Journal Papers
- Bannister, S., Greasley, A. E., Cox, T. J., Akeroyd, M. A., Barker, J., Fazenda, B., … Whitmer, W. M. (2024). Muddy, muddled, or muffled? Understanding the perception
of audio quality in music by hearing aid users. Frontiers in Psychology, 15.
10.3389/fpsyg.2024.1310176
- Firth, J. L., Cox, T. J., Greasley, A., Barker, J. P., Whitmer, W. M., Fazenda, B., … Akeroyd, M. A. (2023). A systematic review of measurements of real-world interior
car noise for the “Cadenza” machine-learning project. Journal of the Acoustical Society of America, 153, A332–A332.
- Akeroyd, M. A., Firth, J. L., Naylor, G., Barker, J. P., Culling, J., Cox, T. J., … Griffiths, H. (2023). Results of the second “clarity” enhancement challenge
for hearing devices. Journal of the Acoustical Society of America, 153, A48–A48.
- Yue, Z., Loweimi, E., Christensen, H., Barker, J., & Cvetkovic, Z. (2022). Acoustic modelling from raw source and filter components
for dysarthric speech recognition. IEEE Transactions on Audio, Speech and Language
Processing, 30, 2968–2980.
10.1109/taslp.2022.3205766
- Graetzer, S., Akeroyd, M. A., Barker, J., Cox, T. J., Culling, J. F., Naylor, G., … Viveros-Muñoz, R. (2022). Dataset of British English speech recordings for
psychoacoustics and speech processing research: The clarity
speech corpus. Data in Brief, 41(107951), 2711.
10.1016/j.dib.2022.107951
- Akeroyd, M. A., Barker, J. P., Cox, T. J., Culling, J., Graetzer, S., Naylor, G., … Viveros Muñoz, R. (2021). Launching the first “Clarity” Machine Learning
Challenge to revolutionise hearing device processing. Journal of the Acoustical Society of America, 148(4), 2711.
10.1121/1.5147514
- Cooke, M., Lecumberri, M. L. G., Barker, J., & Marxer, R. (2019). Lexical frequency effects in English and Spanish word
misperceptions. Journal of the Acoustical Society of America, 145(2), EL136–EL141.
10.1121/1.5090196
[PDF]
- Alghamdia, N., Maddock, S., Marxerb, R., Barker, J., & Brown, G. J. (2018). A corpus of audio-visual Lombard speech with frontal and
profile views. Journal of the Acoustical Society of America, 143(6), EL523–EL529.
10.1121/1.5042758
[PDF]
- Marxer, R., Barker, J., Alghamdi, N., & Maddock, S. (2018). The impact of the Lombard effect on audio and visual
speech recognition systems. Speech Communication, 100, 58–68.
10.1016/j.specom.2018.04.006
[PDF]
- Gonzalez, J. A., Gómez, A. M., Peinado, A. M., Ma, N., & Barker, J. (2017). Spectral Reconstruction and Noise Model Estimation Based
on a Masking Model for Noise Robust Speech Recognition. Circuits, Systems, and Signal Processing, 36(9), 3731–3760.
10.1007/s00034-016-0480-7
[PDF]
- Alghamdi, N., Maddock, S., Barker, J., & Brown, G. J. (2017). The impact of automatic exaggeration of the visual
articulatory features of a talker on the intelligibility of
spectrally distorted speech. Speech Communication, 95, 127–136.
10.1016/j.specom.2017.08.010
[PDF]
- Vincent, E., Watanabe, S., Nugraha, A. A., Barker, J., & Marxer, R. (2017). An analysis of environment, microphone and data simulation
mismatches in robust speech recognition. Computer Speech and Language, 46, 535–557.
10.1016/j.csl.2016.11.005
[PDF]
- Barker, J., Marxer, R., Vincent, E., & Watanabe, S. (2017). The third ‘CHiME’ speech separation and recognition
challenge: Analysis and outcomes. Computer Speech and Language, 46, 605–626.
10.1016/j.csl.2016.10.005
[PDF]
- Marxer, R., Barker, J., Cooke, M., & Garcia Lecumberri, M. L. (2016). A corpus of noise-induced word misperceptions for
English. Journal of the Acoustical Society of America, 140(5), EL458–EL463. Retrieved from http://eprints.whiterose.ac.uk/108991/
[PDF]
- Gonzalez, J., Peinado, A., Ma, N., Gomez, A., & Barker, J. (2013). MMSE-based missing-feature reconstruction with temporal
modeling for robust speech recognition. IEEE Transactions on Audio, Speech and Language
Processing, 21(3), 624–635.
10.1109/TASL.2012.2229982
[PDF]
- Barker, J., Vincent, E., Ma, N., Christensen, H., & Green, P. (2013). The PASCAL CHiME Speech Separation and Recognition
Challenge. Computer Speech and Language, 27(3), 621–633.
10.1016/j.csl.2012.10.004
[PDF]
- Carmona, J. L., Barker, J., Gomez, A. M., & Ma, N. (2013). Speech spectral envelope enhancement by HMM-based
analysis/resynthesis. IEEE Signal Processing Letters, 20(6), 563–566.
10.1109/LSP.2013.2255125
- Ma, N., Barker, J., Christensen, H., & P., G. (2013). A hearing-inspired approach for distant-microphone speech
recognition in the presence of multiple sources. Computer Speech and Language, 27(3), 820–836.
