
A PROGRESSIVE REFINEMENT APPROACH
FOR THE VISUALISATION OF IMPLICIT SURFACES

Manuel N. Gamito∗
Department of Computer Science

The University of Sheffield
M.Gamito@dcs.shef.ac.uk

Steve C. Maddock
Department of Computer Science

The University of Sheffield
S.Maddock@dcs.shef.ac.uk

Keywords: Affine arithmetic, implicit surface, progressive refinement, ray casting.

Abstract: Visualising implicit surfaces with the ray casting method is a slow procedure. The design cycle of a new
implicit surface is, therefore, fraught with long latency times as a user must wait for the surface to be rendered
before being able to decide what changes should be introduced in the next iteration. In this paper, we present
an attempt at reducing the design cycle of an implicit surface modeler by introducing a progressive refinement
rendering approach to the visualisation of implicit surfaces. This progressive refinement renderer provides a
quick previewing facility. It first displays a low quality estimate of what the final rendering is going to be
and, as the computation progresses, increases the quality of this estimate at a steady rate. The progressive
refinement algorithm is based on the adaptive subdivision ofthe viewing frustrum into smaller cells. An
estimate for the variation of the implicit function inside each cell is obtained with an affine arithmetic range
estimation technique. Overall, we show that our progressive refinement approach not only provides the user
with visual feedback as the rendering advances but is also capable of completing the image faster than a
conventional implicit surface rendering algorithm based on ray casting.

1 INTRODUCTION

Implicit surfaces play an important role in Com-
puter Graphics. Surfaces exhibiting complex topo-
logies, i.e. with many holes or disconnected pieces,
can be easily modelled in implicit form (Desbrun and
Gascuel, 1995; Whitaker, 1998; Foster and Fedkiw,
2001). An implicit surface is defined as the set of all
pointsx that verify the conditionf(x) = 0 for some
functionf(x) from R

3 to R. Modelling with implicit
surfaces amounts to the construction of an appropriate
functionf(x) that will generate the desired surface.

Rendering algorithms for implicit surfaces can be
broadly divided into meshing algorithms and ray cast-
ing algorithms. Meshing algorithms convert an im-
plicit surface to a polygonal mesh format, which
can be subsequently rendered in real time with mod-
ern graphics processor boards (Lorensen and Cline,
1987; Bloomenthal, 1988; Velho, 1996). Ray cast-
ing algorithms bypass mesh generation entirely and
compute instead the projection of an implicit surface
on the screen by casting rays from each pixel into

∗Supported by grant SFRH/BD/16249/2004 from
Fundação para a Ciência e a Tecnologia, Portugal.

three-dimensional space and finding their intersection
with the surface (Roth, 1982; Hin et al., 1989).

Our ultimate goal is to use implicit surfaces as a
tool to model and visualise realistic procedural plan-
ets over a very wide range of scales. The function
f(x) that generates the surface terrain for such a
planet must have fractal scaling properties and exhibit
a large amount of small scale detail. Examples of this
type of terrain generating function can be found in
the Computer Graphics literature (Ebert et al., 2003).
In our planet modelling scenario, meshing algorithms
are too cumbersome as they generate meshes with a
very high polygon count in order to preserve all the
visible surface detail. Furthermore, as the viewing
distance changes, the amount of surface detail varies
accordingly and the whole polygon mesh needs to be
regenerated. For these reasons, we have preferred a
ray casting approach because of its ability to render
the surface directly without the need for an interme-
diate polygonal representation.

The visualisation of an implicit surface with ray
casting is not without its problems, however. When
the surface is complex, many iterations have to be
performed along each ray in order to locate the inter-
section point with an acceptable accuracy (Mitchell,

1990). Imaging an implicit surface with ray casting
can then become a slow procedure. This is further
compounded by the fact that an anti-aliased image re-
quires that many rays be shot for each pixel (Cook,
1989).

We propose to alleviate the long rendering times as-
sociated with the modelling and subsequent ray cast-
ing of complex fractal surfaces by providing a quick
previewer based on a progressive refinement render-
ing principle. The idea of progressive refinement for
image rendering was first formalised in 1986 (Berg-
man et al., 1986). Progressive refinement rendering
has received much attention in the fields of radios-
ity and global illumination (Cohen et al., 1988; Guo,
1998; Farrugia and Peroche, 2004). Progressive re-
finement approaches to volume rendering have also
been developed (Laur and Hanrahan, 1991; Lippert
and Gross, 1995). Our previewer uses progressive
rendering to visualise an increasingly better approx-
imation to the final implicit surface. It allows the
user to make quick editing decisions without having
to wait for a full ray casting solution to be computed.
Because the rendering is progressive, the previewer
can be terminated as soon as the user is satisfied or
not with the look of the surface. The previewer is also
capable of completing the image in a shorter amount
of time than it would take for a ray caster to render
the same image by shooting a single ray through the
centre of each pixel.

