The

yor Department of Computer Science

9t Sheffield.

Grid Computing Techniques
for Synthetic Procedural Planets

Memorandum CS—-07-01

Manuel Noronha Gamito

January 2007

Contents

1 Introduction 1
2 Photorealistic Rendering of Synthetic L andscapes 2
3 Grid Computing and the White Rose Grid 3

3.1 GridMiddleware e
3.2 TheWhite Rose Grid e e e

4 A Grid Application for Rendering Synthetic L andscapes 6
4.1 Application Deployment e 7
4.2 Grid Resource Location e 9
4.3 Grid Access and Authentication Lo oL 10
4.4 Implementing a Polling Strategy 11
4.5 Implementing a Schedule-Ahead Paolicy 11
4.6 Retrieving ComputationResults, 12

5 Results 13

6 Conclusions 16

7 Further Developments 18

A Python Source Code 18

References 25

List of Figures

1 A computer rendering of a synthetic landscape

2 The two tiered distributed architecture of the grid apiimn

3 A sequence of frames showing a camera flyby over a proceldumddcape . . .

List of Tables

1 The value of thenaxujobs parameter

2 The rendering time at the threegridnodes

1 Introduction

As part of his PhD in Computer Science at the University offfld, the author has been
developing an image synthesis application with the purmdsendering complex, synthetic-
ally generated, planetary landscapes. The idea of modediml rendering an entire synthetic
planet, with a radius roughly equal to the radius of the Edstlieasonably new and has be-
nefited from recent advances in procedural fractal modedadgRey, 2003]. Until recently it
was only feasible to model limited landscapes that were &dmgmto a two-dimensional grid
of elevation values [Marshall et al., 1980]. With a procedsynthetic model for the terrain, it
is now possible to have a purely functional description efshrface of an entire planet, with
the ability to generate surface detail at any point on thé&sarof the planet and at any scale
[Musgrave, 2003].

Despite the much greater flexibility offered by proceduraldals, there is a significant impact
on the time that it takes to render an image of the terrain. vérsion of the terrain into a
polygon mesh, that could be subsequently rendered in haedwiéh modern graphics boards,
is not a possibility because it implies a loss of surfaceibetaen discretising the terrain into
triangles. If all the visible surface details are to be presa, the resulting triangle mesh would
have to be so fine as to be computationally intractable. Eroekterrains must be rendered
with a direct ray tracing approach [Whitted, 1980]. For eactel on the screen, a ray is
traced into the scene and its intersection point with theaieris found. The complexity of
a ray tracing solution for rendering procedural landscajmeses from the fact that the terrain
function is fractal and, therefore, has a very irregulapsghdinding the ray-terrain intersection
point accurately requires significant computational reses!

Early landscape renderings performed by the author durisdiist year of PhD studies in
2005 hinted that a conventional ray tracing solution, rogrin a single computer, would soon
become impractical as the research progressed and theexdipolf the terrain functions kept
increasing. The problem would be further worsened whenea®mg computer animations of
camera flybys over the terrain, with hundreds of individumhges having to be rendered to
achieve a typical rate of 25 images per second of playbacker Aptimising the ray-terrain
intersection algorithm to achieve maximum efficiency, théy@ossibility of further reducing
the rendering time is to implement a distributed ray tragofytion. Fortunately, in this case,
ray tracing is a type of algorithm that is easy to paralleliBee computation of the intersection
point for the ray passing through a pixel is performed indeleatly of the same computation
for every other pixel. One just has to divide the image intalen rectangular regions, that are
calledtiles in this report, and run a ray tracer independently for edeh As a final step, one
gathers all the individual tile renderings and assemblesdmplete image. Because each pixel
is rendered independently, there is no need to use complegage passing mechanisms or to
manage shared memory segments as part of the implemenfatiamistributed ray tracer.

A distributed ray tracer for terrain rendering was impleteenby the author in 2005 on the
Department of Computer Science Night Train. The Night Trais Beowulf cluster of desktop
computers, installed on the Department’s student compatns. The Night Train only be-
comes active during the night and on weekends, when the raoenslosed, and is managed
with the Sun Grid Engine. The same distributed ray tracer lai@s ported to the University
of Sheffield High Performance Computing node on Iceberg.hBiigtributed versions of the

2 PHOTOREALISTIC RENDERING OF SYNTHETIC LANDSCAPES

ray tracer, however, only handle the rendering of individoages. A new version of the ray
tracer was subsequently developed, handling not only stelalition of tiles of an image but
also the distribution of images that are part of a computenation. The new ray tracer was
tested on the set of High Performance Computing nodes tha\ailable through the White
Rose Grid by the Universities of Sheffield, Leeds and York.

2 Photorealistic Rendering of Synthetic L andscapes

A description of the algorithms for the photorealistic reridg of synthetic landscapes is bey-
ond the scope of this report. Here, only a mention is giveméotbiree main problems that a
photorealistic landscape renderer must solve. Thesegrabare responsible for the compu-
tational complexity of the renderer and must be solved irfalewing order:

e Ray-terrain intersection tests.
e Light scattering in the atmosphere.
e Anti-aliasing and motion blur.

Ray-terrain intersection tests are performed with ¢hbere tracingalgorithm [Hart, 1996].
The terrain is represented by an implicit surfdgéx) = 0 : x € R3}, wheref : R? — Ris
aLipchitz continuougunction with a Lipchitz bound\ that must be supplied beforehand. The
intersection point between a ray and the implicit surfadeusd by successive iteration of the
equationt; 1 = t; + | f(x(t;))| /A, wheret; is the distance along the ray after thth iteration.

After the intersection point between a ray and the terraindesen found, a light model must be
evaluated to obtain the colour intensity for the pixel tlglowvhich the ray passes. This light
model must account for the Rayleigh scattering of light i éimosphere. The scattering oc-
curs as photons bounce on air molecules and are redirected #le ray towards the observer.
Rayleigh scattering is responsible for the blue colour efgky under noon conditions, which
subsequently turns red under sunset conditions. The sogti&f light in the atmosphere is a
complex phenomenon and a model is employed here that cossigay simplifying assump-
tions [Nishita et al., 1993]. For example, multiple scattgrevents are ignored and so is the
bending of rays due to the lensing effects that are causeldebyarying atmospheric density.
The scattering model requires the numerical integratidghebptical depth and light extinction
factors along the length of a ray, up to the point of intelisecivith the terrain.

Rendering an image by passing a single ray through eachlpads to aliasing artifacts due to
an insufficient sampling density. The image must be conebivith a low pass filter function
in order to be properly anti-aliased. In practical termg iimage convolution is achieved with
an anti-aliasing Monte Carlo integration technique [Gamaihd Maddock, 2006]. Several rays
are shot for each pixel, where the probability density okragound the pixel is given by the
anti-aliasing filter function. The final pixel colour is obtad by accumulating the colour of all
the rays that are involved in the evaluation of the integiidle same concept is extended for
image renderings that change through time, i.e. compuieraions, by distributing the rays
not only in space, around the pixel, but also in time, arotredtime instant when the image is
taken. This produces an effect calleobtion blur, which is visible on terrain features that are
close to the camera as the latter moves.

3 GRID COMPUTING AND THE WHITE ROSE GRID

Figure 1. A computer rendering of a synthetic landscape. The surfadmitn the planet and
the moon are generated with procedural fractal models. &arglof the atmosphere is achieved
through the solution of a Rayleigh scattering model.

