
An Analysis of Relational Storage Strategies for Partially Structured
XML

Yasser Abdel Kader1, Barry Eaglestone2, Siobhán North1

1 Department of Computer Science
2Department of Information Studies
University of Sheffield, Sheffield, UK

Y.AbdelKader@dcs.shef.ac.uk, {B.Eaglestone, S.North}@sheffield.ac.uk

Keywords: XML databases, structure mapping, performance analysis

Abstract: This paper presents a performance analysis of strategies for storing XML data sets in relational databases,
focusing on XML datasets that are a combination of structured and semi-structured data. The analysis
demonstrates advantages of a hybrid approach combining structure mapping and XML data type instances.
However problems remain with current technology with regards to scaling of the approach for large data
sets. Also, anomalous results are identified and a threshold at which the cost of data shredding out weighs
the advantages of structure mapping.

1 INTRODUCTION

The research reported is an exploration of
performance implications of approaches to utilizing
SQL/XML (ISO/IEC, 2006), focusing on datasets
that comprise both structured and semi-structured
data. Compromises between database complexity
and increased size which are a consequence of
structure mapping, and structural simplicity and
compactness achieved by storing data as instances of
XML types were investigated. Results show a hybrid
approach that combines both to be advantageous, but
reveal performance anomalies, problems of scaling,
and thresholds at which cost of data shredding
outweigh advantages of structure mapping.

2. EXPERIMENTAL DESIGN

Our hypothesis was - For the class of partially-
structured XML documents, i.e. containing both a
prescribed structured part and a semi-structured part,
performance enhancement may be achieved over
existing query processing techniques for semi-
structured data by using relational database query
processing and optimisation to exploit pre-
knowledge of the prescribed structured part.
Accordingly, experiments analyzed performance of

a hybrid strorage model which, respectively,
represents structured and semi-structured data using
structure mapping and XML data types. Structure
mapping (Shanmugasundaram et al, 1999;
Yoshikawa & Amagasa, 2001; Balmin &
Papakonstantinou, 2005; Pal et al, 2006) represents
an XML document as a relational table. Other tables
represent its nested tagged elements. Lowest-level
tagged elements are stored as attributes. This suits
highly structured document collections that conform
to a limited number of document structures which
are static over time (Lu et al, 2005; Yoshikawa &
Amagasa, 2001).

We implmented structure mapping manually, in
lieu of effective algorithms for stucture mapping
partially-structured data. Also, a manual approach
better suits partially-structured XML data by giving
designers flexibility to apply structure mapping only
for data deemed to be sufficiently well structured.
This is not true of alternative approaches, i.e., data
mining to extract structure from XML documents
(Deutsch, Fernandez & Suciu, 1999), and DTD or
XML Schema analysis techniques (Lv & Yan, 2006;
Penna et al, 2006), such as inlining
(Shanmugasundaram et al, 1999; Lu et al, 2003;
Atay et al, 2007). In our manual structure mapping,
in addition to devising a relational representation of
the hierarchical organization of the structured

component of the data, we ensured optimal querying
of this part by creating sufficient indices.

We used XML data types (Krishnaprasad et al,
2005; Murthy et al, 2005; Rys, 2005; Pal et al, 2005,
2006; Ozcan et al, 2006; ISO/IEC, 2003, 2006;
Eisenberg & Melton, 2004) within our hybrid model
to represent the semi-structured part because
structural irregularities can cause structure mapping
to generate large complex schemas, and schema
inflexibility becomes problematic for structurally
volatile XML data. Other problems avoided by using
XML data types are the need to resolve naming and
type ambiguities and contentions, and, more
generally, XML structural directives, such as Or
(‘|’), cannot be mapped naturally into the relational
model (Yoshikawa & Amagasa, 2001). XML data
types support flexible querying of semi-structured
data through path-based and regular expression-
based querying facilities supported by SQL/XML.
Also, in practice XML database designers will
mainly utilize XML types within relational
databases for storing XML data sets, given the
current immaturity and relatively poor performance
of native XML database systems (Lu et al, 2003,
Grust at al, 2007).