2 RENDERING WITH
PROGRESSIVE REFINEMENT

The main stage of our method consists in the binary
subdivision of the space, visible from the camera, into
progressively smaller cells that are known to straddle
the boundary of the surface. The subdivision mechan-
ism stops as soon as the projected size of a cell on the
screen becomes smaller than the size of a pixel. In-
formation about the behaviour of the implicit function
f(x) inside a cell is returned by evaluating the func-
tion with affine arithmetic (Comba and Stolfi, 1993).
Affine arithmetic is a framework for evaluating algeb-
raic functions with arguments that are bounded but
otherwise unknown. It is a generalisation of the older
interval arithmetic framework (Moore, 1966). Af-
fine arithmetic, when compared against interval arith-
metic, is capable of returning much tighter estimates
for the variation of a function, given input arguments
that vary over the same given range. Affine arithmetic
has been used with success in an increasing number of
Computer Graphics problems, including the ray cast-
ing of implicit surfaces (Heidrich and Seidel, 1998;
Heidrich et al., 1998; de Figueiredo, 1996; Junior
et al., 1999; de Figueiredo et al., 2003). We use

a simpler form of affine arithmetic known asAffine
Form 1 (AF1), which we termreduced affine arith-
metic (Messine, 2002). Reduced affine arithmetic,
in the context of ray casting implicit surfaces made
from procedural fractal functions, returns the same
results as standard affine arithmetic while being faster
to compute and requiring smaller data structures.

The procedure for rendering implicit surfaces with
progressive refinement can be broken down into the
following steps:

1. Build an initial cell coincident with the camera’s
viewing frustrum. The near and far clipping planes
are determined so as to bound the implicit surface.

2. Recursively subdivide this cell into smaller cells.
Discard cells that do not intersect with the implicit
surface. Stop subdivision if the size of the cell’s
projection on the image plane falls below the size
of a pixel.

3. Assign the shading value of a cell to all pixels that
are contained inside its projection on the image
plane. The shading value for a cell is taken from
the evaluation of the shading model at the centre
point of the cell.

The Rayshade public domain ray tracer imple-
ments a previewing tool that traces rays at the corners
of rectangular regions in the image and subdivides
these regions based on their estimated contrast (Kolb,
1992). Since the ray casting of implicit surfaces is
one instance of the more general ray tracing problem,
the same previewing mechanism could be used here.
In a ray tracer, the process of ray-surface intersection
is performed independently for each ray, with no in-
formation being shared between neighbouring rays.
When a cell is subdivided, on the other hand, the in-
formation about the implicit surface contained in that
cell is refined and passed down to the child cells.
A previewer for implicit surfaces that uses cell sub-
division will, therefore, converge more quickly than
a generic previewer that uses subdivision in image
space, as implemented inRayshade.

Another previewing method for implicit surfaces
with some similarities to ours was briefly described
as part of a larger work (de Figueiredo and Stolfi,
1996). A subdivision of space using an octree is pro-
posed to track the boundary of the surface with in-
creasing accuracy. Surface visibility is determined by
a painters algorithm whereby the octree is traversed in
back to front order, relative to the camera, as the cells
are rendered on the screen. Our method is more effi-
cient and less memory intensive in that only the cells
that are known to be visible from the camera are con-
sidered. No time is wasted tracking and subdividing
cells that lie on hidden portions of the surface. The
following sections will explain how each of the steps
in our rendering method work.