Figure 1 shows an image that was synthesised with these éftgeathms. The image was
rendered with a resolution @740 x 2645 pixels on the Iceberg node, using the early version
of the distributed ray tracer that existed before the woscdbed in this report was undertaken.
The original high resolution image can be downloaded froenétidress:

http://www.dcs.shef.ac.uk/ ~mag/poster.jpg

Anti-aliasing was implemented by shooting 100 rays perlpikke parameters for atmospheric
scattering were exaggerated, relative to the equivalermnpeters in the Earth’'s atmosphere,
to create a more dramatic effect. Nevertheless, the atredsplighting remains physically
correct, subject to the model's simplifying assumptions.

3 Grid Computing and the White Rose Grid

Grid computing is a new computational model that exploits dlailability of high perform-
ance computer nodes across a heterogeneous and geodtpatigizersed network. Many
scientific and technological problems are known to have suobmputational complexity that
only the most powerful computers can solve them [Levin, 19BBthe early years of comput-
ing, such powerful computers were built by individual comiga using their own proprietary
hardware and featuring thousands of processors insidegke siomputer. During subsequent
years, a more flexible and cost-effective approach was takeneby a large computing facility

3

http://www.dcs.shef.ac.uk/~mag/poster.jpg

3 GRID COMPUTING AND THE WHITE ROSE GRID

was assembled out of a collection of smaller computers &d commercially available pro-
cessors, from companies like Intel or AMD, and that were eoted together through a high
speed network. Techniques for tapping the power of thesgutanclusters lead to the devel-
opment of High Performance Computing (HPC) as a new field oh@der Science. Libraries
that implement the Message Passing Interface (MPI) prbtitmv a programmer to build
applications that can be distributed across several nkesotomputers [Gropp et al., 1999].
For HPC installations that feature multi-processor corapitwhere groups of processors have
access to a common memory space, the OpenMP standard cdrealsed to implement par-
allelism inside an application [Chandra et al., 2000]. Aighlr level, job schedulers like the
Sun Grid Engine or Condor are put in control of HPC clustemsi¢éaliate the access of users to
the resources and to manage the load on the cluster [Geng&eh; Thain et al., 2005].

HPC installations are normally found at universities andsgoment funded research laborator-
ies due to the high cost of acquiring and maintaining thig tyfhardware. Traditionally, access
to these HPC installations was restricted to students afidafteach university or laboratory.
More recently, a new trend has emerged where a group ofutistis agrees on a protocol that
allows accredited researchers to have Internet accessitgdimt set of HPC computing facil-
ities. This joint set of facilities is called grid and features potentially dozens of HPC nodes
from different institutions that may be spread across elgepgraphical area. The emergence
of grids lead to the development gfid computingas a new computational model that can be
regarded as being one step above high performance complgsugs that would not normally
worry the user of a single HPC node become significant whelingeaith grid applications.
Such issues are related to the execution of common tasksdikae access or job management
in a transparent manner across the grid. Ultimately, theeisshat grid computing must solve
arise as a consequence of the extreme level of heterogéhaityan be found in a grid. This is
because each grid participating institution has its owe tyfpHPC platform, has its own set of
software applications and development tools running ongleform and implements its own
management policies for users of that platform.

3.1 Grid Middleware

As part of the grid computing model, an intermediate layesaftware, calledyrid middle-
ware, must exist between a grid application and the grid nodessl i@iddleware addresses the
problems created by the heterogeneity that is inherentids.glt is responsible for providing
a common access infrastructure to all grid services whil¢he same time, hiding from the
user the details of how these services are implemented ngréat node. The following list
describes the most common services that are required fremrit:

Authentication and Secure Access Access of users to grid services must be properly authen-
ticated. The communication between a grid application deddgrid nodes must be
encrypted, considering that it takes place over the Interne

Resource Location A user must be able to query the grid to find diverse infornmasioch as
what grid nodes are available, what services they offervehheir hardware configur-
ation and what is their load at any time.

Job Management With job management services, individual jobs or sequentgshs can be
issued to the grid. The state of these jobs can then be quemgkobs can be deleted,

4

3 GRID COMPUTING AND THE WHITE ROSE GRID

suspended or migrated to other nodes.

Data Retrieval Typically, after a job completes in a grid node, a file coritajrthe output data
is left on the node’s file system. A grid application must bkedb gather all the data
files that were left on the grid nodes after a distributed catiajion has finished.

A standard called Open Grid Services Architecture (OGSA)nder development and spe-
cifies a set of requirements for grid services that complgaidt middleware is expected to
obey [Foster et al., 2002]. One implementation of grid maddire that satisfies many of the
requirements set forth in the OGSA is the Globus Toolkit fEoand Kesselman, 1997]. The
Globus Grid Security Infrastructure (GSI) manages usenemiication and data encryption.
User authentication in Globus is done with X509v3 digitaltiieates that are issued by a
Globus recognised certification authority. When a user @fgb access grid services through
Globus, he requests a grid proxy based on his certificated @axies have a limited valid-
ity. The user is given transparent and encrypted accesstgriti while the proxy is valid.
When a grid proxy expires a new proxy must be requested. Resdocation in Globus is
implemented by the Monitoring & Discovery System (MDS) thiaes a Web Services inter-
face. The Globus Grid Resource Allocation and Managementuteo GRAM) supports job
management. GRAM exists as a collection of command linestioal it also provides language
bindings for programming languages such as C/C++, Javayhd® Data retrieval in Globus
is performed with its Global Access to Secondary StorageS)ymodule, which implements
the GridFTP protocol.

In many applications, a grid user does not have to be awahedhdividual HPC nodes that are
part of the grid. The user should be able to launch distribafglications transparently across
the grid as if he was working with a single virtual HPC insdéitin. This degree of abstraction
is achieved by having meta-schedulethat uses the existing grid middleware to reroute the
user jobs to individual grid nodes. The meta-scheduler lsnavich nodes are available at
every moment and what kind of services they are able to peowdhen a user submits jobs for
some particular computational task, the meta-schedulectsethe best nodes on the grid for
that type of task and passes the jobs to the relevant job slgiedMeta-schedulers have to be
built with specific grid applications in mind because eachliaption has its own scheduling
policies. The Globus Alliance, the same software group tieselops the Globus Toolkit,
also offers the GridWay Toolkit to help in the implementatiof meta-schedulers [Hudo et al.,
2005]. GridWay is an extra layer of grid middleware that &ximn top of the Globus Toolkit.
It uses the GRAM module to provide adaptive scheduling of jokresponse to changing grid
conditions.

3.2 TheWhiteRose Grid

The White Rose Grid is a consortium of three universitieshis Yorkshire area. These are
the Universities of Sheffield, Leeds and York. The grid catlseprovides a total of four HPC
nodes, one called Iceberg from the University of Sheffielh talled Everest and Snowdon
from the University of Leeds and one other node called Paoah the University of York.
The Iceberg node is a cluster of 40 Sun Fire V20Z servers framMicrosystems with two

1There is an extra node at Leeds called Maxima but maintenafnités node has recently been discontinued.
The node is also not accessible through the Internet. It beiatcessed indirectly through Everest or Snowdon.

