabilities of different sub-band combinations are merged using a weighted

sum method. The full combination approach has the advantage of avoiding the independence

assumption between sub-bands and also allows orthogonalisation of the combinations. How-

ever, the utility of this approach depends directly on how accurately the combination weights

can be estimated. While this is possible with stationary noise, adapting to changing noise

conditions is still a challenging problem.

Ming and Smith [134] proposed a probabilistic union model to formulate the recombination of

the sub-band features. The union model approach also considers all possible noise positions in

order to find the best sub-band combination. It deals with the unknown partial corruption by

calculating the union likelihoods of different feature combinations (i.e. using the ‘or’ operator

to combine subsets of features). The order of the model can be chosen given the knowledge

that we know how many sub-bands are corrupted, but no information about the corruption

location is needed. In practice, a low model order can yield better phonetic discrimination

and a high order can accommodate more corrupted features [135]. Therefore, the union model

needs a balance between the feature corruption uncertainty and noise robustness.

2.3.3 Difficulties with Multistream ASR

In multistream recognition it is assumed that nothing is known a priori about which streams

of the speech evidence are clean and which are corrupted. This problem is tackled by con-



Chapter 2. Robust Automatic Speech Recognition 26

sidering all possible noise positions in order to find the best match. As a result, although

multistream ASR has shown some robustness against partial frequency band corruption, its

ability to handle non-stationary noise is ultimately limited. The sub-band boundaries are

determined and fixed at the training stage, therefore unable to adapt to varying noise con-

ditions, especially at low SNRs. The low band resolution usually employed in multistream

ASR also limits its ability to localise noise. Employing more and narrower sub-bands may

be considered, but narrower bandwidth of each sub-band could also produce a poor phonetic

discrimination [89]. More sub-bands will also significantly increase the number of possible

sub-band combinations, which will bring significantly more computation load to multistream

ASR. Hence typical multistream ASR systems so far have employed fewer than eight sub-

bands.

In contrast, as we will see in the next section, missing-data techniques employ prior knowledge

of the location of the reliable regions. Primitive CASA processes act to identify spectro-

temporal regions of energy dominated by the speech source in the first step and recognisers are

adapted to handle the incomplete data. Therefore the missing-data approach is able to handle

varying noises, provided that the reliable speech regions can be identified. Furthermore, a

much higher frequency resolution can be employed in the missing-data approach (usually

from 30 up to 64 frequency channels), without significantly increasing the computation cost.

2.4 The Missing-Data Approach to Robust ASR

In everyday listening environments speech signals are naturally mixed with noise. Information

is often lost in spectro-temporal regions that are energetically dominated by the noise – in

these regions the speech source is effectively ‘masked’. We refer to the masked regions as

‘missing data’. Since the segregation of the corrupted signal will never completely recover all

the speech evidence [33], a robust ASR system needs to handle the missing data condition.

In this section we review a statistical approach to handling the missing data which has

demonstrated some success – ‘missing-data’ ASR [35].
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2.4.1 Is Missing Data a Problem to ASR?

If missing data occurs in a normal listening environment, is it possible to recognise speech

without complete speech evidence? Before examining the missing-data approach to robust

ASR, we will first discuss some properties of the speech signal which essentially enable recog-

nition based on only partial data.

Time-Frequency Masking

The ear has an ability to analyse incoming sound in the spectro-temporal domain (similar

to the Fourier transform). The fact that human listeners are able to perform robust speech

perception in a multisource environment is largely attributed to two properties of speech

energy distribution in the spectro-temporal plane. First, speech energy is concentrated in

local regions and these high energy regions are typically sparsely distributed in time and/or

frequency [31]. For example, vowels have concentrated energy close to formant peaks, and

energy of fricatives is typically concentrated in high frequency bands. This means that when

speech is corrupted by noise, there will be some regions that are totally dominated by the

energy from the noise sources, and other regions where the amount of energy from the noise

sources can be ignored compared to that from the speech source. If the noise is non-stationary,

then more regions of speech are likely to be uncorrupted. Therefore simultaneous sound

sources overlapping in time are only partially overlapping in the spectro-temporal plane.

The sparsity of speech energy is also a valid characteristic of compressive computer represen-

tations of sound, such as the cochleagram we discussed in Section 1.3.1. Fig. 2.2 demonstrates

the masking effect of two simultaneous sound sources with cochleagrams. Fig. 2.2a shows a

log-compressed cochleagram computed for a clean speech utterance. In Fig. 2.2b the same

utterance is mixed with babble noise at a global SNR of 0 dB. Although both sound sources

have equal global energy in the mixture, many important features of the speech, such as har-

monics and spectral shape, are clearly visible in speech-dominated frequency regions above

700 Hz. These speech features are less clear in regions below 700 Hz, where the energy of

the babble noise dominates. However, in these regions that are seemingly dominated by the

babble noise, speech energy still exceeds that of the noise frequently. Fig. 2.2c displays the

spectro-temporal regions in the mixture where the energy from the speech source is greater by
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Figure 2.2: Demonstration of the masking effect of two simultaneous sound sources. (a) A log-compressed

cochleagram of the clean speech utterance ‘lay white by L 5 please’. (b) The same utterance has been mixed

with babble noise at a global SNR of 0 dB. (c) The spectro-temporal regions in the mixture (panel b) where

the energy from the speech source is greater by at least 1 dB than that from the babble noise source (i.e.

regions dominated by the speech energy).

at least 1 dB than that from the noise source (i.e. regions dominated by the speech energy).

This information is obtained using prior knowledge of pre-mixed signals. It is clear that most

of the significant speech energy remains unmasked.

The second property of the speech signal is that it has a redundant encoding such that speech

remains intelligible even when a large part of the speech spectrum is removed [67, 2, 188].

For example, intelligibility tests reported by Fletcher [67] demonstrated that speech syllables

remains highly intelligible after all frequencies above 1800 Hz have been artificially removed.

What is striking is that if the frequencies above 1800 Hz are retained and low frequencies

are removed, the speech is equally intelligible. In fact, experiments using mutually exclusive

frequency bands demonstrate that there is no one frequency band that is essential for human

speech perception. Subjective listening experiments [188, 189] also suggested that speech

intelligibility remains high even with an extremely narrow band (1/3 of an octave). In the
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time domain similar masking effects are observed. When portions of an speech utterance

are replaced by broadband noise less than 10 times per second, the utterance sounds natural

and continuous [133]. Hence, a certain degree of information lost due to masking will not

necessarily decrease overall speech intelligibility – the redundancy allows listeners to perceive

speech in noise based on relatively sparse information.

The listeners’ ability to exploit these properties to achieve robust speech recognition has

motivated many researchers to take an alternative perspective to the noise robustness issue.

Inspired by ASA studies, the solution given by Cooke et al. [35] is the ‘missing-data’ speech

recognition technique, which is based on the exploitation of inherent redundancy in the speech

signal rather than explicit characterisation of the noise. Researchers have demonstrated that

ASR can be based on a very small amount (e.g. 10%) of the original time/frequency (T/F)

components without serious deterioration in the recognition accuracy [34].

The Log-Max Approximation

The motivation behind missing-data ASR has a very good visual analogy. When part of

an object is blocked (i.e. masked) by other objects, its identity may still be revealed based

only on the visible parts of the object. One of the most important reasons that the partially

blocked object can be identified is the principle of ‘exclusive allocation’ described by [21], i.e.

each visual element can be exclusively assigned to an individual source. Otherwise all the

present objects will be blurred together and no perceptual segregation is possible. In fact,

the missing-data problem has been a subject of many studies in computer vision [e.g. 1, 73].

However, unlike predominantly opaque visual objects, sound signals combine additively and

all present sources will contribute to the energy observed at each T/F point. With this energy

combining attribute, is it reasonable to apply the same principle to audio signals?

Fortunately, the principle of exclusive allocation appears to be a good assumption for the

speech signal justified by the sparsity of speech encoding in the spectro-temporal plane.

When two sources combine, even if they have similar energy at a coarse scale, at a fine scale

the magnitude ratio between the two sources in most T/F components is so great that the

weaker one can be safely ignored. Especially when using a representation that compresses

the energy, for example, via a log function, the observed log energy of the combination is very
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Figure 2.3: Illustration of the ‘log-max approximation’. (a) A cochleagram (log-compressed) of the mixture

of speech and babble noise at a SNR of 0 dB. (b) The energy maximum of the individual sources prior to

mixing. (c) Time/frequency components in which the log energy of the mixture is more than 3 dB different

from the maximum of the log energy of the individual sources (4.9% of elements in this example).

close to the log energy of the larger component, i.e. log(x1 + x2) ≈ max (log(x1), log(x2)).

This observation is commonly known as the ‘log-max approximation’ [182, 164].

Fig. 2.3 illustrates the log-max approximation. Fig. 2.3a shows a log-compressed cochleagram

of the mixture of speech and babble noise at a global SNR of 0 dB. The energy is log-

compressed. Fig. 2.3b shows the maximum of the cochleagram energy of the two sources in

isolation. This can be generated by first computing cochleagrams of the two sources prior to

mixing, and then comparing the energy between them ‘pixel-by-pixel’. The two cochleagrams

are combined by selecting each T/F component from the one with the maximum energy value.

It is clear that that the product is almost identical to the mixture cochleagram shown in panel

a. This can be further confirmed by Fig. 2.3c, which shows T/F components in which the log

energy of the mixture is more than 3 dB different from the maximum of the log energy of the

individual sources. These elements are rare and sparsely distributed. In fact, in this example

there are only 4.9% of the total T/F components that have an energy difference more than
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Figure 2.4: (a) An auditory spectrogram of the clean speech utterance ‘lay white by L 5 please’. (b) The

same utterance has been mixed with babble noise at a global SNR of 0 dB. (c) The ‘oracle’ missing-data mask

for speech representing spectro-temporal regions that are dominated by the target speech source.

3 dB, which can be safely ignored compared to the dynamic range of the speech signal.

2.4.2 The Missing-Data Mask

The missing-data approach assumes that when speech is corrupted by noise, some spectro-

temporal regions will remain unmasked (the sparsity) and can be identified as reliable evi-

dence for recognition (the redundancy) using models trained on clean (i.e. noise-free) speech.

Extensive research on CASA has shown that the sparsity of speech energy distribution allows

primitive grouping principles to identify reliable regions that are not masked by noise sources

in the spectro-temporal domain. This information is usually represented as a binary spectro-

temporal map, referred to as the discrete ‘missing-data mask’, in which each T/F component

is labelled as being either ‘reliable’ or ‘unreliable’. The missing-data mask is typical output

of many CASA systems, which essentially motivated the development of the missing-data

ASR techniques.
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Fig. 2.4c shows an ‘oracle’ missing-data mask 1 for the mixture example shown in Fig. 2.2,

which represents spectro-temporal regions that are dominated by the speech source. The

oracle mask is usually obtained by making use of prior knowledge of pre-mixed speech and

noise signals. Cochleagrams of the pre-mixed signals are compared ‘pixel-by-pixel’ and those

time/frequency components where the speech energy is higher than the noise energy are

labelled as being reliable.

With the discrete missing-data mask wrong decisions made in mask estimation are irre-

versible. Therefore poor mask estimation has significantly impact on recognition perfor-

mance. One method to limit the effect is to ‘soften’ the binary decision. The missing-data

mask was extended by Barker et al. [11] to a ‘soft mask’, in which each T/F component is

associated with a probability value in the range [0, 1] expressing a degree of confidence in

the reliability of the data. As a result, feature components are no longer exclusively labelled

as either reliable or unreliable, which allows recruitment of features based on how well they

match recognition models.

2.4.3 Application to ASR

Application of missing-data techniques to robust ASR requires the solutions to two problems.

First, regions of reliable acoustic evidence (i.e. a missing-data mask) need to be identified.

Estimating the missing-data mask remains a challenging problem. Solutions range from

simple signal processing techniques to complex CASA models. Section 2.4.4 will review some

of the solutions. Second, the recognition system needs to be modified to handle the missing

data. Two commonly employed strategies are reviewed here.

In conventional HMM-based speech recognition each speech unit is typically represented by

an HMM with a number of states. Each state, q, is characterised by a multivariate mixture

Gaussian distribution over the components of x from an observation sequence, X. Speech

recognition in general assigns an observation vector x to a state q. Essentially the state

likelihood p(x|q) needs to be computed. In the missing-data approach HMMs are trained

using clean speech and there is no re-training for noise conditions. However, each observed

acoustic feature vector, x, may be corrupted by noise and therefore p(x|q) cannot be computed

1The oracle missing-data mask in some literature is also referred to as the a priori mask or the ideal binary mask.
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directly. Let us assume that some preceding segregation process (e.g. CASA systems) has

partitioned x into reliable components, xr, and unreliable components, xu. The order of the

components in each feature vector x can be rearranged without loss of generality so that we

can write x = (xr, xu). There are essentially two approaches to classification with unreliable

components xu: marginalisation which evaluates p(x|q) by considering all possible values of

xu, and imputation which first estimates values for xu and then computes p(x|q) based on

the reconstructed features. Each approach has its own advantages and disadvantages.

Marginalisation-Based Approach

Many techniques in the marginalisation-based approach were originally developed by re-

searchers at Sheffield University. Detailed analysis can be found in the frequently cited

missing-data ASR paper [35]. Marginalisation bases classification on the marginal distribu-

tion of the reliable features by integrating over the unreliable components xu in the state

output distributions:

p(x|q) =

∫

p(x|q)dxu =

∫

p(xr, xu|q)dxu (2.6)

Missing-data masks are naturally defined in the spectral domain, therefore most missing-data

work is based on spectral features (e.g. the cochleagram representation we have seen in Sec-

tion 1.3.1). However, traditional speech recognition systems often employ coefficients in an

orthogonal domain derived from log spectra such as MFCC. Cepstral features are decorre-

lated such that they allow fewer dimensions and diagonal covariance Gaussians to be used.

However, the cepstral transform also smears corruptions localised in the spectral domain

over the entire feature vector, which brings difficulties for the detection of corrupted cepstral

components. Unlike the cepstral representation, spectral features have a high degree of corre-

lation across feature dimensions. In order to produce effective acoustic models using spectral

features early missing-data work [81, 34] employed multivariate Gaussian distributions with

full covariance matrices. However, with the incomplete features employing the full covari-

ance model is not just computationally heavy but also impractical as the knowledge about

which features are missing is not available at the training time. A more flexible and efficient

way for modelling the correlation between spectral features is to employ a Gaussian mixture

model (GMM), in which the distribution p(x|q) is modelled by a number of Gaussian distri-

butions with diagonal covariance matrices. Exploiting the independence within each mixture
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Figure 2.5: Illustration of evaluating state likelihood with missing data based on marginalisation.

component, we get:

p(x|q) =
M
∑

k=1

P (k|q)p(x|q, k) (2.7)

where P (k|q) is the weight for the mixture component k. Assuming the components of x are

independent, Eq. 2.6 becomes:

p(x|q) =
M
∑

k=1

P (k|q)
∏

i∈r

p(xi|q, k)
∏

i∈u

∫

p(x̂|q, k)dx̂ (2.8)

where p(xi|q, k) is the univariate Gaussian distribution.

The marginalisation approach to evaluation of the state likelihood with missing data is il-

lustrated in Fig. 2.5. The integral term introduces constraints on the true values of the

unreliable components. In the case where the unreliable components are completely ignored

it reduces to unity (i.e. integral from −∞ to +∞). If x is a spectral energy vector in which

the unreliable channels are contaminated by additive noise, the true speech energy in these

channels must lie between zero 2 and the observed energy xu. This forms an additional con-

straint that can be applied by bounding (or limiting) the range over which the unreliable

features are integrated. Applying the ‘bounds constraint’ in Eq. 2.8 we obtain the bounded

marginal estimation of p(x|q):

p(x|q) =

M
∑

k=1

P (k|q)
∏

i∈r

p(xi|q, k)
∏

i∈u

1

xi

∫ xi

0
p(x̂|q, k)dx̂ (2.9)

In the bounded marginals the integral term gets bigger as more of the probability mass

associated with a particular state lies in the bounded range defined by the observed energy

2For cube-root compressive feature representations. For log-compressive representations the lower bound can become

negative and a negative lower bound should be used.
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xu, i.e. given a low xu quieter states (with lower means) will score better than more energetic

ones. It effectively represents the ‘counter-evidence’ [45] against a particular state. The use

of bounded marginals has been shown to produce consistent performance improvements over

using unbounded marginals [34]. For multivariate Gaussians, the integral required to evaluate

the bounded marginals can be approximated by a difference of error functions [35].

Eq. 2.9 assumes the missing-data mask to be discrete. With a soft mask as each feature

component is no longer exclusively labelled, it should make a weighted contribution to both

the reliable term and the unreliable term. This is reflected in the way of evaluating the

likelihood p(x|q):

p(x|q) =
M
∑

k=1

P (k|q)
N
∏

i=1

(

wip(xi|q, k) + (1− wi)
1

xi

∫ xi

0
p(x′|q, k)dx′

)

(2.10)

where N is the dimension of the feature vector x, and wi is the probability that the ith

feature is reliable, which is defined in the soft mask. The newly introduced factor 1/xi is a

normalising constant. Note with Eq. 2.10 when the probabilities in the soft mask become

binary, the distribution is equivalent to that defined by Eq. 2.9. The idea of soft masks is

similar to the use of a reliability measure in the missing-data imputation work by Renevey and

Drygajlo [162]. With the use of soft masks Barker et al. [11] have shown significant recognition

accuracy improvement over the standard bounded marginal approach with discrete masks.

Marginalisation-based techniques are attractive because they follow the paradigm of using

existing knowledge about the signal, as listeners are known to do. However, the fact that they

require unorthogonal spectral features constrains their application to large vocabulary tasks

and many existing ‘optimal’ ASR systems. In the next section we will review an alternative

strategy which allows missing-data techniques to be utilised in orthogonal feature domains.

Imputation-Based Approach

Data-imputation approaches to the missing data problem involve estimating values for the

unreliable features. In a state-based imputation scheme [103, 35] a separate reconstruction

within each HMM state is formed for an HMM-based recogniser. For any state, the distribu-

tion p(x|q) can be computed by replacing the unreliable components xu by their maximum

a posteriori estimates, p(xu|xr, q), obtained given the knowledge of the reliable components
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xr and the prior distribution of that particular state q. Although it is possible, state-based

imputation does not directly reconstruct the complete spectra for transformation into the

cepstral domain. Experiments using spectral features demonstrate that the marginalisation-

based approach consistently gives better recognition results than the state-based imputation

scheme [137, 35].

If imputation is able to reconstruct complete spectral feature vectors then speech recognition

can be performed in a standard manner. This approach is obviously attractive as with the

reconstructed observation vectors a vast number of techniques available in traditional ASR

can be employed. For example, many researchers used imputation to estimate the complete

spectral feature vectors which are then transformed into the cepstral domain in order to make

use of many ASR systems already well built using cepstral coefficients [e.g. 61, 156, 161, 158].

This scheme is called ‘feature compensation’, in which the unreliable spectral components are

estimated based on the reliable components and the statistical properties of spectral vectors

of clean speech. Most techniques in this category model the distribution of clean speech

spectra using a Gaussian mixture model. Early work includes [61, 156], which compute

a minimum mean square error (MMSE) estimation of the unreliable spectral components

based on the reliable components, but with complete ignorance of the observed energy of

the unreliable components (the bounds constraint). Renevey and Drygajlo [161] estimate the

missing features in a similar way, but adapt the Gaussian mixture model using parameters

from an explicit statistic model of additive background noise.

Raj et al. [158] present two reconstruction techniques for feature compensation which exploit

information represented in the bounds. The first one is the ‘cluster-based reconstruction’

which models (or clusters) the spectral vectors of clean training data with a Gaussian mix-

ture model. This technique assumes that the clusters have Gaussian distributions. Clustering

is accomplished via conventional EM re-estimation [53]. To estimate the unreliable compo-

nents the cluster to which an incomplete vector belongs is first identified based on the reliable

components, i.e. the marginals. The distribution of that cluster is used to impute the missing

values given the present values. The second technique is the ‘correlation-based reconstruction’

in which log-spectral vectors of the clean speech are considered to be samples of a stationary

Gaussian random process. The correlations (both spectral and temporal) between any ele-

ments in pairs of spectral vectors in clean speech are learnt. The MAP estimates of unreliable
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features are obtained based on all the reliable neighbouring features whose correlation with

the unreliable feature is above some fixed threshold according to the learnt knowledge. By

modelling temporal correlations between features, the correlation-based technique is able to

reconstruct features even when entire frames are missing. It is also computationally cheaper

than the cluster-based technique. However, speech recognition experiments [157, 158] show

that the cluster-based reconstruction, evaluated on the DARPA 1000-word Resource Man-

agement task [152], performs generally better than correlation-based reconstruction.

Applying missing-data techniques in the cepstral domain generally requires significantly more

computation. More recently, van Hamme [179] reported an imputation technique which max-

imises cepstral likelihoods subject to the bounds constraint thus imputing missing components

directly in the cepstral domain. The ‘PROSPECT’ representation (PROjected SPECTra) of

speech was proposed as an efficient alternative to the cepstral features. In their experiments

on the Aurora 2 task PROSPECT shows comparable accuracy to cepstral features at high

SNRs but is computationally cheaper [179, 181].

When measured on the Resource Management task, Raj et al. [158] showed that employ-

ing the cepstral features derived using these imputation techniques gives better recognition

performance than that of marginalisation. However, the practical benefit is largely from

the decorrelation of features which are well matched to HMM/GMM recognition systems.

When recognition is performed in the spectral domain, marginalisation shows superior per-

formance [35, 158]. In principle, bounded marginalisation is preferable to imputation because

the latter demands an estimation of an individual value which depends on adequacy of re-

liable features and may be incorrect. In contrast, the marginalisation-based approach can

take into account all the possible values within a probabilistic framework. Furthermore,

with oracle masks obtained using a priori information the marginalisation shows striking

performance [35], which suggests a great potential of this technique.

2.4.4 Missing-Data Mask Estimation

As we have seen in the previous section, application of missing-data techniques requires

some preceding segregation process to identify reliable time/frequency components. This

information needs to be represented by either a discrete mask with a binary reliable/unreliable
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decision for each element, or a soft mask where each element is assigned a probability value

to express a confidence of its reliability. The missing-data approach is attractive mainly

because it does not make strong assumptions about the background noise. Provided that

reliable speech evidence can be identified in the first stage, the decoder requires only models

trained using clean speech and there is no need for explicitly modelling the noise. Therefore,

the missing-data mask should be ideally produced using knowledge of the speech source with

minimum assumption about the noise sources present.

Primitive CASA grouping principles are based on innate constraints of the incoming acoustic

data and the physics of sound. Partial descriptions of present sound sources can be recovered

by grouping spectro-temporal elements that have sufficient common features (e.g. harmonicity

and spatial location). Rather than tailored to a particular type of sound, the same group-

ing principles can be applied to general sound sources. Therefore employing CASA-based

techniques for missing-data mask estimation is very appealing. Auditory segmentation by

CASA includes simultaneous (or spectral) grouping which organises sound components across

frequency, and sequential (or temporal) grouping which links segments to form continuous

temporal streams. A detailed review of CASA models can be found in [32] and for more

recent CASA development readers are referred to [24].

It should be noted that many of these CASA-based algorithms were not originally designed

for ASR and were often evaluated using different criteria (see Section 1.3), partially because

of the lack of an advanced statistical framework. The missing-data mask can be the natural

output of many primitive CASA systems, and therefore acts like a bridge to link CASA and

ASR within the missing-data framework. In this section we will review some recent (post–

2000) CASA-inspired systems that have been successfully applied to missing-data ASR.

Local SNR Estimation

Although CASA is an appealing choice, missing-data mask estimation is not limited to CASA

models. Many systems have achieved good recognition results using masks derived from

simple signal processing techniques. For example, a simple technique can be employed for

stationary noise on the basis of local SNR estimates. The stationary noise spectrum is

obtained by averaging the noise spectrum over short periods where it appears that no speech
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is present. T/F components are labelled as reliable if the local SNR is above 0 dB, i.e. the

observed energy is greater than the noise estimate. This process effectively produces a ‘SNR

mask’ [35]. This discrete decision can be softened by mapping the local SNR estimates onto

the range [0, 1] using a sigmoid function [11] centred at 0 dB. To allow a margin that can

guarantee the reliability of present data, the centre can be shifted to a higher SNR, e.g. at

3 dB. With such a margin only T/F components whose SNR is higher than 3 dB will have

a probability value greater than 0.5. If a Gaussian noise distribution can be estimated, then

a true probability can be computed to generate a soft mask [162]. Although simple, these

techniques are surprisingly effective for small vocabulary tasks, as demonstrated in [12]. The

soft values in the mask give missing-data systems an ability to recover mistakes made in

mask estimation to some extent. However, for speech corrupted by highly non-stationary

noise more general solutions are needed.

Harmonicity

An implementation of primitive CASA was also attempted in [13] which based mask estima-

tion on harmonicity cues. The harmonic structure of voiced speech is known to provide cues

for auditory grouping [43, 46]. The technique assumes that the speech signal is the only (or

dominant) harmonic source present in the sound mixture. Therefore any T/F components

with a certain degree of harmonicity can be grouped together as the missing-data mask. The

degree of harmonicity of each element is determined using the ‘autocorrelogram model’ [117],

a popular computational model of auditory pitch analysis. Chapter 6 gives a detailed review

of this model. In brief, it computes autocorrelation on the output of each frequency channel

of an auditory periphery model to reveal sub-band periodicity. The signal periodicity at each

time frame can be emphasised by summing the autocorrelogram across frequencies. For a

periodic signal the autocorrelation delay (apart from the zero delay) which gives the largest

peak corresponds to its fundamental frequency (F0). This process is illustrated in Fig. 2.6.

Once the location of the F0 delay is identified, a slice through the autocorrelogram is taken

at this delay. The degree of harmonicity of each frequency component is computed as the

ratio of the energy at the delay to the zero delay energy. If a time/frequency component

shows a high degree of harmonicity the energy ratio will be expected close to 1. These energy

ratios are rescaled using a sigmoid function to form a soft ‘harmonicity mask’.
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Figure 2.6: Estimating the missing-data mask based on harmonicity (after [13]).

Estimating masks based on harmonicity will inevitably fail for inharmonic speech regions

(e.g. unvoiced speech). Barker et al. [13] therefore combined the harmonicity masks with

SNR masks, which produce improvements over SNR masks alone. However, this technique is

unable to deal with the situation where the noise is also a harmonic source (e.g. speech with

music in background). The presence of non-speech harmonic source will inevitably result in

most T/F components being labelled as reliable which hampers speech recognition.

The problem of how to combine harmonicity and SNR-based cues for missing-data speech

recognition was also addressed by Brown et al. [25] using a ‘neural oscillator’ mechanism.