2.1 Reduced Affine Arithmetic

A variable is represented with reduced affine arith-
metic (rAA) as a central value plus a series of noise
symbols. In contrast to the standard affine arith-
metic model, the number of noise symbols is con-
stant and can be used to describe the fundamental
degrees of freedom of the problem under considera-
tion (Messine, 2002). In the rendering method that is
being described in this paper, the degrees of freedom
are the three parameters necessary to locate any point
inside the viewing frustrum of the camera. These
parameters are the horizontal distanceu along the im-
age plane, the vertical distancev along the same im-
age plane and the distancet along the ray that passes
through the point at(u, v). A rAA variable â has,
therefore, the following representation:

â = a0 + aueu + avev + atet + akek. (1)

The extra noise symbolek is included to account
for uncertainties in thêa variable that are not shared
with any other variable. Operations on rAA variables
are performed by updating theau, av and at noise
coefficients with new uncertainties related to theu, v
andt view frustrum distances and clumping all other
uncertainties into theak coefficient.

For an implicit surface, the vectorx at some point
in space can be described in rAA format as a tuple
of three cartesian coordinates, with the representation
in (1), and where the noise symbolseu, ev and et

are shared between the coordinates. Each coordin-
ate has its own independent noise symboleki

, with
i = 1, 2, 3. The rAA representation̂x of the vector
x describes not a point but a region of space spanned
by the uncertainties associated with its three coordin-
ates. Evaluation of the expressionŷ = f(x̂) leads
to a range estimatêy for the variation off(x̂) inside
the region spanned bŷx. Knowing ŷ, the average
value ȳ and the variance〈y〉 for that range estimate
can be computed as follows, based on the representa-
tion in (1) for an rAA variable:

ȳ , y0, (2a)

〈y〉 , |yu| + |yv| + |yt| + |yk|. (2b)

The range estimatêy is then known to lie inside
the interval[ȳ − 〈y〉, ȳ + 〈y〉]. If this interval con-
tains zero, the region spanned byx̂ may or may not
intersect with the implicit function. This is because
affine arithmetic (both in its standard and reduced
forms) always computes conservative range estimates
and it is possible that the exact range resulting from
f(x̂) may be smaller than̂y. What is certain is that
if [ȳ − 〈y〉, ȳ + 〈y〉] does not contain zero the re-
gion spanned bŷx is either completely inside or com-
pletely outside the implicit surface and therefore does
not intersect it.

2.2 The Anatomy of a Cell

A cell is a portion of the camera’s viewing frustrum
that results from a recursive subdivision along theu,
v and t parameters. Figure 1 depicts the geometry
of a cell. It has the shape of a truncated pyramid of
quadrangular cross-section, similar to the shape of the
viewing frustrum itself. Four vectors, taken from the
camera’s viewing system, are used to define the spa-
tial extent of a cell. These vectors are:

The vectoro This is the location of the camera in the
world coordinate system.

The vectorspu and pv They represent the hori-
zontal and vertical direction along the image plane.
The length of these vectors gives the width and
height, respectively, of a pixel in the image plane.

The vectorpt It is the vector from the camera’s
viewpoint and orthogonal to the image plane. The
length of this vector gives the distance from the
viewpoint to the image plane.

The vectorspu, pv andpt define a left-handed per-
spective viewing system. The position of any pointx

inside the cell is given by the following inverse per-
spective transformation:

x = o + (upu + vpv + pt)t

= o + utpu + vtpv + tpt. (3)

t0uepu

t0vepv

te(u0pu + v0pv + pt)

Figure 1: The geometry of a cell. The vectors show the
three medial axes of the cell.

The spatial extent of a cell is obtained from the
above by having theu, v andt parameters vary over
appropriate intervals[ua, ub], [va, vb] and [ta, tb].
We must consider how to compute the rAA represent-
ation x̂ of this spatial extent. To do so a change of
variables must first be performed. The rAA variable
û = u0 + ueeu will span the same interval[ua, ub]
asu does if we have:

u0 = (ub + ua)/2, (4a)

ue = (ub − ua)/2. (4b)

Similar results apply for thev and t parameters.
Substitutinĝu, v̂ andt̂ in (3) for u, v andt, we get:

x = o + t0u0pu + t0v0pv + t0pt

+ t0ueeupu + t0veevpv

+ u0teetpu + v0teetpv + teetpt

+ teueeuetpu + teveevetpv.