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

2.4 GHz AMD Opteron processors each plus another 20 Sun F\servers, which are
similar but have four Opteron processors instead. All thehimees are connected through a low
latency, high bandwidth, Myrinet network. The Everest nodesists of 87 V20Z servers with
two dual core 2.2 GHz AMD Opteron processors each plus 7 V4biZess that use four dual
core 2.2 GHz AMD Opteron processors. The Snowdon node issteclof 128 Intel servers,
using dual 2.2 GHz or 2.4 GHz Intel Xeon processors. Both therést and the Snowdon
nodes use a Myrinet 2000 network as their backbone. A ddxripf the Pascali node at
York is not presented here as access to this node was naafaleaior this work. In total there
are 820 processors (including processors in dual core)cimpse White Rose Grid, available
to perform image rendering tasks. All these processors hagess to significant memory
resources, varying between 2 Gb and 32 Gb in size. The sizaiof memory, however, is not
a constraint for the type of rendering application that iscded here. Procedural models of
terrain have a very small memory footprint since they aremgsly procedures in a computer
program. There is no need to store large arrays of geomettécsiich as vertices or triangles.

All the available nodes in the White Rose Grid have a readgriaiimogeneous configuration,
compared to what is normally expected from a grid, and hagddtiowing characteristics in
common:

Scientific Linux as the operating system.

GNU development tools.

Bash shell interpreter.

Single sign on access through SSH with public/private kesspa
Single sign on access with the Globus Toolkit.

Job scheduling with the Sun Grid Engine.

All nodes run Linux and use the Sun Grid Engine to schedulg. j@mce a public RSA encryp-
tion key is copied to each node, it is possible to invoke anixldommand remotely through
the SSH protocol. Because of the relative homogeneity am@éése in accessing grid nodes
from a remote application, it did not seem necessary to wsettre complex Globus Toolkit.
When running remote Unix applications in the White Rose (thdssh command can suc-
cessfully fill the role of grid middleware. The situation mayange in the future, however, if
this work is later ported to a larger grid such as the Nati@vad Service.

4 A Grid Application for Rendering Synthetic L andscapes

This report focuses on the development of a grid applicatiorthe White Rose Grid that
implements the distributed rendering of sets of synthiyicgenerated images. These images
are then put together into a video sequence that can be pbagidwith the appropriate video
software. A meta-scheduler was written to coordinate theedualing of the rendering jobs
on all the available grid nodes. The meta-scheduler cansfsa Python script that runs on a
Linux desktop PC with Internet access to the grid. The Py8wipting language was chosen
because it allows the rapid development of new applicatiors also because it offers a rich
set of system calls to interact with the operating systemtla@aetwork.

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

Desktop PC Grid HPC Cluster

[
[
\

SGE Job Array

‘ Meta-scheduler ‘
| SGE Scheduler |

Figure 2: The two tiered distribution architecture of the grid apation. The larger rectangles
represent images. The smaller rectangles represent inhegye t

As Figure 2 shows, the grid application enforces a two tienediel of load distribution. In
the first tier, images are individually distributed acrdss grid nodes. Each image is entirely
rendered by the node to which it was assigned by the metaisigie A load balancing scheme
at the image level is the result of implementing a dynamicedaling policy in the meta-
scheduler. Grid nodes that are faster receive more imagester. Whenever a grid node
becomes idle, the meta-scheduler assigns the next aesitahbe to it. In the second tier, load
distribution is implemented by splitting an image into sl@atectangular regions, called tiles,
and assigning these tiles to different processors of the ele€er that is installed at the grid
node. The set of rendering jobs for all the tiles of an imagm#oajob array in the Sun Grid
Engine (SGE) scheduler at the node. So, load distributidhesimage level is handled by the
meta-scheduler while load distribution at the tile levehandled by the job schedulers at each
individual grid node. The SGE schedulers will attempt tdriiste the tile rendering jobs in
a fair way between all the processors of a cluster, keepimgitl the other users of the same
cluster.

4.1 Application Deployment

The first step in setting up the grid is to deploy the ray trg@pplication to the grid nodes.
Deployment of an application is often a source of problenggiithcomputing, especially when
the application depends on third-party software libraridismay happen that different grid
nodes have slightly different versions of the same librdrythis case, the user must tweak
his code in different ways at each node to accommodate thsyidcracies of the supporting
software that resides there. This type of problem does mairdor the ray tracing application
since it only requires support from the operating systematibs. Given that Scientific Linux
is Posix compliant, the API calls that are required by thetrager can be found on all nodes.

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

The ray tracer is a C++ application that was written on a Wiveltaptop, inside the Cygwin
emulating environment. It was written with the portabilityUnix systems other than Cygwin
in mind. The GNU set of portability tools (Autoconf, Autonaland Libtool) was used to
manage the software installation and configuration praeedifter unpacking the source code
at each node, the commaridonfigure was issued to generate the makefiles, followed by
make. The source code compiled cleanly on all three nodes. Theaegr is a command line
tool that accepts several command line options. The linevbshows an example of what a
typical invocation of the ray tracer at one of the nodes mimght

gaea -r 800,600 -w 0,60,80,120 t=0.01

This command starts the rendering of an image with a resolwdf 800 x 600 pixels but it
only renders a tile of this image where the pixels have coattés(i, j) that are constrained
by 0 < i < 80 and60 < j < 120. The output is an image file with a dimension (8f) —

0) x (120 — 60) = 80 x 60 pixels. If no image filename is given, as above, the ouptugena
is sent to the standard output. The command line variedfldd1l indicates to the ray tracer
that it should render a snapshot of an animation correspgridi the time instant = 0.01s.
The setting up of the terrain functions and the lighting dtons is currently hardwired in the
application. This is clearly a limitation as editing the danape requires changing the source
code in the Windows laptop and migrating copies of the soto@@l the grid nodes again. In
the future, a grammar parser will be included to read thedeale settings from a text file
without having to recompile any code.

A set of six Bash scripts must also be installed on the griceadd ensure proper communica-
tion between the meta-scheduler and the local SGE schedlee list of the necessary scripts
is as follows:

gaear un This is the script used by the Sun Grid Engine to start theaeng of a new tile at
a processor. It invokes tlgaea application, with the proper command line options.

gaeasub Submits a new job array that resulted from the subdivisioaroimage into tiles.
This is basically a wrapper for thgsub SGE command. It passes the name of the
gaearun script to the scheduler.

gaeadel Removes a job array, including all instances of that array thay be running at
the time, from the scheduler. This is basically a wrappettiegdel SGE command.

gaeal s Returns a list of the image files that have been completedrasfihe execution of
a job array. This command can be invoked at any time, retgraily the filenames for
tiles that have finished rendering by that time.

gaeaget Returns the content of a given image file. The command baskgrds the content
of the file to its standard output, which is then piped back&rheta-scheduler.

gaear m Removes all image files associated with a given job array ffemode’s file system.

The scripts are quite portable since they rely only on theterce of a Bash shell interpreter
(which all grid nodes have) and a minimal set of Unix commaulst likefind , tail and
rm. Copies of the scripts are migrated to the grid nodes insidesource code package for the
ray tracer. The original scripts are maintained at the Wiviltaptop, along with the Python
script for the meta-scheduler, and are part of the ray tsaderelopment tree.

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

Node | maxuj obs

Iceberg 10
Everest unlimited
Snowdon 4

Table 1: The value of thenaxujobs parameter at the three grid nodes.