10.1016/j.csl.2012.09.001
[PDF]
- N. Ma, J. Barker, H. Christensen, & P. Green. (2012). Combining speech fragment decoding and adaptive noise
floor modelling. IEEE Transactions on Audio, Speech and Language
Processing, 20(3), 818–827.
- J. Barker, N. Ma, A. Coy, & M. Cooke. (2010). Speech fragment decoding techniques for simultaneous
speaker identification and speech recognition. Computer Speech and Language, 24(1), 94–111.
10.1016/j.csl.2008.05.003
[PDF]
- Barker, J., & Shao, X. (2009). Energetic and informational masking effects in an
audio-visual speech recognition system. IEEE Transactions on Audio, Speech and Language
Processing, 17(3), 446–458.
10.1109/TASL.2008.2011534
[PDF]
- X. Shao, & J. P. Barker. (2008). Stream weight estimation for multistream audio-visual
speech recognition in a multispeaker environment. Speech Communication, 50(4), 337–353.
10.1016/j.specom.2007.11.002
[PDF]
- Christensen, H., Ma, N., Wrigley, S. N., & Barker, J. (2008). Improving source localisation in multi-source, reverberant
conditions: exploiting local spectro-temporal location
cues. Journal of the Acoustical Society of America, 123(5), 3294.
10.1121/1.2933688
- Cooke, M., Garcia Lecumberri, M. L., & Barker, J. P. (2008). The foreign language cocktail party problem: Energetic and
informational masking effects in non-native speech
perception. Journal of the Acoustical Society of America, 123(1), 414–427.
doi:10.1121/1.2804952
[PDF]
- N. Ma, P. Green, J. Barker, & A. Coy. (2007). Exploiting correlogram structure for robust speech
recognition with multiple speech sources. Speech Communication, 49(12), 874–891.
10.1016/j.specom.2007.05.003
[PDF]
- A. Coy, & J. Barker. (2007). An automatic speech recognition system based on the scene
analysis account of auditory perception. Speech Communication, 49(7), 384–401.
10.1016/j.specom.2006.11.002
[PDF]
- J. Barker, & M. Cooke. (2007). Modelling speaker intelligibility in noise. Speech Communication, 49(5), 402–417.
10.1016/j.specom.2006.11.003
[PDF]
- S. Harding, J. Barker, & G. J. Brown. (2006). Mask estimation for missing data speech recognition based
on statistics of binaural interaction. IEEE Trans. Speech
and Audio Processing. IEEE Transactions on Audio, Speech and Language
Processing, 14(1), 58–67.
10.1109/TSA.2005.860354
[PDF]
- M. Cooke, J. Barker, S. Cunningham, & X. Shao. (2006). An audio-visual corpus for speech perception and automatic
speech recognition. Journal of the Acoustical Society of America, 120(5), 2421–2424.
10.1121/1.2229005
[PDF]
- J. Barker, M. P. Cooke, & D. P. W. Ellis. (2005). Decoding speech in the presence of other sources. Speech Communication, 45(1), 5–25.
doi:10.1016/j.specom.2004.05.002
[PDF]
- K. J. Palomäki, G. J. Brown, & J. Barker. (2004). Techniques for handling convolutional distortion with
‘missing data’ automatic speech recognition. Speech Communication, 43(1–2), 123–142.
10.1016/j.specom.2004.02.005
[PDF]
- Barker, J. P., & Cooke, M. P. (1999). Is the sine-wave speech cocktail party worth attending? Speech Communication, 27(3–4), 159–174.
10.1016/S0167-6393(98)00081-8
[PDF]
- Barker, J. P., & Cooke, M. P. (1996). Modeling the recognition of sine-wave sentences. Journal of the Acoustical Society of America, 100(4), 2682.
10.1121/1.416995
Conference Papers
- Mogridge, R., Close, G., Sutherland, R., Hain, T., Barker, J., Goetze, S., & Ragni, A. (2024). Non-Intrusive Speech Intelligibility Prediction for
Hearing-Impaired Users using Intermediate ASR Features and
Human Memory Models. In Proceedings of the 2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Seoul, Korea: IEEE.
- Barker, J., Akeroyd, M., Bailey, W., Cox, T., Culling, J., Firth, J., … Naylor, G. (2024). THE 2ND CLARITY PREDICTION CHALLENGE: A MACHINE LEARNING
CHALLENGE FOR HEARING AID INTELLIGIBILITY PREDICTION. In Proceedings of the 2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Seoul, Korea: IEEE.
- Dabike, G. R., Akeroyd, M., Bannister, S., Barker, J., Cox, T., Firth, B. F. J., … Whitmer, W. (2024). The ICASSP SP Cadenza Challenge: Music Demixing/Remixing
For Hearing Aids. In Proceedings of the 2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Seoul, Korea: IEEE.
- Cox, T., Akeroyd, M., Barker, J., Culling, J., Firth, J., Graetzer, S., … Porter, E. (2023). Predicting speech intelligibility for people with a
hearing loss: The clarity challenges. In INTER-NOISE and NOISE-CON Congress and Conference
Proceedings (pp. 4599–4606). Institute of Noise Control Engineering.