(5)

The first line of (5) contains only constant terms.
The second and third lines contain linear terms of the
noise symbolseu, ev andet. The fourth line contains
two non-linear termseuet andevet, which are a con-
sequence of the non-linearity of the perspective trans-
formation. Since a rAA representation cannot accom-
modate such non-linear terms they are replaced by the
independent noise termsek1

, ek2
andek3

for each of
the three cartesian coordinates ofx̂. The rAA vector
x̂ is finally given by:

x̂ = o + t0(u0pu + v0pv + pt)

+ t0uepueu + t0vepvev

+ te(u0pu + v0pv + pt)et

+ [xk1
ek1

xk2
ek2

xk3
ek3

]
T

,

(6)

with

xki
= |teuepui

| + |tevepvi
|, i = 1, 2, 3. (7)

A consequence of the non-linearity of the perspect-
ive projection and its subsequent approximation with
rAA is that the region spanned bŷx is going to be lar-
ger than the spatial extent of the cell. Figure 2 shows
the geometry of a cell and the region spanned by its
rAA representation in profile. Because the rAA rep-
resentation has been linearised, its spatial extent is a
prism rather than a truncated pyramid. This has fur-
ther consequences in that the evaluation off(x̂) is
going to include information from the regions of the
prism outside the cell and will, therefore, lead to range
estimates that are larger than necessary. The linearisa-
tion error is more pronounced for cells that exist early
in the subdivision process. As subdivision continues
and the cells become progressively smaller, their geo-
metry becomes more like that of a prism and the dis-
crepancy with the geometry of̂x decreases2.

The subdivision of a cell proceeds by first choos-
ing one of the three perspective projection parameters
u, v or t and splitting the cell in half along that para-
meter. This scheme leads to ak-d tree of cells where
the sequence of dimensional splits is only determined
at run time. The choice of which parameter to split
along is based on the average width, height and depth

2This can be demonstrated by the fact that the termsteue

andteve in (5) decrease more rapidly than any of the linear
termsue, ve andte of the same equation as the latter con-
verge to zero.

Figure 2: The outline of a cell (solid line) and the outline of
its rAA representation (dashed line) shown in profile. The
rAA representation is a prism that forms a tight enclosure
of the cell.

of the cell:

w̄u = 2 t0ue‖pu‖, (8a)

w̄v = 2 t0ve‖pv‖, (8b)

w̄t = 2 te‖u0pu + v0pv + pt‖. (8c)

If, say, w̄u is the largest of these three measures,
the cell is split along theu parameter. The two child
cells will have theiru parameters ranging inside the
intervals[ua, u0] and [u0, ub], where[ua, ub] was
the interval spanned byu in the mother cell. In prac-
tice, the factors of2 in (8) can be ignored without
changing the outcome of the subdivision. This subdi-
vision strategy ensures that, after a few iterations, all
the cells will have an evenly distributed shape, even
when the initial cell is very long and thin.

2.3 The Process of Cell Subdivision

Cell subdivision is implemented in an iterative man-
ner rather than using a recursive procedure. The cells
are kept sorted in a priority queue based on their level
of subdivision. A cell has priority over another if it
has undergone less subdivision. For cells at the same
subdivision level, the one that is closer to the camera
will have priority. The algorithm starts by placing the
initial cell, which corresponds to the complete view-
ing frustrum, on the priority queue. At the start of
every new iteration, a cell is removed from the head
of the queue. If the extent of the cell’s projection on
the image plane is larger than the extent of a pixel, the
cell is subdivided and its two children are examined.
In the opposite case, the cell is considered a leaf cell
and is discarded after being rendered. The two condi-
tions that indicate whether a cell should be subdivided
are:

ub − ua > 1, (9a)

vb − va > 1. (9b)

The values on the right hand sides of (9) are a con-
sequence of the definition ofpu andpv in Section 2.2,
which cause all pixels to have a unit width and height.

The sequence of events after a cell has been sub-
divided depends on which of the parametersu, v or
t was used to perform the subdivision. If the subdi-
vision occurred alongt, there will be two child cells
with one in front of the other and totally occluding
it. The front cell is first checked for the condition
0 ∈ f(x̂). If the condition holds, the cell is pushed
into the priority queue and the back cell is ignored.
If the condition does not hold, the back cell is also
checked for the same condition. The difference now
is that, if0 6∈ f(x̂) for the back cell, a new cell must
be searched by marching along thet direction. The
first cell scanned, at the same subdivision level of the
front and back cells, for which0 ∈ f(x̂) holds is
the one that is pushed into the priority queue. On the
other hand, if the subdivision occurred along theu or
v directions, there will be two child cells that sit side
by side relative to the camera without occluding each
other. Both cells are processed in the same way. If,
for any of the two cells,0 ∈ f(x̂) holds, that cell is
placed on the priority queue, otherwise a farther cell
must be searched by marching forward in depth.