4.2 Grid ResourceLocation

Information about the grid nodes is read on startup by therseteduler from a local text file,
calledgrid.conf . The text file lists the available nodes and further infoinoratrelative to
each node, that is required by the meta-scheduler. Thentwoatents of this static resource
file are as follows:

Node name Username Min_tsize Max_jsize
iceberg.shef.ac.uk acp04mog 2500 75000
everest.leeds.ac.uk wrsmaog 1600 75000
snowdon.leeds.ac.uk wrsmog 5000 75000

The resource information required by the meta-scheduwegdch grid node, is the fully qual-
ified address, the username of the account, the minimumisipexgls) of a tile and the max-
imum size of a job array (correspondingly, the maximum nunubdiles) that is allowed by
the SGE scheduler at the node. The meta-scheduler usessthtevéaparameters during its
initialisation to compute an optimal tile subdivision oéttmage for each node. The parameter
Max jsize is equal to themax_aj _tasks configuration parameter of the SGE schedulers.
None of the grid nodes enforces a particular value for thiamater in their configuration files
and it defaults to the value 75000. Th&n _tsize parameter is chosen by the user and is
loosely dependent on the maximum number of jobs that a userwrasimultaneously on a
node. This, in turn, is given by thmaxujobs configuration parameter of the SGE schedulers.
The rationale is that, if a user can only run a small numbenobs$ jconcurrently, there is no
advantage in having many small tiles since most of them vallehto be kept waiting in the
scheduling queue. If the SGiEaxujobs parameter is small, it is slightly more efficient to
have a few larger tiles as it decreases the overhead of laagotany small jobs on the cluster.
Themaxujobs at the three grid nodes is shown in Table 1. The content ofdble motivated
the values of thlin _tsize parameter that are used in the resource file.

The meta-scheduler performs a subdivision of the imageile®for each grid node, based on
the following list of criteria:

e The size of the tiles must be as small as possible but notenh#nMin _tsize

e The total number of tiles must not exceléx jsize

e The difference between the width and the height of the tilastrhe as small as possible,
i.e. the shape of the tiles must be as close as possible taaesqu

The meta-scheduler computes all integer divisors of thgewadth and all integer divisors of
the image height as part of its initialisation procedureisAdf all possible pairs of these two
sets of divisors is then formed. Every element in this list @otential candidate for the width

9

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

and height of a tile. The list is sorted by increasing ordetilefsize and searched from the
smallest to the largest size. The first element that obeysitdlia is the chosen tile size.

The data contained in the resource file is not likely to chaingguently and, therefore, this
static resource allocation scheme is adequate for our pagpoSituations where the data in
thegrid.conf file might change would be caused by one of the grid node syatkminis-
trators reconfiguring the SGE scheduler by changing eiteemaxujobs ormax.aj _tasks
parameter. It could be possible to initialise ten _tsize andMaxjsize parameters dy-
namically by querying the scheduler parameters of each tiodegh a remote invocation of
the SGEgconf command. This increased coding complexity does not seemamtad at this
point, however.

4.3 Grid Access and Authentication

After installing an RSA public key at each grid node, it is gibte to remotely invoke com-
mands on that node througish , without having to interactively provide a password authen
tication every time. For example, to schedule an image ramglen the Iceberg node, a new
job array must be submitted to that node’s scheduler in thexing way:

ssh acpO04mog@iceberg.shef.ac.uk "/gaeasub -t 1-192 \
-v RESX=800,RESY=600,WINX=50,WINY=50,TIME=0.01 <filen ame>"

This specifies that 800 x 600 resolution image is to be rendered after being split irad
tiles, where each tile has a dimension56fx 50 pixels. The-t option specifies the range of
tiles to be rendered, from tile 1 to tile 192. The option specifies a comma separated list of
variables that are exported by the SGE scheduler as envinanvariables into thgaearun
script. Remote invocation of the other shell scripts thiotlge SSH protocol is performed in a
similar manner.

The meta-scheduler launches theske commands through avs.popen() system call that
is defined in the Python interpreter. The single argumertté@s$.popen() call is a string
that contains a Unix command to be executedqgla command in this case). A Unix pipe is
opened between the Python interpreter and the commandrtloyar, the standard output of
the command is redirected back through the pipe and can bebsethe Python script. For
example, the remote invocation of tgaeasub script shown above can be written in Python
in the following way:

pipe = os.popen('<string for ssh gaeasub script>")
output = pipe.read()

pipe.close()

jobID = parse(output)

The Python variableutput stores the standard output of thaeasub command, which
among other things indicates the job ID of the newly creat&é& $b array. If thessh com-
mand executes without error, the job ID can then be parsed fn@ output variable. This
ID may be required later, should the meta-scheduler wislelete the job array.

10

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

4.4 Implementing a Polling Strategy

The initial idea at the start of this project was to have antigerver architecture between the
meta-scheduler and the grid nodes. The meta-scheduledwesp a socket open, listening
for incoming packets. Each grid node processor, once itfeagendering a tile, would open
a connection to this socket and send over the computed tite ddne meta-scheduler would
receive the rendering results in real time from all the pssoes in the grid and this would allow
it to schedule new rendering jobs on the fly. There were, hewelifficulties in implementing
this architecture because of the firewalls at Sheffield ardik¢hat do not allow machines from
inside their HPC clusters to connect to arbitrary addreegethie outside. There was still the
possibility of keeping a daemon proxy running inside eaclCRister. The cluster processors
would send their packets instead to this proxy and it woulayréhe packets back to the meta-
scheduler through a SSH tunnel. The proxy would have to beuahing outside the control
of the Sun Grid Engine (otherwise it would be killed after aximaum allowable running time
had elapsed) but this would represent a breach of policyeoHIRC clusters, where every job
must be supervised by the SGE in order to maintain fairnetsedea users.

Rather than using a client-server architecture, the nmetaetler implements a polling strategy
instead and checks the state of the tile renderings on alrgriles at regular intervals. The
polling interval has a default duration of five minutes bus ttan be changed through a com-
mand line option when the meta-scheduler is launched. Tdereng state of each grid node is
remotely queried with thgaeals script, which returns a list of all the filenames for the tiles
that have been completed so far. This allows the meta-stdretudetect new tiles that have
been completed since the last poll to the same grid node wesmed. When all the tiles of
an image that is being rendered on a grid node have been dehplee meta-scheduler sends
instructions througlgaeasub for a new image to be scheduled on that node. This polling
mechanism works well in situations where tiles take, onayey significantly longer to render
than the duration of the polling interval since the rendgisitate of a grid node will undergo
only small changes between polls.

4.5 Implementing a Schedule-Ahead Policy

The polling mechanism introduces only one source of inefficy, which is related to the
scheduling of new images. Consider the situation wheredangrdle finishes rendering an image
shortly after a poll from the meta-scheduler was compléefted the remainder of the following
five minutes the grid node is going to be idle with respect éoghd rendering application. The
meta-scheduler will only detect the completion of the imagd schedule a new image after
the five minutes have elapsed. The problem is made worse Ha¢héhat, during those five
minutes of idle time, jobs from other users will occupy thegassors that have since become
available. When the new image is scheduled, it will have ti feathe processors to become
available again. If the new image had already been preséne¢ischeduling queue by the time
the previous image finished it might have been able to reoagtme of the same processors.
This is because the SGE uses a dynamic priority strategyrempblb array for the new image
might have a higher priority that some of the other user jobthée system. The rendering
efficiency of the grid nodes would be improved in this way withviolating the principles of
fairness to other users that are always enforced by the SGE.