2.1 Experiment Setup

Experiments were run on a single machine
environment: Intel ® Pentium ® CoreTM Duo
processor T2250, 1.73 Ghz; 1536 MB Ram; 120 GB
Hard Disk Drive; Microsoft Windows XP
Professional 5.1.2600 service pack 2; Microsoft
SQL Server 2005. Transact-SQL was used as the
main language to access the SQL Server. The
decision to use MS XML Server was pragmatic. It
was available, widely used internationally, and is a
representative example of SQL/XML technology.

SQL Server 2005 implements features of
SQL/XML, including XML data types, indexing,
full-text XML search, as well as XQuery and XPath.
XML data can be stored as instances of un-typed or
typed XML data fields (MS SQL Server, 2005; Pal
et al, 2005, 2006; Rys, 2005; Lacoude, 2006). Using
un-typed XML data types, there is no XML schema,
so SQL Server only checks that XML data is well
formed. Instances of a typed XML data type must
conform to an XML schema, which is used to
validate the data, perform type checks, and optimize
storage and query processing. Results, not discussed
here, showed a poor performance for un-typed XML
representations. Therefore results presented here
cover only experiments using typed XML data
fields.

3.2 XML Data Set

The dataset used in the experiments was the Digital
Bibliography & Library Project (DBLP) (http://
dblp.uni-trier.de/xml/), which comprises computer
science-related bibliographic information. This
XML document references over 750,000
publications by 450,000 authors, stored in 335
Megabyte, as of September 2006 (Reuther et al,
2006; Ley & Reuther, 2006). Publications are
mainly conference papers (60%) and journal articles
(37%). This dataset is wide use in XML database
research, thus allowing comparability of results.
Also, the data conforms to a DTD from which it was
possible to derive structure for all or part of the
dataset, allowing flexible interpretations of the
document to simulate varying ratios of semi-
structured to highly-structured content. The use of
“natural”, rather than synthesized data sets, adds to
the validity of the study, but a limitation is our
inability to vary the inherent structured-ness of the
data set itself. This requires multiple data sets,
possibly synthesized, which we advocate as further
work.

2.3 Benchmark

The XBench benchmark (Yao, Ozsu &
Keenleysidem, 2004) was used because of its
comprehensive range of use cases for XQuery, and
flexibility to deal with multiple XML scenarios,
including data- and text-centric, single and multiple
documents. This contrasts with single scenario
benchmarks, such as TPC-C, TPC-H, TPC-R, TPC-
W (Transaction Processing Performance Council
(http://www.tpc.org)), Wisconsin benchmark
(DeWitt, 1993), and XML application benchmarks,
such as XMach-1 (Bohme & Rahm, 2002), XMark
(Schmidt et al, 2002), X007 (Brassan et al, 2002),
XPathMark (Franceschet, M. 2005) and TPoz
(Nicola et al, 2007). We also rejected micro
benchmarks, such as Michigan Benchmark
(Runapongsa et al, 2006) and MemBer (Afanasiev et
al, 2005), since they evaluate at too small a level of
query granularity. The XBench query sets, as
adapted for the DBLP data set, are listed in table 1.

2.4 Storage Strategies

The hybrid storage model and its two base models,
i.e. structure mapping (S/M) and XML data types
(XML), were evaluated. Five implementations of the
hybrid model were created to evaluate the impact of
varying the ratio of semi-structured to structured

data with respect to two dimensions. The vertical
dimension, so called because of the conventional
tabular representation of data, is the ratio of semi-
structured to structured components of the schema.
The horizontal dimension is the ratio of semi-
structured to structured data instances. The vertical
dimension was varied in the first (D), second (DA)
and third (DT) implementations, respectively, by
structure mapping document key, document key and
author(s), and document key and title. In the other
implementations (60%X and 37%X), approximately
60% and 37% of data elements were represented as
typed XML data fields and the rest represented using
structure mapping, thus varying the horizontal ratios.

Experiments were conducted on different sized
databases by selectively removing content: the
whole DBLP data set (DB3/3); two-third of the data
set (one third of in-proceedings references and
article references deleted) (DB2/3); and one third of
the data set (two third of the in-proceedings and
articles referenced deleted) (DB1/3).