Figure 3: Scanning along the depth subdivision tree. Cells
represented by black nodes may intersect with the surface.
Cells represented by white nodes do not. The solid arrows
show progression by depth-first order. The dotted arrows
show progression by breadth-first order.

The process of marching forward from a cell along
the depth directiont tries to find a new cell that has
a possibility of intersecting the implicit surface by
verifying the condition0 ∈ f(x̂). The process is
invoked when the starting cell has been determined
not to verify the same condition. The reason for hav-
ing this scanning in depth is because cells that do not
intersect with the surface must be discarded. Only
cells that verify0 ∈ f(x̂) are allowed into the pri-
ority queue for further processing. Figure 3 shows
an example of this marching process. The scanning
is performed by following a depth-first ordering re-
lative to the tree that results from subdividing int.
The scanning sequence skips over the children of cells
for which 0 6∈ f(x̂). The possibility of scanning in
breadth-first order, by marching along all the cells at
the same level of subdivision, is not recommended be-
cause in deeply subdivided trees a very high number

of cells would have to be tested.
As mentioned before, when subdivision is per-

formed alongt, the back cell is ignored whenever the
front cell verifies0 ∈ f(x̂). This does not mean, how-
ever, that the volume occupied by this back cell will
be totally discarded from further consideration. The
front cell may happen to be subdivided during sub-
sequent iterations of the algorithm and portions of the
volume occupied by the back cell may then be revis-
ited by the depth marching procedure.

2.4 Rendering a Cell

The shading value of a cell is obtained by evaluat-
ing the shading function at the centre of the cell. The
central pointx0 for the cell is determined from (6) to
be:

x0 = o + t0(u0pu + v0pv + pt). (10)

During rendering, the shading value of a cell is as-
signed to all the pixels that are contained within its
image plane projection. The centre of a pixel(i, j)
occupies the coordinatescij = (i + 1/2, j + 1/2)
on the image plane. All the pixels that verifycij ∈
[ua, ub] × [va, vb] for the cell being rendered will
be assigned its shading value. Any previous shad-
ing values stored in these pixels will be overwritten.
This process happens after cell subdivision and before
the newly subdivided cells are placed on the priority
queue. The subdivided cells will overwrite the shad-
ing value of their mother cell on the image buffer. The
same process also takes place for leaf cells before they
are discarded. In this way, the image buffer always
contains the best possible representation of the image
at the start of every new iteration.

2.5 Specifying a Region of Interest

A user can interactively influence the rendering al-
gorithm by drawing a rectangular region of interest
(ROI) over the image. The algorithm will then refine
the image only inside the specified region. This is
accomplished by creating a secondary priority queue
that stores the cells that are relevant to the ROI. When
the user finishes drawing the region, the primary
queue is scanned and all cells whose image projec-
tion intersects with the rectangle corresponding to that
ROI are transferred to the secondary queue. The al-
gorithm then proceeds as explained in Section 2.3
with the difference that the secondary queue is now
being used. Once this queue becomes empty, the por-
tion of the image inside the ROI is fully rendered
and the algorithm returns to subdividing the cells that
were left in the primary queue. It is also possible to
cancel the ROI at any time by flushing any cells still
in the secondary queue back to the primary queue.

2.6 Some Implementation Remarks

The best implementation strategy for our rendering
method is to have an application that runs two threads
concurrently: a subdivision thread and a rendering
thread. The rendering thread is responsible for peri-
odically updating the graphical output of the applica-
tion with the latest results from the subdivision thread.
A timer is used to keep a constant frame refresh rate.
Except for the periodical invocation of the timer hand-
ler routine, the rendering thread remains in a sleep
state so that the subdivision thread can use all the CPU
resources.

3 RESULTS

Figure 5 at the end of the paper shows four snapshots
taken during the progressive refinement rendering of
an implicit sphere modulated with a Perlin proced-
ural noise function (Perlin, 2002). The last snapshot
shows the final rendering of the surface. The large
scale features of the surface become settled quite early
and the latter stages of the refinement are mostly con-
cerned with resolving small scale details.

Figure 4: An implicit surface with two layers (left) and three
layers (right) of a Perlin noise function.