11

4 A GRID APPLICATION FOR RENDERING SYNTHETIC LANDSCAPES

The inefficiency that stems from scheduling new images ucdetrol of the meta-scheduler’'s
polling mechanism is alleviated by implementing a schedilead policy. This basically
means that the meta-scheduler speculatively assigns amageiin advance to a grid node
while a previous image is still rendering at the same nodearjttime there will always be
two job arrays in a scheduling queue. One job array will besogoing rendering (with some
of the tiles in the array being rendered while the remainileg tvait for available processors)
and the other job array will stay in wait until the previousagrfinishes. The following partial
output of thegstat command shows a typical scheduling state in the Snowdon, moddnat
concerns the grid rendering application:

job-ID prior name user state ja-task-1D

177620 0.51000 gaearun wrsmog r 3
177620 0.51000 gaearun wrsmog r 4
2
1

177620 0.51000 gaearun wrsmog r
177620 0.51000 gaearun wrsmog r
177620 0.00000 gaearun wrsmog qw 5-48:1
177621 0.00000 gaearun wrsmog qw 1-48:1

The job array with ID 177620 has image tiles 1 to 4 being resdleall with a priority 0f0.51,
while the remaining tiles 5 to 48 remain waiting. There istheo job array with ID 177621
that will start rendering once the last tiles from the pregigob array begin to complete. The
maxujobs parameter for Snowdon is 4 (recall Table 1) and, therefany, four tiles can be
rendered concurrently on this node. There will be a brigfditéonal period when the four
processor slots available to usersmog will be shared between the last tiles of job 177620
and the first tiles of job 177621. Once all the remaining titesn job 17760 finish, a new job
array will be placed on the queue by the meta-scheduler, ttomevithin a five minute period.

The schedule-ahead mechanism begins to break down foniastjke grid nodes that can render
all the image tiles in an amount of time comparable to the raekeeduler’s polling interval.
This is more likely to happen in the Everest node, since isdug impose any limit on the
number of jobs running concurrently In this type of situation, the meta-scheduler may not
have enough time to place another image on the schedulingechefore the previous image
completes rendering. To solve this problem one must eitberedise the polling interval or
increase the number of simultaneous job arrays that mustiteirkthe queue.

4.6 Retrieving Computation Results

The outcome of a tile that has finished rendering on a grid moda image data file, residing
in the node’s file system. The data file is written in the PPMrfat, a minimalistic image
file format that basically contains a header, indicating tilredimensions, followed by the
raw pixel data [Murray and vanRyper, 1994]. Despite its diaity, the PPM image format is

2Even in grid nodes where teaxujobs parameter imposes no restriction on the number of simutapbs
from the same user, the load imposed by other users alwagsraos this number in practice. In the very best of
situations, the number of active tile renderings will alwée constrained by theax aj _instances parameter,
the maximum number of tasks from the same job array that gasimultaneously.

12

5 RESULTS

accepted by virtually all Unix-based image viewers. Then@ilme of the PPM tile data obeys
the following convention, where the parameters betweereabigackets signify fields with
variable information:

<filename>_<imgnum>_<tilenum>.ppm

Theimgnum field indicates the image number in the sequence of imagesdnagtitutes the
computer animation. Thieélenum field indicates the tile number inside the imaggnum.
The gaeals script retrieves lists of flenames that obey this namingveation. The meta-
scheduler then invokes tlgaeaget script for individual files. The content of a file is sent
from the standard output gfaeaget , through thessh command and through the Unix pipe
that was set up by thes.popen() call until it arrives at the meta-scheduler, where it is
temporarily kept in a string variable. The meta-schedutentstores the results of the tile
rendering in the local image file:

<filename>_<imgnum>.ppm

The meta-scheduler opens the image file and uses the valobetdéhum field to move the
file pointer to the correct position inside the image withila.seek() Python call. The
pixel data from the tile is then transferred to its correeicglin the image

5 Results

Figure 3 shows four frames from a computer generated ardmafia camera flyby over the

same synthetic landscape of Figure 1. The camera is tnragdbrward with a constant speed
of 60 km/h and at a constant altitude of 25 metreShe animation has 500 frames, which,
at a rate of 25 frames per second, corresponds to 20 secompdsybhick time. At the speed

the camera is travelling, the animation would need to havaratidn of almost a month of

continuous playback time for a complete circumnavigatibnhe planet to be achieved. In

this impractical scenario, the first and the last frames efahimation would be equal and
the animation could be looped indefinitely. The animation lsa downloaded as a Quicktime
movie file from the addre8s

http://www.dcs.shef.ac.uk/ ~mag/flyby.mov

An estimate of the image rendering times on the White Rosé @ais obtained by averaging
the rendering times for the first hundred frames at everygpide. The results, referenced as
T7, Ty andTs on the Iceberg, Everest and Snowdon nodes, respectivelghakvn in Table 2.

It must be keptin mind that, in a general situation, the cancan follow an arbitrarily complex
path over the landscape and the frame rendering times cawgelsggnificantly with different
camera positions. Some frames may have a higher visual eaitypand take longer to render

3The actual procedure of pasting a tile pixel data onto an éisg bit more complex. Because PPM images
store the pixel array in a row major formatfile.seek() call must be made for every row of pixels in the tile.

4Although the mountains look imposing in the renderings gfufé 3, they are actually only a few metres high.

5A free Quicktime player, available fromww.apple.com , must be installed before playing the animation.

13

http://www.dcs.shef.ac.uk/~mag/flyby.mov
www.apple.com

5 RESULTS

Figure 3: A sequence of frames showing a camera flyby over a procediara{ary landscape at
constant altitude and speed. The motion blur effect is \@sibthe lower part of the frames.

14

5 RESULTS

Node | Time | Value
Iceberg| T7 56
Everest| Tg 24

Snowdon| Ty 244

Table 2: The rendering time, in minutes, for the first hundred framneh@ animation.

that others. This is not so much the case for the animatiowrsihoFigure 3 where the camera
merely moves forward at a constant altitude and the imagepleity can be considered es-
sentially constant for all frames. Factors that contritiatthe variability in rendering times for
the animation of Figure 3 are more external, being depenaiettie load imposed on the grid
by other users, rather than internal, considering thatrafthés have approximately the same
complexity.

It is clear from the results in Table 2 that the rendering §mee heavily influenced by the
maxujobs scheduling parameters that are shown in Table 1. The Eveoe has no re-
striction on the maximum number of simultaneous jobs arslldads to substantially smaller
rendering times. While performing the timing measuremémnitsTable 2 it was noticed that
between 72 to 77 tiles were being rendered simultaneousBverest. The equivalent number
was 10 for Iceberg and 4 for Snowdon, which is consistent thighvalues in Table 1. Let us
assume for the sake of discussion that the values in Tabld Ratichange while rendering
all the 500 frames of animation on the grid. In the time thaalkes for Snowdon to render
a frame, Iceberg will have renderdd; /77 = 4.36 frames and Everest will have rendered
Ts/Tr = 10.17 frames. The number of framé€g rendered by Snowdon as part of the 500

frame animation obeys:

<1+§+E>N = 500

T " Tp) T

The result isNg =~ 32, approximated to the nearest integer. The number of frasredered
by the other two nodes i8/; = (Ts/T7)Ns ~ 140 and Ny = (Ts/Tr)Ng ~ 328. The
percentage of frames rendered by the Snowdon, Iceberg ard€twnodes i6.4%, 28.0% and
65.6%, respectively. The total rendering timerisax(NgTs, N;Tr, NgTEr) = 7872 minutes
or, approximately, 5 days and 11 hours. One can verify fromsdtresults that the White Rose
Grid is asymmetrical in what concerns the grid renderingieaiion. The Everest node does
the bulk of the work, with the Snowdon and Iceberg nodes gigrsmaller contribution.