10.1109/ICASSP43922.2022.9746855
- Cox, T. J., Barker, J., Bailey, W., Graetzer, S., Akeroyd, M. A., Culling, J. F., & Naylor, G. (2023). Overview of the 2023 ICASSP SP Clarity Challenge: Speech
Enhancement for Hearing Aids. In Proceedings of the 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Rhodes Island, Greece: IEEE.
https://doi.org/10.1109/icassp49357.2023.10433922
- Akeroyd, M., Bailey, W., Bannister, S., Firth, J., Graetzer, S., Dabike, G. R., … Vos, R. (2023). The Clarity & Cadenza Challenges. In Proceedings of Forum Acusticum (pp. 1209–1211). Torino, Italy.
10.61782/fa.2023.0876
- Akeroyd, M. A., Bailey, W., Barker, J., Cox, T. J., Culling, J. F., Graetzer, S., … Tu, Z. (2023). The 2nd Clarity Enhancement Challenge for Hearing Aid
Speech Intelligibility Enhancement: Overview and Outcomes. In Proceedings of the 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Rhodes Island, Greece: IEEE.
10.1109/ICASSP49357.2023.10094918
- Tu, Z., Ma, N., & Barker, J. (2022). Unsupervised Uncertainty Measures of Automatic Speech
Recognition for Non-intrusive Speech Intelligibility
Prediction. In Proceedings of the 23nd Annual Conference of the
International Speech Communication Association (INTERSPEECH
2022). Incheon, Korea.
- Tu, Z., Deadman, J., Ma, N., & Barker, J. (2022). Auditory-Based Data Augmentation for end-to-end Automatic
Speech Recognition. In Proceedings of the 47th IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2022). Singapore: IEEE.
10.1109/ICASSP43922.2022.9746252
- Tu, Z., Ma, N., & Barker, J. (2022). Exploiting Hidden Representations from a DNN-based Speech
Recogniser for Speech Intelligibility Prediction in
Hearing-impaired Listeners. In Proceedings of the 23nd Annual Conference of the
International Speech Communication Association (INTERSPEECH
2022). Incheon, Korea.
- Zhang, J., Zorila, C., Doddipatla, R., & Barker, J. (2022). On monoaural speech enhancement for automatic recognition
of real noisy speech using mixture invariant training. In Proceedings of the 23nd Annual Conference of the
International Speech Communication Association (INTERSPEECH
2022). Incheon, Korea.
- Deadman, J., & Barker, J. (2022). Improved Simulation of Realistically-Spatialised
Simultaneous Speech Using Multi-Camera Analysis in The
Chime-5 Dataset. In Proceedings of the 47th IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2022). Singapore: IEEE.
10.1109/ICASSP43922.2022.9746351
- Yue, Z., Loweimi, E., Christensen, H., Barker, J., & Cvetkovic, Z. (2022). Dysarthric Speech Recognition From Raw Waveform with
Parametric CNNs. In Proceedings of the 23nd Annual Conference of the
International Speech Communication Association (INTERSPEECH
2022). Incheon, Korea.
- Yue, Z., Loweimi, E., Cvetkovic, Z., Christensen, H., & Barker, J. (2022). Multi-Modal Acoustic-Articulatory Feature Fusion For
Dysarthric Speech Recognition. In Proceedings of the 47th IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2022). Singapore: IEEE.
10.1109/ICASSP43922.2022.9746855
- Deadman, J., & Barker, J. (2022). Modelling Turn-taking in Multispeaker Parties for
Realistic Data Simulation. In Proceedings of the 23nd Annual Conference of the
International Speech Communication Association (INTERSPEECH
2022). Incheon and Korea.
- Barker, J., Akeroyd, M., Cox, T. J., Culling, J. F., Firth, J., Graetzer, S., … Munoz, R. V. (2022). The 1st Clarity Prediction Challenge: A machine learning
challenge for hearing aid intelligibility prediction. In Proceedings of the 23nd Annual Conference of the
International Speech Communication Association (INTERSPEECH
2022). Incheon, Korea.
- Roa Dabike, G., & Barker, J. (2021). The use of voice source features for sung speech
recognition. In Proceedings of the 46th IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2021). Toronto, Canada: IEEE.
10.1109/ICASSP39728.2021.9414950
- Zhang, J., Zorila, C., Doddipatla, R., & Barker, J. (2021). Teacher-student MixIT: semi-supervised learning for
speech separatioN. In Proceedings of the 22nd Annual Conference of the
International Speech Communication Association (INTERSPEECH
2021). Brno, Czech Republic.
- Zhang, J., Zorila, C., Doddipatla, R., & Barker, J. (2021). Time-domain speech extraction with spatial information and
multi speaker conditioning mechanism. In Proceedings of the 46th IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2021). Toronto, Canada: IEEE.
10.1109/ICASSP39728.2021.9414092
- Yue, Z., Barker, J., Christensen, H., McKean, C., Ashton, E., Wren, Y., … Brigh, R. (2021). Parental spoken scaffolding and narrative skills in
crowd-sourced storytelling samples of young children. In Proceedings of the 22nd Annual Conference of the
International Speech Communication Association (INTERSPEECH
2021). Brno, Czech Republic.
- Tu, Z., Ma, N., & Barker, J. (2021). Optimising hearing aid fittings for speech in noise with a
differentiable hearing loss model. In Proceedings of the 22nd Annual Conference of the
International Speech Communication Association (INTERSPEECH
2021). Brno, Czech Republic.
- Tu, Z., Ma, N., & Barker, J. (2021). DHASP: Differentiable hearing aid speech processing. In Proceedings of the 46th IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2021). Toronto, Canada: IEEE.