Figure 4 shows an implicit sphere modulated with
two and three layers of the Perlin noise function.
Table 1 shows the total number of iterations and the
computation time for the surfaces that were rendered
in Figures 4 and 5. The table also shows the computa-
tion time for ray casting the same surfaces by shooting
a single ray through the centre of each pixel. The res-
ults in Table 1 were obtained on a laptop with a Pen-
tium 4 1.8 GHz processor and 1 Gbyte of memory.
The number of iterations required to complete the
progressive rendering algorithm is largely independ-
ent of the complexity of each surface. It depends only
on the image resolution and on the percentage of the
image that is covered by the projected surface.

As estimated by the results in Table 1, preview-
ing by progressive refinement is approximately three
times faster than previewing by ray casting without

Layers Iterations T ime Raycasting
1 350759 27.8s 1m10.4s
2 349465 1m16.8s 4m16.7s
3 359659 3m01.5s 8m51.7s

Table 1: Rendering statistics for an implicit sphere with sev-
eral layers of Perlin noise.

anti-aliasing. It should be added that these numbers
do not entirely reflect the reality of the situation be-
cause, as demonstrated in the example of Figure 5,
progressive refinement previewing already gives an
accurate rendering of the surface at early stages of re-
finement. From a perceptual point of view, therefore,
the difference between the two previewing techniques
is greater than what is shown in Table 1.

Figure 6 shows two snapshots of a progressive re-
finement rendering where a region of interest is act-
ive. The surface being rendered is the same two layer
Perlin noise surface that was shown in Figure 4. The
rectangular ROI is defined on the lower right corner
of the image. The portion of the surface that projects
inside the ROI is given priority during progressive re-
finement.

4 CONCLUSIONS

The rendering method, here presented, offers the pos-
sibility of visualising implicit surfaces with progress-
ive refinement. The main features of a surface be-
come visible early in the rendering process, which
makes this method ideal as a previewing tool dur-
ing the editing stages of an implicit surface modeler.
In comparison, a meshing method would generate
expensive high resolution preview meshes for the
more complex surfaces while a ray caster would be
slower and without the progressive refinement fea-
ture. Our rendering method, however, does not im-
plement anti-aliasing and cannot compete with an
anti-aliased ray caster as a production tool. Produc-
tion quality renderings of some of the surfaces shown
in this paper are typically done overnight, a fact which
further justifies the need for a previewing tool.

It would have been straightforward to incorporate
anti-aliasing into our rendering method by allowing
cells to be subdivided down to sub-pixel size and
then applying a low-pass filter to reconstruct the pixel
samples. There is, however, one issue that prevents
the use of our method as a production tool and which
makes this implementation effort not worth the while.
As explained in Section 2.1, the computation of range
estimates with affine arithmetic is always conservat-
ive. This conservativeness implies that some cells
a small distance away from the surface may be in-
correctly flagged as intersecting with it. As a con-

sequence, some portions of the surface may appear
dilated after rendering. The surface offset error is in
the same order as the size of a pixel. This artifact can
be tolerated during previewing but is not acceptable
for production quality renderings.

We intend in the future to apply our progressive re-
finement previewing strategy not only to procedural
fractal planets in implicit form but also to implicit sur-
faces that interpolate scattered data points.

REFERENCES

Bergman, L., Fuchs, H., Grant, E., and Spach, S. (1986).
Image rendering by adaptive refinement. In Evans,
D. C. and Athay, R. J., editors,Computer Graphics
(SIGGRAPH ’86 Proceedings), pages 29–37.

Bloomenthal, J. (1988). Polygonisation of implicit surfaces.
Computer Aided Geometric Design, 5:341–355.

Cohen, M. F., Chen, S. E., Wallace, J. R., and Greenberg,
D. P. (1988). A progressive refinement approach to
fast radiosity image generation. In Dill, J., editor,
Computer Graphics (SIGGRAPH ’88 Proceedings),
pages 75–84.

Comba, J. L. D. and Stolfi, J. (1993). Affine arithmetic
and its applications to computer graphics. InProc.
VI Brazilian Symposium on Computer Graphics and
Image Processing (SIBGRAPI ’93), pages 9–18.

Cook, R. L. (1989). Stochastic sampling and distributed
ray tracing. In Glassner, A. S., editor,An Introduction
to Ray Tracing, chapter 5, pages 161–199. Academic
Press.

de Figueiredo, L. H. (1996). Surface intersection using af-
fine arithmetic. In Davis, W. A. and Bartels, R., edit-
ors,Graphics Interface (GI ’96), pages 168–175.

de Figueiredo, L. H. and Stolfi, J. (1996). Adaptive enu-
meration of implicit surfaces with affine arithmetic.
Computer Graphics Forum, 15(5):287–296.

de Figueiredo, L. H., Stolfi, J., and Velho, L. (2003). Ap-
proximating parametric curves with strip trees us-
ing affine arithmetic. Computer Graphics Forum,
22(2):171–171.