The actual rendering time for the animation is larger thaypifevious estimates. The rendering
was started on the 13th of June at 19:50 hours and it was cteripie¢he 20th of June at 11:18

hours, which corresponds to 6 days and 15 hours. The diswiggabetween this value and

the estimates derived from Table 2 have several causes:

Variableload conditions The load on the grid nodes varied over the course of the ramyjer
with rendering jobs having to be suspended for arbitrargtlesn of time. The meta-
scheduler could not proceed to schedule another image odeawaile it was still wait-
ing for tiles from a previous image that were in a suspenda@ sin that node.

Grid nodelockouts When scheduling an image to a node one must specify a panacadtsl
h_rt that indicates to the scheduler how long each tile rendesrgxpected to run.

15

6 CONCLUSIONS

The SGE will kill a tile rendering job once its running timeoeedsh_rt . The meta-
scheduler will then be left waiting indefinitely for the rétsufrom the tile that was killed
and it will not be able to schedule a new image on that nodes Situiation can go on
undetected for several hours. Once it is detected, it besomeessary to re-initialise the
grid application and, as a consequence, images that werg bmidered at the time of
re-initialisation have to be rendered again.

Application development in parallel with grid rendering The animation was used to debug
the grid rendering application. Whenever a bug was fourgrendering would have to
be stopped, the application would be debugged, and theniagdeas then re-initialised
from where it had previously left off. This delay was esphgisignificant after the need
for a schedule-ahead mechanism was detected. The renaeamgtopped for several
hours as the application was extended to include the resoitsSection 4.5.

The evolution of the grid rendering application was obseérgiaring the week that it took to
finalise the animation and the number of frames completedaloi? @ode was verified to be
in agreement with the estimated values, despite the elsnuéntariability described above.
Nevertheless, it would be useful to render the 500 frame atiim again, this time taking the
care to log such data as the load on the three nodes and théi@vadf the rendering times
Tr, Ty andTs as the animation progressed. This would allow a better aizabyf the grid
performance, compared with the simple estimates obtaired fable 2 that are based on
averaging the rendering times for a small number of framess{@ering that re-rendering the
animation will likely take several days, these new resuilshvave to be presented in a future
opportunity.

6 Conclusions

The distributed rendering model presented in this repartimapotential to significantly reduce
the rendering time of complex computer animations. Theeturconditions on the White
Rose Grid did not allow the distributed model to be fully readl. Most of the work was
performed on the Everest node with only a small contributrom the Iceberg and Snowdon
nodes. It is not so much the case that Iceberg and Snowdomeffiient. The author has
previously rendered individual high resolution images @gbkerg (the image in Figure 1 being
one example) that were completed overnight. It is ratherctse that Everest is much more
efficient than the other two nodes, thus creating an imbalam¢he distributed model. The
inclusion of the York node, which was not considered in thisky may change the situation.
The extension of this work to the National Grid Service maodiring in new nodes that are
similar to Everest, allowing a more equitable distributionthe work load. The extension
to the National Grid Service, however, will require chamgthe current SSH based remote
scheduling mechanism by a Globus Toolkit based mechanism.

One possibility of increasing the throughput of the Iceba&ng Snowdon nodes would be to
implement parallelism based on MPI, rather than relyingamarrays [Gropp et al., 1999].
The constraints imposed on the maximum number of procesbatsa single MPI job can
allocate are not as stringent as the constraint on the maximumber of simultaneous jobs.
This approach, however, can only be regarded as a hack. Thegauof MPI is to supply a

16

6 CONCLUSIONS

series of features that enable multiple processors to sgnide amongst themselves and to
communicate by passing messages. None of this featuresiweulequired in the case of a
ray tracing application where each image tile is computedpendently. The sole purpose
of an MPI based approach in this situation would be to defeatcbnstraint imposed by the
maxujobs parameter. This might not even be more efficient because dbiBIthat use a large
number of processors may have to stay in the queue for a sgmifamount of time, waiting
for the required number of processors to become available Idng scheduling delay may
not compensate for the reduced image rendering time. Ydhanargument against a MPI
approach is that it requires two versions of the ray tracdsetanaintained: one standalone
and one that is MPI based. The current approach based onrpfsarses the same ray tracer
source code that is used for standalone computers, makdegroaintenance easier.

The design of the current grid rendering tool can be consitlas a pattern for similar com-
puting problems. In the most general terms, the currengdesilves computational problems
that can be split into smaller and independent tasks. Therpdavours a two-tiered distribu-
tion model, where tasks can themselves be split into smatidrstill independent sub-tasks.
Tasks are distributed across grid nodes while sub-taskdistrdouted among the processors of
a node. This two-tiered model, however, is not a requiremiénasks cannot be further split
they can still be arbitrarily grouped. The task groups aemtdistributed to the nodes. One
example from Computer Graphics were this design model cappked is in the implement-
ation of a distributed version of the Reyes image renderobitcture [Cook et al., 1987]. A
Reyes image renderer works by splitting the geometry (wbérhbe made of polygon meshes,
NURBS patches or subdivision surfaces) into progressissigller fragments. When a frag-
ment becomes much smaller than the size of a pixel it is calledcropolygon It is then
passed to the shading pipeline for rendering. Reyes is usathfor animation studios such as
Pixar for the rendering of their computer animation feafiires.

The Reyes algorithm can be distributed by partitioning thege space into tiles, similarly to
the ray tracing algorithm described in this report, and hgeach processor handle its own
image til€. Each processor will only split geometry data whose boumthox overlaps with
the processor’s tile. There are two additional steps inrtiidementation of a distributed Reyes
renderer that were not necessary for the ray tracing of pgroe¢ surfaces. During the first step,
all the geometry data must be transmitted to the grid nodessilply using ascp command.
The second step is a pre-computation that must be perforeiedebthe rendering work at a
grid node is distributed to its processors. This pre-comut step computes, among other
things, hierarchies of bounding boxes for the geometry.séhmunding boxes are required in
order for each processor to know which geometry elementwitld be concerned with. The
two steps just described can be added with some extra efftietdistributed model that has
been developed for ray tracing procedural landscapes.

SPixar has a render farm made of 1024 Intel servers with 2.8 &é&tn processors and is certain to have a
distributed version of the Reyes rendering tool. Detailsaf this distribution is performed are not known.

17

A PYTHON SOURCE CODE

7 Further Developments

There are two aspects of the distributed rendering modéldéserve improvement. One is
the schedule-ahead mechanism that should be able to haidlleoges with vastly different
rendering times. While the current schedule-ahead mesmaworks well on the Iceberg and
Snowdon nodes, it cannot keep pace with the fast rendemmgstof the Everest node. This
would be solved by keeping two or more job arrays waiting anHBverest queue instead of
just one. At the end of a polling interval, the meta-schedwieuld issue the necessary number
of images to Everest to ensure the desired number of waitibgajrays would be fulfilled.
The number of waiting job arrays for each queue could be 8pdadn the grid resource file
grid.conf . Iceberg and Snowdon would have a value of 1, since this hakedavell so
far, while Everest would have a value of 3 or 4. With this degoéoccupancy in the Everest
gueue, the probability of Everest becoming idle would betyaeduced.