Neural oscillator models have been successful at providing accounts of the interaction of

cue combinations [186]. Brown et al. [25] associated each T/F component with a node in an

oscillator network. The oscillators responding to related events will automatically synchronise

in time and the associated T/F components can be grouped together.

Grouping by harmonicity has been an important cue for sound segregation in many CASA

models [e.g. 23, 186] in which the autocorrelogram model is often employed as a front-

end to reveal the harmonicity. Based on a similar idea to that of Wang and Brown [186],

Hu and Wang [96] proposed a mask estimation technique which treats low-frequency and

high-frequency regions differently. The motivation is from the psychophysical evidence that

the human auditory system uses different mechanisms to deal with resolved and unresolved

harmonics [27]. The system uses both F0 and amplitude modulation (AM) cues to group

frequency components locally which are then linked across time based on temporal continuity.

Evaluated using a conventional SNR metric the system performs better than the Wang-Brown
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model [186]. However, it again assumes that the target speech is the dominant harmonic

source in the mixture. If the intrusion also presents a harmonic structure, e.g. simultaneous

speech, its performance is relatively limited. Although the system is able to output a binary

mask, it has not been evaluated as an ASR front-end. Shao and Wang [171] employed this

model in a missing-data based speaker identification system, which shows superior results

compared to conventional systems.

Common Onsets/Offsets

Unvoiced speech, such as unvoiced consonants, does not have a harmonic structure. Therefore

the models exploiting harmonicity cues, reviewed so far, are unable to handle unvoiced speech.

Since the energy of unvoiced speech tends to concentrate on local spectro-temporal regions,

Hu and Wang [97] presented a technique for unvoiced speech segmentation on the basis of

common onsets/offsets analysis [23]. The technique works by grouping T/F components with

synchronised energy onsets/offsets into local source regions. Regions with voiced energy are

then removed. A binary Bayesian classifier is applied on the remaining regions in order

to determine which fragments belong to unvoiced speech. The classification is performed

with Gaussian mixture models which are trained using features including the spectrum and

duration. In order to deploy the Bayesian classifier, the system requires a background model

which is trained using various types of non-speech interference. Hu and Wang [97] assumed

the background model to be generic which can accommodate most non-speech sounds. The

quality of the background model is critical to the performance of the technique. Therefore

their system lacks a general solution to unpredictable intrusions. It is also unable to tackle

the situation where the intrusion is speech, e.g. cross-talk.

Hu and Wang [98] extended the model to segment both voiced and unvoiced speech by using a

multiscale integration in which the onsets/offsets were examined at various scales. However,

their system did not address the issues how the segmented regions that belong to the same

source can be identified. A similar technique was reported in Coy and Barker [39], which

employed a common image processing approach, known as the ‘watershed algorithm’ [78],

to process the speech mixture after its harmonic regions are removed. The system produces

‘inharmonic fragments’ (see Section 6.5), which are then combined together with harmonic

regions as input to an ASR system.
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Spatial Location

Another popular way to construct missing-data masks is to use cues from sound source

direction if more than one sensor is available [e.g. 130, 163, 144, 84]. However, as this study

is concerned with single-channle signals, work on this topic will not be reviewed in this thesis.

Readers referred to [187] for a detailed review.

Bayesian Classification

Rather than relying on the quality of noise models, researchers at Carnegie Mellon University

addressed the problem of mask estimation as a Bayesian classification task based on the idea of

extracting features which distinguish speech from noise [169]. Although a noise model is used,

the features they select ensure a narrow distribution for the speech class so that the decision

boundary of the classifier is insensitive to the broad distribution of the noise class. For voiced

speech they employ harmonicity-based features extracted from harmonic comb-filter output

and autocorrelation function, and additional features based on sub-band energies, spectral

shape and kurtosis. For unvoiced segments only harmonic-independent features are used.

Each class (reliable/unreliable) is modelled by Gaussian mixture models with a single full-

covariance matrix and a separate classifier is constructed for unvoiced segments. Evaluated

on the Resource Management corpus [152] the system produced superior recognition results

across various SNR levels and noise types to those of conventional mask estimation techniques

based on noise models and local SNR estimation.

Reverberation

The missing-data approach has also been adapted to deal with reverberation. In reverberant

conditions, some spectro-temporal regions will be dominated by reflected sound, which can be

potentially identified because it does not come from the same direction as the direct speech.

In the system described in Palomäki et al. [144] the reverberant problem was also addressed

using similar binaural processing. Spectro-temporal regions contaminated by reverberant

energy usually have clean beginnings with more noisy reverberation tail to follow, which

demonstrate modulation characteristics different from direct speech. Palomäki et al. [143]

therefore apply a band-pass modulation filter centred around 4 Hz to each frequency band and
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the resulting filtered signal captures the onsets of strong speech modulations. The process is

similar to the modulation spectrogram [109]. After filtering, spectro-temporal regions with

sufficient energy are considered to be dominated by direct speech and reliable. The remaining

regions dominated by reverberant energy are ignored during recognition. Since not all the

T/F components will be equally contaminated by reverberation, the technique can produce

a ‘reverberation mask’ with soft values. Their experiments show that the system performs

well over a variety of reverberant conditions.

2.4.5 Limitations

The missing-data approach to ASR provides a statistical way to make use of CASA output

without the need to resynthesise the speech signal. It has demonstrated striking performance

in adverse acoustic environments when the reliable speech evidence can be accurately identi-

fied. However, most reported experiments were performed on speech with artificially added

noise. This is an unrealistic situation which assumes speech production remain unchanged

under clean and noise conditions. It is known that in response to background noise talkers

increase their voice levels to maintain adequate conditions for speech communication – the

Lombard effect [106]. The increase of voice levels will cause variations in speech properties

and therefore a mismatch between observed speech and recognition models trained using

clean speech. Another significant difference in simulated and real situations is the effect of

reverberation [142]. For missing-data ASR to be applied to realistic situations, techniques

which can help accommodate these situations are necessary.

Another fundamental concern with all the approaches discussed so far is that the problems

of segregation and recognition are decoupled. This strategy is probably due to the fact

that these two fields emerged separately and were historically addressed by different research

communities. Speech recognition can be seen as a pattern matching problem which aims to

find a sequence of words that best match the observed acoustics. These recognition models

(both acoustic and language models) employed by ASR are essentially learnt patterns of

speech. Although these models are arguably imperfect representations of speech, they still

provide some schema-driven information.

There is much evidence that listeners with better language-specific knowledge will perceive
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the language more easily – a common experience when learning a new language. For example,

Cooke et al. [37] recently examined the non-native speech perception problem. They asked a

group of English and Spanish (who learnt English as the second language) listeners to identify

keywords in English sentences in three listening conditions: quiet, corrupted by stationary

noise and corrupted by a competing speaker. The result across the two language groups shows

that in the simultaneous-speaker condition both groups benefited equally from differences in

fundamental frequency between the two speakers. This suggests that processes which make

use of the pitch cue (presumably mainly the primitive grouping process), are not affected

by language-specific knowledge. At the same time, however, the experiments also show that

the Spanish speakers suffered more from increasing levels of noise than the native English

speakers, presumably due to the lack of good knowledge of English. The non-native speech

perception experiment suggests that recognition models can provide schema-based constraints

and the problems of source separation and recognition should be tightly coupled.

One convenience of the decoupling is that the CASA front-end and the ASR back-end can

be developed independently. This assumes that, however, source separation is an easier task

than recognition and can be achieved without top-down speech schemas (i.e. the recognition

models). Nearly all successful CASA systems so far have been based on data-driven processes.

This ignorance of top-down schema-based processes is itself in conflict with the auditory scene

analysis principles we have learnt from human speech perception. Current data-driven CASA

systems can separate sources across frequency with a reasonable performance, based on the

pitch cue or a combination of many cues. However, most of them failed to give acceptable

temporal groupings. Most researchers make use of cues such as F0 continuity [50] and spectral

continuity [48]. These constraints can produce robust local temporal grouping (i.e. within

a short period), but lack the power to handle long-term grouping. For example, the F0

continuity cue is unable to deal with ambiguous pitch tracks when two voices are present

simultaneously. This long-term constraint required must come from the top-down knowledge

of a sound.
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2.5 Other Related Approaches to Robust ASR

While the performance of missing-data ASR on small vocabulary tasks is significantly bet-

ter than many other conventional robust ASR approaches, its constraint on using spectral

features greatly limits its application to large-vocabulary recognition tasks. It is well known

that recognition using orthogonal features, such as cepstral coefficients, produces a superior

performance in quiet conditions. Attempts to apply missing-data techniques to the cepstral

domain have focused on reconstruction or imputation of the missing features in the spectral

domain, followed by transformation to the cepstral domain [e.g. 61, 156, 161, 158]. However,

potential errors introduced in the feature reconstruction stage are not accommodated, which

limits the ASR performance. In this section, we will review some recent developments in

robust ASR which are related to missing-data ASR and work in the cepstral domain.

In feature-based robust speech recognition noisy speech is typically preprocessed to remove

noise before it is fed into the speech recognition system. However, the noise removal process

often introduces errors. This is analogous to missing-data ASR using a discrete mask (see

Section 2.4.2), where errors in the mask estimation are made concrete and irreversible. It

has been demonstrated that missing-data ASR greatly improves when the hard decision to

exclude unreliable features is softened by a continuous weighting [11, 12]. Recently, ‘uncer-

tainty decoding’ techniques have emerged from a generalisation of this ‘soft missing-data’

approach, which effectively allows uncertainty in the noise removal process to be explicitly

expressed [138, 3, 59].

The uncertainty decoding approach parametrically expresses the conditional probability

p(y|x; λ̂) as a measure of the uncertainty in the noisy speech y as a noisy estimate of clean

speech x, where λ̂ is the noise model. Such techniques have been shown to work well under

assumed stationary noise conditions. Most techniques work directly in the cepstral domain

and are coupled with denoising algorithms that work in the domain. For example, Droppo

et al. [59] used the SPLICE technique [55, 58] to estimate the conditional probability associ-

ated with speech enhancement. In order to compute feature uncertainty, Droppo et al. [59]

used so-called ‘stereo data’, in which noisy and clean data are simultaneous recorded and

artificially mixed. A third-order polynomial was used to approximate the mapping function.

A similar approach was also used in [3, 116]. The need of stereo training data was removed
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in [56] by using an approach based on a parametric model of speech distortion to statistical

feature enhancement.

In all the techniques discussed above the conditional probability is approximated by using

an N-component GMM modelling the acoustic space. However, in low SNR conditions the

GMM may generate very low conditional probability for all recognition models, which greatly

reduces their discriminative ability [115]. To overcome this problem, Liao and Gales [115]

link the conditional distribution with the recognition model components, similar to using

regression classes in adaptation schemes such as MLLR [112]. Recently, Srinivasan and

Wang [174] proposed an approach to the problem of estimating the uncertainty of cepstral

features derived from a missing-data mask defined in the spectral domain. When evaluated

on a subset of the Aurora 4 task [145] using oracle masks (i.e. ideal speech/noise segregation),

the uncertainty decoding approach produced comparable results to missing-data ASR and

significant reductions in WER compared to conventional recognition using enhanced cepstra.

When compared to model-compensation techniques such as PMC, the compensation cost in

uncertainty decoding depends on the number of components used in the recogniser to model

the feature space. This is significantly less than the computational cost required by PMC.

Although uncertainty decoding is very similar to soft missing-data ASR, their motivations

are different. While the former is focused on accommodate errors introduced in feature-

compensation, the latter grew out of work on auditory scene analysis with motivation from

human speech perception. It is interesting to directly compare the performance of these two

approaches on common tasks in future.

2.6 Summary

There have been many years of research on engineering approaches to robust ASR [104, 77].

In this chapter we give an introduction of traditional robust speech recognition techniques

and contrast them with some ASA-inspired approaches to ASR. Traditional ASR approaches

to achieving noise robustness exploit the differences that are assumed to exist between the

training and operating environments and try to minimise the mismatch typically using en-

gineering solutions. Therefore they are typically designed to work well in highly predictable

and narrowly specified noise conditions. Their performance often decreases dramatically if
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the operating environment is not carefully controlled [54]. More importantly, they do not

directly address the fundamental issue posed by complex auditory scenes.

Listeners, on the other hand, are adept at coping with a wide range of noisy environments.

Largely motivated by its counterpart in the field of computer vision, computational auditory

scene analysis emerged as a promising field to tackle the sound organisation problem with

inspiration from extensive research of human speech perception. The appeal of CASA is that

it does not consider speech as a different source from others and therefore the same ASA

principles can be applied equally well to all the sources. This motivated many researchers

to build ASR systems which can benefit from CASA studies. One successful approach is the

missing-data ASR technique. However, as we have seen in the previous section, the decoupling

of source separation and recognition ultimately limits such a simple ‘left-to-right’ strategy

and more sophisticated solutions are needed. In this next chapter we will discuss the ‘speech

fragment decoding’ (SFD) technique [15], which combines segregation and recognition in a

tightly coupled process.
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Speech Fragment Decoding

This chapter will examine the ‘speech fragment decoding’ framework. A ‘fragment’ is a

spectro-temporal region where energy from a single sound source dominates. SFD employs

techniques developed from knowledge about the auditory system to identify fragments. A

decoding process using statistical speech models is applied to the fragment representation to

simultaneously identify speech evidence and recognise speech.

3.1 Introduction

The success of CASA has inspired research into developing more general solutions to the

robust speech recognition problem for natural listening conditions where competing sounds

are often present. One popular approach to link CASA with ASR is ‘missing-data’ ASR [35]

reviewed in Section 2.4. The typical application of CASA in the missing-data paradigm

is via the use of missing-data masks (see Section 2.4.2) – CASA models are employed as

a front-end to identify reliable spectro-temporal regions for the target speech. Although

missing-data ASR provides a statistical framework to handle the missing data identified by

the CASA front-end, there are several limitations to such a left-to-right strategy.

First, missing-data ASR requires segregation of the target source (i.e. producing a missing-

data mask). This is a challenging problem when dealing with highly unpredictable noise

sources (e.g. simultaneous speech where the masker is also speech). Recognition performance

is often poor if the missing-data mask is not correctly identified. Although CASA is appealing

for generating missing-data masks, most CASA systems have only achieved success in spectral

48
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grouping. They are relatively unreliable when organising sound components sequentially.

Sequential grouping cues commonly employed include continuity in fundamental frequency

and spectral shape, and spatial location [46]. For example, two successive segments with close

pitch estimates tend to be grouped together. However, most of these cues are considered

valid only over short time periods. They are less robust over longer periods due to the great

variability of the speech properties over time. Therefore, instead of complete segregation, it

is more natural and more reliable for primitive grouping systems to produce local spectro-

temporal regions where the energy is likely to have originated from a single source. These

local spectro-temporal regions are referred to as fragments or coherent fragments in this

study. The identities of the fragments do not have to be decided until high-level top-down

constraints (e.g. lexicons and semantics) are available (i.e. in the recognition stage).

Secondly, in missing-data ASR and many other robust ASR approaches, the processes of

sound source segregation and recognition are decoupled. The problems of CASA and ASR

were traditionally addressed separately, often by different research communities and with

different research goals. A typical application in ASR is to employ CASA as a front-end

which either resynthesises clean speech or provides a missing-data mask. However, nearly all

CASA studies have focused on bottom-up signal-driven processing. As a result, prior top-

down knowledge available in recognition models is ignored when the segregation hypothesis is

formed. There is strong evidence that listeners also employ processes driven by learnt models

of sounds and the two mechanisms work interactively to form a logical explanation of the

present sound scenes [21]. It is highly likely that segregation is a by-product of recognition.

In order to make significant progress in building a robust ASR system, the two processes have

to be tightly coupled.

Inspired by the ASA account of auditory organisation, Barker et al. [15] proposed a ‘speech

fragment decoding’ (SFD) technique which treats source segregation and recognition as

tightly coupled problems. As speech energy is sparsely distributed [31], primitive ASA group-

ing techniques, such as multipitch analysis [126], are employed to segregate a spectro-temporal

representation (e.g. the cochleagram) of the mixture into a set of fragments. Statistical model-

driven processes then employ speech recognition models to simultaneously search for the most

likely word sequence and foreground/background segregation.
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3.2 Coupling Segregation with Recognition

In the statistical framework the automatic speech recognition problem is typically formalised

as a search for the most probable word sequence, Ŵ , given the acoustic speech signal, X

(Eq. 2.3):

Ŵ = arg max
W

P (W |X)

In a multisource environment the speech signal X is not directly observed when the speech

is mixed with noise from another source. Instead the acoustic mixture, Y , is observed. Many

robust ASR approaches including missing-data ASR essentially require a segregation hypoth-

esis, S, of the observed noisy signal, Y , which attempts to recover the speech energy from

the mixture. Given this segregation hypothesis the recognition problem can be formulated

as

Ŵ = arg max
W

P (W |S, Y ) (3.1)

Eq. 3.1 is a precise description of the left-to-right robust ASR strategy. In the missing-

data approach the segregation hypothesis, S, is represented by a missing-data mask which

marks spectro-temporal regions as either being dominated by the target source or masked by

background. Section 2.4 has shown how the term P (W |S, Y ) can be evaluated by building

statistical models of clean speech and partially matching the regions of Y that are marked as

foreground to these recognition models.

However, Eq. 3.1 only considers a single proposed segregation which may be incorrect. To

fully couple the segregation problem with recognition, the best segregation can be treated

as a by-product of recognition. A better description is to search for the word sequence and

segregation 1 that together are most probable given the noisy signal, Y :

Ŵ , Ŝ = arg max
W,S

P (W, S|Y ) (3.2)

= arg max
W,S

P (W |S, Y )P (S|Y ) (3.3)

where P (W |S, Y ) is equivalent to missing-data decoding and P (S|Y ) is the segregation model.

Eq. 3.3 is the essence of the SFD technique. The search is now being conducted over the joint

space of word sequences and segregation hypotheses. In practice, given each segregation S,

the word sequence dimension of the search can be efficiently performed using missing-data

1In Eq. 3.3 max over segregation S is really approximating sum over S.
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Figure 3.1: An example of fragments for a speech/violin mixture (SNR = 0dB), together with correct source

segmentation. In this example the fragments were generated using prior information of pre-mixed signals.

techniques. The segregation search is then equivalent to selecting the missing-data mask that

gives the best likelihood score from missing-data decoding. An exhaustive search is clearly

not practical. If the observation sequence is composed of T frames and each acoustic vector

consists of F frequency bands, then the acoustic mixture contains T × F time/frequency

(T/F) components. There are potentially 2TF segregation hypotheses to evaluate as each

T/F component can be variously labelled as part of either foreground or background. A

typical computer model employs 64 frequency bands and a frame rate of 10 ms. Therefore

for a 2-second utterance there will be 2200×64 ways of dividing the noisy mixture between

foreground and background.

Fortunately, most of the segregation hypotheses do not need to be evaluated. Primitive group-

ing principles [21] can be employed to group T/F components according to the correlations of

their characteristics. For example, T/F components may be grouped if they form continuous

pitch tracks. The process results in the acoustic mixture being divided into multiple local

fragments in the spectro-temporal plane. The middle panel in Fig. 3.1 shows an example of

fragments for a speech/violin mixture. In this example the fragments were generated using

prior information of pre-mixed signals. Each colour represents a fragment in which all the

T/F components are dominated by energy from a single source.
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Figure 3.2: An overview of the speech fragment decoding system (reproduced from [15]). Bottom-up processes

are employed to identify spectro-temporal regions where each region is likely to have originated from a single

source (fragments). A top-down search with access to speech models is then used to search for the most likely

combination of fragment labelling and speech model sequence.

By dividing the mixture into initial fragments the computation cost is significantly reduced.

If the signal is segregated to M fragments, then the total number of segregation hypotheses

becomes 2M , as for each fragment both possible labels (foreground and background) are

considered. The concept of fragments is consistent with the underlying principles of auditory

scene analysis [15]. Each fragment (or a group of fragments) may correspond to an auditory

source or event. Generating fragments is an easier task than completely recovering the speech

source, as their identities do not have to be decided before the recognition stage. Therefore the

primitive grouping principles can focus on correlations between local T/F components rather

than long-term grouping constraints which are less reliable given only the signal properties.

The final segregation is performed when top-down information encoded in the recognition

models is available.

3.3 Fragment-Driven Speech Recognition

An overview of the SFD system is provided in Fig. 3.2. The technique works by considering all

possible fragment labellings and all possible word sequences. Each fragment may be variously

labelled as either being a fragment of the target (foreground) or of the masker (background).

A foreground/background segregation hypothesis is defined by a unique selection of fragment

labels which can be represented by a missing-data mask, mtf – a spectro-temporal map of

binary values indicating which T/F components are being considered to be dominated by the

target source, and which are being considered to be masked by the competing sources. Given
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Figure 3.3: Illustration of an efficient implementation of SFD (reproduced from [15]). The shaded dots

indicate which ongoing fragments are being treated as part of the speech foreground. The absence of the

dots means the fragments are being considered as part of the background. When a new fragment begins, the

hypotheses split in order to consider both labellings of the newer fragment. When a fragment finishes, the

hypotheses are merged and the best labellings continue to be propagated.

such a segregation hypothesis, the decoder employs missing-data techniques to evaluate the

likelihood of each hypothesised word sequence. A dynamic programming algorithm is used

to find the most likely combination of labelling and word sequence.

3.3.1 An Efficient Decoder Implementation

Although by grouping T/F components into initial fragments the huge search space is sig-

nificantly reduced, the number of segregation hypotheses under consideration still grows

exponentially with time. An utterance of 2-second long can be typically divided into around

20 fragments. This means there are 220 segregation hypotheses to be considered (i.e. missing-

data decoding needs to be performed 220 times). Barker et al. [15] demonstrated that this

exponential growth may be prevented. Consider the segregation hypotheses frame by frame.

A pair of hypotheses will become identical after the offset of the last fragment by which they

differ. At this point, the two competing segregation hypotheses are compared and the less

likely one can be rejected without affecting the admissibility of the search [15]. As a result,

the number of segregation hypotheses under consideration at each frame is 2N , where N is

the number of fragments in parallel at that frame, which is typically less than 4 [126]. Note

that the number of fragments being decoded simultaneously varies with time.
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The search process is illustrated in Fig. 3.3 where three fragments (shown using the shaded

regions) are being decoded. Each time a new fragment starts, all ongoing segregation hy-

potheses are split so that in each pair one hypothesis labels the fragment as speech while the

other assigns it to the background. When a fragment finishes, pairs of hypotheses are merged

if they differ only in their labelling of the particular fragment. This process continues until

the end of the utterance.

3.3.2 Decoding with Confidence Maps

One weakness of the SFD technique, in the form described above, is that it produces ‘hard’

segregation, i.e. segregation in which each time/frequency component is marked categorically

as either part of the foreground or background. If early processing has incorrectly grouped

elements of the foreground and background into a single fragment, then there will be incorrect

assignments in a missing-data mask which cannot be recovered in later processing. These

problems can be mitigated by using missing-data techniques that use ‘soft masks’ containing

a value between 0 and 1 to express a degree of belief that the element is either foreground

or background [11]. Such masks can be constructed in the SFD framework by introducing

a spectro-temporal map to express the confidence that the T/F component belongs to the

fragment to which it has been assigned.

The confidence map, ctf , uses values in the range 0.5 (equal belief in foreground and back-

ground) to 1.0 (high belief in foreground). The values are generally estimated based on

fragment generation techniques (see Section 6.6). Given a confidence map, ctf , each hypoth-

esised fragment labelling can be converted into a soft missing-data mask, mtf , by setting mtf

to be ctf for T/F components that lie within foreground fragments, and to be 1− ctf for T/F

components within missing fragments.

3.3.3 Deploying the SFD Framework

SFD requires identification of fragments. The preference is for larger fragments as the com-

plexity of the decoding process scales as the number of simultaneous fragments. Finding

coherent fragments is a simpler problem than identifying reliable speech evidence in the

missing-data approach. Techniques based on computational auditory scene analysis can be
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Figure 3.4: Recognition results comparing the performance of a baseline system using cepstral mean nor-

malisation (MFCC+CMN), regular missing-data, and the speech fragment decoder. The ‘oracle’ curve shows

the result expected when perfect speech/noise segregation is achieved (after [15]).

used to find cues (both bottom-up and top-down) to form coherent fragments. Short term

cues include harmonicity, frequency proximity and common onsets/offsets. Long term cues

include F0 continuity, speaker identity and the use of a lexicon and semantics.

Barker et al. [15] have shown that SFD provides significant improvements over a missing-data

decoder. Their experiments employed mixtures of TIDigits utterances [113] and NOISEX

factory noise [183] at various SNRs. They first identified speech regions based on local SNR

estimation [35] (see also Section 2.4.4). The speech regions were represented as missing-

data masks and employed by a missing-data decoder as part of the recognition experiment.

Because the factory noise has highly unpredictable components such as hammer blows, some

of the speech regions identified using the SNR-estimation technique will in fact be due to

the noise. To allow the speech fragment decoder to improve on the missing-data results, the

missing-data masks were dissected. Barker et al. first divided each mask into four frequency

subbands. Each contiguous region within a subband was defined to be a separate fragment.

Fig. 3.4 shows recognition results at various SNRs. The SFD technique yields significant

improvement in accuracy over the missing-data approach at the lower SNRs, even though

the fragment generation processing employed is still somewhat rudimentary. Analysis of the

results showed that noise fragments, which were identified as part of speech regions using the
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SNR-estimation technique, were successfully rejected by SFD. The missing-data decoder does

not have the ability to recover such errors and therefore produced lower recognition accuracy.

3.4 Possibilities for Improving SFD

Speech fragment decoding is a novel framework that takes advantage of heuristics developed

from knowledge about the human auditory system. This power is combined with statistically

trained schema-driven processes to give better performance than systems based on either

taken in isolation. Therefore SFD provides the foundation for a statistical approach to cou-

pling computational auditory scene analysis and automatic speech recognition. It should be

noted that the SFD techniques can be applied to general source recognition (i.e. a multisource

decoding framework), given that detailed models of the target source are available.

The recognition errors produced by a SFD system can be due to various reasons. SFD

employs missing-data ASR at its core, and the decoding process can produce word-matching

errors even given the correct foreground/background segregation hypothesis defined by an

oracle missing-data mask (see Section 2.4.2). The errors can also be due to a result of

selecting wrong fragments. At last, poor quality of fragments provided to SFD may also

lead to recognition errors. With the implementation by Barker et al. [15], there are several

possibilities for improving the current system, which will be investigated in this thesis.

First, traditional HMMs have weak duration constraints. This is not a problem when the op-

erating environment is similar to that of HMM training. The corruption of acoustic features,

however, often causes word matches with unrealistic durations to be produced by ASR in

noisy conditions. SFD employs missing-data techniques at its core, which base speech recog-

nition on partial acoustic evidence. To combat noise corruption, explicit duration modelling

may need to be introduced into the decoding process. This will be investigated in Chapter 4.