Desbrun, M. and Gascuel, M. (1995). Animating soft sub-
stances with implicit surfaces. In Cook, R., editor,
Computer Graphics (SIGGRAPH ’95 Proceedings),
pages 287–290.

Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., and
Worley, S. (2003).Texturing & Modeling: A Proced-
ural Approach. Morgan Kaufmann Publishers Inc.,
third edition.

Farrugia, J. P. and Peroche, B. (2004). A progressive ren-
dering algorithm using an adaptive perceptually based
image metric.Computer Graphics Forum, 23(3):605–
614.

Foster, N. and Fedkiw, R. (2001). Practical animation of li-
quids. In Pocock, L., editor,Computer Graphics (SIG-
GRAPH ’01 Proceedings), pages 23–30.

Guo, B. (1998). Progressive radiance evaluation using dir-
ectional coherence maps. In Cohen, M., editor,Com-
puter Graphics (ACM SIGGRAPH ’98 Proceedings),
pages 255–266.

Heidrich, W. and Seidel, H.-P. (1998). Ray-tracing proced-
ural displacement shaders. In Davis, W., Booth, K.,
and Fournier, A., editors,Graphics Interface (GI ’98),
pages 8–16.

Heidrich, W., Slusallik, P., and Seidel, H. (1998). Sampling
procedural shaders using affine arithmetic.ACM
Transactions on Graphics, 17(3):158–176.

Hin, A. J. S., Boender, E., and Post, F. H. (1989). Visual-
ization of 3D scalar fields using ray casting. InEuro-
graphics Workshop on Visualization in Scientific Com-
puting.

Junior, A., de Figueiredo, L., and Gattas, M. (1999). In-
terval methods for raycasting implicit surfaces with
affine arithmetic. InProc. XII Brazilian Symposium
on Computer Graphics and Image Processing (SIB-
GRAPI ’99), pages 1–7.

Kolb, C. E. (1992). Rayshade user’s guide and reference
manual. Draft 0.4.

Laur, D. and Hanrahan, P. (1991). Hierarchical splatting: A
progressive refinement algorithm for volume render-
ing. In Sederberg, T. W., editor,Computer Graphics
(SIGGRAPH ’91 Proceedings), pages 285–288.

Lippert, L. and Gross, M. H. (1995). Fast wavelet based
volume rendering by accumulation of transparent tex-
ture maps. Computer Graphics Forum, 14(3):431–
444.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes:
A high resolution 3D surface construction algorithm.
In Stone, M. C., editor,Computer Graphics (SIG-
GRAPH ’87 Proceedings), pages 163–169.

Messine, F. (2002). Extentions to affine arithmetic: Applic-
ation to unconstrained global optimization.Journal of
Universal Computer Science, 8(11):992–1015.

Mitchell, D. P. (1990). Robust ray intersection with interval
arithmetic. In MacKay, S. and Kidd, E. M., editors,
Graphics Interface (GI ’90), pages 68–74.

Moore, R. (1966). Interval Arithmetic. Prentice-Hall,
Englewood Cliffs (NJ), USA.

Perlin, K. (2002). Improving noise.ACM Transactions on
Graphics, 21(3):681–682.

Roth, S. D. (1982). Ray casting for modeling solids.Com-
puter Graphics and Image Processing, 18(2):109–
144.

Velho, L. (1996). Simple and efficient polygonization of
implicit surfaces.Journal of Graphics Tools, 1(2):5–
24.

Whitaker, R. T. (1998). A level-set approach to 3D recon-
struction from range data.Int. J. Computer Vision,
29:203–231.

Figure 5: From left to right, top to bottom, snapshots taken during the progressive refinement rendering of a procedural noise
function. The snapshots were taken after 5000, 10000, 28000and 350759 iterations, respectively. The wall clock times at
each snapshot are1.02s,1.98s,4.18s and27.80s, respectively.

Figure 6: Progressive refinement rendering with an active region of interest shown as a red frame. Once rendering is complete
inside the region, refinement continues on the rest of the image.