2.5 Performance Metrics

Performance was measured in milliseconds, in terms
of execution time, CPU busy time and IO busy time.
Also, the number of IO reads and writes were
recorded for each query. To establish stability, each
query was run 20 times and performance was
computed as the average (excluding maximum and
minimum execution times). Standard deviations
were calculated for each query and storage model, to
identify any instability.

3. EXPERIMENT RESULTS AND
ANALYSIS

Table 1 presents a ranking of the storage strategies
for each category of query in the benchmark when
executed with the largest of our datasets (DB3/3)
(see (Abdel Kader, 2007) for full details). Though
far from exhaustive, these suggest interesting
relative characteristics of the storage strategies.
None performed well for all query groups. For
example, though D performed well accessing via the
document key (Qs 1,9,12-16,19), it was relatively
poor for querying author names (Qs 2-7,10-11). In
the latter group, the DA model performed best,
possibly demonstrating relative efficiency of
querying conventional atomic attributes via indices,
in contrast to using typed XML instances. However,
relatively poor performance of S/M across these

twenty queries illustrates advantages in storing data
not directly utilized as query keywords as typed
XML instances, i.e. the hybrid approach. Examples
of the superiority of the hybrid model over pure
structure mapping include quantification (Q6-7) and
retrieval of individual documents (Q16). This is
probably due to the fact that the hybrid model
reduces data shreding, thus reducing the overhead of
multiple join operations to re-assemble a document.
However, as a counter example, though three of the
queries in which article titles are queried (Qs 8,17)
performed well with DT, this was not the case for
the fourth (Q20), in which the length of the title is
tested, where best performance was achieved using
S/M. Also, storing the whole XML data as a typed
XML instance (XML) always produced poorer
performance than strategies which dividing data into
smaller XML elements. In a number of queries, the
XML model showed good performance, but in these
cases so did the other hybrid models (e.g.,
quantification (Q6-7) and text search (Q17)).

Thus, messages are mixed. However, if we
consider performance of specific strategies the
results give a clearer view.

Pure structure mapping (S/M): In most
instances this produced poor performance relative to
hybrid approaches. Exceptions were Q2, Q8, Q18
and Q20. This was unexpected, since the BDLP
dataset is relatively well structured and therefore
well suited to structure mapping. Experiments with
different dataset sizes demonstrated near linear
deterioration in query time as size increased, with
average deterioration of 59% to 125% respectively,
as size doubled and tripled. This representation
seems particularly ill-suited for irregular data (Q14),
with a possibly exponential deteriorated from 300%
to 1053% as size doubles and triples. Thus, dataset
size and application characteristics are important
considerations when contemplating this strategy.

Pure use of typed XML data types (XML): As
with pure structure mapping, this approach produced
poor performance relative to the hybrid approaches.
Exceptions are Q7 (universal quantification) and
Q20 (datatype casting). However, performance was
poor for all conventional relational-style retrievals
involving selection, projection and join.
Deterioration in query performance was more
extreme than for S/M. On average, deterioration was
respectively 121% and 345% as the dataset size
doubles and triples. The worst case was for the path
expression query, Q8, where deterioration was from
700% to 1264%. Thus, average performance was
poor and deterioration as size increases is worse than
linear, suggesting viability only for small data sets.

Table 1: Summary of all the relative performance results ranging from 1 (best) to 6 (worst).

Hybrid Query
Category

Query S/M XML
37%X 60%X D DA DT

Q1: Return titles of article with key value X. 4 5 1 3 2 - - Exact match
Q2: Return titles of articles authored by X. 2 6 3 4 5 1 -

Function
application

Q3: Count articles authored by author X 5 6 3 2 4 1 -

Q4: Return titles of articles by author X., retaining
their relative ordering in the BDPL data set. 6 5 4 2 3 1 -

Ordered
access

Q5: Return title of first article authored by X,
listed within the BDPL data set. 5 6 2 2 4 1 -

Q6: Return titles of articles authored either by
author X and/or author Y 6 5 2 4 3 1 -

Quantification

Q7: Return titles of articles by both author X and
author Y 6 2 5 4 3 1 -

Q8: Return article titles containing “XYZ” 1 5 3 4 6 - 2 Path
expressions Q9: Return authors of articles that have a key

value X. (The symbol ‘//’ to select subpaths in the
document that match address an article key.)