10.1109/ICASSP39728.2021.9414571
- Graetzer, S., Barker, J., Cox, T., Akeroyd, M., Culling, J., Naylor, G., … Munoz, R. V. (2021). Clarity-2021 challenges: Datasets, tasks and baselines. In Proceedings of the 22nd Annual Conference of the
International Speech Communication Association (INTERSPEECH
2021). Brno, Czech Republic.
- Falconer, L., Coy, A., & Barker, J. (2021). Modelling the Effects of Hearing Aid Algorithms on Speech
and Speaker Intelligibility as Perceived by Listeners with
Simulated Sensorineural Hearing Impairment. In Proceedings of IEEE SoutheastCon (pp. 1–8). virtual.
10.1109/SoutheastCon45413.2021.9401882
- Xiong, F., Barker, J., Yue, Z., & Christensen, H. (2020). Source domain data selection for improved transfer
learning targeting dysarthric speech recognition. In Proceedings of the 45nd IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2020). Barcelona, Spain: IEEE.
10.1109/ICASSP40776.2020.9054694
- Deadman, J., & Barker, J. (2020). Simulating realistically-spatialised simultaneous speech
using video-driven speaker detection and the CHiME-5
dataset. In Proceedings of the 21st Annual Conference of the
International Speech Communication Association (INTERSPEECH
2020). Shanghai, China.
- Zhang, J., Zorila, C., Doddipatla, R., & Barker, J. (2020). On end-to-end multi-channel time domain speech separation
in reverberant environments. In Proceedings of the 45nd IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2020). Barcelona, Spain: IEEE.
10.1109/ICASSP40776.2020.9053833
- Yue, Z., Christensen, H., & Barker, J. (2020). Autoencoder bottleneck features with multi-task
optimisation for improved continuous dysarthric speech
recognition. In Proceedings of the 21st Annual Conference of the
International Speech Communication Association (INTERSPEECH
2020). Shanghai, China.
- Yue, Z., Xiong, F., Christensen, H., & Barker, J. (2020). Exploring appropriate acoustic and language modelling
choices for continuous dysarthric speech recognition. In Proceedings of the 45nd IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2020). Barcelona, Spain: IEEE.
10.1109/ICASSP40776.2020.9054343
- Xiong, F., Barker, J., & Christensen, H. (2019). Phonetic Analysis of Dysarthric Speech Tempo and
Applications to Robust Personalised Dysarthric Speech
Recognition. In Proceedings of the 44th IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2019). Brighton, UK: IEEE.
10.1109/ICASSP.2019.8683091
- Dabike, G. R., & Barker, J. (2019). Automatic lyric transcription from Karaoke vocal tracks:
Resources and a Baseline System. In Proceedings of the 20th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2019). Graz, Austria.
- Loweimi, E., Barker, J., & Hain, T. (2018). On the Usefulness of the Speech Phase Spectrum for Pitch
Extraction. In Proceedings of the 19th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2018). Hyderabad, India.
- Xiong, F., Zhang, J., Meyer, B., Christensen, H., & Barker, J. (2018). Channel selection from DNN posterior probability for
speech recognition with distributed microphone arrays in
everyday environments. In Proceedings of the 5th ISCA International Workshop on
Speech Processing in Everyday Environments (CHiME 2018) (pp. 19–24). Hyderabad, India.
- Loweimi, E., Barker, J., & Hain, T. (2018). Exploring the use of group delay for generalised VTS
based noise compensation. In Proceedings of the 43nd IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2018). Calgary, Canada: IEEE.
10.1109/ICASSP.2018.8462595
- Gogate, M., Adeel, A., Marxer, R., Barker, J., & Hussain, A. (2018). DNN driven Speaker Independent Audio-Visual Mask
Estimation for Speech Separation. In Proceedings of the 19th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2018). Hyderabad, India.
- Barker, J., Watanabe, S., Vincent, E., & Trmal, J. (2018). The fifth ‘CHiME’ Speech Separation and Recognition
Challenge: Dataset, task and baselines. In Proceedings of the 19th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2018). Hyderabad, India.
- Loweimi, E., Barker, J., & Hain, T. (2017). Channel Compensation in the Generalised Vector Taylor
Series Approach to Robust ASR. In Proceedings of the 18th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2017). Stockholm, Sweden.
- Loweimi, E., Barker, J., & Hain, T. (2017). Statistical normalisation of phase-based feature
representation for robust speech recognition. In Proceedings of the 42nd IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2017). New Orleans, USA: IEEE.
10.1109/ICASSP.2017.7953170
- Loweimi, E., Barker, J., Saz Torralba, O., & Hain, T. (2017). Robust Source-Filter Separation of Speech Signal in the
Phase Domain. In Proceedings of the 18th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2017). Stockholm, Sweden.
- Marxer, R., & Barker, J. (2017). Binary Mask Estimation Strategies for Constrained
Imputation-Based Speech Enhancement. In Proceedings of the 18th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2017). Stockholm, Sweden.
- Hussain, A., Barker, J., Marxer, R., Adeel, A., Whitmer, W., Watt, R., & Derleth, P. (2017). Towards Multi-modal Hearing Aid Design and Evaluation in
Realistic Audio-Visual Settings: Challenges and
Opportunities. In Proceedings of the 1st ISCA International Workshop on
Challenges in Hearing Assistive Technology (CHAT-2017) (pp. 29–34). Stockholm, Sweden.