Second, in the current implementation SFD assumes that each fragment is part of either the

speech foreground or the noise background with equal probability. This essentially applies a

uniform distribution to all the segregation hypotheses defined by the term P (S|Y ) in Eq. 3.3.

The uniform distribution is a very crude approximation. Some fragments may ‘look’ more

like speech and others may ‘look’ more like noise. For example, a thin fragment in the high
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frequency region with a long span in time is unlikely to be from the speech source. Knowledge

that may help distinguish speech fragments from noise fragments can be exploited to assist

the decoder in the choice of fragments. This will be investigated in Chapter 5.

Finally, the recognition performance of SFD also depends on the quality of fragments. If the

fragments contain too much energy that belongs to different sources, the performance is likely

to be poor. The fragment generation technique employed by Barker et al. [15] is very simple

and crude. It is likely that improved fragment generation techniques will result in significant

performance gains. This study will therefore investigate ways that coherent fragments can

be formed. This will be investigated in Chapter 6.

By investigating techniques for improving SFD in multisource environments we hope that

some progress can be made towards finding a general solution to the robust ASR problem.

3.5 Corpora and Experimental Setup

In this section the corpora and common experimental setup employed in this doctoral work

will be presented. Where appropriate, in each chapter the experimental setup may be briefly

repeated to make the thesis easier to understand. Speech recogniser setup related to each

experiment will be given at the beginning of each chapter.

3.5.1 Corpora

Two corpora were employed in this thesis. The Aurora 2 connected-digit database [150]

was used for investigating duration modelling in noisy environments. This corpus takes

the TIDigits database [113] as basis, which is mixed with various environmental noises. The

original 20 kHz data are downsampled to 8 kHz with a low-pass filter extracting the spectrum

between 0 and 4 kHz. Aurora 2 has a vocabulary of 11 words (‘1’–‘9’, ‘oh’ and ‘zero’), silence

and inter-digit short pauses. It has a free grammar and each utterance may contain one or

more digits. The number of words in each utterance is unknown.

The Grid corpus [36] was used in the rest experiments. The corpus consists of utterances

spoken by 34 native English speakers, including 18 male speakers and 16 female speakers. The

vocabulary contains 51 words. The utterances are short sentences of the form <command>
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<colour> <preposition> <letter> <number> <adverb>, as indicated in Tab. 3.1,

e.g. ‘lay white by L 5 please’. Each utterance lasts about 2.2 seconds. All signals are sampled

at 25 kHz.

Table 3.1: Structures of the sentences in the Grid corpus

Verb Colour Prep. Letter Digit Adverb

bin blue at A–Z 1–9 again

lay green by (excluding ‘W’) and zero now

place red in please

set white with soon

The Grid corpus provides a challenging ASR task and forms the base for the Interspeech

2006 Speech Separation Challenge 2. Many techniques presented in this thesis were origi-

nally developed for the challenge. However, the Grid corpus is not suitable for investigating

duration modelling. Because each Grid utterance has the same number of words (with a fixed

grammar of the form ‘<command> <colour> <preposition> <letter> <number>

<adverb>’), ASR experiments on the Grid corpus will not produce any insertion or deletion

errors, which duration modelling may help combat (see Chapter 4). Therefore the Aurora 2

database is used for investigating duration modelling.

3.5.2 Acoustic Feature Representation

All experiments presented in this thesis were performed using spectral features so that

missing-data techniques based on marginalisation (which SFD employs at core) can be ap-

plied. Cochlear frequency analysis was simulated via a bank of overlapping gammatone filters

with centre frequencies spaced uniformly on the equivalent rectangular bandwidth (ERB)

scale [75]. The instantaneous Hilbert envelope is computed at the output of each gammatone

filter. This is smoothed by a first-order low-pass filter with an 8 ms time constant, sampled

at 10 ms intervals, and finally log-compressed to give an approximation to the auditory nerve

firing rate – the ‘ratemap’ representation, or the cochleagram (see Section 1.3.1).

The number of gammatone filters employed is normally decided based on signal sampling rate

and the frequency range covered. Having more filters can offer a higher frequency resolution

2http://www.dcs.shef.ac.uk/∼martin/SpeechSeparationChallenge.htm
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but bring more computational cost. For the Aurora 2 database, in which data are sampled

at 8 kHz, the frequency range employed in cochlear frequency analysis is from 50 Hz to 3850

Hz, following [12]. The number of filters (channels) employed in the gammatone filterbank is

32. For the Grid corpus, in which data are sampled at 25 kHz, the frequency range employed

in cochlear frequency analysis is from 50 Hz to 8 kHz, following [16]. The number of filters

(channels) employed in the gammatone filterbank is 64.

These spectral features were supplemented with their temporal derivatives to form the final

feature vector.
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Explicit Duration Modelling

4.1 Introduction

Hidden Markov models (HMMs) provide a powerful framework for modelling time-varying

signals and speech recognition based on them has achieved great success. However, in the

presence of noise ASR performance often degrades significantly. One reason is that HMMs

do not directly characterise some important information such as duration modelling [153].

In a standard HMM employing a left-to-right no-skip topology, the probability of occupancy

duration in each HMM state decreases geometrically with time. The first-order Markov

process implicitly imposes a geometric state duration distribution which may be inappropriate

for speech signals [155]:

di(τ) = aτ−1
ii (1− aii) (4.1)

where aii is the self-transition probability of state i and τ is state occupancy duration. Fur-

thermore, the geometric state duration density also produces a skewed (to the short duration

side) word duration distribution with a variance much wider than empirical ones [80] and

there is no hard limit on word durations. The implicit weak duration modelling may cause

problems in the process of decoding, especially if there is a mismatch between the training

and testing environments. For example, given models trained on clean speech an ASR system

often produces word matches with unrealistic durations in noisy conditions. Word strings

where the associated word models have short durations tend to be favoured over competing

strings with fewer words but longer durations. This effect can be observed in a connected-

digit recognition task with no grammar constraints, where the number of insertion errors

greatly exceeds that of deletions and substitutions in noisy conditions [151].

60
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In the SFD framework, acoustic evidence is often incomplete and the missing-data technique

is employed to deal with the partial observations. In the lack of complete acoustic evidence,

incorporating duration constraints may be particularly useful. This chapter will examine

duration modelling in the context of missing-data ASR [35]. As the SFD system employs

the missing-data theory at its core, techniques useful for missing-data ASR would also be

useful for an SFD system. This allows us to employ many existing missing-data ASR systems

developed at Sheffield university.

All experiments presented in this Chapter were performed using the Aurora 2 connected-

digit corpus [150]. Spectral features were used so that missing-data techniques can be applied.

Feature vectors were obtained via a 32-channel gammatone filterbank distributed in frequency

between 50 Hz and 3850 Hz on the equivalent rectangular bandwidth (ERB) scale [75]. The

features were supplemented with their temporal derivatives to form a 64-dimensional feature

vector. Some of the work reported in this chapter has previously appeared in [122, 125].

Section 4.2 will discuss experiments of modelling state durations. Section 4.3 will present

techniques modelling word durations. Particularly, a significant effect on word durations, the

‘prepausal lengthening effect’ [41], is investigated. Section 4.4 concludes and presents future

directions.

4.2 State Duration Modelling

4.2.1 Overview

Many approaches have been proposed to model state duration information in an HMM based

speech recognition system. The work by Ferguson [65] pioneered the use of an explicit state

duration model. His model associates each HMM state i with a non-parametric state duration

probability di(τ), τ = 1, 2, · · · τ i
max, where τ i

max is the longest duration allowed for state i.

The estimation of di(τ) was incorporated into the Baum-Welch re-estimation algorithm. Due

to the introduction of τ i
max duration parameters for each state, the Ferguson model suffers

from excessive computational load and more importantly, sufficient training data may not be

available to estimate all the duration parameters.

Researchers have suggested using parametric state duration distributions to address the
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problem of insufficient training data. For example, Russell and Moore [166] proposed us-

ing the Poisson distribution in addition to the Gaussian distribution, while Levinson [114]

replaced the geometric state duration distribution with the Gamma distribution. Burshtein

[26] showed that state durations are most accurately described by the Gamma distribution. In

most research these parametric distributions were applied in the hidden semi-Markov model

(HSMM) framework where temporal properties are incorporated into the HMM framework.

HSMMs have a more appropriate state duration distribution: the state transition probability

depends on the amount of time that has elapsed in the current state, whereas in HMMs the

state transition probability is constant. As the Markov assumption no longer holds, HSMMs

need to be trained using a modified Baum-Welch algorithm [166].

Although with parametric distributions the need for large amounts of training data is re-

duced, the problem of excessive computational cost still remains. The loss of the simplifying

Markov assumption seriously degrades the efficiency of model re-estimation and decoding al-

gorithms [154]. To incorporate duration modelling in a computationally efficient way, Juang

et al. [105] suggested a post-processor approach in which candidate word matches output by

the Viterbi algorithm with unreasonable durations are eliminated. Burshtein [26] incorpo-

rated parametric state and word duration modelling into a modified Viterbi algorithm which

keeps track of the duration of each state at various time. The modified algorithm has essen-

tially the same computational requirements of the conventional Viterbi algorithm. Mitchell

et al. [136] demonstrated a technique to reduce the complexity of training a semi-Markov

model with explicit duration modelling.

Another state duration modelling approach is the expanded-state HMM (ESHMM) tech-

nique [165]. In this approach each state in a standard HMM is replaced with another HMM,

referred to as a ‘sub-HMM’ in their study, whose states share the original state observation

probability density. The expanded HMMs can then be re-estimated 1 using a standard Baum-

Welch algorithm. The correct state duration distribution is realised as the overall duration

p.d.f. of the sub-HMM, which is determined by its topology as well as transition probabil-

ities. Various topologies have been examined [e.g. 165, 141, 40, 151]. It is important to

note that the overall duration p.d.f. of a sub-HMM depends on all possible state sequences,

whereas in recognition the standard Viterbi algorithm finds only the most likely state se-

1Usually only the transition probabilities are updated in re-estimation.
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Expanded state i with tied p.d.f.
1.01.0

Original state i

Observation p.d.f. for state i

Figure 4.1: Illustration of the expanded-state duration model. Note the sub-HMM states share the original

observation probability density.

quence. Therefore the forward-backward search algorithm is needed to give the true duration

p.d.f., which restricts usable topologies for the sub-HMM. An exception is to employ a special

topology for the sub-HMM where the maximum duration in each state of the sub-HMM is

one [165]. Fig. 4.1 illustrates such an expanded-state HMM. The sub-HMM states have no

self-transitions and instead a transition to the final non-emitting state is added. With such

a topology the overall duration p.d.f. of the sub-HMM depends on only one possible state

sequence.

0.5

0.51.0

Figure 4.2: Illustration of the expanded-state HMM topology with a self-transition in the last state, as

suggested by Noll and Ney [141]. The self-transition at the last state is used to model the geometric duration

distribution beyond a maximum duration.

ESHMM is simple as duration distributions can be directly included to the HMM-based ASR

framework without modification of existing decoding algorithms. However, it imposes a hard

restriction on the duration range of a state. The maximum state duration is determined by

the number of sub-HMM states and the minimum duration is one frame. In practice, the max-

imum state duration can be decided heuristically based on state duration statistics obtained

during the model training process. Rabiner and Juang [154] suggested that 25 is reasonable

for many word-level HMM based speech processing problems. Expanding each HMM state

to a sub-HMM with such a large number of states introduces many free parameters to be
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estimated and therefore requires more training data and extra computation. Noll and Ney

[141] suggested adding a self-transition to the final sub-HMM state. This new topology is

displayed in Fig. 4.2. By adding the self-transition the explicit restriction on the maximum

state duration is removed. The geometric distribution of the final sub-HMM state is used to

model the tail of the state duration distribution, which is a reasonable approximation.

In this section we first examine some factors affecting state duration statistics. The effect

with various numbers of states is then investigated. The expanded-state HMM (ESHMM)

technique is applied to model state duration constraints.

All experiments presented in this Chapter were performed using the missing-data ASR system

based on the marginalisation techniques. Soft missing-data masks are identified by estimating

local SNRs using the first 10 frames where speech is absent [13]. Instead of 16 states suggested

in the Aurora 2 corpus [150], whole-word HMMs with 10 states were employed. This is

because 16-state HMMs imply a minimum word duration of 160 ms (16 frames). When

modelling short words such as digits, the most typical state duration can be as short as 10

ms (1 frame) and this prevents meaningful duration statistics. Each state was modelled by

10 Gaussian components instead of 3 components as suggested to compensate the correlation

across dimensions of the spectral feature used.

4.2.2 State Duration Statistics

To investigate the empirical state duration distribution, histograms of duration counts were

first obtained for each HMM state. The state durations were obtained by forced-aligning a

set of well-trained HMMs with the Aurora 2 training data (clean speech) using a standard

Viterbi decoder 2. Around 2500 duration instances per state for each digit in the vocabulary

were collected to compute the histograms with a bin width of 10 ms. The dashed lines in

Fig. 4.3 show state duration distributions of digit ‘seven’ obtained from the histograms.

It has been reported that the empirical state duration distribution has a normal-like

shape [114]. Surprisingly, in Fig. 4.3 the first 7 states have a geometric distribution and

only the last 3 states have a bell-like shape. The average occupation time in each state in-

creases toward the last state – less than 30 ms in the first few states while over 150 ms in the
2The word error rates on clean speech in this task are lower than 1%.
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Figure 4.3: Empirical state duration distributions of the digit ‘seven’ obtained from forced-alignments using

10-state HMMs. ‘Standard prototype’ (solid line) refers to models trained with a normal prototype; ‘Original

Aurora 2 prototype’ (dashed line) indicates to HMMs trained with the prototype in the original Aurora 2 disc,

in which the self-transition probability of the last state is set to 0.9.

last state. This suggests that in the process of forced-alignment the decoder had a tendency

to quickly move toward the last few states when discovering the most optimal state sequence.

Histograms for other word models demonstrate a similar pattern. The occupation duration

in the last state is far too long.

This happened because of the prototype file included in the Aurora 2 corpus. A prototype

defines the structure of an HMM and also gives the initial values of all transition probabilities

(normally all set to 0.5). However, in the Aurora 2 prototype the initial self-transition

probability of the last state is set to 0.9 and the other self-transition probabilities are set

to 0.6. Fig. 4.4 shows this prototype where white circles represent emitting states and grey

circles represent non-emitting states. Due to the strange initial transition probabilities, in

each training iteration more observations would be assigned to the last state than other states.

As a result, Gaussian mixtures of the last state were trained to match a larger portion of a

digit than any other states.

To validate this point a separate set of HMMs were trained with exactly the same setup
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Figure 4.4: Illustration of the original HMM prototype file supplied in Aurora 2 database discs. Note the

initial self-transition probability is set to 0.9 in the last emitting state.

except for a standard prototype in which all the initial transition probabilities were set

to 0.5. The models were employed to perform the same forced-aligning experiment. The

computed histograms are shown as solid lines in Fig. 4.3. The ‘standard prototype’ state

duration distributions look more reasonable. The distributions for the middle states are no

longer geometric and the average duration of the last state is much shorter.

The prototype problem also has an impact on recognition performance. The two set of

HMMs were separately employed by the same missing-data recognition system to decode the

Aurora 2 test set A. Fig. 4.5 shows that the models trained with the ‘standard prototype’

gave consistently better performance across various noise conditions and signal-to-noise ratios

(SNRs). Among the recognition word errors, there were more insertion errors produced with

the ‘wrong prototype’ HMMs compared to those with a ‘standard prototype’. The insertion

errors were primarily due to the fact that the ‘wrong prototype’ HMM set was trained with

a tendency to match the most observations with the last few states. This is analogous to

having fewer states. Therefore during decoding the optimal state path will quickly move

toward the last few states and it is more likely to jump out of the current word model (i.e. a

shorter word duration).

All the experiments discussed from now on employed the ‘standard prototype’.

4.2.3 Modelling State Durations using ESHMMs

To examine if duration modelling at the state-level can bring significant improvements in

missing-data speech recognition, in this section we model state duration distribution using

the expanded-state HMM (ESHMM) technique [165, 40, 151]. Whole-word HMMs (with

the standard prototype) were trained using clean Aurora 2 training data. Each digit was

modelled by 10 states with 10 Gaussians per state. These HMMs will be employed in the
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Figure 4.5: Recognition results for Aurora 2 Test Set A comparing the models trained with different proto-

types. ‘Standard prototype’ refers to HMMs trained with a standard prototype. ‘Wrong prototype’ indicates

HMMs trained with the prototype in Aurora 2 corpus discs.

baseline system.

ESHMMs were obtained by replacing each original emitting state by an 8-state sub-HMM

(see Section 4.2.1) with a topology shown in Fig. 4.2, where only the last state in the sub-

HMM has a self-transition. All the states in a sub-HMM share the same Gaussian mixtures

of the original HMM state which the sub-HMM replaces. All the transition probabilities of

the sub-HMMs were initially set to 0.5, and then updated using the standard Baum-Welch

algorithm.

In the ESHMM the implicit duration distribution (of an original HMM state) is no longer

geometric. Let Mi be the sub-HMM for the original state i and an
i denote the transition

probability from the nth sub-state of Mi to the non-emitting state at the end. Then the
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Figure 4.6: State duration distributions of the digit ‘seven’ implicitly modelled by the expanded-state HMMs

(dashed lines), along with the empirical distribution (histograms) determined from Viterbi forced-alignment

using the original 10-state HMMs.

duration distribution of original state i is:

d̂i(τ) =















∏

1≤n<τ
(1− an

i ) · aτ
i , τ ≤ N

∏

1≤n<N

(1− an
i ) · (1− aN

i )τ−N · aN
i , τ > N

(4.2)

where τ is state duration and N is the number of sub-states in each sub-HMM (8 in this ex-

periment). The implicit duration distributions can be computed using Eq. 4.2 from re-trained

state transition probabilities. The distributions are plotted as dashed lines in Fig. 4.6. The

empirical duration histograms are also shown in Fig. 4.6. They were determined from forced-

alignments produced using the original HMMs. It is clear that the duration distributions

implicitly modelled by the expanded HMMs closely match the empirical distributions. Other

word models demonstrated similar matches.

Two recognition systems employing the same missing-data decoder with soft SNR masks [12]

were evaluated on the Aurora 2 task. The baseline system employed standard 10-state HMMs.

The ESHMM system employed the expanded HMMs after re-training their transition prob-
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Figure 4.7: Both recognition systems employed missing-data techniques with soft SNR masks [12] in the

Aurora 2 task. In the baseline system standard HMMs were used. In the ESHMM system, each state of the

standard HMMs was replaced with an 8-state sub-HMM.

abilities. Fig. 4.7 compares their recognition accuracy rates at various noise conditions.

Although the ESHMMs encode more reasonable state duration constraints, the improve-

ments are not significant (p > 0.2) throughout various types of noise and SNR levels. As

in ESHMMs state durations were modelled by transition probabilities, this is not surprising

considering the little impact that transition probabilities normally have on overall ASR per-

formance. The recognition errors by both systems were still subject to a large number of

insertion errors 3.

Let us consider standard HMMs. Interestingly the Aurora 2 paper [150] suggested using

16-state whole-word HMMs for the connected-digit recognition task. 16 states seem to be far

3Various insertion penalties were tried and the best performance was reported here for both model sets.
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too many for modelling many short digits in the vocabulary, e.g. ‘oh’. With too many states

the duration in each state will decrease which results in its distribution being geometric.

However, as the HMM topology is left-to-right and no-skip, employing more states means

longer minimum word durations. The 16-state whole-word HMMs have a minimum word

duration of 160 ms (10 ms per frame) while the minimum word duration for 10-states HMMs

is 100 ms.

The number of HMM states had an impact on recognition performance. Our preliminary

experiments showed that consistent improvements over the 10-state HMM baseline were

achieved by employing 16-state HMMs. This is still the case even when the total num-

ber of model parameters was the same (i.e. the 10-state HMMs employed more Gaussian

mixtures). The improvements were largely due to reduced insertion errors with the 16-state

HMMs which have a longer minimum word duration.

The meaning of modelling state durations seems to be obscure. It may be more useful to

model whole-word durations. The next section will investigate word duration modelling.

4.3 Word Duration Modelling

Much research on duration modelling only addressed the issue at the state level and the minor

performance advantage produced in recognition of clean speech often does not justify the extra

complexity introduced [136]. The previous section showed that modelling state durations

does not much benefit missing-data ASR. Instead, ASR improvements resulted from a longer

minimum word duration in HMMs were observed. While the meaning of modelling state-level

durations is obscure, modelling word-level duration constraints is potentially more effective

for improving ASR in noise. The spectral representation of speech may change significantly

in noisy conditions, but the duration structures of speech are, despite of the influence of the

Lombard effect on speech [106], relatively insensitive to moderate noise levels [77]. Hochberg

and Silverman [90] found that there is a strong correlation between recognition performance

and the variance of modelled word duration.

Our goal in this section is to use word duration constraints to combat the corruption of

acoustic features in noisy conditions. With the Markov state independence assumption,
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Figure 4.8: Word duration histograms of digits ‘oh’ and ‘six’ in Aurora 2 produced by Viterbi forced-

alignment.

modelling state durations does not necessarily produce a good model of word durations [80].

In this section we first investigate some characteristics of word durations. Techniques for

explicit duration modelling at the word level are then proposed. Recognition experiments

using the Aurora 2 corpus are described and discussed in Section 4.3.4.

4.3.1 Word Durations Statistics and Modelling

The empirical word duration distribution was determined from an automatic Viterbi forced-

alignment of the Aurora 2 training data with well-trained HMMs. Each HMM consists of

16 states with a left-to-right no-skip topology and 7 Gaussian components were employed in

each state. Word durations of about 2500 instances per digit from the training data were

used to compute the histograms with a bin width of 10 ms. Fig. 4.8 shows the word duration

histograms for digits ‘oh’ and ‘six’ from the Aurora database. Word duration distribution does

not have a normal-like shape, as Fig. 4.8 illustrates, and the histograms of both digits have a

skewed shape. As word durations are themselves discrete, this makes a discrete distribution

very attractive for a small vocabulary task such as Aurora 2. For a large (or even medium)

vocabulary task it may become intractable to get sufficient training data for such a discrete

duration model, thus a parametric model (e.g. Gaussian mixture model) may be required

but can be used in a similar manner.

In this study a discrete distribution based on histograms is used to model word durations.

The duration histograms are smoothed using a 5-point median filter and as an example,
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Figure 4.9: Word duration histograms for digit ‘six’. Left: histogram computed from all duration examples.

Right: a comparison of duration histograms in different prepausal contexts.

the smoothed histogram for digit ‘six’ is shown as solid lines on the right panel in Fig. 4.9.

Let P (d|w) denote the probability of word w having a duration d. To evaluate P (d|w), the

histograms are normalised to have unit area so that they are equivalent to probabilities.

Because of the high dimensionality of the feature vectors typically used, a scaling factor is

introduced to control the impact of the duration probability during decoding, forming the

word duration penalty D(d|w):

D(d|w) = P (d|w)γ (4.3)

where γ is the empirical scaling factor on word durations.

The smoothed duration histogram for digit ‘six’ shown in Fig. 4.9 has a bimodal distribution:

there is one peak around 340 ms and another around 570 ms. Furthermore, the distribution

is a very wide covering a duration of around 750 ms. The wide bimodal distribution is

observed in the word duration histograms of many other digits. This is clear evidence that

some instances of a digit in Aurora 2 database are significantly lengthened while the others

are not.

Crystal and House [40] performed a set of experiments analysing segmental durations in

connected-speech signals in an effort to apply duration information to the automatic analysis

of speech. Among many factors that may influence segmental durations for an individual

speaker, the stress patterns of a language are a primary factor. Speakers tend to lengthen

syllables (or words) when stressing them. For example, in the Crystal and House experiments

the mean duration of stressed vowels is found to be 70 ms greater than the average for
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Table 4.1: Mean durations (Mn.) and standard deviations (s.d.), in milliseconds, of various digits in Aurora 2

corpus. Prepausal context as indicated. N = number of cases; Mn. Inc. = relative mean duration increase in

the prepausal context.

All examples Non-prepausal Prepausal

word N Mn. s.d. N Mn. s.d. N Mn. s.d. Mn. Inc.

one 2545 357 94 1784 325 80 761 432 80 33%

two 2531 338 99 1757 302 85 774 421 75 40%

three 2521 349 92 1769 314 75 752 433 72 38%

four 2539 373 97 1748 338 83 791 450 79 33%

five 2491 407 111 1698 360 83 793 509 96 41%

six 2545 436 123 1756 374 79 789 572 87 53%

seven 2525 426 88 1778 397 77 747 493 74 24%

eight 2515 323 95 1752 280 64 763 420 83 50%

nine 2492 406 99 1715 369 80 777 488 87 32%

oh 2500 324 94 1769 291 79 731 402 80 38%

zero 2523 448 100 1761 419 91 762 515 88 23%

unstressed vowels. Crystal and House also discussed a strong prepausal lengthening effect

on vowel durations, an effect in which vowels followed by syntactic pauses (e.g., sentence

markers) are longer than the others. In a connected digits database like Aurora 2 high-level

linguistic cues are minimised so the effect of lexical stress is not obvious. Our experiments

have shown that the word duration statistic of a digit spoken at the beginning or in the middle

of an utterance is not affected by the following digit [122]. For example, in digit strings ‘one

two’ and ‘one three’, the digit ‘one’ has very similar duration statistics. In fact the bimodal

word duration distribution found in this study is due to the prepausal lengthening effect.

To further examine this effect we divide the duration instances of each digit into two sets:

those preceding a digit and those preceding a long pause. In Aurora 2 there is a long pause at

the end of each utterance and our experiments show that the brief inter-digit pauses in some

long multi-digit utterances do not give a strong prepausal lengthening effect. Therefore in

this study only the sentence-final words are considered as prepausal instances. For each digit

two duration histograms were computed and smoothed for the two sets. The histograms of

digit ‘six’ are shown in the right panel of Fig. 4.9, along with the bimodal duration histogram

determined from all duration instances. It is clear that the bimodal distribution consists of
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the two uni-modal distributions determined from the two duration instance sets. Tab. 4.1

lists the mean and standard deviations of the duration of each digit in both the prepausal and

non-prepausal contexts, in milliseconds. Prepausal instances consistently demonstrate longer

durations and the relative increase of mean duration is up to 53% (digit ‘six’). The duration

standard deviations of each duration set are also narrower than those of all instances. The

prepausal lengthening effect is observed for all digits but is less strong for multi-syllable digits

(e.g. ‘seven’ and ‘zero’). Single-syllable digits are more often shortened in continuous speech

due to the effect of co-articulation than longer multi-syllable digits. Therefore the prepausal

lengthening effect may be more significant. The prepausal lengthening effect has also been

found in large vocabulary, spontaneous speech corpus, e.g. the Switchboard I corpus [76]. See

Appendix B for examples.