4 5 1 3 2 - -

Q10: List the title, publication date and authors of
all articles, sorted by title for specific authors. 5 6 3 4 2 1 -

Sorting

Q11: List the title, publication date and authors of
all articles, sorted by publication date for specific
author.

5 6 3 4 2 1 -

Q12: List title, publication date and authors for a
specific article, preserving original document
structure.

4 5 2 3 1 - -
Document
construction
structure

Q13: List title, publication date and authors for a
specific article, transforming document structure. 4 5 2 3 1 - -

Q14: List the title, publication date and authors of
all articles in which the ‘ee’ element is missing. 4 5 3 2 1 - -

Irregular data

Q15: List title, publication date and authors of
articles in which the ‘year’ element has a specific
value.

5 4 3 2 1 - -

Retrieval of
individual
documents

Q16: Retrieve article data that has key value X,
keeping its original structure. 5 4 2 3 1 - -

Q17: Search for the word XYZ in any field in the
article data. 5 4 2 3 6 - 1

Text search

Q18: Search for the phrase XX YY ZZ in any field
in the article data. 2 5 3 4 6 - 1

References
and Joins

Q19: Retrieve the first author of the article with
key value X, and use the author’s name to return
the tiles of all of their publication.

4 5 2 3 1 - -

Datatype
casting

Q20: Returns the titles of articles, where the word
count is longer than a specific size. 1 2 5 6 4 - 3

Vertical hybrid approaches (D, DA, DT): Part

of the XML schema common to all repeating
instances is structure mapped and the rest is
represented as typed XML instances. As expected,
this outperformed the two pure base approaches
where query keywords were within the structure
mapped part. However, this superiority was

surprising for text searches (Q17 and 18) where all
fields were accessed. Also, we anticipated
performance would continue to improve as the ratio
of structured to semi-structured data increased, since
conventional relation querying was likely to
outperform the added XML facilities. Given that the
BDLP dataset is mainly well structured, if this was

true, the best performances would be for S/M. This
was not the case, since there seems to be a threshold
beyond which performance deteriorated. Mainly,
query performance deterioration with increase in
dataset size was near linear. For D, DA and DT
deterioration was respectively from 355% to 769%,
25% to 63%, and 2801% to 4269% as size doubled
and tripled. DA’s worst deterioration was for
quantification (Q6), where increase in query time
was from 126% to 290%, as the size doubled and
tripled. DT deteriorated most for data type casting
(Q20), from 10509% to 15880% as size doubled and
tripled. D has two step changes with respect to query
performance. Theses were also for data type casting
(Q20), with a deterioration of 2204% when the size
doubled, and for text searching (Q17), where there
was a 3969% deterioration when size tripled. Thus,
though our hypothesis is largely born out by the
results, there are other factors which any decision
model must take into account, including overheads
incurred by data shredding, and the impact of dataset
size.

Horizontal hybrid approaches (37%X, 60%X):
Some types of repeating instances are structure
mapped while others are stored as typed XML
instances. This produces mainly a middle ranking
performance. Neither 37%X nor 60%X consistently
outperforms the other, but, respectively, in 90% and
75% of cases both outperformed S/M and XML.
Thus, there seems to be an advantage in horizontally
partitioning data into structured and semi-structured
representation, as well as more obvious benefits of
the vertical approach. There is also a worrying
possibly exponential deterioration, as dataset size
increased. Both 37%X and 60%X exhibited similar
average deterioration, from 27% to 395% and from
29% to 445%, as size doubled and tripled. However,
for the path expression query, Q8, deterioration in
performance was from 166% to 2205%. Thus, this
approach mainly improves on pure structure
mapping (S/M), but does not appear to scale to very
large datasets.