A second and more important aspect that needs improvemdéme igroper handling of grid
lockouts by the meta-scheduler. Currently, thet parameter must be estimated by the user
before the meta-scheduler is launched. It is hardwired éenhtbader of thgaearun shell
script and is therefore the same for all image tiles. It ig/\@fficult to predict what the value
of h_rt should be because it depends on the complexity of the sutatés visible through a
tile. Tiles that only see background sky will render muchdaghan tiles that focus on terrain
features. Assigning an over-conservative estimate ofiteedndering time tch_rt would
solve the problem since it would guarantee that even theestbof the tile renderings would
not be killed by the scheduler. This, however, is not a pcatsolution because it will make
it more difficult for the tile jobs to become active. If the SG&heduler is given a job with a
long predicted run time, it will attempt to schedule fastdyg first. A better way to handle this
situation is for the meta-scheduler to monitor the runnistgsjon the grid nodes and to detect
jobs that were killed without producing a full tile rendeginThe meta-scheduler would then
examine the incomplete tile pixel data and re-issue the sden@bs at the point where they
stopped rendering.

A Python Source Code

The source code for the meta-scheduler, written in the Pys$ledpting language, is as follows:

i nport re

i nport os

i nport sys

i nport signal

i nport getopt

i nport curses

i nport curses.wrapper

from math inport logl0
fromtime inport sleep
fromtime inport ctime
from os.path inport isfile

18

A PYTHON SOURCE CODE

cl ass Node:
def __init_ (self,hostname,address, \
username,factors,res,minsize):
def size(i,)):
it i[2] <= j[2]:
return i
el se:
return |j
def aspect(i,j):
i f abs(i[1] - i[0]) <= abs(j[1] - j[0]):

return i
el se:
return |j
f = filter(| anbda i: i[2] >= minsize,factors)
m = reduce(size,f)
f = filter([ambda i: i[2] == m[2],f)
m = reduce(aspect,f)
self.job = []

self.tile = m

self.donetiles = []

self.address = address

self.hostname = hostname

self.username = username

self.offset = 9 + int(log10(res[0])+1) + \
int(log10(res[1])+1)

self.tilesize = 9 + int(logl0(m[0])+1) + \

int(loglO(m[1])+1) + \

3*m[2]
self.numtiles = res|[0] *res[1]/m[2]
def connect(self,command):
pipe = os.popen('ssh " + \

self.username + '@’ + \
self.address + " /" + \
self.hostname + '/ + \
command + " 2>/dev/null)

output = pipe.read()

i f pipe.close() != None:

rai se IOError
ret urn output

cl ass Grid:
def __init__ (self,filename):
self.res = (0,0)
self.fps = 25.0

self.omega = 0.0

19

A PYTHON SOURCE CODE

self.imgnum = 0
self.numimgs = 0
self.imgsize = 0
self.doneimgs = 0
self.filename = filename
self.node = |[]
def _ open(self,node):
node.file = open(self.flename + ' ' + \
str(node.job[0][0]).zfill(3) + \
“.ppm*,'w’)
node.file.write("P6\n" + \
str(self.res[0]) + * " + \
str(self.res[1]) + \n" + \
"255\n")
for i in xrange(0,3 =self.iimgsize):
node.file.write(\0")
node.file.flush()
node.donetiles = []
def __ close(self,node):

node.connect("gaearm " + self.filename + '’ + \
str(node.job[0][0]));
log.write("Finished image " + str(hode.job[0][0]) + \
" on node " + node.hostname + \

"at " + ctime() + '\n")
log.flush()
del node.job[0]
node.file.close()
self.doneimgs += 1

def _ launch(self,node):
whi | e self.imgnum < self.numimgs:
filename = self.filename + '’ + \

str(self.imgnum+1).zfill(3) + ".ppm"
i f not isfile(filename):
time = self.imgnum/self.fps + 0.01
try:
output = node.connect("gaeasub -t 1-" + \

str(self.imgsize/node.tile[2]) + " -v " + \
"FPS=" + str(self.fps) + ', + \
"IMG=" + str(self.imgnum+1) + ' + \
"RESX=" + str(self.res[0]) + ', +
"RESY=" + str(self.res[1]) + ', +
"WINX=" + str(node.tile[0]) + '/
"WINY=" + str(node.tile[1]) + ') +
"TIME=" + str(time) + ') + \
"OMEGA=" + str(self.omega) + ') + \
"FILENAME=" + selfflename + " 7/" + \

— - -

20

A PYTHON SOURCE CODE

node.hostname + “/gaea”)
except IOError:
log.write("Could not connect to " + \

node.hostname + "\n")
el se:

self.imgnum += 1
node.job.append((self.imgnum, \
re.search("\d+",output).group()))
log.write("Starting image " + str(self.imgnum) + \
" on node " + node.hostname + \
"at " + ctime() + "\n");
log.flush()
return
self.imgnum += 1
def _ poll(self,node):
output = node.connect("gaeals " + \
self.flename + ' ' + \
str(node.job[0][0]) + * ' + \
str(node.tilesize))
for line in refinditer("(. *)\\n",output):
file = line.group(1)
match = re.search("_(\d+)_(\d+)_(\d+)" file)
tile = (match.group(2),match.group(3))
i f not tile in node.donetiles:
output = node.__command("gaeaget " + file)
i = int(tile[1]) - 1
j = selfrres[1]/node.tile[1] - int(tile[O])
for k in xrange(O,node.tile[1]):
node.file.seek(node.offset + \
3+ (node.tile[0] i+ 0\
self.res[0] * (node.tile[1] *j + K)))
node.file.write(output[3 * node.tile[0] *K:\
3+ node.tile[0] * (k+1)])
node.donetiles.append(tile)
node.file.flush()
def __ Kkill(self,node):
joblist = "
for job in node.job:
joblist += job[1] + '’

node.connect("gaeadel " + self.filename + ' ' + joblist)
node.file.close();
os.remove(self.flename + ' ' + \

str(node.job[0][0]).zfill(3) + ".ppm")
def schedule(self,stdscr,col):
for n in self.node:
i f len(n.job):

21

A PYTHON SOURCE CODE

self.___poll(n)
i f len(n.donetiles) == n.numtiles:
self.__close(n)
i f len(n.job):
self.__open(n)
self.__launch(n)

el se:
self.__launch(n)
i f len(n.job):

self.__open(n)
self.__launch(n)
i f len(n.job):
stdscr.addstr(col,40,str(n.job[0][0]).rjust(5),\
curses.color_pair(3))
percent = 100.0 =*len(n.donetiles)/n.numtiles
stdscr.addstr(col,50,"%6.2f%%" % percent,\
curses.color_pair(3))
el se:
stdscr.move(col,40)
stdscr.clrtoeol()
col += 1
stdscr.refresh()
def shutdown(self):
for n in self.node:
i f len(n.job):
self.__kill(n)

def sighandler(signum, frame):
rai se Keyboardinterrupt

def usage(message = "):

print "Usage: " + sys.argv[0] + " \n\
[-d delay (min)] (default: 5 min)\n\
[-f framerate (fps)] (default: 25 fps)\n\
name resx resy omega #images"

i f message:
print "Error:

sys.exit(2)

+ message

def factorise(n):
divisors =]
for i in xrange(2,int(n/2)+1):
if n%i ==
divisors.append(i)
divisors.append(n)
return divisors