- Abel, A., Marxer, R., Barker, J., Watt, R., Whitmer, B., Derleth, P., & Hussain, A. (2016). A data driven approach to audiovisual speech mapping. In Proceedings of Advances in Brain Inspired Cognitive
Systems: 8th International Conference, BICS 2016 (pp. 331–342). Beijing, China.
- Garcia Lecumberri, M. L., Barker, J., Marxer, R., & Cooke, M. (2016). Language effects in noise-induced word misperceptions. In Proceedings of the 17th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2016). San Francisco, CA.
- Loweimi, E., Barker, J., & Hain, T. (2016). Use of Generalised Nonlinearity in Vector Taylor Series
Noise Compensation for Robust Speech Recognition. In Proceedings of the 17th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2016). San Francisco, CA.
- Mandel, M. I., & Barker, J. (2016). Multichannel Spatial Clustering for Robust Far-Field
Automatic Speech Recognition in Mismatched Conditions. In Proceedings of the 17th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2016). San Francisco, CA.
- Tóth, A. M., Cooke, M., & Barker, J. (2016). Misperceptions arising from speech-in-babble
interactions. In Proceedings of the 17th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2016). San Francisco, CA.
- Barker, J., Marxer, R., Vincent, E., & Watanabe, S. (2015). The third CHiME speech separation and recognition
challenge: dataset, task and baselines. In Proc. 2015 IEEE Automatic Speech Recognition and
Understanding (ASRU). Scottsdale, AZ.
- Marxer, R., Cooke, M., & Barker, J. (2015). A Framework for the Evaluation of Microscopic
Intelligibility Models. In Proceedings of the 16th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2015). Dresden, Germany.
- Alghamdi, N., Maddock, S., Brown, G. J., & Barker, J. (2015). A Comparison of Audiovisual and Auditory-only Training on
the Perception of Spectrally-distorted Speech. In Proc. XVIII International Congress of Phonetics Sciences
(ICPhS) 2015. Glasgow, UK.
- Foster, P., Sigtia, S., Krstulovic, S., Barker, J., & D. Plumbley, M. (2015). CHiME-HOME A Dataset for Sound Source Recognition in a
Domestic Environment. In Proc. IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, WASPAA. New Paltz, NY.
- Lin, L., Barker, J., & J. Brown, G. (2015). The Effect of Cochlear Implant Processing on Speaker
Intelligibility: A Perceptual Study and Computer Model. In Proceedings of the 16th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2015). Dresden, Germany.
- Loweimi, E., Barker, J., & Hain, T. (2015). Source-filter Separation of Speech Signal in the Phase
Domain. In Proceedings of the 16th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2015). Dresden, Germany.
- E. Loweimi, J. B., M. Doulaty, & Hain, T. (2015). Long-term Statistical Feature Extraction from Speech
Signals and its Application in Emotion Recognition. In Proc. 3rd International Conference on Statistical Language
and Speech Processing (SLSP). Budapest, Hungary.
- Alghamdi, N., Maddock, S., Brown, G. J., & Barker, J. (2015). Investigating the Impact of Aritificial Enhancement of Lip
Visibility on the Intelligibility of Spectrally-Distorted
Speech. In Proc. The 1st Joint Conference on Facial Analysis,
Animation and Auditory-Visual Speech Processing,
FAAVSP2015. Vienna, Austria.
- Dabel, M. A., & Barker, J. (2015). On the Role of Discriminative Intelligibility Models for
Speech Intelligibility Enhancement. In Proc. XVIII International Congress of Phonetics Sciences
(ICPhS) 2015. Glasgow, UK.
- Ma, N., Marxer, R., J.Barker, & Brown, G. J. (2015). Exploiting synchrony spectra and deep neural networks for
noise-robust automatic speech recognition. In Proc. 2015 IEEE Automatic Speech Recognition and
Understanding (ASRU). Scottsdale, AZ.
- Dabel, M. A., & Barker, J. (2014). Speech pre-enhancement using a discriminative microscopic
intelligibility model. In Proceedings of the 15th Annual Conference of the
International Speech Communication Association (INTERSPEECH
2014). Singapore.
- Vincent, E., Barker, J., Watanabe, S., Le Roux, J., Nesta, F., & Matassoni, M. (2013). The second ‘CHiME’ Speech Separation and Recognition
Challenge: Datasets, tasks and baselines. In Proceedings of the 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Vancouver, Canada: IEEE.
- N. Ma, & J. Barker. (2013). A fragment-decoding plus missing-data imputation system
evaluated on the 2nd CHiME challenge. In Proceedings of the 2nd CHiME Workshop on Machine Listening
in Multisource Environments (pp. 53–58). Vancouver, Canada.
[PDF]
- Ma, N., & Barker, J. (2012). Coupling identification and reconstruction of missing
features for noise-robust automatic speech recognition. In Proceedings of the 13th Annual Conference of the
International Speech Communication Association (Interspeech
2012). Portland, Oregon.
- González, J. A., Peinado, A. M., Gómez, A. M., Ma, N., & Barker, J. (2012). Combining missing-data reconstruction and uncertainty
decoding for robust speech recognition. In Proceedings of the 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (pp. 4693–4696). Kyoto, Japan: IEEE.