Finally, we note that the above results
complement recent and more specific analyses of
performance advantages of using “off-the-shelf”
relational technology to store and query XML data
sets. (Torsten et al, 2007) and (Gou &Chirkova,
2007) respectively analyse XPath processing and
the related more general problem of twig pattern
matching. As in our study, both explore the use of
native relational facilities with XML datasets.
Torsten et al describe and evaluate partitioned B-
trees for non-recursive XPath axis evaluation;
aggregation functions for pruning in tree join

algorithms; and the effectiveness of relational query
optimisation rewrite techniques for tree structured
data. Gou and Chirkova survey relational and native
XML techniques, concluding that a good trade-off
can be achieved with a relational inverted list
representation of XML data, complemented by
efficient XML native join algorithms. Thus, their
studies consider techniques that may be deployed
within an XML type to improve querying
performance. Consequently, we anticipate that the
trade-offs we have explored between structure
mapping and XML type instances will evolve
dynamically with improvements in the
relational/XML technology.

4. CONCLUSIONS

This paper has presented a performance analysis of
relational storage strategies for partially-structured
data. The hybrid approach, combining structure
mapping and XML data types, was show to have
query performance advantages over pure structure
mapping and sole use of XML data types. However,
results are inconclusive, since they identify a
anomalies, problems of scaling, and the existence of
thresholds where cost of data shredding appears to
outweigh advantages of utilizing relation query
processing. Each of these is a motivation for further
research. Also, the experiments described are
limited, as has been discussed in the body of this
paper, and further experimental work is needed.

Our contribution is an analysis of relative
performances within a specific configuration, rather
than across systems, as in other performance studies.
Also, we are not aware of other studies of partially-
structured data and the impact of the horizontal and
vertical dimensions of data structure-ness

Results presented here are part of a more
intensive investigation (Abdel Kader, 2007). In
particular, results have enabled us to devise a
heuristics-based model to inform XML/relational
design which we plan to validate and elaborate as
further research.

REFERENCES
Abdel Kader, Y. 2007. A Performance Analysis of a

Hybrid Relational-Xml Approach to store Partially-
Structured Data. PhD Thesis, University of Sheffield.

Afanasiev, L. Manolescu, I., Michiels, P. 2005. MemBer:
A Micro-benchmark Repository for XQuery. XML
Symposium (XSym).

Atay, M., et al. 2007. Efficient schema-based XML-to-
Relational data mapping. Information Systems 32(3),
pp.458- 476.

Balmin, A., Papakonstantinou, Y 2005. Storing and
Querying XML data using denormalized relational
databases The VLDB Journal, 14, pp.30-49.

Böhme, T., Rahm, E. 2002. Multi-user Evaluation of XML
Data Management Systems with XMach-1. Efficiency
and Effectiveness of XML Tools, and Techniques
EEXTT, pp.148-158.

Brassan, S., et al. 2002. The XOO7 benchmark. In
Proceedings of VLDB’02 Workshop Efficiency and
Effectiveness of XML Tools, and Techniques EEXTT,
LNCS 2590, pp.146-147.

Deutsch, A., Fernandez, M., Suciu, D. 1999. Storing
semistructured data with STORED. In Proceedings of
the 25th ACM SIGMOD International Conference on
Management of Data.

DeWitt, D. 1993. The Wisconsin Benchmark: Past,
Present, and Future. The Benchmark Handbook for
Database and Transaction Systems (2nd Edition).
Morgan Kaufmann, ISBN 1-55860-292-5.

Eisenberg, A., Melton, J. 2004. Advancements in
SQL/XML. SIGMOD Record 33(3), pp.79-86.

Franceschet, M. 2005. XPathMark – An XPath benchmark
for XMark Generated Data. International XML
Database Symposium (XSYM), pp. 129-143.

Gou, G., Chirkova, R. 2007. Efficiently Querying Large
XML Data Repositories: A Survey. IEE Transactions
on Knowledge and Data Engineering. 19(10), October,
2007, pp.1381-1403.

Krishnaprasad, et al. 2005. Towards an Industrial Strength
SQL/XML Infrastructure. Proceedings of the 21st
International Conference on Data Engineering, ICDE
2005. Tokyo, Japan, pp.991-1000.