To model the prepausal lengthening effect, we estimate P (d|w, c) – the probability of word w

having a duration d in context c. In our case c = (prepausal | non-prepausal). By applying

a scaling factor, we can compute the context-dependent word duration penalty:

D(d|w, c) = P (d|w, c)γ (4.4)

In connected word recognition the Viterbi algorithm is widely used to find the most probable

path through a probabilistically scored time/state lattice [140]. We wish to apply the word

duration penalty to word sequence hypotheses as they leave word-final states. This cannot be

done directly with a standard Viterbi decoder because it does not keep a record of durations

of different hypothesis paths. Competing paths may have different duration histories for the

word now terminating. Fig. 4.10 shows two competing paths through template T1 reaching

the final state of the template at the same time t3. Assume the solid line h1 is the best

hypothesis path through T1 from the time frame t1 to t3, discovered by the Viterbi algorithm.

The dashed line h2 is another path terminating at t3 with a less likelihood score than h1.

With a different word duration penalty hypothesis path h2 may in fact has a higher overall

likelihood score than h1, but the word duration information is not available when comparing

paths in the Viterbi process which only keeps the most likely path leading to each state.
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Figure 4.10: Two competing Viterbi paths through the template T1 reaching the template end at the same

time frame t3 but starting at different time.

4.3.2 Duration Modelling with a Multistack Decoder

To incorporate word duration constraints a decoding algorithm based on the idea in

Renals and Hochberg’s NOWAY decoder [160] was employed. NOWAY is a stack de-

coder [149, 7] which sets up a separate stack for word sequence hypotheses that end at

each time frame and processes these stacks time-synchronously from left to right. Newly cre-

ated hypotheses are added to stacks and this process is continued until a complete hypothesis

is determined. Since all word hypothesis paths between two stacks have the same word dura-

tion, word duration penalties can be safely applied in a multistack decoder. To keep record

of word durations the items on each stack are word sequence hypotheses H(t, W (t), P (t))

which consist of:

1. The reference time t at which the hypothesis ends.

2. The word sequence W (t) = w(1)w(2) . . . w(n) covering the time from 1 to t.

3. Its overall likelihood P (t).

The decoder extracts the most likely hypothesis from the stack based on its overall likelihood

at time t, computes one-word extensions, applies word duration constraints for the word, and

places all the new hypotheses into corresponding stacks. When the search finishes, the most

likely hypothesis path on the last stack is the optimal path.

To make the multistack search more efficient, some heuristic pruning can be applied to reduce

the computation cost. For example, when the top hypothesis of each stack is extended for

one more word w, we need only consider extensions between a minimum word duration and
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a maximum duration (Dmin and Dmax), obtained by examining word duration statistics

from the training data. This word duration boundary itself seems to be able to improve the

recognition performance as hypotheses with very short or very long words can be pruned out

of the search. A typical duration range for a non-terminating digit in Aurora 2 is 200-700

ms. For a prepausal digit a typical duration range is 300-900 ms.

Let T denote the length of the utterance in frames and let H(t, W ∗(t), P ∗(t)) be the most

likely hypothesis on the stack at time t, where W ∗(t) is the best word sequence finishing at

time t and P ∗(t) is its likelihood. A Viterbi search V (t, u, v) can be used to find the best-

matching single words starting from a given time t and finishing at each time within a range

u to v. The full algorithm uses V (. . .) as follows:

1. Initialisation:

Run V (1, Dmin, Dmax) to find initial one-word matches for t = Dmin . . . Dmax, and place

initial hypotheses H(t, W (t), P (t)) in the stacks at Dmin . . . Dmax.

2. Iteration:

For t = Dmin to T −Dmin

(a) Select H(t, W ∗(t), P ∗(t)) after applying word duration penalties P (d|w∗(n), w(n +

1))γ from the stack at t, where d is the duration of the best-matching word w∗(n)

finishing at time t, and w(n + 1) is the next extending word. Note, with different

extending words the penalty is different.

(b) Run V (t, t + Dmin, t + Dmax); form extended hypotheses and add them to each

stack respectively.

3. Termination:

Find H(T, W ∗(T ), P ∗(T )) from the stack at time T and the final result W ∗(T ).

As we keep the best word sequence in each stack, there is no need to do backtracking to find

the global optimal word sequence.

This algorithm is illustrated in Fig. 4.11. The most likely word sequence hypothesis (‘Seven

One’) is extended by the most probable one-word extension ‘Eight ’ finishing at time t2.

When the decoder continues to process the stack at time t2, a word duration penalty P (D =
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Figure 4.11: Illustration of the multistack decoding algorithm (adapted from [160]). The stack at time t1 is

being processed. ‘Eight’ is the best-matching single word starting at t1 and finishing at t2. See text for more

details.

t2 − t1|w1 = ‘eight′, w2) is first applied to the likelihood score of hypothesis ‘Seven One

Eight’, and w2 should be decided by the next searching word. If the search goes into an

HMM for silence, the penalty will be different from that if the search goes into an HMM

for a digit. Since in Aurora 2 database an individual digit has a maximum duration of 900

ms (90 frames), although the search space is increased by a factor of 90, the computational

load increases by a much smaller factor because most of the calculation is in the observation

probability computation which does not scale up.

4.3.3 Duration Modelling with Unrolled HMMs

Previous section reported a multistack decoding algorithm to incorporate word duration

constraints. However, most HMM-based ASR systems employ a Viterbi decoder and it may

not always be feasible to incorporate a stack decoder. This section proposes a more generic

technique which amounts to little more than expanding the HMM topologies so that word

duration penalties can be incorporated. This technique is fully compatible with existing ASR

systems and is theoretically equivalent to the multistack decoding technique.

Assuming a no-skip, left-to-right HMM with N states q1, q2, . . . , qN for word w is being

expanded. We can compute corresponding duration penalties using Eq. 4.3 with an expected

duration range dw
min to dw

max. Each emitting state qi is then duplicated dw
max times, the

duplicates sharing the same Gaussian parameters with qi. The duplicated states qi form a

sequence and the self-transition of each state is replaced by a one-way transition between two
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Figure 4.12: Unrolling a standard no-skip, left-to-right HMM with word duration penalties.

adjacent states. For N states in the old HMM we get N state sequences. Except for the last

state sequence qN , the jth state in the sequence qi is connected to the (j + 1)th state in the

next state sequence qi+1, with the transition probability the same as that from qi to qi+1 in

the old HMM. The beginning non-emitting state is connected to the first state in the first

state sequence q1 with a transition probability of 1.0 as an entry point. Each state in the last

sequence is connected to the non-emitting state at the end as one of the terminating points

in the expanded model. When word sequence hypotheses leave a model from any of the final

states qN , different paths within the model to the leaving state are guaranteed to have the

same duration. Therefore the duration penalty can be safely applied in the expanded HMM.

We use the corresponding duration penalty to replace the transition probability from each

state in the last sequence qN to the terminating non-emitting state.

Fig. 4.12 illustrates this procedure using an example of a 3-state no-skip, left-right HMM with

2 non-emitting states (dark circles) at the two ends. The states that will not be visited are

marked with dashed circles. To make the expanded HMMs more efficient, we do not supply

the terminating transition to the states before the (dw
min)th state in the last state sequence.

In this example the allowed duration range for word w is 5 to 8 frames, therefore there are

no such transition for the first four q3 states. The allowed duration ranges are determined

by examining the duration statistics obtained from the training data. A typical duration

range for a non-prepausal digit in the Aurora corpus is 200 – 700 ms and for a prepausal

digit a typical duration range is 300 – 900 ms. With a 10 ms frame shift although the state

space is expanded roughly by a factor of 90, the computational load increases only by a much

smaller factor in a small vocabulary task. Most of the computation is for the observation
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probabilities, which remain constant because the Gaussian mixtures are tied up.

For word duration modelling in the prepausal context, we expand two sets of HMMs using

Eq. 4.4: NPPdigit – HMMs for non-prepausal digits; and PPdigit – HMMs for prepausal

digits. The decoder then employs the 2 HMM sets with a grammar in an EBNF format:

(sil {$NPPdigit} ($PPdigit) sil).

4.3.4 Results and Discussions

Gender-dependent word-level HMMs were trained on the Aurora clean speech training set.

Digit models (‘1’–‘9’, ‘oh’ and ‘zero’) consist of 16 no-skip, left-right states with observations

modelled by 7-component diagonal GMMs. A 3-state silence model was used to model the

long pauses before and after an utterance and an additional 1-state silence model was used

to model the brief inter-digit pauses that may occur during long digit strings.

The NPP-WD system represents the recognition system with pause-context-free word dura-

tion penalties calculated according to Eq. 4.3. The penalties can be employed using either

the proposed multistack decoder or the unrolled HMMs. As the two techniques are theoreti-

cally equivalent, their recognition results are the same. PP-WD represents the ASR system

employing duration penalties according to Eq. 4.4. The scaling factor γ was set to 10 for

all noise conditions in this study, which was tuned based on a small set of developing data.

The baseline system was a strong ‘missing data’ recognition system described in [12], which

employed combined masks estimated from harmonicity and SNR-based cues.

To reduce the number of digit insertions, a grammar was used in the baseline system to

constrain all hypotheses to start and end with the silence model. To further guard against

too many insertion errors, an empirical word insertion penalty was introduced for all missing

data recognition experiments 4.

Fig. 4.13 shows the word error rates (WERs) of the four different noise types in Aurora 2 test

set A at various SNR levels. The word error rate of various systems in the ‘subway’ noise

condition is shown in Table 4.2, together with the number of substitutions (S), deletions (D)

and insertions (I), respectively. At low SNR levels both systems with duration models clearly

4A word insertion penalty of -25 in negative-logarithm domain was used and this was optimised to give the best

performance for the Aurora 2 task.
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Figure 4.13: Word error rates for test set A in Aurora 2 at various SNR levels.

outperformed the baseline system, which is a strong missing-data ASR system [12]. The

average relative improvements over the baseline system are shown in Tab. 4.3. Significance

testing (the matched-pairs test [74]) showed that at SNRs lower than 10 dB the improvements

are statistically significant (p < 0.05). No significant difference was found in WERs at SNRs

above 10 dB (p > 0.1).

It should be noted that the baseline system was an optimised missing-data ASR system for

the Aurora 2 task, which performed well in competitive evaluations [12]. It was capable of

achieving high recognition accuracy in quiet conditions. When SNRs are low, estimation

of missing-data masks was difficult and more data was corrupted. Duration constraints are

more important in these conditions. This is analogous to increasing the contribution of the

language model when the acoustic model is poor.
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Table 4.2: Word error rate (%)of various systems in the ‘subway’ noise condition. The respective numbers

of substitutions (S), deletions (D) and insertions (I) are shown in ().

Baseline NPP-WD PP-WD

20 dB 4.6 (S=85 D=41 I=24) 2.5 (S=51 D=23 I=8) 2.7 (S=46 D=25 I=18)

15 dB 6.6 (S=115 D=53 I=48) 4.5 (S=80 D=34 I=31) 4.5 (S=74 D=32 I=40)

10 dB 13.0 (S=209 D=79 I=134) 7.3 (S=128 D=50 I=59) 7.2 (S=116 D=50 I=67)

5 dB 23.8 (S=407 D=162 I=207) 14.5 (S=258 D=118 I=95) 14.2 (S=245 D=115 I=102)

0 dB 44.8 (S=777 D=431 I=250) 32.2 (S=586 D=316 I=146) 31.4 (S=582 D=289 I=151)

-5 dB 70.2 (S=984 D=1045 I=257) 62.2 (S=965 D=867 I=195) 60.6 (S=1069 D=700 I=203)

Table 4.3: Average relative improvements with duration modelling over the baseline in word error rates [%].

System SNR (dB)

-5 0 5 10 15 20 clean

NPP-WD 5.4 7.1 7.4 4.5 2.5 0.0 0.0

PP-WD 8.6 9.8 9.0 6.4 1.7 0.0 0.0

The PP-WD system achieves the lowest WERs, but the results of the NPP-WD system are

close. This is because without considering the pause context the ‘prepausal’ portion of the

duration distribution is still well modelled by the histogram-based model. The performance

gain using the prepausal context is mainly due to the emphasis of the prepausal duration

distribution and a better estimate of the allowed duration ranges.

To examine the impact of the word duration constraints on the recogniser, we also compared

the duration statistics produced during the decoding process. Word duration examples were

collected in the back-tracing stage of various recognition systems. Histograms of these du-

ration examples are then computed and compared to those obtained by forced-aligning the

training data. Fig. 4.14 shows these duration histograms for digit ‘six’ at the SNR level of 0

dB. Panel (A) is the duration histogram obtained from forced-aligning the clean Aurora train-

ing data (same as in the left panel of Fig. 4.9). Panels (B–D) show the histograms produced

by the baseline recogniser, the NPP-WD system and the PP-WD system, respectively. When

decoding noisy speech, the baseline recogniser generates many word matches with too short

or too long durations and fails to demonstrate the second peak in the distribution around 572

ms. The proposed word duration model forces the recogniser to focus on word matches with

more realistic durations and with the prepausal context it produces a duration distribution
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Figure 4.14: Comparisons of word duration statistics produced by various ASR systems for digit ‘six’.

more similar to that from training data.

Note that the 16-state no-skip, left-right topology imposed a minimum word duration of

160 ms on any word matches produced by the decoder. This boundary can help ASR as

word hypotheses with a unrealistic duration shorter than 160 ms will be ruled out. Ma and

Green [122] also reported that lower WERs can be achieved by only applying constraints

on minimum/maximum word duration (i.e. a uniform duration distribution was applied). In

adverse acoustic environments these hard duration boundaries can be effective in reducing

WERs for ASR.

4.4 Summary

This chapter presented several experiments that together examine the duration informa-

tion at both state-level and word-level in an HMM-based missing data decoding framework.

The state duration distribution in a conventional HMM is examined and the expanded-state

HMM approach was employed to model state duration. Although experiments show that

this method is capable of capturing the state duration characteristics, little improvement

was achieved. Experiments suggest that it is more effective to model duration constraints at

word-level. Word durations are relatively insensitive to moderate noise levels. We present
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two methods to explicitly employ word duration constraints in different pause contexts. Ex-

periments show that the techniques are able to offer significantly lower WERs over a strong

missing-data baseline system in noisy situations.

Although the duration modelling techniques presented in this chapter are developed for

missing-data ASR, they can be applied to any system that employs word-level HMMs. Espe-

cially with the unrolled-HMM technique, a standard Viterbi decoder can be used. However,

whole-word HMMs are limited to small vocabulary tasks. Large vocabulary speech recogni-

tion tasks typically employ phone-level HMMs. Although similar techniques can be applied

to model phone durations instead of word durations, it is certain that more complex models

need to be considered in order to get any improvement in accuracy. Gadde [69] proposed to

form a duration feature vector for each word composed of durations of the phone sequence

in the word. The word duration features were modelled by using Gaussian mixture models

(GMMs). These word duration GMMs were employed during recognition to re-score recog-

nition hypotheses in an N-best list. Evaluated on a large vocabulary recognition task Gadde

[68] reported significant reduction in word error rates over their baseline system.

4.4.1 Further Development

The duration statistics used to build duration models were obtained from clean speech

recorded in a quiet environment. Therefore the duration modelling techniques proposed

assume that word durations remain constant in various noise conditions. This is in general

unrealistic as speakers tend to make effort to have better articulation in noisy conditions, i.e.

the Lombard effect on speech [106]. This may cause different loudness, rhythms and there-

fore phone durations from those in a quiet condition. In a realistic situation, the duration

model should be adapted based on feedback from on a speaking rate detector. The proposed

techniques, however, provide a method to incorporate a duration model if one is available.

Work is also underway to model the prepausal lengthening effect on conversational speech

tasks. Gadde attempted to model the effect in their large vocabulary systems, but the im-

provement was limited. Conversational speech such as the Switchboard corpus also demon-

strates a strong lengthening effect on durations of phones preceding a pause. Some examples

demonstrating the prepausal lengthening effect from the Switchboard can be found in Ap-
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pendix B 5. Currently the possibility of using dynamic Bayesian networks [102] to model

the prepausal lengthening effect is being investigated. Strategies include employing a pause

detector which influences the selection of a state transition matrix. When a pause in the near

future is detected, the state transition matrix which favours self-transitions is selected. This

will result in a preference for word hypotheses with longer durations. By far no significant

difference in WERs has been observed, partially because the transition probabilities often

have little impact on recognition results. Phones in prepausal words often have not only

longer durations but also stretched spectral shapes across time. Future work will address

these points.

5Listening examples are available at http://www.dcs.shef.ac.uk/̃ ning/research/prepausal/.



Chapter 5

A ‘Speechiness’ Measure to Improve SFD

The performance of a speech fragment decoding (SFD) system relies on two factors. First, the

speech recognition models need to be fairly detailed as they are also employed to select speech

fragments. Errors may occur if the top-down information in speech models is insufficient.

Secondly, the fragments need to be fairly coherent (i.e. each fragment should contain only

energy from the same source). The quality of fragments is not a trivial issue. This chapter will

investigate the fragment selection issue. Some of the work has previously appeared in [123].

The next chapter will investigate the fragment generation problem.

5.1 Introduction

The strength of SFD is that it is designed to operate without strong assumptions about the

interfering noise. Unlike techniques such as HMM decomposition [182] which needs a precise

noise model, SFD employs only top-down information in models of the target source (i.e. the

speech recognition models). This is partially motivated by the observation that perception

of a particular sound in an acoustic mixture benefits far more from listeners’ familiarity

with the sound than from their familiarity with the noise. Dowling [57] demonstrated this

point in perceptual experiments with overlapping melodies. Listeners found it easier to

segregate a tone from a set of distracting tones if the foreground melody was familiar, but

familiarity with the background melody did not reduce the interfering effect. Cooke et al.

[37] also demonstrated that listeners with better language-specific knowledge will perceive

the language more easily (see 2.4.5 for details). These observations suggest that although a

CASA-based ASR system requires detailed models of the target source, it perhaps does not

85
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need detailed models of the background.

5.1.1 Are Speech Models Sufficient for SFD?

The minimum assumption SFD makes about the background is well-motivated and important

as it clearly limits the search space of plausible models. However, there are two additional

factors to be considered.

First, although detailed noise models may not be necessary and are difficult to estimate,

there is often some knowledge about the noise available (or at least the difference between

speech and noise). This happens in daily listening environments. For example, when hearing

approaching footsteps it may be difficult to identify the coming person, but clear that the

sound is from footsteps and not speech. This suggests that listeners may form ‘simple’ models

of various sounds and these models may help them to confirm the selection of speech evidence.

Secondly, SFD uses top-down information in speech models to recruit correct speech frag-

ments but these constraints may be insufficient. For example, Barker et al. [14] reported that

SFD often failed to choose enough speech fragments and therefore produced poor recognition

results. This is confirmed by control experiments described in Section 5.4. In the current

implementation SFD considers each fragment as being part of either the speech foreground or

the noise background with equal probability. This essentially gives an equal prior probability

to all the segregation hypotheses defined by the term P (S|Y ) in Eq. 3.3:

Ŵ , Ŝ = arg max
W,S

P (W |S, Y )P (S|Y )

The uniform distribution is a very crude approximation. Some fragments may ‘look’ more

like speech and others may not. Therefore segregation hypotheses that include more speech-

like fragments should be given more weight. Basing the choice of fragments purely on speech

models means these models have to be fairly detailed (i.e. having very ‘peaky’ distributions)

so that noise fragments can be reliably rejected. One can build speaker-dependent models.

This, however, is not a general solution and does not address the fundamental issue. Each

segregation hypothesis is matched against the recognition models using missing-data tech-

niques. SFD compares different segregation hypotheses by looking at their matching scores.

As the matching process is based on ‘missing data’, a subset of speech fragments may match

some (incorrect) speech models better than that the full set of speech fragments matches
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Figure 5.1: Illustration of the fragment selection problem in the SFD system. Two fragments (shown using

the shaded regions) are being decoded here. Both fragments are speech fragments and together correspond to

the speech evidence of letter ‘B’.

correct speech models. As a result, only partial speech evidence is selected and incorrect

words are reported by the decoder.

The problem of selecting speech fragments is illustrated in Fig. 5.1 where two fragments are

being decoded and shown using shaded regions. Assume both fragments are true speech

fragments and together they correspond to the acoustic evidence of letter ‘B’. Also assume

the fragment in light grey by itself matches the acoustics of letter ‘P’ 1. There are four various

speech/background segregation hypotheses to be considered by SFD, shown as (a–d) in the

figure. In theory, the recognition model of letter ‘B’ should produce the highest likelihood

score with the segmentation hypothesis (d) as the most likely segregation, i.e. both fragments

are selected as part of the speech foreground. However, since the fragments represent only

partial acoustic evidence, it is possible that the model of letter ‘P’ produces a higher score

with the segregation hypothesis (c) than that of the model ‘B’ with the segregation hypothesis

(d). Therefore the letter could be recognised incorrectly as ‘P’.

5.1.2 Introducing ‘Speechiness’

Extra top-down information can be exploited to assist the decoder in the choice of fragments.

In this chapter we propose a ‘speechiness’ measure for each fragment – a value in [0, 1]

expressing a degree of confidence that the fragment is part of the speech foreground. The

measure can be used to steer the decoder towards preferring reliable speech evidence in

adverse conditions.
1The illustration of the process, in which the fragments are drawn in the shape of letters ‘B’ and ‘P’, uses a visual

analogy.
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Figure 5.2: Evolution of parallel segregation hypotheses with speechiness cf being applied (adapted from

Fig. 3.3). The dots indicate which ongoing fragments are being treated as a part of the speech foreground.

In Section 5.2 we first describe techniques to incorporate speechiness measures into the SFD

framework. Section 5.3 describes the noise materials and the experiment setup used in this

study. Section 5.4 presents control experiments which demonstrate the problem of fragment

selection in SFD. In Section 5.5 a modulation filtering technique is proposed as a speechiness

measure. Section 5.6 concludes with future research directions.

5.2 Fragment Decoding with Speechiness

Speechiness can be incorporated into the decoding process. As described in Section 3.3, the

search process can be efficiently implemented as illustrated in Fig. 5.2 where three fragments

(shown using the shaded regions) are being decoded. Each time a new fragment starts,

all ongoing segregation hypotheses are split so that in each pair one hypothesis labels the

fragment as speech while the other assigns it to the background. When a fragment finishes,

pairs of hypotheses are merged if their labelling only differs with regard to the fragment.

Fig. 5.2 includes an additional term – the speechiness, cf before pairs of hypotheses are

merged. If the speechiness, cf , of the finishing fragment, f , can be estimated, then in each

pair cf is added to the log-probability of the hypothesis that labels the fragment f as speech

and 1− cf to that of the other one.

The speechiness values range in [0, 1]. Values 1 or 0 respectively represent that the fragment

is definitely part of the speech foreground or the background. Value 0.5 gives equal weight to
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either hypothesis. Because of the high dimensionality of the feature vectors typically used,

a scaling factor is needed to control the impact of cf . A natural candidate is the fragment

size, sf , i.e. the number of T/F pixels included in the fragment f , since the observation

probability calculation involves the same amount of data. Therefore in log-domain sf · log(cf )

and sf · log(1− cf ) are applied to each hypothesis pair.

Incorporating speechiness is an approach to approximating the segregation model P (S|Y )

in the SFD equation (Eq. 3.3). In a segregation hypothesis each fragment is independently

determined to be part of the foreground. This is a crude assumption, but as we will see in

Section 5.4, it has proved very effective in practice. Let FS denote the subset of fragments

labelled as the speech foreground in the segregation hypothesis, S. Then P (S|Y ) can be

approximated as:

P (S|Y ) =
∏

f∈FS

cf

∏

f /∈FS

1− cf (5.1)

Eq. 5.1 ensures the same numbers of terms in the calculation for every segregation hypothesis

(i.e. the total number of fragments).

5.2.1 Speechiness Measure

The basic approach to the speechiness measure is to use a set of features extracted from

fragments to estimate a speech model, Ms, and a background model, Mb. The background

model can be trained using various non-speech sounds. Given the feature xf extracted from

an unknown fragment f , its speechiness cf can be derived from the posterior probability of

the speech model Ms (e.g. using a sigmoid function):

cf ← P (Ms|xf ) (5.2)

If we assume P (Ms|xf ) + P (Mb|xf ) = 1 and the priors P (Ms) = P (Mb), then using Bayes’

rule Eq. 5.2 becomes:

cf ←
P (xf |Ms)P (Ms)

P (xf )
(5.3)

=
P (xf |Ms)

P (xf |Ms) + P (xf |Mb)
(5.4)

In this case estimating speechiness is similar to solving a speech/non-speech classification

task, on which there is a substantial literature. For example, Scheirer and Slaney [168]
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proposed using 13 different features to discriminate speech from music. However, the features

used to estimate speechiness should be extracted from the time/frequency (T/F) components

included in a fragment rather than the full-band.

If the background model is not available, speechiness can be measured by converting values

derived from the fragment features to scores in the range of [0, 1]. These features, however,

should be designed to reflect the characteristics of speech fragments so that noise fragments

will score low. The preference is for measures based on the difference between speech and

noise as the requirement of a noise background model is often difficult to meet.

5.3 Experimental Setup

5.3.1 Speech and Noise Materials

Experiments were performed using a corpus of speech artificially mixed with various types of

noise at a range of signal-to-noise ratios (SNRs). 600 end-pointed utterances were randomly

drawn from the Grid corpus [36] as the test set. Another 300 utterances were drawn as the

development set. All the mixtures are single-channel signals. Utterances were normalised to

have equal root-mean-square (rms) energy and sampled at 25 kHz.

Six types of noise with various characteristics were selected: violins, piano, singing voice,

drums, speech babble and factory noise. Their details can be found in Appendix C. All noise

signals were resampled to 25 kHz. The length of each noise signal is around 30 seconds.

Noisy mixtures were produced by artificially adding each of the noise signals to the 600 test

utterances at a range of global SNRs: -6 to 6 dB with an interval of 3 dB. The starting point

in the noise signals was randomly set each time. All the mixtures were single-channel signals.

5.3.2 Fragment Generation

For each mixture a set of oracle fragments was generated by making use of a priori knowledge

of pre-mixed signals. The process of oracle fragment generation is illustrated in Fig. 5.3.

First, cochleagrams of the pre-mixed signals were compared against each other pixel-by-

pixel to produce two spectro-temporal binary masks for the two sources, respectively. Each

binary mask labelled the regions where the energy of one source exceeds that of the other
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Figure 5.3: Illustration of oracle fragment generation for a single source. See text for details.

more than 1 dB and the mixed energy exceeds a background threshold (2.0 was used for the

log-compressed cochleagram).