10.1109/ICASSP.2012.6288966
[PDF]
- Cooke, M., Barker, J., Lecumberri, M. L., & Wasilewski, K. (2011). Crowdsourcing for word recognition in noise. In Proceedings of the 12th Annual Conference of the
International Speech Communication Association (Interspeech
2011). Florence.
- N. Ma, J. Barker, H. Christensen, & P. Green. (2011). Incorporating localisation cues in a fragment decoding
framework for distant binaural speech recognition. In IEEE Joint Workshop on Hands-Free Speech Communication and
Microphone Arrays (HSCMA’11) (pp. 207–212). Edinburgh, United Kingdom.
10.1109/HSCMA.2011.5942400
- N. Ma, J. Barker, H. Christensen, & P. Green. (2011). Recent advances in fragment-based speech recognition in
reverberant multisource environments. In Proceedings of the 1st CHiME Workshop on Machine Listening
in Multisource Environments (pp. 68–73). Florence, Italy.
- Morales-Cordovilla, J. A., Ma, N., Sánchez, V., Carmona, J. L., Peinado, A. M., & Barker, J. (2011). A pitch based noise estimation technique for robust speech
recognition with missing data. In Proceedings of the 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (pp. 4808–4811). Prague, Czech Republic: IEEE.
10.1109/ICASSP.2011.5947431
[PDF]
- N. Ma, J. Barker, H. Christensen, & P. Green. (2011). Binaural cues for fragment-based speech recognition in
reverberant multisource environments. In Proceedings of the 12th Annual Conference of the
International Speech Communication Association (Interspeech
2011) (pp. 1657–1660). Florence, Italy.
[PDF]
- H. Christensen, J. Barker, N. Ma, & P. Green. (2010). The CHiME corpus: a resource and a challenge for
Computational Hearing in Multisoure Environments. In Proceedings of the 11th Annual Conference of the
International Speech Communication Association (Interspeech
2010). Makuhari, Japan.
- Christensen, H., & Barker, J. (2010). Speaker turn tracking with mobile microphones: combining
location and pitch information. In Proceedings of the 18th European Signal Processing
Conference (EUSIPCO-2010). Aalborg, Denmark.
- Kabir, A., Giurgiu, M., & Barker, J. (2010). Robust automatic transcription of English speech corpora. In Proceedings of the 8th International Conference on
Communications (COMM) (pp. 79–82). Bucharest, Romania.
10.1109/ICCOMM.2010.5509116
[PDF]
- A. Kabir, J. Barker, & M. Giurgiu. (2010). Integrating hidden Markov model and PRAAT: a toolbox
for robust automatic speech transcription. In Proceedings of SPIE 7745, Photonics Applications in
Astronomy, Communications, Industry, and High-Energy
Physics Experiments (Vol. 774513). Wilga, Poland.
10.1117/12.872211
- N. Ma, J. Barker, H. Christensen, & P. Green. (2010). Distant microphone speech recognition in a noisy indoor
environment: combining soft missing data and speech
fragment decoding. In Proceedings of the ISCA Tutorial and Research Workshop on
Statistical And Perceptual Audition. Makuhari, Japan.
- H. Christensen, N. Ma, S. N. Wrigley, & J. Barker. (2009). A speech fragment approach to localising multiple speakers
in reverberant environments. In Proceedings of the 2009 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (pp. 4593–4596). Taipei, Taiwan: IEEE.
10.1109/ICASSP.2009.4960653
[PDF]
- H. Christensen, & J. Barker. (2009). Using location cues to track speaker changes from mobile,
binaural microphones. In Proceedings of the 10th Annual Conference of the
International Speech Communication Association (Interspeech
2009). Brighton, UK.
- E. Arnaud, H. Christensen, Y-C. Lu, J. Barker, V. Khalidov, M. Hansard, … R. Horaud. (2008). The CAVA Corpus: Synchronised Stereoscopic and Binaural
Datasets with Head Movements. In ICMI ’08 Proceedings of the 10th international conference
on Multimodal interfaces (pp. 109–116). Crete, Greece.
10.1145/1452392.1452414
[PDF]
- N. Ma, J. Barker, & P. Green. (2007). Applying duration constraints by using unrolled HMMs. In Proceedings of the 8th Annual Conference of the
International Speech Communication Association (Interspeech
2007). Antwerp, Belgium.
- H. Christensen, N. Ma, S. Wrigley, & J. Barker. (2007). Integrating pitch and localisation cues at a speech
fragment level. In Proceedings of the 8th Annual Conference of the
International Speech Communication Association (Interspeech
2007). Antwerp, Belgium.
- X. Shao, & J. Barker. (2007). Audio-visual speech fragment decoding. In Proceedings of the International Conference on
Auditory-Visual Speech Processing (AVSP 2007). Hilvarenbeek, The Netherlands.
[PDF]
- J. Barker, A. Coy, N. Ma, & M. Cooke. (2006). Recent advances in speech fragment decoding techniques. In Proceedings of the 9th International Conference on Spoken
Language Processing (Interspeech 2006) (pp. 85–88). Pittsburgh, PA.
- K. J. Palomäki, G. J. Brown, & J. Barker. (2006). Recognition of reverberant speech using full cepstral
features and spectral missing data. In Proceedings of the 2006 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Toulouse, France: IEEE.
10.1109/ICASSP.2006.1660014
[PDF]
- X. Shao, & J. Barker. (2006). Audio-visual speech recognition in the presence of a
competing speaker. In Proceedings of the 9th International Conference on Spoken
Language Processing (Interspeech 2006) (pp. 1292–1295). Pittsburgh, PA.