22

A PYTHON SOURCE CODE

def main(stdscr):
curses.curs_set(0)
curses.init_pair(1,curses.COLOR_GREEN\
curses.COLOR_BLACK)
curses.init_pair(2,curses.COLOR_YELLOW,\
curses.COLOR_BLACK)
curses.init_pair(3,curses.COLOR_WHITE\
curses.COLOR_BLACK)
stdscr.addstr(4,10,"Gaea Grid: $Revision: 495 $"\
curses.A_BOLD|\
curses.color_pair(1))
col =6
for n in grid.node:
stdscr.addstr(col,10,n.hostname + "\t" + \
str(grid.res[0]/n.tile[0]) + 'X + \
str(grid.res[1]/n.tile[1]) + \
" tiles of dimension (" + \
str(n.tile[0]) + ', + \
str(n.tile[1]) +), \
curses.color_pair(3))
col += 1
col += 1
stdscr.addstr(col,10,"Node",curses.A_BOLD|\
curses.color_pair(2))
stdscr.addstr(col,40,"Image",curses.A_BOLD|\
curses.color_pair(2))
stdscr.addstr(col,50,"Percent”,curses.A_BOLD|\
curses.color_pair(2))
col += 1
datacol = col
for n in grid.node:
stdscr.addstr(datacol,10,n.address,curses.color_pai r(3))
datacol += 1
stdscr.refresh()
whi | e grid.doneimgs < grid.numimgs:
signal.signal(signal.SIGINT,signal.SIG_IGN)
grid.schedule(stdscr,col)
signal.signal(signal.SIGINT,sighandler)
sleep(60.0 +delay)

try:

opts,args = getopt.getopt(sys.argv[1:],"d:f:m:")
except getopt.GetoptError:

usage()

23

A PYTHON SOURCE CODE

delay = 5.0
cfgfilename = "grid.conf"

for o,a in opts:
if o =="dm"
try:
delay = float(a)
except ValueError:
usage("Invalid delay was specified!")

i f len(args) ==
grid = Grid(args[0])
for o,a in opts:
if o == "-"
try:
grid.fps = float(a)
except ValueError:
usage("Invalid frame rate was specified!")
try:
grid.res = int(args[1]),int(args[2])
except ValueError:
usage("Invalid image resolution was specified!")
grid.imgsize = grid.res[0] * grid.res[1]
try:
grid.omega = float(args[3])
except ValueError:
usage("Invalid angular speed was specified!")
try:
grid.numimgs = long(args[4])
except ValueError:
usage("Invalid number of images was specified!")
divisors = factorise(grid.res[0]), \
factorise(grid.res[1])
divisors = [(X,y,X *y) for x in divisors[0] \
for y in divisors[1]]
try:
file = open(cfgfilename)
for line in file:
i f line == "\n™
conti nue
i f line[0] == "#"
conti nue
token = line.split()
i f len(token) = 3:
print "Incorrect node specification:\n" + line
conti nue

24

REFERENCES

name = token[0].split(’.’,1)
i f len(hame) = 2:
pri nt "Hosthame must be fully qualified:\n" + line
conti nue
try:
numjobs = long(token[2])
except ValueError:
print "Incorrect specification for numjobs:\n" + line
conti nue
minsize = float(grid.imgsize)/numjobs
grid.node.append(Node(name[0], \
token[O], \
token[1], \
divisors, \
grid.res, \
minsize))
except IOError:
print "Error reading grid configuration file!"
sys.exit(1)
el se:
file.close
el se:
usage()

log = open("grid.log”,'w")

try:
curses.wrapper(main)
except Keyboardinterrupt:
grid.shutdown()

log.close()

References

R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. M@, Parallel Program-
ming in OpenMP Morgan Kaufmann Publishers Inc., 2000. ISBN 1-55860-871-

R. L. Cook, L. Carpenter, and E. Catmull. The Reyes imageagngl architecture. In M. C.
Stone, editorComputer Graphics (SIGGRAPH '87 Proceeding®lume 21, pages 95-102.
ACM Press, July 1987.

I. T. Foster and C. Kesselman. Globus: A metacomputing stifnature toolkit.International
Journal of Supercomputing Applicatigrisl(2):115-128, 1997.

25

REFERENCES

I. T. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Gridises for distributed system
integration.|IEEE Computer35(6):37-46, 2002.

M. N. Gamito and S. C. Maddock. Anti-aliasing with stratifiBdspline filters of arbitrary
degree.Computer Graphics Forupn25(2):163-172, June 2006.

W. Gentzsch. Sun Grid Engine: Towards creating a computepgrid. InCluster Computing
and the Grid (CCGRID '01 Proceedingg)ages 35—-36. IEEE Computer Society, May 2001.

W. Gropp, E. Lusk, and A. SkjellumUsing MPI: Portable Parallel Programming with the
Message—Passing Interfacéhe MIT Press, 2nd edition, 1999. ISBN 0-262-57104-8.

J. C. Hart. Sphere tracing: A geometric method for the aasatl ray tracing of implicit
surfaces.The Visual Computerl2(9):527-545, 1996. ISSN 0178-2789.

E. Hudo, R. S. Montero, and I. M. Llorente. The GridWay framekfor adaptive scheduling
and execution on gridsScalable Computing: Practice and Experien6€3):1-8, 2005.

E. Levin. Grand challenges to computational scien€emmunications of the ACN82(12):
1456-1457, Dec. 1989.

R. Marshall, R. Wilson, and W. Carlson. Procedure modelgjéerating three-dimensional
terrain. InComputer Graphics (SIGGRAPH '80 Proceedings)lume 14, pages 154-162.
ACM Press, July 1980.

J. D. Murray and W. vanRypeEncyclopedia of Graphics File Format®’'Reilly & Associates,
Inc., July 1994. ISBN 1-56592-058-9.

F. K. Musgrave. Mojoworld: Building procedural planets.DnS. Ebert and F. K. Musgrave,
editors, Texturing & Modeling: A Procedural Approagcbhapter 20, pages 565—-615. Morgan
Kauffman Publishers Inc., 3rd edition, 2003. ISBN 1-558&3(3-6.

T. Nishita, T. Sirai, K. Tadamura, and E. Nakamae. Displayhefearth taking into account
atmospheric scattering. In J. T. Kajiya, edit@omputer Graphics (SIGGRAPH '93 Pro-
ceedings)volume 27, pages 175-182. ACM Press, Aug. 1993.

D. R. Peachey. Building procedural textures. In D. S. Ebed B. K. Musgrave, editors,
Texturing & Modeling: A Procedural Approagclichapter 2, pages 7-94. Morgan Kauffman
Publishers Inc., 3rd edition, 2003. ISBN 1-55860-848-6.

D. Thain, T. Tannenbaum, and M. Livny. Distributed compgtin practice: the condor exper-
ience.Concurrency: Practice and Experienck7(2-4):323—-356, 2005.

T. Whitted. An improved illumination model for shaded desplCommunications of the ACM
23(6):343—-349, June 1980.

26

	Introduction
	Photorealistic Rendering of Synthetic Landscapes
	Grid Computing and the White Rose Grid
	Grid Middleware
	The White Rose Grid

	A Grid Application for Rendering Synthetic Landscapes
	Application Deployment
	Grid Resource Location
	Grid Access and Authentication
	Implementing a Polling Strategy
	Implementing a Schedule-Ahead Policy
	Retrieving Computation Results

	Results
	Conclusions
	Further Developments
	Python Source Code
	References