As an example, Fig. 5.3a shows the mask for speech in the speech/babble mixture. Each mask

was then summed across frequency (dashed line in Fig. 5.3b) and smoothed by convolving

the summary with a sinusoid. The smoothed summary is shown in Fig. 5.3b as a solid line.

Local minima were selected as cutting points (Fig. 5.3c) to dissect a binary mask into a set

of fragments (Fig. 5.3d) for the single source. Fragments generated for both sources were

combined together and each fragment was given a unique label. Examples of the oracle

fragment generated in this way for various speech/noise mixtures are shown in Fig. C.2.

The oracle fragments provide a reasonable match to genuine fragments generated using CASA

models. Common CASA grouping cues include harmonicity and onset synchrony. Since

most speech energy concentrates at harmonics and formants, which are emphasised in the

cochleagram, genuine fragments will have significant harmonic energy (see Chapter 6) and

clear onset boundaries. These properties are well reflected in the process of oracle fragment

generation. Using such oracle fragments allows us to study the fragment selection problem

in isolation from the fragment generation problem, which will be examined in Chapter 6.
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5.3.3 Speech Recogniser Setup

The speech recognition task was to identify the letters and digits in the Grid utterances.

Speaker-independent word-level HMMs were trained using 500 clean utterances per speaker

(different from the test set). Each word was modelled using two states per phoneme with

16 diagonal-covariance Gaussian mixture components per state and a left-to-right no-skip

topology. The number of HMM states for each word was decided based on 2 states per

phoneme. They were trained using 500 utterances from each of the 34 speakers. The speech

fragment decoding (SFD) system employed spectral features (the cochleagram) which were

supplemented with their temporal derivatives to form 128-dimensional feature vectors.

5.4 Control Experiments

Control experiments were first performed to investigate the decoder’s ability to recruit frag-

ments. The fragment decoder is forced to recruit a fragment as part of the foreground if it is

given speechiness 1 and forced to reject a fragment if it is given speechiness 0. Speechiness

0.5 indicates that the fragment will be considered part of either the speech foreground or the

noise background with equal probability.

Oracle fragments were employed by the SFD system in four experimental setups:

• (a) ‘SFD baseline’ – normal SFD with no speechiness.

• (b) ‘correct segment’ – SFD with access to the correct segmentation so that only true

speech fragments were employed. This is equivalent to missing-data decoding with a

mask formed using only the true speech fragments.

• (c) ‘speechiness 1/0.5’ – forcing SFD to recruit all the true speech fragments (given

speechiness 1) but treat noise fragments with equal probability (given speechiness 0.5),

i.e. all the hypotheses in which true speech fragments had been labelled as background

were pruned.

• (d) ‘speechiness 0.5/0’ – forcing SFD to reject all the true noise fragments (given speech-

iness 0) but treat speech fragments with equal probability (given speechiness 0.5), i.e.
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all the hypotheses in which true noise fragments had been labelled as foreground were

pruned.

Experiments (a–b) examined the performance difference due to fragment selection errors and

(b) provided the best possible SFD performance. Control experiments (c–d) investigated

the decoder’s ability to select fragments. The fragment identities were revealed using prior

knowledge so that controlled speechiness could be assigned.

5.4.1 Results and Discussions

Fig. 5.4 shows the keyword recognition accuracy using oracle fragments in various noise con-

ditions (SNR = 0dB). Comparing results (a) and (b), the SFD baseline system (a) produced

significantly lower accuracy than the correct segmentation results (b). The recognition errors

were mainly due to the fact that top-down information in SFD were insufficient to recruit

correct fragments. A similar observation was also reported in [14].

The performance difference occurred at various SNR levels, as shown in Fig. 5.10. The gap

was particularly large for noise that masked significant speech energy at low SNRs, such as the

‘speech babble’ and ‘factory’ noise. In these conditions the unmasked glimpses of speech [31]

were very small (i.e. the frequency channels included in the speech fragments were much

fewer than those in the noise fragments). Therefore the likelihood scores based on the small

speech glimpses may not be high enough to justify correct fragment selection. In fact, in these

conditions most time noise fragments were selected. Therefore the SFD baseline (curves (a)

in Fig. 5.10) reported recognition rates at the chance level. However, results using correct

segmentations (curves (b) in Fig. 5.10) show that if the speech fragments can be identified,

recognition accuracy was reasonable high even at low SNRs.

It can be seen in Fig. 5.4 that the performance gap was largely due to the failure to recruit

enough speech fragments, rather than the failure to assign enough noise fragments to the

background. In experiment (c) where the fragment decoder was forced to employ all the true

speech fragments, most noise fragments were correctly assigned to the background, which

leads to recognition accuracies close to the best possible performance (result b). However,

when all the true noise fragments were assigned to the background in experiment (d), the

decoder failed to select enough speech evidence. The noise corruption caused a strong mis-
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Figure 5.4: Keyword recognition results of SFD with controlled speechiness using oracle fragments. SNR =

0 dB.

match between speech acoustics and recognition models and therefore it is more likely for

SFD to assign some speech fragments to the background in experiment (d).

Speaker-Dependent Modelling

The 34 speakers in the Grid corpus were modelled using speaker-independent HMMs with

16 Gaussian mixtures per state. With these models SFD has been shown to be incapable

of recruiting enough speech fragments. One question one may ask is whether these speech

models are detailed enough to make a good choice of fragments. We therefore increased the

number of mixtures per state to 32 but very similar results were produced.

To further investigate this question, 34 sets of speaker-dependent (SD) models were employed.

Each set of SD models was trained using 500 Grid utterances spoken by a single speaker.

Seven Gaussian mixtures were employed in each HMM state. The keyword recognition ex-

periments were then performed again. For each test utterance, the speaker identity was also

revealed to the decoder so that the corresponding HMM set could be used. This is an un-

realistic situation, but it allows us to examine the fragment selection problem in full. The

keyword recognition accuracies of the four experimental setups are shown in Fig. 5.5.

Compared to the speaker-independent results the performance of the baseline SFD is signif-

icantly improved. More importantly, the performance gap between the baseline setup and

that with the correct segmentation is reduced. This suggests that more detailed speech mod-

els can increase the decoder’s ability to recruit correct fragments. However, the performance
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Figure 5.5: Recognition results using Speaker-Dependent HMMs, with controlled speechiness. SNR = 0 dB.

gap is still significant in many noise conditions. Experiments with controlled speechiness also

demonstrated a similar behaviour to that using speaker-independent models – SFD tends to

favour hypotheses in which more fragments are labelled as background. The true reason for

this behaviour is perhaps due to the fact that the top-down information in the speech models

was insufficient. As discussed in Section 5.1.1, hypotheses in which only a subset of speech

fragments are labelled as foreground may produce a higher likelihood score than hypotheses

which label all the speech fragments as foreground. The key point is that there is no ex-

tra mechanism to stop the decoder from rejecting true speech fragments. The speechiness

measure therefore is introduced to help combat this problem by steering the decoder toward

selecting more fragments that are likely to have originated from the speech source.
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5.5 Speechiness by Modulation Filtering

5.5.1 Introduction

Speech has characteristic low-frequency amplitude modulations which are associated with the

syllabic rate of around 4 Hz [93]. Perceptual experiments have shown that modulations at

rates above 16 Hz are not required for human speech perception and significant intelligibility

remains even if modulations at rates of 6 Hz and above are removed [94, 60]. Inspired by these

studies Kingsbury et al. [109] proposed a modulation filtering technique that can be used to

derive a speech representation which emphasises this low-frequency temporal structure – the

‘modulation filtered spectrogram’ – for automatic speech recognition in adverse conditions.

Their experiments have demonstrated that when combined with other ASR features such

as log-RASTA-PLP [87], the modulation filtered spectrogram can give WER reductions in

certain noisy and reverberant conditions.

Palomäki et al. [143] also reported a similar modulation filtering technique to identify regions

dominated by direct speech rather than reverberation. Reverberation usually has clean begin-

nings with more noisy reverberation tail to follow. Palomäki et al. therefore employed a filter

with a shape of the impulse response such that resulting filtered signal captures the onsets of

strong speech modulations. The technique resulted in a ‘reverberation mask’ which indicates

regions dominated by direct speech energy, with which missing data ASR can be applied.

Significant recognition improvement has been reported in reverberant conditions over ASR

systems which use acoustic features derived from perceptual linear prediction (PLP) and the

modulation filtered spectrogram.

5.5.2 Fragment Modulation Energy

In this study the modulation filtering technique is employed in a different way. A modulation

filter is applied to each frequency band and periods where significant energy gets through are

identified. The energy levels are averaged over pixels in a fragment to judge its speechiness.

To design a filter that reflects the speaking rate in the Grid corpus, 17000 utterances from

the training set were forced-aligned using a set of well-trained models. Fig. 5.6a shows the

word duration histogram calculated from the forced-alignments. It is clear that the word
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Figure 5.6: (a) Histogram showing the speaking rate in the Grid utterances. (b) Frequency response of the

modulation filter.

rate has a peak around 4 Hz. Since most words in the Grid corpus are single-syllable, this is

approximately the syllabic rate.

We therefore designed a bandpass modulation filter, h(t), with a pass-band of 2.5–6.67 Hz to

emphasise the 4 Hz energy. The finite impulse response (FIR) filter was designed using the

frequency sampling method. Fig. 5.6b shows its frequency response. The spectral energy in

each frequency band (see Section 5.3.2) was filtered with h(t). Following a similar technique

used by Kingsbury et al. [109], the peak level over all bands was set to 0 dB and levels more

than 40 dB below the peak were set to -40 dB. The process produces a representation similar

to the modulation filtered spectrogram [109]. An example for a mixture of speech and speech

babble is shown in Fig. 5.7d.

The modulation energy for each fragment was calculated by averaging energy levels of the

modulation filtered spectrogram over T/F components that were included in the fragment.

Fig. 5.8 plots average modulation energy of fragments against their sizes. The fragments

shown here were oracle fragments generated from the 300 mixtures in the development set

(see Section 5.3.1) mixed at a SNR of 0 dB.

It is clear that true speech fragments (shown as the red dots) had significantly higher mod-

ulation energy than noise fragments (the yellow dots). The mean level across all the speech

fragments was around -20 dB while the mean level for noise fragments was below -30 dB.

This distribution pattern was fairly stable across various noise conditions. Noise fragments

with a slow temporal structure, such as the piano music, had particularly low modulation

energy, while noises with a rhythm closer to the speech syllabic rate range, such as the drums,

had fragments with higher modulation energy. Although larger fragments demonstrate more
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Figure 5.7: modulation filtered spectrogram of the speech and speech babble mixture at 0 dB SNR.
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Figure 5.8: Modulation energy of oracle fragments, SNR = 0 dB. The red dots represents speech fragments

and the yellow dots represent noise fragments.
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Figure 5.9: False acceptance rates (FARs) and false rejection rates (FRRs) of fragment classification based

on the modulation energy, SNR = 0dB.

consistent modulation energy (i.e. smaller variance), there is no strong correlation between

modulation energy and fragment size.

The speechiness cf of fragment f was judged by compressing its modulation energy ef with

a sigmoid function:

cf =
1

1 + exp(−α(ef − β))
(5.5)

where α = 0.02 is the sigmoid slope and β = −27 is the sigmoid centre. The parameters were

derived via a classification experiment using the development dataset and fixed for all the

noise conditions. Equal error rate (EER) analysis was performed at 0 dB SNR. Fig. 5.9 shows

false acceptance rates (FARs) and false rejection rates (FRRs) of the fragment classification.

EERs occur around -27 dB across various noise conditions.

5.5.3 Experiments and Discussions

SFD was run with speechiness measured using the modulation filtered spectrogram. In this

experiment no prior knowledge of fragment identities was used. The measured speechiness

scores were applied to each unknown fragment during decoding. Fig. 5.10 shows the keyword

recognition results of SFD employing speechiness estimated using the modulation filtering

technique (circles), along with the SFD baseline results (crosses) and those with correct



Chapter 5. A ‘Speechiness’ Measure to Improve SFD 100

−6 −3 0 3 6
0

20

40

60

80

100

O
ve

ra
ll 

C
or

re
ct

 [%
]

violins

−6 −3 0 3 6
0

20

40

60

80

100
piano

−6 −3 0 3 6
0

20

40

60

80

100
singing

 

 

−6 −3 0 3 6
0

20

40

60

80

100

SNR [dB]

O
ve

ra
ll 

C
or

re
ct

 [%
]

drums

−6 −3 0 3 6
0

20

40

60

80

100

SNR [dB]

babble

−6 −3 0 3 6
0

20

40

60

80

100

SNR [dB]

factory

a) SFD baseline
b) corrent segment
c) modulation filter

Figure 5.10: Keyword recognition results of SFD with speechiness measured by using the modulation filtering

technique.

segmentation (triangles) 2.

When employing the estimated speechiness SFD produced recognition accuracies close to

the best possible performance (i.e. SFD with correct segmentation, see Section 5.4 for more

detail), which was consistent throughout various SNR levels and noise conditions. Although

the performance gap became larger when the SNR was lower, the current recognition results

suggest that the speechiness measure is relatively insensitive to noise levels and noise types.

The larger performance gap at low SNR levels were due to less reliable speechiness measures.

In low SNR conditions speech energy was less dominated and therefore the mixtures would

have less modulation energy around 4 Hz. The current parameters used to estimate speechi-

ness values were fixed based on EER analysis at 0 dB SNR. Ideally they should be optimised

for each SNR condition. This may not be feasible, however, without prior information of

SNR levels.

We are particularly interested in the 0 dB SNR because in this condition the level difference

2See Section 5.4.1 for discussions on comparisons between the baseline and the ‘correct segment’ systems.
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cue that can be exploited by SFD to recruit fragments is minimised. At this SNR level,

improvements in recognition accuracy were large in noise conditions (such as ‘piano’) that

have a temporal structure significantly different from that of speech. In these conditions the

speechiness measure was more reliable. Note the speechiness measure does not have to be

100% accurate as it is presented as a degree of confidence in [0, 1]. Inappropriate values can

still be offset if the acoustic evidence strongly matches recognition models.

5.6 Summary

Speech fragment decoding provides a general framework to couple source segregation and

recognition. However, recognition experiments demonstrate that the top-down information

in speech models is insufficient to select enough speech evidence and extra constraints are

necessary. The SFD implementation by Barker et al. [15] bases the selection of fragments

purely on speech recognition models. However, there is plenty of other information about the

fragments that is not represented in these models. For example, two fragments from different

directions may both match speech models well but should not be assigned to the same source.

In this study we integrated a speechiness measure into the SFD framework to bias the decoder

towards selecting fragments that are more likely to be part of the speech source. The proposed

technique provides a way of exploiting extra top-down constraints in SFD. A modulation

filtering technique which emphasises the characteristic low-frequency modulation energy of

speech has been proved an effective speechiness measure. Recognition experiments show

that the speechiness measure can help the decoder employ more reliable speech evidence and

therefore produce significant improvement in accuracy.

5.6.1 Further Development

The modulation filtering technique appears to be a good way of measuring speechiness,

but it has several limitations. First, these measures emphasising 4-Hz modulations are not

temporally very precise, therefore they may not be very informative over short time periods

such as a 10 ms frame commonly employed in speech processing. Although the current system

overcomes this by averaging modulation energy over all the T/F components included in

a fragment, these measures are less reliable for small fragments. Second, the speechiness
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measuring technique will be less effective if the background noise has a rhythm similar to the

syllabic rate. Therefore, in order to produce robust speechiness estimates, various properties

that may distinguish speech from noise, such as pitch dynamics and location cues, should be

combined together.

The current system does not employ noise models when estimating speechiness. There is

evidence that listeners quickly form simple noise models [21] in speech perception. Employing

noise models (although not necessarily as detailed as the speech HMMs) will bring more

reliable speechiness estimates as speech fragments can be ‘pushed away’ from noise models

in classification. This is crucial if present noise sources have many similarities to speech.

The speechiness measure assumes that the target source is the only speech source and there-

fore will not apply to conditions such as simultaneous speech. However, in a broader view

the framework can be seen a way to employ knowledge about the target. Each fragment can

have a weight representing a confidence of being part of the target foreground. Therefore

the technique could be generalised to represent properties that the target source possesses.

For example, in a simultaneous speech recognition task we can employ known properties of

the target speaker to measure how likely it is that a fragment may have originated from the

speaker.

Future work will also include investigating methods of applying speechiness measures to

each segregation hypothesis which may include multiple fragments. The current method

assumes fragments are independently determined to be foreground or background. This

assumption provides an effective and efficient implementation for the segregation model.

However, fragment independence may not always occur because some fragments do not ‘look’

very like speech individually, but will do when combined with other fragments. For example,

a fragment dominated by energy of an unvoiced consonant may be very like noise on its

own. In the current implementation hypotheses in which the fragment is labelled as speech

foreground would be given a low score. However, if such a fragment is followed by a fragment

in which energy matches that of a vowel, they may together form a complete syllable.

Employing oracle fragments allows investigation of the fragment selection problem in isolation

from the fragment generation problem. The next chapter will focus on techniques that can

be used to construct genuine fragments. Speaker-dependent models will be employed, which
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have been demonstrated to significantly reduce the fragment selection problem.



Chapter 6

Improved Fragment Generation for SFD

The performance of SFD depends on the quality of fragments. If fragments contain too much

energy that belongs to different sources, the recognition accuracy will be poor. The number of

fragments also influences the computation cost. Having too many fragments means there are

more segregation hypotheses to be considered. The fragment generation technique employed

by Barker et al. [15] is very simple and crude. Improved fragment generation techniques

will result in significant performance gains. This chapter will present fragment generation

techniques using pitch cues derived from structure in the correlogram. Some of the work

reported in this chapter has previously appeared in [124, 126, 17].

6.1 Introduction

6.1.1 The Correlogram

One important representation of auditory temporal activity that combine both spectral and

temporal information is the autocorrelogram (ACG). The autocorrelogram, or simply correl-

ogram, is a visual display of sound periodicity. It is normally defined as a three-dimensional

volumetric function, mapping a frequency channel of an auditory periphery model, temporal

autocorrelation delay (or lag), and time to the amount of periodic energy in that channel at

that delay and time. The periodicity of sound is well represented in the correlogram. If the

original sound contains a signal that is approximately periodic, such as voiced speech, then

each frequency channel excited by that signal will have a high similarity to itself delayed by

the period of repetition. Primarily because it is well-suited to detecting signal periodicity,

104
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Figure 6.1: Three correlograms of a clean speech signal uttered by a female speaker, produced for time

frame 300, 700 and 2100 ms, respectively. Each correlogram has been normalised and plotted as an image. A

corresponding summary ACG is shown at the bottom of each correlogram.

the ACG model is widely considered as the preferred computational representation of early

sound processing in the auditory system.

Correlograms are normally sampled across time to produce a series of two-dimensional graphs,

in which frequency and autocorrelation delay are displayed on orthogonal axes. Fig. 6.1 shows

three correlograms of clean speech spoken by a female speaker. Each correlogram has been

normalised and plotted as an image for illustration. All the ACG frequency channels respond

to the fundamental frequency (F0) and this can be emphasised by summing the ACG over

all frequency channels, producing a ‘summary ACG’ (the bottom panels in Fig. 6.1). The

position of the largest peak in the summary ACG corresponds to the pitch of the periodic

sound source.

6.1.2 Correlogram-Based CASA Models

The correlogram was first suggested as a model for pitch perception by Licklider [117] in his

neural auto-coincidence model, where the concept of sub-band periodicity detection was dis-

cussed. The model was then reintroduced by Slaney and Lyon [173] and others (e.g. [5, 131]),
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as a computational approach to pitch detection. Slaney and Lyon employed the correlogram

computed from the output of a cochlear model to model how humans perceive pitch. The

pitch was estimated based on locating the peaks in the summary correlogram. The ACG

model has subsequently been extended as a popular mechanism for segregating concurrent

periodic sounds and the primary methods have been based on inspection of the summary

correlogram. Assmann and Summerfield [5] reported a place-time model on a concurrent

vowel segregation task. The model estimated the pitch of each vowel as corresponding to

the autocorrelation delays with the two largest peaks in the summary correlogram. Meddis

and Hewitt [132] proposed a residual-driven approach. They first selected the largest peak in

the summary ACG, the delay of which corresponds to the F0 of the stronger sound source.

Frequency channels that respond to this F0 were grouped and removed from the correlogram.

The rest of the channels were integrated together and the largest peak in the residue corre-

sponds to the F0 of a second (and weaker) source. More recently, neural oscillator models

have been successful at providing accounts of the interaction of cue combinations, such as

common onset and proximity [23, 186], in which the summary correlogram model was also

employed as a front end.

One limitation of the methods which are based on the summary correlogram is that when

speech is corrupted by competing sounds, locating peaks in the summary is often difficult.

The position of the largest peak in the summary would not always correspond to the pitch of

the target speech and peaks indicating pitches of different sound sources may be correlated.

Another limitation is that these models cannot account for the effect of harmonic components

of the weaker source being dominated by the stronger source, where all correlogram channels

will be assigned to the stronger source [51]. To address these limitations, Coy and Barker

[39] proposed to keep the four largest peaks in the summary ACG as pitch candidates for

each time frame and then employed a multi-pitch tracker to form smooth pitch tracks from

these candidates. Frequency channels that respond to pitch values in the same pitch track

are grouped together. By keeping multiple pitch candidates they show that better sound

segregation can be achieved. However, their system relies on a robust multipitch tracker and

keeping an arbitrary number of pitch candidates is not effective when dealing with different

competing sources.

The summary ACG is not the only method to reveal pitch information. The methods based
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on the summary ACG discard the rich representation of the spectral content and time struc-

ture of a sound in the original correlogram. Visually there are clear pitch-related ‘dendritic

structures’ in the correlogram. The ‘dendrites’ are tree-like structures whose stems are cen-

tred on the delay of multiple pitch periods across frequency channels. Slaney and Lyon [173]

discussed this dendritic structure in their perceptual pitch detector. They convolved the

correlogram with an operator to emphasise the structure before integrating all ACG chan-

nels together. Summerfield et al. [178] also proposed a convolution-based strategy for the

separation of concurrent synthesised vowels with F0 not harmonically related in the correlo-

gram. By locating the dendritic structure in the correlogram they demonstrated that multiple

fundamentals can be recognised.

6.1.3 Organisations of the Chapter

In this chapter we are concerned with the use of primitive CASA models to address the

problem of separating and recognising speech in monaural acoustic mixtures. The dendritic

correlogram structure was exploited to separate a spectrogram representation of the acoustic

mixture into ‘fragments’ – spectro-temporal regions such that the acoustic evidence in each

region is likely to have originated from a single source of sound (see Section 3.1). Some of

these fragments will arise from the target speech source while others may arise from noise

sources. These coherent fragments are passed to the speech fragment decoder to identify the

best subset of fragments as well as the word sequence that best matches the target speech

models. We evaluate the system using a challenging simultaneous speech recognition task 1.

The remainder of this chapter is organised as follows: in Section 6.2 the overall structure

of our system is briefly reviewed. Section 6.3 describes the techniques used to integrate

spectral components in each frame based on the ACG. Section 6.4 presents methods for

sequential integration which produces harmonic fragments. Techniques to produce fragments

for inharmonic regions are discussed in Section 6.5. Section 6.6 introduces a confidence

map to soften the discrete decision of assigning a pixel to a fragment. In Section 6.7 we

evaluate the system and discuss the experimental results. The results will show the SFD is

lack of a mechanism to attend to words known a priori to be spoken by the target speaker,

which results in poor recognition results around 0 dB SNR. Section 6.8 presents a fragment-

1http://www.dcs.shef.ac.uk/̃ martin/SpeechSeparationChallenge.htm
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Figure 6.2: Schematic diagram of the proposed fragment generation system.

based speaker identification technique that can help SFD combat this problem. Section 6.9

concludes and presents future research directions.

6.2 System Overview

Fig. 6.2 shows the schematic diagram of our system. The input to the system is a mixture

of target speech and interfering sounds, sampled at a rate of 25 kHz. In the first stage of

the system, cochlear frequency analysis is simulated by a bank of 64 overlapping bandpass

gammatone filters, with centre frequencies spaced uniformly on the equivalent rectangular

bandwidth (ERB) scale [75] between 50 Hz and 8000 Hz. The output of each filter is then

half-wave rectified.

Spectral features are then computed in order to employ the speech fragment decoder [15].

The instantaneous Hilbert envelope is computed at the output of each Gammatone filter.

This is smoothed by a first-order low-pass filter with an 8 ms time constant, sampled at 10

ms intervals, and finally log-compressed to give an approximation to the auditory nerve firing

rate – the ‘ratemap’ representation [23].

The output of the auditory filterbank is also used to generate the correlograms. A running

short-time autocorrelation is computed on the output of each cochlear filter, using a 30 ms

Hann window. At a given time step t, the autocorrelation A(i, t, τ) for channel i with a time
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lag τ is given by

A(i, τ, t) =
K−1
∑

k=0

g(i, t + k)w(k)g(i, t + k − τ)w(k − τ) (6.1)

where g is the output of the Gammatone filterbank and w is a local Hann window of width

K time steps. Here K = 750 corresponding to a window width of 30 ms. The autocorrelation

can be implemented using the efficient fast Fourier transform (FFT), but has the disadvantage

that longer autocorrelation delays have attenuated correlation owing to the narrowing of the

effective window. We therefore use a scaled form of Eq. 6.1 with a normalisation factor to

compensate for the effect:

A(i, τ, t) =
1

K − τ

K−1
∑

k=0

g(i, t + k)w(k)g(i, t + k − τ)w(k − τ) (6.2)

The autocorrelation delay τ is computed from 0 to L − 1 samples, where L = 375 corre-

sponding a maximum delay of 15 ms. This is appropriate for the current study, since the F0

of voiced speech in our test set does not fall below 66.7 Hz. We compute the correlograms

with the same frame shift as when computing the ratemap features (10 ms), hence each one-

dimensional (frequency) ratemap frame has a corresponding two-dimensional (frequency and

autocorrelation delay) correlogram frame.

In the stage of spectral integration the dendritic structure is exploited in the correlogram

domain to segregate each frame of the mixture into spectral groups, such that the partial

spectra in each group is entirely due to a single sound source in that frame. In the next stage

local pitch estimates are computed for each group and a multipitch tracker links these pitch

estimates to produce smooth pitch tracks. Spectral groups are integrated temporally based on

these pitch tracks. The processes separate the spectro-temporal representation of the acoustic

mixture into a set of coherent fragments, which are then employed in the speech fragment

decoder, together with clean speech models, to perform automatic speech recognition.

6.3 Spectral Integration

Spectral integration involves organising time/frequency (T/F) components of acoustic mix-

tures across frequency. Typically this is performed in each time frame.
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Figure 6.3: A comparison of correlograms in clean and noisy conditions. Left – a correlogram and its

summary of clean female speech, taken at time frame 60; right – taken at the same frame when the female

speech is mixed with male speech at a target-to-masker ratio (TMR) of 0 dB. The dendritic structures that

correspond to the F0 of different speech sources are marked using vertical dashed lines. It can be clearly seen

that in the noisy condition the dendrites do not extend across the entire frequency range.