Lacoude, P. 2006. Pushing SQL Server 2005 Limits,
Dealing with Oversized XML Documents [online]
Available from: http://www.lacoude.com/Docs/public
/public.aspx?doc=SQL90XML.PDF [Accessed
17.10.2007]

Ley, M., Reuther, P. 2006. Maintaining an Online
Bibliographical Database: The Problem of Data
Quality. EGC 2006, Lille, France, pp.5-10.

Lu, H. et al., et al. 2005. What Makes the Differences:
Benchmarking XML Database Implementations. ACM
Transactions on Internet Technology (ACM TOIT), 5
(1), pp.154-194.

Lu, S., et al. 2003. A new inlining algorithm for mapping
XML DTDs to relational schemas. In Proceedings of
the 1st International Workshop on XML Schema and
Data Management. LNCS, Chicago, Illinois, USA.

Lv, T., Yan, P. 2006. Mapping DTDs to relational
schemas with semantic constraints. Information and
Software Technology, Volume 48 (4), pp. 245-252

Murthy, R. et al. 2005. Towards an enterprise XML
architecture. In Proceedings of the 2005 ACM
SIGMOD international Conference on Management of
Data, Baltimore, Maryland, pp.14-16.

Nicola, M., Kogan, I., Schiefer, B. 2007. An XML
Transaction Processing Benchmark. SIGMOD,
Beijing, China.

Özcan, F., et al. 2006. Integration of SQL and XQuery in
IBM DB2. IBM System Journal. 45 (2), pp.245-270.

Pal, S. et al. 2005. XQuery implementation in a relational
database system. In Proceedings of the 31st
international Conference on Very Large Data Bases.
Trondheim, Norway, pp. 1175-1186.

Pal, S., Tomic, D., Berg, B., Xavier, J. 2006. Managing
Collections of XML Schemas in Microsoft SQL
Server 2005. EDBT 2006, pp. 1102-1105.

Penna, G. et al. 2006. Interoperability mapping from XML
schemas to ER diagrams. Data & Knowledge
Engineering, 59 (1), pp.166-188.

Reuther, P. et al. 2006. Managing the Quality of Person
Names in DBLP. Research and Advanced Technology
for Digital Libraries, 10th European Conference,
ECDL 2006, Alicante, Spain, pp.508-511.

Runapongsa, K. et al. 2006. The Michigan benchmark:
towards XML query performance diagnostics.
Information Systems 31(2), pp.73-97.

Rys, M. 2005. XML and relational database management
systems: inside Microsoft® SQL Server™ 2005. In
Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, Baltimore,
Maryland, pp.14-16.

Schmidt, A., et al. 2002. XMark: A benchmark for XML
data management. In Proceedings of the 28th
International Conference on VLDB. Hong Kong,
China, pp.974-985.

Shanmugasundaram et al. 1999. Relational Databases for
Querying XML Documents: Limitations and
Opportunities. Proceeding of the 25th VLDB
Conference, Edinburgh, Scotland.

MS SQL Server 2005 [online] Available from: http://
www.microsoft.com/sql/default.mspx [Accessed
17.10.2007].

SQL:2006. International Organization for Standardization
(ISO). Information Technology-Database Language
SQL. Standard No. ISO/IEC 9075-14:2006. Part 14:
XML-Related Specifications (SQL/XML) (Available
from American National Standards Institute, New
York, NY 10036)

XQuery 1.0 and XPath 2.0 Data Model (XDM) W3C
Candidate Recommendation 11 July 2006 [online].
Available from: http://www.w3.org/TR/xpath-
datamodel/ [Accessed 07.11.2006]

Yao, B., Özsu, M. and Keenleysidem J. 2004. XBench
Benchmark and Performance Testing of XML
DBMSs. In Proceedings of 20th International
Conference on Data Engineering, Boston, MA, United
States of America, pp.621-632.

Yoshikawa, M. and Amagasa, T. 2001. Xrel: A Path-
Based Approach to Storage and Retrieval of XML
Documents Using Relational Databases. ACM
Transaction on Internet Technology 1 (1), pp.110-141.