- A. Coy, & J. Barker. (2006). A Multipitch Tracker for Monaural Speech Segmentation. In Proceedings of the 9th International Conference on Spoken
Language Processing (Interspeech 2006) (pp. 1678–1681). Pittsburgh, PA.
- G. J. Brown, S. Harding, & J. Barker. (2006). Speech separation based on the statistics of binaural
auditory features. In Proceedings of the 2006 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Toulouse, France: IEEE.
10.1109/ICASSP.2006.1661434
[PDF]
- Barker, J. (2005). Tracking Facial Markers with an Adaptive Marker
Collocation Model. In Proceedings of the 2005 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (pp. 665–668). Philadelphia, PA: IEEE.
10.1109/ICASSP.2005.1415492
[PDF]
- A. Coy, & J. Barker. (2005). Soft Harmonic Masks for Recognising Speech in the Presence
of a Competing Speaker. In Proceedings of the 9th European Conference on Speech
Communication and Technology (Interspeech 2005) (pp. 2641–2644). Lisbon, Portugal.
- A. Coy, & J. Barker. (2005). Recognising Speech in the Presence of a Competing Speaker
using a ‘Speech Fragment Decoder.’ In Proceedings of the 2005 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (pp. 425–428). Philadelphia, PA: IEEE.
10.1109/ICASSP.2005.1415141
[PDF]
- S. Harding, J. Barker, & G. Brown. (2005). Mask Estimation Based on Sound Localisation for Missing
Data Speech Recognition. In Proceedings of the 2005 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (pp. 537–540). Philadelphia, PA: IEEE.
10.1109/ICASSP.2005.1415169
[PDF]
- J. Barker, & A. Coy. (2005). Towards Solving the Cocktail Party Problem through
Primitive Grouping and Model Combination. In Proceedings of Forum Acusticum. Budapest, Hungary.
- S. Harding, J. Barker, & G. Brown. (2005). Binaural Feature Selection for Missing Data Speech
Recognition. In Proceedings of the 9th European Conference on Speech
Communication and Technology (Interspeech 2005) (pp. 1269–1272). Lisbon, Portugal.
- Brown, G. J., Palomäki, K., & Barker, J. (2004). A Missing Data Approach for Robust Automatic Speech
Recognition in the Presence of Reverberation. In Proceedings of the 18th International Congress on
Acoustics (ICA) (pp. 449–452). Kyoto, Japan.
- K. J. Palomäki, G. J. Brown, & J. Barker. (2002). Missing data speeech recognition in reverberant
conditions. In Proceedings of the 2002 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (pp. I-65–I-68). Orlando, FL: IEEE.
10.1109/ICASSP.2002.5743655
[PDF]
- J. Barker, M. Cooke, & D. Ellis. (2002). Temporal integration as a consequence of multi-source
decoding. In Proceedings of the ISCA Workshop on the Temporal
Integration in the Perception of Speech (TIPS). Aix-en-Provence, France.
- J. Barker, M. Cooke, & P. Green. (2001). Robust ASR based on clean speech models: An evaluation of
missing data techniques for connected digit recognition in
noise. In Proceedings of the 7th European Conference on Speech
Communication and Technology, 2nd INTERSPEECH Event,
Eurospeech 2001 (pp. 213–216). Aalborg, Denmark.
[PDF]
- J. Barker, M. Cooke, & D. Ellis. (2001). Combining bottom-up and top-down constraints for robust
ASR: The multisource decoder. In Proceedings of Workshop on consistent and reliable
acoustic cues for sound analysis (CRAC-01). Aalborg, Denmark.
[PDF]
- P. Green, J. Barker, M. P. Cooke, & L. Josifovski. (2001). Handling Missing and Unreliable Information in Speech
Recognition. In Proceedings of the 8th International
Workshop on Artificial Intelligence and Statistics
(AISTATS-2001). Key West, FL.
[PDF]
- G. J. Brown, D. L. Wang, & J. Barker. (2001). A neural oscillator sound separator for missing data
speech recognition. In Proceedings of the International Joint Conference on
Neural Networks (IJCNN 2001) (Vol. 4, pp. 2907–2912). Washington, DC.
10.1109/IJCNN.2001.938839
[PDF]
- A. C. Morris, J. Barker, & H. Bourlard. (2001). From Missing Data to Maybe Useful Data: Soft Data
Modelling for Noise Robust ASR. In Proceedings of the Worshop on Innovation in Speech
Processing (WISP 2001). Stratford-upon-Avon, UK.
[PDF]
- J. Barker, P. Green, & M. P. Cooke. (2001). Linking Auditory Scene Analysis and Robust ASR by
Missing Data Techniques. In Proceedings of the Worshop on Innovation in Speech
Processing (WISP 2001). Stratford-upon-Avon, UK.
[PDF]
- J. Barker, M. P. Cooke, & D. P. W. Ellis. (2000). Decoding speech in the presence of other sound sources. In Proceedings of the International Conference on Spoken
Language Processing. Beijing, China.
[PDF]
- J. Barker, L. Josifovski, M. P. Cooke, & P. D. Green. (2000). Soft decisions in missing data techniques for robust
automatic speech recognition. In Proceedings of the 6th International Conference on Spoken
Language Processing (Interspeech 2000). Beijing, China.