6.3.1 The Dendritic ACG Structure

For a periodic sound source all autocorrelation channels respond to F0 (i.e. the energy reaches

a peak at the same frequency), forming vertical stems in the correlogram centred on the

delays corresponding to multiple pitch periods. Meanwhile, because each filter channel also

actively responds to the harmonic component that is closest to its centre frequency (CF), the

filtered signal in each channel tends to repeat itself at an interval of approximately 1/CF,

giving a succession of peaks at approximately the frequency of the CF of each channel in the

correlogram. This produces symmetric tree-like structures appearing at intervals of the pitch

period in the correlogram (dendritic structures). When only one harmonic source is present,

the stem of each dendritic structure extends across the entire frequency range (see the left

panel in Fig. 6.3). The one with the shortest autocorrelation delay is located at the position

of the pitch period of the sound source. When a competing sound source is also present, some

ACG channels may be dominated by the energy that has arisen from the competing source,

causing a gap in the stem of the dendritic structure corresponding to the target source’s

pitch. If the competing source is also periodic, channels dominated by its energy may also
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form part of a dendritic structure on the delay of its pitch period.

Fig. 6.3 compares two correlograms taken at the same time frame of a female speech utterance

in either a clean condition (left panel) or when mixed with male speech at a target-to-masker

ratio of 0 dB (right panel). The summary ACGs are also shown correspondingly. The

dendritic structures which correspond to the F0 of sound sources are marked using dashed

lines. In the clean condition it is visually clear that the dendritic structure extends across

the entire frequency range except those ACG channels whose centre frequency is much below

the female speaker’s F0 (the bottom 5 channels). In the ACG on the right, the dendritic

structures corresponding to the two competing speech sources both fail to dominate the whole

frequency range. The one extending from 400 Hz to 1300 Hz on the delay of 3.9 ms indicates

that there exists a harmonic source with an F0 of 256 Hz and the energy of the channels

within this range has originated from the female speaker source. The rest of channels form

part of another dendritic structure on the delay of 9.0 ms which indicates a second harmonic

source with an F0 of 111 Hz (the male speaker). This information can be used to separate

the two sound sources but is lost in the summary ACG.

6.3.2 Initial Spectral Grouping

ACG channels are pre-grouped before the dendritic structures are extracted in the correl-

ogram. Gammatone filters have overlapping bandwidth and respond to the harmonic with

the highest energy. Therefore, ACG channels which are dominated by the same harmonic

share a very similar pattern of periodicity [170]. Fig. 6.3 illustrates this phenomenon. For

example, in the left panel channels with a CF between 100 Hz and 395 Hz demonstrate a

very similar pattern of periodicity. This redundancy can be exploited to effectively pre-group

ACG channels. We employ a cross-channel correlation metric [186] where each ACG channel

is correlated with its adjacent channel as follows:

C(i, t) =
1

L

L−1
∑

τ=0

Â(i, τ, t)Â(i + 1, τ, t) (6.3)

where L is the maximum autocorrelation delay and Â(i, τ, t) is the autocorrelation function of

Eq. 6.2 after normalisation to zero mean and unit variance. The normalisation ensures that

the cross-channel correlation is sensitive only to the pattern of periodicity of ACG channels,
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and not to their energy. Channel i and i + 1 are grouped if C(i, t) > θ. We choose θ = 0.95

to ensure that only ACG channels with a highly similar pattern are grouped together.

A ‘reduced ACG’ is obtained by summing pre-grouped channels across frequency. Each set

of grouped channels is referred to as a ‘subband’ in the reduced ACG. The pre-grouping

significantly reduces computational cost as the average number of ACG subbands is 39 com-

pared to 64 ACG channels originally. Preliminary experiments also show that the process

can effectively reduce grouping errors in the later stages.

6.3.3 Extracting the ACG Structure

The essential idea in this study is to make use of the dendritic structure in the full correlogram

for the separation of sound sources. The technique of extracting the pitch-related structure

used here is derived from work by Summerfield et al. [178]. For each subband in the reduced

ACG, a two-dimensional cosine operator is constructed, which approximates the local shape

of the dendritic structure around the subband. The operator consists of five Gabor functions

applied to adjacent reduced ACG subbands, in which the middle Gabor function is aligned

with the subband it operates on (see Fig. 6.4c). The Gabor function is a sinusoid weighted

by a Gaussian. If the sinusoid is a cosine, the Gabor function is defined as:

gaborc(x; T, σ) = e−x2/2σ2

cos(2πx/T ) (6.4)

where T is the period of the sinusoid and σ is the standard deviation of the Gaussian. The

frequency of each sinusoid used by Summerfield et al. is the centre frequency of the channel

with which it is aligned, and the standard deviation of the Gaussian is 1/CF. This works well

with the synthesised vowels in their study. However, speech signals are only quasi-periodic

and a filter channel responds to a frequency component that is only an approximation to its

CF. Therefore the repeating frequency of the filtered signal in each ACG channel is often off

its CF depending on how close the nearest harmonic is to the CF, and sometimes the shift is

significant. Therefore in our study we compute the actual repeating period pi in each ACG

subband i by locating the first valley (vi) and the first and second peaks (p′i and p′′i ) of the

autocorrelation function. The repeating period pi of subband i is approximated as:

pi =
2vi + p′i + p′′i /2

3
(6.5)
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Figure 6.4: (a) A correlogram of a mixture of male and female speech. (b) Enhanced correlogram after the

2-D convolution. The region with delays less than 2.5 ms (corresponding to regions with F0s higher than

400 Hz) is not computed. (c) An example of a Gabor cosine operator. (d) Summary correlogram. (e–f)

Summaries of spectral components in the correlogram dominated by energy from respective speaker sources

(male or female). Dotted line represents the high F0 region which is not computed.

To further enhance the dendrite stem pi/2 is used as the standard deviation in the Gabor

function, a value roughly half that used by Summerfield et al.. These changes have been very

effective with realistic speech signals.

The autocorrelation function A(i, τ, t) for each subband i, with support of its four adjacent

subbands (two above and two below), is convolved with its corresponding two-dimensional

cosine operator after zero-padding, producing an initial enhanced autocorrelation function

Ac(i, τ, t):

Ac(i, τ, t) =
2

∑

m=−2

L
∑

n=1

A(i + m, τ + n, t)gaborc(n; pi+m, pi+m/2) (6.6)

where L is the maximum autocorrelation delay. The central part of the convolution is saved for

each subband. When the operator is aligned with the stem of a dendrite, the convolution gives
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a large product, and the product is smaller if misaligned. Unfortunately, ripples will occur

as the cosine operator will also align with peaks other than the stem. Following Summerfield

et al. [178], these ripples are removed using a sine operator constructed by substituting the

cosine function in Eq. 6.4 for a sine function:

gabors(x; T, σ) = e−x2/2σ2

sin(2πx/T ) (6.7)

The original correlogram is convolved with the sine operators to generate a function As(i, τ, t)

in the same manner as in Eq. 6.6. At each point the results of the two convolutions are

squared and summed, producing a final autocorrelation function Ae(i, τ, t) with the peak in

each subband located on the stem of the dendritic structure:

Ae(i, τ, t) = Ac(i, τ, t)
2 + As(i, τ, t)

2 (6.8)

In the enhanced correlogram, Ae, the stems of dendritic structures are greatly emphasised,

as illustrated in Fig. 6.4b. The correlogram is computed for a frame in which a female

speaker source is present simultaneously with a male speaker source. The two black vertical

lines in the enhanced correlogram (one around 3.9 ms and the other around 9.0 ms) are the

stems of two dendritic structures which correspond to the two speaker sources. To reduce

computational cost, regions with autocorrelation delays less than 2.5 ms (corresponding to

regions with F0 higher than 400 Hz outside the speech F0 range) are not computed.

The largest peak in each subband in the enhanced correlogram is selected and a histogram

with a bin width equivalent to 3 Hz is computed over these peak positions. The two highest-

counting bins indicate the locations of two possible dendrites corresponding to two harmonic

sources. A bin is ignored if its count is less than an empirically determined threshold (5 in

this study), therefore in each frame 2, 1 or 0 dendritic structures are found2.

6.3.4 Final Spectral Grouping

Once the dendritic structures are extracted from the correlogram, the frequency bands can

be divided into partial spectra: the ACG subbands with their highest peak at the same

position in the enhanced ACG are grouped together. Each group of subbands therefore form

2This technique can be extended to handle more sources provided the maximum number of simultaneous periodic

sources at each frame is known.
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Figure 6.5: Correlogram of a mixture of male and female speech. The F0 of the male speaker is half of that

of the female speaker. Subbands dominated by the energy from different speaker sources are indicated using

different shades of grey. The dendritic structure with the shortest delay caused by the female source is marked

using a dashed vertical line. Summary of all ACG subbands and those dominated by energy from the female

and the male speaker source are shown respectively on the right.

an extracted dendritic structure. The number of simultaneous spectral groups depends on

the number of dendrites identified. If no such structures appear in the correlogram (e.g. for

an unvoiced speech frame), the system skips the frame and no spectral group is generated.

After this grouping it is still possible that some ACG subbands remain isolated. Although

this is rare, it could happen because a subband may respond to a different dendrite from the

one formed by its adjacent subbands. Therefore the subband will not be emphasised in the

enhanced ACG. When only one spectral group is formed, an isolated subband is assigned to

the group only if it matches the periodicity of the subband within a threshold of 5% in the

original ACG. When two spectral groups are formed, an isolated subband is assigned to the

group which better matches its periodicity within the threshold of 5%.

This spectral integration technique has the ability to deal with the situation where the fun-

damentals of two competing speakers are correlated. Fig. 6.5 shows a correlogram computed

for a frame in which a male speaker source with a pitch period of 7.8 ms is present simul-

taneously with a female speaker source with a pitch period approximately half of that (3.9

ms). Since the subbands dominated by the energy from the female source have peaks at an

interval of 3.9 ms in the ACG, all the subbands have peaks at the delay of 7.8 ms, causing



Chapter 6. Improved Fragment Generation for SFD 116

the largest peak in the summary ACG to occur at that delay. When the summary ACG is

inspected, it is difficult to group subbands as they all respond to the largest peak. However,

the female speech subbands will form a partial dendritic structure (marked using a dashed

vertical line). The white gaps in its stem clearly indicate that subbands within these gaps

do not belong to the female source as otherwise the dendrite would extend across the en-

tire frequency range. Those subbands are actually dominated by the energy from the male

speaker source. By exploiting the dendritic structure, a more reliable separation of sources

with correlated fundamentals can be performed. Fig. 6.5 also shows the summary of ACG

subbands dominated by female and male speaker sources, respectively. The position of the

largest peak in each summary clearly indicates the pitch period of each source.

6.4 Sequential Integration

After the spectral integration in the correlogram domain, spectral groups that are likely to

belong to same source can be linked together across time to form fragments. In each frame

we refer to the source that dominates more frequency channels as the ‘stronger’ source. If

the stronger source were constant from frame to frame, the problem of sequential integration

would be solved by simply combining the spectral groups associated with the greater number

of channels in each frame. However, due to the dynamic aspects of speech, the dominating

source will change as the relative energy of the two sources changes over time. Although

a speaker’s pitch varies over a considerable range, and pitches from simultaneous speakers

may overlap in time, within a short period (e.g. 100 ms) the pitch track produced by each

speaker tends to be smooth and continuous. We therefore use this cue to generate harmonic

fragments.

Spectral groups produced in the spectral integration stage are combined across time if their

pitch estimates form a smooth pitch track segment. Each fragment corresponds to one pitch

track segment. This process is illustrated in Fig. 6.6. The upper-left panel shows integrated

spectral groups for five frames. Regions with different shades of grey represent different

spectral groups in each frame. Pitch estimates for each group in each frame are shown in

the lower-left panel. The lower-right panel shows two smooth pitch track segments that are

formed. The two corresponding spectro-temporal fragments are shown in the upper-right
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Figure 6.6: In anticlockwise sequence, upper-left panel: Different shades of grey represent different spectral

groups in each frame. Lower-left panel: dots are local pitch estimates for the spectral groups. Lower-right

panel: two pitch track segments are produced by linking the local pitch estimates. Upper-right panel: two

fragments are formed corresponding to the two pitch track segments.

panel.

6.4.1 Multipitch Tracking

The original ACG channels grouped in the spectral integration stage are summed and the

largest peak in each summary is selected as its local pitch estimate. As shown in Fig. 6.4 (e–

f), it is easier to locate the largest peak after spectral integration. The peak that corresponds

to the pitch period of each source is very clear in each summary, while locating them in the

summary of all ACG channels (panel d) is a more challenging problem. For the stronger

source the largest peak is selected as its pitch estimate. For the weaker source (if one exists)

up to three peaks are selected as its pitch candidates. Although this is rare, there are

situations where the position of the largest peak in the summary of the weaker source does

not correspond to its pitch period, due to lack of harmonic energy or errors made in the

spectral integration stage. In this case the second and third largest peaks may be just slightly

lower than the largest peak and it is very likely that the position of one of them represents the

pitch period. Keeping three pitch estimates for the weaker source has been proved beneficial

in reducing this type of error. The pitch estimates are then passed to a multipitch tracker to

form smooth pitch track segments. The problem is to find a frame-to-frame match for each
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pitch estimate. Here we compare two different methods.

Model-Based Multipitch Tracker

Coy and Barker [38] proposed a model-based pitch tracker which models the pitch of each

source as a hidden Markov model (HMM) with one voiced state and one unvoiced state.

When in the voiced state the models output observations that are dependent on the pitch

of the previous observation. Gender dependent models of pitch dynamics are trained from

clean speech by analysing the pitch of the utterances in the Aurora 2 training set [150]. In

order to track two sources in a pitch space which contains several candidates, two models

are run in parallel along with a noise model to account for the observations not generated by

the pitch models. The Viterbi algorithm is employed to return the pitch track segments that

both models are most likely to generate concurrently. In this study, the model-based tracker

is employed in a manner that does not make assumptions about the genders of the speech

sources that were made in [124] and [16]. In those papers the two simultaneous speakers

were always assumed to be different genders and therefore two HMMs for different genders

were used. This manner of application is inappropriate as the genders of concurrent speakers

are not known. Therefore in this study three different model combinations (male/male,

female/female and male/female) are compared and the hypothesis with the highest overall

score (obtained using the Viterbi algorithm) is selected.

Rule-Based Multipitch Tracker

McAulay and Quatieri [129] proposed a simple ‘birth-death’ process to track rapid movements

in spectral peaks. This method can be adapted to link pitch estimates over time to produce

smooth pitch track segments. A match is attempted for a pitch estimate pt in frame t. If a

pitch estimate pt+1 in frame t + 1 is the closest match to pt within a ‘matching-interval’ ∆

and has no better match to the remaining unmatched pitch estimates in frame t, then it is

adjoined to the pitch track associated with pt. A new pitch track is ‘born’ if no pitch track

is associated with pt and both pt and pt+1 are added into the new track. Analysis of F0

trajectories in clean Grid speech [36] showed that in 90% of the voiced frames the inter-frame

(10 ms frame-shift) pitch changes did not exceed 5% of the pitch value in the previous frame.
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Figure 6.7: (a) Cochleagram of the mixture of ‘lay white with J 2 now’ (female) and ‘lay green with E 7 soon’

(male), TMR = 0dB. (b) The ‘oracle’ segmentation. Brown region: pixels where the value in the mixture

is close to that of the female speaker; green region: the mixture value is close to that of the male speaker;

white: low energy regions. (c) Pitch estimates of simultaneous sources. Dots represent pitch estimates of the

stronger source in each frame and crosses represent the weaker source. (d) Circles are pitch tracks produced

by the multipitch tracking algorithm; solid lines are the ground-truth pitch tracks. (e) Harmonic fragments

after sequential integration. (f) Combining inharmonic fragments.
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Figure 6.8: Two intersecting pitch tracks can be represented as four pitch track segments. Four corresponding

spectro-temporal fragments can be formed allowing a later decision on fragment combination (e.g. {AD, BC}

or {AC, BD}) during the recognition process.

Therefore, the matching-interval ∆ used here was 5% of the pitch estimate which the track

is trying to match. This rule-based process was repeated until the last frame.

An example of the output of the rule-based multipitch tracker is shown in Fig. 6.7c. The

panel shows the pitch estimates for a female(target)/male(masker) speech mixture. Dots

represent pitch estimates of the stronger source in each frame and crosses represent those

of the weaker source. The smooth pitch track segments are displayed as circles in panel

d, with ground-truth pitch tracks 3 of the pre-mix clean signals displayed as solid lines in

the background. The concurrent pitch track segments produced show a close match to the

ground-truth pitch estimates. The model-based tracker gave very similar output. Fig. 6.7e

shows the fragments produced corresponding to the pitch tracks (Fig. 6.7d) in the example

of the female(target)/male(masker) speech mixture. Each fragment is represented using a

different shade of grey. It demonstrates a close match between the generated fragments and

the ‘oracle’ segmentation (panel b).

This sequential integration step has also the potential to deal with ambiguous pitch tracks

caused by a similar pitch range from different sound sources. Consider the situation where

two pitch tracks intersect, as illustrated in Fig. 6.8a1. The ambiguous pitch tracks will be

represented as four pitch track segments (Fig. 6.8a2) by the system and hence four corre-

sponding spectro-temporal fragments can be formed (Fig. 6.8b2). This allows the decision on

combining fragments (e.g. {AD, BC} or {AC, BD}) to be deferred to the recognition stage.

3The pitch analysis is based on the autocorrelation method in the ‘Praat’ program (www.praat.org).
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6.5 Generating Inharmonic Fragments

One weakness of the fragment generation technique described above is that it only handles

harmonic regions. Unvoiced speech lacks periodicity and thus does not produce dendritic

structures in the correlogram domain. The proposed technique which exploits the periodicity

cue skips unvoiced regions and as a result spectro-temporal pixels corresponding to these

regions are missing (e.g. the white region at about 1.1 second in Fig. 6.7 (e)). The unvoiced

regions of the speech signal are important in distinguishing words which differ only with

respect to their unvoiced consonants (e.g. /pi:/ and /ti:/). Therefore it is necessary to

include some mechanism that can form coherent fragments for these unvoiced regions.

Hu [95] gave a systematic study of unvoiced speech segregation. In the current work, as the

focus is on separation of periodic sounds, we employ a simple inharmonic fragment generation

technique reported in [39]. Harmonic regions are first identified in the ‘ratemap’ represen-

tation of the mixture using the techniques described in Section 6.4. The ‘ratemap’ of the

remaining inharmonic regions is then treated as an image and processed by the ‘watershed

algorithm’ [78]. The watershed algorithm is a standard region-based image segmentation

approach. Imagine the process of falling rain flooding a bounded landscape. The landscape

will fill up with water starting at local minima, forming several water domains. As the water

level rises, water from different domains meets along boundaries (watersheds). As a result

the landscape is divided into regions separated by these watersheds. The technique can

be applied to segregate inharmonic sources under the assumption that inharmonic sources

generally concentrate their energy in local spectro-temporal regions, and that these concen-

trations of energy form resolvable maxima in the spectro-temporal domain. The inharmonic

fragments produced using this technique are pooled together with the harmonic fragment as

illustrated, for example, in Fig. 6.7f.

6.6 Estimating Confidence Maps

Another weakness of the system is that it produces ‘hard’ segmentations, i.e. segmenta-

tion in which each spectro-temporal element is marked categorically as either foreground or

background. If the early processing has incorrectly grouped elements of the foreground and

background into a single fragment, then there will be incorrect assignments in the missing-
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data mask which cannot be recovered in later processing. These problems can be mitigated

by using missing-data techniques that use ‘soft masks’ containing a value between 0 and 1

to express a degree of belief that the element is either foreground or background [11]. Such

masks can be used in the SFD framework by introducing a spectro-temporal map to express

the confidence that the spectro-temporal element belongs to the fragment to which it has

been assigned. This confidence map, ctf , uses value in the range 0.5 (low confidence) to 1.0

(high confidence). Given a confidence map, ctf , each hypothesised fragment labelling can be

converted into a soft missing data mask, mtf , by setting mtf to be ctf for time-frequency

points that lie within foreground fragments, and to be 1−ctf for time-frequency points within

missing fragments.

In harmonic regions, the confidence map is based on a measure of the similarity between a

local periodicity computed at each spectro-temporal point, and a global periodicity computed

across all the points within each frame in the fragment as a whole. For each spectro-temporal

point the difference between its periodicity and the global periodicity of the fragment mea-

sured at that time is computed in Hertz, referred to as x. A sigmoid function is then employed

to derive a score between 0.5 and 1:

f(x) =
1

1 + exp(−α(x− β))
(6.9)

where α is the sigmoid slope, and β is the sigmoid centre. Appropriate values for these

parameters were determined via a series of tuning experiments using a small development

data set available in the Grid corpus (see Section 6.7). It was found that the values of these

parameters are not critical to the overall performance and α = 0.6 and β = −10 were used

in this study.

Confidence scores for the inharmonic fragments in our study are all set to 1. These confi-

dence scores were used in our coherence evaluation experiment and also employed along with

generated fragments in the SFD system.

6.7 Experiments and Discussions

Experiments were performed using simultaneous speech data constructed from the Grid cor-

pus [36]. The test set consists of 600 pairs of end-pointed utterances which have been artifi-
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cially added at a range of target-to-masker ratios (TMRs). All the mixtures are single-channel

signals. In the test set there are 200 pairs in which target and masker are the same speaker;

200 pairs of the same gender (but different speakers); and 200 pairs of different genders. The

‘colour’ for the target utterance is always ‘white’, while the ‘colour’ of the masking utterance

is never ‘white’.

Three sets of coherent fragments were evaluated and compared on the same task: ‘Fragments

– Coy’ are fragments generated by the system reported by Coy and Barker [39]; ‘Fragments

– model’ and ‘Fragments – rule’ are coherent fragments generated by the proposed system

employing the model-based pitch tracker and the rule-based pitch tracker, respectively.

6.7.1 Coherence Measurement Experiment

The fragments are ultimately employed by the speech fragment decoding ASR system and

can be evaluated in terms of the recognition performance achieved. However, in addition to

ASR performance, a natural criterion for evaluating the quality of fragments is to measure

how closely they correspond to the ‘oracle’ segmentation, obtained with the access to the

pre-mix clean signals (see Fig. 6.7b for an example). To do this we derive the ‘coherence’ of

a fragment as follows. If each pixel in a fragment is associated with a weight, the coherence

of the fragment is,

100×
max(

∑

w1,
∑

w2)
∑

w1 +
∑

w2
(6.10)

where w1 are a set of weights for pixels in the fragment overlapping one source and w2 are a

set of weights for those which overlap the other source. The fragments were compared with

the ‘oracle’ segmentation to identify the pixels overlapping each source. When the decision of

each pixel being present or missing in the fragment is discrete (1 or 0), these weights are all

simply ‘1’. In this study we use the confidence scores described in Section 6.5 as the weights.

This choice of weight has the desirable effect that incorrect pixel assignments in regions of

low confidence cause less reduction in coherence than incorrect assignments in regions of high

confidence. Note that regardless of the confidence score, some spectro-temporal pixels may

be more important for speech recognition than others. For instance, pixels with high energy

representing vowel regions may be of greater value than low energy pixels. It is less critical

that the latter pixels are correctly assigned, and ideally, the coherence score should reflect

this. In the current measurement, in the absence of a detailed model of spectro-temporal
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pixel importance, we make the simple assumption that each pixel has equal importance.

A histogram with a bin width of 10% coherence (hence 5 bins from coherence 50% to 100%)

is computed over the set of fragment coherence values. Both the harmonic and inharmonic

fragments are included in the experiment. The fragments are different in size. As smaller

fragments are less likely to overlap different sources, their coherence is inherently higher. For

example, at one extreme, a single-pixel fragment must always have a coherence of 100%.

Although we can get higher coherence scores by generating more small fragments, this would

be at the expense of reducing the degree of constraint that the primitive grouping processes

are providing, i.e. a large number of small fragments produces a much greater set of possible

foreground/background segmentation hypotheses. Furthermore, the increased hypothesis

space leads to an increase in decoding time. This increase can be quite dramatic, especially if

fragments are over-segmented across the frequency axis (see Barker et al. [15]). Therefore the

aim here is to produce large and highly-coherent fragments. With these considerations, in the

coherence analysis, we reduce the effect of the high coherence contributed by small fragments,

by weighting each fragment’s coherence value by its size when computing the histogram, i.e.

a fragment is counted S times if its size is S pixels. The histograms for the three sets of

fragments in all mixture conditions at a target-to-masker ratio (TMR) of -9 dB are shown

and compared in the top three panels of Fig. 6.9. They have been normalised by dividing the

count in each bin by the total number of pixels.

The proposed system with either the model-based pitch tracker or the rule-based pitch tracker

produces fragments with very similar quality in terms of coherence. When compared with the

fragments generated by Coy and Barker’s system, proportionally more fragments with high

coherence are produced by the proposed system. This is probably because pitch estimates

of each source are computed after the sources are separated. The pitch estimates are thus

more reliable and multipitch tracking becomes a much less challenging problem. In Coy

and Barker’s system, however, pitch candidates are formed from the summary of all ACG

channels. The multipitch tracker possibly finds more incorrect tracks through the noisier pitch

data. Furthermore, unlike the proposed system where spectral integration is performed before

temporal integration, in Coy and Barker’s system spectral integration relies on the less reliable

pitch tracks. Therefore it is more likely to produce fragments with low coherence. Within

each system, the best results were achieved in the ‘different gender’ condition, presumably



Chapter 6. Improved Fragment Generation for SFD 125

50 60 70 80 90 100

0.1

0.2

0.3

Same Talker (ST)

Coherence Bin [%]

N
or

m
al

is
ed

 B
in

 C
ou

nt
s

50 60 70 80 90 100

0.1

0.2

0.3

Same Gender (SG)

Coherence Bin [%]
50 60 70 80 90 100

0.1

0.2

0.3

Different Gender (DG)

Coherence Bin [%]

50 60 70 80 90 100

100

150

200

ST

Coherence Bin [%]

A
ve

ra
ge

 S
iz

e 
[p

ix
el

s]

50 60 70 80 90 100

100

150

200

SG

Coherence Bin [%]
50 60 70 80 90 100

100

150

200

DG

Coherence Bin [%]

Fragments − Coy
Fragments − model
Fragments − rule

Fragments − Coy
Fragments − model
Fragments − rule

Figure 6.9: Coherence measuring results for different sets of coherent fragments. Top three panels: his-

tograms of fragment coherence after normalisation (TMR = -9 dB). Each fragment’s contribution is weighted

by its size when computing the histogram. See text for details. Bottom three panels: average size of fragments

in each corresponding histogram bin.

due to the larger difference in the average F0s of the sources.

To examine the impact of fragment sizes on the fragment coherence, we also measured the

average size of fragments for each coherence histogram bin, shown in the bottom three panels

of Fig. 6.9. Again the two sets of fragments generated by the proposed system give a very

similar pattern. In the coherence bins higher than 80% their average fragment size is larger

than that of Coy and Barker’s system, although in the low coherence bins it is smaller. This

is, however, acceptable as there are proportionally less fragments with low coherence in the

proposed system.

6.7.2 Automatic Speech Recognition Experiment

The technique proposed here was using the experimental set-up developed in [16] for the Inter-

speech 2006 Speech Separation Challenge. The task is to recognise the letter and digit spoken

by the target speaker who says ‘white’. The recognition accuracy of these two keywords were
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averaged for each target utterance. The recogniser employed a grammar representing all

allowable target utterances in which the colour spoken is ‘white’.

In the SFD system a 64-channel log-compressed ‘ratemap’ representation was employed (see

Section 6.2). The 128-dimensional feature vector consisted of 64-dimension ratemap features

plus their delta features. Each word was modelled using a speaker dependent word-level

HMM in a simple left-to-right model topology, with 7 diagonal-covariance Gaussian mixture

components per state. The number of HMM states for each word was decided based on 2

states per phoneme. They were trained using 500 utterances from each of the 34 speakers.

The SFD system employs the ‘soft’ speech fragment decoding technique [39].

The baseline system was a conventional ASR system employing 39-dimensional MFCC fea-

tures. A single set of speaker independent HMMs with an identical model topology employed

32 mixtures per state. They were trained on standard 13 MFCC features along with their

deltas and accelerations.

Following [16], in all experiments, it is assumed that the target speaker is one of the speakers

encountered in the training set, but two different configurations were employed: i) ‘known

speaker’ – the utterance is decoded using the set of HMMs corresponding to the target

speaker, ii) ‘unknown speaker’ – the utterance is decoded using HMMs corresponding to each

of the 34 speakers and the overall best scoring hypothesis is selected.

We first examine the effect of using soft masks and inharmonic fragments on the recognition

performance. The SFD systems with soft masks and inharmonic fragments are then compared

to the baseline system and a SFD system using ‘Fragments – Coy’ with an identical recognition

setup.

Effects of Inharmonic Fragments and Confidence Maps

As discussed in Section 6.6, an incorrect decision of a spectro-temporal pixel being present

in a fragment cannot be recovered when using discrete masks. This also affects the decoding

process in automatic speech recognition as the recogniser will try to match speech models

with unreliable acoustic evidence. Therefore we compared the recognition performance using

the same set of fragments with discrete masks and soft masks. The soft masks described in
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Figure 6.10: Recognition accuracy performance of the SFD system using ‘Fragments – rule’ in ‘known

speaker’ configuration. ‘All frags + soft masks’: all fragments (both harmonic and inharmonic fragments)

with soft masks, ‘All frags + discrete masks’: all fragments with discrete masks, and ‘Harm frags + soft

masks’: harmonic fragments only with soft masks.

Section 6.6 were employed. The discrete masks were produced by simply replacing all the

pixels in the soft masks with ‘1’ if their values are greater than 0.5, and with ‘0’ otherwise.

The effect of including inharmonic fragments (Section 6.5) on the recognition performance

was also examined. Fig. 6.10 shows recognition results of the SFD system using the set of

‘Fragments – rule’ in the ‘known speaker’ configuration. ‘All frags + soft masks’ represents

that both harmonic and inharmonic fragments were used, combined with soft masks. ‘All

frags + discrete masks’ represents results using all fragments but with discrete masks. ‘Harm

frags + soft masks’ is the result with harmonic fragments only using soft masks.

Results show that the soft masks had a considerable effect on the recognition performance.

With soft masks the system significantly outperformed that with discrete masks across all

conditions. As shown in the coherence measuring experiment many fragments have low
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coherence. Some pixels are unreliable and by assigning a confidence score to each pixel the

speech fragment decoder is able to weight the pixel’s contribution to the decision. Fig. 6.10

also shows that in the ‘same talker’ condition the SFD system using soft masks did not give

any recognition accuracy improvement. One possible reason is that in this condition, as

shown in Fig. 6.9, there are more fragments with low coherence and even with soft masks the

system could not recover from the errors. Another reason could be that more ‘important’

pixels were incorrectly assigned in this condition.

Inharmonic fragments also have some impact on the performance in this ‘letter + digit’

recognition task as many letters are only distinguished by the presence/absence of unvoiced

consonants, e.g. letter ‘p’, ‘t’ and ‘e’.

Comparison of Different Fragment Generation Techniques

All the recognition results in this section were obtained with the ‘soft’ SFD system using

both harmonic and inharmonic fragments. Fig. 6.11 shows keyword recognition results of

the system using the three sets of coherent fragments discussed before: ‘Fragments – Coy’,

‘Fragments – model’ and ‘Fragments – rule’, in both ‘known speaker’ and ‘unknown speaker’

configurations. The ‘unknown speaker’ results are repeated in Tab. 6.1 (model-based pitch

tracker) and Tab. 6.2 (rule-based pitch tracker). Note the ‘known – model’ and ‘unknown

– model’ results are essentially the same as those published in [16], with minor differences

owing to a correction made in the application of the model-based tracker (see Section 6.4.1).

The SFD systems clearly outperform the baseline across all TMRs and across all mixture

conditions. They are also able to exploit knowledge of the target speaker identity. The

recognition accuracy is significantly higher when the speaker identity is available. Prior

knowledge of the speaker identity only fails to confer an advantage in the ‘same talker’

condition as one would expect. Recognition accuracy results using fragments generated by

the proposed system with different pitch trackers are quite similar. This is consistent with the

results in the coherence measuring experiment that with different tracks the system produced

fragments with similar coherence. The results are significantly better than those produced

by Coy and Barker’s system, especially at low TMRs. The biggest performance gain was

achieved in the ‘different gender’ condition. This occurs because in this condition the two
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Figure 6.11: Keyword recognition results of the proposed system with the model-based/rule-based pitch

tracker (model and rule) compared against ‘Fragment – Coy’ (Coy) in both ‘known speaker’ and ‘unknown

speaker’ configurations. The baseline results are taken from [16].

sources are more likely to have correlated fundamentals, which is difficult to solve purely based

on the summary correlogram as discussed in Section 6.1. The performance improvement in

the ‘same talker’ condition is much less than in the other conditions. This is partially because

the target speech and the masker speech are spoken by the same person. With very close

F0s it is more likely that the pitch-based fragment generation process will group together

acoustic evidence from different sources. At low TMRs, same-speaker performance gains may

also be reduced because energetic masking is more effective in a same-speaker utterance than

in an utterance of different speakers. Many target utterances will be so completely masked at

-9 dB that there will be little any system can do to achieve more than chance performance.

This effectively reduces the size of the set of utterances on which gains can realistically be

made.

It is also instructive to examine the recognition errors. When the decoder is making errors,

an interesting question is whether it is incorrectly transcribing the target (due to energetic
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Table 6.1: Keyword recognition correct percentage (%) in unknown speaker configuration using the model-

based multipitch tracker.

TMR (dB)

Condition -9 -6 -3 0 3 6

Overall 56.08 57.08 45.92 45.42 69.75 80.42

ST 46.61 44.57 34.62 35.07 55.43 74.43

SG 57.82 62.85 53.63 51.96 76.82 84.08

DG 65.00 65.75 51.50 51.00 79.25 83.75

Table 6.2: Keyword recognition correct percentage (%) in unknown speaker configuration using the rule-based

pitch tracker.

TMR (dB)

Condition -9 -6 -3 0 3 6

Overall 57.58 57.17 45.17 44.75 69.00 80.67

ST 46.61 45.02 37.10 34.62 54.98 74.43

SG 61.73 63.13 49.16 53.07 77.65 83.52

DG 66.00 65.25 50.50 48.50 76.75 85.00

masking), or because it is reporting the masker instead (i.e. a failure to ‘attend’ to the

correct source). To investigate this point the recognition output was scored against the

correct transcription for the masker utterance.

Tab. 6.3 shows the recognition accuracy results at a TMR of 0 dB when scoring against

the target speech (as presented in Fig. 6.11) and when scoring against the masking speech.

With the known speaker configuration, the decoder correctly recognised most of the target

speech words, without getting confused by the masking speech, in both the ‘same gender’

and ‘different gender’ cases. For the artificial ‘same talker’ condition, however, the reduced

performance seems to be explained entirely by the decoder outputting words from the masking

utterance. When the simultaneous speech is spoken by the same talker, knowing the identity

of the target speaker does not discriminate between fragments of the target and the masker.

In fact, at 0 dB there are neither level cues nor speaker identity cues with which to identify the

target. For example, when the target speaker says ‘a’ and the masker (the same speaker) says

‘b’ concurrently, the two words equally match the known-target speech models and whether

‘a’ or ‘b’ is output may be arbitrary.
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Table 6.3: Keyword recognition correct percentage (%) of decoding the target and the masking speech,

respectively. TMR = 0 dB.

Known speaker Unknown speaker

Condition target masking sum target masking sum

ST 34.62 47.06 81.68 34.62 47.06 81.68

SG 77.93 3.07 81.00 53.07 31.01 84.08

DG 82.75 1.25 84.00 48.50 35.25 83.75

In the unknown speaker configuration the decoder exhibits a performance minimum in the

range 0 dB to -3 dB. This pattern of results can be broadly explained in terms of the combined

effects of two types of masking. Energetic masking occurs in spectro-temporal regions where

energy due to the masker dominates that of the target. It prevents the extraction of reliable

features. Informational masking [62], on the other hand, is a masking effect that can occur

after feature extraction and is partly related to the foreground-background confusion caused

by potential similarity between fragments of the target and masker sources.

At the 0 dB TMR level the decoder was unable to use level difference cues to distinguish

fragments of the target and the masker. Although the energetic masking effect was weaker

than that in lower SNR conditions, the informational masking effect was at its peak. As

the TMR fell below -3 dB, the re-introduction of a level difference between the sources

compensated for the increased energetic masking and performance initially increased again –

at least down to -9 dB.

Although, as discussed earlier, source and target fragments are particularly confusable in the

same talker case, the performance dip at 0 dB is also present in the same gender and even

in the different gender condition. It appears that the decoder requires level differences to

reliably follow the correct source, and speaker differences alone are not enough due to the

informational masking effect. This is surprising considering the large acoustic differences that

exist between the speaker-dependent models. However, at 0 dB the only cue for distinguishing

target and masker is that the target is the person that says ‘white’, in the absence of level

cues. So in effect, the system has to solve a speaker identification problem using a single word

in the presence of substantial energetic masking. If the word ‘white’ is not heavily masked it

will only fit well to one speaker and decoding paths through that speaker model will be the

best overall – hence, the target will most often be correctly identified. However, in utterances
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where the word ‘white’ is heavily masked, the fragments masking the word ‘white’ will be

labelled as ‘background’ and for each speaker there will be a similarly scoring best path. This

case is analogous to the word ‘white’ not being heard, so the cue to the target identity is lost

and all speakers become potential targets. In this case, whether the target or the masker is

reported may rely on arbitrary factors. In particular, the winning score will depend largely

on whether it was the target or the masker who produced an utterance most typical of their

average speech patterns, hence leading to the highest likelihood.

6.8 Fragment-Based Speaker Identification

The previous section demonstrated that when the target speaker identity was unknown (i.e.

in the ‘unknown speaker’ configuration), the SFD system was essentially unable to distinguish

fragments of the target and masker in the TMR range of -3 to 0 dB (see Tab. 6.3). This

resulted in a large drop in performance in all target/masker gender conditions at these TMRs.

Unlike listeners, the current decoder seemed to be unable to follow the target source using

speaker differences alone. However, when the SFD system was run with prior knowledge

of the target speaker identity, results were effectively free from the effects of informational

masking in most conditions.

In this ASR task the identifier-word, ‘white’, is the only word known a priori to be spoken

uniquely by the target speaker. In order to identify the letter-number keywords spoken by

the target speaker, some mechanism is needed to associate the keywords occurring later in

the utterance with the identifier-word. This may be achieved in a purely bottom-up manner

by tracking low-level properties. For example, if pitch can be tracked from the identifier-word

to the letter-number keyword combination, then energy from each region can be incorporated

into the same fragment. This does not happen in practice since discontinuities in voicing lead

the primitive grouping process to segment the mixture into shorter fragments, typically of

the duration of a syllable. Other grouping cues, such as continuity of spatial location, are not

available in the monaural mixtures. Even they were, in fact, there is little evidence that the

bottom-up processing is reliable for maintaining the perceptual integrity of a sound source

over a long period of time.

The grouping of the identifier-word and the letter-digit keywords must be done in a top-
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Table 6.4: Target speaker identification accuracy (%) produced by current SFD system in the unknown

speaker configuration. Figures in brackets indicate the percentage of mixtures for which the target is misiden-

tified as the masker.

TMR (dB)

Condition -9 -6 -3 0 3 6

Overall 94.0 91.7 78.8 76.7 94.2 98.2

ST 98.6 100.0 100.0 100.0 99.1 99.5

SG 89.4 (7.3) 84.9 (15.1) 69.8 (30.2) 65.9 (34.1) 91.1 (8.4) 98.9 (1.1)

DG 93.0 (4.5) 88.5 (11.5) 63.5 (36.5) 60.5 (39.0) 91.5 (5.5) 96.0 (0.0)

down manner by exploiting high-level invariance such as the vocal tract length or accent of

the target speaker. In the previous section, top-down tracking was implemented by decoding

the fragment set using models for each potential target speaker. The speaker model that

gave the highest overall likelihood was selected as the target. However, it is possible that the

masker speaker is selected even if it is a poor local match to the identifier-word, since a good

fit to masker fragments over the remainder of the utterance can cause it to score better than

the target speaker model overall. This is particularly the case if the identifier-word forms

only a short portion of the utterance.

Evidence that the SFD system makes this type of error can be seen by examining the speaker

identities associated with the ASR hypothesis generated in the ‘unknown speaker’ configu-

ration. This can be done by investigating the Viterbi backtrace to determine which of the

parallel speaker HMMs the winning hypothesis had passed through. Tab. 6.4 presents target

speaker identification accuracy computed in this way. For conditions where the target and

masker are different speakers, the figures in brackets indicate the percentage of times that the

target speaker was misidentified as the masker speaker. At 0 dB the target is being confused

for the masker in nearly 40% of cases.

The implementation of top-down tracking in SFD is different from listeners’ strategy. In

order to minimise potential target/masker confusions, listeners must pay specific attention to

the identifier-word ‘white’. If a similar top-down tracking model that pays closer attention to

the identifier-word could be introduced, then the recognition result around 0 dB TMR could

be greatly improved.
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Figure 6.12: A decoding network for the current SFD system. White ovals represent word-level HMMs, and

grey circles are non-emitting nodes connecting the HMMs. Sb and Se are token scores.

6.8.1 Attention-Driven Speaker Identification

To tackle the issues raised above, an attention-driven approach to identifying the target

speaker is proposed. The technique requires that the target utterances can be represented

by a grammar of the form

utterance ::= Wb, Wi, We (6.11)

where Wb (beginning), Wi (identifier) and We (end) are three non-terminals grammar items.

Wi generates a sequence of identifier -words that uniquely identifies the target speaker, i.e.

sequences generated by the grammar segment Wi cannot occur in the masker utterance. For

the speech separation challenge task, the grammar for the identifier-word sequence, Wi, is

simply the word ‘white’.

Utterance-level speaker-dependent HMMs are constructed according to the above grammar

and placed in parallel as illustrated by the network in Fig. 6.12. The speaker identification

mechanism operates by examining token scores generated by the SFD during decoding of

the noisy Wi, given a set of fragments generated by the primitive grouping process. Let

Se(t, seg, n) be the scores of tokens that arrive at time t in the non-emitting node at the end

of Wi for each foreground/background segregation hypothesis, seg, and for each speaker, n.

As the identifier-words will match well to the target model around the time when they finish,

tokens through the target model can be expected to have higher likelihoods than those of

tokens that have passed through the other speaker models.

To eliminate the contribution to the token score that has been made by word-models in the

utterance prior to the identifier-words, (i.e. during Wb), each token maintains a record of the
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Figure 6.13: (a) A ‘ratemap’ representation of the mixture ‘place white in G 6 please’ (target, female) plus

‘lay green at Q 0 now’ (masker, female) at 0 dB TMR. The dotted vertical line indicates where the identifier

word ‘white’ finishes. (b) ‘Oracle’ segmentation: brown region – pixels where the energy in the mixture is

close to that of the target speech; green region – mixture energy is close to that of the masker. (c) The score,

Si, computed for each speaker at each frame of the mixture (see Eq. 6.12). The trace for the target speaker is

shown as a solid line. The scores have been scaled by dividing by the peak value of Si.

score, Sb(t, seg, n), when it first enters into the identifier-word sequence, Wi. Tokens also keep

a record of the duration spent traversing the identifier-word sequence model, D(t, seg, n). The

score Sb is then removed from the end score Se in the logarithmic domain and normalised by

dividing by D(t, seg, n) to reveal the average score accumulated during Wi alone. For each

token in the nth speaker model of segmentation, seg, arriving at the end of Wi at time t, the

normalised score is computed as

Si(t, seg, n) =
Se(t, seg, n)− Sb(t, seg, n)

D(t, seg, n)
(6.12)

The resulting score, Si(t, seg, n), represents the average rate of score increase of a token as it

passes through the ‘attended’ identifier-word sequence. The target speaker is then identified

as the one for which this score reaches the highest value when comparing across all time

frames and all segregation hypotheses:

target = argmax
n

[max
t,seg

Si(t, seg, n)] (6.13)

Fig. 6.13 shows an example of the token scores generated when applying to the ASR task.
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Table 6.5: Target speaker identification accuracy (%) based on token scores. Figures in brackets indicate the

percentage of mixtures for which the target is misidentified as the masker.

TMR (dB)

Condition -9 -6 -3 0 3 6

Overall 85.7 90.3 94.7 96.3 96.2 99.0

ST 82.8 91.0 96.4 98.2 97.3 99.1

SG 85.5 (2.8) 86.6 (3.9) 92.7 (2.8) 95.0 (2.8) 93.3 (2.2) 98.3 (0.0)

DG 89.0 (1.5) 93.0 (1.5) 94.5 (4.5) 95.5 (3.0) 97.5 (2.0) 99.5 (0.0)

The dotted vertical line indicates where the identifier-word ‘white’ finishes. In Fig. 6.13c the

solid line shows token scores, Si, for the best segmentation produced by the target speaker

model at each time. The dashed lines represent the token scores for the best segmentations

generated by the remaining speakers. It can be seen that in the first 0.2 seconds no valid

tokens reached the non-emitting node at the end of ‘white’. When valid tokens started to

arrive at the non-emitting node, initially, the scores were low for all speakers because the

observations did not fit well to any model for ‘white’. Around the time when ‘white’ finished

(indicated by the dotted vertical line at 0.7 seconds) the target speaker received tokens with

considerably higher scores, causing a significant jump, while the scores of the other speakers

were still relatively low. This is the time when the fragments forming the word ‘white’

aligned perfectly with the target speaker model. After that, the scores of tokens arriving in

the non-emitting node started to become lower.

Although in the current task the identifier-word is known to occur at a fixed position in the

utterance, the speaker identification technique allows for more general situations. The gram-

mar of the word segment prior to the identifier-word sequence, Wb, does not need to represent

a fixed number of words. For example, Wb may be an arbitrarily lengthened sequence of words

taken from a vocabulary that excludes the keyword, in which case the speaker identification

algorithm would essentially be co-occurring with a general keyword spotting task.

Speaker Identification Results

Tab. 6.5 presents the target speaker identification results. Compared to results in Tab. 6.4, it

is clear that at TMRs above -6 dB the new model offers significantly better results than the

original SFD system. At 0 dB TMR the overall speaker identification accuracy was increased
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from 76.7% to 96.3%. The masker speaker was very rarely selected. It should be noted that

the success of this technique is largely due to the manner in which the speech mixture has

been initially separated into spectro-temporal fragments dominated by individual sources.

The token scores are generated by the speech fragment decoder based on the most likely

fragment combination in each frame. Hence, the system is performing fragment-based speaker

identification. If the system was constructed using a conventional Viterbi decoder, computing

token scores based on full-band observation evidence, the token that passes through the

models of the target speaker would not necessarily generate the peak score, Si.

The model only performs worse than the previous SFD system when either at the extreme -9

dB TMR or when in the same talker (ST) condition. The previous system has the advantage

in the ST condition because the attention-driven scheme is designed to reduce target/masker

identification confusions which do not occur when both target and masker are the same

speaker. In this case it is better to base speaker identification on the whole utterance than

on the brief identifier-word ‘white’.

Difficulties at -9 dB TMR are occurring probably because in this condition the word ‘white’

is occasionally fully masked. The fragments masking the word ‘white’ will be labelled as

‘background’ and for each speaker there will be a similarly scoring best path. When this

happens the cue to the target identity is lost and all speakers become potential targets.

In this case, listeners may be using an additional strategy that is not modelled here. For

example, at very low TMRs even if the word ‘white’ is not heard, the colour spoken by the

masker could be heard clearly, and hence the masker speaker can be identified. Listeners can

then aim to report the letter and digit that appear not to have been spoken by the masker.

This strategy would be most effective in the different gender condition.

Another strategy that listeners could be using is to infer that if they have not heard the word

‘white’ then the target is probably the quieter of the two speakers. Therefore they should

focus attention on the quieter speaker when listening for the Grid reference. These strategies

could be modelled by using a parallel invocation of the attention-driven speaker identification

mechanism which would identify the masker speaker rather than the target. Depending on

whether it was the target speaker or the masker speaker that was more reliably identified, the

utterance could either be decoded with the target speaker models, or a parallel combination

of all speaker models except the masker, respectively.
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Figure 6.14: Keyword recognition results for the SFD system incorporating the fragment-based speaker

identification model compared against listener data and the known speaker and unknown speaker SFD con-

figurations previously reported in Fig. 6.11 (the model-based results).

6.8.2 Employing Speaker Identification in SFD

In the final set of recognition experiments, the speaker identification module was integrated

into the SFD system. At the end of an utterance, instead of choosing the decoding path

from the speaker that gave the highest overall utterance likelihood, the speaker identified by

employing the speaker identification technique described above was chosen 4. The best word

sequence hypothesis through this speaker was taken as the recognition output. Fig. 6.14

shows the new recognition results (also in Tab. 6.6) plotted against those previously shown

for the SFD system in both ‘known speaker’ and ‘unknown speaker’ configurations. Listener

results taken from [37] are also plotted for comparison.

4This can also be accomplished using a two-pass process where the SFD system was evaluated in the ‘known speaker’

configuration using the models of the target speaker that has been identified by the speaker identification technique in

the first pass.
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Table 6.6: Keyword recognition correct percentage (%) of SFD employing the fragment-based speaker iden-

tification technique.

TMR (dB)

Condition -9 -6 -3 0 3 6

Overall 53.17 58.00 57.92 61.75 70.92 80.83

ST 39.59 42.08 33.48 35.07 55.43 74.21

SG 58.10 63.97 71.23 75.14 77.37 84.36

DG 63.75 70.25 73.00 79.25 82.25 85.00

Discussions

The new SFD system produced significant improvements in recognition accuracy over the

‘unknown speaker’ results. The speaker identification module appeared to be not particularly

sensitive to informational masking. At -3 and 0 dB TMRs where previously informational

masking effects frequently led the system to incorrectly report the masker utterance, the

improvements are especially large. In the same gender (SG) and the different gender (DG)

conditions, the dip in recognition performance around the 0 dB TMR no longer exists, as

a result of the eliminated target/masker confusions by employing the speaker identification

technique. No improvement over the ‘unknown speaker’ results was observed in the same

talker (ST) condition, as the target speaker identification accuracy in this condition was not

better than the previous SFD system. It was more reliable to identify the target speaker

based on the whole utterance.

More recognition errors were also reported at -9 dB TMR by the new system. This per-

formance pattern was nearly in line with its target speaker identification accuracy. The

recognition accuracy was just a little less than the ‘known speaker’ results. In fact, the

new results can be almost precisely modelled by taking the ‘known speaker’ results in cases

where the speaker identification has been correct, and taking chance level performance where

speaker identification is incorrect (chance performance on this task is 7%).

Comparing the new SFD system with human listeners, the system has an overall word error

rate that is almost twice as large at most TMRs. Despite the speaker-dependent HMMs

being employed in the SFD, it is likely that listeners have more sophisticated acoustic models

which encode many top-down cues, such as accents of speakers. The letter-digit keyword
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recognition task needs access to subtle phonetic cues to distinguish many of the letters (e.g.

‘m’ and ’n’; ’p’ and ’b’). At low TMRs the effect of energetic masking starts to become

significant, and fragments of the target becomes rapidly smaller and less coherent. In these

conditions the subtle phonetic cues required for speech recognition may not be available in

the HMMs, and can be lost in the less coherent fragments. To achieve performance as good

as listeners’, more sophisticated acoustic models and better source separation algorithms may

be needed.

These hypotheses can also be drawn from the observation that the SFD system performed

relatively poorly in the same talker (ST) condition compared to listeners’ results. In this

unrealistic condition, although the identity of the target speaker is clear (i.e. the speaker

identification module made few errors), the target and masker speakers are the same. Target

identification alone is not sufficient to avoid foreground/background confusions. In this con-

dition it is also more difficult to separate the simultaneous sources which have the same pitch

range and vocal tract length. It can be seen in Fig. 6.9 that the generated fragments are less

coherent than the other two conditions (SG and DG). It is likely that listeners employ subtle

top-down cues and advanced primitive grouping processing to link glimpses of the identifier-

word ‘white’ with those of the letter-digit keywords spoken by the same target speaker. They

are potentially aware of long term inter-dependencies in speech that arise from variations in

the manner of speaking even between pairs of utterances of the same speaker.

In the same gender (SG) condition the system achieved the same level of performance as

humans at 0 dB and -3 dB TMRs. Tab. 6.4 shows that the system was able to reliably

identify the target speaker using the identity-word fragments in this condition. Once the

target speaker is correctly identified, the system is able to report the target speaker’s keywords

as reliably as listeners. However, in these subject listening experiments listeners, unlike the

SFD system, did not have access to pre-trained models of the potential speakers [37]. As

a result, it is possible that listeners experienced increased difficulty identifying and tracking

the target speaker because. It would be instructive to repeat the listener experiments after

having allowed the listeners to familiarise themselves with the speakers in the Grid corpus.