[PDF]
- Barker, J. P., & Berthommier, F. (1999). Estimation of speech acoustics from visual speech
features: A comparison of linear and non-linear models. In Proceedings of the ISCA Workshop on Auditory-Visual Speech
Processing (AVSP) ’99. University of California, Santa Cruz.
[PDF]
- Barker, J. P., & Berthommier, F. (1999). Evidence of correlation between acoustic and visual
features of speech. In Proc. ICPhS ’99. San Francisco.
[PDF]
- Barker, J. P., Berthommier, F., & Schwartz, J. L. (1998). Is primitive AV coherence an aid to segment the scene? In Proceedings of the ISCA Workshop on Auditory-Visual Speech
Processing (AVSP) ’98. Sydney, Australia.
[PDF]
- Barker, J. P., Williams, G., & Renals, S. (1998). Acoustic confidence measures for segmenting broadcast
news. In Proc. ICSLP ’98. Sydney, Australia.
[PDF]
- Barker, J. P., & Cooke, M. P. (1997). Modelling the recognition of spectrally reduced speech. In Proceeding of the Eurospeech ’97 (pp. 2127–2130). Rhodes, Greece.
[PDF]
- Barker, J. P., & Cooke, M. P. (1997). Is the sine-wave cocktail party worth attending? In Proceedings of the 2nd Workshop on Computational Auditory,
Scene Analysis. Nagoya, Japan: Int. Joint Conf. Artificial Intelligence.
[PDF]
Book Chapters
- Barker, J., Marxer, R., Vincent, E., & Watanabe, S. (2017). The CHiME challenges: Robust speech recognition in
everyday environments. In S. Watanabe, M. Delcroix, F. Metze, & J. R. Hershey (Eds.), New era for robust speech recognition – Exploiting deep
learning.
- Mandel, M. I., & Barker, J. P. (2017). Multichannel spatial clustering using model-based source
separation. In S. Watanabe, M. Delcroix, F. Metze, & J. R. Hershey (Eds.), New era for robust speech recognition – Exploiting deep
learning.
- Barker, J. P. (2013). Missing Data Techniques: Recognition with Incomplete
Spectrograms. In T. Virtanen, R. Singh, & B. Raj (Eds.), Techniques for Noise Robustness in Automatic Speech
Recognition (pp. 371–398). Wiley.
10.1002/9781118392683.ch14
- Cooke, M. P., Barker, J. P., & Lecumberri Garcia, M. L. (2013). Crowdsourcing in Speech Perception. In M. Eskanazi, G.-A. Levow, H. Meng, G. Parent, & D. Sundermann (Eds.), Crowdsourcing for Speech Processing (pp. 137–169). John Wiley and Sons.
- Barker, J. P. (2006). Robust automatic speech recognition. In D.-L. Wang & G. J. Brown (Eds.), Computational Auditory Scene Analysis: Principals,
Algorithms and Applications (pp. 297–350). Wiley/IEEE Press.
Abstracts
- Leglaive, S., Fraticelli, M., ElGhazaly, H., Borne, L., Sadeghi, M., Wisdom, S., … Barker, J. P. (2024). Objective and subjective evaluation of speech enhancement
methods in the UDASE task of the 7th CHiME challenge.
- Graetzer, S. N., Akeroyd, M. A., Barker, J., Cox, T. J., Culling, J., Naylor, G., … Viveros Munoz, R. (2020, December). Clarity : machine learning challenges to revolutionise
hearing device processing. online: Proceedings of e-Forum Acusticum 2020.
- Graetzer, S. N., Cox, T. J., Barker, J., Akeroyd, M. A., Culling, J., & Naylor, G. (2020, January). Machine learning challenges to revolutionise hearing
device processing. Toulouse, France: Proceedings of the 12th Speech in Noise Workshop (SpIN
2020).
- Ma, N., Brown, G., Barker, J., & Stone, M. (2017, August). Exploiting deep learning to inform spectral contrast
enhancement for hearing-impaired listeners. Stockholm, Sweden: Proceedings of the 1st ISCA International Workshop on
Challenges in Hearing Assistive Technology (CHAT-2017).
- Cooke, M., Marxer, R., Garcia Lecumberri, M. L., & Barker, J. (2017, January). Lexical frequency effects in noise-induced robust
misperceptions. Oldenburg, Germany: Proceedings of the 9th Speech in Noise Workshop (SpIN
2017).
- H. Christensen, J. Barker, Lu, Y.-C., J. Xavier, R. Caseiro, & H. Araújo. (2009). POPeye: Real-time, binaural sound source localisation
on an audio-visual robot-head. Proceedings of the Conference on Natural Computing and
Intelligent Robotics and NCAF.
- H. Christensen, J. Barker, Lu, Y.-C., J. Xavier, R. Caseiro, & H. Araújo. (2009). POPeye: Real-time, binaural sound source localisation
on an audio-visual robot-head. Proceedings of the Conference on Natural Computing and
Intelligent Robotics and NCAF.
- H. Christensen, & J. Barker. (2009). Simultaneous Tracking of Perceiver Movements and Speaker
Changes Using Head-Centered, Binaural Data. Proceedings of the Conference on Natural Computing and
Intelligent Robotics and NCAF.
PhD Thesis
- Barker, J. P. (1998). The relationship between auditory organisation and speech
perception: Studies with spectrally reduced speech (PhD thesis). Sheffield University, U.K.