This may result in listeners exhibiting significant reduction in informational masking effects

in the SG condition.
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6.9 Summary

This chapter has described a novel approach which exploits the tree-like structure in the

correlogram to identify coherent fragments for automatic speech recognition in monaural

acoustic mixtures. This technique is compared with a system that employs only the summary

correlogram in a coherent measurement experiment. The use of the full correlogram leads

to more reliable spectral separation and multipitch estimation, therefore producing highly

coherent fragments.

These fragments are also employed by the speech fragment decoding system in a simultaneous

speech recognition task. Recognition performance is significantly above that of a conventional

HMM ASR system, and is relatively insensitive to the noise level over a broad range of TMR

conditions. The system also exhibits a performance pattern similar to that of listeners, with

characteristic dips in the TMR range of 0 dB to -3 dB. This pattern of results can be broadly

explained as the combined effects of energetic masking and informational masking.

This performance dip at -3 dB and 0 dB TMRs also happened in the different gender condi-

tions. It appears that the decoder is unable to use speaker differences alone to reliably follow

the correct source. When there are words known to be spoken by the target speaker, listeners

will pay close attention to them and then link the rest reference with the target words. There

is no such a mechanism in SFD. An attention-driven speaker identification system is then

introduced which is able to pay attention to a particular word – the target speaker is iden-

tified as the one for which fragment-based likelihood scores reach the highest when passing

through the attended word. The fragment-based approach can be adopted to reliably identify

the target speaker. Nearly all of the target/masker confusions that occurred in the original

systems are eliminated. Results of the system around 0 dB are greatly improved, especially

when considering mixtures of speakers of identical gender, where the SFD performance at 0

dB is not significantly different from that of listeners.

6.9.1 Comparison with Other Systems

A key strength claimed for the solution is that it does not need tailoring to the specific details

of the additive noise environment. Considering the current implementation, notwithstanding

the assumption made by the pitch estimator that there are at most two harmonic sources
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with significant energy at any time instant, the fragment generation stages restrict themselves

to using only very general properties of the way that sounds combine. They do not make

assumptions about the specifics of either the foreground or background sources. Fragments

of the target speech source will be grouped irrespective of the nature of the background.

The top-down component only requires a statistical model for the target speech. There is no

statistical model representing the background.

The fragment decoding approach contrasts with other techniques that rely on detailed models

of both foreground and background. For example, in the Speech Separation Challenge a

common approach is to train HMMs for both the target and the masker speaker and then

to model how pairs of acoustic states combine. Combining detailed models of this type can

lead to better results than those reported here for this problem [e.g. 110, 184]. However,

there is an assumption here that one has access to models of the background speakers. In the

Challenge data the masker utterance was chosen from the same closed-set of speakers that

provided the target utterance, and for which training data was available. Hence, background

models were readily available. If the target utterances had been mixed with maskers from

a different set then speaker-dependent model composition strategies would not be available.

An alternative strategy would be to combine the speaker-dependent foreground models with

a speaker-independent background model. The lack of specificity of the background model

would presumably lead to poorer results. If the separation task was further generalised so

that the background contained one or more masker speakers, then the model combination

approach would become even more difficult to apply. The SFD approach described here,

however, could be applied with essentially no change, and providing good quality fragments

could be located, it would be expected to produce a good quality recognition result.

It is also interesting to compare our system with other CASA-inspired systems in this Chal-

lenge. For example, Srinivasan et al. [175] use harmonicity to segregate the voiced portions

of individual sources in each time frame, and the unvoiced portions are segmented based

on an onset/offset analysis. However, their system requires estimating a missing-data mask

for the target speaker, in order to perform missing-data speech recognition. Time/frequency

segments are combined by searching all possible pairs of the 34 speaker models in the Grid

corpus, for the pair that gives the highest speaker identification score. Therefore their sys-

tem suffers the same limitations as model combination methods, i.e. it would not work if in
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the test set there exist masking speakers that are not available in the training set. More

importantly, in their system the source segregation hypothesis is fixed prior to the source

recognition stage, which may be wrong and cannot be recovered when the speech recognition

models are available. The SFD system produced much better results than their system.

6.9.2 Further Development

The current system only exploits dendritic structures in a single correlogram for spectral inte-

gration. When spectral components exhibit equal similarities to different dendritic structures

representing different sound sources, they are arbitrarily assigned to one without considering

information in adjacent correlograms. The assignment of these confusing components may

become more obvious if the correlation between correlograms through time is examined.

For simultaneous speech with the same fundamental frequency, although more difficult, lis-

teners are able to perform separation with an accuracy significantly greater than the chance

level [167, 4]. The current technique is not able to deal with this situation. Simultaneous

voices may be perceived with different timbres even when having the same F0 [21]. The

timbre is represented in the correlogram as energy distribution across frequency. Therefore,

although two concurrent voices with the same F0 will exhibit dendritic structures in correlo-

gram with the same stem location, the structure will show inconsistent branches. This could

provide possible cues for separation of voices with the same F0. Other grouping cues, such

as common onsets/offsets and spatial cues, should also work interactively with the pitch cue

in forming an overall segregation [46].

The data set used in this study is artificially mixed simultaneous speech. Using the artificially

mixed data sets enables us to conduct controlled experiments. Although experiments [37]

show that this task is challenging even for human listeners, it lacks some realistic factors such

as reverberation and the Lombard effect. Work to investigate the robustness of the fragment

generation technique to reverberation is underway. For example, Christensen et al. [29]

conducted localisation experiments employing the fragment generation technique discussed

in this chapter. Their experiments used binaural speech recorded in a real, reverberant

environment. The fragment generation technique was employed to identify local spectro-

temporal fragments in which the SNR is high. A fragment-level location estimate was then
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constructed by integrating binaural cues of each pixel within a fragment. The fragment based

processing is shown to provide significant improvements over their baseline approach in which

the binaural location cues were applied directly to the reverberant speech.

Future work will also aim to develop a statistical model of primitive sequential grouping

that will weight segmentation hypotheses according to continuity of primitive properties

across fragments and through time. For example, the system fails to make use of the pitch

continuity across fragments. Two fragments with incompatible pitch tracks cannot belong to

the same speaker. This is a strong sequential grouping cue, especially in the condition where

the two competing speakers are of different genders.



Chapter 7

Conclusions and Future Development

7.1 Summary of the Thesis

This thesis has investigated a fragment-based approach to robust ASR which works by cou-

pling the problems of source segregation and recognition. Whereas most robust ASR tech-

niques have problems with non-stationary noise, the SFD system mimics listeners in that it

is able to take advantage of unmasked glimpses of speech [31] in such conditions. Recognition

performance is significantly above that of conventional HMM-based ASR systems on small

vocabulary tasks (e.g. the Aurora 2 and the Grid task), and is relatively insensitive to the

noise level over a broad range of SNR and noise conditions.

The speech fragment decoding (SFD) implementation described by Barker et al. [15] pro-

vides a general framework for CASA-inspired ASR, but in this thesis several possibilities

to improve the framework were investigated. When only glimpses of the target speech are

available, the decoder often produces word matches with unrealistic durations due to the

weak duration constraints in HMM-based ASR systems. Chapter 4 investigated the effect

of duration constraints at both state-level and word-level. Evaluated on a connected-digit

recognition task, Chapter 4 showed that it is more effective to model duration constraints at

word-level. Explicit word duration modelling is able to offer significantly lower word error

rates (WERs) in various noisy conditions by favouring word matches with proper durations

in the decoding process. Modelling the prepausal lengthening effect – the property that be-

fore a speech pause the preceding speech unit tends to lengthen – is also proved beneficial in

reducing WERs.
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A key strength claimed for the solution is that it does not need tailoring to the specific

details of the noise environment. For example, the same SFD technique has been applied

in the past with both speech [16] and non-speech backgrounds [15]. There is no statistical

model representing the background. However, recognition experiments using oracle fragments

suggest that the top-down information in speech models is often insufficient to recruit correct

speech evidence. Although the minimum assumption about the background is the strength

of SFD, constraints that can distinguish speech from noise will benefit the decoding process.

Chapter 5 introduced a ‘speechiness’ measure into the SFD framework – a degree of confidence

that the fragment is part of the speech foreground. The measure is employed to bias the

decoder towards selecting fragments that are more likely to be part of the speech source. A

modulation filtering technique which emphasises the characteristic low-frequency modulation

energy of speech is shown to be an effective speechiness measure for the various types of

noise employed. Recognition experiments show that the speechiness measure can help the

decoder employ more reliable speech evidence and therefore produce significant improvements

in accuracy.

The quality of fragments is fundamental to the performance of SFD. If fragments contain too

much energy that belongs to different sources in the first place, the accuracy of fragment-based

recognition is likely to be poor. The number of fragments also determines the computational

load of SFD. Having less fragments means there are less segregation hypotheses to be con-

sidered. Chapter 6 described a novel approach which exploits the tree-like structure in the

correlogram to identify coherent fragments for automatic speech recognition. The improved

fragment generation technique is able to produce reliable multipitch estimates and more

coherent fragments from simultaneous speech.

Evaluated on a simultaneous speech recognition task the system exhibits performance curves

similar to those of listeners, with characteristic dips in the SNR range of 0 dB to -3 dB.

This pattern of results can be broadly explained as the combined effects of energetic masking

and informational masking. This performance dip also occurs in the conditions where the

two competing speakers are of different genders. It appears that the decoder is unable to

use speaker differences alone to reliably follow the correct source. A fragment-based speaker

identification approach is adopted to reliably identify the target speaker. This approach

allows the decoder to actively attend to a word sequence which is known to be spoken by
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the target speaker. By exploiting this information nearly all of the target/masker confusions

that occurred in the original systems are eliminated.

All the techniques presented in this thesis for improving SFD can be combined in a single

system. The HMM-unrolling technique for word duration modelling in Chapter 4 works in

the model space, and do not require changes to the existing fragment decoder architecture.

The multistack decoding technique requires modifications to the Viterbi decoder used in

SFD, and therefore is not flexible in designing new systems. The speechiness measuring

technique presented in Chapter 5 was applied to oracle fragments, but the same technique

can be applied to fragments generated using techniques presented in Chapter 6. This work

is currently being investigated.

7.2 Novelty of the Work

The work discussed in this thesis is based on a novel framework for CASA-inspired ASR,

which considers source separation and recognition as being coupled problems. The previous

implementation of SFD has been extended by introducing various constraints to improve

speech decoding in a multisource environment.

While explicit duration constraints have less impact on ASR in quiet conditions which match

the training condition, the work has demonstrated that they help the decoder in adverse

conditions. The duration constraints can be incorporated by using a simplified stack decoder,

or by using unrolled HMMs which does not require modification to the existing decoder. The

system has also investigated the lengthening property that speech units have before a speech

pause. Modern speech recognition systems do not normally represent this, which can lead to

errors.

Although the speechiness measure is a crude approximation to the segregation model in SFD,

it provides an efficient way to exploit extra top-down constraints when available. These extra

constraints are essential for SFD to follow the correct source in a multisource environment.

The modulation spectrogram, which is normally used as a reliable speech recognition feature,

is employed by the system in a different way – fragments high in the 4-Hz modulation energy

are considered as having more ‘speechiness’. The measure is effective for many types of noise
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as it focuses on properties that are generally unique to speech. The technique is a valid

extension to SFD in the way that they both do not require statistical noise models.

The fragment generation techniques reported are based on the auditory scene analysis ac-

counts of sound organisation. They do not make assumptions about the specifics of either

the foreground or background sources. Fragments of the target speech source will be grouped

irrespective of the nature of the background. The techniques are novel because instead of

the summary correlogram employed in most CASA-based systems, the full correlogram is

analysed which provides more informative source separation cues. This leads to more reliable

multipitch estimation and therefore highly coherent fragments.

7.3 Limitations

The acoustic mixtures used throughout the study were prepared by artificially mixing noise

signals with speech recorded in quiet conditions. This unrealistic scenario poses limitations on

the experiments reported. Speakers normally modify the way they speak in noisy conditions

to make their communication easier, i.e. the Lombard effect on speech [106]. This may have

effects on speech such as increased loudness and slower speaking rate. Reverberation will also

cause problems. Therefore the assumption that the unmasked glimpses of speech in noise

will match clean speech models is somewhat unrealistic. This is a limitation of many ASR

systems evaluated using artificial data.

7.3.1 Duration Modelling

The unrealistic situation is also a problem for duration modelling. The duration statistics

were obtained using speech recorded in a quiet environment. Therefore the duration modelling

techniques proposed assume that word durations remain constant in various noise conditions.

In a realistic situation, duration models should be dynamically adapted based on feedback

from a speaking rate detector.

The current techniques are also limited to small vocabulary tasks where word-level HMMs

can be used. Large vocabulary speech recognition tasks typically employ phone-level HMMs.

Although similar techniques can be applied to model phone durations instead of word dura-
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tions, it is certain that more complex duration models need to be considered in order to get

any improvement in accuracy.

7.3.2 Speechiness Measures

The speechiness measures based on modulation filtering are not temporally very precise.

Emphasising the 4-Hz syllabic rate requires segment duration of at least 250 ms and therefore

they may not be very informative in short term, e.g. a 10 ms frame commonly employed in

speech processing. Although the current system overcomes this by averaging modulation

energy over all the T/F components included in a fragment, these measures are less reliable

for small fragments.

The speechiness measuring technique will be less effective if the background noise has a

rhythm similar to the syllabic rate. Essentially it assumes that the target source is the

only speech source and therefore will not apply to conditions such as simultaneous speech.

Therefore the technique needs to be generalised to represent unique properties of the target

source.

The current method determined each fragment in a segregation hypothesis to be part of

the foreground independently. This assumption provides an efficient implementation for the

segregation model, but the independence may not always be the case. For example, a fragment

dominated by energy of an unvoiced consonant may be very like noise on its own. However, if

it is followed by a fragment in which energy matches that of a vowel, they may together form

a complete syllable. A better implementation would consider applying speechiness measures

to each segregation hypothesis which may include multiple fragments.

7.3.3 Fragment Generation

The current system only exploits dendritic structures in a single correlogram for spectral inte-

gration. When spectral components exhibit equal similarities to different dendritic structures

representing different sound sources, they are arbitrarily assigned to one without considering

information in adjacent correlograms. The assignment of these confusing components may

become more obvious if the correlation between correlograms through time is examined.
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For simultaneous vowels (‘double vowels’) with the same fundamental frequency, listeners

are able to perform identification with an accuracy significantly greater than the chance

level [167, 4], although with more difficulties than if fundamental frequency is different.

The current technique is not able to deal with this situation. Simultaneous voices may

be perceived with different timbres even when having the same F0 [21]. The timbre is

represented in correlograms as energy distribution across frequency. Therefore, although two

concurrent voices with the same F0 will exhibit dendritic structures in correlograms with

the same stem location, the structure will show inconsistent branches. This could provide

possible cues for separation of voices with the same F0. Other grouping cues, such as common

onsets/offsets and spatial cues, should work interactively with the pitch cue in forming an

overall segregation [46].

7.4 Future Development

7.4.1 Statistical Segmentation Models

Auditory segmentation includes simultaneous grouping which organises sound components

across frequency, and sequential grouping which links segments to form continuous temporal

streams. Nearly all CASA studies have focused on the deterministic signal-driven processing

which describes how sound components may be grouped across time/frequency according to

the correlations of their characteristics. Signal-driven processing by itself is generally less

robust due to the great variability of speech properties over time and their deterministic

nature.

Novel approaches to statistically modelling the foreground/background segmentation will be

investigated. Signal-driven processing can be employed to suggest initial local groupings based

on signal properties such as harmonicity, spectral regularity and sound location, which have

been proved effective in organising spectral components. Potential ways of combining multiple

grouping cues will be investigated in order to produce more reliable spectral groupings. The

next stage will be to investigate statistical sequential grouping algorithms that act on these

signal properties. Instead of deterministic signal-driven processing, an acoustic generative

model can be built to accounts for the temporal variability of the signal properties. The

statistical segmentation model will ultimately allow the learnt patterns of speech encoded in
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the recognition models, which are normally ignored in most CASA models, to be effectively

combined with signal-driven grouping cues to sequentially organise sound scenes.

7.4.2 Fragment-Based Model Combination

The fragment decoding approach contrasts with other techniques that rely on detailed models

of both foreground and background. These techniques assume that one has access to models

of the background. However, if knowledge of the background does happen to be available,

combining detailed background models can lead to much better results. The fragment gener-

ation front-end employed in SFD lessens the need for a strong background model but it does

not make such a model obsolete. If an HMM for the background source were available then

fragments could still be assigned to either foreground or background. In this case likelihoods

should be maximised jointly over both fragment assignment and state sequences for both the

foreground and background models. This is similar to HMM decomposition [182] but with

constraints from fragments. The probability calculations would require some modification

and the state-space would be larger. Therefore pruning will be essential during the search

process. Further work is needed to examine ways in which background knowledge can be

smoothly integrated into the fragment-based architecture.

7.4.3 Fragment-Based Model Adaptation

Future work will also include investigating how the fragment constraints can be exploited

to adapt and elaborate existing models of both the foreground and background. In its de-

ployment the system will generally require adaptation strategies that operate in an online

mode where models are adapted in real-time. This is important for applications such as a

personal assistant. General speaker-independent models may be needed at the beginning. A

solution to more robust performance lies in the on-line adaptation of speaker-independent

models toward the target speaker.

Techniques need to be developed that exploit the partial segmentation produced by the

fragment generation process to allow robust adaptation of speech models from noisy speech

data in a multisource environment. For example, partial tracebacks generated by the decoder

can be used to suggest an ongoing segmentation hypothesis. The source model parameters
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can then be adapted toward the partially observed acoustics of each source. Adaptation

techniques will need to be designed to be compatible with the fact that most sources will

have regions labelled as ‘unreliable’ where the segmentation dictates that they are masked

by competing sources.



Appendix A

The Gammatone Filter

A.1 Definition

The gammatone filter [101] is widely used in models of the auditory system and defined by

its impulse response as:

g(t) = atn−1cos(2πft + φ)e−2πbt (t > 0) (A.1)

where a is the amplitude; n is the order of the filter which largely determines the slope of

the filter’s skirts; f is the filter centre frequency; φ is the phase; b is the bandwidth of the

filter and largely determines the duration of the impulse response. With an order of four

Patterson et al. [148] showed that the impulse response of the gammatone function provides

an excellent fit to the human auditory filter shapes derived by Patterson and Moore [147].

The bandwidth of the gammatone filter is usually set according to the equivalent rectangular

bandwidth (ERB), which Glasberg and Moore [75] summarised based on human auditory

data with the function:

ERB(f) = 24.7(4.37 · 10−3f + 1) (A.2)

For fourth-order filters the bandwidth b is given as 1.019ERB(f).

A.2 An Efficient Implementation

Efficient digital implementations of the gammatone filter were proposed in [91, 30, 172]. The

implementation employed in this thesis was based on the implementation by Cooke [30] using

the impulse invariant transformation. For each sample, t, the signal was first multiplied by a

complex exponential e−j2πft at the desired centre frequency f , then filtered with a base-band

gammatone filter, and finally shifted back to the centre frequency region by multiplying the

signal by ej2πft.
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The cost of computing the two complex exponentials for every data sample is significant.

Experiments showed that it takes up to 70% of the total computational load. To reduce

the computation cost, the exponential computation was transformed into multiplication by

rearranging the two complex exponential functions, e.g.,

e−j2πft = e−j2πfe−j2πf(t−1) (A.3)

The term e−j2πf(t−1) is the exponential calculated for the previous sample at time t − 1.

Therefore only one complex exponential e−j2πf for the first sample needs to be computed

and the rest can be obtained recursively by multiplication. In practice, the two complex

exponential functions are computed using trigonometric functions, i.e.,

e−j2πft = cos(2πft)− j sin(2πft) (A.4)

and

ej2πft = cos(2πft) + j sin(2πft) (A.5)

Experiments showed that this implementation is 4 times faster than the implementation

proposed by Cooke [30].



Appendix B

Prepausal Duration Examples in
Switchboard I

The prepausal lengthening effect (see Section 4.3.1 for details) is very strong in conversational

speech such as the SVitchboard corpus [108] (a subset of the SwitchBoard I corpus). Although

there is an intro/inter-speaker difference in the speaking rate, the duration of words (mainly

vowels) is heavily influenced by the following pause. Fig. B.1 illustrates this effect. Two

sentences both containing the word know are used here. In sentence (a) know occurs before

another word and its duration lasts 141 ms. In sentence (b) where know precedes a speech

pause, its duration is significantly longer (436 ms).

[sil] you know different ways a family [sil]

0.4 0.8 1.2 1.6 2  

[sil] and we didn’t know [sil]

Time [sec]
0.4 0.8 1.2 1.6 2  

Figure B.1: An example from the SVitchboard corpus to illustrate the prepausal lengthening effect. The

transcription is shown at the top of the spectrogram of each audio signal with segmentation indicated by

dashed lines. The word know lasts 141 ms in (a) and 436 ms in (b) where it precedes a speech pause ([sil]).

More listening examples are available at http://www.dcs.shef.ac.uk/̃ ning/research/prepausal/.

The following tables show word duration statistics in the SVitchboard corpus.
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Table B.1: Mean durations (Mn.) and standard deviations (s.d.), in milliseconds, of the most frequent 20

words in SVitchboard I. N = number of cases; Mn. Inc. = mean duration increase.

All examples Non-prepausal Prepausal

word Mn. s.d. N Mn. s.d. N Mn. s.d. Mn. Inc. Inc.%

1: i 141 88 7633 129 74 748 260 127 131 101%

2: and 296 167 4348 272 157 1055 398 170 126 46%

3: you 141 76 4456 126 57 589 251 105 124 98%

4: oh 335 219 2915 249 146 1305 527 234 278 112%

5: that 231 105 2935 209 95 1153 287 108 78 37%

6: right 399 133 677 366 159 2987 407 126 41 11%

7: it 150 75 2428 137 69 907 186 81 49 36%

8: know 213 112 2065 172 86 1091 290 114 118 68%

9: to 148 107 2500 124 79 412 298 131 174 140%

10: that’s 265 84 2488 258 76 198 354 124 96 37%

11: well 271 138 1740 225 119 892 362 127 137 61%

12: the 152 115 2042 119 81 546 277 135 158 133%

13: a 107 95 2145 82 67 431 229 118 147 178%

14: so 331 156 1431 263 139 1087 421 130 158 60%

15: but 249 119 1718 240 121 756 269 112 29 12%

16: of 121 82 1764 107 63 224 231 117 124 116%

17: it’s 235 111 1676 216 94 305 336 138 120 56%

18: do 189 113 1411 160 87 269 343 111 183 115%

19: think 257 95 1353 243 84 241 330 114 87 36%

20: they 172 92 1293 155 75 209 279 115 123 79%

Min 29 11%

Max 278 178%

Mean 124 77%

s.d. 56 46%
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Table B.2: Duration statistics of 10 words in SVitchboard with the most insertion errors produced by a

graphical models based ASR system.

Non-prepausal Prepausal

word # Errors N Mn. s.d. N Mn. s.d. Mn. Inc. Inc.%

i 12 7633 129 74 748 260 127 131 101%

that 11 2935 209 95 1153 287 108 78 37%

oh 10 2915 249 146 1305 527 234 278 112%

you 10 4456 126 57 589 251 105 124 98%

and 6 4348 272 157 1055 398 170 126 46%

it 6 2428 137 69 907 186 81 49 36%

know 6 2065 172 86 1091 290 114 118 68%

well 6 1740 225 119 892 362 127 137 61%

right 5 677 366 159 2987 407 126 41 11%

it’s 4 1676 216 94 305 336 138 120 56%

Min 41 11%

Max 278 112%

Mean 120 63%

s.d. 65 33%

Table B.3: Duration statistics of 10 words with the most deletion errors in SVitchboard.

Non-prepausal Prepausal

word # Errors N Mn. s.d. N Mn. s.d. Mn. Inc. Inc.%

i 16 7633 129 74 748 260 127 131 101%

that 11 2935 209 95 1153 287 108 78 37%

oh 10 2915 249 146 1305 527 234 278 112%

and 9 4348 272 157 1055 398 170 126 46%

is 9 1066 189 105 276 368 152 178 94%

it 8 2428 137 69 907 186 81 49 36%

the 8 2042 119 81 546 277 135 158 133%

do 7 1411 160 87 269 343 111 183 115%

so 6 1431 263 139 1087 421 130 158 60%

well 6 1740 225 119 892 362 127 137 61%

Min 49 36%

Max 278 133%

Mean 148 80%

s.d. 62 36%
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Table B.4: Duration statistics of 10 words with the most substitution errors in SVitchboard.

Non-prepausal Prepausal

word # Errors N Mn. s.d. N Mn. s.d. Mn. Inc. Inc.%

it 23 2428 137 69 907 186 81 49 36%

i 22 7633 129 74 748 260 127 131 101%

that 16 2935 209 95 1153 287 108 78 37%

to 16 2500 124 79 412 298 131 174 140%

you 16 4456 126 57 589 251 105 124 98%

is 14 1066 189 105 276 368 152 178 94%

a 12 2145 82 67 431 229 118 147 178%

oh 12 2915 249 146 1305 527 234 278 112%

know 10 2065 172 86 1091 290 114 118 68%

the 10 2042 119 81 546 277 135 158 133%

Min 49 36%

Max 278 178%

Mean 143 100%

s.d. 62 45%



Appendix C

Noise Material Employed in the
Speechiness Study

C.1 The Noise Material

Six types of noise with various characteristics were selected for the speechiness study reported

in Chapter 5 and summarised as below:

1. Violins: Vivaldi Spring mvt 1 Allegro, harmonic source, clearly visible harmonics with

significant amount energy occurring in high frequency bands (above 3 kHz)

2. Piano: Chopin Nocturne op 9 no 2, harmonic source, most energy in low frequency

bands (below 2 kHz)

3. Singing voice: female vocal solo with piano accompaniment, harmonic source, mostly

overlapping speech energy

4. Drums: taken from [14], fast rhythms with clear energy onsets synchronised across

frequency, mostly overlapping speech energy

5. Speech babble: taken from the NOISEX–92 corpus [183], non-stationary, most energy

inharmonic and overlapping speech energy

6. Factory noise: from NOISEX–92, a stationary background with highly unpredictable

components such as hammer blows etc, inharmonic, full band noise

All noise signals were resampled to 25 kHz and normalised to have target rms of 0.05. Each

noise signal is around 30 seconds long.
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Figure C.1: Spectrograms of the 6 types of noise used in the ‘speechiness’ study.
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Figure C.2: Long-term spectrum of the 6 types of noise used in the ‘speechiness’ study.

C.2 Examples of Oracle Fragments
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Figure C.3: Examples of the oracle fragments for various speech/noise mixtures, SNR = 0 dB.
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[143] K. Palomäki, G. Brown, and J. Barker. Techniques for handling convolutional distortion

with ‘missing data’ automatic speech recognition. Speech Commun., 43:123–142, 2004.
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